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We investigate the effect on the entanglement dynamics of an impurity moving at a constant velocity in a
closed quantum system. We focus on one-dimensional strongly correlated lattice models, both in the presence of
integrable and chaotic dynamics. In the former, the slow impurity is preceded by fast quasiparticles carrying an
endogenous entanglement front which decays in time as a power law; on the contrary, a fast impurity drags itself
an exogenous entanglement front which never fades. We argue that these effects are valid for generic systems
whose correlations propagate inside a light cone. To assess the fully chaotic regime, we formulate a random
circuit model which supports a moving impurity and a sharp light cone. Although the qualitative behavior is
similar to the integrable case, the endogenous regime is only visible at short times due to the onset of diffusive
energy transport. Our predictions are supported by numerical simulations in the different regimes.
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I. INTRODUCTION

Understanding the out-of-equilibrium dynamics of isolated
many-body quantum systems is one of the main challenges
of current research in low-energy physics. A fundamental
question is how the statistical description of thermodynamics
could emerge via coherent quantum evolution [1] and a crucial
ingredient is provided by entanglement [2], which reflects the
amount of quantum correlations between different portions of
the system. Generically, weakly entangled initial states show
a fast growth of quantum correlations: The initial informa-
tion is rapidly encoded in nonlocal degrees of freedom and
thermodynamics emerges. Entanglement is generated by the
spreading of correlations, which, in many systems, happens
with a finite maximal velocity, e.g., because of the Lieb-
Robinson bound [3].

In a pure state, a basic way to quantify the amount of
quantum correlation of a region A with the rest Ā is to
employ entanglement entropy SA, defined from the reduced
density matrix as SA = −Tr ρA log ρA. In one dimension
(1D), a particularly effective and simple picture to understand
its behavior is provided by the quasiparticle interpretation.
First introduced in conformal field theories [4–7] and then
confirmed in free [8–17] and integrable models [18–20], it has
provided valuable insights even beyond these settings [21].
In this picture, when a portion of a system is brought out of
equilibrium, pairwise entangled quasiparticles are produced
at each point in space (see, however, Refs. [15,16]), which
propagate through the system in opposite directions: As soon
as two entangled quasiparticles get to be shared between
A and Ā, the amount of entanglement between the two
subsystems is increased. For many systems, Lieb-Robinson
provides an upper bound vLR for the maximal quasiparticle
velocity vQP < vLR which induces an effective horizon. As a
consequence, the entanglement entropy SA grows linearly in

time, up to saturation to a value proportional to �A, the length
of A.

The existence of a horizon has been observed in exper-
iments [22–24] and in models where no quasiparticles can
be consistently defined [25]. Recently, solvable models of
chaotic dynamics based on random circuits have established
the existence of well-defined light cones. They also provided
a quantitative characterisations of different velocities, as they
emerge from entanglement growth and operator spreading
[26–29].

A very natural test of these velocities consists in injecting
in the system a localized perturbation which travels at constant
velocity v [30–35]. If vmax � vLR defines the effective maxi-
mal velocity at which signals can propagate in the quantum
system under examination, a dramatic difference between the
v � vmax and v � vmax regimes is expected, which we refer
to as the subluminal and superluminal case, respectively. Rel-
ativistic analogies of this kind have already been realized in
condensed matter setups, mostly as an emergent description of
low-energy excitations [36–39]. While traveling localized per-
turbations have been considered in several contexts [40–45],
the key role played by the maximal velocity has been unveiled
only recently [30–36,46]. In this paper, we investigate in
generality the implications drawn from the presence of a
finite vmax, exploring the hallmarks of integrability and chaotic
dynamics.

We focus on one-dimensional, short-range lattice systems
where vLR is finite and efficient numerical simulations are
possible through matrix-product state techniques [47,48]. We
first consider a spin chain which can be mapped onto non-
interacting fermions by the use of a Jordan-Wigner transfor-
mation, then consider a traveling impurity, and show that the
entanglement phenomenology exhibits dramatic differences
whether the velocity of the impurity v is above or below
the one of quasiparticles. In particular, we show that a fast
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FIG. 1. Quasiparticle envelope for, respectively, a subluminal and superluminal defect. The dashed arrow represents the moving defect,
which is activated in correspondence with the tail of the arrow and then moves in a straight line in the space-time plane. During its motion,
it emits burst of excitations (red cones) that then freely propagate. The lengths � and d are depicted for convenience of the forthcoming
entanglement’s growth discussion (see Figs. 2–4 and 7). As it is clear from the picture, the nature of the propagating front is remarkably
different in the two cases: While in the subluminal defect the edge is increasingly damped as it propagates, this is no longer true for the
superluminal case where the wave front is continuously supplied with new excitations.

impurity carries a front of entanglement which never fades.
Our numerical simulations show that this phenomenology
remains robust at the numerically accessible timescales, even
in the presence of weak integrability-breaking perturbations
which result in a finite quasiparticle lifetime τ . On larger
timescales t � τ , diffusive transport is expected to dominate:
The system response is always slower than the impurity for
arbitrary v. This is confirmed by a random unitary circuit that
we introduce, where a U (1) charge is conserved everywhere
except at the position of the moving defect.

The paper is organized as follows: In Sec. II we con-
sider quantum spin chains, both integrable and with weak
integrability-breaking terms. In this regime, the quasiparticle
picture holds and the features of the entanglement spreading
can be understood within this framework, giving quantitative
predictions for the free case. Section III is instead dedicated
to the study of a random unitary circuit supporting a U (1)
conservation law, locally broken by the moving defect. In this
case, no quasiparticles can be consistently defined, but a sim-
ilar phenomenology emerges at intermediate times. At long
times, transport is dominated by diffusion which suppresses
entanglement propagation. The presence of a persistent en-
tanglement front in the superluminal case regardless of the
applicability of the quasiparticle picture indicates a universal
mechanism. Indeed, in Sec. IV we show how a superluminal
defect immediately generates a comoving steady state, rigidly
following the impurity, whose size grows linearly in time.
Our argument is based solely on the existence of a maximum
velocity, thus it is of widest applicability. The generation of
such a comoving steady state explains the persistence of the
entanglement front and is clearly visible in the profiles of local
observables. Our conclusions are then gathered in Sec. V.
Numerical methods are presented in the Appendix.

