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Sharp features in the primordial power spectrum are a powerful window into the inflationary epoch. To date,
the cosmic microwave background (CMB) has offered the most sensitive avenue to search for these signatures.
In this paper, we demonstrate the power of large-scale structure observations to surpass the CMB as a probe of
primordial features. We show that the signatures in galaxy surveys can be separated from the broadband power
spectrum and are as robust to the nonlinear evolution of matter as the standard baryon acoustic oscillations. As
a result, analyses can exploit a significant range of scales beyond the linear regime available in the data sets. We
develop a feature search for large-scale structure, apply it to the final data release of the Baryon Oscillation Spec-
troscopic Survey and find new bounds on oscillatory features that exceed the sensitivity of Planck for a significant
range of frequencies. Moreover, we forecast that the next generation of galaxy surveys, such as DESI and Euclid,
will be able to improve current constraints by up to an order of magnitude over an expanded frequency range.

DOI: 10.1103/PhysRevResearch.1.033209

I. INTRODUCTION

Characterizing the nature of inflation is one of the major
challenges in cosmology. While current data are compatible
with the simplest incarnation of inflation, a single weakly
coupled scalar field on a very flat potential, the space of
possibilities for inflation are vast and should ultimately be
settled by data. An appealing aspect of the simplest models
is that the observed (near) scale invariance of the power
spectrum of fluctuations is easily explained by the flatness of
this potential [1]. However, attempts to realize inflation from a
more fundamental starting point can lead to much more com-
plicated models where many interconnected pieces are needed
to achieve scale invariance [2,3]. This dichotomy between
the simplest models and ultraviolet-complete examples origi-
nates from quantum gravity itself: Sufficiently flat potentials
can be engineered using symmetries, but quantum gravity is
famously incompatible with them [4,5]. As a result, a wide
variety of models gives rise to nontrivial deviations from
canonical slow roll and scale invariance (i.e., features) [3,6].
Other mechanisms avoid this picture altogether by invoking
nontrivial interactions that can lead to non-Gaussian n-point
correlation functions (primordial non-Gaussianity) [7].

Our ability to test these ideas directly with data relies
on separating the primordial signatures of interest from a
broad range of processes at late times. This challenge is
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particularly acute for constraints on inflation from large-
scale structure (LSS) surveys since the observed objects, i.e.,
galaxies, owe their existence to the nonlinear gravitational
evolution of matter fluctuations in the late universe. While
both current and future galaxy surveys have the raw statistical
power to compete with other cosmological probes, such as the
cosmic microwave background (CMB), the useful information
is greatly diminished if we restrict our analyses to modes that
are sufficiently linear to use forward modeling in order to
isolate the primordial information. There have been steady im-
provements in this direction, but eventually these techniques
are expected to be limited by the complexity of (astro)physics
at short distances [8,9].

An alternate and already successful approach is to look for
special observables that are (at least partially) immune to the
complications presented by LSS data. The best-known exam-
ple of this type are the baryon acoustic oscillations (BAO).
Although they manifest themselves as an oscillation in the
power spectrum in a range of wave numbers sensitive to
nonlinearities, it is more usefully understood as a sharp peak
in the two-point correlation function at the size of the sound
horizon, which is a scale that is much larger than the scale
where nonlinear evolution dominates [10]. More recently, a
constant phase of the baryon acoustic oscillations was shown
to be immune to nonlinear evolution [11]. These are useful
examples as they show that smooth and oscillatory power
spectra are not sensitive to the same nonlinear effects.

Nevertheless, it has proven challenging to constrain the
most common inflationary parameters (e.g., the scalar spec-
tral index ns or its running αs) by LSS. Changes to these
parameters typically lead to smooth variations in the power
spectrum (as a function of wave number k) and are therefore
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FIG. 1. Illustration of linear and logarithmic oscillations in the primordial power spectrum P (k). The employed frequencies ωX are
comparable in the range of scales k = (0.1–0.2) h Mpc−1 where BOSS has the largest signal-to-noise ratio. We see that the effective frequency
of the logarithmic oscillations decreases as we go to larger wave numbers k.

degenerate with other contributions such as galaxy biasing and
baryonic effects. Furthermore, most inflationary observables
get their constraining power from the smallest physical scales
accessible in a given survey where gravitational nonlinear-
ities dominate. With current data, large-scale structure is
most competitive with the CMB as a probe of inflation for
constraints on local primordial non-Gaussianity [12–14]. In
this case, the non-Gaussian signature in the initial conditions
manifests itself in the biasing of galaxies on the largest scales
where nonlinearities are negligible [15]. Future surveys will
search these large scales with increasing sensitivity and have
the potential to ultimately exceed the CMB [16,17].

In this paper, we demonstrate that features in the primordial
spectra, much like the standard BAO signal itself, are immune
to short-distance nonlinear processes of the late universe and
the effects of large-scale bulk flows can be captured analyti-
cally. We can therefore test these models with the full statis-
tical power of LSS surveys. Phenomenologically, primordial
features are generally characterized by significant deviations
from scale invariance over a narrow range of scales, usually in
the power spectrum. The most canonical examples, shown in
Fig. 1, are written as oscillations in either k or log k [6],

Pζ (k) = Ps(k) {1 + Alin sin(ωlink + ϕlin )

+ Alog sin[ωlog log(k/k�) + ϕlog]}, (1)

where Pζ (k) is the primordial power spectrum of adiabatic
density fluctuations (ζ ) and Ps(k) is a smooth function of k.
For a linear oscillation (Alin), the insensitivity to nonlinear
effects is identical to the case of the baryon acoustic oscilla-
tions: If we Fourier transform the signal, the linear oscillation
is a sharp peak at the scale ωlin in the two-point correlation
function. For sufficiently large ωlin, one is effectively looking
for a second BAO peak. For logarithmic oscillations (Alog),
there is not a simple description in terms of scales, but we will
show that local nonlinear evolution is incapable of producing
the same oscillation for sufficiently large frequencies ωlog.

While the analogy with the BAO signal is useful, it is
worth observing that the primordial features arise directly
in the initial conditions of the dark matter and baryons and
are suppressed only by the amplitude of the oscillation. By
contrast, the baryon acoustic oscillations themselves are a

consequence of the physics of baryons. This means that their
impact on LSS data is suppressed by ωb/ωm and the growth
of dark matter density fluctuations prior to recombination. As
a result, the amplitude of the BAO spectrum is suppressed
relative to a primordial feature and is roughly equivalent to
a linear feature amplitude of Alin = 0.05. The fact that we do
not see an additional oscillation beyond the BAO signal by eye
already suggests that Alin � 0.1 without any analysis.

In addition to being protected quantities in LSS, primordial
features of this form are a well-motivated probe of the early
universe in their own right [6,18–32]. They notably arise in
axion monodromy inflation [33] as a direct consequence of the
fundamental symmetry structure needed to produce large-field
inflation. The periodic nonperturbative potential generated for
axions gives rise to an oscillation in the inflationary potential
and manifests itself as a logarithmic oscillation in the power
spectrum [25]. In addition, there are a number of scenarios
where particles are excited from the vacuum at a specific time
through nonadiabatic evolution and can give rise to linear
oscillations. Moreover, most features in the power spectrum
can be efficiently decomposed in this basis of functions which
therefore captures large parts of model space.

The outline of the paper is as follows. In Sec. II, we
show that features are robust to small-scale nonlinearities and
compute the nonlinear damping effect due to long-wavelength
modes. In Sec. III, we introduce our new analysis to search
for these features in LSS data and verify that these oscillatory
signals can be reliably constrained. In Sec. IV, we apply this
pipeline to the final data release of the Baryon Oscillation
Spectroscopic Survey (BOSS DR12) and present a new con-
straint that exceeds Planck over a significant range of frequen-
cies. Moreover, we forecast the sensitivity of future obser-
vational surveys (cf., e.g., Refs. [34–45] for previous work).
We summarize in Sec. V. Additional details on the theoretical
calculation, the employed forecasts, and the performed LSS
and CMB analyses are provided in Appendixes A–D.

II. PRIMORDIAL FEATURES AND GALAXY SURVEYS

In this section, we determine how a primordial feature
will appear in the nonlinear (low-redshift) universe. We first
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characterize the signals in the linear matter power spectrum.
Then we will use a linear-response argument to show that
nonlinear evolution on small scales does not change the am-
plitude of the feature in the nonlinear power spectrum. Finally,
we will use infrared resummation to determine the nonlinear
damping of the features from large-scale modes.

A. Oscillatory features in the primordial spectrum

The physics of inflation determines the primordial power
spectrum Pζ (k). In the simplest versions of inflation, this
power spectrum arises from the freeze-out of quantum me-
chanical fluctuations when the physical wavelength reaches
the Hubble radius, k = aH (t�), where k is the constant comov-
ing wave number, a(t ) is the scale factor, and H (t ) is the Hub-
ble parameter. (This equation defines the freeze-out time t�.)
As a result, the amplitude of fluctuations for a comoving wave
number k is determined by the physics of inflation around the
time t�. Furthermore, the near scale invariance of the resulting
spectrum is a consequence of the weak time dependence in the
evolution of the perturbations during inflation.

Scale-dependent features in the primordial spectrum there-
fore arise from strongly time-dependent physics during infla-
tion.1 This may be due to sharp features in the underlying
potential for a scalar field, or special locations in the field
space of the inflaton where other particles become light and
can be excited from the vacuum. Despite the wide range of
possibilities, the signatures do not significantly depend on the
details of the model since the nature of the time dependence
controls the deviations from scale invariance.

We will assume that the smooth spectrum Ps(k) of Eq. (1)
is the almost scale-invariant power spectrum of curvature
perturbations in vanilla models of inflation,

Pζ ,0(k) = 2π2

k3
Pζ ,0(k) = 2π2As

k3

(
k

k�

)ns−1

, (2)

where As and ns are the scalar amplitude and spectral index
at the pivot scale k�, which we generally take to be k� =
0.05 Mpc−1. We then write the full power spectrum Pζ (k)
including the contribution from features δPζ (k) as

Pζ (k) = Pζ ,0(k)[1 + δPζ (k)]. (3)

As suggested in Eq. (1), we will consider oscillatory fea-
tures with linearly spaced oscillations δPlin

ζ and logarith-
mically spaced oscillations δPlog

ζ . We phenomenologically
parametrize the former, which we refer to as linear features,
as2

δPlin
ζ (k) = Asin

lin sin(ωlink) + Acos
lin cos(ωlink)

= Alin sin(ωlink + ϕlin ), (4)

with the feature frequency ωlin, and the amplitudes of the sine
and cosine contributions Asin

lin and Acos
lin , respectively, or the

1We focus on the inflationary origin of features, but note that they
might also appear in alternatives to inflation [46].

2Note that the feature frequency is sometimes defined in the lit-
erature as ω̃lin = ωlin/2 or with respect to a pivot scale k�. More
generally, we highlight that ωlin is a frequency in Fourier space which
corresponds to a physical scale in real space.

overall feature amplitude Alin and corresponding phase ϕlin.
The so-called logarithmic features are similarly defined as

δPlog
ζ (k) = Asin

log sin[ωlog log(κ )] + Acos
log cos[ωlog log(κ )]

= Alog sin[ωlog log(κ ) + ϕlog], (5)

with κ = k/k�, the feature frequency ωlog, and the amplitudes
of the sine and cosine contributions Asin

log and Acos
log , respec-

tively, or the overall feature amplitude Alog and corresponding
phase ϕlog. We refer to the parametrization in terms of two
amplitudes as amplitude parametrization and the one in terms
of the overall amplitude and a phase as phase parametrization.
We note that it has been customary in the literature to define
the linear feature frequency ωlin as a dimensionful quantity in
units of Mpc, whereas the logarithmic feature frequency ωlog

is dimensionless. In addition, we remark that the feature
amplitudes give the contribution relative to the standard power
spectrum Pζ ,0 and the feature contribution δPζ (k) oscillates
around zero by construction.

The information in the primordial power spectrum is trans-
ferred to the matter power spectrum, as illustrated in Fig. 2,
through the usual linear evolution from initial conditions

P(k) = k4T (k)2D(z)2Pζ (k), (6)

where D(z) is the linear growth rate and T (k) the transfer
function. For large enough feature frequencies, these oscilla-
tions can be distinguished from the broadband shape of the
power spectrum, similar to the baryon acoustic oscillations.
It is therefore natural to constrain the feature models as
contributions to the BAO spectrum, which is why we split
the power spectrum into a smooth (no-wiggle) part and an
oscillatory (wiggle) part,

P(k) ≡ Pnw(k) + Pw(k). (7)

Since primordial features with large enough frequencies are
only contained in the second term, it is useful to further
decompose the wiggle spectrum as

Pw(k) ≡ Pw
BAO(k) + Pw

X (k) + Pw
BAO(k)δPX

ζ (k), (8)

where Pw
BAO(k) is the standard BAO spectrum in a featureless

Lambda cold dark matter (
CDM) cosmology, the autospec-
trum of possible primordial features is

Pw
X (k) = Pnw(k)δPX

ζ (k), (9)

with X = lin, log, and the third term is the BAO-feature cross-
correlation power spectrum. Since the BAO signal itself is
only a small (5%) contribution to P(k), we will be able to
generally neglect this cross-spectrum term in our theoretical
considerations. Given that Eq. (7) is the linear matter power
spectrum, we will show in the following two sections that
small-scale modes do not affect Pw(k) for large enough fea-
ture frequencies (Sec. II B), but that each of its oscillatory
components in Eq. (8) is affected by gravitational large-scale
nonlinearities and exponentially damped (Sec. II C).

B. Robustness of features to small-scale nonlinearities

The smallest scales in an LSS survey carry most of the
statistical power, but are also the most prone to nonlinear cor-
rections, including galaxy bias and baryonic effects. For this
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(a)

(b)

(c)

FIG. 2. Imprint of primordial features in several large-scale structure observables at redshift z = 0: (a) the matter power spectrum P(k)
and (b) the relative wiggle spectrum Pw(k)/Pnw(k) in Fourier space and (c) the (rescaled) two-point correlation function ξ (r) in real space.
We compare a featureless model (gray lines) to scenarios involving a linear feature (blue lines) and a logarithmic feature (red lines) with
Asin

X = 0.05 and Acos
X = 0, X = lin, log. In addition to the predictions in linear theory (dashed lines), we also show the observables including

nonlinear corrections (solid lines) from a theoretical calculation of the damping.

reason, a typical analysis might cut at k = (0.1–0.2) h Mpc−1

to avoid the complications of modeling and marginalizing
over these effects. In the case of the baryon acoustic os-
cillations, it has long been known that they are robust to
those effects which change the power spectrum only by a
smooth window function and that it is possible to aggressively
marginalize over these smooth corrections without losing any
information. In the following, we show that high-frequency
oscillatory features in the power spectrum are protected from
small-scale nonlinearities in precisely the same fashion as the
BAO signal. We first give an intuitive argument that this is
indeed the case, which we then confirm more rigorously.

