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Variations in fundamental constants at the cosmic dawn
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Pablo Villanueva-Domingo,2, § and Samuel J. Witte2, ¶

1Service de Physique Théorique, CP225, Université Libre de Bruxelles, Bld du Triomphe,
1050 Brussels; and Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, 1050 Brussels, Belgium.

2Instituto de F́ısica Corpuscular (IFIC), CSIC-Universitat de Valencia,
Apartado de Correos 22085, E-46071, Spain

The observation of space-time variations in fundamental constants would provide strong evidence
for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining
such scenarios requires exploiting observations that span different scales and probe the state of the
Universe at different epochs. In the context of cosmology, both the cosmic microwave background
and the Lyman-α forest have proven to be powerful tools capable of constraining variations in
electromagnetism, however at the moment there do not exist cosmological probes capable of bridging
the gap between recombination and reionization. In the near future, radio telescopes will attempt to
measure the 21cm transition of neutral hydrogen during the epochs of reionization and the cosmic
dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic
phenomena, these experiments will offer a unique perspective on space-time variations of the fine-
structure constant and the electron mass. We show here that large variations in these fundamental
constants would produce features on the 21cm power spectrum that may be distinguishable from
astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array,
and show that the 21cm power spectrum may be able to constrain variations at the level of O(10−3).

1. INTRODUCTION

Space-time variations of fundamental constants of Nature, such as the fine-structure constant or the electron mass,
offer a strong test for extensions to the standard cosmological and elementary particle models, such as extra dimensions
or modified gravity [1–3]. Consequently, searches of space-time variations in the observed values of these fundamental
constants can provide hints of new and well-motivated exotic physics scenarios. It is therefore interesting to test
possible deviations from their current values at both large and small distances, as well as across a wide array of
cosmological times (redshifts).

Focusing on the fine-structure constant α, which provides the strength of the photon-charged lepton interactions,
and on the electron mass me, limits have been derived at low redshifts z . 6 using, for instance, absorption lines in
the spectra of distant quasars (e.g., the Lyman-α forest) [3–10], and at z ' 1000 (at the period of recombination) from
observations of the cosmic microwave background (CMB) [11–24]. The tightest constraints to date at the time of
recombination on α and me are at the level of α/α0−1 = (−0.7±2)×10−3 and me/me0−1 = (3.9±7.4)×10−3 [24],
where the subscript 0 refers to their current local value. The low-redshift constraints using atomic and molecular
absorption lines, however, are two-to-three orders of magnitude tighter [4, 25]. The most stringent of these relies
on the observation of methanol absorption lines in the PKS1830-211 lensing galaxy at z = 0.89, and probes the
proton-to-electron mass ratio µ ≡ mp/me at the level of µ/µ0 − 1 = (−1.0 ± 0.8stat ± 1.0sys) × 10−7 [26]. However,
other observations have comparable sensitivity [3, 7–10].

21cm cosmology offers a unique test at redshifts higher than the reionization period z & 6, during the so-called
dark ages and the period of the cosmic dawn, when the first stars started to form. These measurements will help
constraining variations of fundamental constants in a completely uncharted era [27–29]. While it is unlikely that
near-future constraints on the time variations of α and me from measurements of the 21cm power spectrum, by for
instance the Square Kilometer Array (SKA) [30, 31], will be as stringent as those obtained using measurements of
the quasar absorption spectra, they are valuable, since they will offer a unique probe across a wide range of redshift
(i.e., 6 < z < 30). Furthermore, the large number of available redshifts could allow for analyses of the putative time
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dependence of both α and me, in contrast to CMB measurements which probe a narrow shell around z ∼ 1100. Notice
that previous works [27–29] studied the impact of the variation of α on the 21cm signal at z > 30, when collisional
coupling plays an important role. Here, complementarily, we study the effect that changes in α and me would have on
the 21cm signal for z < 20, when the Lyman-α coupling plays a major role. Of significant importance in our analysis
is the presence of degeneracies between astrophysical parameters and the variation of fundamental constants, which
we carefully take into account.

It is therefore timely to compute the expected sensitivities from future giant radio telescope arrays targeting the
21cm signal to variations of fundamental constants in the era incognita, that is, between the CMB and the reionization
period. The structure of the paper is as follows. We start in Section 2 by briefly describing the physics of 21cm
cosmology in general. We then describe the implicit functional dependence of each relevant quantity on both, the
fine-structure constant and the electron mass. In Section 3 we describe the effects of varying α and me on the globally
averaged differential brightness temperature and on the 21cm power spectrum. We present forecasts in Section 4 for
SKA, allowing for changes in both α and me. Finally, we summarize our results and conclude in Section 5.

2. 21CM COSMOLOGY AND ITS DEPENDENCE ON α AND me

We begin by introducing the ingredients necessary to compute 21cm observables. These are obtained by solving
the radiative transfer equation (in the absence of scattering) for radio waves traversing the IGM (readers interested
in a more in-depth derivation could see, e.g., Refs. [32, 33]).

The brightness of a patch of neutral hydrogen (HI) relative to the CMB at a given redshift z is expressed in terms
of the differential brightness temperature,

δTb(ν) =
TS − TCMB

1 + z

(
1− e−τν21

)
' TS − TCMB

1 + z
τν21 , (2.1)

where τν21 is the optical depth of the 21cm line to the intergalactic medium (IGM), and TS is the so-called ‘spin
temperature’, which is defined in such a way to measure the relative occupation of the ground and first excited states
of neutral hydrogen. In the second line of Eq. (2.1) we have explicitly assumed that the optical depth τν21 is small,
a valid assumption across all redshifts of interest [33–36]. The spin temperature TS can be obtained by solving an
equilibrium equation relating the excitation and de-excitation rates of neutral hydrogen; the solution, accounting for
the possibility of spontaneous and stimulated excitation/de-excitation, collisional excitation/de-excitation, an indirect
excitations via scattering with ambient Lyman-α photons, is given by [37],

