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Large‑scale forecasting of information 
spreading
Oksana Severiukhina1* , Sergey Kesarev1, Klavdiya Bochenina1*, Alexander Boukhanovsky1, Michael H. Lees1,2,3 
and Peter M. A. Sloot1,2,3

Introduction
The purpose of this research is to understand and predict how information spreads in 
online social communities. It allows determining in advance the dynamic and character-
istics of the processes. As a result, it becomes possible to detect deviations in behaviour 
that can help to identify unusual or suspicious activities like irrelevant, urgent and pro-
motional content, or community hacking. One of the ways to achieve that is to build a 
computational model of how information process spreads over a definite topology for a 
certain set of rules of interacting agents’ behaviour.

Models describing the processes of information dissemination in social networks can 
be divided into explanatory and predictive ones. Most of the models describe or forecast 
the dynamics of reactions to a single online message. However, these messages may be 

Abstract 

This research proposes a system based on a combination of various components for 
parallel modelling and forecasting the processes in networks with data assimilation 
from the real network. The main novelty of this work consists of the assimilation of data 
for forecasting the processes in social networks which allows improving the quality of 
the forecast. The social network VK was considered as a source of information for deter-
mining types of entities and the parameters of the model. The main component is the 
model based on a combination of internal sub-models for more realistic reproduction 
of processes on micro (for single information message) and meso (for series of mes-
sages) levels. Moreover, the results of the forecast must not lose their relevance during 
the calculations. In order to get the result of the forecast for networks with millions of 
nodes in reasonable time, the process of simulation has been parallelized. The accuracy 
of the forecast is estimated by MAPE, MAE metrics for micro-scale, the Kolmogorov–
Smirnov criterion for aggregated dynamics. The quality in the operational regime is 
also estimated by the number of batches with assimilated data to achieve the required 
accuracy and the ratio of calculation time in the frames of the forecasting period. In 
addition, the results include experimental studies of functional characteristics, scalabil-
ity, as well as the performance of the system.
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presented in different contexts (e.g. thematic communities of Online Social Networks 
(OSN), such as a community of football fans or classical music lovers) and for various 
audience. Therefore, the model needs to be tailored to a given context.

We distinguish between several levels of modelling and forecasting information pro-
cesses in OSN (Fig. 1):

• micro-level: information message (IM);
• meso-level: community (sequence of information messages in one community);
• macro-level: information spread in the form of IM between a set of communities.

At the micro level, the cascade on individual post dynamics is usually studied. At the 
meso-level, one may explore such things as influence of publication time on the impact 
of various messages and preferences of different segments of the audience. At the macro 
level, one may observe exchange of information between communities.

In this research, we present and evaluate an agent-based forecasting system for 
information spreading on micro- and meso-levels in the large-scale OSN. This system 
reproduces the aggregated impact of information messages from the individual agents’ 
actions. To perform initial identification of model parameters, the retrospective data 
from OSN has been collected and the groups of agents and types of messages for a given 
community have been defined. During the forecast in the operational regime, we track 
the actual status of information process using web crawlers and feed this data into the 
model running at the supercomputer to tune the forecast in a real-time manner. This 
study investigates: (i) the possibility of reproducing the observed dynamics from indi-
vidual reactions, (ii) the quality of forecasts in terms of accuracy and earliness, (iii) the 
impact of data assimilation on the quality of forecasts, (iv) the scalability and perfor-
mance of the prediction system. Experimental studies performed on the Lomonosov 
supercomputer [1] using data collected during 2018 for two massive sets of news and 
charity communities.

The rest of the paper is organized as follows. Relevant information and related work 
are presented in Section  2. Section  3 describes the model, architecture of our system 

Fig. 1 Online social networks—micro, meso and macro levels
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and methods for assessing forecast quality. Section 4 shows the details on the dataset, 
forecasting experiments, scalability and performance analysis. Section 5 presents con-
clusions and further research discussion.