1. Intuitive argument

The power spectrum of linear oscillations Pw
lin(k) as defined

in Eqs. (4) and (9) is the same as the approximate form of
the BAO signal, where the linear feature frequency ωlin corre-
sponds to the sound horizon rs and the feature phase ϕlin is the

phase shift due to free-streaming neutrinos [11,47,48].3 It is a
long-established fact that the baryon acoustic oscillations are
essentially immune to nonlinearities on small scales because
the sound horizon is a large-distance scale. The same will
be true for any linear oscillation with ωlin larger than the
BAO scale rs. Smaller frequencies will remain immune to
nonlinearities provided they are sufficiently large compared
to the nonlinear scale. Conservatively, we will use ωlin �
75 Mpc as a reference value. As illustrated in Fig. 3, this fre-
quency is consistent with our more rigorous constraint on the
scales where small-scale nonlinearities are not important (cf.
Sec. II B 2). More recently, it has been shown that the
phase ϕlin is also protected [11], which implies that this
argument will hold for both the sine and cosine contributions.

3The real form of the BAO spectrum has an additional k depen-
dence in the phase and amplitude [47], which are however unimpor-
tant for this analogy.
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FIG. 3. Separation of zeros (or, equivalently, peaks and troughs) in the spectrum of logarithmically spaced oscillations (5) as a function
of wave number k for a range of frequencies ωlog. For comparison, the separations in the standard BAO spectrum and for linear oscillations
with ωlin = 75 Mpc and ωlin = ωNy ≈ 929 Mpc, which is the Nyquist frequency in our BOSS analysis below, are also shown. The dotted and
dashed gray lines indicate the nonlinear scale knl ≈ 0.15 h Mpc−1 and kω = k, respectively. The former marks the approximate wave number
where nonlinearities are expected to become large, k � knl, while these nonlinearities do not alter features with kω � k. The zero separations
are denoted by kω/2 since they are equivalent to half of a feature oscillation period.

A priori, it is less clear that logarithmic oscillations
will share the same nice properties. Unlike the linear fre-
quency ωlin, the frequency ωlog of the logarithmically spaced
oscillations is a dimensionless parameter and therefore does
not refer to any fixed physical scale in either Fourier or
configuration space. As a result, the signal must appear on
all scales in both descriptions and consequently is not clearly
distinct from nonlinear effects. Fortunately, in practice, our
information only comes from a limited range of scales which
is given by k ∼ (0.1–0.3) h Mpc−1 for BOSS. We can always
(Fourier) decompose any feature into a sum over linear oscil-
lations. For sufficiently large ωlog, the signal in this range of
wave numbers is reliably reproduced keeping only the linear
oscillations with frequencies large enough to be protected
by our previous argument. We illustrate this argument in
Fig. 3, where we show the peak-trough separation for the
logarithmically oscillating power spectrum Pw

log(k) defined in
Eqs. (5) and (9) as a function of k in our range of interest.
For ωlog � 20, the peak-trough separation is at the level of
the BAO spectrum, while nonlinearities are expected to affect
the power spectrum at smaller scales. For the purposes of an
analysis of BOSS data,4 the logarithmic features therefore do
not present any significant complications.

2. Rigorous argument

We can rigorously derive these results using the techniques
developed in Ref. [11]. Since the amplitude is known to

4In future surveys covering a larger range of k, more work may be
required to account for the fact that the effective frequency evolves
with k and may not be protected over the full range of scales.
Moreover, these surveys will generally require more theoretical
control since they will be sensitive to smaller signals and therefore
subleading effects.

be small (percent level at best), we can find the nonlinear
density fluctuations as the linear response in the feature am-
plitude (Alin or Alog). On general grounds, this response must
take the form [11]

δw(�x, τ ) =
∫

d3x′G(�x, �x − �x ′; τ )δw
in(�x ′), (10)

where G(�x, �x − �x ′; τ ) is the response function and δw
in(�x ′) is

the contribution to the initial density contrast at linear order
in AX , X = lin, log. The response function is independent of
the oscillatory signal and has previously been studied for more
general applications [49–51]. The first index, �x, arises from
the underlying inhomogeneity of the universe and would be
absent in a translation-invariant system. The second index,
�x − �x ′, characterizes the propagation of information from one
point to another.

Unlike for the BAO spectrum, we are not concerned that
nonlinear evolution will make a small change to the frequency
or phase. Since nonlinear evolution is not expected to create
such a frequency out of nothing, the primary concern is that
nonlinear evolution will make a large change to the amplitude
by some incalculable amount, making it impossible to relate
bounds on the nonlinear spectrum to the amplitude in the ini-
tial conditions. To be dangerous, this change must specifically
alter the amplitude of a high-frequency oscillation relative
to the amplitude of the underlying smooth nonlinear matter
power spectrum. To proceed, we Fourier transform Eq. (10)
to arrive at

δw(�k, τ ) =
∫

d3q

(2π )3
G(�k − �q, �q ; τ )δw

in(�q). (11)

Note that it is the wave vector �k − �q ≡ �p that characterizes
the scale of the inhomogeneities. Following Ref. [11], we will
define a scale kω � k as the approximate period of oscillations
in the power spectrum, e.g., kω = 2π/ωlin. We will separate
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the domains p > kω and p < kω to distinguish the small-scale
and large-scale inhomogeneities, respectively.

Using an argument from Ref. [11], it is easy to see that
small-scale inhomogeneities do not contribute an oscillatory
signal in the nonlinear matter power spectrum.5 Suppose now
that p > kω did contribute a high-frequency oscillatory signal.
This would imply that we should see a large change in δw(k)
if we shifted �k → �k + �αkω, where |�α| ∼ O(1). However, re-
call that G( �p, �q ; τ ) is determined from the nonlinear density
field in a universe without the oscillatory signals and should
therefore be a smooth function of �p and �q. As a result, we can
Taylor expand G(�k + �αkω − �q, �q ; τ ) in �α to find

δw
p>kω

(�k + α�k, τ ) =
∫

d3q

(2π )3
G(�k + �αkω − �q, �q ; τ )δw

in(�q)

≈
∫

d3q

(2π )3
[G(�k − �q, �q ; τ )

+ kω �α · �∇�kG(�k − �q, �q ; τ )]δw
in(�q)

≈ δw
p>kω

(�k, τ ) + O

(
αkω

k

)
, (12)

where we used �∇�k ∼ k−1 because G is a smooth function of
�k − �q. From this argument, we see that δw

p>kω
(�k, τ ) is a smooth

function of k. This means that it does not change rapidly over
one period of the initial oscillations and therefore does not
contribute to the oscillatory signal. In other words, small-scale
nonlinearities do not change the amplitude of features in the
power spectrum provided they have a large enough frequency.

To conclude the discussion of small-scale nonlinearities,
we note that this result is independent of the precise shape
of the initial feature. It only requires that the feature δw(k)
changes by order one over a very small range of �k. We do not
require that it is sinusoidal or that it is associated with a large
physical scale in configuration space. Furthermore, the result
that kω/k � 1 is not altered by small-scale nonlinearities
is the same condition which requires that the oscillation is
distinct from a smooth polynomial. The power spectrum on
a scale k is smooth if ∂ log P

∂ log k � 1. This implies that our features
will be sharp if

∂ log Pw
X (k)

∂ log k

 1 → kωlin 
 1, ωlog 
 1. (13)

These conditions are illustrated in the left panel of Fig. 1,
where the linear oscillations at small wave numbers are
smooth while the logarithmic feature is sharp on all scales.
Of course, implicit in this discussion is that k is a scale where
nonlinearities are important. In our universe, nonlinear effects
are strongly k dependent and therefore primarily affect modes
near the nonlinear scale k ≈ knl.

C. Damping from large-scale nonlinearities

In the preceding section, we established that short-
wavelength inhomogeneities cannot alter the appearance of an

5We note that we would have G( �p, �q ; τ ) = δ( �p )G̃(q) if the matter
distribution were in the linear regime. As a result, the absence of
an oscillatory signal from p > kω in the nonlinear case is not a
suppression of the oscillation in the initial conditions, but the absence
of a correction.

oscillatory signal in the initial conditions. We now turn to the
long-wavelength modes. In general, it is hard to compute the
consequences of nonlinearities on the matter power spectrum
from first principles. Nevertheless, it has been shown that the
nonlinear effects of large-scale modes on the BAO spectrum
can be computed and resummed in perturbation theory, result-
ing in a damping of the amplitude and shape of the standard
BAO signal (cf., e.g., Refs. [10,52–58]). In the following,
we generalize this calculation to a generic linear feature
and further extend it to the case of logarithmically spaced
oscillations.

1. Perturbative treatment

Our aim is to compute the damping of a generic oscillatory
feature due to long-wavelength modes. It is well known that a
simple perturbative treatment is not enough to capture the full
damping effect in the case of the standard oscillatory features
in the matter power spectrum, the BAO signal [52–58]. As in
that case, it is however also useful to start with a perturbative
treatment for generic features and then include nonperturba-
tive effects in the calculation.

The full one-loop power spectrum is given by

P1-loop(k) =
∫

d3q

(2π )3
[6F3(�q,−�q, �k)P(k)

+ 2F 2
2 (�q, �k−�q )P(|�k − �q |)P(q)], (14)

where Fn are the usual perturbation theory kernels (see
Ref. [59] for a review). For a generic oscillatory compo-
nent Pw(k) of the matter power spectrum, the effects of long
modes q, with q < 
 ≡ εk,6 can be captured by

Pw
1-loop(k) = 1

2

∫ 
 d3q

(2π )3

(�q · �k)2

q4
Pnw(q)

[
Pw(|�k + �q |)

+ Pw(|�k − �q |) − 2Pw(k)
]
.

(15)

Since features break the scale invariance of the matter power
spectrum, we cannot keep only the first few orders in
the Taylor expansion Pw(|�k + �q |) = Pw(k) + �q · �∇�kPw(k) +
O(q2/k2), but have to resum the entire series into the expo-
nential

Pw(|�k + �q |) = e�q· �∇�k Pw(k). (16)

We can therefore rewrite Eq. (15) as

Pw
1-loop(k)=

∫ 
 d3q

(2π )3

(�q · �k)2

q4
Pnw(q)[cosh(�q · �∇�k ) − 1]Pw(k).

(17)

6In this case, long modes q are defined as those modes with
wavelengths much longer than the typical width σ of the feature,
q < 
 � 2π/σ . This implies 
BAO � 0.6 h Mpc−1 for the standard
BAO signal. However, in practice, we want to predict the matter
power spectrum at any wave number k, which implies that the
prescription for long modes should also satisfy q � k. Since the
latter requirement is stronger than the former for the range of scales
under consideration in this work, we choose the separation scale to
be 
 = εk, with ε � 1 [54].
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We stress that we did not assume any particular form of Pw(k)
in this expression. It is only based on (i) calculating the con-
tribution of long modes to the one-loop power spectrum (14)
and (ii) the matter power spectrum having an oscillatory
component of any kind. Since the calculation proceeds by
applying the operator cosh(�q · �∇�k ) to the wiggle power spec-
trum Pw(k), we now consider the two oscillatory feature
models separately.

a. Linear features. As a consequence of the baryon acous-
tic oscillations in the early universe, there is an enhanced
probability to find pairs of galaxies at a separation given by
the size of the sound horizon at the drag epoch rs ≈ 150 Mpc.
We therefore find a peak in the galaxy two-point correlation
function and linearly spaced oscillations in Fourier space, with
the location and frequency given by rs. An enhanced probabil-
ity of finding galaxy pairs at another distance scale ωlin would
produce the same signatures. This is why we can compute
the damping of such feature oscillations in exactly the same
way as for the BAO spectrum. We will review them here for
a generic scale ωlin � 75 Mpc in order to not be affected by
small-scale nonlinearities.

Since the BAO signal is itself a small contribution to the
overall matter power spectrum, we neglect its contribution and
simply use Pw(k) ≡ Pw

lin(k) as defined in Eq. (9). Applying 2n
gradients to Pw

lin(k) results in

qi1 · · · qi2n �∇ki1
· · · �∇ki2n

Pw
lin(k)

≈ (−1)nqi1 · · ·qi2n k̂i1 · · · k̂i2nω
2n
linPw

lin(k), (18)

where we used the series expansion of the hyperbolic cosine
and neglected small corrections that arise from acting with the
derivative operators on the smooth envelope Pnw(k). Plugging
this result into Eq. (17), we get

Pw
1-loop(k) = −k2�2

linPw
lin(k), (19)

where we defined

�2
lin ≡ 1

6π2

∫ 


0
dq Pnw(q)[1 − j0(qωlin ) + 2 j2(qωlin )],

(20)

with the spherical Bessel function of the first kind jn(x). We
note that �lin is independent of the wave number k unless
an implicit dependence is introduced by taking 
 = 
(k) as
noted above.

b. Logarithmic features. In contrast to linear features, log-
arithmically spaced oscillations in Fourier space do not have
a simple intuitive interpretation in real space. However, we
can proceed with the calculation of the damping without ad-
ditional caveats because the derivation of Eq. (17) is valid for
any oscillations in the matter power spectrum. In Appendix A,
we show how the operator cosh(�q · �∇�k ) acts on the wiggle
component of the linear matter power spectrum in the pres-
ence of logarithmic features, which we introduced in Eqs. (5)
and (9). In consequence, the one-loop wiggle spectrum can be
computed to be

Pw
1-loop(k) = −k2

[
�2

log(k)Pw
log(k)+�̂2

log(k)
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

]
,

(21)

where we introduced

�2
log(k) ≡ 1

4π2

∫ 


0
dq Pnw(q)

×
∫ 1

−1
dμμ2

{
1−cos

[
ωlog log

(
1− qμ

k

)]}
,

(22)

�̂2
log(k) ≡ − 1

4π2

∫ 


0
dq Pnw(q)

×
∫ 1

−1
dμμ2 sin

[
ωlog log

(
1 − qμ

k

)]
,

(23)

with μ = q̂ · k̂. In contrast to the damping scales of the BAO
signal, �BAO, and of linear features, �lin, which are constant
in k, the damping factors �log and �̂log are scale dependent.
Moreover, the one-loop wiggle power spectrum is also no
longer directly proportional to the oscillatory power spectrum
at linear order. We however note that Eqs. (22) and (23) are
only valid if q � k. In this limit and for large enough values
of ωlog, these expressions can be simplified into a form similar
to Eq. (20) for linear features. Since we can always decompose
a logarithmic feature in a basis of linear oscillations, this also
conforms with our expectation to recover this result in the
appropriate limit. For now, we however choose to keep the cal-
culation general and will discuss these limits in detail below.

The crucial aspect of both one-loop results (19) and (21) is
that they correct the linear power spectrum by O(1) terms for
a wide range of parameter space and wave numbers, exactly as
in the case of the standard BAO spectrum. In other words, we
have Pw

1-loop(k) ≈ O(1)Pw
tree-level(k) for k ∈ [0.1, 0.3] h Mpc−1

because k2�2 ≈ O(1) in this range. This indicates that the
perturbative treatment is insufficient. Fortunately, it is possible
to compute the leading-order correction of long modes to the
wiggle power spectrum at all orders in perturbation theory.

2. Infrared resummation

The infrared (IR) resummation of the large-scale bulk
flows that damp the BAO signal has been studied in various
ways [52–58]. Here we follow the approach of Ref. [55], in
which the class of loop diagrams that are most IR enhanced
are first identified and then resummed into the nonperturbative
effect, the well-known exponential BAO damping. Their L-
loop diagram is given by

Pw
L-loop,LO(k) = 1

L!