T−1S =
T−1CMB + xc T

−1
k + xα T

−1
c

1 + xc + xα
, (2.2)

where xc and xα are the coupling coefficients determining the importance of collisional and Lyman-α scattering
processes, and Tk and Tc are the gas temperature and the so-called ‘color temperature’, which are nearly equal for all
environments of interest in this work. The resonant scattering of Lyman-α photons can induce an indirect transition
between the hyperfine levels, a process dubbed the Wouthuysen-Field effect [38, 39], and becomes important when
the Lyman-α flux produced by the first sources permeates the medium, typically occurring around z ∼ 25. This effect
is of particular relevance for our study as it controls the value of the spin temperature for much of the cosmic dawn.
In contrast, the collisional coupling xc, characterizing the efficiency of spin flips induced from collisions of neutral
hydrogen, is only important at high redshifts z & 30 or in extremely large over-densities, and could be safely neglected
in Eq. (2.2) for the redshifts of interest.1

In what follows, we shall describe the explicit dependencies of the 21cm cosmological observables on the fundamental
constants α and me. In order to maintain the highest level of clarity, from this point on we will explicitly write the
functional dependence of any variable on these two quantities, and clearly state and justify when functions can be
treated as approximately independent. For the sake of simplicity, we define the relative variations with respect to the
local value of the fundamental constants as

δα =
α(z)

α0
− 1 and δme =

me(z)

me0
− 1 . (2.3)

1 Although xc is included in the 21cm signal calculation by the public code used here (21cmFASTv2 [40–42]), we do not incorporate its
dependence on α and me, as this would have no significant effect for the relevant range of redshifts (see Refs. [27–29] for studies of the
α-dependence of the collisional de-excitation rate for z > 30).
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Constant Symbol Dependence

Hyperfine transition frecuency ν21 α4m2
e

Spontaneous emission coefficient for the 21cm transition A10 α13m4
e

Brightness temperature factor τν21TS α5

Lyman-α frecuency να α2me

Proper Lyman-α intensity Ĵα,? α−2m−1
e

Spontaneous emission coefficient for the Lyman-α transition ALyα α5me

Gunn-Peterson optical depth τGP α−1m−2
e

Lyman-α coupling xα Sα α
−10m−4

e

Recombination case-B coefficient αB α3.4m
−3/2
e

Ground state energy of specie i Ei = hνi α2me

Ionization cross section of specie i σi Gi α−1m−2
e

TABLE I: Summary of some of the relevant quantities in the treatment of the 21cm signal, along with their dependence on
the fundamental constants α and me.

where the 0 subscript refers to local (laboratory) value. We will assume throughout this work that variations are fixed
over redshifts 6 ≤ z . 1000.2 Let us comment briefly, however, on the implications of dropping this assumption.

21cm experiments are expected to be able to accurately measure the power spectrum for Fourier modes in the
range 0.1 Mpc−1 . k . 1 Mpc−1, and in redshift bins of width ∆z � 1. The limit adopted of a constant spatial
and temporal shift in α and me corresponds to the limit where temporal variations occur on scales larger than the
maximum observable time, and spatial variations occur on scales not observable by the experiment (i.e., they can be
larger than the maximum scale, in which case one is only sensitive to that value, or smaller than the minimum, in which
case the effects average out). If temporal variations occur on scales smaller than the minimum observable timescale,
the effects would again wash out and the experiment would have no sensitivity (however, we emphasize that one of the
advantages that cosmological probes have is their sensitivity to large scales, so it is quite possible that complimentary
astrophysical or laboratory experiments gain sensitivity to more rapidly varying signals). If space-time variations are
such that 21cm experiments can resolve their dependence (i.e., they have temporal or spatial variations within the
observable window), one would expect distinguishing features to appear that could strongly break any degeneracy
with astrophysical modeling. While this would be an interesting observation, the sensitivity of an experiment to such
variations is likely strongly dependent upon the adopted model. Our choice of space-time independent variations is
thus general, practical, and to a large degree conservative.

From Eqs. (2.1) and (2.2), it should be clear that determining the dependence of the differential brightness temper-
ature on the fundamental constants amounts to determining the dependence of τν21(α,me), xα(α,me) and Tk(α,me)
(notice that TS(α,me) is determined from the dependence of xα(α,me) and Tk(α,me)). All these dependences are
illustrated in Fig. 1, as a function of redshift. They were obtained using the public code 21cmFASTv2 code [40–42],
adapted as detailed below. We also indicate in Tab. I some of the relevant quantities, and their scaling with α and
me. We now turn our attention to discuss the dependences in all of these functions. Let us begin by considering the
optical depth of the 21cm line.

2.1. Functional dependence of τν21(α,me)

The optical depth of a 21cm photon in the IGM is given by

τν21(α,me) =
3

32π

A10(α,me)nH xHI(α,me)

ν221(α,me)H TS(α,me)
, (2.4)

2 Note that, despite focusing on observations in the interval 6 . z . 30, the initial conditions for the 21cm signal depend on the details
of recombination. We have chosen here to include these effects self-consistently all the way through recombination making use of the
public code Recfast++ to set these initial conditions (see Section 4). Notice, though, that this is not technically necessary and does not
have profound implications for our study.
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FIG. 1: Left panel: Evolution of several quantities as a function of the redshift for three values of δα: the optical depth
τν21 (top), the coupling coefficient xα (middle) and the kinetic, spin and CMB temperatures (Tk, TS and TCMB; bottom).
The astrophysical parameters have been fixed to the fiducial values in 21cmFASTv2, LX[2−10 keV]/SFR = 1040.5 erg · s−1M−1

� yr,

Nion = 5× 103, Mturn = 5× 108M�. Right panel: Same as in the left panel, but varying δme.

with ν21(α0,me0) the rest-frame 21cm signal frequency, A10(α,me) the spontaneous decay rate of the 21cm transition
(whose laboratory values are ν21,0 = 1420.4 MHz and A10,0 = 2.85 × 10−15 s−1, respectively), nH the hydrogen
number density, xHI(α,me) the neutral hydrogen fraction, and H the Hubble rate. All redshift dependent quantities
in Eq. (2.4) are evaluated at z = ν21(α,me)/ν − 1.

