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We present a detailed study of the kinetic cluster growth process during gelation of weakly attractive
colloidal particles by means of experiments on critical Casimir attractive colloidal systems, simulations, and
analytical theory. In the experiments and simulations, we follow the mean coordination number of the particles
during the growth of clusters to identify an attractive-strength independent cluster evolution as a function of
mean coordination number. We relate this cluster evolution to the kinetic attachment and detachment rates
of particles and particle clusters. We find that single-particle detachment dominates in the relevant weak
attractive-strength regime, while association rates are almost independent of the cluster size. Using the limit
of single-particle dissociation and size-independent association rates, we solve the master kinetic equation of
cluster growth analytically to predict power-law cluster mass distributions with exponents −3/2 and −5/2 before
and after gelation, respectively, which are consistent with the experimental and simulation data. These results
suggest that the observed critical Casimir-induced gelation is a second-order nonequilibrium phase transition
(with broken detailed balance). Consistent with this scenario, the size of the largest cluster is observed to
diverge with power-law exponent according to three-dimensional percolation on approaching the critical mean
coordination number.

DOI: 10.1103/PhysRevE.102.022602

I. INTRODUCTION

Under sufficient attraction, suspensions of colloidal parti-
cles undergo a transition from a sol of individual particles to a
gel state, where particles aggregate across the system leading
to system-spanning rigidity [1–7]. This transition, imparting
solidlike properties to colloidal suspensions at low particle
volume fraction, plays an important role in applications such
as consumer products, food technology, and the processing of
polymers. It also plays an important role in the fundamental
understanding of dynamical arrest in systems of low particle
concentrations, in which a rigid structure arises due to particle
attractions larger than several kBT that drive the system out of
equilibrium [1,8]. This process has been well studied in the
limit of strong attraction and vanishingly low particle volume
fraction [9–11], where particles stick as soon as they collide,
leading to diffusion-limited particle aggregation with a robust
fractal dimension. In the regime of weak attractions where
particles continually detach and restructure, the situation is
less clear.

In this regime, system-spanning arrested structures can still
form if the particle attractions are larger than some volume-
fraction-dependent threshold [1,2]. Colloidal systems with
tunable interactions, in particular colloidal depletion systems,
have been used to obtain basic insight into this gelation
process and to map the phase boundaries of this transition as
a function of volume fraction and particle interaction strength
[1,2,4–7,12,13]. The transition has been studied from various
points of view, including dynamic arrest [2,3], phase sep-
aration [14], cluster-glass [15], and spinodal decomposition
[2,3,16,17]. As a function of the particle attractive strength,
structures have been observed to change topology, becoming
more compact for lower attraction due to particle rearrange-
ment. Such particle rearrangement has been recently studied
by direct particle tracking experiments on colloidal gels [18].
As a consequence of the rearrangement, the structures be-
come more compact and exhibit increasing fractal dimension
[19,20]. The resulting morphologies have important applica-
tions in product design such as cosmetics and foods, where
the structure and associated rheological properties determine
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product stability and consumer perception. Indeed, for the
design of such products, it is important to understand and
ultimately control the relation between attractive strength and
resulting gel structure.

However, neither the onset of a space-spanning structure
on a certain attractive strength nor the attractive-strength-
dependent final structures are fully understood. This is the
case both for physical gels, where the constituent units are
colloidal particles, and chemical gels, where the constituent
particles are molecules. Because interaction energies are
larger than several kBT , these structures form in an out-of-
equilibrium process: Detailed balance is typically broken as
detachment and attachment rates of particles and particle clus-
ters do no longer balance. A full understanding of the cluster
evolution and resulting structure thus need to take into account
the full kinetic growth process of attachment and break-up of
particles and particle clusters. As this is an excessive task that
is no longer analytically manageable, physically meaningful
choices need to be made for simplifying approximations that
in turn can be checked against experimental and simulation
results. Experimentally, colloidal gels have been mostly in-
vestigated using colloidal depletion systems that allow for
good realization of a tunable colloidal attraction yet typically
involve phase separation of the colloids and depletant into
colloid-rich, depletant-poor and colloid-poor, depletant-rich
phases. Another complication arises due to the unavoidable
effect of gravity that, despite the use of closely density-
matched model systems, is known to eventually lead to sed-
imentation of large clusters altering their growth process.
It is therefore important to compare both experiments and
simulations with master kinetic equation results to identify
the underlying generic process and distinguish generic from
gravity-related effects.

Here we combine experiments with simulations and kinetic
master equation modeling to elucidate the out-of-equilibrium
process in the gelation of short-range, weakly attractive parti-
cles. We directly follow the gelation process for colloidal par-
ticles interacting with temperature-dependent critical Casimir
forces that provide an effective particle attraction set by the
solvent correlation length. These experiments are compared
with simulations based on Langevin dynamics of spheres with
short-ranged interactions that allow detailed insight into the
underlying kinetic processes of cluster attachment and de-
tachment as a function of cluster size and attractive potential.
The master kinetic equation of cluster growth is then solved
analytically for the case of single particle detachment, and
constant, cluster-size independent attachment. Under these
approximations, the model predicts cluster mass distributions
with power laws of −3/2 and −5/2, respectively, before and
after gelation, which are confirmed in both experiments and
simulations over the investigated range of (weak) attractive
strength. These power-law distributions suggest that the ob-
served gelation is the result of a continuous nonequilibrium
phase transition. Indeed, we find both in experiments and
simulations that the cluster size and correlation length diverge
as a function of a single governing parameter, the mean
coordination number, with an exponent according to three-
dimensional (3D) percolation.

