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An acute ischaemic stroke is due to the sudden blockage of an intracranial
blood vessel by an embolized thrombus. In the context of setting up in silico
trials for the treatment of acute ischaemic stroke, the effect of a stroke on per-
fusion and metabolism of brain tissue should be modelled to predict final
infarcted brain tissue. This requires coupling of blood flowand tissue perfusion
models. A one-dimensional intracranial blood flow model and a method to
couple this to a brain tissue perfusion model for patient-specific simulations
is presented. Image-based patient-specific data on the anatomy of the circle
of Willis are combined with literature data and models for vessel anatomy
not visible in the images, to create an extended model for each patient from
the larger vessels down to the pial surface. The coupling between arterial
blood flow and tissue perfusion occurs at the pial surface through the esti-
mation of perfusion territories. The coupling method is able to accurately
estimate perfusion territories. Finally, we argue that blood flow can be approxi-
mated as steady-state flow at the interface between arterial blood flow and
tissue perfusion to reduce the cost of organ-scale simulations.

1. Introduction
An acute ischaemic stroke is the most common type of stroke. It is fatal to an esti-
mated 3 million people globally every year and may lead to a dramatic loss of
quality of life in survivors [1]. An acute ischaemic stroke occurs when blood
supply to the brain is suddenly blocked by an embolized thrombus. This results
in the acute loss of blood flow to downstream vessels. Consequently, brain tissue
is starved of oxygen, resulting in necrosis, causing disability and ultimately death.
Currently, only a few treatment options exist. Improving existing treatments and
developing and approving new treatments is a difficult, lengthy and expensive
process, prone to failures during clinical trials even after successful animal trials.

The INSIST project1 [2,3] aims to develop computational models that will be
used to simulate a clinical stroke trial on a virtual population. The (virtual)
patient in this context is generally a set of parameters and other data that are
used in a computational model. In silico trials (IST) can overcome some of the
limitations of clinical trials, lower their cost, contribute to developing more effi-
cient clinical trials or shorten the preclinical trajectories [4]. IST are closely related
to computational biomedicine or personalized medicine. The goal is to predict
the efficacy and efficiency of a treatment, drug or device. As such, they are similar
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to normal clinical trials where the testing happens on animals
or humans. Computational modelling has become the
standard in many industries from the design of air planes to
electronics. Likewise, computational models in the medical
field are slowly gaining momentum [5–10].

One of the goals of INSIST is to predict the location and
volume of the infarcted brain tissue for stroke patients both for
individual patients and at the population level. This requires
modelling blood flow across length scales incorporating three
orders of magnitude, from the large arteries via the arterioles
and the pial surface vessels to the penetrating vessels and the
microcirculation deep in the brain. Blood flow in large vessels
is typically modelled using lumped parameter or one-dimen-
sional (1D) blood flow models, whereas the microcirculation is
typically modelled as a porous medium [11]. In addition, there
is limited knowledge about the vessel anatomy between the
large vasculature and the microcirculation. Data on the
intermediate vessels are limited or only available as statistical
scaling laws. Predicting infarcted volume requires thus the coup-
ling of arterial blood flow models to tissue perfusion models.
Inclusion of the collateral circulation is also important but is
outside the scope of this paper. A tissue perfusion model is pre-
sented in another article in this same special issue of Interface
Focus [12]. A 1D blood flow model has to be coupled to this
tissue perfusion model, which presents several challenges.

Firstly, medical images often suffer from low resolution.
Scans from stroke patients are often done quickly to get an
assessment of the stroke severity. As a result, the scans typi-
cally only contain the circle of Willis (CoW) and a few of the
major cerebral arteries. This presents a problem as this does
not provide sufficient information for the coupling between
arterial blood flow and tissue perfusion. However, there are
high-resolution scans available from different individuals
[13,14]. Unfortunately, this dataset, referred to as the BraVa
dataset, does not contain other information such as, for
example, pressure, heart rate and Young’s modulus.

Secondly, information about the perfusion territories of the
cerebral arteries can be determined but is limited [15]. The
perfusion territory of a blood vessel is the region of tissue
that receives blood from that vessel. Not much is known
about the perfusion territories of the brain and data are again
sparse. Coupling blood flow to tissue perfusion in a patient-
specific manner requires the estimation of the perfusion
territory for every perfusing vessel.

Here, amethod is presented to couple blood flow in cerebral
blood vessels to cerebral tissue perfusion. Patient-specific
image-based vessel segmentations are combined with literature
data andmodels for vessel anatomy not visible in the images to
create an extendedmodel for each patient. UsingMurray’s Law,
we estimate perfusion territories on the pial surface using a
coupling algorithm. Arterial blood flow is simulated with a
1D pulsatile blood flow model with three-element windkessel
elements at the boundaries. We show that, at the pial surface,
blood flow pulsatility is small and argue that blood flow can
be approximated as steady-state flow.
2. Methods
2.1. Vasculature of virtual patients
Vessel centrelines are extracted from vessel segmentations of
computed tomography (CT) angiographs from stroke patients
entering the hospital [16].2 The centrelines contain the CoW
and the side branches, figure 1a. The side branches are the pos-
terior cerebral artery (PCA), anterior cerebral artery (ACA) and
middle cerebral artery (MCA). This patient-specific vasculature
is first extended with the larger vessels, starting from the heart,
figure 1b. The smaller vessels to the cerebellum and brainstem
are also added. The default parameters describing these arteries
are taken from the literature [17,18] and are shown in table 1.
A taper can be included by setting different proximal and
distal radii but has not been considered in this paper.