The rest frame frequency ν21(α,me) is simply determined by the energy splitting of the hyperfine levels in neutral
hydrogen. This transition arises from the interaction between the magnetic moment of the nucleus (proton) and the
magnetic field generated by the bound electron, and results in the following functional dependence [43]:

ν21(α,me) ∝ α4m2
e . (2.5)

The spontaneous emission coefficient from the triplet to the singlet state of the ground level, A10(α,me), is given
by

A10(α,me) =
64π4

3 g
ν321(α,me)S21(α,me) , (2.6)

where g = 3 is the degeneracy factor of the triplet state, and S21(α,me) = 3µ2
B(α,me) is the strength of the line [44],

with µB(α,me) =
√

4πα/(2me) being the Bohr magneton. The A10 dependence on the fundamental constant is thus
given by

A10(α,me) ∝ α13m4
e . (2.7)

Another term that depends on α and me is the fraction of neutral hydrogen. Nevertheless, prior to reionization
xHI(α,me) ' 1− xe(α,me) ' 1, since the ionized fraction in the neutral IGM xe remains small. On the other hand,
reionization is driven by ionizing photons produced in collapsed structures, and is expected to have been a rapid
process occurring around z ∼ 7 − 8. Moreover, the exact details of this process are subject to large astrophysical
uncertainties that far exceed the potential impact of variations of these fundamental constants. Thus, in what follows
we will explicitly treat the neutral hydrogen fraction xHI as being independent of both α and me.

3

3 As discussed in Section 3, we keep the explicit dependence of xe(α,me), the ionized fraction in the neutral IGM. This quantity is,
however, at the level of ∼ 10−4 prior to reionization, while xHI ∼ 1.
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Combining the functional dependences above, the optical depth for 21cm photons scales with α and me as

τν21(α,me) ∝
α5

TS(α,me)
, (2.8)

where we have maintained the implicit dependence in the spin temperature, which we discuss below. The evolution
of the optical depth with redshift is depicted in the top panels of Fig. 1 for different values of α and me. Notice the
weak dependence on changes of me, which only comes implicitly through TS during the epoch of Lyman-α coupling
(we shall comment more on this below).

2.2. Functional dependence of xα(α,me)

We now turn our attention to the functional dependence of the Lyman-α coupling, defined in Eq. (2.2), on α and
me. As mentioned in the previous section, we neglect the dependence of the collisional coupling xc, as its contribution
is only important at redshifts higher than those studied here (or in high density environments, which contribute
sub-dominantly to the 21cm signal due to the large volumetric suppression).

The Lyman-α coupling is defined as

xα(α,me) =
64π3

27

T21(α,me) fα
A10(α,me)TCMB

(
α

me

)
Sα(α,me) Ĵα(α,me) , (2.9)

where T21(α,me) is the temperature associated to the hyperfine splitting (T21(α,me) ∝ ν21(α,me) ∝ α4m2
e), fα is

the oscillator strength of the Lyman-α transition (which is independent of both α and me [45]), Sα(α,me) is an order
unity correction factor which accounts for the detailed shape of the spectrum near the resonance [46] (and approaches

one for large temperatures), and Ĵα(α,me) is the differential Lyman-α flux (or proper intensity4).
The differential Lyman-α flux (number of photons per unit area, per unit time, per unit frequency and per steradian)

contains two distinct contributions,

Ĵα(α,me) = Ĵα,X(α,me) + Ĵα,?(α,me) , (2.10)

where Ĵα,X is the flux resulting from X-ray excitations of neutral hydrogen, and Ĵα,? contains the contribution to
the flux from UV photons between Lyman-α and the Lyman-α limit. The former flux is subdominant for reasonable
astrophysical parameters, and thus can be safely neglected,5 while the latter is given by

Ĵα,?(α,me) =

nmax∑
n=2

Ĵα,n(α,me) =
(1 + z)2

4π

nmax∑
n=2

frec(n)

∫ zmax,n

z

dz′
ε̂α(ν′n, z

′;α,me)

H(z′)
, (2.11)

where the sum is truncated at nmax = 23 [47], frec(n) is the probability of generating a Lyman-α photon from atomic
level n (recycled fraction of level n) and it is determined from selection rules and ratios of decay rates [47], and thus,

it is independent of α and me. The emission frequencies are given by ν′n(α,me) = νn(α,me)
1+z′

1+z with

νn(α,me) =
4

3
να(α,me)

(
1− 1

n2

)
, (2.12)

where να the Lyman-α transition. The maximum emission redshift so that a photon enters the Lyman-n resonance
at redshift z is 1 + zmax,n = (1 + z)[1 − (n + 1)−2]/[1 − n−2]. The comoving emissivity ε̂α can be approximated as
a factorizable expression, with the redshift dependence being dictated by the comoving star formation rate [42] (in
brackets) and the remaining dependences contained in the spectral distribution function ε(ν;α,me),

ε̂α(ν, z;α,me) = ε(ν;α,me)

[(
1 + δ̄nl

) ∫ ∞
0

dMh
dn

dMh
fduty Ṁ?

]
, (2.13)

where δ̄nl is the mean non-linear overdensity around a point in space-time, dn/dMh is the conditional mass function

following the prescription in Refs. [48, 49] and Ṁ? is the star formation rate in a given halo and at a given redshift,

4 It is related to the specific intensity, Jα, as Jα = hνĴα.
5 For the astrophysical parameters we consider Jα,X/Jα,? . 10−3 for all redshifts of interest.
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as described in Ref. [42]. The fraction of halos of a given mass which host galaxies, fduty (the galaxy duty cycle), is
approximated as [42]

fduty(Mh) = e−Mturn/Mh , (2.14)

where the turnover halo mass, Mturn, is allowed to vary in the forecasts performed in this work (see Table II).
From this discussion, it is clear that the spectral distribution function ε carries the α and me dependence of the

proper Lyman-α intensity Ĵα,?. It is often approximated by a power law with different spectral indexes for each pair
of consecutive atomic levels [50], so that it can be written as [51]

ε(ν) = Nn
(βn + 1) νβnα

νβn+1
n+1 − ν

βn+1
n

(
ν

να

)βn
, (2.15)

for νn ≤ ν ≤ νn+1, with Nn the number of photons (per baryon) emitted between the n and n+ 1 atomic levels. The
number of photons per baryon from the Lyman-α resonance to the Lyman limit (Nα =

∑
nNn) is proportional to the

number of ionizing photons per baryon, Nion, assuming they probe the same stellar population [52–54]. In this work
we assume the ratio used by default in the 21cmFASTv2 code [40–42], typical of Pop II stars. To roughly account for
the possible different type of stars at high redshifts and for uncertainties in stellar population synthesis models, in
our forecasts, we also allow to vary Nion (see Table II).