II. EXPERIMENTAL METHOD

A. Critical Casimir colloidal system

We study gelation in systems of colloidal particles interact-
ing with critical Casimir forces. The attractive critical Casimir
forces between the particles arise in a binary solvent close to
its critical point from the confinement of solvent fluctuations
between the particle surfaces [21,22]. The strength of the
interaction is controlled by the solvent correlation length,
which adjusts with temperature in a reversible and universal
way [22–25]. Thus, temperature provides a unique control
parameter to tune the strength and range of the attraction and
has been used previously to induce equilibrium gas-liquid-
solid phase transitions in the colloidal system [26–28], as well
as quench the system into well-defined out-of-equilibrium
states [19,20]. We here focus on the out-of-equilibrium case
achieved for higher critical Casimir attraction, i.e., smaller
�T , for which equilibrium phases are not observed, and the
system arrests in a gel. The colloids are fluorescently labeled
copolymer particles made of 2,2,2-trifluoroethyl methacrylate
[29] with radius r0 = 1 μm and a polydispersity of 5%. The
particles are suspended at a volume fraction φ ∼ 0.12 in a
binary mixture of lutidine and water, with weight fraction
of lutidine cL = 0.25. Sugar was added to match the solvent
refractive index and density with that of the particles, while
only slightly affecting the binary solvent phase diagram.
We also added salt (5 mM KCl) to screen the electrostatic
repulsion of the charge-stabilized particles, as in previous
studies [19,25]. The Brownian diffusion time based on the
estimated viscosity of η = 13.2 mPa s is tB = 9.9 s, in which
the particle diffuses its own radius. Phase separation of this
solvent occurs at Tc = 31.0 ◦C, with a critical composition
of cc = 0.26 as determined by systematic investigation of
the solvent phase diagram over a range of compositions. To
study the out-of-equilibrium gelation process, we heat the sus-
pension to �T = Tc − T � 1.2 ◦C below Tc. We jump from
room temperature to �T = 1.2, 1, 0.7, and 0.5 ◦C, increasing
the attractive strength with each new experiment, and follow
the subsequent aggregation process at the particle scale by
confocal microscopy.

B. Microscopic observation of gelation

We use a fast laser scanning confocal microscope (Zeiss
LSM 5 Live, line scanning system) equipped with a 63×
lens with a numerical aperture of 1.4 to image individual
colloidal particles in a 108 × 108 × 60 μm volume. Three-
dimensional image stacks with a distance of 0.2 μm between
images are acquired every 60 s over a time interval of at least
60 min to follow the gelation process in three dimensions from
the initial cluster formation to gelation and beyond. During
this process, the temperature is kept strictly constant by using
a specially designed water heating setup that controls the
temperature of both the sample and the coupled oil-immersion
objective with a stability of ∼0.01 ◦C. Particle positions are
determined from the three-dimensional image stacks with
an iterative tracking algorithm to optimize feature finding
and particle locating accuracy [30]. The resulting particle
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FIG. 1. Particle locating accuracy. Histograms of deviations of
particle positions from the determined average position in the x, y,
and z directions.

positions have an accuracy of ∼20 nm in the horizontal and
∼40 nm in the vertical direction. To show this, we used several
layers of particles stuck to a cover slip, which we imaged
and located repeatedly to determine histograms of particle
positions, see Fig. 1. From this, we determine the positional
variances σx = 15 nm, σy = 20 nm, and σz = 40 nm. From the
determined particle positions, bonded particles are identified
as those separated by less than d0 = 2.6r, corresponding
to the first minimum of the pair correlation function. We
subsequently group bonded particles into connected clusters
using a clustering algorithm based on a threshold distance of
dc = 3.5r.

III. SIMULATION METHOD

Our simulation computes the dynamics of N = O(104)
spherical particles according to the Langevin equation

m
dv

dt
= −m

ζ
v − dU

dr
+ fB(t ), (1)

for particles of mass m, velocity v, and coefficient of fric-
tion 1/ζ , interacting with a background fluid that is implic-
itly modelled by random Brownian forces fB(t ) satisfying
〈 fB(t ) fB(t ′)〉 = 2mkBT δ(t − t ′)/ζ . Particles with centers sep-
arated by a distance r interact through a truncated and shifted
Mie potential with the general form

U (r) = Cε

{(χ

r

)γα −
(χ

r

)γβ −
[(

χ

rc

)γα

−
(

χ

rc

)γβ
]}

,

(2)
where C is given by

C =
(

γα

γα − γβ

)(
γα

γβ

)(
γβ

γα−γβ
)

, (3)

ε is a prefactor that sets the energy scale, and rc is the spatial
cutoff beyond which the interaction is not computed. To give
an attractive range comparable to that arising in the exper-
iment due to Casimir forces, we set γα = 30 and γβ = 20.
This gives an attractive range of (31/14)0.1χa ≈ 0.08χa, that
is, the distance from the zero crossing of the potential to its
inflection point. The potential effectively acts as a steepened
Lennard-Jones potential, see Fig. 2(a).