Centrelines of high-resolution scans of cerebral arteries are
available from 61 different individuals [13,14]. These centrelines
are referred to as the BraVa dataset. The arteries in the datasets
are labelled by six major cerebral arteries from which they
emerged, i.e. left and right ACA, MCA and PCA, and the
CoW, figure 1c. One segmentation of the BraVa set is randomly
chosen and attached to the patient-specific vasculature. For
each major cerebral artery in the patient vasculature, the equival-
ent vessel in the BraVa vasculature is used as an attachment
point. The radii of the added vessels are scaled by the ratio of
equivalent cerebral vessels, ACA, MCA, PCA, etc., between the
BraVa dataset and the patient-specific vasculature. All radii are
scaled to preserve any scaling law between the vessels.

These three sets of data are combined to create a patient-
specific vasculature that starts at the heart and ends close to the
pial surface. For each major cerebral artery in the patient dataset,
the relevant vessels in the Brava dataset are identified and then
attached to each other. On the other end of the patient anatomy,
the large arteries to the heart are connected, as shown in figure 1d.

2.2. One-dimensional blood flow modelling
One-dimensional blood flow models assembled from multiple
vessel segments [19–25] are able to model blood flow in sufficient
detail without becoming too computationally expensive. These
1D models capture the axial flow component along the vessel,
showing a good agreement with 3D blood flow simulations
[26]. Blood flow is modelled as a viscous incompressible fluid.
Assuming rotational symmetry around the centreline of the cir-
cular vessels and integrating the continuity equation along the
azimuthal and the radial coordinates of a cylindrical coordinate
system [19,22] leads to

@A
@t

þ @(A�vx)
@x

¼ 0: ð2:1Þ

Following the same steps results in the averaged Navier–
Stokes momentum equations

@�vx
@t

þ (2a� 1)�vx
@�vx
@x

þ (a� 1)
�v2x
A
@A
@x

þ 1
r

@p
@x

¼ �2amp�vx
(a� 1)rA

: ð2:2Þ

The primary variables are the cross-sectional area of the vessel (A),
the averaged axial velocity along the vessel (�vx) and static pressure
( p) within each vessel as functions of the axial coordinate (x) and
time (t). The corresponding model parameters are the momentum
correction factor (α), the density (ρ) and the dynamic viscosity of
blood (μ). A stroke is modelled as a complete blockage of flow
and pressure by enforcing Neumann pressure boundary con-
ditions at the end of the clotted vessel segment. In the future, the
model will be extended to handle partial occlusions.

In order to close the equation system formed by equations (2.1)
and (2.2), a relationship between the pressure and the cross-
sectional area has to be defined. Wall deformations are described
by a thin-walled axisymmetric elastic membrane approach so that

p ¼ pref þ b

A0

ffiffiffiffi
A

p
�

ffiffiffiffiffiffi
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p� �
, ð2:3Þ
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b ¼
ffiffiffiffi
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: ð2:4Þ
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Figure 1. (a) Segmentation from a CT angiography from a stroke patient in blue. The segmentation contains the circle of Willis and several side branches. Cen-
trelines are extracted and shown in red. Circular cross-sections are used as estimates for the radius. (b) The large arteries, starting from the heart leading up to and
including the patient-specific CoW. Smaller vessels to the brainstem and cerebellum are also included. Note that the vessels are not drawn to scale. (c) One of the
centreline segmentations from the BraVa dataset (ID: BG18). Each vessel is smoothed by setting the radius at every point to the mean radius of that vessel. Vessels
are colour coded according to which major cerebral vessel they belong. The CoW vessels from the BraVa segmentation are not used and are replaced by the patient-
specific CoW from (a). (d ) The final patient-specific arterial network. Patient-specific data from (a) are extended with literature values from (b) and high-resolution
data from (c). This is the network that is used in the 1D blood flow simulations. Note that the vessels are not drawn to scale.
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Here, A0 is the area of the lumen at pref and pref is a reference
pressure set to the diastolic pressure. The β coefficient is determined
by the vessel wall properties, which are constant in each segment,
including the wall thickness (h), the Poisson’s ratio (ν) and the
Young’smodulus (E) of the vesselwall (constantswithin vessel seg-
ments). The thickness of the vessel wall is calculated using an
empirical function given by

h ¼ r0[a exp (br0)þ c exp (dr0)], ð2:5Þ

with r0 the initial radius, a = 0.2802, b =−0.5053 mm−1, c = 0.1324
and d =−0.01114 mm−1 [25].

The method used here to solve the resulting equations is the
MacCormack method, a second-order finite difference method.
The initial conditions are zero velocity and diastolic pressure
everywhere. Vessels are linked together at the bifurcations by the
method of characteristics for continuous propagation of character-
istics, conservation of mass and total continuity of pressure
(Bernoulli’s equation) [19–25]. The resulting equations are solved
with the Newton–Raphson method.

Every vessel has a minimum of three nodes and a maximum
separation of 10 mm. The simulation is run for a small number of
heart beats and iterated until the tolerance between iterations is
below a threshold, defined as

jpi � pi�1j
jpij

, 10�3 , ð2:6Þ

with pi being a vector of the pressure at all n nodes at all m time-
steps during the ith cardiac cycle and pi�1 a vector of the pressure
at the previous iteration i − 1. That is pi ¼ [ p1(t1),p1(t2) . . . pn(tm)].
The typical number of simulated cardiac cycles before
convergence is below 10.