II. MOVING DEFECT AND QUASIPARTICLES

We consider the paradigmatic example of the Ising spin
chain

H = −1

2

N∑
j=1

σ x
j σ

x
j+1 + [hz + V ( j − vt )]σ z

j + hxσ
x
j , (1)

which encompasses a broad phenomenology including inte-
grable (hx = 0) and nonintegrable (hx �= 0) dynamics, with a
second-order phase transition (hz = 1, hx = 0). The potential
V (x) describes a perturbation in the transverse magnetic field,
which travels at constant velocity v. We focus on the simplest
case of an extremely narrow perturbation, i.e., V (x) = κ δ(x),
but our conclusions hold in the general setting of localized
potentials V (x). The Ising spin chain has also been realized
in cold-atom experiments [49] and moving perturbations as in
Eq. (1) could be realized as a traveling impurity [50], or as a
moving spin flip [51]. In particular, the choice of the δ defect
best describes this latter possibility.

Let us first discuss the integrable point. At hx = 0, the
protocol can be exactly solved [31,52]. Within the quasipar-
ticle picture, the moving impurity can be regarded as emitting
bursts of excitations during its motion (Fig. 1) [30,31] (see
also Refs. [53–55]). More specifically, in the absence of the
external potential (κ = 0), the Hamiltonian H (1) can be di-
agonalized in Fourier space, combining a Jordan-Wigner (JW)
transformation and a Bogoliubov rotation. The JW introduces
fermionic degrees of freedom with standard anticommutation
rules {d j, d j′ } = δ j, j′ , where

d j = eiπ
∑ j−1

l=1 σ+
l σ−

l σ+
j , (2)

and σ±
l = (σ x

l ± iσ y
l )/2. At hx = 0, the Hamiltonian (1) in the

new basis is readily expressed as

H =
N∑

j=1

−1

2
(d†

j d†
j+1 + d†

j d j+1 + H.c.)

+ [hz + V ( j − vt )]d†
j d j . (3)

Above, “H.c.” stands for the Hermitian conjugate of the
expression in parentheses. If hx �= 0, the fermions become
interacting and the model is no longer exactly solvable. At
finite size, periodic boundary conditions on the spin chain
induce (anti) periodic boundary conditions in the (even) odd
magnetization sectors in the fermionic basis. However, we
are ultimately interested in the thermodynamic limit and this
complication can be safely neglected. In the absence of the
defect (V = 0), the Hamiltonian (3) is readily diagonalized in
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the Fourier space via a Bogoliubov rotation(
d j

d†
j

)
=

∫ π

−π

d p√
2π

eip j

(
cos θp i sin θp

i sin θp cos θp

)(
αp

α
†
−p

)
, (4)

The fermionic operators αp satisfy canonical anticommutation
rules {α†

p, αq} = δ(p − q) and diagonalize the Hamiltonian as

H =
∫ π

−π

d p

2π
ω(p)α†

pαp + const, (5)

where ω(p) =
√

(cos p − hz )2 + sin2 p, provided the Bogoli-
ubov angle θp is chosen as

tan θp = ω(p) + cos p − hz

sin p
. (6)

The modes αp are readily interpreted as the entangling quasi-
particles that are thus moving with velocity v(p) = ∂pω(p).
In the free case, the maximum velocity of the free modes set
the maximum velocity of the spreading of quasiparticles and
operators, i.e.,

vQP = max |v(p)| = min(|hz|, 1). (7)

For definiteness, we consider the system initially prepared
at κ = 0 in the paramagnetic ground state (hz > 1), which is
only weakly entangled because of area law [56]. At t > 0,
the moving perturbation κ > 0 is activated and excitations are
created on top of the initial ground state. Physically, due to the
locality of the perturbations, excitations are locally emitted
from the moving defect and then freely propagate in the bulk:
This is indeed confirmed by an exact solution of the protocol.
Despite the model (3) being free, its exact solution in the
presence of the defect is not trivial and requires rather lengthy
calculations, which have been presented in Ref. [31] (see also
Ref. [30]). Here, we just quote the results we need for our
purposes, leaving to the original reference their derivation. In
the scaling region far from the defect, correlation functions of
local observables can be derived in terms of a space/time in-
homogeneous mode density. For example, the local fermionic
density is

〈d†
j (t )d j (t )〉 =

∫ π

−π

d p

2π
[sin2 θp + cos(2θp)η j,t (p)]. (8)

At a fixed time and position, this is the expectation value we
would have derived in the homogeneous Ising Hamiltonian
on a state diagonal on the modes αp and with mode density
〈α†

pαq〉 = δ(p − q)η j,t (p). Equation (8) can be extended to
arbitrary expectation values of local observables. Semiclas-
sically, we can interpret η j,t (p) as a local phase-space density
of the excitations generated by the moving defect. Indeed, its
space-time evolution can be recast as [31]

η j,t (p) = �[( j − vt )[v(p) − v]]�[|[v(p) − v]t |
− | j − vt |]ηscat(p), (9)

where � is the Heaviside theta function and ηscat(p) is the
density of quasiparticles produced by the impurity. The func-
tion ηscat(p) encodes all the dynamics and depends on the
specific shape of the defect. The theta functions in Eq. (9)
convey a simple physical message: Excitations at a given p are
present only “beyond” the defect (where “beyond” is decided

by the sign of the relative velocity through the theta function
�[( j − vt )(v(p) − v)]) and up to the maximal distance that
the flux of particles can have reached. It must be stressed
the peculiar form of Eq. (9), where indeed η j,t depends on
time and position only through the combination ζ = j/t and
is therefore scale invariant.