We consider an equal mixture by number of particles
with size ratio χa/χb = 1 : 1.1 to simultaneously approxi-
mate the polydispersity of the experimental system and to
avoid crystallization [31]. As such, three potential neighbor
permutations arise, for which χ takes values of χa, χb, and
1
2 (χa + χb). The domain has total volume V (in 3D) such that
the volume fraction of particles φ approximates that in the

FIG. 2. Numerical simulations of colloidal gelation. (a) Compar-
ison between the 30-20 Mie potential and the square-well potential
used in this work with a conventional Lennard Jones (12-6) potential.
[(b)–(d)] Simulation snapshots near the steady state at ε/kBT =
2, 2.4, and 2.8. Color gradient from blue to yellow indicates y
coordinate of each particle from 0 to system size.

experimental system, that is,

φ = N

2

π

6

(
χ3

a + χ3
b

)/
V

= 0.12.
(4)

To check the generality of the results, we also simulate volume
fractions φ = 6 and 16%. Periodic boundaries are used in x,
y, and z.

We operate with Lennard-Jones units throughout, setting
kBT as the energy scale, χa as the length scale, and letting
m = 4

3π ( χa

2 )3ρ with ρ the density scale. The time unit is
thus ts = √

mχ2
a /ε, and we set ζ = ts and use dt = 0.0025ts

as the numerical time step. The simulation is implemented
in LAMMPS [32]. Similarly to the experiments, we vary the
attractive strength, ε/kBT , where ε is the prefactor of the
potential and kBT is the thermal energy. We find that this has
a dominant influence on the state of the system near steady
state, as shown in Figs. 2(b)–2(d), where we present snapshots
of the system at three values of ε/kBT .

To test the generality of the results predicted computation-
ally, we additionally performed simulations on particles with
an approximated square-well potential. We adopt the “contin-
uous square-well” model described by Ref. [33], writing the
potential as

Ucsw(r) = 1

2
ε

[(
1

r

)n

+ 1 − e−m(r−1)(r−w)

1 + e−m(r−1)(r−w)
− 1

]
, (5)

using a binary form for the width of the well w (potential
range) to match our χa/χb ratio as described for the Mie
potential. The dimensionless well steepnesses m and n are set
as 7000 and 700, respectively, leading to a second virial coef-
ficient that matches that of the Mie potential at ε/kBT = 3.

022602-3



JOEP ROUWHORST et al. PHYSICAL REVIEW E 102, 022602 (2020)

FIG. 3. Rate constants for dissociation and association. Sketches
in (a) and (b) illustrate examples of dissociation events associated
with rate constant K−

i j for i = 4, j = 6 (a) and i = 1, j = 9 (b). In our
kinetic model, K−

i j is set to zero if i, j �= 1. Panels (c) and (d) show
examples of association events K+

i j for i = 4, j = 6 (c) and i = 1, j =
9 (d). In the model, K+

i j is set to be independent of i and j. Simulation
data support these assumptions for K−

i j and K+
i j .

Systems are first equilibrated in the liquid state by setting
ε/kBT = 1 and allowing the particle trajectories to evolve for
O(105) time units. We then switch ε/kBT to larger values,
in practice keeping kBT = 1 and varying ε. The rate of the
time evolution following this change is set by ζ . We find
that percolation is absent at long subsequent times when
ε/kBT � 2.5.

A. Calculation of rate constants

To calculate association and dissociation rates, we first
define directly contacting particles as those whose centers lie
within the inflection point of the potential (where ∂2U

∂r2 = 0),
which for the values of γα and γβ in this case occurs at
(31/14)0.1χa. Based on these criteria, we define a particle as
belonging to a cluster if there exists a continuous series of
direct contacts between that particle and all other particles
in the cluster. Outputting the particle coordinates with very
fine time resolution then allows us to monitor the temporal
evolution of cluster sizes throughout the system as successive
dissociation and association events occur and thus to compute
the rate constants K+/−

i j in the kinetic master equation, see
below. Here K+

i j means the association rate of clusters that
have, respectively, i and j particles, while K−

i j indicates the
split-up or dissociation rate of a larger cluster into clusters
of i and j particles. Some examples of such dissociation and
association events are illustrated in Fig. 3. We determine the
rate of dissociation events involving clusters of size 4, for
example, by averaging dissociation rate K−

4 j over j. As a result,
we find that the rate of dissociation events depicted in Fig. 3(a)
is considerably smaller than that of events as depicted in
Fig. 3(b), where a single particle detaches from a cluster,
while the rates of association events depicted in Figs. 3(c) and
3(d) are comparable.

IV. CLUSTER KINETIC MODEL

The starting point of our theoretical model is a master ki-
netic equation for the time evolution of the cluster population

ck which denotes the number of clusters with k particles per
unit volume, starting with a sol of isolated colloidal particles
at t = 0:

dck

dt
= 1

2

∑
i+ j=k

K+
i j cic j − ck

∑
j�1

K+
k jc j

+
∑
j�1

K−
k jc j+k − ck

∑
i+ j=k

K−
i j . (6)

In this master equation, the first term on the right-hand
side represents the creation of clusters with k units due to
aggregation of one cluster with i units with another with
j units (where i + j = k); the second term represents the
“annihilation” of clusters with k units due to aggregation of
a cluster with k units with a cluster of any other size in the
system; the third term represents “creation” of a cluster with
k units due to the breakage of a larger cluster which splits
into a cluster with k units and another of j units, where j can
take any value; the fourth term represents “annihilation” of a
cluster with k units due to fragmentation into two fragments
i and j, subjected to mass balance. There is a set of k such
differential equations for each cluster size, thus forming a
system of ordinary differential equations that has to be solved
in order to obtain the cluster mass distribution as a function
of time. The rate coefficients K+

i j represent the aggregation
rates between two clusters i and j, whereas terms of the type
K−

i j represent the fragmentation rates of a cluster i + j into
two fragments i and j. Here fragmentation is due solely to
thermally activated breaking of bonds across the aggregate.