The heart provides the inlet boundary conditions to the model
while a three-element windkessel model is used at each outlet.
Note that the BraVa anatomies typically have of the order of 100



Table 1. Default values for large vessels, adapted from [16,18].

vessel name length (mm) proximal radius (mm) distal radius (mm) Young’s modulus (MPa)

ascending aorta 40 12 12 0.4

aortic arch I 20 11.2 11.2 0.4

brachiocephalic 34 6.2 6.2 0.4

aortic arch II 39 11 11 0.4

L. common carotid 208 2.5 2.5 0.4

R. common carotid 177 2.5 2.5 0.4

R. subclavian 34 4.23 4.23 0.4

thoracic aorta 156 9.99 9.99 0.4

L. subclavian 34 4.23 4.23 0.4

L ext. carotid 177 1.5 1.5 0.8

L int. carotid I 177 2 2 0.8

R int. carotid I 177 2 2 0.8

R ext. carotid 177 1.5 1.5 0.8

R. vertebral 148 1.36 1.36 0.8

R. brachial 422 4.03 4.03 0.4

L. brachial 422 4.03 4.03 0.4

L. vertebral 148 1.36 1.36 0.8

L. PCoA 15 0.73 0.73 1.6

R. PCoA 15 0.73 0.73 1.6

basilar I 5.6 1.62 1.62 1.6

L. MCA 119 1.43 1.43 1.6

R. MCA 119 1.43 1.43 1.6

L. ACA, A1 12 1.17 1.17 1.6

R. ACA, A1 12 1.17 1.17 1.6

L. PCA, P1 5 1.07 1.07 1.6

R. PCA, P1 5 1.07 1.07 1.6

L. ACA, A2 103 1.2 1.2 1.6

R. ACA, A2 103 1.2 1.2 1.6

ACoA 3 0.74 0.74 1.6

L. PCA, P2 86 1.05 1.05 1.6

R. PCA, P2 86 1.05 1.05 1.6

R. SCA 10 0.78 0.78 1.6

L. SCA 10 0.78 0.78 1.6

R. AICA 10 0.63 0.63 1.6

L. AICA 10 0.63 0.63 1.6

basilar II 5.6 1.62 1.62 1.6

pontine I 5 0.2 0.2 1.6

pontine II 5 0.2 0.2 1.6

pontine III 5 0.2 0.2 1.6

pontine IV 5 0.2 0.2 1.6

pontine V 5 0.2 0.2 1.6

pontine VI 5 0.2 0.2 1.6

pontine VII 5 0.2 0.2 1.6

pontine VIII 5 0.2 0.2 1.6

pontine IX 5 0.2 0.2 1.6

pontine X 5 0.2 0.2 1.6

(Continued.)
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Table 1. (Continued.)

vessel name length (mm) proximal radius (mm) distal radius (mm) Young’s modulus (MPa)

pontine XI 5 0.2 0.2 1.6

pontine XII 5 0.2 0.2 1.6

basilar III 5.6 1.62 1.62 1.6

basilar IV 5.6 1.62 1.62 1.6

basilar V 5.6 1.62 1.62 1.6

R. PICA 10 0.63 0.63 1.6

L. PICA 10 0.63 0.63 1.6

R. vertebral II 20 1.36 1.36 0.8

L. vertebral II 20 1.36 1.36 0.8

Table 2. Default model parameters.

parameter symbol value

density ρ 1050 kg m−3

viscosity μ 0.0035 Pa s

venous pressure 2500 Pa

heart rate HR 60 min−1

systole pressure Psys 17 300 Pa

diastole pressure Pdia 10 100 Pa

stroke volume SV 70 ml

momentum correction factor α 1.1

aortic pressure decay time τ 1.34 s

Poisson ratio ν 0.5
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outlets. Volume flow rate at the inlet is given by an inlet function
and taken from Boileau et al. [23]. The inlet function is scaled
based on stroke volume and heart rate for each patient. The total
resistance (Rtot) and compliance (Ctot) of the full vascular tree
model are calculated by [27]

Rtot ¼
ð1=3ÞPsys þ ð2=3ÞPdia

SV �HR
ð2:7Þ

and

Ctot ¼ t

Rtot
, ð2:8Þ

with Psys the systolic pressure, Pdia the diastolic pressure, SV the
stroke volume, HR the heart rate and τ the aortic pressure decay
time constant. The compliance of the patient network (C1D) is
calculated from the sum of the vessel compliances given by

C1D ¼ 3A
ffiffiffiffi
A

p
L

2
ffiffiffiffi
p

p
Eh

, ð2:9Þ

where L is the vessel length. The network compliance is substantial
for a large vessel and is, therefore, subtracted from the total com-
pliance. The resistance of the patient network is assumed to be
negligible for the large arteries compared to the total resistance.

Known distributions of cardiac output into the main vessels
are used to distribute the resistance and compliance to each
outlet. That is, 65% goes to the lower body through the thoracic
aorta, 5% goes to the arms through the left and right brachial
arteries and the rest to the other outlets [28]. The resistance
and compliance are distributed to the outlets, RT and C, based
on the fraction of the radius cubed, e.g. Murray’s Law [29]. The
cardiac output distribution is assumed to be constant. The total
resistance and compliance for an outlet are given by

RT ¼ Rtot

COf

P
i r0i
r0

ð2:10Þ

and

C ¼ Ctot �
P

vessels
C1D

� �
Rtot

RT
, ð2:11Þ

where i sums over all outlets connected to a particular body part
and COf is the cardiac output fraction of that body part.

