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The vast majority of soft and biological materials, gels, and tissues are made from micrometer-size slender
structures such as biofilaments and colloidal and molecular chains, which are believed to crucially control
their mechanics. These constituents show intriguing extreme mechanics, mechanical instabilities, and plasticity,
which, besides attracting significant theoretical attention, have not been studied experimentally and as such
remain poorly understood. Here we investigate, by experiments, simulations, and theory, the mechanical
instabilities of a slender self-assembled colloidal structure, observing a form of stochastic buckling where
thermal fluctuations and associated entropic force effects are amplified in the vicinity of a buckling instability.
We fully characterize how the persistence length and plasticity control the stochastic buckling transition, leading
to intriguing higher-order buckling modes. These results elucidate the interplay of geometrical, thermal, and
plastic interactions in the nonlinear mechanics of thermal self-assembled structures, crucial to the mechanical
response and function of fiber-based soft and biological materials, as well as the rational design of micro- and
nanoscale architectures.

DOI: 10.1103/PhysRevResearch.1.023033

I. INTRODUCTION

Due to recent advances in colloidal synthesis and interac-
tion control, colloidal self-assembly has become a promis-
ing platform for designer materials with controlled internal
architecture and tunable physical properties [1–3], such as
unprecedented photonic [4], shape-changing [5,6], and me-
chanical properties [7]. Self-assembled colloidal structures
also form excellent model systems to describe complex and
biological materials, such as gels [8,9], biological cell mem-
branes [10], and filaments [11,12], or flocking behavior [13].
To date, there has been an extensive focus on the dynamical
and structural aspects of self-assembly [14,15], while the
mechanical instabilities of self-assembled objects have been
experimentally much less explored; yet they play a crucial
role in the response of soft materials [16–20] from biological
networks [21] to mechanical metamaterials [22]. Semiflexible
biofilaments, polymers, and biological shells have been shown
to undergo signatures of mechanical instabilities [23,24],
on which thermal excitations can have an important effect
[25–29]. However, experimental insight into these instabili-
ties in synthetic architectures such as colloidal assemblies is
lacking. In particular, potentially crucial factors such as the
effective elastic interactions, the role of geometric nonlineari-
ties, stochastic noise, and plasticity are virtually unexplored.

Here we focus on the simplest and most widespread
form of a mechanical instability on the simplest form of a
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self-assembled structure: the buckling of an initially straight
colloidal chain upon compression. Combining optical tweez-
ers and microscopy experiments, molecular dynamics sim-
ulations, and theory, we observe that such a thermal chain
undergoes an elastic buckling instability upon compression,
accompanied by divergence of thermal bending fluctuations.
Molecular dynamics simulations and continuum modeling
allow identification of the critical exponents and exploration
of entropic effects in the full range of persistence length,
from stiff to the freely jointed chain. Finally, we show
that plastic rearrangements lead to localized deformation at
higher compression that can lead to buckling into higher-order
modes. These results, uncovering the nature of mechanical
instabilities in self-assembled structures, provide a crucial
step towards understanding the complex mechanics of soft
architectures, central to the mechanical function of biological
materials and the design of functional colloidal materials.

II. METHODS

A. Experiments

Our system consists of copolymer particles [30] that we
assemble into chains using temperature-dependent critical
Casimir attractions [31,32]. The attractive force arises from
the confinement of fluctuations of a binary solvent between
the surfaces of the colloidal particles. The particles have a
radius of r = 1.25 μm and are suspended in a binary solvent
of lutidine and water with a lutidine weight fraction cL = 0.32
and with 5 mM potassium chloride, in which they sediment
into a quasi-two-dimensional layer. Salt (5 mM potassium
chloride) is added to screen the electrostatic repulsion. By
setting the temperature to �T = 5.5 ◦C below the critical tem-
perature Tc = 33.6 ◦C, we induce an attraction with potential
depth E ∼ 10kBT and range ∼0.01r that causes assembly of
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the particles. We use optical tweezers to grab the ends of
assembled colloidal chains.