The above master equation in its most general form can
only be solved numerically. However, analytical solutions are
possible for certain models. Based on physical intuition, in
colloidal aggregation particles that are on the surface of the
cluster can more easily detach by thermal motion, since they
are bonded to a smaller number of other particles beneath,
whereas particles in the inner part of the cluster have many
more connections and therefore those bonds are much more
difficult to break by thermal energy.

This consideration motivates us to consider the follow-
ing schematic model of aggregation relying on two basic
assumptions: (i) Aggregation takes place between any two
clusters of arbitrary size, with a rate constant K+

i j independent
of cluster size, and (ii) dissociation involves detaching of
dangling particles only (onefold coordinated). In other words,
breakup events leading to two fragments, each of them larger
than one particle, are excluded. Under these assumptions, the
rate coefficients are given by:

K+
i j = const, ∀ i, j

K−
i j = λK+

i j , if i = 1, or j = 1

K−
i j = 0, if i �= 1, or j �= 1. (7)

Clearly, the last condition breaks the detailed balance:
There is no linear dependence between aggregation and frag-
mentation rates for all processes involving i and j both larger
than unity, or, in other words, these aggregation processes are
irreversible. The basic implication of this condition is that any
stationary state (for which cluster mass distribution reaches a
steady state in time) is a nonequilibrium stationary state. In
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turn, a transition from one such nonequilibrium steady state
to another nonequilibrium state is a nonequilibrium phase
transition.

On using Eq. (7) in Eq. (6) and introducing the generating
function (a procedure similar to a discrete Laplace transfor-
mation) C(z, t ) = ∑

j�1(z j − 1)c j (t ), where z is a dummy
variable as usually defined in generating functions, the system
of ordinary differential equations is reduced to the following
Riccati equation:

dC

dt
= C2 + 2λ

1 − z

z
C + 2λ

(1 − z)2

z
N (t ), (8)

where N (t ) = ∑
j�1 c j (t ) and we took K+

i j = 2 for ease of
notation and without any loss of generality [34,35]. At steady
state, dC/dt = 0 or t → ∞, the second-order algebraic equa-
tion is solvable, and differentiating C with respect to z and
setting z = 1 gives N as a function of λ. A continuous phase
transition at the critical point λc = 1 is found, which separates
the sol state with N = 1 − (2λ)−1 from the gel (spanning
network) state with N = λ/2.

This is best seen by looking at the cluster mass distribution
(CMD). By expanding C(z) in powers of z one obtains the
cluster mass distribution in the sol phase and in the gel phase.
In the precritical sol phase, the power law is accompanied by
an exponential cutoff [34,35],

ck (t → ∞) ∼ k−3/2e−k/kc . (9)

The presence of the exponential cutoff implies that all clusters
are finite in size. However, the cut-off size kc diverges at λ →
1+, according to [34,35]

kc = {2 log (λ/λc) − log [2(λ/λc) − 1]}−1. (10)

In the gel phase λ � 1, the steady-state cluster mass
distribution is

ck (t → ∞) ∼ k−5/2, (11)

now without an exponential tail, which signals the existence
of a giant system-spanning cluster via the divergence of the
first-moment of the distribution.

Hence, this model predicts gelation as a continuous
(second-order) phase transition, with a cluster-mass distribu-
tion that exhibits two distinct power-law exponents, namely
τ = −3/2, with an exponential tail, in the sol phase, and
τ = −5/2, without the exponential tail, in the gel phase.

Furthermore, we can link the breakage rate with the attrac-
tion energy. For a purely attractive potential well, the breakup
rate K−

i j is given by the Kramers escape rate of the individual
particle detaching from the cluster. The precise shape of the
potential in the experimental system is not known, but we can
still get an order of magnitude estimate for a simple square-
well attraction, K−

i j = (D/δ2)e−ε/kBT , where D is the diffusion
coefficient of one particle, δ is the range of attraction, and ε

is the interaction potential [36]. Together with the condition
λc = 1, in units of c0, and with the assumption that the
aggregation rate is diffusion limited, K+

i j = (8/3)kBT/μ, with
μ the solvent viscosity, this leads to a rough estimate for the
critical attraction energy [36]

−εc/kBT ∼ log[12(δ/a)2φ0], (12)

where φ0 = (4/3)πa3c0 is the solid volume fraction. This
equation provides an order of magnitude estimate of the

minimum attraction energy between two colloidal particles
to have gelation in steady state. For example, at a volume
fraction at φ0 = 0.12 and δ/a = 0.08, this formula gives εc �
4.7kBT . This value is in the same order of magnitude (and
within a factor 2) of the value εc ∼ 2.5kBT determined in
simulations.