L∏
i=1

[
1

2

∫ 


[dqi]P
nw(qi )D2

�qi

]
Pw(k), (24)

where the subscript LO indicates that the leading-order IR-
enhanced loops are taken into account. Furthermore, we in-
troduced the notation [dq] = d3q and defined D2

�qi
= D�qiD−�qi

with

D�qi P
w(k) = �qi · �k

q2
i

[Pw(|�k + �q |) − Pw(k)]

= �qi · �k
q2

i

(e�qi · �∇�k′ − 1)Pw(k′)
∣∣∣∣
k′=k

. (25)
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It is easy to verify that we exactly recover Eq. (17) for L = 1.
Since the rest of the calculation depends on the form of Pw(k),
we discuss the linearly and logarithmically spaced oscillations
again in turn.

a. Linear features. By employing Eq. (19) it is straightfor-
ward to compute the wiggle power spectrum of linear features
at Lth order,

Pw
L-loop,LO(k) =

(−k2�2
lin

)L

L!
Pw

lin(k). (26)

Resumming these terms to all orders, we obtain

Pw
IR,LO(k) =

∞∑
L=0

Pw
L-loop,LO(k) = e−k2�2

lin Pw
lin(k). (27)

This result is a generalization of the BAO expression with
rs → ωlin (cf., e.g., Ref. [55]). Since the value of �lin however
saturates for ωlin � 75 Mpc, we can simply use the BAO
damping scale, �lin ≈ �BAO. We can therefore factor out the
damping and write the full matter power spectrum as

Pm(k) ≈ Pnw
m (k) + e−k2�2

BAO
[
Pw

BAO(k) + Pw
lin(k)

]
, (28)

which constitutes a simple generalization of the known result
for the standard BAO signal.

b. Logarithmic features. It is slightly less trivial to com-
pute the expression of the Lth-order loop for logarithmic
features with arbitrary frequency ωlog. We proceed via induc-
tion by computing the first few orders and then deriving the
general formula. In this way, the IR-resummed wiggle power
spectrum is found to be

Pw
IR,LO(k) = e−k2�2

log(k) cos
[
k2�̂2

log(k)
]
Pw

log(k)

− e−k2�2
log(k)sin

[
k2�̂2

log(k)
]Pnw(k)

ωlog

dδPlog
ζ (k)

d log k
.

(29)

We refer to Appendix A for further details on this
calculation.

While this expression provides the leading nonperturbative
damping for logarithmic features, we find by explicit calcu-
lation that generically �̂log � �log. This can be understood
by noticing that the integrands in Eqs. (22) and (23) can be
expanded in ωlog(qμ/k) and ωlog(qμ/k)2, respectively. The
fact that the integrals get their largest contributions from
q � k explains the hierarchy between �log and �̂log. As a
result, when k2�̂log is large enough to be important, the
signal is already exponentially suppressed. It is therefore a
good approximation to set �̂log ≈ 0 for our analysis choice
of ωlog � 10 (discussed below), as confirmed by Fig. 11 in
Appendix B. We therefore get

Pw
IR,LO(k) ≈ e−k2�2

log(k)Pw
log(k). (30)

In addition, it is straightforward to show that in the limit
q/k � 1, �log(k) approaches the functional form of �lin with

the substitution ωlin → ωlog/k,7

�log(k) ≈ �lin|ωlin=ωlog/k

= 1

6π2

∫ 


0
dq Pnw(q)

[
1 − j0

(
ωlog

k
q

)

+ 2 j2

(
ωlog

ωlog

k
q

)]
, (31)

with �lin given by Eq. (20). Therefore, whenever ωlog/k �
75 Mpc, we can use the same approximation as in the linear
case, �log(k) ≈ �BAO. As we also show in Appendix B, this
approximation is good enough for the scales and frequencies
of interest in an analysis of BOSS data.8 We can therefore
further approximate Eq. (30) and write the full nonlinear
power spectrum as

Pm(k) ≈ Pnw
m (k) + e−k2�2

BAO
[
Pw

BAO(k) + Pw
log(k)

]
, (32)

i.e., in the same way as for linear features in Eq. (28).
Before concluding the discussion of the theoretical damp-

ing calculation, a couple of remarks are in order regarding
subleading corrections to Eqs. (28) and (32):

(i) We have computed the leading-order IR-resummed
power spectrum. It has however been shown that there are
subleading contributions which improve the fit to N-body sim-
ulations in the case of the featureless BAO signal [55–58,61].
Since we do not employ the theoretically computed results,
but fit the damping scale in our data analysis below, we
can neglect these corrections for both the BAO signal (as in
the standard BAO analyses) and the primordial linear and
logarithmic features.

(ii) We have not computed the damping of the mixed BAO-
feature term of Eq. (8), Pw

BAO(k)δPX
ζ . The size of this con-

tribution is of order ABAO × AX ≈ 0.05 × 0.01 and therefore
contributes less than per mil to the matter power spectrum. For
linearly spaced oscillations, we checked that it is again a good
approximation for ωlin � 2rs ≈ 300 Mpc to also factor out
the exponential BAO damping for the mixed term. We expect
this to also be the case for logarithmic features. Consequently,
we implement the mixed term in the nonlinear matter power
spectrum as follows:

Pm(k) = Pnw
m (k) + e−k2�2

BAO
[
Pw

BAO(k) + Pw
X (k)

+ Pw
BAO(k)δPX

ζ (k)
]
. (33)

Finally, from now on, we switch to the notation for the
BAO damping scale that has been adopted in data analyses,
�2

BAO → �2
nl/2. With this, we are ready to implement Eq. (33)

and search for primordial feature models in observational LSS
data.

III. FEATURE SEARCH IN LARGE-SCALE STRUCTURE

In this section, we introduce and establish our search for
features in the BOSS data set. We propose an analysis in

7This result has also been independently derived in Ref. [60] using
ωlog 
 1 as an expansion parameter.

8These findings are also confirmed by analyses of N-body simula-
tions performed in Ref. [61].
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which the amplitude and frequency of the linear and loga-
rithmic features can be constrained. Moreover, we check the
validity of our approach on mock data and compare the results
with the expected constraining power obtained in forecasts.

A. BOSS DR12 data set and analysis pipeline

The approach of our analysis, which we introduce in the
following, is very general and we expect it to apply to a
wide range of surveys. Nevertheless, some of its aspects
are particular to BOSS, such as the validity of some of the
employed approximations, and should therefore be revisited
in future analyses.

Our analysis is based on the BAO pipeline of Ref. [62]
which utilizes NBODYKIT [63]. We use the commonly em-
ployed density field reconstruction procedure [64] to reduce
the damping scale caused by gravitational evolution and
move information from higher-order statistics back to the
power spectrum [65].9 We then measure the galaxy power
spectrum following the steps described in Refs. [62,66]. The
corresponding covariance matrix is obtained by measuring
the power spectrum monopole in 999 mock catalogs (see
Sec. III C for more details on these mock catalogs). To extract
the BAO (and potential feature) signal, we marginalize over
the smooth galaxy broadband power spectrum

Pnw
g (k) = B2Pnw(k)F (k, �s) + A(k), (34)

with five polynomial terms

A(k) = a1

k3
+ a2

k2
+ a3

k
+ a4 + a5k2. (35)

Here the bias parameter B is used to marginalize over the
power spectrum amplitude, Pnw(k) is the linear no-wiggle
power spectrum model without any BAO signal, and

F (k, �s) = 1(
1 + k2�2

s /2
)2 (36)

is the velocity damping term arising from the nonlinear veloc-
ity field. Finally, the standard BAO signal and the oscillatory
features left after the marginalization described above are
modeled as

Pg(k) = Pnw
g (k)

{
1 + [

O(k/α) + δPX
ζ (k)

+ O(k/α)δPX
ζ (k)

]
e−k2�2

nl/2
}
, (37)

where O(k) ≡ Pw
BAO(k)/Pnw(k) is the standard linear BAO

spectrum, α is the associated isotropic scaling parameter, and
�nl is the nonlinear damping scale, which we keep as a free
parameter. The fiducial 
CDM cosmology is taken to be the
same as in Ref. [62], with matter density �m = 0.31, physical
baryon density ωb = 0.022, amplitude of linear matter fluctu-
ations on 8 h Mpc−1 scales σ8 = 0.824, scalar spectral index
ns = 0.96, and Hubble constant H0 = 67.6 km s−1 Mpc−1.

9We showed in Sec. II C that features are damped by large-scale
modes in the same way as the BAO signal. In consequence, recon-
struction will remove the damping of features in the same way, as
encoded by the postreconstruction value of the damping scale �nl.

The linear and logarithmic features are contained in the rel-
ative primordial spectrum δPX

ζ (k), with X = lin, log, that was
introduced in Eqs. (4) and (5).

While the above model is described in terms of a con-
tinuous wave number k, cosmological experiments can only
access a finite number of modes due to their finite survey
volume. The associated fundamental mode k f is given by
the largest scale included in the data set and is naturally
setting a resolution limit on the oscillation frequency that
we can measure. In practice, this is realized through the
survey window function which introduces couplings between
modes separated by the fundamental mode or less [66–69].
In addition, we only measure the power spectrum in discrete
band powers Pi, which average wave numbers �k with k ∈ [ki −
�k/2, ki + �k/2), where the bandwidth �k is a choice of the
analysis. As a consequence, a signal with an (effective) linear
frequency above the Nyquist frequency, ωNy = π/�k,10 will
be aliased and is therefore out of reach. Figure 4 highlights
the effects that the finite bandwidth and the window function
have on the power spectrum and illustrates why they limit the
range of frequencies that are accessible in an LSS analysis.

In the next sections, we apply this analysis pipeline to
the Baryon Oscillation Spectroscopic Survey, which was
part of Sloan Digital Sky Survey III (SDSS-III) [70,71]
and used the SDSS multifiber spectrographs [72,73] at the
2.5-m Sloan Telescope [74] of the Apache Point Observa-
tory in New Mexico. We employ the final version of this
data set, known as data release 12 (DR12) [75], which
contains spectroscopic redshifts of 1198 006 galaxies. The
survey covered 10 252 deg2 of the sky, divided in two
patches called the North Galactic Cap (NGC) and the South
Galactic Cap (SGC), and a redshift range of 0.2–0.75. Fol-
lowing the main BOSS analysis [76], we split this red-
shift range into two (independent) redshift bins given by
0.2 < z < 0.5 (low z) and 0.5 < z < 0.75 (high z). While
the standard BOSS analysis uses �k = 0.01 h Mpc−1 [62],
we employ a bandwidth of �k = 0.005 h Mpc−1, which is
close to the fundamental mode of BOSS, to maximize the
feature frequency range accessible in this data set. This limits
our analysis to ωlin � ωNy ≈ 929 Mpc, but we conservatively
take ωlin � 900 Mpc.

We analyze this data set by producing a Markov chain
Monte Carlo (MCMC) with a modified version of EMCEE [77]
which includes the Gelman-Rubin convergence criterion [78]
with scale parameter ε < 0.04. Since the inflationary signal
under consideration is isotropic, we focus on the power spec-
trum monopole and perform our analysis with one isotropic
BAO parameter α per redshift bin. Moreover, we treat the low-
and high-redshift bins of BOSS DR12 independently. Since
we use separate broadband marginalization parameters for
the NGC and the SGC, we fit for a total of 18 free parameters
per redshift bin

α, ωX , Acos
X , Asin

X ; BNGC, BSGC, �s, �nl, aNGC
n , aSGC

n . (38)

10The fundamental Nyquist frequency of a survey is determined
by k f , but for �k � k f , it is the bandwidth that sets the limiting scale
in an analysis.
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FIG. 4. Illustration of the impact of the finite volume observed in BOSS on the imprint of primordial features in the linear wiggle spectrum
for linearly (blue lines) and logarithmically spaced (red lines) oscillations with Asin

X = 0.05 and Acos
X = 0. The frequency of the standard

featureless BAO spectrum (dark gray lines) is small enough to be essentially unaffected by the effects of the band-power estimation and the
window function. The larger the frequency of the features (light colors), the larger the effect of bandpass filtering with �k = 0.005 h Mpc−1

(medium colors). Including an approximation of the window function (dark colors) (see Appendix B for details) further smooths the primordial
wiggles. In particular at the Nyquist frequency, which is given by ωNy = 929 Mpc for the BOSS DR12 data set used in this work, the feature
oscillations are completely aliased with only the featureless BAO spectrum remaining. The light gray lines indicate the estimated noise curves
for the high-redshift bin of BOSS including the nonlinear exponential damping which differs between the BOSS data (solid lines) and mock
catalogs (dashed lines). Finally, we note that the comparison of the left- and right-hand panels together with these noise curves allows for
another way to estimate the reliable frequency range for the logarithmic features that is complementary to Fig. 3.

We impose flat priors on all parameters, including the feature
frequencies which are sampled within [100, 900] Mpc and
[10,80] for linearly and logarithmically spaced oscillations,
respectively. These ranges are motivated by our discussion
of small- and large-scale nonlinearities in Sec. II (see also
Fig. 3). Given that the primordial feature parameters ωX , Asin

X ,
and Acos

X are independent of the redshift bin, we combine them
when inferring bounds on these models while marginalizing
over the other parameters (see Appendix C).

B. Forecasting methodology for BOSS

To estimate the expected level of sensitivity, validate, and
cross-check the described analysis of BOSS data, we perform
two types of forecasts: based on the Fisher information matrix
and based on the likelihood itself. The Fisher forecasts have to
be used with care, but provide useful guidelines over a large
range of possible parameters and experimental configurations
since they are relatively fast to compute. On the other hand,
the likelihood-based forecasts present a more direct picture of
the sensitivity and in particular allow us to study the effects
of noisy data and injected signals. In addition, we checked a
number of theoretical approximations using Fisher forecasts
(see Appendix B).

Our general forecasting methodology and modeling is
based on Ref. [47], with some modifications that are detailed

in Appendix B. Since we are only interested in oscillatory
features (and not broadband effects), our forecasts directly
employ the relative wiggle spectrum Og(k) ≡ Pw

g (k)/Pnw
g (k)

and not the galaxy power spectrum Pg(k) as the observable.
After marginalizing over the bias B and the polynomial co-
efficients an of Eq. (35), we expect these two to be identi-
cal. Working with Og(k) removes much of the degeneracy
with these broadband parameters and makes the forecasts
more reliable (in particular for the Fisher matrix). The Fisher
information matrix Fi j is typically defined as the average
curvature of the log-likelihood logL(�θ ) around a fiducial
point in parameter space spanned by �θ . In our BAO forecasts,
we will generally use �θ ≡ {α, Asin

X , Acos
X }, with X = lin, log,

where α is the standard BAO parameter and Asin
X and Acos

X are
the respective feature amplitudes. As in Ref. [47], we employ
a conservative broadband marginalization scheme. Since the
inverse Fisher matrix is the covariance matrix for a Gaussian
likelihood, the Cramér-Rao bound σ (θi) �

√
(F−1)ii provides

a lower limit on the marginalized constraints, with equality
commonly assumed for Fisher forecasts.

The likelihood-based forecasts are based on the same
modeling and have previously been utilized successfully in
Refs. [47,48]. In this type of forecast, we compute the like-
lihood function L(�θ ) on a grid in parameter space, given a
specific fiducial (data) spectrum computed for a fixed set of
parameters �θfid. When specified, the fiducial model includes a
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random realization of the noise to mimic the scatter of exper-
imental data points due to shot noise and cosmic variance. In
this case, we talk about noisy forecasts, which will be useful
in our estimates of the probability of experimental noise mim-
icking the presence of oscillatory features. This is in contrast
to the noiseless forecasts, for which the experimental effects
are only captured by the covariance matrix, as commonly
employed. (We emphasize that the latter forecasts are not
cosmic variance limited.) Except where noted otherwise, all
of the following BOSS forecasts are based on this likelihood-
based approach.

