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Adiabatic passage techniques, used to drive a system from one quantum state into another, find
widespread application in physics and chemistry. We focus on techniques to spatially transport a
quantum amplitude over a strongly coupled system, such as STImulated Raman Adiabatic Passage
(STIRAP) and Coherent Tunnelling by Adiabatic Passage (CTAP). Previous results were shown to
work on certain graphs, such as linear chains, square and triangular lattices, and branched chains.
We prove that similar protocols work much more generally, in a large class of (semi-)bipartite
graphs. In particular, under random couplings, adiabatic transfer is possible on graphs that admit
a perfect matching both when the sender is removed and when the receiver is removed. Many of
the favorable stability properties of STIRAP/CTAP are inherited, and our results readily apply to
transfer between multiple potential senders and receivers. We numerically test transfer between
the leaves of a tree, and find surprisingly accurate transfer, especially when straddling is used. Our
results may find applications in short-distance communication between multiple quantum computers,
and open up a new question in graph theory about the spectral gap around the value 0.
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I. INTRODUCTION

STImulated Raman Adiabatic Passage (STIRAP) is a technique typically applied in molecular
and atomic physics, where it is used to transfer some internal state |1〉 to another state |3〉, by
coupling both of these states to some intermediate state |2〉 by two tuned laser pulses [1]. An
important feature is that state |2〉 is minimally populated, making the evolution largely insensi-
tive to decoherence due to the intermediate state [2]. Such state transfer protocols have various
applications, such as the preparation of useful quantum states, performing coherent quantum logic
gates, or sending quantum information between spatially separated agents. STIRAP, in partic-
ular, is now widely adopted in fields where accurate control of quantum states is vital, such as
high precision measurement [3, 4], studies of atoms and molecules [5–9], and quantum information
processing [10–14].

The formalism has been generalized to work on systems where some (odd) N states are coupled
in the form of a linear chain, allowing transfer between the endpoints of the chain [15]. A mathe-
matically equivalent protocol can be used to spatially displace quantum amplitudes. In 2004, two
independent works proposed state transfer of quantum particles over linear chains, by tuning the
hopping strengths instead of laser fields: Ref. [16] considered neutral atoms in optical lattices,
whilst Ref. [17] addressed electrons tunneling between quantum dots. The latter introduced the
name Coherent Tunneling by Adiabatic Passage (CTAP), which we will also use to denote spatial
transfer. Apart from particle tunneling, the same model applies to ferromagnetic spins under XX
interaction [18], where a single spin excitation can be adiabatically transferred.

With the advent of quantum information processing, accurate control and high-fidelity qubit
transport in increasingly large systems have become an important scientific challenge [19, 20].
Whereas a large amount of work can be found on transfer over a linear chain of length 3 or N
[2, 21], little is known about adiabatic transfer in more general systems. Notable exceptions are
Refs. [22, 23], which consider square and triangular grids, and Ref. [24], which addresses multiple
parties dangling on a line, each of whom could send or receive the quantum state. Other works,
such as Refs. [25, 26], describe a variation where the chain splits into multiple paths or branched
endpoints. These protocols are shown to work by a clever mapping back to the original protocol
on the chain.

We present a completely different approach to find more general configurations that allow a
similar transfer protocol, by describing a system’s interactions in the language of graphs: the
vertices represent basis states and edges represent interactions. We look at bipartite graphs, where
the basis states can be separated into two sets V1 and V2, such that each state interacts only with
states outside its own set. If the two sets differ in size by one, then amplitude transfer between
states in the bigger set may be possible. We can guarantee successful transfer when certain graph
properties are satisfied, as made precise in Theorem 3.
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Interestingly, our approach naturally provides a means to transfer amplitude to one out of
multiple potential receivers, generalizing Ref. [24]. We find that the final receiver need not yet be
known when starting the protocol, which could be an advantage in quantum information processing.

These results advance the fields of STIRAP and spatial transfer in two ways. Firstly, they
open the way to practical adiabatic passage in more general systems. Secondly, they shed light on
possible perturbations in conventional STIRAP and their effect: we find that many perturbations,
as long as they satisfy our assumptions, do not cause a qualitatively different effect on the state’s
evolution during the protocol.

Our treatment of bipartite graphs is reminiscent of the celebrated Morris-Shore (MS) transfor-
mation [27]. The transformation finds a unitary map A on the part V1 and a unitary map B on
part V2, such that the system decomposes into a set of decoupled two-level systems, and a set of
uncoupled states. Similar to the setting of MS, we focus on the uncoupled states, which are called
dark states. Our contribution is distinct from work related to MS transformations, due to the
focus on adiabatic transfer techniques, in which the MS transformation would continuously change
in time. Therefore, it is not immediately clear how MS could guarantee that our adiabatic state
remains nondegenerate, and we choose to resort to other techniques.

Our work is also closely related the field of perfect state transfer (PST), which adresses the same
goal of transfer between two states |a〉, |b〉 in general graphs [28]. However, PST is concerned with
quenches such that |〈b|e−iHt|a〉| = 1 for a time-independent Hamiltonian H. Therefore, PST is
typically faster than adiabatic transfer, but it puts stringent constraints on the precise interaction
strengths.

The paper is organized as follows. In Sec. II, we review the conventional STIRAP and CTAP
protocol, after which we present our main result on more general graphs in Sec. III. We then discuss
the applicability in real-world systems in Sec. IV, and methods to obtain graphs that satisfy our
assumptions in Sec. V. We numerically test the scaling of the adiabatic gap in various graphs, and
the fidelity of our protocol, in Sec. VI, and finish with a conclusion in Sec. VII.

II. CONVENTIONAL STIRAP

As its name implies, STIRAP makes essential use of the Adiabatic Theorem[29], which states
that if a system starts out in an eigenstate of the Hamiltonian whose eigenvalue is isolated, and
the Hamiltonian changes slowly, the system remains in the same instantaneous eigenstate.

More precisely, suppose a Hamiltonian H(s), depending smoothly on time s ∈ [0, 1], has a
smoothly varying basis of instantaneous eigenfunctions |φk(s)〉, with eigenvalues Ek(s). Let H̃(t) =
H(t/T ) be the time-rescaled Hamiltonian. Let |ψ(t)〉 =

∑
k ck(t)|φ(t/T )〉 be the solution of the

Schrödinger equation

i~
d

dt
ψ(t) = H̃(t)ψ(t)

with ck(0) = δ1k. If, for all s, E1(s) − Ek(s) is bounded from below by Ak, and all 〈φl(s)|φ̇1(s)〉
are bounded from above by Q, then[29]

|ck(T )− δ1k| ∝
Q

AkT
. (1)

In other words, the difference between the instantaneous eigenstate of H̃(t) and the evolved state
|ψ(t)〉 scales inversely with the time taken for the change and with the energy gap. This difference
can be made arbitrarily small by choosing a sufficiently large T .