Assuming that the scaling hypothesis holds, i.e., that the
various quantities are power-law functions of the distance
from the critical point, as is expected for continuous phase
transitions (even though this cannot be rigorously proven
because a suitable free energy cannot be defined in this case),
the hyperscaling relation of critical phenomena [37] is then
also expected to hold: τ = (d/d f ) + 1. Here τ is the power-
law exponent of the CMD at the critical point, d f is the
fractal dimension of the system (hence of the clusters forming
the gel), and the spatial dimension d = 3. Using the critical
exponent τ = 5/2 gives the prediction d f = 2.0 for the fractal
dimension, also to be verified below in comparison with ex-
periments and simulations. One should note that this estimate
does not account for ageing phenomena due to restructuring
of the clusters into denser aggregates which typically leads d f

to increase at low attractive strength [19,20].
The above model predictions for τ and d f can now be

tested experimentally on a well-controlled system. We note
that the hypothesis in Eq. (7) that only individual particles
(on the surface of the clusters) break off, leading to breaking
of detailed balance, presents a limit. We will see in the
numerical simulations that the detachment of larger clusters
is simply much less likely than that of single particles but not
impossible; we thus argue that while this assumption presents
a limit, it is a reasonable approximation.

V. RESULTS

A. Cluster growth and bond evolution

We follow the growth of particle clusters in experiments
under well-defined critical Casimir attractions, which we in-
duce by heating the suspension to well-defined temperatures
�T below Tc. Reconstructions show the time evolution of
the colloidal system at �T = 0.5 K in Figs. 4(a) and 4(b).
Particle color indicates the local coordination number, i.e.,
the number of bonded neighbors of a particle. Initially, par-
ticles exhibit no or only very few bonded neighbors, while
at later stages, as clusters grow and the particles become
increasingly connected, the number of bonds increases. To
quantify this change of bonding configuration, we plot the
relative frequency as a function of number of bonds Nb in
Fig. 4(c). Initially, low-bonded configurations are most promi-
nent, indicating prevalence of monomers and small clusters.
As clusters grow, the bond probability distribution shifts to the
right, where it eventually saturates. Results for �T = 1.2 K
corresponding to significantly lower attractive strength are
shown in Figs. 4(d)–4(f). In this case, the particles no longer
reach a space-spanning structure as shown by the absence
of a networklike structure in the late-stage reconstruction in
Fig. 4(e): Particles are more distributed over space, leading
to disconnected clusters and nonbonded or single-bonded
particles. This is reflected in the probability distributions of
bonds shown in Fig. 4(f) that are shifted to the left with respect
to those in Fig. 4(c). The data shows a trend toward lower Nb,
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FIG. 4. Observation of gelation in experiments and simulations. [(a)–(f)] Reconstructions and bond histograms of aggregating colloidal
particles in experiments at �T = 0.5 K [(a)–(c)] and �T = 1.2 K [(d)–(f)]. Particle color indicates the number of bonded neighbors, see color
bar. [(c) and (f)] Bond histograms for �T = 0.5 K (c) and 1.2 K (f). Color indicates aggregation time in minutes (see legend). With time,
distributions shift toward higher number of bonds, indicating increasingly connected structures. The aggregation time interval of t = 50 min
corresponds to ∼300tB. [(g)–(l)] Snapshots and bond histograms of colloidal aggregation in simulations at ε = 4kBT [(g)–(i)] and 2kBT
[(j)–(l)]. Time is given in units of ts, indicated in color in (i) and (l), see legend. Similar trends as in the experiments are observed in the
aggregate topology and bond distributions.

which remains low over time, indicating fewer bonds and less
well-connected particles.

Similar change of topology and bond configuration is ob-
served in the simulations performed at the different attractive
strength. Reconstructions show the growing aggregates at
ε = 4kBT in Figs. 4(g) and 4(h), where again the number
of bonds per particle is indicated with color. Similarly to
experiments, the distribution of bonds shift to the right as
clusters grow [Fig. 4(i)], reflecting an increasing fraction
of bulk particles that sit deeper in the structure. At lower
attractive strength, ε = 2kBT , space-spanning structures no
longer form, as shown by the reconstructions in Figs. 4(j) and
4(k), in qualitative agreement with experiments.

B. Coordination number

To investigate the emergence of space-spanning structures
as a function of the growing number of bonds, we define

the mean coordination number, 〈Z〉 = (1/N )
∑N

i=1 Nb,i, where
Nb,i is the number of bonds of particle i, and N is the number
of particles. The coordination number increases monotoni-
cally as structures grow as shown in Fig. 5, rising to a unique,
attractive-strength-dependent value, where it saturates. This
growth of the mean coordination number reflects the emer-
gence of increasingly connected clusters spanning increasing
portions of space, as illustrated by the reconstructions in
Fig. 4. The same trend is observed in the simulations based on
the square-well potential, as shown in the inset of Fig. 6(a).
We plot the fraction of particles in the largest cluster as
a function of time for the different attractive strengths in
Fig. 5(b). At sufficiently large attractive strength, this fraction
grows sharply until the largest cluster has absorbed almost
all particles. The rate of growth depends on the attractive
strength: Higher (lower) attraction leads to faster (slower)
growth. This is true for both the Mie potential as well as the
square-well potential simulations, showing that this behavior
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FIG. 5. Evolution of the cluster size and mean coordination number in simulations [(a)–(c)] and experiments [(d)–(f)]. (a) Mean
coordination number as a function of time in simulations (main panel: Mie potential, inset: square-well potential). (b) Fraction of particles
in the largest cluster as a function of time in simulations (full symbols: Mie potential, faint symbols: square-well potential). (c) Fraction of
particles in the largest cluster as a function of mean coordination number. [(d)–(f)] Mean coordination number and fraction of particles in the
largest cluster in experiments.

is robust. At the lowest attraction, the largest cluster no longer
absorbs a major fraction of particles and its size remains rather
limited. Indeed, the real-space reconstructions show that, in
this case, clusters no longer span the field of view, in contrast
to the situation at larger attraction.