For the δ defect considered here, an exact analytical com-
putation of ηscat(p) is possible (see Ref. [31] for details). Here,
we report the resulting expression in the simpler case of the
superluminal defect,

ηscat(p) =
∣∣∣∣ v1(p)

v2(p2)

∣∣∣∣|u†
1(p)[ei κ

v
σ zK−(p2) − K+(p2)]−1

× (1 − ei κ
v
σ z

)u2(p2)|2, (10)

where we denote

u1(p) =
(

cos θp

i sin θp

)
, u2(p) =

(
i sin θp

cos θp

)
, (11)

and v1(p) = v(p) − v and v2(p) = −v(p) − v. The value p2

is instead defined as the (unique) solution p2 �= p of ε1(p) =
ε2(p2), where

ε1(p) = ω(p) − vp, ε2(p) = −ω(p) − vp. (12)

Finally, K± are 2 × 2 matrices defined as follows,

K±(p) = ± i

2v
+

∑
b=1,2

ub(pb)u†
b(pb)

2i|vb(pb)|

+P
∫ ∞

−∞

dq

2π

∑
b=1,2

ub(q)u†
b(q)

ε2(p) − εb(q)
, (13)

where we set conventionally p1 = p and use the principal
value prescription to handle the singularity in the integral.
A similar, albeit more complicated, expression is available
also in the subluminal case [31]. If v < vQP, a fraction of
the emitted quasiparticles is faster than the perturbation (see
Fig. 1).

The wave front results from the fastest excitations v ∼ vQP:
There will be a finite number of particles emitted with a
velocity in [vQP − �v, vQP], which, after a time t , will be
spread on a growing length �x = �v t . As a consequence,
the propagating front of the perturbation becomes weaker and
weaker as time grows, with a power-law decay.

This feature is clearly displayed in the growth of the
entanglement entropy (see Fig. 2). We performed numeri-
cal simulations employing a Green’s function method which
allowed us to efficiently simulate the dynamics induced by
Eq. (1) for large systems and long times (see the Appendix). In
Fig. 2 we consider half lines [d,∞) placed on the right of the
perturbation, at increasingly larger distances d from its initial
position (see also Fig. 1). In the subluminal case [Fig. 2(a)],
the entanglement growth is clearly slower and slower as the
distance is increased.

The picture in the superluminal case (v > vQP) is com-
pletely different [see Fig. 2(b)], since the defect continuously
generates new quasiparticle excitations, whose wave fronts
stockpile behind the defect itself (see Fig. 1, right). Indeed,
this difference is clearly reflected on the growth of entangle-
ment entropy: The rate at which entanglement grows does
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FIG. 2. The entanglement entropy of the spatial region [d,∞)
is plotted for several values of d against the time δt = t −
min(d/vQP, d/v), elapsed after the wave front enters the region.
(a) Subluminal defect (v = 0.5, hz = 1.1) at the integrable point
hx = 0. (b) Superluminal defect (v = 5, hz = 1.1) at integrable point
hx = 0. Compared with (a), no damping is observed.

not experience any damping if the distance of the half line
is increased.

A further difference between the superluminal and sublu-
minal case can be observed by looking at the entanglement
entropy of a finite interval [d, d + �], placed far away on
the right-hand side of the defect (Fig. 3). The interval is
first hit by the wave front which, at larger times, completely
overcomes the interval (Fig. 1). In the subluminal case, we
assume d � � � 1, so that the defect only reaches the inter-
val at much later times and we can focus only on the effect
of the propagating wave front. As the wave front proceeds
through the interval, the entanglement grows as in the half-
line case previously considered: No signal made its way to
the right endpoint of the interval which therefore does not
play any role. The main difference appears when the wave
front leaves the interval: Indeed, in the subluminal case the
entanglement growth rate diminishes [Fig. 3(a)]. This is due
to the progressive saturation of the entanglement carried by
the quasiparticles at different velocities: Only slower and
slower quasiparticles keep contributing to the generation of
entanglement.

The superluminal case displays the opposite trend
[Fig. 3(b)]: The entanglement entropy enhances its growth
with a sudden change in the slope, progressively diminishing
again its growth only at a later stage. In fact, the superlu-
minal defect continuously generates entangled quasiparticles
and when it overcomes the interval, the excitations start to
entangle the interval also across the right edge (see Fig. 1).
This contribution equals the one coming from the left edge,
exhibiting therefore a precise doubling of the entanglement
growth rate.

(a)

(b)

(c)

FIG. 3. Entanglement growth in the Ising chain at the integrable
point hx = 0 and saturation for different intervals of size �, all posed
at the same distance d from the defect, being the latter subluminal
[(a) hz = 1.1, v = 0.5] and superluminal [(b) hz = 1.1, v = 5]. In
the subluminal case the initial growth is not linear and diminishes
its growth rate after the wave front has covered the whole interval,
i.e., after a time δt ∼ �/vQP. In the superluminal case, the front
wave overcomes the interval at δt = �/v and the slope experiences a
sudden increment, which is well understandable within the quasi-
particle picture and found to be an exact doubling of the growth
rate. (c) Comparison of the scaling form of the entanglement entropy
against the quasiparticle picture Eq. (16) in the superluminal case
[(b) hz = 1.1, v = 5]. For times t � d/vQP, the entanglement growth
is a scaling form in terms of the size of the interval S = � f (δt/�),
which is depicted.

A. Analytic calculation of entanglement entropy

All these features can be quantitatively captured through a
proper generalization of the quasiparticle picture. In its orig-
inal formulation, the quasiparticle picture applies to homoge-
neous quenches (for recent generalizations to inhomogeneous
setups, see Refs. [57–59]) with a pair structure of the initial
state in the postquench basis (see, however, Refs. [15,16] for
generalizations beyond the pair structure): After the quench,
excitations are locally produced in pairs of opposite momen-
tum which subsequently travel ballistically across the system.
The entanglement between the regions A and Ā receives con-
tributions only from those pairs that are shared among the two
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parts, namely, at time t one quasiparticle of a pair belongs to
A while the other belongs to Ā. This configuration contributes
with some weight s(p) dependent on the momentum. The total
entanglement is just the sum of the contributions coming from
each pair. As long as single pairs of excitations in free systems
are concerned, the contribution to the entanglement s(p) can
be found by a consistency requirement with the emergent
stationary state [8] and is completely fixed by the excitation
density η(p),

s(p) = −η(p) log η(p) − [1 − η(p)] log[1 − η(p)]. (14)

We now see how this picture can be promptly generalized to
describe the protocol involving a moving defect considered
here. In this respect, it is important to note that, since the
Hamiltonian is clearly quadratic in the fermionic basis, quasi-
particles must be created and destroyed pairwise. However,
while in a homogeneous quench (i.e., translational invariant)
quasiparticles within the same pair are produced with opposite
momenta, in the moving defect framework this no longer
holds true. Consider a change of reference frame and set the
defect at rest. In this viewpoint, the initial state is moving
with velocity −v and the particle creation can be most easily
understood within a scattering framework: The initial vacuum
flows towards the defect and scatters, producing then pairwise
excitations. In the comoving reference frame, the Hamiltonian
loses any explicit time dependence: The energy is conserved
and thus the pair of particles must have the same total energy
as the vacuum, which is of course zero. In this argument, we
must use the energy in the comoving reference frame ε1(p) =
ω(p) − vp. Thus, if a pair of excitations with momenta (p, p̄)
is produced it must hold true

ε1(p) + ε1( p̄) = 0. (15)

Notice that in general p �= −p̄, though this is recovered in the
limit of an infinitely fast defect v → ∞. This is expected,
since an extremely fast defect excites simultaneously the
whole system and is therefore equivalent to a sudden global
quench.