For the optical tweezers, laser light of 1064 nm was used
at a power of 20 ± 5 mW. The trap constants were determined
by tracking the Brownian movement of a single colloidal
particle in the trap and fitting its displacements from the trap
center with a Gaussian distribution to obtain the standard
deviation σtrap. We used a long measurement time such that
the out-of-trap displacements become Boltzmann distributed.
Assuming a harmonic trap, the trap constant is then deter-
mined by k = kBT/σ 2

trap. We obtain k = 0.9 ± 0.2 pN/μm,
where the error is estimated based on the locating accuracy of
εtrack = 0.02 μm. The partial absorption of the laser light by
the binary solvent causes a local heating of 0.5 K at the trap.
This was determined by measuring the temperature at which
phase separation occurs in the laser focus and subtracting that
from the phase separation temperature when the laser is turned
off. This temperature increase is expected to cause a slight
increase of the critical Casimir attraction close to the trapped
bead.

We used two optical tweezers to push on the colloidal
chain as follows. Starting from a straight chain, we apply
a compressive displacement u by moving one of the optical
tweezers at a constant rate of 27 nm/s towards the other. We
then image the individual particles at a frame rate of 20 s−1

and locate their centers in the image plane with an accuracy
of 20 nm using particle-tracking software [33]. In addition,
we measure the force exerted on the chain from the bead
displacement out of the static trap using F = k(y − ytrap),
where y and ytrap are the positions of the trapped bead and trap
center, respectively. We define L as the end-to-end distance of
the chain and L0 = 24.7 ± 0.1 μm as the end-to-end distance
for vanishing force F = 0.

B. Molecular dynamics simulations

We support our experiments with molecular dynamics
simulations of the buckling of a colloidal chain. Colloidal
particles with position ri in an assembled chain satisfy the
Langevin equation

mr̈i = −kBT

D
ṙ − ∇riV +

√
2Dξ, (1)

with D = kT/γ the diffusion coefficient, γ the viscous drag
coefficient, ξ a normalized stochastic force, and

V = k

2
d2

0

N−1∑
i=1

(εi − 1)2 + kθ

2

N−2∑
i=1

(θi − θi,0)2, (2)

where d0 is the equilibrium bond distance, θi,0 is the equi-
librium angle, εi = |ri+1 − ri|/d0 − 1, and cos(θi ) = (ri+2 −
ri+1) · (ri+1 − ri )/|ri+2 − ri+1||ri+1 − ri|. On timescales �t >
mD
kBT the Langevin equation can be considered overdamped and
reduces to

ṙi = − D

kBT
∇riV +

√
2Dξ . (3)

These can be simulated by molecular dynamics (MD) simula-
tions following the Ermak-McCammon equation [31]

ri(t + �t ) − ri(t ) = − D

kBT
∇riV �t +

√
2D�tξ . (4)

We simulate an infinitely stiff trap by fixing the positions of
the two end particles. Trap movement is then implemented by
moving one end particle towards the other.

Time, length, and energy are expressed in natural units
such that tD = d2

0 /D = 1, kBT = 1, and d0 = 1. In all sim-
ulations the time step was set to �t = 2−16tD, which is small
enough to have a stable integration. In order to compare with
experiments, all quantities were later rescaled using the exper-
imental values D = 0.138 μm2/s and kBT = 4.14 × 10−21 J
corresponding to ∼0.004 pN μm, and d0 = 2.74 μm.

The experimental values of the bending and stretching stiff-
ness as determined from the experimental force are, respec-
tively, kθ = 1048 kBT and k = 14 760 kBT /d2

0 . To simulate
the compression experiment, we moved the trap in 128 steps
of �u = 0.01d0, starting from ui = −0.3d0, with a waiting
time of tstep = 32tD at each step. This gives a total displace-
ment similar to that from the experiment. The compression
speed is much lower than in the experiments in order to
obtain better statistics. For the analysis, we disregarded the
first 8tD after each trap displacement to allow for equilibration.
In experimental units, this entire ramp translates to a total
displacement of utot = 3.5 μm over a time of 62 h with
each step taking 30 min, giving an effective speed of vtrap =
0.9 nm/min.

We further extended the simulations by incorporating
elastoplastic effects. In these simulations, we allowed an
instant plastic relaxation to occur at a threshold angle θp such
that the new equilibrium bond angle becomes θ0,i = θc. We
used the same kθ and k values as for the previous elastic
simulations. A continuously increasing trap displacement was
simulated for a total time of ttot = 1.9tD, increasing from
ui = −0.3d0 to u f = 2.5d0. This translates to a trap speed
of vtrap = 37 nm/s, close to the actual experimental value. In
order to estimate the critical bending angle, we performed 50
simulation runs at a number of θc ranging from 0.1 to 0.2 rad,
in steps of 0.01 rad. The best fitting θc was determined by
comparing the average plastic compression up to the experi-
mental value. This gave θc = 0.21 rad.