Finally, we note that we produce two sets of forecasts as
in Ref. [48]: one for the comparison to the mock catalogs and
another to compare to the results from the actual BOSS data.
This is due to the fact that the mock catalogs have a known
problem of overdamping the BAO spectrum which results in
an approximately 30% weaker signal for the traditional BAO
analysis [62]. When comparing to mocks, we use a (postre-
construction) nonlinear damping scale of �nl ≈ 7 h Mpc−1,
while we employ the standard (redshift-dependent) values
otherwise (see Ref. [47]). The gray noise curves in Fig. 4,
which include the nonlinear damping terms, indicate this
difference and we can anticipate that the bounds on the feature
amplitudes will be stronger on the data than in the mocks.

C. Validation on mock catalogs and in forecasts

To validate our analysis pipeline, we first perform an
analysis on the MultiDark PATCHY mock catalogs [79], which
mimic the galaxy clustering behavior observed in BOSS.
These mock data have been produced using approximate grav-
ity solvers and analytical-statistical biasing models. The cata-
logs have been calibrated to an N-body-based reference sam-
ple extracted from one of the BigMultiDark simulations [80],
which was performed using GADGET-2 [81] with 38403 parti-
cles in a volume of (2.5 h−1 Gpc)3 assuming a 
CDM cos-
mology with �m = 0.307 115, �b = 0.048 206, σ8 = 0.8288,
ns = 0.9611, and H0 = 67.77 km s−1 Mpc. The mock cata-
logs use halo abundance matching to reproduce the observed
BOSS two- and three-point clustering measurements [82].
This technique is applied as a function of redshift to reproduce
the BOSS DR12 redshift evolution. Note that these are the
same mock catalogs that we use to derive the covariance
matrix of our analysis as mentioned above. In addition, we
remark that the mock catalogs do not contain any inflationary
features since they assume a featureless primordial power
spectrum (see Appendix B for a check with injected signals).

We apply the described MCMC analysis pipeline to
100 NGC and SGC PATCHY mock catalogs for the low-
and high-redshift bins. Since nearby feature frequencies are
correlated due to the finite range of wave numbers used
in the analysis, (0.01–0.3) h Mpc−1, we bin the samples of
the resulting Markov chains with widths of �ωlin = 10 Mpc
and �ωlog = 1.0. These values have been obtained from the
Markov chains by estimating a scale-independent correlation
length of the feature frequencies ωX . For a number of different
purposes, we condense the Markov chains into the following
three statistical quantities shown in Fig. 5: the mean value θ̄i,
the variance σ 2(θi ), and their ratio, the significance θ̄i/σ (θi ),
for the parameters �θ = {α, Asin

X , Acos
X } as a function of the

frequency ωX . Apart from providing a validation of impor-

tant parts of our analysis pipeline, the comparison of these
quantities to those obtained in forecasts serves as a check of
both the mock analysis leading to results within the expected
sensitivity and the forecasts being suitable to compare to the
data as well as to perform additional checks. Moreover, the
significance provides a metric that helps to quantify any pos-
sible detections of features in the data analysis, for instance.

The results from the analysis of the low-redshift mocks are
presented in Fig. 5, with the results from the high-redshift bin
being similar. The middle panels of the mean values clearly
show that our pipeline results in an unbiased estimation of
both the BAO parameter α and the feature amplitudes given
that the mocks are generated from a featureless primordial
power spectrum. For linear features, the larger variance and
nonzero mean values around ωlin = 150 Mpc indicate the
expected degeneracy between the primordial features and
the standard BAO spectrum with a sound horizon of rs ≈
150 Mpc. (Note that the degeneracy is not perfect because the
BAO spectrum is not a perfect sine oscillation, but contains
a k-dependent amplitude and phase shift.) As expected, we
also observe that the BAO parameter α is independent of
the primordial parameters away from the scale of the sound
horizon reproducing the constraints in the standard BOSS
analysis [62]. The fact that the constraints on the feature
amplitudes become (slightly) weaker with growing frequency
can be attributed to the finite-survey effects of band pow-
ers and window function discussed above (cf. Appendix B).
Finally, the right column shows that one typically finds a 2σ

fluctuation in some frequency bins for any given mock catalog
or for a given frequency bin for some of the 100 mocks. This
should not be surprising given the roughly 80 sampled (but
partly correlated) frequencies. Furthermore, the fact that we
do not find many greater-than-3σ fluctuations is consistent
with the statistical expectations.

While the fluctuations seen in individual mocks are consis-
tent with the variance inferred from the posterior, we would
also like to know if this variance is consistent with the
expectations for this type of survey. For this purpose, we turn
to the likelihood-based forecasts whose results are shown in
direct comparison in Fig. 5. We see that the mean values
of σ (θi ) and θ̄i are in excellent agreement with the noiseless
forecasts across the entire mock catalogs. Furthermore, when
a specific realization of noise is added to these forecasts,
one finds the fluctuations in both the mean and the variance
are consistent with the fluctuations observed in the mocks.
(As expected, the mean of the noisy forecasts approaches the
noiseless forecasts in the limit of many realizations.) This
therefore further establishes that the observed fluctuations in
the significances are entirely generated by and consistent with
the experimental noise of cosmic variance and shot noise of
BOSS. In other words, these fluctuations occur because we
fit random noise. Together with the extensive checks using
forecasts presented in Appendix B, this establishes our feature
search in the clustering of galaxies and we can now turn to the
BOSS DR12 data.

IV. LARGE-SCALE STRUCTURE CONSTRAINTS

In this section, we discuss the constraints on primordial
feature models that we infer from the BOSS DR12 galaxy
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(ᾱ
−

1)
/
σ
(α

)

250 500 750
0.00

0.02

0.04

σ
(A

si
n

li
n
)

250 500 750
−0.05

0.00

0.05

Ā
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FIG. 5. Comparison of the mock analysis with likelihood-based forecasts for (a) linear and (b) logarithmic features in the high-redshift
bin. We present the standard deviation σ (θi ), mean θ̄i, and significance θ̄i/σ (θi ) for the BAO parameter α and the amplitudes Asin

X and Acos
X

as a function of the frequency ωX . We display these quantities for the individual mock catalogs together with their mean, showing very good
agreement with the noisy and noiseless forecasts.

power spectrum. Furthermore, we compare and combine these
novel bounds with those obtained from current Planck CMB
data. We conclude this section with estimates of the future
sensitivity of cosmological observations of the CMB and LSS.

A. Limits on features from BOSS DR12

We now apply our analysis and forecasting pipeline to the
BOSS DR12 data set. Figure 6 shows the posterior distri-
butions derived from the Monte Carlo Markov chains of the
low-redshift bin in terms of the same characterizing statistical
quantities as in Fig. 5 for the mock catalogs. When comparing
these results inferred from the data chains with likelihood-

based forecasts, we again find very good agreement for the
low-redshift bin and similar results for the high-redshift bin.
We reiterate that these forecasts differ from those in Fig. 5
especially in the value of the nonlinear damping scale. Since
the smaller damping scale in the data leads to a larger
signal-to-noise ratio and considerably extends the range of
wave numbers contributing to the feature search, we observe
a smaller variance, less scatter in the mean values, and a
smaller (but statistically consistent) number of greater-than-
2σ fluctuations than in the mocks. The fact that the inferred
significances in the third column of Fig. 6 agree well with
those found in the noisy forecasts indicates that we do not
have any significant detection of a feature, but rather that
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FIG. 6. Comparison of the analysis of the BOSS DR12 data set with likelihood-based forecasts for (a) linear and (b) logarithmic features
in the low-redshift bin with the same quantities as in Fig. 5. We again observe very good agreement.

the data analysis is consistent with fitting experimental noise.
We note that the oscillations in ĀY

log, Y = sin, cos, that are
visible towards smaller ωlog in the noiseless forecasts arise
due to interference of the logarithmic feature spectrum with
the BAO spectrum in the range k ∼ (0.1–0.2) h Mpc−1. The
noisy forecasts show however that this does not impact our
BOSS analysis.

Having established the reliability and robustness of our
data analysis in the amplitude parametrization of (Asin

X , Acos
X ),

we want to infer the constraints on the overall feature
amplitude AX while marginalizing over the phase ϕX .
Since we do not find any significant detections (see also
Appendix C), we are mainly interested in deriving limits on
the presence of primordial features, which is why we take

ϕX ∈ [0, 2π ) and the amplitude to be positive semidefinite:

AX =
√(

Asin
X

)2 + (
Acos

X

)2
. (39)

In this way, we can directly infer the upper limits on AX

at 95% C.L. from the Markov chains of the low- and
high-redshift bin, respectively. To derive constraints from the
entire BOSS DR12 data, we combine the two sets of Markov
chains by multiplying the binned posterior distributions. In
this process, we neglect a possible correlation between the
BAO parameter α and the feature amplitudes Asin

X and Acos
X . As

previously noted, this correlation is however small away from
feature frequencies around the BAO scale and taking this
correlation into account would only strengthen the inferred
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FIG. 7. Upper limits on the feature amplitude AX at 95% C.L. as a function of the feature frequency ωX for (a) linear and (b) logarithmic
oscillations, X = lin, log, from BOSS DR12 data alone. The dotted and dashed lines show the bounds that are separately inferred from the
low- and high-redshift bins, while the solid line indicates the current limits from LSS by combining the two BOSS redshift bins.

bounds. We refer to Appendix C for an extensive discussion
and further details.

We present the resulting first constraints on linear and
logarithmic features from large-scale structure data alone,
i.e., without the inclusion of any other external data sets or
information, in Fig. 7. Our analysis limits the amplitude of
these primordial feature models, Alin and Alog, to be less than
1–2% of the primordial scalar amplitude As in the range of
feature frequencies accessible with BOSS. Moreover, we do
not find any significant detections of features as expected from
Fig. 6 (see also Appendix C).

B. Comparison with Planck CMB bounds

While we present the first limits on feature models from
LSS alone, constraints have been inferred from CMB obser-
vations for more than a decade (cf., e.g., Refs. [1,83–95]). It
is therefore interesting to compare the deduced constraints.
While the frequency coverage is wider in the CMB, our LSS-
only bounds interestingly improve the limits derived from
current CMB data by up to a factor of 2.3 and 3.1 for ωlin �
200 Mpc and ωlog � 20, respectively. This is illustrated in
Fig. 8, which directly compares the constraints on the feature
amplitudes from our BOSS analysis with those deduced from

current CMB temperature (TT) and temperature and polariza-
tion (TTTEEE) data released by the Planck collaboration in
2015 [96,97] (see Appendix D for details on these limits).11

Since the common focus of previous analyses was on the
best-fit points or the likelihood improvement, we note that the
limits on the feature amplitudes from the CMB have not been
shown as a function of frequency before.

The improvements of our LSS bounds over those from
Planck are primarily the consequence of two effects. First, the
number of signal-dominated modes over the employed range
of wave numbers in BOSS and Planck are roughly comparable
(approximately k3

maxV and �2
max, respectively). Second, the im-

print of high-frequency oscillations in the CMB power spectra
is suppressed relative to that in the matter power spectrum,
as shown in Fig. 19 of Appendix D. In combination, the

11We show the constraints from both TT and TTTEEE since
the Planck collaboration had labeled the results employing high-
multipole polarization data as preliminary in 2015. Nevertheless, the
available information on feature models released by the collaboration
seems to have remained fairly stable between their 2015 and 2018
releases [1,95]. We will therefore use the polarization data when
deriving the joint constraints below.
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FIG. 8. Comparison of the 95% upper limits on the feature amplitudes AX , X = lin, log, from LSS and the CMB for (a) linear and
(b) logarithmic features. The solid lines indicate our new BOSS-only results and are identical to the solid lines of Fig. 7. The bounds from
Planck 2015 temperature (dotted lines) and combined temperature and polarization data (dashed lines) are for the first time displayed as a
function of feature frequency as well. Beyond those frequencies which show a degeneracy with the standard BAO spectrum, the BOSS data
are able to improve over the CMB.
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FIG. 9. Joint BOSS and Planck upper limits at 95% C.L. on the (a) linear and (b) logarithmic feature amplitudes AX , X = lin, log. The best
current constraints come from a combination of BOSS DR12 and Planck 2015 TTTEEE data (solid lines). We also show the combined BOSS
and Planck TT (dashed lines) results and include the BOSS-only bounds (dotted lines) for comparison.

signal-to-noise ratio of a high-frequency feature is somewhat
larger in BOSS than in Planck, which leads to a more stringent
constraint.

Finally, we can infer the best current limits on primordial
linearly and logarithmically oscillating feature models by
combining the BOSS and Planck data.12 These joint con-
straints are derived in Appendix D and shown in Fig. 9. As
expected, we observe that these bounds are dominated by and
therefore closely follow our limits from galaxy clustering data
of BOSS except at smaller frequencies. Generally speaking,
the bounds on features in the discussed range of frequen-
cies ωX are now established at the 1% level relative to the
primordial power spectrum.

C. Future LSS and CMB constraints

With the discussed improvements in the constraints on
primordial features inferred from BOSS over those derived
from Planck CMB data, it is timely to ask how these bounds
will evolve with future CMB and LSS surveys. To this end,
we performed Fisher matrix forecasts for upcoming, planned,
and futuristic experiments. We extend previous LSS forecasts
(cf., e.g., Refs. [34–37,39,41–43]) in a number of ways, in
particular by taking the effects of nonlinearities, band pow-
ers, and window functions into account, and (conservatively)
marginalizing over further uncertainties in the broadband
power spectrum. Furthermore, we compare the reach of LSS
surveys to that of future CMB missions. In this section,
we focus on linear features since most other features can
be easily decomposed into a basis of linear oscillations.
Before discussing the results of these forecasts, we briefly
summarize our approach and refer to Appendixes B and D
for further details.

For our future LSS forecasts, we use the relative wig-
gle spectrum Og(k) ≡ Pw

g (k)/Pnw
g (k) as the observable up

to kmax = 0.5 h Mpc−1 based on Ref. [47] as outlined in
Appendix B, including the effects of nonlinearities, band

12Combined analyses of CMB and LSS data have previously been
explored in Refs. [98–101] by employing measurements of the linear
matter power spectrum over a limited range of wave numbers without
nonlinear modeling.

powers, and window function.13 To estimate the sensitivity of
the CMB, we directly follow the methodology of Ref. [47],
employing perfectly delensed temperature and polarization
power spectra. The fiducial point in both cases is a featureless

CDM cosmology consistent with the Planck measurements
[102,103]. After computing the Fisher matrices in the am-
plitude parametrization, we obtain the forecasted 95% upper
limits on Alin by randomly sampling from the associated
Gaussian distributions and applying the same procedure as in
our BOSS analysis (see Appendixes B and C).

