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.e present study undertakes the research problem on the optimization of production of biodiesel as a renewable energy resource
from the transesterification of soybean oil and ethanol. Predictive modelling and surface analysis techniques were applied based
on the artificial neural network search algorithm to correlate the yield of ethyl ester and glycerol and the input parameters. .e
formulated models accurately predicted the yield of the products with a high coefficient of determination. When the reaction time
is low, the ester yield decreases with an increase in temperature and the maximum yield of obtained biodiesel at a very low value of
time of reaction and temperature. Plots based on parametric and sensitivity analysis reveals that the yield of ethyl ester can be
maximized and that of glycerol minimized at an integrated condition with lower ethanol/oil molar ratio, higher temperature value,
higher catalyst concentration value, and longer time of reaction. .e global sensitivity analysis reveals that the catalyst con-
centration and temperature of the reaction influence the yield of ethyl ester the most. In addition, an optimal ethyl ester yield of
95% can be achieved at specific input conditions. Moreover, according to the results of global sensitivity analysis, the catalyst
concentration is found to be most significant for both the glycerol and ethyl ester yield.

1. Introduction

.e environmental impact and the limited availability of the
fossil fuels necessitates the use of alternative sources of
renewable energy. Biodiesel, a biofuel, is one such alternative
source of renewable energy. .e demand for biodiesel has
seen its production increase tenfold in the past decade [1].

Biodiesel can be manufactured through the trans-
esterification of animal fats or vegetable oils. Trans-
esterification is the general name given for the class of
organic reactions, which involve an exchange of alkoxy
moiety between an ester and an alcohol. .e reaction rate of
transesterification can be increased by using a catalyst. .e
reaction can be acidic, basic, or enzymatic relying on the type
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of catalyst employed. .e organic chemical reaction
mechanism during the process of transesterification of
vegetable oils is shown as follows:

H2C-COO-R1

H2C-COO-R2

H2C-COO-R3

R1-COO-R′

R2-COO-R′

R3-COO-R′

CH2-OH

CH2-OH

CH2-OH

Triglyceride Alcohol Fatty acid esters Glycerol

+ 3R′OH
Catalyst

+
(1)

.e mechanism of transesterification reaction involves a
series of three consecutive and reversible reactions yielding
monoglycerides and diglycerides as intermediates [2]:

1. Triglyceride (TG) + R′OH

2. Diglyceride (DG) + R′OH

3. Monoglyceride (MG) + R′OH

Monoglyceride (MG) + R′-COO-R2

Glycerol (MG) + R′-COO-R3

Catalyst

Catalyst

Catalyst

Diglyceride (DG) + R′-COO-R1

(2)

.e manufacturing process of biodiesel is presented in
Figure 1. To understand the effect of parametric variations
and interaction of parameters on the fatty acid ethyl ester
(FAEE) yield, it is essential to model the FAEE output as a
function of the process variables. Using the model, the
process parameters can be optimized to maximize the yield
of FAEE.

A number of studies [3–8] have been carried out in the
literature to model the FAEE output as a function of process
parameters and optimize them to maximize the production
of FAEE. Most of these studies [9–15] used response surface
methodology (RSM) integrated with central composite de-
sign (CCD) of experiments to model the fatty acid ester
output as function of some input parameters such as catalyst
concentration, alcohol/oil molar ratio, temperature value,
agitation rate, and time of reaction, and subsequently op-
timized them to maximize FAEE output. .ese studies
found that RSM predicted the fatty acid ester output for the
data in the given range. .e models formulated based on
RSM cannot be used for prediction in interpolation or
extrapolation cases of data obtained from the processes.
RSM holds statistical assumptions such as the validity of
accuracy only in the given range of samples and normal
distribution of errors and samples. Such assumptions and
problems induce uncertainty in accurate predictive mod-
elling and optimization of processes. Avramovic et al. [16]
compared the ability of RSM and artificial neural network-
genetic algorithm (ANN-GA) to predict the FAEE output for
ethanolysis of sunflower oil and found that the ANN model
gave an accurate prediction of FAEE than the RSMmodel. In
this perspective, an artificial intelligence (AI) method such as
ANN can be an interesting one to explore, which has the
capability to model and optimize the complex multidi-
mensional process based on only the given data [17, 18]. In
the above studies, the studies on production of biodiesel
from edible studies is carried out, but it has been produced
from nonedible sources as well as evidenced in [19–22].