If the impurity is superluminal, the energy conservation
(15) possesses a unique solution [31] and the well-established
quasiparticle picture [8] can be straightforwardly generalized.
On the contrary, in the case where the defect is subluminal,
Eq. (15) possesses more than a solution: Particles are still
produced pairwise, but the outgoing state is a quantum super-
position of all different pairs compatible with energy conser-
vation. Hereafter, we focus solely on the superluminal defect
case, but the forthcoming computation of the entanglement
growth can be generalized to the subluminal case along the
lines of Ref. [16]. The defect is a source of quasiparticles
emitted in pairs (p, p̄): Quasiparticles belonging to the same
pair are entangled with each other, while quasiparticles of
distinct pairs are disentangled, as well as particles emitted
at different positions and times. After being produced, the
particles within a pair travel with constant velocities v(p) and
v( p̄), respectively, carrying entanglement through the system.

In particular, consider an interval of extrema A = [d, d +
�]: The entanglement between the interval A and its com-
plementary Ā will receive contributions only from those
pairs of quasiparticles such that, within the same pair, one
quasiparticle lies in A and the other in Ā. The computation

of the entanglement entropy ultimately boils down to the
very geometric problem of counting how many pairs will
contribute, associating with each pair (p, p̄) the proper weight
sscat(p) = sscat( p̄),

S (t ) =
∫ π

−π

d p

2π

∫ vt

−∞
dy χ [y + (t − y/v)v(p)]

× χ̄ [y + (t − y/v)v( p̄)]sscat(p). (16)

Above, χ is the characteristic function of the interval A, i.e.,

χ ( j′) =
{

1, j′ ∈ A,

0, j′ /∈ A,
(17)

while the function χ̄ (x) = 1 − χ (x) is simply the one of Ā.
The above formula is easily interpreted: Pairs of quasiparticles
are originated in position y because of the passage of the
defect and this happens at a time y/v. Subsequently, each of
the two particles freely travel reaching at time t , respectively,
position y + (t − y/v)v(p) and y + (t − y/v)v( p̄). The pair
will contribute to the entanglement if one of the particles lies
within A and the other in Ā: This is ensured by the product of
characteristic functions. The correct weight sscat can be fixed
from the homogeneous result Eq. (14) replacing the excitation
density with that produced by the defect (9), i.e., η(p) →
ηscat(p). The fact that ηscat(p) = ηscat( p̄) ensures that s(p) =
s( p̄), as it should be. In Fig. 3(c) we provide the comparison
between the numerical data and the analytical prediction of
the quasiparticle picture, finding perfect agreement: For times
t � d/vQP, the quasiparticle predicts for the entanglement
growth a scaling function S (t ) = � f (δt/�), with δt the time
lapse with respect to the moment when the interval is first hit
by the wave front.

B. Effect of integrability breaking

We now leave the integrable point and see how the previous
picture is affected by a small integrability-breaking term hx �=
0: In this case, quasiparticles are no longer stable and must
acquire a finite lifetime τ . At t � τ , they undergo a com-
plex dynamics which eventually leads to thermalization [60].
However, note that this large-time regime is not accessible
by current numerical simulations based on tensor network
methods (see Appendix), as entanglement generated by the
defect becomes too large. Despite the lack of an analytical
prediction and the finite lifetime, quasiparticles still provide
great insight about the entanglement production.

We first focus on the subluminal defect v < vQP and con-
sider the entanglement of two halves of the system A =
[d,+∞] as a function of d . At the accessible times, we still
observe a depletion of the propagating front [see Fig. 4(a)].
In practice, compared with the hx = 0, integrability-breaking
terms (hx �= 0) further enhance the depletion as ballistic trans-
port is suppressed by the finite τ . On the contrary, in the
superluminal defect v > vQP, as it happens at the integrable
point, the entanglement carried by the front wave does not
exhibit any depletion increasing d , as it is clearly depicted in
Fig. 4(b). This can still be explained regarding the defect as a
source of quasiparticles, however, due to their finite lifetime
and lack of pure ballistic propagation we can no longer expect
linear growth. However, the fact that the superluminal wave
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FIG. 4. The entanglement growth for the half line [d,∞) is
plotted in the nonintegrable spin chain (hz = 1.1, hx = 0.5) for
different values of d and in the subluminal case [(a) v = 0.2] and in
the superluminal case [(b) v = 5]. As in the free case, a superluminal
defect causes an entanglement front that never fades, but the perfect
linear growth displayed in Fig. 2(b) is spoiled. This can be interpreted
as caused by the finite lifetime of the quasiparticles induced by the
intregrability-breaking perturbation. On the horizontal axis, we pose
the time lapse past after the entanglement front enters in the half
line, namely, δt = t − min(d/vQP, d/v), elapsed after the wave front
enters the region.

front creates quasiparticles beyond the interval still holds true:
This can be seen as a manifestation of the Čerenkov effect
in this setting, which effectively enhances the entanglement
growth rate.