The conventional STIRAP protocol (Fig. 1) deals with a three-dimensional quantum system,
consisting of eigenstates {|j〉}3j=1 of some background Hamiltonian. To transfer amplitude from
|1〉 to |3〉, a sequence of two laser pulses is applied: the Stokes pulse coupling |2〉 ↔ |3〉, and the
Pump pulse coupling |1〉 ↔ |2〉. Throughout this work, we consider only the interaction picture
and assume the rotating wave approximation to hold. The system’s Hamiltonian then becomes

H =

 0 ΩP (t) 0
ΩP (t) ε ΩS(t)

0 ΩS(t) 0

 . (2)
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Figure 1. The conventional STIRAP/CTAP protocol on a three-site Λ system. (a) The energy diagram of
the three states, coupled by the Stokes (S) and Pump (P) lasers, also represented as a graph in (b). (c)
Stacked plot showing the laser amplitudes, state amplitudes, and energies (eigenvalues λ) as a function of
time, in arbitrary units. Stages I and III involve turning the couplings on/off, whereas stage II constitutes
the relevant adiabatic driving part which transfers amplitude from state |1〉 to |3〉 as amplitudes ΩS and
ΩP are slowly adjusted relative to each other. Reproduced from Quantum protocols for few-qubit devices,
ILLC Dissertation Series (University of Amsterdam, 2020).

Here, ΩS/P denotes the Rabi frequency (amplitude) of the Stokes and Pump lasers, respectively,
and ε absorbs the off-resonances, assuming both are equal in size. One can check that one instan-
taneous eigenstate of H is the zero energy ‘dark state’ |z〉 given by

|z(t)〉 =
1

N

 Ω−1P (t)
0

−Ω−1S (t)

 ,

whereN denotes the normalization. The dark state |z〉 has precisely the property that it transitions
from |1〉 to |3〉 as ΩS is gradually diminished while ΩP is increased. Note the counter-intuitive order
of the pulses, as indicated in Fig. 1. A key property of STIRAP is that, under ideal circumstances,
the excited state |2〉 is never populated during this process, hence the protocol is independent of
decoherence due to emission from this state. Thanks to this, and the inherent stability of adiabatic
methods [30], the protocol is relatively stable to experimental imperfections, and is broadly adopted
in practice [2].

The setting where quantum particles can tunnel between three adjacent sites is mathematically
equivalent to Eq. 2, where the parameters Ω now take the role of tunneling amplitudes. The same
protocol can then be applied, leading to transfer of the particle wavefunction, as is the case in
CTAP.

III. GENERALIZING STIRAP

We observe that a key property of STIRAP and CTAP is the existence of a unique zero-energy
eigenstate at all times, and that this state is localizable by lowering couplings incident to a partic-
ular site. This leads us to our main question: which other physical configurations pertain precisely
one zero eigenvector, even when uncoupling a certain site?

Note that the adiabatic theorem does not require the eigenvalue to be zero. Rather, it is an
essential ingredient in our proofs, and it simplifies tracking the dynamical phase in experiments.

We capture the more general configurations in the language of (finite) weighted graphs G =

(V,E,w). Here, the collection of vertices V = {vj}dim(V)
j=1 corresponds to a set of basis states

{|vj〉}dim(V)
j=1 of Hilbert space V. Two vertices v, u ∈ V are connected by an edge uv ∈ E if and only

if an interaction that couples states |u〉 and |v〉 can be applied. The weights w : E → C assign a
complex amplitude to each of the interactions. Weights evaluated on non-existent edges are zero:
wuv = 0 for all uv 6∈ E. In the context of CTAP, the vertices should be interpreted as sites for
the particle, and the edges indicate possible tunneling of the particle. In the context of STIRAP,
vertices are energy levels, and edges are possible couplings by laser fields.

The adjacency matrix AG of a graph is then defined as the matrix of weights, with matrix
elements (AG)uv = wuv. We impose hermiticity through wuv = w∗vu. For computational simplicity,
we take the adjacency matrix to be constant (we consider it as a background), and define the control
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Hamiltonian HG for a given graph G by

HG(t) =
∑
u,v∈V

fuv(t)wuv|u〉〈v| , fuv(t) = f∗vu(t) .

The graph G from which HG is derived will be called the interaction graph, which restricts the
allowed interactions in HG.

In this definition of the control Hamiltonian, we assume arbitrary time-dependent control over
each allowed interaction, by tuning the controls fuv(t). In the following, we assume that the
controls fuv(t) are continuous functions of time, as required for adiabatic evolution. Moreover, to
avoid dealing with quickly oscillating laser fields, we assume that an appropriate rotating frame is
considered and that off-resonant fields are neglected through a rotating wave approximation. This
is important later, as multiple fuv should not become 0 simultaneously. Hence, each fuv(t) should
be a slowly-changing function of time, representing for example the envelope of a laser’s amplitude.

Thanks to the mapping to graphs, we can use various notions from graph theory. We denote
with G− v the graph G in which the vertex v and all the edges incident to v are removed.

Definition 1. A bipartite graph has a vertex set V which can be separated into two independent
subsets V1, V2 such that each edge uv ∈ E must run between V1 and V2 (that is, u ∈ V1 and v ∈ V2
or vice-versa).

A semi-bipartite graph with parts V1 and V2 [31, 32] is a bipartite graph in which edges within
V2 are allowed (including self-loops), but edges within V1 are still prohibited. For example, the
graph in Fig. 1 is semi-bipartite with V1 = {|1〉, |3〉}, but not bipartite unless ε = 0.

Note that for a connected bipartite graph, the decomposition V = V1tV2 is determined uniquely
(up to interchanging V1 and V2), while this is almost never the case for semi-bipartite graphs: any
vertex in V1 may be moved to V2. Hence, the decomposition is an essential part of the data.
However, for our results, we want to take |V1| = |V2| + 1, which means we cannot easily move
points from V1 to V2.

We let V denote the vector space spanned by the states |v〉 corresponding to the vertices v in
V . Likewise, we use V1,V2 to denote the subspaces corresponding to subsets V1, V2. We order
the basis of V by first stating the elements of V1 and then the elements of V2. In this basis, the
interaction graph has the form

AG =

(
0 B
BT C

)
, (3)

where B is a matrix of size |V1| × |V2| and C has size |V2| × |V2|. We will mostly use this form of
AG throughout this work.

Definition 2. We use commensurate couplings to denote the choice of couplings fuv(t) such that

fvu(t) = fv(t) ∀u ∈ V2, v ∈ V1 ;

fvu(t) = 1 ∀u, v ∈ V2 .

In other words, for each vertex v ∈ V1, the incident couplings are changed proportionally, whereas
all couplings within V2 have to be equal to one.

Note that, because we consider semi-bipartite graphs, the above definition covers the controls
for all edges. In such cases, with the interaction graph given in the form of Eq. 3, we may write

HG(t) = F (t)AGF
∗(t) , (4)

where F (t) = diag(f1(t), . . . , f|V1|(t), 1, . . . 1).
We are now ready to state our main result. Consider a set of parties (vertices) P ⊆ V1 located

on a graph, who want to send a quantum state to each other. This turns out to be possible with
a control Hamiltonian HG, under certain graph restrictions, as made precise below.

Theorem 3. Let G = (V,E,w) be a connected, weighted, semi-bipartite graph with parts V1 and
V2. Let P = {pj}kj=1 ⊆ V1. We assume that

1. |V1| = |V2|+ 1;

2. Either of the following:
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2a. For all pj, det(AG−pj ) 6= 0;
2b. AG has a unique zero eigenvector, which has nonzero amplitude on each pj.

Then, for any a, b ∈ P , the following choice of commensurate couplings are such that HG(t)
adiabatically transfers amplitude from a to b in total time T :

fa(0) = 0 ;

fb(T ) = 0 ;

fv(t) 6= 0 for all v 6∈ P ;
No two fv(t) may be zero simultaneously.

(5)

Hence, the system exhibits a unique, continuously changing zero eigenstate, which is localized at a
for t = 0 and at b for t = T .

Before we prove this theorem, we would like to analyse the statement. The proof is given after
Remark 7.