The total resistance of the attached cerebral arteries is sub-
tracted to account for the resistance added by the attachment
of the BraVa vessels to the patient network. The resistance of
the added vasculature is calculated by iteratively adding resist-
ances depending on whether vessels run in parallel or serial.
The two resistance windkessel parameters, R1 and R2, of each
outlet are calculated by

R1 ¼ r

A0

ffiffiffiffiffiffiffiffiffi
2Eh
3rr0

s
ð2:12Þ
and

R2 ¼ RT � R1: ð2:13Þ

The choice for R1 leads to the minimization of unnatural wave
reflections at the outlets [30]. The outlets of the 1D blood flow
model provide blood flow to the perfusion territories of the
brain. The default parameters of the model are listed in table 2.

The extension process proceeds along the following steps:

(1) identify identical vessels in both datasets by their label;
(2) extract the smaller upstream vessels starting from the major

cerebral artery;
(3) calculate themean radius for identical vessels in both datasets;
(4) scale the radii of the upstream vessels identified previously

accordingly;
(5) attach the upstream vessels to the relevant end in the patient

vasculature;
(6) calculate the resistance of the appended vessels;
(7) subtract the resistance and distribute the remainder to the

appended ends.

To characterize the strength of the pulsatility of blood flow,
pulsatility indices are used. Thepressure pulsatility index is given by

Pip ¼ pmax � pmin

pmean
, ð2:14Þ

with pmax the maximum pressure, pmin the minimum pressure
and pmean the mean pressure over a single heartbeat. The velocity
pulsatility index is given by

Piv ¼ vmax � vmin

vmean
, ð2:15Þ



(a)

(b) (c)

Figure 2. (a) The pial surface as a uniform triangulated mesh. (b) Nodes are the centres of the triangles from (a), shown as red circles, and connected by red lines if
they share a vertex. The distance between connected nodes is the Euclidean distance. (c) The outlet of a vessel is projected to the surface, blue circle. The nearest
surface elements, i.e. triangles, are assigned to the nearest outlet, green circles. Distance between surface elements is determined by Dijkstra’s algorithm from the
graph in (b).
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with vmax the maximum velocity, vmin the minimum velocity and
vmean the mean velocity.

2.3. Estimating perfusion territories
Coupling blood flow to tissue perfusion in a patient-specific
manner requires the estimation of the perfusion territory for
every perfusing vessel, so for every outlet of the BraVa sets (i.e.
left and right ACA, MCA and PCA), the cerebellum and the brain-
stem. UsingMurray’s Law, perfusion territories on the pial surface
are estimated using a coupling algorithm. The radius of the outlet
is assumed to be related to the perfusion of tissue byMurray’s Law
given by

r3i /Qi, ð2:16Þ
with r3i the cubic radius at outlet i and Qi the volume flow rate at
outlet i.

We estimate the fraction of the pial surface that belongs to
each outlet i of the patient vasculature at the pial surface with
the use of Murray’s Law. This fraction is calculated as

fi ¼ QiPn
j¼0 Qj

¼ r3iPn
j¼0 r

3
j
, ð2:17Þ

with Qi the volume flow rate at the outlet and r3i the cubic radius
at the outlet. The proportionality constants from equation (2.16)
drop out in equation (2.17) because they are set to be the same
at all outlets. The volume flow rate per area, or flow velocity, is
uniform over the pial surface under these assumptions. To
what extent this is also true for a real brain is not clear.
The pial surface is represented as a uniform triangulated
mesh, figure 2a, where each triangle represents an equal sized
area on the mesh. The mesh was presented in the study of
Garcia-Gonzalez et al. [31] where it was used for finite-element
computations. The triangles are grouped based on distance, cal-
culated with Dijkstra’s algorithm, using a coupling algorithm,
figure 2b and c. The number of surface elements (ni) that
belong to each outlet is calculated by

ni ¼ fiNTot, ð2:18Þ

with NTot the number of triangles of the uniform triangulated
mesh.

The coupling algorithm ensures that the size of the perfusion
territories is scaled based on the cubed radius of vessel that per-
fuses it, i.e. Murray’s Law. After the coupling, any unassigned
surface elements are assigned to the nearest cluster. The surface
elements are assigned to the nearest outlet based on their separ-
ation on the surface. This is an iterative algorithm to account for
the mismatch between the pial surface and the outlet. The outlet
position is updated by taking the centre point of the assigned
surface elements as a new guess. The new centre point is deter-
mined by minimizing the maximum separation between points.

Data from vessel-encoded arterial spin labelling (VEASL) is
used to confine the sampling of the mesh to regions that belong
to the same major cerebral vessel [32–34]. This is done to achieve
a better match between the estimated area and area of the surface
mesh. The pial surface mesh does not contain the complex folding
of the brain nor does it containwell separated frontal and temporal
lobes. By using VEASL data, the mismatch between the expected
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area and the area of the surface mesh can be limited to the major
territories of the brain. The major territories of the brain are the
left and right ACA, MCA and PCA, the cerebellum and the brain-
stem. Vessels perfusing the pial surface are confined to the
equivalent regions in the VEASL data. The coupling algorithm
tries to find the sets for which the sum of distances within the
set of surface elements is minimal. Note that the cluster sizes are
calculated beforehand using equation (2.18).