III. RANDOM CIRCUIT MODEL

A natural question is what happens to the previous consid-
erations for generic models where no notion of quasiparticle
(not even in a perturbative sense) can be defined. Recently,
random unitary circuits (RUCs) have been put forward as a
new class of solvable models providing minimal and treatable
examples of many-body quantum dynamics [26–29,61,62].
They are defined on a lattice of spins, in which the time
evolution is performed by subsequently acting on neighboring
sites with random unitary gates drawn from an appropriate
ensemble. Here, we introduce an RUC defined on a chain
of spin 1/2: The time evolution is performed applying gates
according to the brick-wall geometry sketched in Fig. 5.
The two-site gates, shown as blue rectangles, represent the
evolution without the defect, whose action is instead indicated
with red squares. All gates are chosen independently, thus
the time evolution is randomized both in space and time.
However, following Refs. [28,29,63,64], in order to mimic
the conservation of energy away from the defect, we enforce
a U (1) symmetry: We require that every gate acting on sites
j and j + 1 commutes with Sz

j, j+1 ≡ sz
j + sz

j+1. In practice,
we denote with CUE(n) the circular unitary ensemble [65]

FIG. 5. Random circuit model: A chain of spins is evolved by
applying random unitary gates in a brick-wall geometry. Each gate
acting on sites j, j + 1 is drawn from the Haar ensemble under the
constraint of commuting with the local magnetization sz

j + sz
j+1. The

action of the defect is instead encoded by using single-site random
unitaries with no constraint acting on the site j = [vt] every τ time
steps. In this example, τ = 2 and v = 1.

of n × n unitary matrices. The operator Ŝz
j, j+1 has eigenvalues

S = −1, 0, 1 and each two-site unitary U is a 4 × 4 matrix
with a block-diagonal representation in each sector of defined
Ŝz, i.e.,

U =
⎛
⎝S = −1

S = 0
S = 1

⎞
⎠, (18)

with every block drawn from CUE(dS ) with d±1 = 1 and d0 =
2. Time T is discrete and conventionally we take �T = 1 for
the combined action of one even and one odd layer of two-site
unitaries (see Fig. 5). Because of the brick-wall geometry, all
correlations lie inside a sharp light cone with vmax = 2 (black
line in Fig. 5).

The action of the defect on site j is performed via a single-
site random unitary Dj . All Dj’s are drawn independently
from CUE(2), thus breaking locally the U (1) symmetry. Then,
the model has naturally two free parameters: (1) v is the
velocity of the defect; that is, we assume that the defect acts
at position j = �vT �, where �x� indicates the nearest integer
to x; (2) τ is an integer representing the number of time2 steps
in between two different actions of the defect; in practice, the
rate τ−1 characterizes the defect strength.

Then, the evolution of any state |ψ〉 can then be written as

|ψ (T = Nτ )〉 = W (N )
τ D(N )

�vT � · · ·W (2)
τ D(2)

�vτ�W
(1)
τ D(1)

0 |ψ〉 ,

(19)
where Wτ ’s are defined in Fig. 5.

Denoting with O the average of O over the ensemble of
random circuits, the computation of the average magnetiza-
tion,

sz( j, T ) = 〈ψ (T )| ŝz
j |ψ (T )〉 = 〈ψ | ŝz

j (T ) |ψ〉 , (20)

can be reduced to a classical Markovian stochastic process.
Since all unitaries are independent, in order to compute the
average in Eq. (20), it is enough to analyze the average
action of a single gate. If U is a two-site gate acting on the
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neighboring sites j and j + 1, we have [28]

Usz
iU

† = 1
2USz

j, j+1U
† = 1

2 Sz
j, j+1, (21)

where the first equality follows from the fact that the ensemble
(18) is invariant under the swap of sites j, j + 1, while the
second from [U, Sz

j, j+1] = 0. On the contrary, if Dj is a one-
site random unitary corresponding to the defect action on
site j,

Djs
z
i D

†
j = (1 − δi, j )s

z
i . (22)

Equations (21) and (22) completely characterize the Heisen-
berg evolution of local magnetizations once averaged over the
random circuit ensemble. In particular, they imply a linear
relation

ŝz
j (T = Nτ ) =

∑
j′

M j, j′ (T )ŝz
j′ , (23)

where the matrix M(T ) can be decomposed as a matrix
product

M(T ) = WD�vT � · · ·W D�vτ�WD0, (24)

where we defined (Di ) j, j′ = δ j, j′ (1 − δi, j ), while the explicit
form of W can be obtained from the repeated action of (21)
over a sequence of τ even and odd layers (see Fig. 5). After
the quantum average of (23) over the initial state |ψ〉, we get
an exact expression for the magnetization profile,

sz( j, T ) =
∑

j′
W j, j′ (T )sz( j′, 0). (25)

We are interested in an initially weakly entangled state, so
for simplicity we focus on the completely polarized state
along the z direction, i.e., |ψ〉 = |· · · ↑↑ · · ·〉, which repro-
duces some features of the ground state considered before
and sz( j, 0) = 1/2. Indeed, owing to the U (1) symmetry, this
is an invariant state under the time evolution without the
defect. In practice, the defect behaves as a moving source of
magnetization.

In order to gain some insights about the dynamics induced
by Eq. (25), one can perform a long-wavelength expansion
to get a coarse-grained continuous description. More simply,
as explicitly shown in Ref. [28], we observe that Eq. (21)
describes an unbiased random walk which is clearly described
by the diffusion equation in the continuous limit. Then, ac-
cording to Eq. (22), the defect acts by locally removing the
present magnetization. In the continuous limit j → x, T → t ,
this suggests the form

∂t s
z(x, t ) = D∂xxsz(x, t ) − vr

D
δ(x − vt )sz(x, t ). (26)

The diffusion constant can be determined directly from (21)
and one finds D = 1 in our unities. The second term on
the right-hand side of (26) accounts for the magnetization
removed by the defect action. The dimensionless parameter
r controls the defect strength and depends in a nontrivial way
on v and δt , because the behavior of sz( j, t ) jumps erratically
around j ∼ vt due to lattice effects. Its precise value is unnec-
essary for our analysis, though we note that for v > vmax, one
has simply r = (vτ − 1)−1, which is obtained by matching the
global magnetization change between the lattice and contin-
uous descriptions. Setting sz(x, t ) = 1

2 − n(x, t ), with n(x, t )

(a)

(b)

FIG. 6. (a) Profile of the magnetization sz for the random circuit
model with a defect moving at v = 0.2 and acting every τ = 2 time
steps computed at different times. The dashed line is the prediction
from Eq. (27) and r = 3.5 is chosen phenomenologically. (b) The
profile of the entanglement entropy obtained by the solution of
Eq. (36). On the horizontal axis, as a guide to the eye, we pose marks
in correspondence with the defect’s position for any t we show.

the local density of spin flips, Eq. (26) with sz(x, t = 0) = 1/2
is solved at large times by

n(x, t ) =
⎧⎨
⎩

r exp[−v(x−vt )/D]
2(r+1) , x � vt,

r[1+erf (x/
√

4Dt )]
4(r+1) , x � vt,

(27)

i.e., it is characterized by a broadening front at the initial
defect position plus a traveling wave dragged by the defect.
Interestingly, the defect is preempted by an exponentially
decaying front on the finite length scale ∼D/v. As shown in
Fig. 6 (left), this coarse-grained description captures well the
magnetization profile for large times and small v’s. However,
in this continuous limit, all lattice effects are washed out and
no role is played by vmax.