Related research
To create data-driven models of process in a complex network, it is essential to under-
stand two intertwined issues: (i) the most appropriate way to define agents (like indi-
vidual users or a community), (ii) the structure and the parameters of the predictive 
models. In order to specify agents in the model, it becomes necessary to determine the 
features of their behavior, as well as the relationships between them.

The reaction of each user in a social network is unique and can be determined by their 
age, social status, preferences, the internal state of the user, the history of their interac-
tion with the information source, and other characteristics. As users interact with vari-
ous items over time, users’ and items’ features may change their behavior over time [2]. 
Moreover, the influence of media and social connections on the dynamics of user opin-
ions should be noted [3]. Furthermore, the existence of the echo cameras effect in the 
network: polarized opinion in the nodes cluster leads to the diffusion of complex con-
tagions, for example, fake news [4]. Some individual characteristics may influence pro-
cesses in networks: heterogeneity of stateful agents [5] or agents’ curiosity [6]. In works 
[7, 8] authors proposed an ontology-based approach to extract semantics of textual data 
and defined the domain of data. More precisely they semantically analysed the social 
data at the entity and the domain level. Proposed approach was evaluated with a public 
dataset collected from Twitter.

Although users differ in the number and ratio of responses to messages, OSNs may 
provide limited information about the activities of a single user (as opposed to proper-
ties of sub-populations of users). Therefore, creation of reaction models at the level of 
individuals is hampered both by the lack of data and the difficulty to distinguish and 
define all the factors that determine the users’ response. The problem of reproducing 
agents’ reactions can be solved by clustering users by their level of involvement, roles 
in the community, and parameters of their profile. For example, in [9] authors classify 
users into four groups: celebrities, organizations/media accounts, grassroots stars, and 
ordinary individuals. In our study, data-driven agent-based models are developed. Then, 
in the frames of these models, parameters of clusters from the history of individualized 
responses within a community are learned.

The topology of network affects on the information processes. Agent-based modelling 
approach allows investigating the bottom-up behavior or what-if analysis. In this case, 
agents (micro level) create emerging network behavior (macro level) [10]. In article [10], 
the authors propose an approach of complex agent networks that combines agent-based 
model and network approaches. Moreover, the social networks have the following “small 
world” effect, scale-free degree distributions and the modular structure [11]. The classi-
cal generative models like Erdos–Renyi, Watt-Strogatz and Barabasi-Albert models can-
not reproduce all properties of real-world social networks. Moreover, the conductivity 
of links between entities may influence information dissemination: the users who have 
more common friends may have a greater possibility for the dissemination of informa-
tion [12]. In our work, we use the real networks as inputs for the model.
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Models of information spreading in networks can be divided into two categories: 
explanatory and predictive. In the explanatory models, information spreading is often 
considered in the same way as an epidemic spread process [13], where nodes can have 
one of the possible states in a concrete moment, for example, susceptible, infected, 
removed (SIR model). However, Weng [14] states that diseases differ from informa-
tion: diseases spread as simple contagions, information spread as complex contagions, 
because the last one is affected by social reinforcement and homophily.

According to [13], there are three types of predictive models for OSN: the independent 
cascade model (ICM), the linear threshold model (LTM) and the game theory model. In 
the first type of model inactive node can be activated by the active node with some pre-
defined probability. LTM model is a more complicated case, every interaction between 
nodes provides a cumulative effect on a node’s state. In the last type of models, there are 
some specific restrictions and various agents’ strategies. For example, the article [15] is 
aimed to explain how human factors impact on competitive information dissemination.

One of the sources of heterogeneity is the topicality of the message contents. Topic-
aware independent cascade and topic-aware linear threshold models were proposed in 
work [16]. These model have different topics distribution and strength of nodes influ-
ence on each other depending on the topic. In other research, posts or news have a 
defined virality coefficient that depicts the popularity of the message and affects on the 
probability of sharing. In [14], the authors predict the virality of memes based on early 
spreading patterns in terms of community structure. In this case, investigation of activity 
patterns helps to detect viral memes [17].