In the current article, the optimization of biodiesel
output from transesterification of soybean oil and ethanol is
studied. Soybean oil produces other valuable by-products,
such as granules, soybean meal and flour, and glycerin.

Predictive modelling and surface analysis were introduced to
explore the ability of the ANN search algorithm to formulate
the relationship of yield of ethyl ester and glycerol as an AI
model of four input parameters (the temperature, the molar
ratio of alcohol/oil, the time of reaction, and the catalyst
concentration)..e ability of themodel to predict the output
is quantified in terms of the coefficient of determination
(R2); a high coefficient of determination correlates to an
accurate prediction of the output in terms of the inputs.
Upon obtaining a reasonably high value of R2, the models are
further used to carry out sensitivity analysis. Finally, the
ethyl ester model is used to optimize the operating condi-
tions to maximize the output of the ethyl ester.

.e layout of the article is as follows. Section 1
presents an overview of the transesterification process
used to produce biodiesel and the studies carried out in
the literature. Section 2 describes and illustrates the re-
search problem undertaken in this study. .e predictive
modelling methodology based on ANN is illustrated in
Section 3. Finally, in Section 4, the results obtained from
the sensitivity analysis of the models are discussed.
Section 4 also describes the optimization of the operating
conditions using the ethyl ester model to maximize the
yield of ethyl ester.

2. Research Problem Undertaken

.e research problem is to optimize the process parameters,
viz., temperature, time of reaction, catalyst concentration,
and molar ratio of alcohol/oil, to maximize the efficiency of
manufacturing of FAEE. To do so, it is essential to model the
FAEE output as a function of the process parameters with
the least degree of uncertainty. Figure 2 illustrates the re-
search problem undertaken in this study. .e ability of the
ANN algorithm to predict the ester output using experi-
mental data from the literature is explored. .e model is
used to conduct sensitivity analysis and study the effect of
interaction of process parameters on FAEE output. Sensi-
tivity analysis yields the parameter strongly influencing the
output. Furthermore, 2D and 3D surface plots are generated
to study the influence of an individual parameter and in-
teraction of parameters, respectively, on the FAEE output.
Finally, the model is used to optimize the process parameters
to maximize the yield of FAEE. Similarly, to model the
response of glycerol as a function of the process parameters,
ANN is used. Here also, a sensitivity analysis is conducted to
find the parameter strongly affecting the glycerol output and
2D and 3D surface plots to study the effect of an individual
parameter and interaction of parameters on glycerol output
is generated. In short, we aim to do the following in the
current study:

(1) Develop a model to accurately predict the FAEE
output as a function of the process parameters. .e
developed model will be used to conduct a sensitivity
analysis and study the effect of an individual pa-
rameter and interaction of parameters on FAEE
output. .is model is further used to optimize the
process parameters to maximize the yield of FAEE.
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(2) Similarly, a model will be developed to accurately
predict the glycerol output as a function of process
parameters and further use this model to conduct a
sensitivity analysis and study the effect of an indi-
vidual parameter and interaction of parameters on
the yield of glycerol.

3. Predictive Modelling Based on ANN

3.1. Introduction of ANN. ANN is one of the most powerful
computation models that simulates the structure and
functions of the human brain. ANN is generally applied to
formulate nonlinear statistic models to study the complex
relationship between various parameters..e basic structure
of ANN is shown in Figure 3. Advantages of this modelling
tool are the ability to handle parallel information processing,
capability of working with incomplete knowledge, and
strong fault tolerance. EEY and glycerol yield are affected by

a variety of interrelated factors and it is difficult to illustrate
their relationships by conventional methods. .erefore,
ANN is highly recommended in this regard. In this study, a
Multilayer Perceptron Neural Network will be applied to
model the data, which is shown in Figure 4.