A more refined description of the tails of the magnetization
profile can be obtained via a large deviation ansatz, i.e.,
sz( j, T ) � 1/2 − e−T φ( j/T ). In other words, on each fixed ray
j/T = ζ , we define

φ(ζ ) ≡ − lim
T →∞

1

T
log[n(ζT, T )]. (28)

An expression for φ(ζ ) can be derived from the explicit
solution of Eq. (20), as we now discuss. First, by acting
explicitly with D j in (23) and neglecting lattice discretization,
we can rewrite (23) as

n( j, T )=W j,vT [1/2−n(vT, T −τ )]+
∑

j′
W j, j′n( j′, T − τ ).

(29)

For any v �= 0 and large T , the term n(vT, T − τ ) ∼ e−T φ(v)

is exponentially small and thus negligible with respect to
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the factor 1/2. The resulting equation can then be solved by
iteration, leading to

n( j, T ) ∼ 1

2

T/τ∑
k=1

[W]k
j,v(T −kτ ). (30)

Setting k = Tu/τ , we can turn the sum into an integral by
using that the kth power of the matrix W can be written
explicitly as [28]

[W]k
j, j′

k=Tu/τ= 2−2uT

(
2uT − 1

uT + ⌊ j− j′
2

⌋)

� exp

[
−TuI

(
j′ − j

uT

)]
, (31)

where for |z| � 2,

I (z) =
( z

2
+ 1

)
log

( z

2
+ 1

)
+

(
1 − z

2

)
log

(
1 − z

2

)
, (32)

and I (z) = ∞ otherwise. We thus get

n(zT, T ) ∼
∫ 1

0
du exp

[
−TuI

(
v(1 − u) − z

u

)]
. (33)

At large T , the integral can be evaluated by saddle point and
leads to

φ(z) = min
u∈[0,1]

[
uI

(
v(1 − u) − z

u

)]

=
⎧⎨
⎩

I (z), z < 0 ∩ z > zc,

0, 0 < z < v,

(z − v) I (zc )
zc−v

, v < z < zc.

(34)

For v < vmax = 2, the value zc is determined by the equation

(zc − v)I ′(zc) = I (zc), z ∈ [v, vmax], (35)

while zc = v for v > vmax.
In practice, as it happens in the presence of quasiparti-

cles, for subluminal defects (v < vmax), a smooth front for
x ∈ [vt, vmaxt] foreruns the defect. However, contrarily to
the integrable case, here the decay of the evanescent front
is exponentially fast being due to a large deviation of an
otherwise diffusive dynamics. This quick equilibration is a
hallmark of chaotic dynamics. On the contrary, for v > vmax,
the magnetization profile jumps abruptly around the x ∼ vt as
the system has no time to equilibrate the excess of magnetiza-
tion produced by the defect.

These considerations are reflected in the front of entan-
glement carried by the defect. Unfortunately, the exact cal-
culation of the entanglement entropy is a nontrivial task for
RUC [29,66]. Nonetheless, an exact upper bound is provided
by subadditivity [26,66,67]. In particular, at any time it must
hold S ( j + 1) � S ( j) + s( j), with S ( j) the entanglement
entropy for the half line [ j,∞) and s( j) the one of the
single spin at site j with the rest of the system. Following
Ref. [66], we assume that local equilibration has occurred
on the scale of single sites. Therefore, s(x, t ) ∼ s(x + 1, t ) ∼
η(n) ≡ −n ln n − (1 − n) ln(1 − n). Using subadditivity from
the two sides, we have the update rule whenever a two-site
unitary is applied on the bond x,

S (x, t + 1) � min[S (x − 1, t ),S (x + 1, t )] + η(n). (36)

FIG. 7. Time dependence of entanglement entropy for the inter-
val [d, ∞) for (a) v = 0.2 < vmax and (b) v = 3.0 > vmax. On the
horizontal axis, the time delay δt = t − d/ max(vmax, v) from when
the front hits site d is considered. Once again, the entanglement
front fades in the subluminal case, while it persists unscathed for
the superluminal defect. Data are obtained by matrix-product state
(MPS) simulations averaged over 100 samples.

Note that the action of the defect cannot directly change
S (x, t ), but it affects the profile of n(x, t ) which enters in (36).
Interpreting this inequality as an equality, it gives an update
rule for the entropy at any position, which depends on the local
density n(x, t ). This approach was originally used in Ref. [26]
to show the emergence of the Kardar-Parisi-Zhang equation
in the entanglement dynamics without conserved quantities.
Then, in its form (36), it was recently applied in Ref. [66]
for several inhomogeneous setups. Here, we apply it to the
moving defect model. Although it only provides an upper
bound, we expect it to capture the qualitative behavior of the
entanglement dynamics. The result for the subluminal case is
shown in Fig. 6(b).

We can use Eq. (36) to get a qualitative estimate of the
entanglement front. We fix a large d and look at the time
dependence of S (d, t = x/vF + δt ) with vF = max[vmax =
2, v] the front velocity. Assuming S (x − 1, t ) ∼ S (x + 1, t ),

we have ∂t s(x, t ) ∼ η(n)
n�1∼ n. Using (34), we get for v <

vmax, S (d, d/vmax + δt ) ∼ 2−d dδt . On the contrary, for a su-
perluminal defect s(d, d/v + δt ) ∝ δt , independently of d .
These qualitative predictions are verified with MPS simula-
tions performed on the RUC in Fig. 7.