In recent years, a significant number of papers are dedicated to more complex meth-
ods. Prediction of shares number based on temporal behavior patterns of users was 
studied in the article [18]. Machine learning approach with the passive-aggressive algo-
rithm for predicting users’ behavior in Twitter was proposed in [19]. Kefato at al. pro-
posed a novel algorithm called CAS2VEC [20] that models information cascades as time 
series and discretizes them using time slices. In [21], the authors trained a probabilistic 
collaborative filter model to predict future retweets using Twitter data. In our work, we 
propose a forecasting method based on an agent-based model and data assimilation for 
increasing accuracy.

To forecast processes on large graphs, one needs to parallelize computation to be able 
to get the result of forecast in time. Parallelization can be applied to different steps of 
simulation from generative models (e.g. parallel Chung-Lu model [22]) to models of 
information spread (e.g. parallel SIR [23]). Moreover, different hierarchical synchronous 
parallel models for graph analytics can be used [24]. In this study, we modify our previ-
ous parallel algorithm for parallel simulation of dynamical processes on stochastic Kro-
necker graphs [25], to support arbitrary topologies and complicated models of agents’ 
behavior.

Summarizing, our goal is to combine the advantages of complex agent network with 
data-driven approach learning the topology and parameters of agents from the data. To 
tackle the overall complexity of the resulting model and to adapt it to changing con-
ditions, we constantly tune its parameters using data assimilation. Scalable parallel 
implementation is aimed to solve the problem of operational forecasting of informa-
tion messages in OSN. This research is an attempt to propose whole methodology: from 
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retrospective data collection to getting the results of forecasts. In addition, proposed 
approach supports fine-tuning of the properties for various OSN contexts, temporal 
dynamics and different scales of simulation.

Dataset description
For this study, the data sets were collected from the VKontakte social network using the 
web crawler. The data includes charity community and news community (there are two 
types of IMs in this community, regular and IMs with advertisement) with IMs from 
April to May 2018 as historical data and several months from August as real-time data. 
The first community has 295 k followers and 100 IMs, second community—1900 k fol-
lowers and 1500 k IMS.

The key features of the retrospective data are presented in Table 1. This dataset was 
used to train the basic parameters of the models.

Communities differ in both: the proportion of different reactions and the sources 
of reactions (Fig.  2). For instance, network charity community is distinguished by a 
high part of shares made by communities (these shares are done by administrators of 
individual charges or small communities), as well as a high part of reactions not from 
community subscribers, while in the news communities there is a larger activity of 

Table 1 Forecast quality assessment’ methods

# Dataset Features

1 followers Community id, user id, date of collection

2 IMs Community id, IM id, publication date, text, 
number of likes, shares and comments, date of 
collection

3 Likes: Community id, IM id, user id, date of collection

4 Shares Community id, IM id, reaction date

5 Comments Community id, IM id, reaction date

Fig. 2 Parts of different types of reactions for communities: a network charity, b news. The width of the 
rectangle shows the proportion of the reaction of this type, the height of the rectangle shows the proportion 
of reactions from various sources
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commentators. Figure 3b shows an example of a profile of user reactions containing 
the parameters of reactions to different topics. The selection of behavior’ types was 
carried out in the space proportional to the selected types of reactions (Fig. 3a), e.g. 
point (0.2, 0.3, 0.6) means that the user left the response of the first type to 20% of 
IMs, the response of the second type to 30% of IMs and, finally, the response of the 
third type to 60% of the available IMs.

To sum up, as the output, we obtained the following characteristics: networks of 
communities and users and their actions to determine temporary activity and attitude 
to various topics.

The proposed method
Description of main entities in model

There are three main entities of online social networks: communities, users and IM 
(more detailed is in our previous study [23]). The network of entities in cyberspace 
is a directed graph, where the vertices of the graph are a set of communities and set 
of users, and edges are subscriptions or friendship links. Unit of information is IM, it 
can be transferred between vertices. Main characteristics of entities are presented in 
Fig. 4.