III. RESULTS AND DISCUSSION

A. Euler buckling

To investigate its buckling behavior, we subject the initially
straight colloidal chain to continuously increasing compres-
sion. We observe that the chain undergoes a sharp buckling
transition at a well-defined compressive displacement uc, as
shown in Fig. 1(b). In the vicinity of uc, fluctuations signifi-
cantly increase, in agreement with recent predictions [34], as
clearly visible in the superposition of three reconstructed im-
ages in Fig. 1(c). Upon further compression, the fluctuations
decrease again and finally a kink appears at a well-defined
large compressive displacement up.

To further elucidate this buckling behavior, we measure
the force exerted by the trap on the chain as a function
of the compressive displacement u [Fig. 2(a)]. We observe
a linear increase up to a critical displacement uc beyond
which the force remains essentially constant. Such a force-
displacement curve is strongly reminiscent of a classical Euler
buckling problem [35–37]. To confirm the validity of this
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(a) (b)

(c)

FIG. 1. Buckling of a colloidal chain. (a) Sketch of the colloidal
chain compressed by optical tweezers (red dots). (b) Bright-field
microscope images of the chain at u = −0.45, −0.25, 0.2, 0.6, 0.8,
and 1.0 μm, respectively from left to right, under a compressive
displacement. White bars indicate the position of the laser trap that
is slowly displaced and red bars the position of the static trap.
The scale bar is 3 μm. The color code demarcates regions of the
straight and elastically and plastically buckled chains, bounded by uc

and up, respectively. (c) Overlay of three reconstructed chains, one
corresponding to the still shown in (b), one taken 1.5 s earlier (light
gray) and one 1.5 s later (dark gray). (See Supplemental video 1 [38]
for microscopy video.)

analogy, we map our result onto that of a continuous beam.
We use the Euler buckling criterion for the critical force
Fc = π2B/L2

0 and the critical displacement uc = Fc/S, where
B is the bending modulus and S the linear stiffness of the
beam. Determining the critical force Fc = 0.19 ± 0.02 pN
and displacement uc = 0.21 ± 0.02 μm by interpolation, we
find that the bending rigidity of the chain is B = 11.9 ±
1 pNμm2 and the linear stiffness is S = 0.9 ± 0.1 pN/μm,
corresponding to a persistence length of Lp = B/kBT =
2900 ± 240 μm, similar to microtubules [21]. Furthermore,
this stiffness value is consistent with that obtained from a
linear fit to the prebuckling slope S = 0.8 ± 0.1 pN/μm.
Such excellent agreement between a model for athermal slen-
der structures and our thermally activated colloidal chain is
striking.

The validity of this mapping is further confirmed by the
shape of the buckled state, which we quantify by the ampli-
tude M1 of the first Fourier mode of the beam deflection (see
the Appendix for details) as a function of the compressive
displacement u [Fig. 2(b)]. While this amplitude is close to
zero in the prebuckling regime u < uc, it sharply departs from
zero and increases as M1 ∝ (u − uc)1/2 beyond the buckling
point [see Fig. 2(b) inset]. Again, this result is qualitatively
similar to that of a macroscopic Euler buckling problem
[35–37]. Note that such a deflection-displacement curve pro-
vides an independent measure of the critical displacement
uc = 0.21 ± 0.02 μm, which is equal to the previous one
within experimental errors. These results are consistent with
and rationalize previous studies reporting a bending rigidity
of linear assembled structures [39–41].

(a)

(b)

(c)

FIG. 2. Elastic buckling regime. The bending force and first
Fourier mode are from experiments (gray dots), simulations (blue
dots), and the continuum model (purple line). (a) Compressive force
F exerted by the tweezers on the chain versus displacement u. Note
that all experimental data points are depicted, while the simulation
data have been averaged over fixed u. (b) Amplitude of the first
Fourier mode M1 of the particle deflections. Only positive mode
amplitudes corresponding to positive deflection of the chain are
shown. The inset shows the same quantity squared. (c) Entropic force
from simulations (see the text).