3.2. Parameter Settings of ANN. Firstly, a set of experimental
data is divided into three different sets comprising of
training, testing, and validation. .e value of seed for
sampling is set to 1000. After training, 10 networks are
retained for two outputs, respectively. Settings of ANN are
shown in Tables 1 and 2.

4. Results and Discussion

4.1.Model for EEY. Figure 5 depicts the distribution of ethyl
ester output obtained from the simulation of the model to
predict EEY as a function of the operating parameters.

Soybean
oil

Ethanol
Catalyst

Transesterification

Biodiesel/
glycerol

separator

Glycerol

Ethanol

Ethanol
recovery

Biodiesel

Drying

Refined
biodiesel

Washing

Water + acid

Figure 1: .e manufacturing process of biodiesel.

Transesterification
process

Ethanol

Soybean
oil

Biodiesel

Glycerol

Input Output

Operating conditions
(Temperature, catalyst 

concentration, time of reaction, 
ethanol/oil molar ratio)

Problems:
(1) Accurate prediction of biodiesel and glycerol yield
(2) Optimum operating conditions to maximize the 

yield of biodiesel

Figure 2: Illustration of the research problem undertaken in this study.
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Figure 5 concludes EEY between -10% and 150% with the
yield following an approximate normal trend.

Furthermore, to understand how variation in the op-
erating conditions affects ethyl ester, the 2D plots are
generated according to the obtained ANN model.
Figure 6(b) shows that the EEY follows a sinusoidal curve as
the catalyst concentration and ultimately attains a constant
value of 93% at 1.2 wt. % catalyst concentration. Figure 6(a)
depicts the monotonic increase in EEY with increase in the
ethanol/oil molar ratio. Figure 6(c) shows that the EEY
approximately follows a cubic curve as the time of reaction is
increased. .e EEY follows a sinusoidal curve as the tem-
perature is increased, as shown in Figure 6(d).

Subsequently, 3D surface plots are generated to study the
influence of interaction of input parameters on EEY. From
Figures 7(a)–7(c), it is clearly visible that the maximum EEY
is obtained for ethanol/oil molar ratios in the range of 10–12
for higher temperature value, higher catalyst concentration
value, and longer reaction time, which is in accordance with
the findings of Fillieres et al. [23]. Figure 7(e) clearly shows

Molar ratio

Time of reaction

Temperatur

Catalyst concentration

Hidden Input layer

Ethyl ester

Output layer

Glycerol

Figure 3: .e principle of ANN.

Output layer

Hidden layer

Input layer

Neuron

Bias

MLP

Figure 4: .e multilayer perceptron neural networks.

Table 1: Settings of ANN for output ethyl ester.

Modelling parameter settings Detail value
Percentage of training dataset 80%
Percentage of test dataset 10%
Percentage of validation dataset 10%
Number of networks to train 300
Number of networks to retain 10
Number of hidden layers 10

Table 2: Settings of ANN for output glycerol.

Modelling parameter settings Detail value
Percentage of training dataset 75%
Percentage of test dataset 15%
Percentage of validation dataset 10%
Number of networks to train 500
Number of networks to retain 10
Number of hidden layers 9
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Figure 5: Ethyl ester distribution from the simulation of the model.
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Figure 6: Continued.
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Time of reaction (min) vs. ethyl esters (%), response graph
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Figure 6: .e dynamic relationship between ethyl ester output and inputs.
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that, for a given value of temperature, the output increases
with increase in catalyst concentration. Figure 7(d) shows
that, for the time of reaction <90min, the output decreases
with increasing catalyst concentration, whereas the opposite
happens when the time of reaction reaches >90min. .e
opposite happens for low reaction times (<40min), i.e., the
output decreases with increase in temperature and the
maximum yield of ethyl ester is obtained at a very low value

of time of reaction and temperature. For a given time of
reaction, the output increases with increase in temperature,
as shown in Figure 7(f ). At low catalyst concentration, an
increase in temperature leads to an increase in EEY.
Moreover, at any given catalyst concentration, the EEY
increases with a linear increase in temperature. .e above
observations are in accordance with those made in [6–18].
Finally, the optimization of the model is carried out using a