Fig. 3 Users’ reaction types: a classes of users for a charity community, b user attitude to various topics in the 
reaction space

Community User

Schedule Users’ types
• Ac�ve commentator 5%
• Moderate commentator 5%
• Approve content 45%
• …

Topic 1
5%

Topic n
45% Topic 1

( )
Topic k

( )

Message

Topic Virality
( )

… …

Topics Ac�vity type
Topics

Publica�on
�me

Subscribers Friends

Fig. 4 Types of entities in the model and the attributes of entities
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Every IM has a source of information and an identifier, time of publication, topic, as 
well as values of virality coefficient which differ for possible types of reaction on mes-
sages, for example, virality of sharing. We define virality as a potential impact of the 
message, which imply the probability of reaction (as an analogue for virality in epi-
demic spreading). A user is a vertex (receiver of information), which can respond to the 
received IM. For online social networks, three basic types of reactions are available: like 
(approval of content), comment (discussion of information), share (distribution of IM). 
Moreover, each user is described by types of daily/weekly activity, and a set of reactions 
to a set of IMs. A community is a network’ vertex that broadcasts an IM to multiple 
users (community subscribers). It is described by a set of subscribers and a set of pos-
sible topics for IM. Each topic has the probability distribution of publication by the com-
munity depending on the time of day and day of the week.

The input parameters of the model are the network of subscriptions and friendships 
as well as parameters of internal models of communities and users. The network can 
be created artificially or extracted from the real social network. For the second case, we 
used the web crawler and collected information about subscribers of communities and 
friends of users. There are three internal models representing different drivers of infor-
mation process and defining the behavior of entities: a model of IM’s generation, a model 
of activity and model of reaction. The generative model of a community reproduces its 
publication activity. For a given community, it defines temporal patterns of publication 
(frequency during a day/a week) for IMs of different types according to the data pre-
sented on their page. The model of user activity determines the probability that the user 
will be online at different intervals of the day and may vary for different types of users 
(for example, early birds, night people). For this model, we used a number of user’s reac-
tions at different intervals of a day. The reaction model has parameters depending on the 
type of a user and IM, for different types of reactions. These parameters were set accord-
ing to digital traces of user in different communities. All of the parameters above are 
estimated by using historical data from the social network. More details on the imple-
mentation of the internal models as well as setting of internal parameters may be found 
in [23].

Description of the general scheme

The architecture of the implemented system for operational forecasting of information 
processes in cyberspace is presented in Fig. 5. The web crawler allows efficiently collect 
data from various sources on the Internet, including the largest Russian online social 
network VKontakte. Depending on the chosen scenario, the crawler allows you to get 
two types of data: historical data for past time intervals and real-time data. Data col-
lected by crawler are presented in JSON format with various parameters. However, fur-
ther application of data in the model requires additional processing of the received files. 
Historical data are required to adjust the input parameters of the model. Data are stored 
as separate collections in MongoDB. The data obtained in this way can be processed and 
presented as input parameters for the model: network topology, communities’ and users’ 
parameters.

The forecasting model is responsible for two main tasks: (i) disseminating messages 
through the network, and (ii) refining the parameters when we get the data about the 
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actual state of information process from the crawler. Parallel computations allow you to 
finish modelling on large-scale networks within a reasonable time. Reasonable means 
that we can obtain the forecast before it becomes outdated, and that we have enough 
time to react if this architecture is used for decision support system. The model was 
implemented on a C++ language with MPI standard for message passing. The model 
uses the pattern of parallel communication Master/Slave. Master nodes are responsible 
for keeping statistics and IMs’ generation. Slave nodes are responsible for hosting a sub-
network and propagating IMs through it. A more detailed description of the algorithms 
and functionality of Master and Slave processes are presented in our previous article 
[26].