The main importance of Theorem 3 is that there exist large classes of graphs that allow state
transfer under a generalized form of the counter-intuitive pulse sequence encountered in STIRAP.
Eq. 5 allows abundant freedom in the choice of controls, although the theorem does not say anything
about which controls are optimal (in the sense that they result in the smallest adiabatic error for
a fixed time T ). It also does not say anything about the reliability of the control protocol, or
about the size of the energy gap (except that it is non-zero). We numerically address gap size and
transfer fidelities as a function of graph size in Sec. VI.

We also note that Eq. 5 is not exhaustive: there may be a wider class of controls that guarantees
state transfer under our assumptions. On the other hand, even if assumptions 1 and 2 of Theorem
3 are satisfied, the controls cannot be any function of time: for any nontrivial graph G there exist
controls fuv that cause HG to have a degenerate zero eigenvalue (an example is the case where too
many fuv become 0). We leave investigating the tightness of our results as an open problem.

Remark 4. For practical purposes, the only couplings fuv that actually require time-dependent
control are those directly connected to sender and receiver; controlling any of the other couplings
is optional. In fact, the control procedure can be performed locally and sequentially: it is possible
to first only change the controls near a and then only those near b. An example is the choice

fv(t) =


min{2t/T, 1} v = a ;

min{1− 2t/T, 1} v = b ;

1 else

In particular, the receiver, b, can be chosen after the process has been initialized.

Remark 5. As seen in the proof, assumptions 1 and 2 are chosen precisely such that the Hamil-
tonian HG(t) has exactly one zero eigenvalue at all times. We show that this gives a non-zero gap,
bounded from below uniformly over time.

Also note that in the physics literature, the gap is often addressed in the limit of increasing
system size, whereas we assume that a graph has a fixed, finite size.

Assumption 2 is not very intuitive. Therefore, we will give two approaches to attaining it in
Sec. V, one via perfect matchings, and one reducing graphs by cutting dangling vertices.

The assumptions 2a and 2b are equivalent under the assumption of 1. More precisely, the
following proposition holds.

Proposition 6. Let G = (V,E,w) be a weighted, semi-bipartite graph with parts V1 and V2, such
that |V1| = |V2|+ 1, and let p ∈ V1. Then the following are equivalent:

a. det(AG−p) 6= 0;

b. AG has a unique zero eigenvector, which has non-zero amplitude on p.

Proof. Let us first show that, thanks to |V1| = |V2|+ 1, there must exist a zero-energy eigenvector
|z〉 = (z1, 0) ∈ V1 whose nonzero amplitudes z1 are only located on sites in V1. This holds because
in the eigenvalue equation, using the form of Eq. 3,(

0 B
BT C

)(
z1
0

)
=

(
0

BT z1

)
= 0 ,
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the system of equations BT z1 = 0 has |V1| variables and |V2| constraints, hence it must always
have at least one non-trivial solution.

We start with the implication from a to b. By the previous argument, the rank of AG can be at
most |V | − 1. However, as det(AG−p) 6= 0, the submatrix AG−p must be of maximal rank, which
is also |V |− 1. As the rank of a submatrix gives a lower bound on the rank of a matrix, this shows
that rkAG ≥ |V | − 1. Therefore, there is a unique zero eigenvector.

Let this eigenvector be v, let its component at p be vp, and its components away from p be ṽ
(so ṽ is a vector with |V | − 1 components). We can write AG as a block matrix

AG =

(
0 bp
bTp AG−p

)
,

where we wrote the component corresponding to p as the first component for simplicity. As v is a
zero eigenvector, we get

0 = AGv =

(
0 bp
bTp AG−p

)(
vp
ṽ

)
=

(
bpṽ

bTp vp +AG−pṽ

)
.

If vp = 0, then ṽ 6= 0, as an eigenvector cannot be zero, but then AG−pṽ 6= 0, as det(AG−p) 6= 0.
This is a contradiction, so we must have vp 6= 0.

Now we prove the implication from b to a by counterpositive. Hence we assume det(AG−p) =
0, and show that there exists a zero eigenvector of AG whose p-component is zero. Again, for
notational simplicity, we write the component corresponding to p as the first component, so we
have

AG =

(
0 B
BT C

)
=

 0 0 bp
0 0 B̃

bTp B̃T C

 .

From this, we get

AG−p =

(
0 B̃

B̃T C

)
,

where, crucially, the sizes of B̃ and C are equal by the assumption |V1| = |V2|+ 1. Hence,

det(AG−p) = ±det(B̃B̃T ) = ±det(B̃)2 .

Now, by assumption det(AG−p) = 0, so det(B̃T ) = 0. Therefore, there exists a zero eigenvector u
of B̃T . If we define v = (0, u, 0), then

AGv =

 0 0 bp
0 0 B̃

bTp B̃T C

0
u
0

 =

 0
0

B̃Tu

 = 0 ,

so we have constructed a zero eigenvector of AG with zero amplitude on p, giving a contradiction.

Remark 7. In fact, the implication from a to b goes through even in the case G is not semi-
bipartite; the proof does not use this assumption. However, for the other direction, it is essential.

Proof of Theorem 3. By the first part of the proof of Proposition 6, there exists a zero-energy
eigenvector |z〉 for any choice of controls.

By construction, the couplings fuv(t) in Eq. 5 are such that at times 0 and T , the respective
states |a〉 and |b〉 are zero-energy eigenstates. We will argue that, using the given control scheme,
the zero-energy subspace is one-dimensional at all times.

When all controls fv are equal to one, then HG = AH and the zero-energy eigenstate |z〉 is
unique, by assumption 2.

When the couplings change commensurately, but remain non-zero, the eigenstate |z〉 changes as

|z(t)〉 ∝ F (t)−1|z〉, (6)
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as can be seen from Eq. 4. Because F is diagonal, |z(t)〉 is still located on V1. It is unique, because
given any zero eigenvector |w〉 of HG(t), F (t)|w〉 is an eigenvector of AG, hence must be equal, up
to scaling, to |z〉.

Special care has to be taken when reducing weights to zero. When reducing fp (p ∈ P ) towards
zero, assumption 2a guarantees that no zero eigenvectors occur on G − p, hence |p〉 must then
be the unique zero eigenstate. This shows that any controls fv satisfying Eq. 5 indeed pertain a
unique zero-energy eigenstate, and provide the correct initial and final state at times t = 0 and
t = T .

Because the graph is finite, there are also finitely many eigenvalues for each t, and by the above,
exactly one of them equals zero. Therefore, there must be a non-zero gap around zero for any fixed
t. Furthermore, the interval [0, T ] is compact and the eigenvalues and the gap depend continuously
on the time, and so the gap must achieve its infimum at some t0 ∈ [0, T ]. Hence, this gap can
be bounded uniformly by the gap at t0, a positive number ε, which then bounds the Ak from
Equation 1. This shows that we can use the adiabatic theorem to find that a sufficiently high
protocol time T allows state transfer at arbitrary accuracy.

The unique zero-eigenstate |z(t)〉 has many favorable stability properties. Its eigenvalue is exactly
0 throughout the whole protocol, independent of changes to wuv, as long as the graph remains semi-
bipartite. The constant energy makes the state’s dynamical phase easy to track. Moreover, it has
exactly 0 amplitude on V2, which makes it insensitive to any decoherence on sites in V2. The state
|z〉 generalizes the ‘dark state’ of conventional STIRAP and CTAP, inheriting important features
that make these protocols attractive for practical purposes.