Regardless of the different spectral indexes, given that the comoving emissivity is evaluated at νn, defined in
Eq. (2.12), the scaling of the differential Lyman-α flux with the fundamental constants α and me is

Ĵα,?(α,me) ∝ ε(νn;α,me) ∝ ν−1α ∝ α−2m−1e . (2.16)

Finally, we turn our attention to the function Sα(α,me), which is an order unity correction factor that accounts for
modifications to the intensity of Lyman-α photons arising from radiative transfer effects [46]. Around the Lyman-α
resonance, transport effects substantially impact the coupling of the spin temperature to the color temperature. The
21cmFASTv2 code makes use of the fits of Sα and Tc from Ref. [37]. However, these expressions where computed
for the measured local values of α and me. Since our goal is precisely to study the impact of variations of these
fundamental constants, we need to revisit these calculations. In order to do so, we consider expressions that keep
the dependence on these constants explicit. We assume the wing approximation, making use of the procedure and
formulae derived in Ref. [55]. This approximation, in good agreement with the fit in Ref. [37] and with the exact
computation, consists on evaluating the Voigt profile at its limit far away from the center of the resonance (thus,
at the wings of the profile), which significantly simplifies the calculation [56]. Under this approximation, Sα can be
written in terms of special functions. However, for the range of temperatures of interest, a polynomial expansion can
be obtained for temperatures above & 10 K and for all redshifts considered . 30. This is accurate within 1% with
respect to the exact calculation, and is given by [55]

Sα ' 1− 4π

3
√

3 Γ(2/3)
β +

8π

3
√

3 Γ(1/3)
β2 − 4

3
β3 +O(β4) , (2.17)

where

β = η′
(

3 aV
2π γ′

)1/3

, (2.18)

with aV = ALyα/(4π∆νD) characterizing the width of the Voigt profile, ALyα (∝ α5me) being the Einstein coefficient

from spontaneous emission for the Lyman-α transition, and ∆νD = να
√

2Tk/mp the Doppler broadening. The
coefficients γ′ and η′ are related, respectively, to the Hubble expansion term and the recoil term in the radiative
transfer equation. Taking into account spin exchange, they read [37, 57]

γ′ = γ

(
1 +

Tse
Tk

)−1
, (2.19)

η′ = η

(
1 + Tse/TS
1 + Tse/Tk

)
− ∆νD

να
, (2.20)

with γ−1 = τGP being the Gunn-Peterson optical depth to Lyman-α resonant scattering (τGP ∝ αm−1e ν−1α ∝
α−1m−2e ), η = ν2α/(mp ∆νD) being the mean normalized frequency drift per scattering from recoil [58], and Tse =
(2/9)Tk ν

2
21/∆ν

2
D ' 0.40 K (α/α0)4(me/me0)2 being the characteristic temperature arising from the spin exchange
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contribution [57]. Notice that β also depends on α and me in a non-trivial way via its dependence on Tk (see the next
subsection) and on TS.

Putting all the above together, the Lyman-α coupling xα scales with α and me as

xα(α,me) ∝
Sα(α,me)

α10m4
e

. (2.21)

Finally, at the resonance and including spin exchange, the color temperature can be approximated by [55, 57]

Tc ' Tk
(

1 + Tse/Tk
1 + Tse/TS

)
, (2.22)

where we have neglected the contribution from the Hubble flow term, which is small [55]. In principle, from this
expression, one could rewrite TS as a function of Tk using Eq. (2.2), as done in Ref. [57]. Nevertheless, note that
Sα (and hence xα) also depends on TS, via η′, in a non-trivial way. We obtain TS by iteration using the input from
Eq. (2.17) into Eq. (2.2). The effect of the variation of α and me on xα and TS, as a function of redshift, is depicted
in the middle and bottom panels of Fig. 1, respectively. Note that the TS dependence on α and me, via Sα, enters
through να, ν21, τGP, ALyα and Tk. We discuss the Tk dependence on α and me in the next subsection.

2.3. Functional dependence of Tk(α,me)

The final ingredient necessary to determine the dependence of TS on the fundamental constants is the temperature
of the gas Tk. Unlike all of the functions discussed thus far, the gas temperature at the relevant epochs studied here
must be obtained by solving the differential evolution equations for Tk and the ionized fraction in the neutral IGM,
xe, which read

dTk(α,me)

dt
=

2

3 (1 + xe(α,me))
QX(α,me) +

2Tk(α,me)

3nb

dnb
dt
− Tk(α,me)

1 + xe(α,me)

dxe(α,me)

dt
, (2.23)

dxe(α,me)

dt
= Λion,X(α,me)− αB(α,me)xe(α,me)

2 nb fH , (2.24)

where again we have made the dependence on α and me explicit, and have omitted the dependence on the position
x and redshift z. The baryon number density is nb, QX is the X-ray heating rate,6 αB is the case-B recombination
coefficient,7 fH is the hydrogen number fraction and Λion,X is the ionizing background from X-rays. The recombination
coefficient αB contains a non-trivial dependence on α and me, although it has been argued that the approximate

dependence can be captured by adopting the following scaling: αB ∝ α2(1+ξ)m
−3/2
e with ξ = 0.7 [11] (see also

Ref. [60] for a similar prescription).
Astrophysical X-ray sources determine both the heating and ionization rates, which can be approximated as

QX(α,me) =

∫ ∞
ν0

dν
4πJX(α,me)

hν

∑
i

(hν − Eth
i (α,me))fheat(α,me) fi xi σi(α,me) , (2.25)

and

Λion,X(α,me) =

∫ ∞
ν0

dν
4πJX(α,me)

hν

∑
i

fi xi(α,me)σi(α,me)Fi(α,me) , (2.26)

with

Fi(α,me) = (hν − Eth
i (α,me))