Real-time data are added to the model in the form of sequential batches that are pro-
cessed and saved to a specific folder. Batch is a JSON file with the network data: each 
row or IM has the number of reactions of different types. In addition, it can include lists 
of users who actually reacted to the information. Every batch has an index starting from 
one.

During forecasting for one IM, the values of m predicted parameters for iterations 1, 
2,…, n are calculated (from the current moment 0 to the forecast period T). A series of 
n values is recalculated every time a new batch of data from the crawling is received 
(Fig.  6). Thus, the result of a single prediction cycle is m∙ p ∙ n ∙ k values, where k is 
the number of batches. After applying new batch, internal parameters of the model can 
be specified for more accurate prediction by following options: resetting model time to 
batch time, changing the number of reactions, modification of users who viewed and 
reacted to the IMs, modification of the virality coefficients. A detailed description of the 
forecasting scheme was described in our previous work [27].

Fig. 5 General architecture of the system of operational forecasting of information processes in cyberspace
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Forecast quality assessment

The quality of the forecast is estimated in terms of accuracy, earliness and a number of 
batches needed to achieve desired accuracy of the forecast. Quality assessment is carried 
out according to the procedure illustrated in Fig. 7. After IM generation we can get infor-
mation about a number of responses at different interval of time using batches. We use 
information from batches in two cases. Firstly, the evaluation of forecast obtained by our 
model (batches of evaluation). Secondly, assimilation of data from OSN and further recal-
culation of parameters in the model (batches of assimilation).

For forecasting at the micro level, the forecast accuracy for each IM is estimated by the 
MAPE, MAE metrics (Eqs. 1, 2) for an individual batch and is averaged over the set of batch 
files (Eq. 3).

where At is actual value of the parameter at the iteration t , Ft is forecast value of the 
parameter at the iteration t.

(1)MAPE(n) =
1

n

n
∑

t=1

∣

∣

∣

∣

At − Ft

At

∣

∣

∣

∣

(2)MAE(n) =
1

n

n
∑

t=1

|At − Ft |

Fig. 6 Scheme of forecasting with data assimilation

Fig. 7 Scheme of the procedure for estimating the accuracy of the forecast with the assimilation of data 
(the rhombus indicates the moment of generation of IM, the squares are batches which are used both for 
assimilation and the evaluating the results (batches of assimilation), the circles are batches which are used 
only for evaluating the results (batches of evaluation), the circles are the response values for various forecast 
options)
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where Ab
t  is the actual value of the predicted parameter at the iteration t for the batch b , 

Fb
t  . is the forecast value of the parameter at the iteration t for the batch b.
For forecasting at the meso-level, the accuracy of forecast for the series of IM is esti-

mated with mean value (Eq. 4). Also, we measure the rate of improvement of forecast 
accuracy during data assimilation. It is estimated in terms of the number of batches 
needed toieve a given accuracy ε, at a fixed update rate ν (Eq. 5).

where Ait is the actual value of the predicted parameter at the iteration t . for IM i and Fit 
is the forecast value.

where n . is number of iterations, p . number of IMs, b . is batch number, M . is selected 
metric to assess the accuracy of the forecast, ε is the minimal accuracy of the forecast.

To estimate the aggregated response to messages, e actual and model distributions of 
the number of reactions are compared using Kolmogorov–Smirnov criterion with sig-
nificance level of 0.05 (Eq. 6).

where N1 , N2 denote size of first and second samples respectively, F1,N (x) is empirical 
distribution function based on a sample size N .

Finally, earliness is estimated by the length of the time between the completion of the 
calculation and the end of the forecast period (Eq. 7), as well as the proportion of time 
allocated for the calculation to the length of the forecast period (Eq. 8).

where b is batch number, τb forecast time for current batch b , l is time between batch 
assimilation, T  is forecast period.