One might be concerned that, when reducing all controls fpjv incident to a certain party pj to
zero, it is hard to maintain the commensurate ratios between the couplings. Luckily, it turns out
that in such cases, commensurateness is not essential: the condition det(AG−pj ) 6= 0 guarantees
that the zero eigenstate remains unique as long as all other sites remain commensurately coupled.
This holds because the rank of AG must be at least that of AG−pj , which shows that for any
couplings between pj and the rest of the graph, there can be at most one zero-energy state. This
freedom gives the protocol a convenient stability to imperfect controls.

The time scale T required by the protocol is determined by the gap in the spectrum around the
zero eigenvalue, as opposed to the well-studied gap between the lowest and second lowest energy
[33]. To our best knowledge, little is known about the gap around zero, and characterizing its
scaling is an interesting open problem. In Sec. VI we numerically study the scaling for certain
example graphs.

IV. APPLICATIONS

Our main result requires a physical system to obey our conventions of control Hamiltonian
HG for certain graphs G, with sufficiently flexible controls fuv. The mathematical framework we
consider applies to various realistic cases, such as

• Discrete energy levels coupled by (near-)resonant laser fields, like electronic levels in atoms
or molecules, such as typically considered in STIRAP [2]. The lasers can also be off-resonant,
as long as each state in V2 has all of its incident couplings at the same off-resonance. Either
way, a transformation to the interaction picture, and assumption of the Rotating Wave
Approximation are required.

• Systems where a quantum particle ‘hops’ between coupled sites, such as electrons caught
in quantum dots [17, 34], or atoms or atomic condensates trapped in optical potentials
[16, 35, 36].

• An XX-model of interacting spins, of the form

HXX =
1

2

∑
uv∈E

wuv (XuXv + YuYv) + h
∑
u∈V

Zu,

where {Xu, Yu, Zu} are the Pauli matrices acting on the site u, in the sector with a single
spin excitation [18].
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The most interesting application might be in quantum information processing. Note that our
protocols can transmit quantum information, for example when the transported state represents
the position of a quantum particle with internal degrees of freedom, as is the case with CTAP, or
when a superposition between a shared vacuum and an excitation on a graph may be made. The
latter applies to the XX-model, where an initial state of the form

|ψ(0)〉 = α|0〉a|0 . . . 0〉+ β|1〉a|0 . . . 0〉
can be initialized locally at site a. The first term is an eigenstate of HXX and does not change.
The second term evolves in an invariant subspace spanned by states with a single spin excitation.
The evolution is then described by a Hamiltonian of the form HG, allowing the spin excitation to
be transfered to some other location b.

In the context of information transfer, care has to be taken with the additional phase that is
picked up throughout the protocol. As an example, in the XX model described above, the single-
excitation subspace amplitude β picks up a relative phase β → e−ihTβ relative to the vacuum
amplitude α. Moreover, the transfer protocol itself gives an additional phase to the transferred
excitation, as previously observed by Ref. [24]. This becomes relevant when dealing with the
XX model, or when transporting entangled particles or states. Owing to Eq. 6, as long as fuv(t)
remain real-valued, the additional phase acquired by the state when transferring from site a to b
is equal to arg(za/zb), where za, zb are elements of the zero-eigenvector |z〉 of AG. Hence, for some
applications, this vector may need to be explicitly calculated once.

As a potential realistic application, Ref. [37] observes that individual quantum processors based
on quantum dots are limited in size, raising the need for communication between nearby processors.
Our results readily generalize the CTAP protocol [17] to transfer electrons through a network of
quantum dots, and the possibility to use more general graphs may be of great benefit for larger
quantum computer architectures.

Another new application is in a delayed transfer scheme, previously addressed in Ref. [38]. The
sender a can initialize the system into the dark state |z〉 and leave it at that, such that any party
in P can retrieve the quantum state, at any time they like. This opens the possibility to share
unclonable quantum information among many parties without yet knowing which party is required
to obtain the information.

V. EXAMPLES OF VIABLE GRAPHS

The main assumptions of Theorem 3, especially requirement 2, may not be very intuitive, but can
be guaranteed in certain cases. In this section, we present two results in this direction. First, we
discuss a procedure to generate viable graphs, by iteratively adding or removing dangling vertices.
Next, we show that for any graph that allows, for each pj , a perfect matching when a party pj
is removed, our assumptions are satisfied with probability 1 when the weights wuv are chosen at
random.

A. Adding and removing vertex pairs where one is dangling preserves the nullity

Consider a setting where one knows a graph G and a set of parties P that satisfy the assumptions
of Theorem 3. One may now extend the graph by connecting first a vertex u in an arbitrary way,
and then connecting a vertex v only to u. It turns out that, for any choice of non-zero weights,
the number of zero eigenvectors does not change in this process.

We make this precise as follows. For an (n × n)-matrix A, let η(A) = n − rk(A) denote the
nullity of the matrix.

Lemma 8. Let G be a graph with a vertex v of degree 1, whose unique neighbour is u (u 6= v).
Then

η (AG) = η
(
AG−{v,u}

)
.

Proof. Let G̃ denote the graph G − {v, u}. Assuming for convenience that v and u are the first
and second column of the adjacency matrix AG respectively, we can write

AG =

 0 wuv 0
wvu wuu b

0 bT AG̃

 .
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We can write any vector |z〉 as (zv, zu, z̃). Now wuv 6= 0 and

0 = AG|z〉 =

 0 wuv 0
wvu wuu b

0 bT AG̃

zvzu
z̃

 =

 wuvzu
wvuzv + wuuzu + b · z̃

bT zu +AG̃z̃

 ,

implying that zu = 0, and hence also zv = − 1
wvu

b · z̃, and AG̃z̃ = 0. Hence, we get a linear
isomorphism kerAG → kerAG̃ : (zv, zu, z̃) 7→ z̃ with inverse z̃ 7→ (− 1

wvu
b · z̃, 0, z̃). As the nullity is

the dimension of the kernel, this shows η(AG) = η(AG̃).

Note that in Lemma 8, we did not require the assumption of semi-bipartiteness, although the
latter is still required for our adiabatic protocol. We obtain the following corollary.

Corollary 9. Suppose G is a semi-bipartite graph with parts V1 and V2 such that |V1| = |V2|+ 1.
Fix a set of parties P ⊆ V1. Suppose v is a dangling vertex, v 6∈ P , whose unique neighbour is u.
Then condition 2 of Theorem 3 holds for G if and only if it holds for G− {u, v}.

Proof. Recall that one of the two equivalent statements of condition 2 is that det(AG−pj ) 6= 0, for
all pj ∈ P . Let us first assume that G satisfies this condition. Because det(AG−pj ) 6= 0, the nullity
of AG−pj is non-zero. By Lemma 8, the nullity of AG−{u,v})−pj is also non-zero, hence it has a
non-zero determinant and thus satisfies condition 2a as well. The same reasoning also proves the
other direction.

Corollary 9 shows that new viable graphs can be generated by adding or removing vertices
from existing graphs that are already known satisfy the assumptions of Theorem 3. When adding
vertices, one may first connect a vertex u in any way, as long as the semi-bipartiteness is not
violated, and then attach a vertex v only to u. When removing vertices, one must find a dangling
vertex v and remove it together with its neighbour u, as long as the connectedness is preserved.
On graphs generated this way, the requirements of Theorem 3 can be guaranteed.