∑
j

fion,j(α,me)

Eth
j (α,me)

+ 1 . (2.27)

6 Notice that for the redshifts of interest, neglecting Compton cooling is a good approximation.
7 Here we use case-B recombination to evaluate the ionized fraction in the neutral IGM without clumping factor, as in, e.g., Ref. [59],

contrarily to the default implementation in 21cmFAST.
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Here i, j = H i, He i, He ii denote the atomic species, fi is the corresponding number fraction, xi(α,me) is the ionization
fraction, σi(α,me) is the ionization cross section, Eth

i (α,me) = hνi(α,me) is the ionization threshold energy of species
i. The lower bound of the frequency integral is set to hν0 = 500 eV [61], the lowest frequency escaping into the
IGM. The ionization cross section appearing in Eqs. (2.25) and (2.26) has a non-trivial dependence on α and me.
Nevertheless, one can factorize this function as σi = σ0,i Gi(ν/νi), with the coefficient σ0,i ∝ α−1m−2e and Gi a function
that can be found in Refs. [62, 63]. Note that, near threshold, Gi(ν/νi) ∝ (ν/νi)

−3 [64, 65]. The fraction of energy
going into heat and secondary ionizations of species j is accounted for by fheat and fion,j , which should a priori be
functions of α and me. In 21cmFASTv2, an estimate of fheat and fion,j is being used following the early work of
Ref. [66]. In order to properly account for the α and me dependence, one would have to account for the propagation,
redshifting, and deposition of energy in a similar manner as done in Ref. [67]. This is a complicated process, however,
which likely deserves a dedicated study in itself, and thus it is beyond the scope of this work. In what follows, we will
treat these fractions as being independent of α and me. We note, however, that there are large uncertainties in the
shape and normalization of the X-ray spectrum and thus, we expect that the effect of the variation of α and me on
these fractions, at least to some degree, can be absorbed in the astrophysical uncertainties.

In Eqs. (2.25) and (2.26), JX(α,me) denotes the angle-averaged specific X-ray intensity (in units of erg s−1 keV−1

cm−2 sr−1)8, given by

JX(ν;α,me) =
(1 + z)3

4π

∫ ∞
z

dz′
dt

dz′
εX(νe;α,me) e

−τX(ν,z,z′;α,me)

' (1 + z)3

4π

∫ ∞
z

dz′
dt

dz′
εX(νe;α,me) θ [1− τX(ν, z, z′;α,me)] , (2.28)

where νe = ν(1 + z′)/(1 + z) is the comoving frequency at emission, and τX(α,me) is the IGM optical depth from
z′ to z that characterizes the X-ray flux attenuation in the IGM. The τX dependence on α and me is determined by
the ionization cross section σi already taken into account, see e.g. [41] for details. In the 21cmFASTv2 code [40–42], to
speed-up the computation, a step function for the attenuation factor is assumed, such that all photons with optical
depth τX > 1 are absorbed, whereas there is no absorption for photons with τX ≤ 1. This is represented by the
last equality in Eq. (2.28), where we have substituted the exponential factor by a Heaviside function. The comoving
specific X-ray emissivity εX(α,me) is defined as

εX(ν;α,me) =
LX(ν)

SFR

[(
1 + δ̄nl

) ∫ ∞
0

dMh
dn

dMh
fduty Ṁ?

]
, (2.29)

where LX/SFR is the specific (differential) X-ray luminosity per unit star formation escaping the host galaxies (in
units of erg s−1 keV−1 M−1� yr), which follows a power law, LX ∝ (ν/ν0)−γX . We adopt γX = 1, in agreement with
the observed high-mass X-ray binary (HMXB) spectra [68]. Given the uncertainties in the X-ray emissivity, we allow
the normalization to vary, and thus, we reabsorbe in this manner any dependence on α and me. This is done by
considering the integrated luminosity (per SFR) over the energy band (2 − 10 keV), LX[2−10 keV]/SFR and allowing
it to vary around a central value in agreement with expectations for HMXB at z = 10 [62] (see Table II). The other
quantities in Eq. (2.29) were described above.

These definitions allow us to extract the dependence of the X-ray heating rate on α and me,

QX(α,me) ∝
∑
i

σ0,i(α,me)

∫ ∞
z

dz′
∫ ∞
max{ ν0νi ,

ντ=1
νi
}

dy
(y − 1)

y2
Gi(y;α,me) fheat fi xi ∝ α−1m−2e

∑
i

Ii(α,me) ,

(2.30)
where we have exchanged the ν and z′ integrals in Eq. (2.25) and applied the step function to the frequency integral,
and we have defined y ≡ ν/νi and Ii as

Ii(α,me) ∝
∫ ∞
z

dz′
∫ ∞
max{ ν0νi ,

ντ=1
νi
}

dy
(y − 1)

y2
Gi(y;α,me) fheat fi xi , (2.31)

where ντ=1(z, z′;α,me) is the frequency for which the optical depth from z′ to z is equal to 1. Analogously, the α
and me dependence of the ionization rate is

Λion,X(α,me) ∝
∑
i

ν−1i σ0,i(α,me) I ′i(α,me) ∝ α−3m−3e
∑
i

I ′i(α,me) , (2.32)

8 Note that we use two conventions for treating the photons fluxes, the energy flux J , and the number flux Ĵ , which can be related as
J = hνĴ .
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FIG. 2: Left panel: Differential brightness temperature evolution, as a function of the redshift, for two values of δα around the
default (δα = 0) case. The astrophysical parameters are the same as those in Fig. 1. Right panel: Same as in the left panel,
but varying δme.

with

I ′i(α,me) ∝
∫ ∞
z

dz′
∫ ∞
max{ ν0νi ,

ντ=1
νi
}

dy
Fi(y;α,me)

y2
Gi(y, α,me) fi xi . (2.33)

The evolution of the kinetic temperature with redshift, together with the CMB and the spin temperature are
depicted in the bottom panels of Fig. 1, for several values of α and me and for the 21cmFASTv2 default values for
the rest of the (astrophysical) parameters [40–42]. Notice that the kinetic temperature cools adiabatically until the
moment when the X-ray radiation is strong enough to heat the full IGM. On the other hand, the spin temperature
is coupled firstly to the CMB. When the Lyman-α field is large enough to produce the Wouthuysen-Field effect, the
spin temperature starts to couple to the kinetic temperature. The transition between TCMB and Tk is sensitive to
changes of α and me through the dependence of xα and Tk.