The resulting forecasted sensitivity of several LSS and
CMB experiments is illustrated in Fig. 10. Apart from BOSS
and Planck, we included the planned surveys DESI [104],
Euclid [105], and CMB-S3 as an umbrella for the multiple
upcoming CMB missions [106–108]. In addition, we show the
potential reach of CMB-S4 [109] (or, similarly, PICO [110])
and a “Future” LSS experiment which is assumed to map
about 108 objects up to redshift z = 3 over half of the sky.
To get a sense for the theoretically possible limits, we also
forecast a half-sky, cosmic variance-limited LSS survey, with
z � 6 and kmax = 0.75 h Mpc−1 (LSS-CVL),14 and a CMB
experiment that measures the temperature and polarization
spectra to the cosmic variance limit up to multipoles of �T

max =
3000 and �P

max = 5000 on 75% of the sky (CMB-CVL). We
note that the peak in the forecasted limits around ωlin = rs ≈
150 Mpc is due to the (approximate) degeneracy of the feature
with the BAO spectrum over the signal-dominated range of
wave numbers as previously discussed in Sec. III C.

The possibly most notable aspect of these forecasts is that
the coming generation of surveys, in particular DESI and
Euclid, are projected to be more sensitive than a cosmic-
variance-limited CMB experiment over a substantial range
of frequencies. In this precise sense, large-scale structure
will permanently surpass the CMB in sensitivity. Equally
significant is the potential for future LSS observations to
increase their constraining power on feature models. The

13In this way, we also find that our choice of kmax = 0.3 h Mpc−1

in the described analysis captures essentially all the information on
features available in the BOSS DR12 data set.

14A similar performance could in principle be achieved by a 21-cm
intensity mapping survey [111–113].
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FIG. 10. Forecasted sensitivity for the “feature spectrometer” of linear features. The potential reach of various LSS (solid lines) and CMB
(dashed lines) experiments to constrain the feature amplitude Alin at a confidence level of 95% is presented as a function of their frequency ωlin.
We refer to the main text (and Appendix B) for the details regarding the experiments and note that the positive-semidefinite nature of Alin is
taken into account in the displayed estimates. Large-scale structure surveys have the potential to improve over the CMB by more than one
order of magnitude, while the CMB will always dominate the reach in feature frequency. As we discussed in Sec. II, the LSS forecasts for
ωlin � 100 Mpc should be treated with care since these frequencies might be affected by the effects of nonlinear gravitational evolution on
small scales and be generally more sensitive to the details of signal modeling.

new BOSS limit presented in this work and the forecasts
for LSS-CVL leave approximately two orders of magni-
tude that could be achievable with a suitably designed sur-
vey. As mentioned previously, it will however be neces-
sary to revisit some of the aspects of the analysis that we
employed on BOSS data to credibly achieve such sens-
itivities.

The improvements seen in future surveys come primarily
from two factors: smaller shot noise and higher redshifts. The
constraining power of a survey is dominated by the number of
signal-dominated k modes. Most of these modes are at large
wave numbers, but are limited by the shot noise of the survey.
The significant increase in the number density of objects avail-
able in upcoming surveys substantially increases the number
of modes and drives the improvements in sensitivity. In addi-
tion, the larger redshift range of these observations means that
the nonlinear damping is reduced, increasing the size of the
signal at higher wave numbers. Furthermore, future surveys
will also benefit from larger survey volumes which can be
seen clearly in the larger range of feature frequencies ωlin

that are accessible. This is because increasing the volume
allows for finer k bins, which results in a larger Nyquist
frequency ωNy.

In summary, LSS bounds on features are currently compet-
itive with and will surpass those from the CMB (present and
future) over an increasing range of frequencies. Large-scale
structure observations have a significantly larger sensitivity
over their available frequency range due to the large number
of modes. Furthermore, the transfer of primordial power to the
matter power spectrum is more efficient than for the CMB,
which leads to a larger intrinsic signal (see Appendix D for
a more detailed discussion). On the other hand, the CMB can
cover a wider range of frequencies than will be accessible even
with futuristic LSS surveys.

V. CONCLUSION

In this paper, we explored the impact of large-scale struc-
ture data on the search for primordial features in the power
spectrum. We showed theoretically that such analyses are
promising since they are not limited by the small-scale non-
linearities of structure formation and the exponential damping
caused by large-scale bulk flows can be reliably computed
(as we explicitly did at leading order for both linear and
logarithmic features). We then applied these results to BOSS
DR12 data and found constraints comparable to (but some-
what stronger than) the best limits from Planck. The joint
bounds on these models are therefore dominated by the galaxy
clustering data. Moreover, we forecast that near-term surveys
improve on this result by up to an order of magnitude and
could outperform a cosmic variance-limited CMB experiment
over a substantial range of feature frequencies.

Large-scale structure surveys offer great promise for dra-
matically improving our understanding of the very early
universe. However, to date, these hopes have been largely
limited by the modeling uncertainties around the nonlinear
scale. In this work, we have however shown that, for the
right observables, the statistical power of current surveys is
already sufficient to significantly impact our understanding of
inflation and beyond.

While our emphasis was on primordial features, in particu-
lar from an inflationary origin, both the method and the results
have significantly broader implications. Any sufficiently sharp
feature in the matter power spectrum could be analyzed in
this way and could even be decomposed in a basis of linear
oscillations. We expect that constraints from LSS will be com-
petitive with those derived from the CMB, provided the signal
appears directly in the (dark) matter and is not suppressed by
the baryon fraction.
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Finally, the statistical power of this approach is not
limited to the power spectrum and ultimately could be
extended to higher-point statistics. Primordial features are
known to have associated non-Gaussian signatures (see, e.g.,
Refs. [114–119]) which should similarly be robust to the
complications presented by nonlinear evolution. This presents
the unique opportunity not only to perform joint CMB
power and bispectrum analyses [1,94,120,121], but to also
include the respective LSS observables. Furthermore, the
three-dimensionality of galaxy surveys may allow for entirely
new types of analyses that exploit the full angular dependence
of higher-point correlation functions. The universe has given
us the unprecedented power of large-scale structure to answer
the most basic questions of our cosmic origins. We contributed
a small step towards this ultimate goal.
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APPENDIX A: NONLINEAR DAMPING
OF LOGARITHMIC FEATURES

The effect of gravitational nonlinearities on the BAO signal
has been considered in various ways and can easily be ex-
tended to linear features as we discuss in Sec. II. The effects
of large-scale gravitational nonlinearities on logarithmically
spaced oscillations, however, have not been considered pre-
viously.15 In this Appendix, we provide additional details on
the computation of the resulting damping of these features,
complementing the discussion in Sec. II C. As in the main
text, we first detail the perturbative treatment and then resum
the infrared contributions to all orders in perturbation theory.

1. Perturbative treatment

We have found in Eq. (17) that the effect of long modes
on a generic wiggle power spectrum Pw(k) at one-loop order
implies the action of the derivative operator cosh( �q · �∇�k )
on Pw(k). For logarithmic features, we need to consider
Pw

log(k) = Pnw(k)Alog sin[ωlog log(κ ) + ϕlog], with κ = k/k�.
As in the case of linearly spaced oscillations (18), we neglect
small corrections that arise from applying the derivative op-
erators to the smooth envelope Pnw(k). Moreover, in order to
avoid clutter, we set ϕlog = 0 in the following, but note that
it is straightforward to include the phase in the calculation.
The (2n)th derivative of the oscillatory part sin[ωlog log(κ )] is
given by

�∇ki1
· · · �∇ki2n

sin[ωlog log(κ )] = k̂i1 · · · k̂i2n

2ik2n
[ fn(ωlog)κ iωlog − fn(−ωlog)κ−iωlog ]

= k̂i1 · · · k̂i2n

k2n
{[ fn(ωlog) + fn(−ωlog)] sin[ωlog log(κ )] − i[ fn(ωlog) − fn(−ωlog)] cos[ωlog log(κ )]},

(A1)

where we employed

sin(x log y) = 1

2i
(eix log y − e−ix log y) = 1

2i
(xiy − x−iy), fn(ωlog) ≡ (iωlog)!

(iωlog − 2n)!
. (A2)

We can then perform the sum over n and get

[cosh(�q · �∇�k )−1]Pw
log(k)=

{
cos

[
ωlog log

(
1 − qμ

k

)]
−1

}
Pw

log(k) +
{

sin

[
ωlog log

(
1 − qμ

k

)]}
{Alog cos[ωlog log(κ )]}Pnw(k)

=
{

cos

[
ωlog log

(
1 − qμ

k

)]
−1

}
Pw

log(k) +
{

sin

[
ωlog log

(
1 − qμ

k

)]}
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k
, (A3)

15Vasudevan et al. [60] independently performed this calculation.

033209-17



FLORIAN BEUTLER et al. PHYSICAL REVIEW RESEARCH 1, 033209 (2019)

where we defined μ ≡ k̂ · q̂. It is also useful to consider

[cosh(�q · �∇�k ) − 1]
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k
=

{
cos

[
ωlog log

(
1 − qμ

k

)]
− 1

}
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

−
{

sin

[
ωlog log

(
1 − qμ

k

)]}
Pw

log(k), (A4)

since we need this expression in the following calculation of the IR-resummed damping.

2. Infrared resummation

In Sec. II C 1, we showed that Pw
1-loop ≈ O(1)Pw

tree-level, which suggests that all higher-order terms might be equally important
corrections to the linear wiggle power spectrum of logarithmic features. In order to resum these infrared contributions, we need
to evaluate all the higher-loop diagrams of Eq. (24). In contrast to linear features, there is no straightforward way to write down
the L-loop contribution based on the one-loop result, which is why we proceed by induction. Let us start with the two-loop
contribution, L = 2, to get some intuition,

Pw
2-loop,LO(k)= 1

8

∫ 
 d3q1

(2π )3

d3q2

(2π )3
Pnw(q1)Pnw(q2)D�q1D−�q1D�q2D−�q2 Pw(k)

=−k2

4

∫ 
 d3q1

(2π )3
Pnw(q1)D�q1D−�q1

[
�2

log(k)Pw
log(k) + �̂2

log(k)
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

]

= k4

2

[
�2

log(k)

(
�2

log(k)Pw
log(k)+�̂2

log(k)
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

)
+�̂2

log(k)

(
�2

log(k)
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k
−�̂2

log(k)Pw
log(k)

)]

= k4

2

{[
�4

log(k) − �̂4
log(k)

]
Pw

log(k) + 2�2
log(k)�̂2

log(k)
Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

}
, (A5)

where we used Eqs. (A3) and (A4). Here we should note that the operator D�qD−�q does not act on �2
log(k) or �̂2

log(k) since it only
acts on the wiggle power spectra [55]. The three-loop term can be derived along the same lines to be

Pw
3-loop,LO(k) = −k6

6

{[
�6

log(k) − 3�2
log(k)�̂4

log(k)
]
Pw

log(k) + [
3�4

log(k)�̂2
log(k) − �̂6

log(k)
]Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

}
. (A6)

Considering the one-, two-, and three-loop contributions, it becomes apparent that the structure at Lth order is given by

Pw
L-loop,LO(k) = (ik)2L

L!

(
1

2

{[
�2

log(k) + i�̂2
log(k)

]L + [
�2

log(k) − i�̂2
log(k)

]L
}

Pw
log(k)

+ 1

2i

{[
�2

log(k) + i�̂2
log(k)

]L − [
�2

log(k) − i�̂2
log(k)

]L
}Pnw(k)

ωlog

dδPlog
ζ (k)

d log k

)
. (A7)

The IR-resummed wiggle power spectrum of Eq. (29) is then
obtained by resumming all the loops.

APPENDIX B: LARGE-SCALE STRUCTURE FORECASTS

We employ a suite of likelihood- and Fisher-based fore-
casts in particular to validate and cross-check our analysis
pipeline and investigate the potential reach of future surveys.
In this Appendix, we collect further details regarding these
LSS forecasts (Appendix B 1) and collect the utilized exper-
imental specifications (Appendix B 2). Furthermore, we pro-
vide additional checks of our feature search (Appendix B 3)
as well as supplementary information for the forecasts of
future experiments (Appendix B 4).

1. Forecasting with the wiggle spectrum

As previously stated, the wiggle spectrum is the main
observable in our forecasting pipeline, which was developed
in Ref. [47] for the standard BAO spectrum. In the following,
we summarize its main aspects and introduce further advances
which especially include the use of band powers and the
convolution with a window function. These components are
not required in a wide range of applications, such as light
relics, but are important to reliably predict the sensitivity to
(highly) oscillating features.

We use two types of forecasts in this work, which are
based either on the Fisher information matrix Fi j or on the
likelihood function L itself. The former are computationally
efficient and are therefore very useful in particular to cover
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a large space of parameters and experimental specifications.
However, they only allow us to access the standard deviation
around a fixed fiducial point assuming smooth noise and have
to also be taken with care given the involved approximations.
We therefore only employ these forecasts to estimate the sen-
sitivity of future surveys and for a limited number of tests. The
likelihood-based forecasts come with a larger computational
cost, but are much more versatile. For instance, we not only
can obtain the standard deviations, but also can extract the
mean values, which allows us to estimate significances and
provides more direct comparisons with MCMC analyses. In
addition, it is possible to inject random noise realizations
and/or artificial feature signals. For these reasons, the ma-
jority of forecasts in this work are of the latter type. In the
following, we first discuss the Fisher methodology, since it is
commonly employed, and especially highlight modifications
to the standard approach. We then build on this pipeline and
introduce the likelihood-based forecasts.

a. Fisher matrix forecasts

Focusing on the oscillatory part of the power spectrum, the
Fisher matrix of a galaxy survey with multiple (independent)
redshift bins z can generally be approximated by16 [47]

Flm =
∑
z,ki

�kk2
i

(2π )2

∫ 1

−1

dμ

2

Dz(ki, μ)2

[1 + Dz(ki, μ)Oz(ki, μ)]2

× ∂Oz(ki, μ)

∂θl

∂Oz(ki, μ)

∂θm
Veff (ki, μ; z),

(B1)

where μ is the cosine between the wave vector �k and the
line of sight, Oz(k, μ) = Pw

z (k, μ)/Pnw
z (k, μ) is the (linear)

relative anisotropic wiggle spectrum, Dz(k, μ) is the nonlinear
damping function, and Veff (k, μ) is the effective volume. In a
featureless universe, the wiggle spectrum is simply the BAO
spectrum, while it may also contain a feature signal in our
case. Since we assume isotropic clustering,17 this quantity is
given by

Oz(k, μ) = Oz(k)

≡ Az(k) + Bz(k){O(k/q; z)

+ [1 + O(k/q; z)]δPζ (k)}, (B2)

with the linear BAO spectrum O(k; z) = Pw
BAO(k; z)/Pnw(k; z)

being evaluated at the rescaled wave number k/q =
Dfid

V (z)/DV (z)k. This rescaling with the radial BAO dilation
DV ∝ (D2

A/H )1/3 is necessary because the wave numbers k
are derived from the measured angles and redshifts in a
survey using the angular diameter distance Dfid

A (z) and Hubble

16This is based on the standard Fisher matrix for galaxy surveys of
Ref. [126], which employs the galaxy power spectrum Pg(k, μ) as
the observable.