The root of the perfusion territories can be thought of as the
mean position of the surface elements in that set. The surface is
transformed into a graph and Dijkstra’s distance algorithm is
used, figure 2b. Euclidean distance can also be used if the surface
is relatively flat. The pseudo code is given as follows:

(1) Determine the number of surface elements per outlet with
equation (2.18).

(2) Project the outlet to the pial surface as an initial guess for the
root.

(3) Find the closest set of elements to the root.
(4) Minimize the root–element distance within the clusters.
(5) Update the root.
(6) Iterate until convergence.
(7) Repeat for each major cerebral region.

The mean flow velocity at outlets of the blood flow model is
distributed evenly across the relevant perfusion territory. Each
triangle of the mesh receives a volume flow rate based on its frac-
tional area such that the flow velocity, i.e. volume flow rate per
area, is uniform within each perfusion territory and within the
major region set by the VEASL data. The result of the coupling
is shown in figure 4, error estimation in figure 5 and blood
flow at the pial surface in figure 6.
3. Results and discussion
Extending patient-specific data on the anatomy of the CoW
with high-resolution data from the BraVa sets and literature
can solve some of the problems of missing vessels. We include
the arteries starting at the heart such that we can capture the
redirection of flow in the event of a stroke. This is often
excluded from many models that look at stroke. For large
vessel occlusions, it is likely that the redistribution of blood
can have significant effects on perfusion. A more detailed
study on this is in progress and will be reported elsewhere.

The extended patient vasculature, figure 1d, should con-
tain sufficient detail to capture all relevant effects such as
the redistribution of flow after a stroke and make it possible
to model volume flow rates, pressure and other variables.
Once the patient anatomy is extended to the smaller cerebral
arteries, we can begin to map the flow in the arteries to the
brain. Modelling the entire cerebral vasculature down to
the microcirculation is computationally unfeasible and
probably also not required for our purpose. Being able to
switch to a more efficient model is, therefore, crucial. The
1D blood flow model used in this paper is commonly used,
well studied and validated [16,23,25]. The outlets of the 1D
blood flow model provide blood flow to the perfusion
territories of the brain.

Statistically accurate vessel networks can be generated
between the outlets of the BraVa sets and the coupling points
at the pial surface (figure 1c) using constrained constructive
optimization [35–37]. However, one of the underlying assump-
tions of such algorithms is that the radii at the terminal points
are equal and their positions are randomly chosen within a
target volume. Since the assumption here is that there is no
seepage through the vessel wall, the volume flow rates at the
outlets would all be equal for a symmetric bifurcating tree.
Simple scaling laws, such as Murray’s Law and a length-to-
radius ratio, can be used to generate bifurcating trees, as the
1D blood flow model only depends on the length and the
radius and not the position of the vessels.

Pulsatile blood flow was simulated in the anatomy of
figure 1d, using parameters from table 2. The simulations
were performed for seven heartbeats, after which the solution
converged. Time-dependent volume flow rate and pressure
along the anatomy were obtained, and from that both vel-
ocity and pressure pulsatility indices (PI) were computed.

The pressure and velocity pulsatility decrease as a function
of distance from the heart for most vessels. Pulse pressure
amplification is observed at the brachial arteries. Figure 3a
shows the volume flow rate, pressure and radius of three
vessels at different sizes, one large, one intermediate and one
small artery. The chosen vesselswere the right common carotid
artery, the right MCA and one outlet vessel belonging to the
right middle cerebral vasculature. The figure shows that
the volume flow rate profile only changes in magnitude as
the flow is split at every bifurcation. The pressure profile
changes as the higher frequencies are damped. The vessel
radius changes depending on the pressure and the properties
of the vessel. The radii of the small cerebral arteries do not
change much. The cerebral vessels are much stiffer than the
large arteries and the pressure is lower further away from the
heart, figure 3b [38]. The cerebral vessels beyond the CoW are
similar in size; their Young’s modulus is assumed to be similar
and is set to the same value as their main branch of 1.6 MPa.

Figure 3c shows the pressure PI in the cerebral vasculature.
Figure 3d shows the pressure and velocity PIs as a function of
distance from the heart. Measurements of the velocity pulsati-
lity index of the right MCA are possible through transcranial
Doppler ultrasound. The PI measured is often the velocity PI
also known as Gosling’s pulsatility index [39]. PI is thought
to reflect the downstream vascular resistance and changes in
PI are associated with various diseases [40,41].

Table 3 shows the velocity pulsatility indices for the MCA.
Comparing the values found to those in the literature shows
that the model overestimates the velocity PI [40,42–44].
Stiffness of the vessels plays an important role in the trans-
mission of pressure and velocity pulsatility through the
vasculature [44,45]. Obtaining patient-specific Young’s
moduli for every vessel is difficult and can explain some of
the overestimation of the velocity PI in the model. The outlet
resistance and choice of BraVa segmentation affect the pulsati-
lity indices more than the Young’s moduli. Pressure pulsatility
index decreases more than the velocity pulsatility index as a
function of distance from the heart. This is likely due to the
dampening seen in the pressure profiles, figure 3a. This
suggests that the pressure PI is a better measure of the
downstream resistance than the velocity PI.