3. FEATURES IN THE 21CM SIGNAL

For our numerical studies we make use of the latest version of the publicly available tool 21cmFASTv2 [40–42].9

We have also made use of the recombination code Recfast++ [24, 69–71],10 which was modified to account for the
variation of the fundamental constants α and me at the recombination period (see Ref. [24] for details). The use of
Recfast++ is needed in order to obtain the initial conditions on xe and Tk required in the 21cmFASTv2 code at z = 30.
However, once again, we emphasize that this is a consequence of assuming a constant modification of the fundamental
constants since redshift z = 2.5× 104. As mentioned above, this effect is expected to be subdominant to those arising
during the epoch of the cosmic dawn, when the direct 21cm probes studied in this work are available.

We show in Fig. 2 the variation of the global differential brightness temperature δTb with α and me. The fiducial
model is shown with a blue line, while the result of increasing (decreasing) α and me by 10% is shown as the
purple/upper (green/lower) line. Let us briefly characterize the three different regimes that can be identified in Fig. 2
(see, e.g., Ref. [35] for a more detailed discussion). At high redshifts near z ∼ 20, star formation has yet to begin,
and thus the Lyman-α flux is far too small to couple the spin temperature to the kinetic temperature of the gas.
Consequently, the spin temperature is predominantly coupled to that of the CMB, and the differential brightness
temperature nearly vanishes. At lower redshifts, near z ∼ 15, the first stars have formed and produced a sufficient
Lyman-α flux to begin coupling the spin temperature to the gas temperature, which, in this epoch, is sufficiently
cooler than the CMB temperature. This produces an absorption feature in the differential brightness temperature,

9 https://github.com/andreimesinger/21cmFAST
10 http://www.jb.man.ac.uk/~jchluba/Science/CosmoRec/Recfast++.html

https://github.com/andreimesinger/21cmFAST
http://www.jb.man.ac.uk/~jchluba/Science/CosmoRec/Recfast++.html
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FIG. 3: Left panel: 21cm power spectrum at a fixed scale k = 0.14 Mpc−1, as a function of redshift, for |δα| ≤ 0.1, with the
same astrophysical parameters as in Figs. 1 and 2. Right panel: Same as the left panel, but for |δme| ≤ 0.1. Dark (light) grey
regions represent the total error bands with 10% (30%) of modelling error.

peaking at z ∼ 13 for the default parameters of 21cmFASTv2 [42]. This peak in the absorption spectrum is produced
by the heating of the IGM, a necessary consequence of the X-ray flux associated with star formation. By z ∼ 10,
the temperature of the IGM has been heated above the temperature of the CMB photons, causing the differential
brightness temperature to change from the absorption to the emission regime. Emission peaks near z ∼ 9, and
vanishes around z ∼ 7. This arises from the fact that the differential brightness temperature is directly proportional
to the neutral hydrogen fraction, which is driven to zero during the epoch of reionization.

As can be seen in the left panel of Fig. 2, modifications in α could induce strong changes to the strength of
the Lyman-α coupling, with negative (positive) variations producing a larger (smaller) absorption feature. While the
effects of variations in the fine-structure constant during the period of X-ray heating are less significant, it is interesting
to note that the heating is enhanced for negative variations of α. The right panel of Fig. 2, which shows variations
in me, suggests a noticeably less pronounced effect than that of α (for equivalent % changes in the constant). In this
case, increasing (decreasing) me produces a smaller (larger) absorption dip, with a more uniform redshift dependence.

Figure 3 depicts the changes in the 21cm differential brightness temperature power spectrum, defined as

δTb
2
(z)∆2

21(k, z), for variations of α and me, at the scale k = 0.14 Mpc−1. The power spectrum ∆2
21 is given by

∆2
21(k, z) = (k3/2π2)P21(k, z), with P21(k, z) defined as

〈δ̃21(k, z)δ̃∗21(k′, z)〉 ≡ (2π)3δD(k− k′)P21(k, z) . (3.1)

Here, δD is the Dirac delta function, the brackets indicate average quantities, and δ̃21(k, z) is the Fourier transform
of δ21(x, z) = δT b(x, z)/δTb(z)−1. Again, one can distinguish the three different regimes (corresponding to Lyman-α
coupling, X-ray heating, and reionization, from right to left) each of them characterized by a peak in the power spec-
trum. The light grey regions in Fig. 3, depict the projected sensitivity of SKA, S, obtained using 21cmSense [72–74],11

plus a modeling error ε added in quadrature:

√
S2 + ε2 δTb

2
∆2

21 (see Section 4 for more details). This modeling error
attempts to account for the approximate level of disagreement between 21cmFASTv2 calculations and full hydrody-
namic simulations. The default value adopted in Fig. 3 is 30% (light grey region), although this value is somewhat
adhoc and will likely improve as the numerical methods and our understanding of astrophysics improves. Thus, we
also show the results for the more optimistic case of 10% (dark grey region). The fixed scale of k = 0.14 Mpc−1 has
been chosen to minimize the impact of foregrounds.

Varying α produces a shift in all three peaks of the power spectrum (more pronounced for the Lyman-α peak), with
negative (positive) values shifting all peaks to higher (lower) redshifts. Additionally, negative (positive) variations in
α increase (decrease) the amplitude of each peak, as expected from the discussion of the global differential brightness

11 https://github.com/jpober/21cmSense

https://github.com/jpober/21cmSense
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Parameter Mturn [M�] LX[2−10 keV]/SFR [erg · s−1M−1
� yr] Nion

Range 108 − 109 1040 − 1041 103 − 104

Fiducial 108.5 1040.5 103.5

TABLE II: Ranges and fiducial values of the astrophysical parameters, described in Section 2, that are allowed to vary in the
forecast runs in this work. The rest of the parameters are set to their default values in the 21cmFASTv2 code [40–42].

temperature. Varying me on the other hand, leaves the location of the peaks effectively unchanged, and predominantly
alters only the heights, in particular at large z. Note that in both cases, the relative amplitudes of the peaks also
change.