17In other words, we take the limit of a spherically averaged clus-
tering measurement. This is motivated by the fact that the primordial
information that we are interested in is strictly isotropic and most
of the information in BOSS is contained in the monopole power
spectrum.

rate Hfid(z) in a fiducial cosmology.18 Moreover, we intro-
duced the free functions Bz(k) and Az(k) which are taken
to be smooth polynomials in k and distinct in each redshift
bin,

∑
m bm,zk2m and

∑
m an,zkn, with m = 0, . . . , 3 and n =

0, . . . , 4. By marginalizing over these functions with fiducial
values an,z = 0, b0,z = 1, and bm �=0,z = 0 in our forecasts,
we effectively discard any information in the observable that
might be affected by nonlinearities, biasing, or observational
systematics so that we only use a robust signal of the pri-
mordial features and the standard BAO imprint. Finally, the
nonlinear damping and effective volume are implemented as

Dz(k, μ) ≈ e−k2�nl (z)2/2, (B3)

Veff (k, μ; z) ≈
[

n̄g(z)Pg(k, μ; z)

n̄g(z)Pg(k, μ; z) + 1

]2

Vz, (B4)

where we assumed a constant nonlinear damping scale
�nl(k, μ; z) ≈ �nl(z) and position independence of the co-
moving number density of galaxies ng(�r ) ≈ n̄g = const in
each redshift bin. Furthermore, the survey volume in a given
redshift bin with spherical geometry is denoted by Vz and the
fiducial galaxy power spectrum by Pg(k), which in particular
includes the linear galaxy bias. We note that we implicitly
assumed in Eq. (B1) that the feature spectrum is nonlinearly
damped in the same way as the BAO spectrum (cf. Sec. II C).
(We reiterate that this is a brief summary and all details can
be found in Ref. [47], including the modeling of the galaxy
power spectrum, the nonlinear damping scale, and the effects
of reconstruction.)

We have already written the Fisher matrix (B1) as a
sum over discrete wave numbers since the finite size of a
galaxy survey introduces both a minimum accessible wave
number19 kmin and a minimum binning width in Fourier space
given by the fundamental mode, �k � kmin. For many current
applications, the width �k has become small enough so that
the power spectrum P(k) is smooth in a given band [ki −
�k/2, ki + �k/2] and we can approximate it by band powers
Pi ≈ P(ki ). However, highly oscillating primordial features
introduce a significant variation within any such band so that
we have to compute the finite-size band powers according to

Pi = 1

�k

∫ ki+�k/2

ki−�k/2
dk P(k). (B5)

The band-power-averaged wiggle spectrum, which contains
both the BAO and the feature spectra, is then given by Oi =
(Pi − Pnw

i )/Pnw
i , for instance. To illustrate the effect of this

averaging procedure (see also Fig. 4), the bandpass-filtered
primordial power spectrum (3) with linear features is given by

Plin
ζ ,i ≈ Pζ ,0(ki )

[
1 + sinc(ωlin�k/2)δPlin

ζ (ki )
]
, (B6)

18In contrast to the data analysis, we do not additionally rescale
by the fiducial ratio of the sound horizon in our forecasts since we
recompute the BAO spectrum O(k) for different cosmologies using
CLASS [127].

19The minimum wave number, or fundamental mode, which is
available in a survey with a spherical geometry is in principle given
by the survey volume V according to kmin = 2π [3V/(4π )]−1/3.
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where sinc(x) = sin(x)/x and we assumed Pζ ,0(k) ≈ Pζ ,0(ki )
for k ∈ [ki − �k/2, ki + �k/2]. This implies that the oscil-
latory features are suppressed unless ωlin�k � 2, or ωlin �
2/�k ≈ 600 Mpc for �k = 0.005 h Mpc−1. For logarithmic
features, we could decompose the oscillations into linear
features in a given band and arrive at an analogous conclusion.

The second effect of a finite survey volume that we have
to take into account is the convolution of the power spectrum
with the window function. This is of course directly related
to the bandpass filtering in reality, although we separate
them here for convenience. Whereas the former averages the
power spectrum over the wave vectors �k in a given band, the
window function introduces a coupling between otherwise in-
dependent wave numbers. For an all-sky survey with redshift
range [z−, z+] and effective redshift z̄, the spherical top-hat
window function is

Wz̄(�x) = Wz̄(r, θ, φ) = 1

Vz̄
[�(d+ − r) − �(d− − r)], (B7)

where Vz̄ = 4π (d3
+ − d3

−)/3 is the bin volume, d± ≡ dc(z±) =∫ z±
0 dz c/H (z) are the comoving distances to the edges of

the survey (or, equivalently, redshift bin), and �(x) is the
Heaviside step function. In practice, however, we do not have
access to the full sky, but only to a fraction fsky < 1. For the
purpose of our forecasts, we therefore include an incomplete
sky by restricting the integration over the azimuthal angle φ:

Wz̄(�x)= 1

Vz̄
[�(d+−r)−�(d−−r)]�(2π fsky−φ). (B8)

In this case, the Fourier transform of the window function is
radial,20

Wz̄(�k) = Wz̄(k)

= 3

d3+ − d3−

[
d3

+
kd+

j1(kd+) − d3
−

kd−
j1(kd−)

]
, (B9)

with the spherical Bessel function of the first kind jn(x). By
restricting the power spectrum to finite-size band powers Pi

and using the fact that the window function (B9) is radial, we
can rewrite the convolved power spectrum, which is generally
given by

Pc(k, z̄) =
∫

d3k′

(2π )3
P(k′, z̄)W 2

z̄ (�k − �k′), (B10)

in terms of a matrix equation

Pc
i = wi jPj, (B11)

where we defined

wi j (z̄) = k2
j �k

(2π )2

∫ 1

−1
dy W 2

z̄

(√
k2

i + k2
j − 2kik jy

)
, (B12)

which we can evaluate numerically for all ki and k j of an LSS
survey. As in the case of band powers, we again decompose

20Although this is an idealized form of the window function, we
explicitly checked that forecasts employing the actual NGC and SGC
window functions of BOSS lead to consistent results.

the convolved spectrum Pc
i in its smooth and oscillatory com-

ponents according to Eq. (7). To summarize, the main exten-
sions to the Fisher forecasting methodology of Ref. [47] based
on the wiggle spectrum are given in Eqs. (B5) and (B11).

b. Likelihood-based forecasts

We also implemented forecasts based on the likelihood
function L(�θ ) itself, as previously reported in Refs. [47,48].
While the modeling of the observables and covariances is
the same as in the Fisher analyses, we directly evaluate the
likelihood function L(�θ ) on a grid in the parameter space21 of
�θ = (αz, Asin

X , Acos
X ) as follows:

−2 logL(�θ ) = χ2(�θ )

=
∑
z,ki

�k k2
i [Oz(ki; �θ ) − Õz(ki )]

T

× C−1(ki, z)[Oz(ki; �θ ) − Õz(ki )].

(B13)

Here we used the theoretical (model) wiggle spec-
trum Oz(ki; �θ ), the fiducial (data) spectrum Õz(ki ), and the
inverse covariance C−1

z (ki ) of the respective experiment. The
latter is computed as in the Fisher matrix (B1) and includes the
(white) instrumental noise contribution, cosmic variance, and
the exponential nonlinear damping. We note that all spectra
are generally bandpass filtered and convolved with the win-
dow function as discussed above, Oc

i = (Pc
i − Pnw,c

i )/Pnw,c
i ,

which we have omitted however in Eq. (B13) for ease of
notation.

The model spectrum Oz varies over the considered param-
eter space and is defined as

Oz(k; �θ ; ai, bi ) = Bz(k){Ofid(k/αz, z)

+ [1 + Ofid(k/αz, z)]δPζ (k)}
+ Az(k), (B14)

where Ofid is the linear BAO spectrum of the fiducial cosmol-
ogy, αz = α(z) is the isotropic BAO parameter, and Az(k) =∑n

i=0 ai,zki and Bz(k) = ∑m
j=0 b j,zk2 j are the same polyno-

mial broadband polynomials as above, where six terms with
m = n = 2 turn out to be sufficient. We marginalize over these
terms by minimizing χ2 of Eq. (B13) for these parameters,
i.e., χ2(�θ ) = minan,bm{χ2(�θ ; an, bm)}.

The data spectrum Õz is computed by evaluating Eq. (B14)
for a fiducial set of parameters �θfid (which can include nonzero
feature amplitudes), with Bz(k) = 1 and Az(k) = 0. In addi-
tion to the smooth data with the experimental uncertainties
being simply captured by the covariance matrix, we also
perform forecasts with noisy data. In this case, we obtain the
data spectrum by randomly picking the value of Õi from a

21We note that it is advantageous to employ the amplitude
parametrization in terms of (Asin

X , Acos
X ) over the phase parametriza-

tion in both the Fisher- and likelihood-based forecasts for a few rea-
sons. For instance, we can use a fiducial featureless power spectrum,
the likelihood in (Asin

X , Acos
X ) is close to Gaussian, and we do not have

to deal with the rather flat posterior in the phase ϕX .
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TABLE I. Basic specifications for BOSS (inspired by Ref. [62] as detailed in Ref. [47]) with a sky area of � = 10 252 deg2 resulting in
roughly 1.2 × 106 objects in a volume of about 6.4 h−3 Gpc3. We separately list the characteristic quantities employed when comparing to
(a) the BOSS DR12 data and (b) the corresponding mock catalogs since they differ in the linear bias b and the (postreconstruction-equivalent)
nonlinear damping scale �nl as discussed in the main text.

(a)

z̄ zmin zmax b 103n̄g (h3 Mpc−3) V (h−3 Gpc3) �nl (h−1 Mpc)

0.350 0.20 0.50 1.63 0.275 2.20 4.6
0.625 0.50 0.75 1.88 0.142 4.19 4.4

(b)

0.350 0.20 0.50 2.04 0.275 2.20 7.0
0.625 0.50 0.75 2.34 0.142 4.19 7.0

one-dimensional Gaussian distribution function with mean Õi

and variance C(ki ). This therefore simulates the scatter of
the actual measurement due to the expected noise of an
experiment (including sample variance) as captured by the
covariance matrix. We can include this in our forecasts in
order to estimate how likely it might be that features are found
in the noise instead of the data or, in other words, that the
noise mimics the presence of oscillatory features. In the main
text, this constitutes an important check of the mock and data
analyses and provides an estimate of the actual significance of
possible feature signals.

Having computed the likelihood function L(�θ ) over all
of parameter space in which it is non-negligible, we then
infer the predicted posterior distribution p(θl ) of a parameter
θl by marginalizing over all other parameters θm �=l . Since
the one-dimensional posteriors for α, Asin

X , and Acos
X are very

close to Gaussian, we finally obtain the mean θ̄l and standard
deviation σ (θl ) through a Gaussian fit to p(θl ).

2. Experimental specifications

We build on not only the signal modeling of Ref. [47], but
also its characterization of the LSS surveys (which was de-
rived from Ref. [128]). In general, we can characterize a cos-
mological galaxy survey by the following quantities: redshift
range, sky coverage, linear galaxy bias b per redshift bin, and
number (density) of objects Ng (n̄g) in each redshift bin. Here
we neglect the redshift error in spectroscopic surveys, since it
is usually small compared to the damping scales, but would
need to take it into account for photometric observations. For
planned experiments, such as DESI and Euclid, we use spe-
cific values (see Appendix B of Ref. [47]), with Tables I and II
updating the employed parametrizations of BOSS and DESI.
For more distant surveys, we assume a constant number den-
sity n̄g for a given total number of objects Ng and a linear bias
of b(z = 0) = 1. Our ‘Future’ LSS survey contains Ng = 108

objects distributed over half the sky up to the redshift zmax =3.
The experiment referred to as LSS-CVL is cosmic variance
limited on all employed scales and is designed to survey half
of the sky for z � 6. In our forecasts for BOSS, we generally
take the maximum wave number to be kmax = 0.3 h Mpc−1

to coincide with the choice in the data analysis. All other
(Fisher) forecasts use kmax = 0.5 h Mpc−1, except for LSS-
CVL, for which we choose kmax = 0.75 h Mpc−1 since further

extending the range of wave numbers would likely yield only
minor improvements in sensitivity due to the exponential
damping.

3. Additional tests of the pipeline

Given the described forecasting pipeline, we can provide
additional insights into our primordial feature search and
discuss some of the tests that we performed. In the following,
we study the impact of the approximations in the theoretical
damping calculation on the BOSS constraints, revisit the im-
pact of the finite-volume effects, and in particular test whether
injected feature signals can be detected in the analysis.

a. Check of damping assumptions

When computing the nonlinear damping of the linear
and logarithmic oscillations from large-scale bulk flows in
Sec. II C, we made a number of simplifying approximations
which allowed us to use a single damping scale, the standard

TABLE II. Basic specifications for DESI (derived from
Ref. [104] as explained in Ref. [47]), covering a sky area � =
14 000 deg2 and resulting in roughly 2.7 × 107 objects in a volume
of about 59 h−3 Gpc3.

z̄ b 103n̄g (h3 Mpc−3) V (h−3 Gpc3)

0.05 1.40 38.8 0.0357
0.15 1.48 15.7 0.229
0.25 1.55 3.96 0.563
0.35 1.61 0.883 0.985
0.45 1.67 0.0992 1.45
0.65 2.05 0.591 2.41
0.75 1.71 1.31 2.86
0.85 1.71 0.920 3.28
0.95 1.53 0.779 3.66
1.05 1.45 0.466 4.00
1.15 1.48 0.398 4.30
1.25 1.47 0.387 4.56
1.35 1.47 0.180 4.79
1.45 1.69 0.133 4.98
1.55 1.68 0.110 5.14
1.65 2.27 0.0387 5.28
1.75 2.45 0.0197 5.39
1.85 2.47 0.0208 5.48
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FIG. 11. Impact of the various approximations to the theoretical damping scales on the BOSS constraints for (a) linear and (b) logarithmic
features. We display the relative difference of the Fisher-forecasted standard deviation, δσ = σ/σfull, for the BAO parameter α and the feature
amplitudes Asin

X and Acos
X , where σfull is obtained using the full theoretical result. In the considered parameter space, the constraints are essentially

unaffected by �̂log(k). Here we used the effective postreconstruction damping scales inferred at z = 0.

BAO damping scale �BAO, in our data analysis. We can
explicitly check the validity of these approximations in Fisher
forecasts that generalize Eq. (B1) to include the full resummed
expressions for the linear and logarithmic spectra of Eqs. (27)
and (29) and compare with the approximate formulas of
Eqs. (28) and (32), respectively.