Remarkably, when we plot the size of the largest cluster
as a function of mean coordination number, we find that all
Mie potential curves collapse onto a single master curve, indi-
cating a common underlying mechanism of growth, character-
ized by a single parameter, the mean coordination number, see
Fig. 5(c). We hence consider the mean coordination number
as the order parameter of the growth and gelation transition
process, which is justified in view of the linear relation
between 〈Z〉 and the shear modulus G [38], with the latter
being identically zero in the sol phase and nonzero (positive)
in the gel phase. The square-well potential data shows the very
same trend, albeit slightly shifted, due to the slightly modified
definition of nearest neighbors for this different form of the
potential. We will see below that this will not change the
overall scaling, which turns out to be identical. Interestingly,
while the different attractive strengths follow the same master
curve, data for the lowest attractive strength remain limited to
the lowest part of the curve, as the mean coordination number
saturates at its attractive-strength-dependent value [Fig. 5(a)].

Similar behavior is observed in the experiments. The
mean coordination number as a function of time shows a

similar attractive-strength-dependent growth and saturation
[Fig. 5(d)], while the fraction of particles in the largest cluster
shows a similar rapid increase [Fig. 5(e)]. Specifically, the
largest cluster again absorbs almost all particles, given suf-
ficient attractive strength. For the lowest attraction in exper-
iments (�T = 1.2 K), the system does not gel yet and the
largest cluster remains very small. For all higher attractions,
the system gels, and the data shows divergence of the largest
cluster. This is shown by plotting the size of the largest cluster
as a function of mean coordination number in Fig. 5(f), where
the data for the two highest attractive strengths (�T = 0.5 and
0.7 K) overlap; for the next weakest attraction (�T = 1.0 K),
the gel is just marginally stable and is most affected by gravity,
leading to some deviation at later stages (yellow stars), due
to sedimentation of the largest cluster, as confirmed by direct
observation of the cluster in the confocal microscope. At
the weakest attraction (�T = 1.2 K, violet lying triangle),
the data still fall on top of the Master curve but no longer
curve up as the clusters remain small and the system does not
gel. Nevertheless, the data show good collapse (besides the
discrepancies caused by gravity) also in the experiments, and
these data collapse supports a common mechanism of growth,
governed by the mean coordination number.

To investigate the occurrence of gelation as a function
of attraction in more detail, we plot the mean coordination
number 〈Z〉 (i.e., the saturation value that 〈Z〉 approaches at
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FIG. 6. Late-stage saturation value of the mean coordination
number as a function of attractive strength in simulations (a) and as
a function of temperature difference �T in experiments (b). The two
data sets in (a) indicate Mie potential (yellow dots) and square-well
potential simulations (gray squares). Inset shows the approach of
the critical mean coordination number as a function of attractive
strength difference to the critical attraction εc when approaching εc

from below. Critical scaling with exponent ∼1/6 is observed.

long times) as a function of attractive strength in Fig. 6. The
steady-state mean coordination number increases monotoni-
cally with attraction, most strongly between 2 and 4kBT , after
which it approaches a value above 6, slightly higher than
the isostatic hard-sphere value (2d = 6) [38]. We find that
system-spanning clusters occur at attractive strength larger
than εc ∼ 2.5kBT (vertical dashed line), with a critical mean
coordination number of Zc ∼ 3. Both simulation data show
very similar behavior (with slightly different values of 〈Z〉,
due to the different potential form). Furthermore, the onset
of gelation on approaching this critical mean coordination
number is identical: We plot the coordination number differ-
ence, Zc − 〈Z〉 as a function of attractive strength difference
on approaching εc from below, εc − ε, in Fig. 6(a) inset.
Both data sets suggest a power-law approach of the critical

coordination number according to Zc − 〈Z〉 ∝ (εc − ε)α , with
exponent α ∼ 1/6.

Qualitatively, a similar plot of mean coordination number
versus attraction is observed in experiments. However, in
the experiments, the late stages are affected by gravity. We
therefore chose values of 〈Z〉 for an intermediate stage at
which the coordination number has reached close saturation,
but gravitational disturbances are still small. The resulting
mean coordination number as a function of the parameter �T
controlling the attraction is shown in Fig. 6(b). The data show
a qualitatively similar increase of 〈Z〉 as in the simulations,
which is also in qualitative agreement with data on colloid-
polymer mixtures presented in [18]. A full quantitative rela-
tion would require detailed elaboration of the critical Casimir
force as in Ref. [25], and a gravity-free environment, which is
not within reach of this study.