In conclusion, the chaotic model described by the RUC has
a phenomenology similar to the integrable case, although the
decay of the endogenous entanglement front is much faster
and signals the onset of diffusive behavior of transport. Note
that this is not in contrast with the ballistic propagation of
information observed in chaotic diffusive systems [25]: Here,
we start from the fully polarized state and therefore, in the
absence of magnetization transport, there is no local entropy
available for entanglement to grow.
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FIG. 8. The sudden formation of the comoving steady state. In the subluminal case (left), the causal light cone of a local observable
O(x, t ) in the space-time plane is such that, if it is crossed by the defect world line, then it also contains the defect-creation event. Conversely,
in the superluminal case, local observables right behind the defect are such that their light cone is crossed by the defect world line, but the
defect-creation event lies outside of the latter. This is therefore equivalent to a setting where the defect was located infinitely back in the past.
Therefore, translational symmetry along the defect’s world line 〈O(x, t )〉 = 〈O(x + v�t, t + �t )〉 emerges.

IV. THE COMOVING STEADY STATE

In Sec. II we saw how the exogenous entanglement front
due to superluminal defects in integrable models can be
framed within the quasiparticle picture, which holds true even
in the presence of weakly integrability-breaking perturbations,
despite the quasiparticles acquiring a finite lifetime. In Sec. III
we considered random circuits, where no quasiparticle inter-
pretation is known, finding again the same features in the
entanglement front of superluminal defects. In this respect,
one could suspect a very general argument should exist, based
solely on the existence of a maximum velocity. Indeed, this
is the case, as we further argue below. Beyond the presence
of a persistent entanglement front, the existence of vmax is
associated with stationarity in the reference frame comoving
together with the defect. In particular, one can define the
butterfly velocity vB < vmax, associated with the spreading of
a local operator under Heisenberg evolution: The support of
O(x, t ) is contained in [x − vBt, x + vBt] up to exponentially
small errors [27,68,69]. Note that although the butterfly effect
is normally associated with chaotic systems, operators exhibit
spreading also for integrable models, with vB ∼ vQP [70].

The formation of a comoving steady state is best appre-
ciated through a simple relativistic argument, for which we
refer to Fig. 8. Borrowing relativistic terminology, we dub as
timelike the inside of the light cone spreading with velocity
vB from the initial position of the defect, while points placed
outside of it will be called spacelike. Because information
propagates at a finite velocity, any measurement performed
at a spacelike point (x, t ) can only be affected by the causal
light cone which ends at this point, as shown in Fig. 8. If
the perturbation is subluminal, whenever its word line crosses
the causal light cone, also the space-time point (x = 0, t = 0)
associated with the formation of the perturbation is contained
in the causal light cone. On the contrary, if the perturbation
is traveling at v > vB, it can enter the causal light cone, even
though the instant of its creation remains always outside (see
Fig. 8, right). This implies that, while a local measurement
can be affected by the perturbation, its creation in the space-
time plane remains unknown to any local observer and can be
equivalently thought to be located infinitely back in the past.
In this case, the translational symmetry along the defect world
line emerges and the expectation value of the local observable
remains unchanged moving parallel to it. In other words,

the expectation value is stationary in the comoving reference
frame. In Fig. 9 we probe the described general framework,
testing the profile of the local magnetization at different
times after the defect activation, both in the integrable and
weakly nonintegrable case, finding perfect agreement with the
described scenario. For the RUC model, due to the sharp light

FIG. 9. Magnetization tail formation behind a superluminal de-
fect (v = 5, hz = 1.1) at the integrable [(a) hx = 0] and nonintegrable
point [(b) hx = 0.5]. Within the timelike lightcone, the dynamics
is rather different in the two cases, due to the presence of ballistic
transport in the first case and lack of it in the second one. Instead,
within a spacelike region ranging from the timelike light cone until
the defect position, in both cases a nontrivial tail steadily following
the defect is formed.
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cone, stationarity in the comoving frame is granted after an
ensemble average has been considered.

The existence of this stationary state also explains the
behavior of the entanglement front. Indeed, for low entan-
gled states, namely, possessing a finite correlation length, the
entanglement content is determined by the local properties
of the state. The latter is fully determined by the position of
the defect with respect to the interval of interest and not on
the actual time. This is of course true as long as the interval
[d, d + �] lies outside of the causal light cone spreading at
velocity vB from the space-time point where the defect was
activated.

V. CONCLUSIONS

We theoretically investigate and numerically confirmed
universal features of isolated quantum systems probed with
moving impurities. The presence of a maximum velocity in
the information spreading dramatically affects the system re-
sponse, with direct experimental implications. First, the evolu-
tion of entanglement is nowadays measurable in cold-atomic
experiments [71]. Second, the formation of a stationary trail
which follows the defect is independent on any fine tuning of
the model, relying only on the existence of a finite vB, making
it an ideal candidate to be observed in actual experiments.
Finally, we expect a similar phenomenology to emerge in
higher dimensions, with the additional intriguing possibility
to observe a Čerenkov angle in the entanglement propagation
front. Such experimental ways to investigate quantum chaos
could be insightful to understand this fascinating problem.
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APPENDIX: NUMERICAL METHODS

1. Green’s function transfer matrix

As long as the free point in the Ising chain is considered
(hx = 0), the mapping to the fermionic basis can be exploited
in the numerical solution and considerable large times and
system sizes reached (∼1500 lattice sites are an easy task for
standard laptops). The same algorithm has also been used in
Ref. [31], but nevertheless we discuss it hereafter for the sake
of completeness.

It is useful to reformulate the linear Heisenberg equation
of motion within a Green’s function approach. In this perspec-
tive, the fermionic field ψ (4) at time t is connected to the field
at time t0 by means of a Green’s function,

ψ j (t ) =
∑

j′
Gj, j′ (t, t0)ψ j (t0). (A1)

The Green’s function Gj, j′ (t, t0) for each value of the indices
( j, j′) is a 2 × 2 matrix that is required to solve the linear
differential equation

i∂t G j, j′ (t, t0) = (iσ y − σ z )

2
Gj−1, j′ (t, t0)

− (iσ y + σ z )

2
Gj+1, j′ (t, t0)

+ σ z[hz + V ( j − vt )]Gj, j′ (t, t0), (A2)

where σ x,y,z are the standard Pauli matrices. For t = t0, the
Green’s function must be required to be the identity

Gj, j′ (t0, t0) = δ j, j′

(
1 0
0 1

)
. (A3)

Obviously, we are ultimately interested in the case t0 = 0: The
knowledge of the Green’s function links the local observables
at time t with those at the initial time (i.e., the analytically
known correlators on the Ising ground state). In particular, let
us introduce a two-dimensional vector