As stated in Section 2, in order to model the thermal history of the Universe, we make use of the publicly avalaible
code 21cmFASTv2 [40–42]. The astrophysical parameters related to the 21cm signal included in the code and varied
in this work are: the integrated X-ray luminosity (per SFR) over the energy band (2 − 10 keV), LX[2−10 keV]/SFR;
the number of ionizing photons per stellar baryon, Nion; and the halo mass characterizing the exponential decrease
of star forming galaxies in halos, Mturn (such that halos with mass M < Mturn are inefficient at producing stars).
The ranges in which we vary these parameters, and the fiducial values adopted for the sensitivity study, are shown in
Tab. II. We include in Appendix A a brief description of how varying these parameters affects the global brightness
temperature and the power spectrum (see also, e.g., Refs. [54, 75–77]).

4. FORECASTS

Due to the computational complexity associated with obtaining the high-z power spectrum, efficiently scanning
the parameter space can be so computationally expensive that performing a rigorous statistical analysis becomes
prohibitive. We circumvent this issue by exploiting a class of feed-forward neural networks known as multilayer
perceptrons (MLPs). Specifically, for a fixed δα and δme, we compute the full 21cm power spectrum for O(104)
randomly sampled astrophysical parameters (constrained to the range defined in Tab. II), and construct MLPs with
seven fully connected layers, each containing 100 hidden nodes and using leaky reLU activation functions, to emulate
the output of 21cmFASTv2 for arbitrary choices of parameters. The MLPs are trained on 70% of the computed
power spectra, while 20% was reserved for testing and 10% for validation. This procedure was tested previously and
was shown to be successful in producing predictions sufficiently accurate to perform a Markov chain Monte Carlo
(MCMC) (see Ref. [78] for more details). For the calculations performed here, the size of typical errors induced in
the log-likelihood is O(10−3).

The forecasted errors associated to future SKA measurements of the 21cm power spectrum have been estimated
making use of the public code 21cmSense [72–74] assuming the SKA System Baseline Design of Ref. [30]. In this set
up, the total noise gets two type of contributions, one from thermal noise (N) and one from sample variance error

(S), ∆
2

21 ≡ δTb
2
∆2

21. Here the thermal noise is estimated assuming an exposure of 1080 hours and a bandwidth of
8 MHz, which are the default values in 21cmSense. Notice that using 21cmSense, we assume a complete removal
of foregrounds above a given value of the wavenumber k, taken as 0.14 or 0.05 Mpc−1 (see below). In addition, we
have chosen to add in quadrature an additional modeling error, following Ref. [79]. Here we use, as default value, a
rather conservative modeling error of 30%, although we also consider the implications of a 10% error in determining
the sensitivity in our statistical analysis. Our analysis involves a multivariate Gaussian likelihood with a diagonal
covariance matrix (see Ref. [80] for more details). Notice that the assumption of a diagonal covariance matrix is rather
optimistic, however, and may cause one to overestimate sensitivity when increasing the sampling in z- or k-space.

Figure 4 illustrates the expected sensitivity of SKA. We show the 68 % and 95 % confidence level (CL) contours for
two different analyses, the difference between them being controlled by both the assumed sampling in k- and z-space,
and the adopted modeling uncertainty. Note, however, that the scales used on the plots for each analysis are different.
Specifically, these MCMCs assume that measurements are obtained using

1. 10 log-spaced values in k from 0.14 to 1 Mpc−1, 14 log-spaced values in z from ∼ 7 to 19, and a 30% modeling
error (left panel of Fig. 4);

2. 20 log-spaced values in k from 0.05 to 1 Mpc−1, and 14 log-spaced values in z from ∼ 7 to 19, and a 10%
modeling error (right panel of Fig. 4).

The first one can be regarded as a ‘conservative’ analysis, while the second is more ‘optimistic’. The fiducial model is
assumed to reside in the center of the prior space: log10(LX[2−10 keV]/(SFR erg ·s−1M−1� yr)) = 40.5, log10(Nion) = 3.5,
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FIG. 4: Expected SKA sensitivity obtained using 14 log-spaced values in redshift, ranging from ∼ 7 to 19, and 10 (left) or 20
(right) log-spaced values in k, ranging from 0.14 (left) or 0.05 (right) to 1 Mpc−1. Modeling errors are assumed to be at the
30% (left) and 10% (right) level. Contours are shown at 68% and 95% CL. Note that the scales in the left and right panels are
not the same.

and log10(Mturn/M�) = 8.5; and δα = 0, δme = 0. Some of the degeneracies can be expected (see the discussion in
Appendix A). In particular, focusing on the left panel of Fig. 4, we recover the expected positive degeneracies between
LX[2−10 keV] and Mturn and between δme and Nion. We note that moving from our ‘conservative’ to ‘optimistic’
analysis, the dominant changes that drive the increase in sensitivity are: (1) the decrease in modeling error, and (2)
the shift to smaller values of k (note that, if foregrounds could be avoided, the intrinsic experimental error at small k
is reduced). The increase in k-sampling alone (without the accompanying shift in kmin) does not change the results
dramatically, nor does the doubling of the sampling rate in redshift.

The results shown in Fig. 4 suggest that future 21cm experiments may be able to constrain α and me at the level of
∼ O(10−3) for redshifts z ∈ [7, 19]. For experiments like SKA, the error is expected to increase noticeably at redshifts
z & 20, an effect which will likely impede the ability of ground-based interferometers to meaningfully extract limits
on space-time variations of α or me.

5. CONCLUSIONS

Space-time variations in the fundamental constants of Nature are an expectation of some well-motivated theories
(see, e.g., Refs. [1–3] for reviews). Since such variations can appear on a variety of different time scales, it is important
to probe deviations in these constants from the locally measured values on both laboratory and cosmological scales,
and in the early and late Universe. Current searches using the Lyman-α forest and from the CMB have placed
stringent constraints on variations of the fine-structure constant and the electron mass at the level of ∼ 10−6 and
10−3 for redshifts z . 6 and z ∼ 1100, respectively.