The description of assessment methods is given in Table 2. The following notations for 
parameters are introduced: �t is length of model time unit, n is number of iterations, T  
is prediction period ( n�t = T  ), p is number of posts, b is number of batches ( A is set 

(3)MAPE(b, n) =
1

n

n
∑

t=1

∣

∣

∣

∣

∣
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t − Fb

t

Ab
t

∣

∣

∣

∣

∣

(4)MAE(p, n) =
1

(p · n)

p
∑
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n
∑
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|Ait − Fit|,

(5)R(p, n) = min(b) :

(

1
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)

< ε
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x

∣
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(7)z(b) = T − l · b− τb

(8)z(b) =
τb

T − l · b
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batches of assimilation, B is set batches of evaluation,A ⊆ B ), l is the length of the time 
interval between batches ( lk—the period of assimilation).

Results and discussion
Experimental study of the quality of forecasts

To test the functionality and the quality of forecasts, we consider two scenarios:
1. Prediction of the response to a single IM in the community (corresponds to the 

micro-scale modelling).
2. Prediction of the aggregated response to messages on various topics within a single 

community (corresponds to the meso-scale).

Table 2 Forecast quality assessment’ methods

# What is evaluated Forecast parameter Method for assessme

1 IM response accuracy for the fixed virality 
value (without data assimilation)

Number of responses Fix �t , n . Calculate n . values of the pre-
dicted parameter (predicted parameter 
should be measured and be saved). 
Calculate MAE(n) , MAPE(n) . Calculate 
mean value of the metrics of accuracy 
er p IMs.

2 IM response accuracy with data assimila-
tion

Number of responses Fix T , n (in Fig. 7 n = 9 ). A series of forecasts 
for n . iterations is carried out: a) at the 
time of IM generation; b) after each 
batch from the set b ∈ A . batch of assimi-
lation (with the adjustment of the model 
parameters from the obtained data). 
Figure 7 shows assimilation of three 
batches. Additionally, batches of evalua-
tion b ∈ C . must be collected to ensure 
verification predicted values for all |A| + 1 
forecasts. The averaged values of the 
forecast accuracy metrics for different 
assimilation batch are calculated.

3 Impact of the batches’ frequency on the 
forecast accuracy

Number of responses Calculate a series of averaged values of 
forecast accuracy metrics using the 
method (2) with a fixed length of the 
forecast period T  , varying the length of 
the time interval l  between batches

4 A number of batches required to achieve 
desired accuracy

Number of batches Fix the desired accuracy ε , p , �t , l  , T  , the 
maximum number of batches of evalua-
tion Amax . The assimilation of the batch 
is performed while the batch accuracy 
is less than ε or the maximum number 
of batches is exceeded Amax . Accuracy 
assessment is made by the method (3)

5 Accuracy of the aggregated dynamics 
reproduction for the period

Number of responses Fix, p , l  , T  . The response is predicted for 
p IMs for the period T  . The numbers of 
responses in the model and the actual 
number of responses are measured. The 
value of � is calculated by the Eq. (6). 
If� < �

′

0.05 = 1.36 , then the null hypoth-
esis of sample homogeneity is accepted

6 Earliness Forecast time Fix �t , l, T  , the number batches of assimila-
tion k . For the moment of IMs generation 
( t = 0) and for each assimilation batch, 
the forecast is made for the period 
T − l · b . The time of the forecast calcula-
tion τ0, . . . , τk , is measured. The series of 
values for the forecast earliness z0, . . . , zk 
is calculated using Eqs. (7, 8)
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To study the quality of forecasts, experiments were carried out with parameters 
which are listed in Table 3. The results of the experiments were evaluated by the metrics 
described in Sect. 3.3. The quality of forecasting reactions to a single IM for the news 
community with 1,912,769 subscribers was investigated.