When adding new vertices to a graph this way, it may also be possible to add the new vertices to
the set of parties P , under the following conditions. It is never possible to add a vertex u ∈ V1 to
the set P when u is adjacent to a dangling vertex. For a new dangling vertex v ∈ V1 that is to be
added to the set P , assumption 2b requires that the zero eigenvector z of the new adjacency matrix
has nonzero amplitude on v. From the proof of Lemma 8, we see that we require 0 6= zv = − 1

wvu
b·z̃,

where b is a vector containing the weights of u to the original vertices (excluding u and v), and z̃
is the original zero eigenvector.

Below, we give two example of new families of graphs that allow adiabatic transfer. Various
examples of viable graphs are also depicted in Fig. 2.

Example 10 (Subdivided trees). Let T = (VT , ET ) be any tree. We define the subdivided tree
T̃ = (VT̃ , ET̃ ) by replacing every edge by two edges and a vertex: the new vertex set VT̃ = VT tET
is given by the vertices and edges of T , and the edge set ET̃ = {{v, e} : v ∈ VT , e ∈ ET , v ∈ e}
consists of edges that connect each vertex v ∈ VT to its incident edges e ∈ ET . An example of
such a subdivided tree is shown in Fig. 3. The decomposition VT̃ = VT tET guarantees that T̃ is a
bipartite graph, and since T is a tree we find the vertex classes satisfy |VT | = |ET |+ 1. Moreover,
we can iteratively remove leaves from the tree to reduce to a single vertex or single edge, showing
that any T̃ constructed this way satisfies the conditions of Theorem 3.

Example 11 (Hexagonal grids). Hexagonal grids can be constructed from two-vertex unit cells
that are all oriented in the same direction. These grids are bipartite, with each unit cell containing
one vertex from V1 and one from V2. If we start with a single vertex, and keep attaching unit cells
in a hexagonal grid pattern such that one of the newly attached vertices is dangling, then each of
the grids constructed this way satisfies the conditions of Theorem 3.

B. Graphs with certain matchings make the protocol work almost surely

A perfect matching in a graph G is a set of disjoint edges that covers all the vertices. In this
section, we show that on semi-bipartite graphs G where G− {pi} has a perfect matching for all i,
taking arbitary weights from a continuous distribution results in an interaction graph that satisfies
the conditions of Theorem 3 with probability one. This gives another way to generate a large class
of graphs on which the adiabatic transfer protocol works.
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Theorem 12. Let G = (V,E,w) be a weighted semi-bipartite graph with parts V1 and V2 where
|V1| = |V2| + 1. Let P = {pj}kj=1 ⊆ V1. Suppose that for all i there exists a perfect matching in
G− pi. Then, if weights wuv are chosen randomly from a contiuous distibution (meaning that no
value has positive probability) for all uv ∈ E, we find det(AG−pj ) 6= 0 for all pj with probability 1.

Note that the theorem exactly gives us condition 2a required by the protocol.

Proof. It suffices to prove that det(AG−pi) 6= 0 with probability 1 for a fixed i ∈ {1, . . . , k}; the
claim of the theorem then follows since a countable intersection of events with probability 1 still
has probability 1.

Let p = pi be given. We will first permute the rows and columns of the matrix AG−p to bring
it in a convenient form; such a permutation only affects the determinant of the matrix by a sign,
which is irrelevant to us.

By assumption, there is a perfect matching on the graph G − p. Since |V1 \ {p}| = |V2| and
there are no edges within V1, any perfect matching must use only edges between V1 and V2. Let
u1v1, . . . , ukvk ∈ E ∩ (V1 × V2) denote the edges given in a perfect matching on G − p. Permute
the rows and columns such that the rows are in the order u1, v1, u2, v2, . . . and the columns are in
the order v1, u1, v2, u2, . . . . We show with an inductive argument that for all ` ∈ {1, . . . , k}, the
matrix A` on the first 2` rows and columns has non-zero determinant with probability 1. This
proves the claim.

For ` = 1, we consider

det

(
wu1v1 0
wv1v1 wu1v1

)
= w2

u1v1 ,

since wu1u1
= 0 as u1 ∈ V1. As wv1v1 is sampled uniformly at random from [0, 1], this is non-zero

with probability 1. Now suppose we have shown the statement up to some `. We find

det

A` b1 b2
d1 wu`+1v`+1

0
d2 wv`+1v`+1

wu`+1v`+1

 = det(A`)w
2
u`+1v`+1

+ bwu`+1v`+1
+ c

for some b and c which do not depend on wu`+1v`+1
, and where we may assume that det(A`) 6= 0.

Since the other entries do not depend on wu`+1v`+1
and this gets sampled independently of the other

entries, we may view det(A`), b and c as constants. Since there are at most two possible values in
[0, 1] which make a quadratic polynomial ax2 + bx + c equal to zero (if a 6= 0), with probability
1 the expression will be non-zero. Continuing until ` + 1 = k, we conclude det(AG−p) 6= 0 with
probability 1 as desired.

Remark 13. From the proof, it follows that the assumptions in Theorem 12 can be relaxed: the
requirement that the weights are chosen from a continuous distribution is only necessary for the
edges involved in the matching.

In fact, it is possible to show that the adjacency matrix of G is equivalent to a matrix with
non-zero entries on the diagonal if and only if there is a perfect matching. Limited generalisation
is also possible to non-bipartite graphs.

The proof of Theorem 12 also suggests a (weak) lower bound on the determinant det(AG−pi)
with some probability, and hence on the eigenvalue gap of AG. We elaborate on this in Appendix A.

VI. NUMERICS

Our main result in Theorem 3 states merely that adiabatic transfer is possible at some timescale,
to which we remained agnostic. Especially the randomly-weighted graphs with perfect matchings
in Sec. VB potentially give rise to a configurations with a very small energy gap, giving rise to
long transfer times T . An in-depth study of the gap between the zero eigenvalue and the next on
semi-bipartite graphs is left as an open problem, but to give some indication of the quantitative
behavour of our protocol, we resort to numerics. First, we calculate the scaling of the energy gap
for various graphs. After that, we consider fidelity of transfer in subdivided trees of various depths.

Fig. 2 depicts the scaling of the energy gap around the zero energy state, as a function of the
number of vertices |V |, for various types of graphs. For most graphs, we consider the unweighted
versions, setting wuv = 1 whenever the corresponding edge is present. Some graphs have the
annotation ‘random’, which means that the graphs typically do not have a unique zero eigenvalue
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Figure 2. Scaling of the eigenvalue gap ∆E between the unique zero eigenvalue and the closest other
eigenvalue, on a log-log scale. These are calculated for various bipartite graphs of various sizes |V |. The
annotation (random) indicates that the weights were randomly chosen in the interval [0,2] to guarantee a
unique zero eigenvector. The lower dashed line indicates ∆E = 1/|V |, and the upper dashed line follows
∆E = 10/

√
|V |. Interestingly, for most of the graphs we study, the gaps decay scales proportional to 1/|V |

or better. Hexagonal grids are an exception, as these are found to decay superpolynomially. Reproduced
from Quantum protocols for few-qubit devices, ILLC Dissertation Series (University of Amsterdam, 2020).

when all weights equal one; we then ensure a unique zero eigenvector by multiplying each weight
wuv with a random number chosen independently and uniformly chosen between 0 and 2. We took
the average energy gap over 50 such perturbations. The precise details of the specific graphs we
generated can be found in Appendix B.

These results show that the energy gap often decays roughly as ∆E ∝ |V |−1 or better, similarly
to conventional STIRAP over a linear chain, with hexagonal grids being an exception.