Similarly to the Lyman-α forest, 21cm cosmology uses the redshifted absorption and emission lines of neutral
hydrogen to infer astrophysical and cosmological information. High-redshift 21cm searches will soon attempt to
measure the evolution of neutral hydrogen in the redshift interval 6 . z . 25 (i.e., the epochs of reionization and
cosmic dawn), exploring periods of the Universe for which we currently lack observations. Given that these radiative
transitions are electromagnetic processes, the observed intensity of this signal is inherently sensitive to variations in
electromagnetism, making this observational probe a particularly powerful tool to search for variations in α and me.

In this work, we have detailed the complex functional dependence of the 21cm signal on the fine-structure constant
α and on the electron mass me, and illustrated the degeneracy of varying these parameters with astrophysical uncer-
tainties that enter the computation of the 21cm intensity. Using a 3-parameter astrophysical model that accounts for
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uncertainties in the intensity of X-ray and Lyman−α photons, as well as the onset of star formation, we show that
constant variations of α and me can potentially be constrained at the level of O(10−3) with future SKA measure-
ments. This is comparable to the level obtained using observations of the CMB, but probes an epoch that is highly
complementary to that of the CMB, as well as to low redshift probes from the Lyman-α forest.

Acknowledgments

LLH is a Research associate of the Fonds de la Recherche Scientifique FRS-FNRS supported by the FNRS research
grant number F.4520.19; by the Strategic Research Program High-Energy Physics and the Research Council of the
Vrije Universiteit Brussel. OM, PVD and SJW are supported by the Spanish grant FPA2017-85985-P of the MINECO
and by PROMETEO/2019/083. SPR is supported by a Ramón y Cajal contract, by the Spanish MINECO under grant
FPA2017-84543-P, and partially, by the Portuguese FCT through the CFTP-FCT Unit 777 (UID/FIS/00777/2019).
All the authors also acknowledge support from the European Union’s Horizon 2020 research and innovation program
under the Marie Sk lodowska-Curie grant agreements No. 690575 and 674896. This work was also supported by the
Spanish MINECO grant SEV-2014-0398.

Appendix A: Imprint of astrophysical parameters

Here, we briefly discuss the effect of varying the astrophysical parameters on the differential brightness temperature
and on the 21cm power spectrum (see also, e.g., Refs. [54, 75–77]). We illustrate these effects in Fig. 5, where blue
curves correspond to the fiducial values in 21cmFASTv2, while purple (cyan) curves show the effect of considering the
minimum (maximum) value of a given astrophysical parameter.

The priors on the integrated luminosity (per SFR) over the energy band (2 − 10 keV), LX[2−10 keV]/SFR, are
indicated in Tab. II, and are similar to the ranges in Refs. [68, 81–83]. By varying the X-ray luminosity, we effectively
modify the X-ray heating rate. Increasing LX[2−10 keV]/SFR implies an earlier heating of the IGM and thus, a
minimum of absorption in δTb and a transition to 21cm emission shifted to earlier time. Also, due to the earlier
heating, a shallower absorption is expected in the background signal. The corresponding effect on the power spectrum
is a shift of both the Lyman-α and the X-ray peak to earlier times, together with a suppression of power in both the
Lyman-α coupling and the X-ray heating period. In contrast, the reionization peak position is left approximatively
unchanged and its amplitude is increased. This is illustrated in the central plot of Fig. 5 when comparing the maximal
LX[2−10 keV] curve (cyan) line with the fiducial one (blue line). The opposite behavior is observed considering smaller
value of LX[2−10 keV]. The effect of shifting the peak position to higher z with increasing LX[2−10 keV] is similar to the
one observed when decreasing α. In contrast, the shallower absorption in δTb and the suppressed power spectrum at
z > 8, for higher LX[2−10 keV], is similar to the effect of increasing α, but also increasing me.

The Lyman-α flux from stars is normalized in terms of the number of ionizing photons per stellar baryon, Nion.
Assuming a Population II stars and the spectral emissivity used in 21cmFASTv2, the normalization is of the order of
Nion ∼ 5× 103 [50]. Increasing Nion increases the Lyman-α flux at early times, leading to an earlier coupling of TS to
Tk. This shifts the minimum of absorption and the position of the Lyman peak, mainly to earlier times, as illustrated
in the left plot of Fig. 5. A similar effect can be obtained by decreasing α and me.

The turnover halo mass, Mturn, is the mass below which the abundance of active star forming galaxies is exponen-
tially suppressed, according to the duty cycle described by Eq. (2.14).12 This affects the estimation of the Lyman-α
and X-ray flux that shape the 21cm signal. In particular, at background level, the comoving specific X-ray emissivity
is calculated from Eq. (2.29). We use a fiducial value of Mturn = 5× 108M� and we allow the parameter to vary in
the range of log10(Mturn/M�) = [8, 9] (see Tab. II). The lower limit is motivated by the atomic cooling threshold,
while the upper limit is motivated by the faint end of current ultraviolet galaxy luminosity functions (see Ref. [42]

and references therein). Increasing Mturn suppresses the number of halos that contribute to JX and Ĵα,∗. As a result,
the X-ray and Lyman-α flux are reduced at a given epoch, predominantly resulting in a redshift-dependent shift of
the absorption feature. Note that a similar feature can be achieved by simultaneously varying LX[2−10 keV] and Nion.

12 Note that Mturn plays a similar, albeit more realistic, role to the minimum virial halo mass Mmin
vir employed in other works and in

previous versions of the 21cmFAST code [41], which represents the limit where the exponential suppression approaches a step function.
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FIG. 5: The 21cm differential brightness temperature (top panels) and power spectrum (bottom panels) variation with astro-
physical parameters: Mturn (left panels), LX[2−10 keV]/SFR (middle panels) and Nion (right panels). Purple, blue and cyan
curves stand for lower, fiducial and upper values respectively in the range considered for each parameter. The 21cm power
spectrum is computed at the scale k = 0.14 Mpc−1, with the band representing the SKA sensitivity.
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