C. Association and dissociation rates

The evolution of the mean coordination number is the
result of dynamic association and dissociation processes gov-
erning the nonequilibrium growth of the structure: Their bal-
ance determines the kinetic pathway of growth of the clusters.
To obtain insight into the kinetics of attachment and break-up
processes, we determine association and dissociation rates in
the simulations (see simulation section) and plot them as a
function of attractive strength ε in Fig. 7. We show data for
the association and dissociation of clusters consisting of one,
two, and three particles. While the association rate does not
show a strong dependence on the cluster size, the dissociation
rate depends systematically on cluster size: It decreases with
ε roughly in an exponential manner as is expected for simple
Arrhenius behavior, while the exponent reflects the number of
broken bonds, leading to steeper exponential decay for larger
clusters, in agreement with the experimental observations in
Ref. [18]. This is most clearly seen in the inset: While the
dissociation rate decreases with cluster size (bottom data),
the association rate is not so much affected by it (top data).
This observation motivates us to assume a limit in which the
cluster kinetic model can be solved analytically. In this limit,
we assume that only single-particle detachment occurs, and
the association rate is independent of the cluster size.

D. Cluster kinetic modeling and
nonequilibrium phase transition

We can now model the time evolution of clusters based on
the full kinetic growth equation Eq. (6) describing the joining
and splitting up of clusters. In order to do this analytically, we
solve the system of coupled differential equations under the
simplifying assumptions [Eq. (7)] that the association rate is
constant (independent of the cluster size), and the dissociation
is governed by single-particle detachment alone, neglecting
detachment of any larger clusters consisting of two or more
particles. In this case, the model predicts power-law cluster
mass distributions with exponents −3/2 before percolation,
and −5/2 thereafter. To compare with simulations and ex-
periments, we plot cluster-mass distributions before and after
percolation for the different attractive strength in Fig. 8. In
all cases, the data follow closely the predicted power-law
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FIG. 7. Association (a) and dissociation rate (b) in simulations
(Mie potential) as a function of attractive strength for clusters of N =
1, 2, and 3 particles [see the legend in panel (b)]. The dissociation
rates depend strongly on the size of the detaching cluster, decreasing
with attractive strength proportional to exp(−NE/kBT ), with N the
number of particles in the dissociating cluster. Inset in (a) shows
association (top) and dissociation rates (bottom) as a function of
cluster size. Curves from top to bottom indicate increasing ε/kBT =
2 (black), 2.2 (red), 2.4 (blue), and 2.6 (green), across the gelation
transition.

slopes before and after gelation. Specifically, we find slopes
of −1.60 ± 0.12 and −1.65 ± 0.21 for the Mie simulations
at 3 and 4kBT , respectively, before gelation, and slopes of
−2.30 ± 0.35 and −2.62 ± 0.26 after gelation, consistent
with the predictions of the model. Similar consistency is
obtained for the square-well potential simulations and even
for the lowest attractive strength, for which no gelation occurs,
and cluster mass distributions can only be determined before
gelation [Fig. 8(a)]. While thus the scatter of the data does
not allow to precisely pinpoint the power-law slopes, the data
are consistent with the model predictions. As the model is
based on idealized limits that are not precisely fulfilled in
the simulations, an exact agreement between predicted and

measured slopes may not be expected. Equally good consis-
tency is observed in the experiments, see Figs. 8(d)–8(f). The
data are well described by the predicted power-law slopes
for all attractive strengths. For example, at �T = 0.7 K, we
determine slopes of −1.6 ± 0.2 before gelation, and −2.4 ±
0.6 after, while at �T = 0.5 K, we find −1.55 ± 0.15 before
gelation, and −2.1 ± 0.5 after, both consistent with the model
predictions, while the scatter does not allow us to make this
statement more precise. On the other hand, the reasonable
agreement of all attractive strength, and of both simulation
models and experiments points to some underlying generality.
The model thus gives reasonable predictions of cluster mass
distributions over the relevant range of attractive strength,
where single-particle detachment prevails.

A crucial prediction of the model is a nonequilibrium criti-
cal point, at which cluster sizes diverge, and the largest cluster
spans the entire system. Indeed, the rapid growth of the largest
cluster absorbing almost all particles [Figs. 5(b) and 5(e)]
and the observation of power-law cluster size distributions
support this scenario. To address this crucial point directly,
we investigate the divergence of the largest cluster and the
corresponding correlation length on approaching the critical
mean coordination number Zc. We compute the correlation
length ξ of clusters using ξ 2 = 2

∑
i R2

giN
2
i /

∑
i N2

i , where
Rgi is the radius of gyration of clusters of size Ni [37]. We
then plot the fraction of particles in the largest cluster, and
the correlation length ξ as a function of the order parameter
〈Z〉 in Fig. 9 for all attractive strength, experiments (top), and
simulations (center and bottom). Indeed, cluster sizes diverge
as the mean coordination number reaches the critical value,
Zc. For the lowest attraction in experiments (�T = 1.2 K),
the system does not gel yet and the largest cluster remains
very small. For all higher attractions, the system gels, and the
data shows divergence of the largest cluster. This is shown by
plotting the cluster size and correlation length as a function of
distance to the critical coordination number, Zc − 〈Z〉, in the
inset. We find for the highest attraction (�T = 0.5 K) a diver-
gence with exponent γ = 1.67 ± 0.14, while the correlation
length diverges as ν = 0.78 ± 0.09. Both are consistent with
predictions from three-dimensional percolation theory of γ ∼
1.6 and ν ∼ 0.8. Some scatter is observed in the experiments
at low attraction (�T = 1 K, yellow stars) where the gel
is just marginally stable and thus most strongly affected by
gravity, and a slope cannot be determined. Similar divergence
is observed in the simulations, which are also consistent with
each other: We show the size of the largest cluster in the Mie
simulations at a few different attractions and volume fractions
in Fig. 9(c). Divergence at a volume-fraction-dependent criti-
cal coordination number Zc is observed. However, the curves
collapse when we scale the coordination number by Zc, as
shown in Fig. 9(d). The data show a characteristic scaling
with slope γ = 1.7 ± 0.2, again consistent with percolation
theory. Similar scaling collapse is observed for the correlation
length, see Figs. 9(e) and 9(f). Again, divergence is observed
at the volume-fraction-dependent Zc, which collapses onto
similar scaling with exponent ν = 0.78 ± 0.06, consistent
with 3D percolation. This scaling is also observed in the
square-well simulations, see Figs. 9(g) and 9(h), where we
show results for the volume fraction φ = 12%, and different
attractive strength. Altogether, these data suggest that the
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FIG. 8. Cluster mass distributions in simulations [(a)–(c)] and experiments [(d)–(f)], for various attractive strength, before (red “+”,
diamonds and dots) and after gelation (green “×”, squares and triangles).