To assess the actual accuracy of our protocol, we numerically simulate the time evolution of a
transfered state. As graphs, we choose binary trees of depth k, as these allow transfer between a
large number of parties. To guarantee that requirement 1 is always fulfilled, we use the subdivision
procedure in Example 10, putting a vertex on each edge. This leads to a graph as shown in Fig. 3.
The possible communicating parties P are chosen to be the leaves (endpoints) of the tree, allowing
|P | = 2k parties to be connected. The actual transfer takes place between parties a and b which
are at maximum distance from each other.

We define the transfer error as E = 1− |〈b|UT |a〉|, where UT denotes the unitary time-evolution
operator as found by numerically solving Schrödinger’s Equation, and T is the total protocol’s
time. We choose simple time-dependent couplings fa = Jt/T and fb = J(1− t/T ), while all other
controls remain fv = 1. Moreover, we define T ∗ as the lowest time for which E < 0.05, setting a
bar for transfer with 95% fidelity.

Owing to the exponentially large size |V | of the graphs, the time required rapidly increases with
k (Fig. 3). Interestingly, we find that the technique of straddling [15, 17], in which all controls fv
except for fa and fb are multiplied by a factor s, flattens the scaling down to roughly T ∗ ≈ 10

√
k,

up to a certain k where the steep increase is observed again. Ref. [39] already predicted a favorable
scaling T ∗ ∝ √n for linear chains of length n in the strong straddling limit. It is surprising that
here, we find a similar scaling in k rather than n, even though the number of vertices increases
exponentially in k.

There are various reasons to believe that the strong straddling scaling cannot remain valid for
increasingly large systems, for example due to Lieb-Robinson bounds [40]. Still, with a modest
straddling factor s = 10, transfer at favorable scaling T ∗ ∝

√
log(|P |) is observed for graphs of up

to 1000 sites, showing that near-term experiments can benefit from this effect.
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Figure 3. Simulation results on tree graphs are presented. A tree of depth k = 2 is shown on the top-left,
with receivers a and b maximally separated. The top-right shows the ideal state evolution over time, and
the energy levels during the protocol. The times T ∗ required for constant fidelity increase steeply with the
exponential size |V | of the graph (bottom), except when sufficiently strong straddling is applied, leading
to T ∗ ∝ k0.5 (dashed line). Reproduced from Quantum protocols for few-qubit devices, ILLC Dissertation
Series (University of Amsterdam, 2020).

VII. CONCLUSION

To summarize, we extend the set of graphs in which STIRAP-like protocols are known to work.
The sufficient requirements are made precise in assumptions 1 and 2, which can be guaranteed
using the techniques in Sec. V. We inherit the most important properties of the conventional
protocols: the adiabatic controls do not require precise amplitudes or timings, the system’s energy
is exactly zero at all times, and the fidelity is largely insensitive to decay on sites in V2. Various
extensions, such as straddling and multi-party transfer, can be readily incorporated. In the studied
example of tree-shaped graphs, we find that with mild straddling the fidelities are much better
than naively expected.

As our requirements are sufficient but not necessary, we would be interested to see further work
explore other graphs with unique zero eigenstates, and give guarantees on spectral gaps around the
zero eigenvalue for specific graphs. Moreover, we look forward to seeing state-of-the-art experiments
test our results in practice.
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Appendix A: On the eigenvalue gap around 0

The eigenvalue gap between the ground state and first excited state is an active field of research.
The gap between a zero eigenvalue and the nearest non-zero eigenvalue seems to have received
significantly less interest. Here, we present some thoughts that could be useful in characterizing
the gap around 0: firstly, on estimating the determinant when weights of a perfectly matchable
graph are chosen at random, and secondly, by using Cauchy’s interlacing theorem of eigenvalues.

1. Robustness guarantees using the determinant

When weights wuv are chosen from [0, 1], all eigenvalues of AG satisfy |λ| ≤ dmax(G) for dmax(G)
the maximum degree of G. Since the determinant is the product of the eigenvalues, this gives
the lower bound |λ| ≥ det(AG)

dmax(G)n−1 for a graph G on n vertices. Hence, the lower bound on the
determinant of AG also gives a lower bound on the smallest eigenvalue.

Moreover, a lower bound on the determinants det(AG−pi) gives the robustness guarantee that
our protocol will keep working even if the weights cannot be held exactly at the aimed value. More
precisely, if |det(AG−pi)| > ε for some ε > 0, then by continuity of the determinant, this remains
true even if the entries of AG−v (that is, the weights on the edges) get permuted by at most some
δ. Since the determinant is a polynomial, we may expect δ to be of a similar scale to ε. This
implies that the uniqueness of the zero eigenvector would be guaranteed even if the weights of the
edges are slightly perturbed. Note that the weights on the edges adjacent to pi do not affect the
determinant at all.

The proof of Theorem 12 extends to give a weak lower bound on the determinant.

Theorem 14. Let G be a semi-bipartite graph on parts V1 and V2 with a perfect matching
u1v1, . . . , u`v`. Suppose the weights on some edges of G, including the wuivi , are chosen in-
dependently and uniformly at random from [0, 1]. Then with probability at least ( 1

2 )`, we have
|det(AG)| > ( 1

2 )3`−1.

Proof. We may assume there are no edges within V1. (This assumption can be left out but makes
the analysis easier.) As in the proof of Theorem 12, we reorder the columns to u1, v1, u2, v2, . . .
and the rows to v1, u1, v2, u2, . . . and prove the claim for all submatrices A` spanned by the first
2` rows and columns for all ` ∈ {1, . . . , k}.

The statement is true for ` = 1: det(A1) = w2
u1v1 >

1
4 with probability at least 1

2 . Suppose now
that |det(A`)| ≥

(
1
2

)3`−1 with probability at least
(
1
2

)` for some `. Again, we find

det

A` b1 b2
d1 wu`+1v`+1

0
d2 wv`+1v`+1

wu`+1v`+1

 = det(A`)w
2
u`+1v`+1

+ bwu`+1v`+1
+ c

takes the form ax2 + bx+ c, where a, b, c do not depend on x = wu`+1v`+1
and can hence be viewed

as constants by the independence assumption. By the induction hypothesis, |a| ≥
(
1
2

)3`−1 with
probability at least

(
1
2

)`.
We can rewrite ax2 + bx + c = a(x + b′)2 + c′ for possibly different values b′, c′. Then |a(x +

b′)2 + c′| ≤
(
1
2

)3(`+1)−1 if and only if a(x + b′)2 ∈
(
−c′ −

(
1
2

)3(`+1)−1
,−c′ +

(
1
2

)3(`+1)−1
)
. The

probability of this happening is maximized when b′ = − 1
2 , |c′| =

(
1
2

)3(`+1)−1 and the sign of c′
and a are different; we may assume a > 0 as the other case is analogous. In this case the interval
is
(

0, 2
(
1
2

)3(`+1)−1
)

=
(

0,
(
1
2

)3`+1
)
. We find a ≥

(
1
2

)3`−1 with probability at least
(
1
2

)`, in which

case independently with probability 1
2 we have |x+b′| ≥ 1

2 . Hence with probability at least
(
1
2

)`+1,
we find

a(x+ b′)2 ≥
(

1

2

)3`−1(
1

2

)2

=

(
1

2

)3`+1

/∈
(

0,
(1

2

)3`+1)
.

We cannot hope to do much better than the result above. Consider the case in which A =
diag(a1, a1, . . . , ak, ak) is a diagonal matrix, such that det(A) = a21 · · · a2k where the ai get chosen
independently and uniformly at random. Using the law of large numbers or the Central Limit
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Theorem and the fact that − log(U(0, 1)) ∼ Exp(1), it follows that a1 · · · ak is concentrated around(
1
e

)k. In fact, one can prove using Chernoff bounds [41] that

P
(
a1 · · · ak ≥

(
0.52/3

)k)
≤ e−(1/144)k.