In order to perform this test, we need to numerically
evaluate the three damping scales of Eqs. (20), (22), and (23)
while choosing an appropriate value of the cutoff scale 


which separates long modes q from other wave numbers. The
crucial point of the approximations is the fact that all the
computations are strictly valid in the regime of q/k � 1, i.e.,
a separation of long and short modes. The cutoff 
 therefore
needs to be smaller than the wave numbers k of interest. At
the same time, however, all long modes within the support
of the feature also experience a damping effect. This is the
reason why it is sensible to take 
 = εk for some ε � 1 (we
employ ε = 0.5).22 This choice leads to all damping scales,
including �BAO, to be effectively k dependent, �X → �X (k).
Nevertheless, it is important to remark once again that any
dependence of these quantities on the specific choice of the
cutoff indicates that next-to-leading-order effects should be
taken into account (see, e.g., Ref. [55] for the case of the
standard BAO signal). Since we fit �BAO = const in the data
analysis (as is standard), we also compute this damping scale

22We note that the logarithmic damping factors �log and �̂log are
not well defined in the limit 
 → k because the argument of the
logarithms in Eqs. (22) and (23) approaches zero. This is precisely
the limit in which the computation becomes invalid since it is based
on the separation of long and short modes. Interestingly, this is not
the case for the BAO damping factor �BAO, whose value asymptotes
for 
 � 0.5 h Mpc−1 and can be integrated to 
 → +∞ without
significantly affecting the value of �BAO, even though the validity of
the nonlinear damping calculation breaks down at 
 ∼ k [54].

for a k-independent cutoff. Motivated by the maximum wave
number of kmax = 0.3 h Mpc−1, we take 
 = 0.15 h Mpc−1

in this case.
Figure 11 shows the effect of the various approximations

on the estimated constraints of BOSS. We note that we eval-
uate the damping scales at the redshift z = 0 for simplicity,
given that the redshift dependence is the same for all damping
terms. This however also means that we effectively exaggerate
the employed damping scales and the actual impact on the
constraints is even smaller than shown. Even with this con-
servative choice, we can deduce that all of our assumptions
are valid in the context of the BOSS DR12 data set. To be
more specific, assuming �̂log(k) ≈ 0 has basically no visible
impact on the constraints in the displayed parameter space of
interest in this work, as expected. In addition, approximating
�lin(k), �log(k) ≈ �BAO(k) only results in subpercent varia-
tions to the constraints for ωlin away from the BAO scale and
ωlog � 20, and differences at the few-percent level for ωlog ∈
[10, 20]. Finally, taking �BAO to be constant instead of com-
puting it with a k-dependent cutoff penalizes the constraints
by roughly 3% for all linear and logarithmic frequencies. This
implies that all of the employed approximations are justified
in the context of the BOSS DR12 data set and the upper limits
that we infer in Sec. IV are in fact conservative. Nevertheless,
the constraints inferred in future surveys will likely benefit
from using the theoretically computed forms of the damping
scales �lin and �log.

b. Impact of finite-volume effects

Our ability to search for highly oscillating features is
limited by the fact that we have access to only a finite
cosmic volume, as we discussed in the main text. Apart
from introducing a cutoff at the Nyquist frequency due to
aliasing, the impact of finite-size band powers and the win-
dow function has to be taken into account. We illustrate the
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FIG. 12. Illustration of the effects of the finite survey volume of BOSS on the sensitivity to (a) linear and (b) logarithmic features. We
compare the likelihood-based constraints on the BAO parameter α and the feature amplitudes Asin

X and Acos
X when using continuous spectra P(k),

bandpass-filtered spectra Pi, and window-function-convolved spectra Pc
i .

consequences of these effects on the sensitivity of BOSS in
Fig. 12. While the constraints on the BAO parameter α are
essentially unchanged, as expected given the BAO scale of
150 Mpc, we observe a gradual decrease in sensitivity to the
feature amplitudes for larger frequencies ωX . In consequence,
we would overestimate the constraining power of BOSS by up
to a factor of 2 if we neglected the finite volume of the survey.

These results can be easily understood in the context of
Fig. 4, which shows the impact of the finite-size effects
on the spectra themselves. If we could employ continuous
spectra P(k), a given primordial signal would have the same
amplitude independent of the feature frequency in the analy-
sis, resulting in the same sensitivity on all parameters (except
for the interference with the BAO signal). Since the amplitude
effectively decreases for larger ωX when bandpass filtering the
power spectrum [proportional to sinc(ωlin�k/2) according to
Eq. (B6) for linear features], the constraints gradually weaken
and the feature model becomes essentially unconstrained at
the Nyquist frequency. Convolving the band powers addition-
ally with the window function of the survey couples otherwise
independent modes, which leads to an additional reduction in
the amplitude and consequently the sensitivity. Finally, the
frequency of the standard BAO signal (or equivalently the
survey volume) is large enough so that the BAO spectrum and
ultimately the constraints on α are barely affected.

c. Detection of injected signals

Our likelihood-based forecasts also allow us to test whether
we would be able to detect a feature signal if it were present
in the data. This is an important check of our analysis pipeline
that we cannot perform on mock catalogs because their un-
derlying primordial spectrum is featureless. Since the results
of the forecasting pipeline are consistent with both the mock
and data analyses, we can still reliably perform a search for
injected signals.

We performed this test for a wide range of parame-
ters. In Fig. 13, we show the representative results for

linearly and logarithmically spaced oscillations character-
ized by (α, ωlin, Asin

lin , Acos
lin ) = (1.01, 500 Mpc, 0.04, 0) and

(α, ωlog, Asin
log, Acos

log ) = (0.98, 45, 0, 0.05). These parameters
were chosen to produce a roughly 5σ signal for a single
redshift bin in the center of our frequency range. Here we
display the standard deviation and mean values inferred from
the marginalized likelihood function (and the significance of
any signal) of the low-z bin, as in Fig. 6 for the featureless
cosmology, but note that the results are as consistent and
positive in the high-redshift bin.

For the linear features in the top row of Fig. 13, we
first of all see that the posterior of the BAO parameter α is
barely affected by the injected feature signal. In addition, the
underlying value of α is correctly recovered within the noise-
related scatter. While the standard deviations of the feature
amplitudes are hardly affected, their mean values clearly show
the characteristic signal around ωlin = 500 Mpc: Āsin

lin and Ācos
lin

peak/vanish at the injected value and frequency and approach
zero away from it in an oscillatory fashion. This is due to
the fact that features with neighboring frequencies interfere
with the signal and can also be fitted with different ampli-
tudes since we only probe a limited range of wave numbers.
Nevertheless, the shape of the signal in the sine and cosine
amplitudes clearly picks out the true value. Furthermore, the
noise-induced scatter in the mean values is essentially absent
around the injected signal, while it is consistent with the
featureless case away from it. Given these observations, it is
also evident that the significance of the signal is reproduced
at the expected value (with some small variations in a given
noise realization).

The injected logarithmic signal can be extracted with a
similar level of confidence. We again observe the same char-
acteristic behavior of the mean values around the injected
feature frequency ωlog = 45. Since we employed a primordial
cosine instead of sine feature, the roles of Asin

log and Acos
log

are naturally reversed and correctly captured. In contrast to
the linear oscillations, however, the standard deviations show
additional variations and the mean values exhibit a slightly
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FIG. 13. Detection of feature signals in likelihood-based forecasts of the low-redshift bin for (a) linearly and (b) logarithmically
spaced oscillations. This test uses artificially injected signals with (α, ωlin, Asin

lin , Acos
lin ) = (1.01, 500 Mpc, 0.04, 0) and (α, ωlog, Asin

log, Acos
log ) =

(0.98, 45, 0, 0.05), which can be reliably inferred with the expected significances. For comparison, we also show the results for a featureless
spectrum with α = 1 as employed in the main text.

more pronounced ringing across the ωlog range. Given the
noise levels of BOSS, however, this does not have a significant
impact on the detectability of a primordial signal with a large
enough amplitude.

For both types of feature models, we find similar results
over a wide range of frequencies. As could be expected,
however, it becomes somewhat harder to extract signals with
small values of ωX due to the interference with the standard
BAO signal and associated effects. Nevertheless, we should
be able to extract even these oscillations from the data due
to their overall signature. We can therefore conclude that we
should be able to detect any primordially imprinted oscilla-

tory feature with a large enough amplitude in our analysis
pipeline.

4. Forecasts for future LSS surveys

We not only consider currently available data, but also
employ Fisher forecasts in Sec. IV C to estimate the sensitivity
of future LSS surveys to primordial features. Since large
classes of feature models can be expressed in a basis of
linear oscillations, we focus on the “feature spectrometer”.
As in the rest of this work, we initially work in the pa-
rameter space spanned by the isotropic BAO parameter α
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FIG. 14. Fisher forecasts of the sensitivity of future LSS surveys (see Appendix B 2 for details regarding the employed survey
specifications) to the primordial feature amplitudes in the amplitude parametrization, AY

lin, with Y = sin, cos. The constraints on Asin
lin are shown

in solid lines, while the standard deviation σ (Acos
lin ) is displayed with dashed lines. Due to the possible impact of small-scale nonlinearities and

a reduced damping from large-scale bulk flows, the forecasts for ωlin � 100 Mpc should be taken with care.

and the feature amplitudes Asin
lin and Acos

lin , fiducially taken to
be α = 1 and Asin

lin = Acos
lin = 0. Since we use a total of nine

polynomial broadband parameters (am�4,z and bm�3,z) and
compute the Fisher matrices for a given frequency ωlin, these
forecasts contain 12 parameters per redshift bin. Summing
the broadband-marginalized Fisher matrices, we obtain the
forecasted standard deviations Asin

lin and Acos
lin displayed in

Fig. 14. Apart from the well-known degeneracy with the BAO
scale, we observe that the constraints on Asin

lin and Acos
lin are

basically identical for ωlin � 250 Mpc but oscillate around
a common mean value for smaller frequencies. This is as
expected and exemplifies again that the sine and cosine feature
terms are essentially independent modes for large enough
frequencies ωlin.

To turn these constraints into limits on the overall fea-
ture amplitude Alin while retaining the correlations between
the parameters, we draw random samples from a Gaussian
distribution whose covariance matrix is given by the inverse
Fisher matrix. Since the amplitude Alin is positive semidefi-
nite, which implies that the mean of Alin can only fluctuate
upward from zero, we also repeatedly take the mean values
from Gaussian distributions with zero mean and covariance
given by the same inverse Fisher matrix. Finally, we can
compute the 95% confidence limits on Alin by similar means
as in our BOSS analysis above (see Appendix C). In this way,
we obtain the forecasted bounds of Fig. 10. To conclude, we
remark that these constraints are likely conservative since we
employed the same constant damping scale for both the BAO
and the feature spectra (cf. Appendix B 3 a).

APPENDIX C: FURTHER DETAILS
ON THE BOSS ANALYSIS

We employ the amplitude parametrization of the feature
models in our analysis and forecasting pipelines since the
posterior distributions of Asin

X and Acos
X , X = lin, log, are close

to Gaussian (unlike the phase ϕX ). Since the phase of the

primordial features is not expected to carry much information
about the inflationary epoch (at least in the prediscovery era),
we are ultimately interested in the constraints on the overall
feature amplitude AX . In this Appendix, we describe our
method to combine the two BOSS redshift bins and infer the
reported upper limits from the Monte Carlo Markov chains,
including some checks (Appendix C 1). Moreover, we outline
how we determine whether the data exhibits any statistically
significant detections of features (Appendix C 2).

1. From posteriors to upper limits

The analysis pipeline of Sec. III A results in Markov chains
that provide samples from the marginalized posterior distribu-
tion as a function of Asin

X and Acos
X in each feature frequency

bin. It is useful to consider constraints on the two-dimensional
parameter space of these feature amplitudes as constraints in
the complex plane. From this perspective, we are interested
in computing the upper limits on the absolute value of the
complex amplitude AX =

√
(Asin

X )2 + (Acos
X )2 for which there

is however no unique procedure. Since the feature phase is
not an independent parameter, the upper limit is actually not a
single number, but depends on the phase ϕX . This is important
because the maximum posterior point in general will not be
at Asin

X = Acos
X = 0 in the presence of noise. Given that we

marginalize over the feature phase, it is important to keep
in mind that a uniform prior on AX and ϕX corresponds to
a nonuniform prior in the Asin

X -Acos
X plane and vice versa.

Our method of compressing the available information
considers circles in the Asin

X -Acos
X plane centered at the origin

that enclose a given probability or, equivalently, a fraction
of all Monte Carlo samples. We therefore define the upper
limit on AX at a given confidence level as the radius of
the respective circle. For the separate MCMCs of the low-
and high-redshift bins, this means that we compute the
amplitude AX for each sample and rank order the resulting
values. The upper limit is then given by the value of AX at the
desired confidence limit percentile.
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FIG. 15. Illustration of our method to infer 95% confidence limits on the feature amplitude AX from Markov chain samples of (Asin
X , Acos

X ).
The top panels show the pixelated posteriors for the low-z and the high-z bins, and the joint pixelated BOSS posterior for the frequency bin
centered at ωlin = 700 Mpc. In the bottom panels, the pixelated posterior for the respective Planck TTTEEE samples and the joint posterior
for BOSS and Planck are displayed. The red contours enclose the pixelated 95% confidence region around the maximum posterior point. The
solid (orange) and dashed (green) circles enclose 95% of the total probability around the origin AX = 0 (marked by the white dot) as obtained
from the pixelated posterior and an ordered list, respectively. The agreement between these circles demonstrates that the error introduced by
pixelization is negligible. For BOSS and the joint BOSS+Planck constraint, the dashed (purple) circle shows the constraint when combining the
separate low-z, high-z, and CMB confidence limits by adding inverse variances, which demonstrates that the non-Gaussianity of the likelihood
has a non-negligible effect on the inferred upper limit.

However, we are not only interested in the constraints
from a single redshift bin, but want to compute joint limits
from both BOSS redshift bins (or of the LSS and the CMB).
Although running a joint MCMC would be the formally
correct statistical approach, it would result in the simultaneous
variation of 33 parameters (and even more for a joint analysis
with the CMB), which would be computationally more com-
plex and expensive. This is why we proceed as follows:

(i) We bin the samples of a single MCMC in the Asin
X -

Acos
X plane. This results in a pixelated posterior distribution

pi(Asin
X , Acos

X ).
(ii) We obtain the joint posterior by multiplying the pixe-

lated posteriors,
∏

i pi(Asin
X , Acos

X ).
(iii) We measure the probability P(AX ) enclosed in a circle

centered at the origin of the Asin
X -Acos

X plane as a function of its
radius and obtain the inverse (interpolated) function ÃX (P).
In this way, the 95% confidence limit is then given by
ÃX (P = 0.95), for instance. We illustrate this approach in
Fig. 15 for one feature frequency bin. This figure shows that
the phase-independent limits are necessarily less constraining
than those centered at the maximum posterior value since they
also enclose low-likelihood regions away from the maximum.
Nevertheless, the described method allows us to correctly
infer the quantity that we are interested in, the maximum value
of the feature amplitude AX that is allowed by the data for
any phase ϕX . The comparison of the two circles for the joint
posteriors also demonstrates that compressing the confidence
limits into a single upper limit for a given single data set

and subsequently combining them by summing the inverse
variances would result in a significant error on the inferred
upper limits from joint probes.

Having outlined our procedure, a few comments are in
order. As a consequence of working in the two-dimensional
plane spanned by Asin

X and Acos
X , we assumed that the fea-

ture amplitudes are completely uncorrelated with any of the
other parameters, in particular the BAO parameter α. We
explicitly confirmed this assumption by computing the three-
dimensional (Gaussian) covariance matrix in each frequency
bin to estimate the correlation coefficient ρ in forecasts and
on data. For linear (logarithmic) features in BOSS, we find
that |ρ| is consistent with zero but approaches significant val-
ues (up to about 0.5) for ωlin � 200 (ωlog � 30), as expected
due to the interference with the standard BAO signal. Since
this effect is minimal and including these correlations would
only strengthen the bounds, the deduced bounds are conser-
vative, albeit slightly suboptimal because we are effectively
assuming a different set of nonamplitude parameters in each
redshift bin.