B. Numerical simulations

We further rationalize the experimental findings by molec-
ular dynamics simulations of elastically coupled particles in
two dimensions subjected to thermal fluctuations (see Fig. 3).
Specifically, we solve the overdamped Langevin equation [42]

ṙi = − D

kBT
∇riV +

√
2Dξ, (5)

where ξ is a normalized stochastic thermal force, D =
0.138 ± 0.1 μm2/s is the diffusion coefficient measured ex-
perimentally by tracking diffusing colloids, and T is the tem-
perature equal to the experimental temperature. The potential
energy is given by

V = k

2
d2

0

N−1∑
i=1

ε2
i + kθ

2

N−2∑
i=1

(θi − θi,0)2, (6)

with εi the extension of bond i, θi the angle between bonds i
and i + 1, and θi,0 the equilibrium angles which vanish for the
initially straight chain. The equilibrium bond distance is de-
termined from experiments as the average particles separation

FIG. 3. Schematic of the model system used for the simulations
and the analytical model.
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d0 = L0/N − 1. We also take the bending rigidity and bond
stiffness from the experimental measurements k = S(N − 1)
and kθ = B/d0 and assume an infinite trapping potential. We
then apply compression by moving the traps stepwise towards
each other with a displacement ustep = 0.01d0 and waiting
time tstep = 32d2

0 /D between each step, yielding an average
compression rate of 0.9 nm/min, much slower than the ex-
periments, allowing us to acquire good statistics. Despite the
simple assumptions of the numerical model, the results are in
good agreement with the experiments (see Fig. 2). The force
and deflection curves both predict the buckling instability at
uc and correctly describe the force behavior; the quantitative
deviations are likely due to (i) plastic effects and (ii) the fact
that the experimental boundary conditions (laser traps) do not
allow completely free rotations of the trapped colloids.

We can use the simulations to extract the entropic contri-
bution Fe to the compressive force associated with the thermal
fluctuations of the colloidal chain. We do so by subtracting
from the compressive force at room temperature the force
at zero temperature. In Fig. 2(c) Fe shows a characteristic
signature of the buckling transition: It diverges and changes
sign at the buckling transition (from compressive to repul-
sive), reflecting the change in the contour length of the chain
upon buckling and the associated change in the number of
chain configurations. However, the magnitude of Fe is just
below the experimental resolution and cannot be resolved
experimentally.

C. Fluctuations

Nevertheless, we can measure the fluctuations directly
by monitoring the variance of the Fourier amplitudes. We
focus on the first mode and compute its variance σ 2

M1
=

〈(M1 − |M̄1|)2〉M1�|M̄1|. Upon approaching the buckling point,
this variance grows and diverges [Fig. 4(a)]. The double-
logarithmic plot (inset) suggests a divergence σ 2

M1
∼ |u −

uc|−ν with exponent ν = 1. We also measure the typical
timescale of fluctuations τM1 from exponential fits to the decay
of the autocorrelation function C(�t ) = 〈M1(t )M1(t + �t )〉;
this fluctuation time shows likewise a significant increase
upon approaching uc [see Fig. 4(b)]. However, the uncertainty
and limited number of data points do not allow us to pinpoint
the divergence of these growing fluctuations quantitatively.

D. Continuum model

This stochastic buckling transition is described in a simple
(analytically solvable) continuum limit of Eq. (2), known
as the extensible elastica [43]. In this limit, the energy can
be decomposed into independent contributions from each
Fourier mode. To first order in u, the energy dependence on
the first mode amplitude M1 becomes a double well, given by

V1 = Sπ2

4L0
(uc − u)M2

1 + Sπ4

32L2
0

M4
1 + O(u2) + O

(
M6

1

)
, (7)

where uc = Bπ2/SL2
0, B is the bending rigidity, and S is the

stretching stiffness. Higher modes exhibit a single harmonic
energy dependence and equilibrate to zero (see the Appendix).
Mechanical equilibria of this extensible elastica, prescribed by
the condition ∂V1/∂M1 = 0, are given by M1,m = 0 in the pre-
buckling regime (u < uc) and by M1,m = ±2/π

√
L0(u − uc)

in the postbuckling regime (u > uc). The corresponding forces

(a)

(b)

(c) (d) (e)

FIG. 4. Fluctuations close to buckling. (a) Variance σ 2
M1

of M1

above the mode of its distribution versus the compressive displace-
ment u. The inset shows a log-log plot of σ 2

M1
versus |u − uc|/u.