Hence without further assumptions, we cannot hope to improve the exponential decay in the lower
bound of the theorem.

2. Interlaced eigenvalues

We can obtain a lower bound on the eigenvalue gap using the following result, which follows
from the fact that AG−p is a principal submatrix of AG [42].

Theorem 15 (Cauchy interlacing theorem). Let G be a graph with a vertex p. Let λ1 ≤ · · · ≤ λn+1

be the eigenvalues of AG and µ1 ≤ · · · ≤ µn the eigenvalues of AG−p. Then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn ≤ µn ≤ λn+1.

In our set-up, one of the λi will be equal to 0, and the theorem shows that that the gap to the
second absolutely smallest eigenvalue is at least mini |µi|, and hence the eigenvalue gap

∆(G) ≥ max
p∈V1

min
µ eigenvalue of G−p

|µ|.

Along with a bound on det(AG−p), as considered in the previous subsection, we can use this to
obtain a lower bound on the eigenvalue gap of G. This bound is very weak, and based on the
experiments in Sec. VI it is our expectation that vastly better bounds can be obtained.

Appendix B: Details of the numerical diagonalization

The details of our numerics on the gap scaling for various graphs are as follows.
We generate star graphs by connecting k ‘arms’, linear chains of length m, to a single center

vertex. Interestingly, the eigenvalue gaps do not change as the number of arms increases. We fix
the number of arms to 3 and vary the chain lengths to make larger graphs.

The hexagonal grids consist of unit cells of size 2. We take k2 copies of these unit cells and
place them on a k × k square grid, which is connected as indicated in Fig. 2. To enforce an
odd number of sites, we remove a single site in the top-right corner, leading to 2k2 − 1 sites in
total. Interestingly, the hexagonal grids are the only graph configuration we considered whose gap
decays superpolynomially (yet slower than an exponential). Randomly perturbing weights does
not change this behavior.

The square grids are chosen to have k by k vertices, where k is an odd number.
The bipartite graphs consist of two parts of size m + 1 and m, respectively. Each potential

edge which can be laid to connect the two parts is added with probability p = 0.81. Because
these graphs are also random, for each datapoint, we also averaged the gap size over 50 random
instantiations of the edge set. The thickness of the line indicates the standard deviation.

Lastly, the subdivided binary trees are generated as in the main text: starting from a complete
binary tree of certain depth, we create an additional vertex on each edge, which makes sure that
|V1| = |V2|+ 1.

[1] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular
vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept
and experimental results,” J. Chem. Phys. 92, 5363–5376 (1990).

[2] Nikolay V. Vitanov, Andon A. Rangelov, Bruce W. Shore, and Klaas Bergmann, “Stimulated Raman
adiabatic passage in physics, chemistry, and beyond,” Rev. Mod. Phys. 89, 015006 (2017).

[3] Mark A. Kasevich, “Coherence with Atoms,” Science 298, 1363–1368 (2002).
[4] Krish Kotru, David L. Butts, Joseph M. Kinast, and Richard E. Stoner, “Large-Area Atom Interfer-

ometry with Frequency-Swept Raman Adiabatic Passage,” Phys. Rev. Lett. 115, 103001 (2015).

http://dx.doi.org/10.1063/1.458514
http://dx.doi.org/10.1103/RevModPhys.89.015006
http://dx.doi.org/10.1126/science.1079430
http://dx.doi.org/10.1103/PhysRevLett.115.103001


16

[5] Petr Král, Ioannis Thanopulos, and Moshe Shapiro, “Colloquium: Coherently controlled adiabatic
passage,” Rev. Mod. Phys. 79, 53–77 (2007).

[6] Simon Stellmer, Benjamin Pasquiou, Rudolf Grimm, and Florian Schreck, “Creation of ultracold sr2
molecules in the electronic ground state,” Phys. Rev. Lett. 109, 115302 (2012).

[7] David Petrosyan, D. D. Bhaktavatsala Rao, and Klaus Mølmer, “Filtering single atoms from Rydberg-
blockaded mesoscopic ensembles,” Phys. Rev. A 91, 043402 (2015).

[8] Steven A. Moses, Jacob P. Covey, Matthew T. Miecnikowski, Deborah S. Jin, and Jun Ye, “New
frontiers for quantum gases of polar molecules,” Nature Physics 13, 13–20 (2017).

[9] Alessio Ciamei, Alex Bayerle, Chun-Chia Chen, Benjamin Pasquiou, and Florian Schreck, “Efficient
production of long-lived ultracold sr2 molecules,” Phys. Rev. A 96, 013406 (2017).

[10] Jiannis Pachos and Herbert Walther, “Quantum Computation with Trapped Ions in an Optical Cav-
ity,” Phys. Rev. Lett. 89, 187903 (2002).

[11] F. Troiani, U. Hohenester, and E. Molinari, “High-finesse optical quantum gates for electron spins in
artificial molecules,” Physical Review Letters 90, 206802 (2003), arXiv:cond-mat/0304272.

[12] E. Paspalakis and N. J. Kylstra, “Coherent manipulation of superconducting quantum interference
devices with adiabatic passage,” Journal of Modern Optics 51, 1679–1689 (2004).

[13] N. Timoney, I. Baumgart, M. Johanning, A. F. Varón, M. B. Plenio, A. Retzker, and Ch Wunderlich,
“Quantum gates and memory using microwave-dressed states,” Nature 476, 185–188 (2011).

[14] Teck Seng Koh, S. N. Coppersmith, and Mark Friesen, “High-fidelity gates in quantum dot spin
qubits,” Proceedings of the National Academy of Sciences 110, 19695–19700 (2013), arXiv:1307.8406.

[15] Vladimir S. Malinovsky and David J. Tannor, “Simple and robust extension of the stimulated Raman
adiabatic passage technique to N -level systems,” Physical Review A 56, 4929–4937 (1997).

[16] K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom
optics via the tunneling interaction,” Phys. Rev. A 70, 023606 (2004).

[17] Andrew D. Greentree, Jared H. Cole, A. R. Hamilton, and Lloyd C. L. Hollenberg, “Coherent elec-
tronic transfer in quantum dot systems using adiabatic passage,” Physical Review B 70, 235317 (2004),
arXiv:cond-mat/0407008.

[18] Toshio Ohshima, Artur Ekert, Daniel K. L. Oi, Dagomir Kaslizowski, and L. C. Kwek, “Robust state
transfer and rotation through a spin chain via dark passage,” arXiv e-prints (2007), arXiv:quant-
ph/0702019.

[19] David P. DiVincenzo and IBM, “The Physical Implementation of Quantum Computation,” Fortschritte
der Physik 48, 771–783 (2000), arXiv:quant-ph/0002077.

[20] John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018),
arXiv:1801.00862.

[21] R. Menchon-Enrich, A. Benseny, V. Ahufinger, A. D. Greentree, Th Busch, and J. Mompart, “Spatial
adiabatic passage: A review of recent progress,” Rep. Prog. Phys. 79, 074401 (2016).

[22] C. J. Bradly, M. Rab, A. D. Greentree, and A. M. Martin, “Coherent tunneling via adiabatic passage
in a three-well Bose-Hubbard system,” Physical Review A 85, 053609 (2012), arXiv:1201.6106.