ψ j =
(

d j

d†
j

)
, (A4)

and therefore the correlation matrix of the fermions can be
written as 〈ψ jψ

†
j′ 〉,

〈ψ jψ
†
j′ 〉 =

(〈d jd
†
j′ 〉 〈d jd j′ 〉

〈d†
j d†

j 〉 〈d†
j d j′ 〉

)
. (A5)

Then Eq. (A1) simply implies

〈ψ j (t )ψ†
j′ (t )〉 =

∑
l,l ′

Gj,l (t, 0)〈ψl (0)ψ†
l ′ (0)〉G†

j′,l ′ (t, 0). (A6)

Rather than solving directly the differential equation for
the Green’s function, we can conveniently take advantage of
its composition properties. Indeed, the Green’s function must
obviously satisfy

Gj, j′ (t3, t1) =
∑

l

G j,l (t3, t2)Gl, j′ (t2, t1). (A7)

Because of the moving defect, time translational invariance
is broken and Gj, j′ (t, t0) has a nontrivial dependence on both
times (and not only on the difference t − t0 as it would happen
in the absence of the defect). However, the fact that the
defect moves at constant velocity provides a periodicity in the
Green’s function.

In fact, after a time 1/v, the defect shifts by one site:
Time translations of steps 1/v can be equivalently regarded
as translations on the lattice,

Gj, j′ (t2 + nv−1, t1 + nv−1) = Gj−n, j′−n(t2, t1), (A8)

for any integer n. By means of a combination of Eqs. (A7) and
(A8), we can readily write a recurrence relation obeyed by the
Green’s function,

Gj, j′ (2
nv−1, 0) =

∑
l

[Gj−2n−1,l−2n−1 (2n−1v−1, 0)

× Gl, j′ (2
n−1v−1, 0)]. (A9)
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While each step of the recurrence relation requires a ma-
trix product (computationally expensive), large times can be
reached exponentially fast, provided the first step Gj, j′ (v−1, 0)
is known.

Concerning the computation of Gj, j′ (v−1, 0), we can rea-
son as follows: At time t = 0+ the defect is assumed to
be right beyond the lattice j = 0. Until a time t = 1/v is
reached, the system evolves freely as if it were homogeneous:
The homogeneous Green’s function G0

j, j′ is easily exactly
computed in terms of the modes of the free Ising chain,

G0
j, j′ (t, 0) = 1

N

N∑
m

ei2πm( j− j′ )/N

× [e−iω(2πm/N )t u1(2πm/N )u†
1(2πm/N )

+ eiω(2πm/N )t u2(2πm/N )u†
2(2πm/N )], (A10)

where the sum is over the (half) integers up to the total number
of lattice sites N , depending on being in the (even) odd
magnetization sector. The vectors u1,2 are defined in Eq. (11),
while ω is the Ising dispersion law.

At time t = 1/v the defect suddenly kicks the system and
the Green’s function has a jump dictated by the singular term
in the Schrödinger equation (A2),

Gj, j′ (v
−1, 0) = e−i c

v
δ j,1σ

z
G0

j, j′ (v
−1, 0). (A11)

This concludes the computation of Gj, j′ (v−1, 0), which can
now be employed in the recurrence relation (A9). Once the
Green’s function has been computed, the correlation functions
easily follow through (A6): Finally, from the correlators the
entanglement entropy of intervals can be obtained by taking
advantage of the Gaussianity of the model (see, e.g., Ref. [8]).
The algorithm presented here makes it possible to sample
times t = 2n/v with machine precision, but suitable gener-
alizations allow for a ticker time sampling at the price of
introducing more matrix products.

2. Matrix-product state simulation

a. Ising model

Numerical simulations for the Ising Hamiltonian Eq. (1) in
the presence of the integrability-breaking term hx �= 0 were
performed in two steps:

(1) A representation of the initial state |�〉 (the ground state
of the Hamiltonian for κ = 0) was obtained using the density-

matrix renormalization group (DMRG) algorithm using ten
sweeps as a matrix-product state (MPS) with maximal bond
dimension χ = 200.

(2) The time evolution for each time step �t = 1/v was
performed alternating evolution without the defect and the
action of the defect on a single site. This leads after n time
steps to

|�(t = n�t )〉 = D̂nŴ�t · · · D2Ŵ�t D̂1Ŵ�t |�(t = 0)〉 , (A12)

where Ŵ�t = e−ıĤκ=0�t is the time evolution in the absence of
the defect (when the defect lies in between two lattice sites)
and Dj = e−ıκσ z

j /v is the action of the defect on the site j. In
order to implement the two steps:

(a) We used a matrix-product operator (MPO) approxima-
tion W̃�t � W�t using the method described in Ref. [48]. The
unitary operator W̃ was then applied to the state |�(t )〉 and
the result was recompressed as a new MPS by discarding all
Schmidt eigenvalues smaller than δλ; to increase the preci-
sion, the time interval �t was split into N smaller steps, i.e.,
W�t = W N

�t/N , so that �t/N < 10−3. The action of each W�t/N

was approximated with the procedure above. Moreover, two
complex time steps were used to further reduce the scaling of
the errors with �t/N (see Ref. [48] for details).

(b) The action D̂ j of the δ defect was implemented acting
on the local Hilbert space of the site j.

The validity of the method was benchmarked by compar-
ison with the noninteracting case. In general, the accuracy
was kept under control by considering two different trunca-
tion errors δλ = 10−9 and δλ = 10−12. The two values of
δλ always provided comparable results (the difference being
smaller than the symbols in the plot of Fig. 9) for all the times
in the simulation. Two different simulations were run with the
maximum limits for the bond dimensions set to χmax = 250
and χmax = 500. The simulation was stopped when the two
simulations showed significative disagreement.

b. Random unitary circuit

The numerical treatment of the RUC model described in
Sec. III is formally analogous to the treatment of the Ising
model described above. Indeed, Eq. (A12) shows manifest
analogies with Eq. (19). The main difference is that, owing
to the brick-wall structure in Fig. 5, the factors W (N )

τ are
automatically expressed as products of local two-site gates,
which can be easily applied to an MPS. In order to sample
from the CUE, we used the algorithm in Ref. [72].
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