The accuracy assessments of the IMs response prediction for the basic value of virality 
and cases with the data assimilation are shown in Fig. 8 (methods 1—grey color and 2—
blue color). For all types of reactions, the error decreases with an increase in the number 
of the batch (for likes, the median error less than 20% is reached on average in 1.5 h after 
the post publication, for shares and comments—after 3.5 h, due to the less number of 
these types of reactions). The error without assimilation (for basic virality averaged over 
historical data) is quite high (50–150%), due to the large variance of the actual viralities 
of the IMs. Moreover, Fig. 8 depicts the results of the assessment according to method 3 
(of the impact of the frequency of assimilation batches). The median values of responses 
for different frequencies of receiving the batches are quite stable. The spread of the val-
ues for likes is smaller for more frequent batches; for rarer reactions (comments and 
shares), this trend is not observed.

To measure the accuracy according to method 4, we investigated the number of 
batches, which are needed to achieve desired accuracy (interval between batches is 
30 min). Results for MAPE values from 0 to 1.5 are shown in Fig. 9a. To achieve an error 
value of less than 10% for likes and comments, about 10 batches are required, and 14 
batches for shares, which are less predictable. Figure  9b shows dependences between 
forecast number and prediction period.

To study forecast quality for aggregated reactions on the set of IMs in communi-
ties, method 5 was used. Figure 10 provides a comparison of the aggregated dynamics 
of reactions for two types of IMs in the news community. Table 4 contains information 
on the results of calculating the statistics of the Kolmogorov–Smirnov criterion and 
the p-value for the two studied communities and three types of messages. For all the 
considered cases we cannot reject the null hypothesis that the samples have the same 
distribution. 

The dynamics of forecasting time for a set of batches is shown in Fig.  11a. For the 
first batches, the time is growing, which relates to the need to update the states of the 
nodes of the complex network according to the batch data. However, starting from 
fourth batch, the time decreases due to the shorter forecast period. At the same time, 

Table 3 Initial parameters for forecast quality assessment

Name Description Value

�t Length of model time unit 10 min

n Number of iterations 72

T Prediction period ( n�t = T ) 720 min = 12 h (for each IM)

p Number of IMs 30

k Number of batches ( A—set of assimilation 
batches, A—set of check batches,A ⊆ C)

|C| = 24 , to study the influence of the batch frequency 
following number of batches for assimilation were used: 
for 30 min |A| = 24 , for 60 min |A| = 12

l The length of the time interval between 
batches ( lk—the period of assimilation)

30 min ({30 min, 60 min, 90 min} to study the effect of the 
frequency of the batch)

N The number of computational processes 8
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Fig. 8 The dynamics of the MAPE error (between actual and predicted value according to Eq. 3) depending 
on the batch number and the frequency batches of assimilation for different types of reactions: a likes, b 
shares, c comments. Zooms show a high value of errors for forecast without data assimilation

Fig. 9 Forecast accuracy a depending on the batch number, b depending on forecast hours (numbers of 
lines denote forecast number)
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Fig. 10 Comparison of aggregated responses to messages for two types of IMs in news community: a, b, c 
for regular news; d, e, f for an advertising post

Table 4 Error metrics for  the  two types of  thematic communities (statistic is  the  value 
of  the  statistics of  the  Kolmogorov–Smirnov criterion for  two samples, critical value 
of statistic denoted maximum statistic value to determine that the samples have the same 
distribution)

Community type Number of IMs Critical 
value 
of statistic

Reaction type: 
like

Reaction type: 
share

Reaction type: 
comment

Charity com-
munity

N1 = 84 , 
N2 = 150

0.185 Statistic = 0.14, 
p-value = 0.18

Statistic = 0.16, 
p-value = 0.09

Statistic = 0.07, 
p-value = 0.91

News community, 
regular IMs

N1 = 150,N2 = 1500.157 Statistic = 0.14, 
p-value = 0.097

Statistic = 0.11, 
p-value = 0.27

Statistic = 0.12, 
p-value = 0.17

News community, 
ads

N1 = 24 , N2 = 50 0.338 Statistic = 0.13, 
p-value = 0.91

Statistic = 0.32, 
p-value = 0.06

Statistic = 0.21, 
p-value = 0.39

Fig. 11 Prediction time: a forecast calculation time, b earliness calculated by the Eq. 8
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the earliness (Fig. 11b) are in the range of 0.02–0.04 (that is, the forecasting time ranges 
from 2 to 4% of the forecasting period), which shows the possibility of effective system 
operation in the operational mode.