[23] Stefano Longhi, “Coherent transfer by adiabatic passage in two-dimensional lattices,” Annals of Physics
348, 161–175 (2014).

[24] Andrew D. Greentree, Simon J. Devitt, and Lloyd C. L. Hollenberg, “Quantum-information transport
to multiple receivers,” Physical Review A 73, 032319 (2006).

[25] Bing Chen, Wei Fan, Yan Xu, Yan-Dong Peng, and Hui-Yun Zhang, “Multipath adiabatic quantum
state transfer,” Phys. Rev. A 88, 022323 (2013).

[26] Caitlin Batey, Jan Jeske, and Andrew D. Greentree, “Dark State Adiabatic Passage with Branched
Networks and High-Spin Systems: Spin Separation and Entanglement,” Frontiers in ICT 2 (2015),
10.3389/fict.2015.00019.

[27] James R. Morris and Bruce W. Shore, “Reduction of degenerate two-level excitation to independent
two-state systems,” Phys. Rev. A 27, 906–912 (1983).

[28] Chris Godsil, “State transfer on graphs,” Discrete Mathematics Algebraic Graph Theory — A Volume
Dedicated to Gert Sabidussi on the Occasion of His 80th Birthday, 312, 129–147 (2012).

[29] M. Born and V. Fock, “Beweis des Adiabatensatzes,” Z. Physik 51, 165–180 (1928).
[30] Andrew M. Childs, Edward Farhi, and John Preskill, “Robustness of adiabatic quantum computation,”

Phys. Rev. A 65, 012322 (2001).
[31] Kai Xu, Rohan Williams, Seok-Hee Hong, Qing Liu, and Ji Zhang, “Semi-bipartite Graph Visualiza-

tion for Gene Ontology Networks,” in Graph Drawing, Lecture Notes in Computer Science, edited by
David Eppstein and Emden R. Gansner (Springer Berlin Heidelberg, 2010) pp. 244–255.

[32] Osameh Al-Kofahi and Ahmed Kamal, “Network coding-based protection of many-to-one wireless
flows,” Selected Areas in Communications, IEEE Journal on 27, 797–813 (2009).

[33] Andries E. Brouwer and Willem H. Haemers, Spectra of Graphs, Universitext (Springer-Verlag, New
York, 2012).

[34] T. Hensgens, T. Fujita, L. Janssen, Xiao Li, C. J. Van Diepen, C. Reichl, W. Wegscheider,
S. Das Sarma, and L. M. K. Vandersypen, “Quantum simulation of a Fermi–Hubbard model us-
ing a semiconductor quantum dot array,” Nature 548, 70–73 (2017).

[35] E. M. Graefe, H. J. Korsch, and D. Witthaut, “Mean-field dynamics of a Bose-Einstein condensate in a
time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman

http://dx.doi.org/ 10.1103/RevModPhys.79.53
http://dx.doi.org/10.1103/PhysRevLett.109.115302
http://dx.doi.org/10.1103/PhysRevA.91.043402
http://dx.doi.org/ 10.1038/nphys3985
http://dx.doi.org/ 10.1103/PhysRevA.96.013406
http://dx.doi.org/10.1103/PhysRevLett.89.187903
http://dx.doi.org/ 10.1103/PhysRevLett.90.206802
http://arxiv.org/abs/cond-mat/0304272
http://dx.doi.org/10.1080/09500340408232482
http://dx.doi.org/10.1038/nature10319
http://dx.doi.org/ 10.1073/pnas.1319875110
http://arxiv.org/abs/1307.8406
http://dx.doi.org/ 10.1103/PhysRevA.56.4929
http://dx.doi.org/10.1103/PhysRevA.70.023606
http://dx.doi.org/10.1103/PhysRevB.70.235317
http://arxiv.org/abs/cond-mat/0407008
http://arxiv.org/abs/quant-ph/0702019
http://arxiv.org/abs/quant-ph/0702019
http://dx.doi.org/ 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://dx.doi.org/ 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
http://arxiv.org/abs/quant-ph/0002077
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
http://dx.doi.org/10.1088/0034-4885/79/7/074401
http://dx.doi.org/ 10.1103/PhysRevA.85.053609
http://arxiv.org/abs/1201.6106
http://dx.doi.org/10.1016/j.aop.2014.05.020
http://dx.doi.org/10.1016/j.aop.2014.05.020
http://dx.doi.org/10.1103/PhysRevA.73.032319
http://dx.doi.org/10.1103/PhysRevA.88.022323
http://dx.doi.org/ 10.3389/fict.2015.00019
http://dx.doi.org/ 10.3389/fict.2015.00019
http://dx.doi.org/10.1103/PhysRevA.27.906
http://dx.doi.org/10.1016/j.disc.2011.06.032
http://dx.doi.org/10.1016/j.disc.2011.06.032
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/ 10.1103/PhysRevA.65.012322
http://dx.doi.org/ 10.1109/JSAC.2009.090619
http://dx.doi.org/ 10.1038/nature23022


17

adiabatic passage,” Phys. Rev. A 73, 013617 (2006).
[36] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène, “Quantum simulations with ultracold

quantum gases,” Nature Physics 8, 267–276 (2012).
[37] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzurak, R. Ishihara, A. Morello, D. J. Reilly,

L. R. Schreiber, and M. Veldhorst, “Interfacing spin qubits in quantum dots and donors—hot, dense,
and coherent,” npj Quantum Information 3, 34 (2017).

[38] Koen Groenland, “Adiabatic state distribution using anti-ferromagnetic spin systems,” SciPost Physics
6, 011 (2019).

[39] Andrew D. Greentree, Jared H. Cole, A. R. Hamilton, and Lloyd C. L. Hollenberg, “Scaling of
coherent tunneling adiabatic passage in solid-state coherent quantum systems,” in Smart Materials,
Nano-, and Micro-Smart Systems, edited by Jung-Chih Chiao, David N. Jamieson, Lorenzo Faraone,
and Andrew S. Dzurak (Sydney, Australia, 2005) p. 72.

[40] Elliott H. Lieb and Derek W. Robinson, “The finite group velocity of quantum spin systems,” Com-
mun.Math. Phys. 28, 251–257 (1972).

[41] M. Mitzenmacher and E. Upfal, Probability and computing (Cambridge University Press, 2017).
[42] C. R. Johnson R. A. Horn, Matrix Analysis (Cambridge University Press, 1985).

http://dx.doi.org/10.1103/PhysRevA.73.013617
http://dx.doi.org/ 10.1038/nphys2259
http://dx.doi.org/ 10.1038/s41534-017-0038-y
http://dx.doi.org/ 10.21468/SciPostPhys.6.1.011
http://dx.doi.org/ 10.21468/SciPostPhys.6.1.011
http://dx.doi.org/10.1117/12.583193
http://dx.doi.org/10.1117/12.583193
http://dx.doi.org/ 10.1007/BF01645779
http://dx.doi.org/ 10.1007/BF01645779

	 Stimulated Raman adiabatic passage-like protocols for amplitude transfer generalize to many bipartite graphs
	Abstract
	 Contents
	I Introduction
	II Conventional STIRAP
	III Generalizing STIRAP
	IV Applications
	V Examples of viable graphs
	A Adding and removing vertex pairs where one is dangling preserves the nullity
	B Graphs with certain matchings make the protocol work almost surely

	VI Numerics
	VII Conclusion
	VIII Acknowledgments
	A On the eigenvalue gap around 0
	1 Robustness guarantees using the determinant
	2 Interlaced eigenvalues

	B Details of the numerical diagonalization
	 References