The pressure and velocity pulsatility decrease as the
radius of the vessel decreases, figure 3c and d. High frequen-
cies are effectively decreased in magnitude. The pressure
pulsatility index shows that there are two types of behaviour.
The first type is the pulse pressure amplification in the
brachial arteries. The second type is the slow decrease in
pulsatility index as distance from the heart increases. Velocity
pulsatility seems to reach a minimum at around one.

Tables 3 and 4 show the mean PI and mean volume flow
rates for the model with and without patient segmentations
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Figure 3. (a) Results from the 1D blood flow simulation for three different locations in the vasculature. The volume flow rate, pressure and radius over time are
plotted. The locations are chosen based on their size. The chosen vessels were the right common carotid artery, the right MCA and one outlet vessel belonging to
the right middle cerebral vasculature. (b) Mean pressure for the patient-specific vasculature calculated by the 1D blood flow model. Note that the vasculature shown
here is mapped to a 3D anatomy that is the same for all patients and is used only for visualization; the length and radii are not to scale. (c) Pressure pulsatility index
in the patient-specific vasculature of the CoW and downstream vessels. (d ) Pressure and velocity pulsatility indices as a function of distance from the heart. Each line
represents an individual vessel. Only vessels belonging to the CoW and beyond are shown.
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Figure 4. (a) The pial surface mapped by the coupling algorithm. The major region ID for each triangle of the pial surface mesh is shown. Note that this result is
enforced by the algorithm. (b) The pial surface mapped by the coupling algorithm. Each triangle is coloured based on the cluster ID. Each coloured region corre-
sponds to one outlet of the 1D blood flow model. Each cluster is one connected region and lies within its major cerebral vessel domain as shown in (a).
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used to personalize the model. The configuration of the CoW
and the stroke itself will change the outcome such that we
cannot compare the model output to values from the litera-
ture for healthy patients. Note that the model is not
calibrated nor fitted to match the reference values. The pulsa-
tility indices when compared with the reference value do
seem to be too high but, without either calibration or
sufficient patient data, this is not surprising. The configur-
ation of the CoW plays a major role in cerebral blood flow,
especially during a stroke [16,46]. Including more patient-
specific parameters, such as length, radii, elasticity, etc., will
affect the model results. However, these are often difficult
or infeasible to obtain for stroke patients. Getting correlated
high-quality data for stroke patients is difficult. This is
something that we hope to address in future work.

The coupling algorithm is able to consistently map the
outlets of the blood flow model to the pial surface. The
coupling method works with any pial surface mesh and a
higher-resolution mesh will also increase the resolution of
the perfusion territories. The choice of BraVa subject does
not affect the blood flow variables before the CoW with the
coefficient of variation not exceeding 0.005 for any vessel in
table 1. However, there is variation in the location and size
of the perfusion territories. This likely reflects the individual-
ity of the cerebral vasculature. Computation times for the 1D
blood flow simulation are of the order of 10 min while the
coupling algorithm takes significantly more time and is of
the order of 60 min. Computations are done on a standard
desktop computer with an Intel core i7–7700 k running at
4.2 GHz with 16 GB RAM.

Figure 4a shows the mapping of the pial surface based on
the major artery from which the vessels originate. To date,
only the perfusion territories for the major cerebral arteries
are well established [15,47]. The major cerebral perfusion ter-
ritories are enforced with the use of VEASL data. This is done
to try to limit the error between the expected area and the
area on the surface mesh. The surface mesh does not capture
all the complex folding of the brain and a mismatch is
expected. This lack of resolution is a serious limitation of
the coupling algorithm. A downside of this is that the frac-
tional areas, equation (2.17), are only strictly valid within
each region, figure 5.

The coupling algorithm essentially maps the pial surface
to the nearest vessel. The main benefit from the coupling
algorithm is that it ensures that the perfusion territories are
sized correctly, figure 5. Shown in figure 5 are ratios between
various variables within regions of the brain. Every outlet is
compared to every other outlet in a specific region of the
brain. The ratios provide a way to compare the results of
the model to the model assumptions as a form of verification.
Figure 5a shows the relationship between the cubic radius
and the area on the pial surface of the vessel outlets. Figure 5b
shows the relationship between cubic radius and mean
volume flow rates, see equation (2.16). Figure 5c shows the
relation between the number of triangles and area on
the surface mesh. The ratios display a linear relationship;
any deviation from the linear relationship represents a
deviation from the model assumptions. The deviations
come from the fact that the resistance of the vasculature
affects the flow and pressure at the outlet, and the surface
segmentation is divided into a discrete number of triangles
(numerical error).

The coupling method is graph-based and works with any
geometry and distance metric. The coupling method uses
equation (2.17) to estimate the fractional area of each outlet
without the need to calculate flow rates. Once the outlets
are mapped to the surface, the effect of different diseases,
such as a stroke or stenosis, on blood flow can be modelled.
The assumption is that the underlying vasculature does not
change due to the disease. Different scaling laws can be
applied by changing the calculation of fractional area,
equation (2.17). Using a different scaling law affects the size
and location of the perfusion territories. It would be interest-
ing to see the effect of different scaling laws. Murray’s Law is
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Figure 5. Relationships between perfusion territories within the same major region. The fractions are calculated as r3i =r
3
j , Ai=Aj , Qi=Qj , Ni=Nj , where i and j denote

the perfusion territories. (a) The fraction between cubed radii at the outlet and area on the pial surface. (b) The fraction between cubed radii at the outlet and the
mean volume flow rate. (c) The fraction between the number of triangles of two clusters and their area. All figures show linear relationships.
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used in this paper as it seems to be a good fit for the cerebral
vasculature [48].