Scalability and performance analysis

Figure 12 shows the results of the efficiency for the parallel implementation. The first experi-
ment examines the scalability of predictive modelling in the parallel mode on the supercom-
puter Lomonosov. In this experiment, the size of one community’s network is set to 5–15 M, 
and the number of IM is 5 or 10. In the data assimilation mode, 1 IM is added to each of 22 
assimilation batches, and the number of processes varies from 1 to 128. Figure 12a demon-
strates the parallel efficiency obtained in this experiment. For community sizes of 5 or 10 M 
nodes parallel efficiency varies from 0.64 to 0.78, peaking at 32 processes and then decreas-
ing to 0.75 for 128 processes (Fig. 12a). For the graph with 15 M vertices, the parallel effi-
ciency grows all the way up to 128 processes. The computational load (Fig. 12b) grows from 
batch to batch because every batch one new post is added to the system.

The second experiment estimates the performance of the predictive modeling module in the 
parallel mode on the supercomputer. Experiment parameters are the same as in the experiment 
above. Figure 13a shows the total simulation time for 22 batches of different sizes of MPI-com-
municator. Figure 13b shows the time taken by one iteration on 3 processes. In this experiment, 
the prediction period was set to 900 s, and the community size was 15 M. Running the module 
on three processes allows performing the forecast for 130% of the prediction period, 64 pro-
cesses give 5% of the prediction period, and 128 processes give 2% of the prediction period. 
Therefore, the performance of the module is sufficient to obtain forecasts for large networks.

Fig. 12 Scalability results on Lomonosov supercomputer: a parallel efficiency, b simulation time depend on 
batch number

Fig. 13 Simulation time as a function of a number of processes, b iteration number (for 3 processes)
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Conclusion and future works
We report on a novel multi-agent approach to predict the dissemination of information 
in online communities, taking into account both historical data and actual information 
about the states of messages in the social network at the current time. The data assimila-
tion allows improve the quality of the forecast.

The forecast accuracy is estimated by MAPE and MAE for micro-scale, and the Kol-
mogorov–Smirnov criterion for aggregated dynamics (meso-scale). We also study the 
batches number (updates on current process state during simulation) needed to achieve 
the desired accuracy. Earliness is estimated by the time between the forecast calculation 
and the forecasting period.

The prognostic capabilities of the developed technology were assessed by the quality of 
forecasts using the developed methodology for two different thematic datasets (charity, 
news) and two different scales of cyberspace: micro-scale and meso-scale. Experiments 
were conducted in modes with and without the data assimilation. The median error for 
different types of user reactions reaches values less than 10% in 1.5–3 h after the message 
generation. The forecasted and empirical distributions of the reactions number to infor-
mation messages (IM) in one context are indistinguishable by the Kolmogorov–Smirnov 
criterion for all experiments. The prediction time is 2–4% of the prediction period in a 
series of experiments. Performance studies show that the approach is scalable to very 
large networks.

The online monitoring mode of the system allows estimating real-world distributions 
some of the model parameters (such as IM virality, IM generation time, etc.). These dis-
tributions, estimated for specific contexts (like charity or news), allow predicting the 
information flow in advance and with high reliability. As a result it becomes possible 
to identify unusual or suspicious activities like the identification of fraudulent schemes 
based on the early detection of changes in audience engagement levels or activity pat-
terns; identification of criminal networks based on the share of “suspicious” information 
sources in the general population of information sources; identification of suspicious 
stakeholder behavior based on the automatic estimation of expected virality and type of 
IMs.
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