(b) Correlation time τM1 of M1. The inset shows a log-log plot of τM1

versus |u − uc|/u. Experimental, numerical, and continuum model
data are represented by gray triangles, blue triangles, and purple
lines, respectively. Simulation and continuum model values are di-
vided by a factor of 3 to fit on the same axis. Also shown are the MD
simulations for decreasing chain persistence length showing (c) the
normalized first Fourier amplitude M1, (d) the variance, and (e) the
entropic force Fe versus normalized u shifted by the zero-temperature
buckling compression u0

c = π 2B/SL2
0 . Blue, orange, green, and red

curves correspond, respectively, to 1, 1/10, 1/100, and 0 times the
experimental bending rigidity. The variance was calculated over a
limited time window of 1 s. (See Supplemental video 2 [38] for an
animation of the simulation data.)

are Fm = ku/2 for u < uc and Fm = Fc(1 + (u − uc)/2L0)
for u > uc. Furthermore, assuming that bending energies
obey a Boltzmann distribution in equilibrium, one finds
that both σ 2

M1
and τM1 diverge with a power of −1 (see the

Appendix). These predictions are in perfect agreement with
the experiments and simulations as shown in Figs. 2 and
4 (pink curves). A physically appealing picture emerges
from these results: Once in the presence of stochastic noise,
the classical buckling transition remains a supercritical
bifurcation, but the vicinity of the bifurcation is associated
with fluctuations of diverging magnitude and timescale.

This mean-field buckling behavior diminishes for higher
fluctuations. We simulated chains with lower bending rigidi-
ties exhibiting stronger fluctuations and find that the buckling
transition loses its sharp character and eventually vanishes
[Fig. 4(c)]. Concomitantly, the divergence of buckling fluc-
tuations broadens and eventually disappears [Fig. 4(d)]. This
is associated with a striking change in the entropic force
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(a) (b)

FIG. 5. Transition to low persistence length. (a) Scaling collapse
of the first mode amplitude M1 versus normalized u − uc, with uc

the buckling displacement. (See Supplemental video 3 [38] for an
animation of the simulation data.) (b) Extracted normalized buck-
ling point uc as a function of flexibility. Two scaling regimes are
evident: exponent −1 associated with the chain compressibility for
low flexibility (high bending stiffness) and a regime with exponent
+1 associated with the loss of bending rigidity. (See Supplemental
video 4 [38] for microscopy video.)

[Fig. 4(e)] that loses its characteristic change of sign: The
positive branch at |u − u0

c | > 0 vanishes, indicating that the
gradual transition to the freely jointed chain is always at-
tracted to zero end-to-end distance. These results are in qual-
itative agreement with the analytic results for a filament with
decreasing bending rigidity in Ref. [28]. Furthermore, other
routes towards stronger fluctuations reveal a similar loss of the
buckling transition as shown by simulations of longer chains
and higher temperatures in the Appendix. To fully elucidate
the transition from rigid to flexible chains, we collapse the
buckling curves in Fig. 4(c) by plotting them versus u − uc,
where we subtract the critical buckling displacement [see
Fig. 5(a)]. The extracted uc shows two scaling regimes: It first
decreases and then increases with increasing chain flexibility
[see Fig. 5(b)]. The initial decrease with exponent −1 is due to
the additional compressive component of the chain; the same
decrease is observed for vanishing temperature (blue data
uT =0

c ), for which, according to Euler buckling, uc is given by
uT =0

c = Fc/S ∝ L−1
p , thus the exponent −1. Towards higher

flexibility, however, uc grows with exponent +1, reflecting the
transition from a rigid beam to a freely joint chain, for which
uc becomes infinite. We thus find that the buckling transition
increases linearly with increasing flexibility of the chain.
Thus, it gradually diminishes as the energetic advantage of
buckling in the lowest mode ceases together with the bending
rigidity.