We also check that the pixelation does not introduce
numerical artifacts due to the choice of too small or too
large pixel sizes. The former could lead to a biased estimate
because the posterior distribution becomes noisy, whereas the
latter might artificially smooth the posterior. To mitigate these
possibilities, while including all samples in the analysis, we
separately set the pixel size in each frequency bin. For this
purpose, we sampled Asin

X and Asin
X in about 100 pixels over the
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FIG. 16. Convergence test of the BOSS analyses for (a) linear and (b) logarithmic features. The constraints inferred from splitting the
Markov chains into two independent halves (light colors) are compared to those derived from all Markov chains (dark color). Note that the
former bounds are barely visible under the latter due to the high level of convergence.

range given by ±1.2 max{|Asin
X |, |Acos

X |}. For a single MCMC,
we find that this choice results in virtually the same confidence
limits as when inferring them from a rank-ordered list of
samples (while combining the latter in a Gaussian way leads
to suboptimal joint constraints).

Finally, it is important to check that the sampling noise
due to the inherently finite length of the Markov chains does
not affect the constraints. We therefore test the convergence
of our analysis by splitting the chains into several inde-
pendent parts. Figure 16 shows that the Markov chains are
converged and do not show evidence for numerical noise.
As a consequence, we can also report that the shape of the
constraints as a function of frequency is robust and inherent to
the data.

2. Upper limits or detections?

So far, we have only discussed the inference of upper
limits from the data. Of course, any analysis should also
allow for the possibility of detecting a signal. Our method
of determining detections at a given confidence level is again
based on the pixelated posterior distributions.

We start by drawing the two-dimensional contours that
enclose the desired confidence limit. We then declare a de-
tection if the origin is excluded from this contour, i.e., if
the white dot in Fig. 15 is outside the red contour. This
is determined as follows. First, we rank order the pixelated
likelihood values and sort them from the most to the least
likely pixel. For each value in this list, we then compute
the cumulative probability and map the cumulative prob-
ability to the pixel likelihood by an interpolating spline.
The value of the pixel likelihood at which the cumulative
probability reaches P finally determines the contour level at
which the total probability P will be enclosed (assuming a
unimodal distribution that falls off monotonically away from
the peak).

We calculated the number of 95% and 99.7% confidence
limit (corresponding to 2σ and 3σ ) detections on mocks and
on data. We can confirm that detections at the 95% C.L.
occur in roughly 5% of the mocks for each feature bin, except
around the BAO scale, where we find a modest excess in the
number of detections. At the 3σ level, we find no detections

in our data. We note that a small number of detections would
have been consistent with the look-elsewhere effect since we
sample many independent frequencies. Since we do not find
any such detection, there is no need to quantify this.

APPENDIX D: CMB ANALYSIS AND FORECASTS

The focus of this work is the first analysis of primordial
features in LSS data alone. Given the long history of searches
in the CMB anisotropies, it is however natural to compare
(and combine) our newly inferred bounds from the BOSS
DR12 data set to those derived from current Planck data. In
this Appendix, we outline the performed CMB data analysis
(Appendix D 1) and discuss the effects of the different transfer
of primordial power onto the large-scattering surface and
the LSS (Appendix D 2). Moreover, we provide details on our
joint LSS and CMB bounds (Appendix D 3) and comment on
the CMB Fisher forecasts (Appendix D 4).

1. Analysis of Planck data

The phenomenological feature models of Eqs. (4) and (5)
have been searched for in CMB data for quite some time,
including the Planck collaboration [1,89,95]. These analyses
have focused however on reporting the best-fit points and/or
the likelihood improvements and significances of possible sig-
nals as a function of feature frequency ωX . Since any possible
signals have not been significant to date (in particular after
taking the look-elsewhere effect into account [1,94,120,121]),
we are interested in studying the entire parameter space of
features. We therefore want to report the frequency-dependent
constraints on the feature amplitudes AX , as we did in the
BOSS analysis.

Following the analyses by the Planck collaboration [1,95],
we first run MULTINEST [129,130] with a modified version of
CAMB [131].23 Since we also fix the foreground and nuisance

23Due to the highly oscillatory nature of the primordial feature
spectrum, in particular for logarithmic features at large scales, we
have to run CAMB with increased accuracy settings which were
checked to resolve all oscillations.
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FIG. 17. Upper limits on the feature amplitude AX , X = lin, log, at 95% C.L. as a function of the frequency ωX for (a) linear and
(b) logarithmic features from Planck 2015 CMB data. The main analysis employs temperature and polarization data (TTTEEE, solid lines),
while the analysis without high-multipole polarization data (TT, dashed lines) leads to slightly weaker bounds.

parameters to their best-fit values [102], we vary a total of nine
parameters: the six standard 
CDM parameters (physical
baryon and cold dark matter fractions ωb and ωc, angular size
of the sound horizon θs, logarithm of the primordial scalar
amplitude ln(1010As), scalar spectral index ns, and optical
depth τ ) and three feature parameters (ωX , Asin

X , and Acos
X ).

We employ wide flat priors on all parameters, including the
feature frequencies, ωlin ∈ [0.5, 1005] and ωlog ∈ [0.1, 101].
We note that the CMB is also sensitive to models with larger
frequencies ωX , but we restricted ourselves to a range around
the region available to BOSS.

From these MULTINEST runs, we compute the mean values
and covariance matrices of the nine parameters in bins of
�ωlin = 100 and �ωlog = 10. To effectively increase the
number of samples, we then run standard MCMCs with
four chains using COSMOMC [132] in these frequency bins
starting from the computed covariance, with the priors
chosen to enclose the one-dimensional 5σ ranges. Having
acquired enough samples and a Gelman-Rubin convergence
criterion [78] with the scale parameter generally given
by ε � 0.01, we implicitly marginalize over the 
CDM
parameters and compute the 95% upper limits on AX as
described in Appendix C for the BOSS analysis in one
redshift bin. For convenience, we also use the same binning
in the feature frequency, �ωlin = 10 Mpc and �ωlog = 1,
although the correlation length differs (e.g., �ωlin ≈ 26 Mpc
was estimated in the Planck TT analysis of Ref. [94]).

Given the preliminary status of the Planck 2015 polar-
ization data,24 we run this pipeline on two sets of Planck
2015 likelihood combinations [97]: (i) Planck TT, i.e., low-�
(2 � � � 29) commander temperature and polarization data,
and unbinned high-� Plik half-mission temperature cross-
spectra data with �T

max = 2508, and (ii) Planck TTTEEE, i.e.,
low-� commander and unbinned high-� Plik half-mission
temperature and polarization cross-spectra data with �T

max =
2508 and �E

max = 1996. We emphasize that we use the un-
binned likelihoods to have access to all measured multipoles �

24Nevertheless, the comparison of the published 2015 and 2018
results on primordial features suggests little changes. We therefore
expect our results employing Planck 2015 polarization to be consis-
tent with those derived by the Planck collaboration in Ref. [1].

without averaging over � bins. This way, we obtain the bounds
on the feature amplitudes AX displayed in Fig. 17. We see
that the constraints only degrade significantly for very small
frequencies and are basically unaffected by the polarization
data at small ωX . Over the rest of parameter space, the full
data set yields slightly stronger bounds. Finally, Figure 18
illustrates the excellent convergence of the CMB Markov
chains for all frequencies and both sets of data.

2. Transfer of feature power

We have already discussed the experimental reasons for
the better sensitivity of BOSS to features than Planck (or,
more generally, future LSS surveys compared to CMB obser-
vations) in the main text. In the following, we shed additional
light on this by studying the signal of primordial oscillations
that is imprinted in the observables of the CMB and LSS.

A comparison of the size and shape of the features in
these cosmological measurements is displayed in Fig. 19. We
show both the lensed and unlensed autospectra of temperature
and E -mode polarization for the CMB, and the matter power
spectrum in linear and nonlinear theory, i.e., without and with
the exponential damping caused by large-scale nonlinearities.
In all cases, we can clearly see the primordial oscillations
with the given frequencies. We observe however a few notable
differences between the imprint of features in these quan-
tities. For small frequencies ωX , the signature in the CMB
is comparably similar to the signature in LSS, but with a
sinusoidal oscillation that is slightly distorted. Nevertheless,
the amplitude of the feature contribution decreases signifi-
cantly in the CMB for larger frequencies.25 Since this effect
is additionally more pronounced in the temperature than in
the polarization spectrum, we deduce that it is predominantly

25As we illustrated in Fig. 4, the finite-volume effects present
in galaxy surveys also lead to some suppression of the primordial
signal in LSS observations (cf. Fig. 12 for the resulting impact on
the constraints). This suppression is however not shown in Fig. 19
because it is a survey-dependent effect (similar to the beam in CMB
measurements, for instance) that will be less and less important for
future LSS measurements at these frequencies due to their much
larger observational volume.
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FIG. 18. Convergence test of the Planck 2015 TT and TTTEEE analyses for (a) linear and (b) logarithmic features. The bounds derived
from all Markov chains are shown in dark colors, whereas those inferred from splitting them into two independent halves are shown in light
colors, but are barely visible as a result of the excellent convergence.

the CMB transfer functions, especially the projection from
the three-dimensional cosmic volume to the two-dimensional
CMB sky, that wash out the primordial oscillations.

In the temperature power spectrum, the primordial feature
signal becomes suppressed by more than an order of magni-
tude towards larger frequencies and wave numbers. Since the
Planck measurement has to overcome this smaller signal in
comparison to our BOSS observations, the constraints turn
out to be somewhat worse for larger frequencies despite the

more accurate measurement (� � 1600 is cosmic variance
limited [97]). We note that the slight difference in the em-
ployed range of scales in our BOSS measurement, kmax =
0.3 h Mpc−1, compared to �T

max = 2508 ≈ 0.27 h Mpc−1 can
likely be neglected, but will become important for future
surveys with a larger reach in wave numbers.

Finally, it is also evident from Fig. 19 that future CMB
missions will in particular benefit from improved polarization
measurements. Apart from the larger signal that survives in
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FIG. 19. Imprint of primordial features in the CMB and LSS power spectra for a set of (a) linear and (b) logarithmic frequencies ωX ,
X = lin, log. We compare the relative contribution of features to the unlensed and lensed temperature (TT) and E -mode polarization (EE)
power spectra C�, with the contribution to the linear and nonlinear matter power spectrum P(k). The fiducial spectra, which are denoted by the
superscript fid, are computed in a standard featureless 
CDM cosmology, which is then augmented by a feature with amplitudes Asin

X = 0.1
and Acos

X = 0 for illustrative comparison. We display the same range of scales for the observables, linking multipoles � and wave numbers k via
the flat-sky approximation � = DAk, where DA is the angular diameter distance to the last-scattering surface. Finally, we note that we neglected
survey-related effects for both the CMB and LSS.
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the spectrum due to the sharper transfer function compared to
temperature, this remaining signature is also partly comple-
mentary as can be seen in particular for the highly oscillating
logarithmic features.

3. Joint CMB and LSS analysis

In the main text, we inferred the first LSS-only constraints
on primordial features and compared them to the current
bounds from the CMB as derived above. Having obtained
Monte Carlo Markov chains for these observables, we can also
consistently combine them to obtain the best current limits. In
the following, we elaborate on our computation of these joint
constraints.

We start by converting the CMB Markov chains into the
same parameter space as the BOSS analysis. This means that
we keep the three feature parameters ωX , Asin

X , and Acos
X , but

reduce the six 
CDM parameters to the two isotropic BAO
parameters αz evaluated at the effective redshifts of the two
BOSS bins, z = 0.38 and 0.51, where

αz =
(

Hfid(z)

H (z)

)1/3(
DA(z)

Dfid
A (z)

)2/3 rfid
s

rs
, (D1)

with the fiducial BOSS cosmology (see Sec. III A). Ideally,
we would combine the frequency-binned samples in the
four-dimensional space of {α0.38, α0.51, Asin

X , Acos
X }. This is in

principle possible by generalizing the approach discussed in
Appendix C for the BOSS analysis, but a very large number
of chain samples would be required to reliably cover this
parameter space. Since we are not interested in constraints
on the BAO parameters, we therefore proceed by indepen-
dently marginalizing the low-z BOSS chains, the high-z BOSS
chains, and the Planck CMB chains over αz. Having reduced
the parameter space to the two feature amplitudes, we can
directly follow our procedure of combining the two BOSS
redshift bins as outlined in Appendix C, but including the
CMB data as a third pixelated likelihood. By repeating this
for the TT and the TTTEEE Markov chains, we obtain the
95% confidence limits shown in Fig. 9.

As a consequence of marginalizing over the BAO param-
eters, we neglect any possible correlations between αz and
the feature parameters. We already discussed in Appendix C
that this assumption renders our limits overly conservative,
but also checked its impact for the CMB data. By infer-
ring the four-dimensional (Gaussian) covariance matrix in
each frequency bin, we find that the TT-only analysis shows
correlations of |ρ| < 0.5, while the addition of polarization
data further reduces this correlation coefficient. We therefore
expect our approximate joint analysis to result in the same
bounds as the full analysis except around the frequencies that
interfere with the BAO scale. This is also confirmed using
Fisher forecasts that lead to essentially the same forecasted
limits except around the scale of the sound horizon where our
analysis is suboptimal at the 10% level.

Instead of neglecting the correlations with αz, we could
have also assumed the (three-dimensional) almost Gaussian
posterior distributions inferred in the BOSS analysis to be
exactly Gaussian. With this approximation, it would be pos-
sible to impose the low-z and high-z BOSS constraints as
Gaussian priors on the CMB analysis by importance sampling
its Markov chains.26 We tested this possibility, but found that
vanishing αz correlations are a better assumption than the
Gaussian approximation.

4. Forecasts for future CMB surveys

In addition to the analysis of current CMB data from
Planck, we also estimate the sensitivity of future CMB exper-
iments to (linear) feature models in Sec. IV C. (As explained,
most other types of features can be decomposed in a basis of
linear oscillations so that constraints can be deduced from our
results.) These forecasts directly follow the Fisher method-
ology and the experimental specifications of Ref. [47]. The
fiducial point is a featureless 
CDM cosmology consistent
with the Planck measurements [102,103], i.e., we in particular
take Asin

lin = Acos
lin = 0. Since we compute the constraints as a

function of feature frequency ωlin within a 
CDM universe,
the Fisher information matrices are eight dimensional. By
employing perfectly delensed temperature and polarization
power spectra, we infer the most optimistic bounds on Asin

lin
and Acos

lin which we present in Fig. 20.
As can be understood from the additional smoothing of the

oscillations in the lensed compared to the unlensed spectra
in Fig. 19, the forecasted sensitivities are worse when using
lensed spectra. The degradation of the constraints depends
on the experiment and feature frequency, but may be up to
about 20% and 50% for Planck and the CMB-S3 missions,
respectively. However, not delensing the spectra could lead
to constraints on the feature amplitudes σ (AY

lin ), Y = sin, cos,
being worse by a factor of 2 for CMB-S4 and more for a
cosmic variance-limited experiment. We also observe that the
feature parameters are independent of the 
CDM parameters
(and of one another) for ωlin � 300 Mpc. For smaller fre-
quencies, the primordial oscillations interfere with the baryon
acoustic oscillations, which in particular leads to a degeneracy
with the scale of the sound horizon, as has previously been
pointed out in the CMB (see, e.g., Refs. [90,94]) and was
discussed in the main text for LSS. Finally, we note that
the Nyquist frequency is much larger in the CMB since the
effective cosmic volume extends all the way back to the last-
scattering surface.

26Importance sampling the two sets of BOSS chains with Gaussian
CMB priors and then combining these in the approach of Appendix C
would double count part of the CMB information.
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