Iterations, simplex search (target = highest)
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simplex approach to maximize the yield of ethyl ester. .e
pareto front (Figure 8) reveals that a maximum EEY of 95%
was obtained when the value of temperature is 39.6°C, the
value of catalyst concentration is 1.35 wt.%, the time of
reaction is 81min, and the ratio of alcohol/oil molar is 10 :1.

4.2. Model for Glycerol Yield. As in the case of ethyl ester,
Figure 9 shows a distribution of the glycerol yield between
−7% to 16%. 2D plots are shown to observe the effect of
variation in operating condition on the glycerol yield. From
Figure 10(a), we can clearly see that the output follows an
inverted parabolic profile with increase in the molar ratio.
.e output follows a sinusoidal curve first and then declines
linearly with the value of catalyst concentration increase, as
shown in Figure 10(b). Figure 10(c) depicts the sinusoidal
curve of the output with increase in time of reaction. And the
output monotonically decreases with increase in tempera-
ture, as shown in Figure 10(d).

Furthermore, the 3D surface plots are generated to in-
vestigate the influence of interaction of experimental input
parameters on the output. According to Figures 11(a), 11(d),

and 11(e), maximum glycerol yield is obtained with high
ethanol/oil molar ratios and low time of reaction, catalyst
concentration, and temperature. Figures 11(b) and 11(c)
show that the glycerol yield is maximum for low catalyst
concentration at a short time of reaction and at a low
temperature. Figure 11(f) depicts the increase in glycerol
yield with increase in temperature at high time of reaction.
Combining the results presented in Figure 11, EEY is
maximum and that of glycerol is minimum for the lower
molar ratio of ethanol/oil and longer reaction time and high
catalyst concentration value, as well as high temperature
value.

4.3. Sensitivity Analysis of Formulated Models. Global sen-
sitivity analysis was performed to see the relative significance
of the parameters for the yield of ethyl and glycerol based on
the optimal ANN model. From Figure 12, the catalyst
concentration (64%) is the most significant factor for
glycerol yield. Temperature (21%) has relatively higher
impact on ethyl esters, and third is the molar ratio (17%).
Time of reaction has less contribution compared to the other
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Figure 11: Continued.
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parameters. .e contributions to glycerol are quite different
except for catalyst concentration (64%), which also has most
crucial contribution to ethyl esters. .e molar ratio and the

time of reaction contributes 15% and 15%, respectively. .e
least important factor is temperature, contributing 6% to
glycerol.
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Figure 11: 3D dynamic relationships between every two inputs’ parameters and glycerol yield output.
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5. Conclusions

In this study, an ANN search algorithm coupled with surface
response optimization techniques was used to investigate the
optimal production condition as well as the efficiency of
produced biodiesel. .e main conclusions are as follows:

(1) .e formulatedmodels accurately predicted the yield
of the products with a high coefficient of determi-
nation (R2 � 0.99)

(2) When the value of ethanol/oil was between 10 and
12, the maximum efficiency of ethyl ester can be
obtained

(3) Among the input operation conditions, catalyst
concentration (64%) is found to be the most sig-
nificant for both the glycerol and EEYs

(4) .e yield of ethyl ester can be maximized and that of
glycerol can be minimized at the lower molar ratio of
ethanol/oil, higher temperature, longer time of re-
action, and higher catalyst concentration

(5) A maximum EEY of 95% was obtained when the
value of temperature is 39.6°C, the value of catalyst
concentration is 1.35 wt.%, the time of reaction is
81min, and the ratio of alcohol/oil molar is 10 :1

.e current study can be extended to study the influence
of additional parameters such as agitation speed of the
stirrer, type of catalyst used, the type of alcohol used, and the
type of vegetable oil used.
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