E. Plastic buckling

We also explored plastic effects. At even larger displace-
ments u > up, the chain undergoes localized bending defor-
mations as shown in Figs. 1(b) and 1(c) (rightmost images),
which we find to be irreversible upon releasing the applied
compression. To quantify this degree of localization, similar to
plastic events in amorphous materials, we calculate the inverse
participation ratio (IPR), which varies between N − 2 for fully
localized deformations and 1 for distributed deformations, as
defined by

IPR = (N − 2)

∑N−2
i=1 θ̂4

i(∑N−2
i=1 θ̂2

i

)2 . (8)

(a) (b)

FIG. 6. Plastic buckling. (a) Inverse participation ratio of the
experimental chain (gray) and of 50 independent MD simulation runs
(blue shading) as a function of continuously increasing compression.
The simulations are performed with elastic parameters as in Fig. 2
and θc = 0.21 rad. Vertical lines and colors distinguish regimes
of the straight and elastically and plastically buckled chains and
indicate two plastic slippage events. Reconstructed snapshots show
the experimental chain for u = 0, 0.5, 1, and 1.5 μm, with snapped
bonds highlighted in red. (b) The IPR (black), M1 (blue), and M2

(yellow) versus time of a different compression experiment. Here
the chain was shorter (N = 7) and the trap was moved stepwise, by
δu = 0.1 μm every 60 s.

Here θ̂i = |θi| − 〈|θi|〉u<uc , i.e., the local angular deviation
from the straight chain. When the chain buckles elastically,
the IPR remains small [see the gray curve in Fig. 6(a)], while
at larger compression u = up = 0.89 ± 0.02 μm, when the
chain develops a kink, a clear spike appears. The value of
about 6, which is only slightly smaller than the maximum N −
2 = 8, indeed suggests very localized deformations. These
features can be easily reproduced in the simulations, when
we augment our numerical model with a simple elastoplas-
tic model. Beyond a threshold angle θp, an instant plastic
relaxation occurs such that the equilibrium bond angle be-
comes θ0,i = θp. Taking a value θp = 0.21 rad gives results
qualitatively and quantitatively similar to the experiment [see
blue shading in Fig. 6(a)]. By repeating 50 simulations we
obtain an average up,sim = 0.84 ± 0.09 μm, which indeed
corresponds to the value up observed in the experiments.
Intriguingly, the combination of elastoplastic dynamics and
thermal noise can further lead to higher-order buckling modes
when the chain is compressed at higher compression rates
[Fig. 5(b)]. We observe a sequence of buckling transitions
through mode 1, mode 2, and mode 3, which we interpret as
a sequence of plastic events, as clearly shown by the mode 1
and 2 amplitudes (blue and olive) and the IPR (black).

IV. SUMMARY AND OUTLOOK

We have experimentally demonstrated the rich stochas-
tic buckling dynamics for a colloidal chain under uniaxial
compression and rationalized our experimental results by
simulations and analytic modeling. In the elastic regime,
bending interactions and stochastic noise lead to diverging
bending fluctuations. With decreasing persistence length, as

023033-5



SIMON STUIJ et al. PHYSICAL REVIEW RESEARCH 1, 023033 (2019)

higher-order modes are excited, this divergence smoothens,
and the buckling transition eventually vanishes. Important
biological filaments have a persistence length of, e.g., Lp =
5000 μm for microtubules of similar order to our colloidal
chain, while for actin filaments Lp = 17 μm, putting those
in the large fluctuation regime where the buckling transition
smoothens [44]. These results have important consequences
for the mechanics of biological tissue [21], colloidal gels,
and even granular force chains [45,46]. Depending on the
mesh size relative to the persistence lengths, filament buckling
interactions become important and the observed divergence
of fluctuations then translates into an entropic contribution
to the stress, which should manifest in the rheology of such
networks. Our results open up avenues for self-assembled
colloidal structures with advanced nonlinear mechanics of
relevance for the understanding of the rheology of gels [9],
the mechanics of living tissues [21], and designer colloidal
architectures [22].
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APPENDIX

1. Mode definition and effective mode diffusion constant

After locating the particles in the chain, a mode decom-
position is performed in the following manner. First, the out-
of-line deflection of every nontrapped particle j is calculated
as the perpendicular distance x j from the line connecting the
two trapped particles at the ends. Next a scaled discrete sine
transform of type 1 is performed on x j defined by

Mi = 2

N − 1

N−2∑
j=1

x j sin

(
π

N − 1
ji

)
, i = 1, . . . , N − 2.

(A1)
Here the normalization has been chosen such that

x j =
N−2∑
i=1

Mi sin

(
i j

π

N − 1

)
, j = 0, . . . , N − 1. (A2)

Based on the overdamped Langevin equation of individual
colloids [Eq. (1)], we can derive an equivalent dynamical
equation in terms of modes, given by

Ṁi = − DM

kBT
∇MiV +

√
2DMξ . (A3)

Here DM is an effective diffusion coefficient. This coefficient
is equal for all modes and can be derived by inserting Eq. (A2)
in Eq. (1). This gives DM = 2D/(N − 1).