A simple alternative to the coupling algorithm would be
to map the surface to the nearest outlet. However, this can
cause problems when some outlets are mapped to large areas
of the surface and others are not mapped at all. The effect
of differently sized radii at the ends of the vessels cannot be
ignored. Another way to estimate perfusion territories is
based on calculating streamlines [49]. However, this method
is computationally expensive and can run into issues with
large complicated geometries.

Changes in volume flow rate become negligible on the
time scale of tissue oxygenation and cell death. We, therefore,
argue that we can approximate the volume flow rates at
the pial surface as steady-state flow. The mean volume flow
rate over the region does not depend on details of the vascula-
ture due to conservation ofmass. The steady state only changes
due to a major event in the vasculature such as a stroke. We,
therefore, map the mean volume flow rate directly from the
vessel outlet to its perfusion territory. One could go further
and replace the entire blood flow model with a steady-state
resistance model.

The mapping of the pial surface to the outlets of the 1D
blood flow model is shown in figure 4b. The volume flow
rate at the outlets of the 1D blood flow model is distributed
evenly across its perfusion territory. Figure 6a shows the
mean blood flow velocity at the pial surface and figure 6b
shows the mean volume blood flow rate at the pial surface.
There are some differences in flow rate at the pial surface
but all flow rates are within one order of magnitude. These
differences are largely due to deviations from the assumed
proportionality between radius and volume flow rate,
equation (2.16) and figure 5b. The flow rates at the surface
depend not just on the radius at the outlet but also on the
resistances up to the outlets. The surface mesh also does
not capture all the complexity of the human brain and affects



2.13 × 10–4

1.50 × 10–4

1.00 × 10–4

5.00 × 10–5

0.00 fl
ow

 v
el

oc
ity

 (
m

 s
–1

)

2.13 × 10–4

1.50 × 10–4

1.00 × 10–4

5.00 × 10–5

0.00

fl
ow

 v
el

oc
ity

 (
m

 s
–1

)

4.42 × 10–4

3.50 × 10–4

3.00 × 10–4

2.50 × 10–4

2.00 × 10–4

1.50 × 10–4

1.00 × 10–4

5.00 × 10–5

0.00 vo
lu

m
e 

fl
ow

 r
at

e 
(m

 s
–1

)

4.42 × 10–4

3.50 × 10–4

3.00 × 10–4

2.50 × 10–4

2.00 × 10–4

1.50 × 10–4

1.00 × 10–4

5.00 × 10–5

0.00 vo
lu

m
e 

fl
ow

 r
at

e 
(m

l s
–1

)

(a) (b)

(c) (d)

Figure 6. (a) Mean blood flow velocity at the pial surface for a healthy patient. The mean volume flow rate divided by the cluster area for each vessel outlet to the
pial surface is shown. All values are within one order of magnitude of each other. (b) Volume flow rate on the mesh for a healthy patient. The volume flow rate at
the outlet of the vessel is mapped to its cluster on the mesh. There are large differences between clusters, as the outlet radii can differ significantly. (c) Flow velocity
at the pial surface for a patient with a stroke. There is a clot in the right MCA. Pressure after the clot is equal to that of the venous system and flow is zero.
(d ) Volume flow rate at the pial surface for a patient with a stroke. Any vessel originating from the right MCA has zero flow and their perfusion territories receive
no blood.

Table 3. Velocity pulsatility index of the MCA.

origin mean (s.d.)

model (default anatomy) 1.02

model with patient data 1.08

[42] 0.754 (0.110) (women)

0.823 (0.154) (male)

[43] 0.74 (0.04)

[40] 0.86 (0.18)

[44] 0.92 (0.21) (women)

0.94 (0.19) (men)
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the distribution of the flow across the pial surface, figure 5a
and c. There is a trade-off between increasing the number
of surface triangles to improve accuracy and computation
time. Improving the quality of the surface mesh and improv-
ing the surface mapping as well as validation of the mapping
will be addressed in future work. An extensive validation
based on the MR CLEAN database is in progress. Infarcted
volume prediction based on the model presented here
coupled to a porous model shows promising agreement
with CT scans [12].

A clot can be modelled by introducing a reflective bound-
ary condition at the boundary of the flow. This is achieved
by enforcing a zero pressure gradient, resulting in zero
flow through the clot. The redistribution of flow after a stroke
is included in the model. The flow to the affected region
is redistributed to the other outlets. The brain receives a
small portion of this flow; most goes to the other parts of the
body. The brain receives only about 15% of cardiac output.
A first approximation would, therefore, be that the brain
receives 15% of the flow to the occluded region. Blood
flow to the rest of the brain is not expected to be affected
significantly. Figure 6c shows the effect of a clot in the right
MCA on the velocity of flow at the pial surface. Figure 6d
shows the effect of the same clot on the volume flow rate to
the pial surface. The figures show that downstream of the
clot there is no flow, leading to regions on the pial surface
that lack flow. These are the areas where an infarct will start
to form.