observed short-range attractive gelation is associated with a
continuous nonequilibrium phase transition. The collapse of
the different attractions and volume fractions studied, and its
consistent observation in experiments, Mie- and square-well
simulations suggests that this finding may be more general,
in line with recent simulations of the jamming of attractive
spheres [39,40].

VI. CONCLUSIONS

By investigating the growth kinetics of clusters close to
gelation of short-range, weakly attractive colloidal particles
in experiments, simulations and cluster kinetic modeling, we
have identified a general underlying kinetic growth mecha-
nism that is independent of the attractive strength and volume
fraction in the investigated regime. While the bond and cluster
evolution are clearly attractive-strength dependent, exhibiting
higher coordinated, faster growth of structures for higher
attractive strength, we find that all growth curves can be
uniquely parameterized in terms of the mean coordination
number, i.e., the mean number of bonds per particle, as a
function of which all growth curves overlap. Gelation oc-
curs when the steady-state value of this mean coordination
number reaches a volume-fraction-dependent critical value,
above which particle clusters grow to system size. The mean
coordination number, which results from a dynamic balance
of association and dissociation of particles and particle clus-
ters, reaches its critical value at gelation in a critical fashion
as a function of the attractive strength. Detailed analysis of
the association and dissociation rates show that in the studied
weakly attractive regime, dissociation is dominated by single-
particle detachment from clusters, while association appears
to be almost independent of the size of the attaching cluster.

Assuming the limit of only single-particle dissociation and
equal association probability for all cluster sizes, we solve the
general kinetic equation of cluster growth analytically. The
analytical solution shows the occurrence of a critical (perco-
lation) point, below which clusters remain finite, and above
which the cluster sizes diverge. Indeed, in both experiments
and simulations, we find divergence of cluster sizes and cor-
relation lengths consistent with three-dimensional percolation
theory as a function of the underlying order parameter, the
mean coordination number, that characterizes the connectivity
of the structure.

This divergence is observed in all our data, colloidal ex-
periments with different critical Casimir attractive strengths,
and in Mie- and square-well potential simulations of different
attractive strength, and volume fractions in the regime of 6–
16%, indicating that it may be a general feature of the gelation
of short-range, weakly attractive particles. As the range of
attraction of our work is similar to the work in Refs. [2,3],
the question arises how the results are related. We emphasize
that we investigate our system toward the nonequilibrium gel
state, while Refs. [2,3] show cluster distributions in the equi-
librium cluster phase. Hence, the description here starts from
a different angle, from a purely nonequilibrium kinetic point
of view; in this gelation regime, our results suggest that the
observed gelation is associated with a nonequilibrium critical
point, associated with a kinetic percolation phenomenon of
the attaching weakly bonded particles.

The discovery of a nonequilibrium second-order phase
transition [41] which underlies the colloidal gelation transi-
tion may open up new perspectives and opportunities for the
understanding and modeling of liquid-solid transitions in nano
and soft-matter systems.
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FIG. 9. Evolution of cluster size and correlation length in experiments [(a) and (b)], Mie-potential simulations [(c) and (f)], and square-well
simulations [(g) and (h)]. (a) Fraction of particles in the largest cluster, fp, as a function of the total mean coordination number in experiments.
Inset: Divergence of fp on approaching the critical coordination number Zc. Line indicates exponent −1.6. (b) Correlation length ξ as a function
of the mean coordination number for experiments. Inset: Divergence of ξ on approaching the critical coordination number Zc. Line indicates
exponent −0.8. [(c) and (d)] Fraction of particles in the largest cluster, fp as a function of the mean coordination number 〈Z〉 (c) and normalized
mean coordination number 〈Z〉/Zc (d) in Mie-potential simulations for different volume fractions and attractions, see legend. Inset: Divergence
of fp on approaching the critical coordination number Zc. Dashed line indicates exponent −1.6. [(e) and (f)] Correlation length, ξ , as a function
of mean coordination number 〈Z〉 (e) and normalized mean coordination number 〈Z〉/Zc (f) for Mie simulations. Inset: Divergence of ξ on
approaching the critical coordination number Zc. Dashed line indicates exponent −0.8. [(g) and (h)] Same quantities for simulations using a
square-well potential. Good agreement with the other simulations and experiments is observed.
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