2. Theoretical model

We parametrize the shape of an extensible elastica
by r(s) = (x(s), y(s)), with s running from 0 to L0, the
rest length. The compressive strain is defined as γ (s) =

√
(dx/ds)2 + (dy/ds)2 and the orientation angle as φ(s) =

arctan(dy/dx). The energy functional of an elastica including
elastic energy and work exerted by a compressive force F is
given by [32]

V = B

2

∫ L0

0

(
dφ

ds

)2

ds + L0S

2

∫ L0

0
(γ − 1)2ds

+ F

( ∫ L0

0
γ cos(φ)ds − R

)
. (A4)

Here R = L0 − u is the end-to-end length, B is the bending
rigidity, and S is the stretching stiffness of the elastica. Mini-
mizing V with respect to γ and F , we find

γ = 1 − F

SL0
cos φ, F = SL0

∫ L0

0 cos φ ds − R∫ L0

0 (cos φ)2ds
. (A5)

Inserting these back into Eq. (A4), we obtain an energy Vφ

purely as a function of the orientation angle, given by

Vφ = B

2

∫ L0

0

(
dφ

ds

)2

ds + SL0

2

∫ L0

0 cos(φ)ds − R∫ L0

0 (cos φ)2ds
.

This is the energy we will use to determine the equilibrium
angles φ(s) and also the size of thermal fluctuations in φ.
Note that it is indeed correct to use Vφ to determine the
equilibrium. However, using Vφ to determine the size of
fluctuations disregards the effect of thermal fluctuations in γ

and F . These fluctuations are not uncoupled from fluctuations
in φ, as can be seen from Eq. (A4). However, we assume that
these fluctuations have negligible influence.

After a Fourier transform assuming Neumann boundary
conditions φ = ∑∞

n=1 αn cos( nπ
L0

s), Vφ decomposes into Vφ =
Su2/2 + ∑

Vαn . It follows that up to a critical compression uc

all modes equilibrate to zero. After uc, the first mode becomes
nonzero and the chain buckles, which can be seen from

Vα1 = SL0

4

(
u0

c + u2

L0
− u

)
α2

1

+ S

32

(
L2

0 − 7uL0

2
− 2u2

)
α4

1 + O
(
α6

1

)
, (A6)

where u0
c = π2B/SL2

0. The buckling compression of the first
mode is found by determining the root of the term in front
of α2

1 , giving uc = L0
2 (1 − √

1 − 4u0
c/L0). In the regime that

we probe experimentally, uc/L0 and u/L0 are small numbers.
Therefore, uc ≈ u0

c , and lowest order terms dominate in Vα1 ,
which reduces to

Vα1 = SL0

4

(
u0

c − u
)
α2

1 + SL2
0

32
α4

1 + O
(
u2

c

) + O(u2) + O
(
α6

1

)
.

(A7)

Minimizing this energy, we see that the equilibrium first mode
is given by

α2
1,m =

{
0, u < uc
4
L0

�u + O(�u2), u > uc,
(A8)

with �u = u − uc.
To derive the compressive force up to first order in �u, care

has to be taken to solve α2
1,m from Eq. (A6) one order higher
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FIG. 7. MD simulation effect on Fe and σ 2 of three different routes that increase the flexibility of the system: left column, increasing T ;
middle column, B; and right column N . Here Fe is calculated by subtracting the nonthermal F [Eq. (A9)] from the measured Fsim, σ 2

cut is the
variance of the M1 over a time window of around 1 s, and σ 2

>mode are fluctuations above the mode of the distribution as defined in the main text.
All simulations were run using the same protocol as described above for the elastic simulation.

in terms of uc/L0. Doing that and inserting in Eq. (A5), one
obtains

F =
{

Su, u < uc

Fc(1 + �u/2L0) + O(�u2), u > uc,
(A9)

where Fc = Suc.
As a last step to obtain the double-well potential stated

in the main text we have to transform α1 to M1, defined by
Eq. (A1). Using that for small deflection and compressions,
we have M1 = L0α1/π , and Eq. (A7) becomes Eq. (3).