The framework presented here can be used to model
blood flow to organs such as the brain. In addition, the



Table 4. Volumetric flow rates (ml min−1) per vessel for the model with
and without patient segmentations.

vessel
model
(patient)

model
(default)

relative
difference (%)

ascending

aorta

4.20 × 103 4.20 × 103 0.00

aortic arch I 3.53 × 103 3.54 × 103 −0.28
brachiocephalic 6.76 × 102 6.61 × 102 2.22

aortic arch II 3.15 × 103 3.19 × 103 −1.27
L. common

carotid

3.80 × 102 3.47 × 102 8.68

R. common

carotid

3.67 × 102 3.57 × 102 2.72

R. subclavian 3.05 × 102 3.03 × 102 0.66

thoracic aorta 2.84 × 103 2.89 × 103 −1.76
L. subclavian 3.05 × 102 3.03 × 102 0.66

L ext. carotid 8.64 × 101 1.47 × 102 −70.14
L int. carotid I 2.92 × 102 1.98 × 102 32.19

R int. carotid I 2.80 × 102 2.09 × 102 25.36

R ext. carotid 8.71 × 101 1.48 × 102 −69.92
R. vertebral 8.82 × 101 8.20 × 101 7.03

R. brachial 2.17 × 102 2.21 × 102 −1.84
L. brachial 2.17 × 102 2.21 × 102 −1.84
L. vertebral 8.83 × 101 8.21 × 101 7.02

L. PCoA −8.35 1.30 × 101 255.69

R. PCoA 5.65 × 101 1.37 × 101 75.75

basilar I 1.50 × 102 1.16 × 102 22.67

L. MCA 1.93 × 102 1.22 × 102 36.79

R. MCA 1.35 × 102 1.25 × 102 7.41

L. ACA, A1 1.08 × 102 6.24 × 101 42.22

R. ACA, A1 8.95 × 101 6.92 × 101 22.68

L. PCA, P1 −6.73 × 101 −3.48 × 101 48.29

R. PCA, P1 −5.65 × 101 −3.27 × 101 42.12

L. ACA, A2 1.08 × 102 6.30 × 101 41.67

R. ACA, A2 8.92 × 101 6.96 × 101 21.97

ACoA — 1.28 × 10−1 —

L. PCA, P2 5.89 × 101 4.82 × 101 18.17

R. PCA, P2 1.13 × 102 4.69 × 101 58.50

R. SCA 1.20 × 101 2.22 × 101 −85.00
L. SCA 1.20 × 101 2.22 × 101 −85.00
R. AICA 6.46 1.18 × 101 −82.66
L. AICA 6.46 1.18 × 101 −82.66
basilar II 1.50 × 102 1.15 × 102 23.33

pontine I 2.06 × 10−1 3.76 × 10−1 −82.52
pontine II 2.05 × 10−1 3.74 × 10−1 −82.44
pontine III 2.04 × 10−1 3.73 × 10−1 −82.84
pontine IV 2.03 × 10−1 3.72 × 10−1 −83.25
pontine V 2.02 × 10−1 3.71 × 10−1 −83.66

(Continued.)

Table 4. (Continued.)

vessel
model
(patient)

model
(default)

relative
difference (%)

pontine VI 2.02 × 10−1 3.70 × 10−1 −83.17
pontine VII 2.06 × 10−1 3.76 × 10−1 −82.52
pontine VIII 2.05 × 10−1 3.74 × 10−1 −82.44
pontine IX 2.04 × 10−1 3.73 × 10−1 −82.84
pontine X 2.03 × 10−1 3.72 × 10−1 −83.25
pontine XI 2.02 × 10−1 3.71 × 10−1 −83.66
pontine XII 2.02 × 10−1 3.70 × 10−1 −83.17
basilar III 1.49 × 102 1.14 × 102 23.49

basilar IV −1.49 × 102 −1.14 × 102 23.49

basilar V −1.48 × 102 −1.13 × 102 23.65

R. PICA 6.56 1.20 × 101 −82.93
L. PICA 6.56 1.20 × 101 −82.93
R. vertebral II 8.02 × 101 6.89 × 101 14.09

L. vertebral II 8.03 × 101 6.90 × 101 14.07
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coupling algorithm can be used to estimate perfusion terri-
tories for any organ as long as the appropriate distance
metric is used. It is important to capture enough of the vascu-
lature to be able to accurately predict pressure and flow
rates. Obtaining correlated parameters as well as patient-
specific segmentations is a major challenge for creating
patient-specific simulations.
4. Conclusion
In silico trials can dramatically improve the process of devel-
opment of medical devices, drugs and treatments. IST can
potentially reduce the cost and duration of running a trial
by reducing the need for patients and speeding up testing.
The INSIST consortium [50] aims to create an IST for treat-
ment of acute ischaemic stroke. The trial will include
models of the patient population, arterial blood flow, tissue
perfusion, metabolism, thrombosis, thrombolysis and throm-
bectomy. Here, the arterial blood flow model and a method
for estimating perfusion territories are presented. Image-
based patient-specific data on the anatomy of the CoW are
combined with literature data and models for vessel anatomy
not visible in the images to create an extended model for each
patient. An acute ischaemic stroke can be modelled as the
blockage of flow at any point in the vasculature. Modelling
stroke and predicting infarct volume requires the coupling
of multiple models on different scales. A method to couple
patient-specific blood flow models to a tissue perfusion
model is presented. Blood flow to the pial surface can be
approximated as steady if we accept a small error due to
the loss of the time-dependent behaviour. However,
additional work remains to be done on the incorporation of
feedback between the blood flow model and the tissue per-
fusion model.

Data accessibility. Patient-specific data are not available due to privacy
regulations. The BraVa dataset is freely available from http://cng.
gmu.edu/brava. The model code is available on GitHub at https://
github.com/Rpadmos/Coupling1DBF.
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