Furthermore, we can derive an expression for the vari-
ance σ 2

M1
of the first-mode amplitude. If we assume that in

equilibrium, the bending energies given by Eq. (A6) obey a
Boltzmann distribution, then the mode fluctuations around the
average become Gaussian distributed with variance

σ 2
M1

=
{ 2kBT L0

π2S |uc − u|−1, u < uc

kBT L0
π2S |uc − u|−1, u > uc.

(A10)

Note that this approach breaks down for u >∼ uc, in the
postbuckling regime near the buckling point, where the dis-
tribution becomes bimodal rather than a single Gaussian as
predicted by Eq. (A10). For the fluctuation time, the over-
damped dynamics for a harmonic well predicts that τM1 =
σ 2

M1
/DM1 , where DM1 = 2D/(N − 1) is the effective mode

diffusion.

3. Exploring the strong-fluctuation regime

Here we investigate the large-fluctuation regime in more
detail. Specifically, we address the effect of increasing fluctu-
ations achieved by (i) increasing temperature, (ii) decreasing

the bending rigidity, and (iii) increasing the number of par-
ticles of the colloidal chain in the MD simulations. Each of
these routes increases the flexibility f = L/Lp of the chain,
where Lp = B/kBT is the persistence length and L the total
length of the chain. It has been predicted theoretically that for
stiff to semiflexible compressible rods with persistence length
Lp < L, thermal fluctuations contribute an additional entropic
force Fe [on top of the nonthermal compressive force F ,
Eq. (A9)] of O(T ) far away from uc and O(

√
T ) near uc [34].

Other theoretical work, which assumes an incompressible
semiflexible rod in two dimensions, predicts a critical entropic
force increase Fe,c ∝ kBT [27,28].

The simulation results for increasing temperature, decreas-
ing bending rigidity, and increasing number of particles are
shown in Fig. 7, columns from left to right, respectively.
As a unique feature of the buckling transition, the entropic
force (top row) switches sign when crossing uc from negative
(favoring compression) to positive (favoring expansion). The
negative (tensile) entropic force upon approaching uc from
the left reflects the driving force towards larger number of
configurations with decreasing end-to-end distance. At buck-
ling, the force changes sign as the buckled state (mode 1
fluctuation) again suppresses the number of accessible con-
figurations (higher-order fluctuations). The resulting positive
(repulsive) entropic force leads to an extra buckling force
barrier increasing the buckling compression; such an extra
force barrier was predicted by the theoretical studies in Refs.
[28,34]. Furthermore, we find, as predicted in Ref. [34] but
contradicting [28], that for Lp < L the amplitude of this
positive peak goes as O(

√
T ), as can be seen by the collapse of

peak height when rescaling by
√

kBT (second inset top left).
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Further away from uc the entropic force scales with O(T ), as
can be seen by the collapse when rescaling by kBT (first inset
top left), also inline with [34]. The discrepancy between the
two theoretical predictions, as well as our closer agreement
with [34], could be explained by the fact that our simulation
assumes a compressible chain, more closely agreeing with the
theoretical model of [34].

The entropic effects clearly increase with increasing flexi-
bility f of the chain. As fluctuations become more prominent
at higher temperature, for smaller bending stiffness, and for
longer chains, the amplitude of the negative (prebuckling)
entropic force grows. The negative region also extends as uc

drifts to the right. This can be seen in the growing region in
between the negative and positive peaks of Fe. The positive
peak, on the other hand, decreases in amplitude (inset top
left, top middle), until it vanishes and Fe shows only attraction
towards u = 0, reflecting the behavior of a freely joint chain

with a continuously increasing entropic tensile force upon de-
creasing end-to-end distance. These effects are less visible in
the data of the increasing chain length (right column), which
are limited to lower chain flexibilities due to computational
costs of equilibrating long chains.

As a result of this trend, uc disappears: Very flexible chains
lose the signatures of the buckling transition. This is most
clearly observed in the gradual disappearance of the char-
acteristic kink of the first-mode amplitude, as shown in the
bottom row. At the same time, the divergence of fluctuations
(middle row) decreases and eventually vanishes. Hence, the
thermally activated buckling transition with its characteristic
diverging fluctuations as described by mean-field theory is
observed only in a limited range of small fluctuations, where
the predominantly elastic chain (with flexibility L/Lp < 1)
has an energetic advantage of buckling into the lowest mode
(opposed to the excitation of higher modes).
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