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Abstract
We develop a general framework to compute the scaling of entanglement 
entropy in inhomogeneous one-dimensional quantum systems belonging to 
the Luttinger liquid universality class. While much insight has been gained in 
homogeneous systems by making use of conformal field theory techniques, our 
focus is on systems for which the Luttinger parameter K depends on position, 
and conformal invariance is broken. An important point of our analysis is that 
contributions stemming from the UV cutoff have to be treated very carefully, 
since they now depend on position. We show that such terms can be removed 
either by considering regularized entropies specifically designed to do so, or 
by tabulating numerically the cutoff, and reconstructing its contribution to 
the entropy through the local density approximation. We check our method 
numerically in the spin-1/2 XXZ spin chain in a spatially varying magnetic 
field, and find excellent agreement.

Keywords: entanglement entropy, inhomogeneous Luttinger liquid, one 
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1. Introduction

Many quantum critical systems in one-dimension (1D), including various quantum gases or 
spin chains, belong to the universality class of Luttinger liquids [1–7]. From an effective 
field theory (FT) perspective, Luttinger liquids are the one-dimensional (1D) systems whose 
low-energy description is provided by a massless free boson FT in 1  +  1D, or in other words 
a U(1) conformal FT [8]. They are ubiquitous in the 1d quantum realm because U(1) sym-
metry itself is ubiquitous—it is associated to particle number conservation, often naturally 
present in spin chains or quantum gases—, and because of the limited amount of relevant 
perturbations—often forbidden by symmetry—that could drive the system away from the 
renormalization group massless fixed point.

One celebrated result about Luttinger liquids is that the entanglement entropy of a sub-
system I = [x1, x2] in the ground state of an infinite homogeneous (i.e. translation invariant) 
system grows logarithmically with the size of the interval I [9–12]. Specifically, for the entan-
glement entropy with Rényi index α, the result reads [12]

Sα(x1, x2) =
1 + 1/α

6
log

(
|x1 − x2|

aα

)
, (1)

up to corrections which go to zero as the length |x1 − x2| goes to infinity. Recall that the Rényi 
entanglement entropy of a pure state |ψ〉, which will always be the ground state in this paper, 
is defined by

Sα =
1

1 − α
log (Tr ρ̂αI ) , (2)

where ρ̂I = Tr̄I |ψ〉〈ψ| is the reduced density matrix for subsystem I, and Ī is its complement. 
The constant aα in (1) is non universal. It cannot be fixed by global conformal invariance and 
its analytic determination can be extremely cumbersome even in free systems [13–16]. When 
comparing formula (1) with numerical results in concrete microscopic systems, aα is often 
treated as a fitting parameter.

Motivated by practical aspects of 1D quantum gases in non-uniform trapping potentials [4, 
7, 17–23] or quantum spin chains in non-uniform magnetic fields [24–28], the purpose of this 
paper is to revisit the entanglement entropy of Luttinger liquids in the context of inhomogene-
ous 1d quantum systems, which are currently attracting a lot of attention, see e.g. [20, 28–42] 
for recent works in that direction. We focus on inhomogeneous Luttinger liquids, namely 
on quantum systems whose effective FT description corresponds to a free boson theory in a 
curved metric and with a spatially varying coupling strength or Luttinger parameter K [4, 20, 
22, 23, 28, 43, 44]; the theory will be briefly reviewed in section 2.

In an inhomogeneous quantum system, we expect the entanglement entropy of an interval 
I = [x1, x2]—assumed to be larger than any microscopic length scale such as lattice spacing or 
interparticle distance—to be of the form

Sα(x1, x2) = SFT
α (x1, x2) + cα(x1) + cα(x2), (3)

where SFT(x, y) is the entanglement entropy calculated in the FT with a certain UV cutoff—
that cutoff is discussed below—, and cα(x), cα(y) are the microscopic contributions to the 
entanglement entropy around the two points x and y . In homogeneous systems with entan-
glement entropy given by equation  (1), cα(x) is independent of x. It can be thought of as 
1+1/α

12 log(aFT
α /aα) where aFT

α /aα is the ratio of the UV cutoff in the FT and a microscopic 
length scale in the quantum system.

A Bastianello et alJ. Phys. A: Math. Theor. 53 (2020) 155001
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In writing equation (3), two crucial features must be stressed. First, two microscopic models 
sharing the same low energy description have the same contribution SFT

α (x, y) to their entangle-
ment entropies. This observation is at the root of the method developed in this paper: instead 
of considering a complicated interacting quantum model, it is possible to directly start from 
its effective FT description as an inhomogeneous free boson theory. However, in replacing the 
true microscopic quantum model by its effective low energy description, one is left with the 
difficult task of finding the position-dependent microscopic contribution cα(x).

On the other hand, the second feature apparent from equation (3) is that the microscopic 
contribution cα(x) is completely determined by the system in proximity of the points x1 and 
x2. This offers at least two possibilities, both of which we explore in great detail in the rest of 
this paper.

The first possibility is to consider a suitable combination of the entanglement entropy such 
that only universal features remain. For instance, one can define the ε-regularized entangle-
ment entropy as

S(ε)
α (x1, x2) =

1
2
[Sα(x1, x2) + Sα(x1 − ε, x2 + ε)− Sα(x1 − ε, x1)− Sα(x2, x2 + ε)] (4)

(for similar definitions which appeared in the literature, see for instance [45, 46]). The effect of 
this regularization is to replace the cutoff-dependent contribution to the entanglement entropy 
by a function of the length ε which is determined only by the universal FT part. Indeed, since 
the length ε can be fixed arbitrarily, one can chose ε to be much larger than the microscopic 

scale, yet much smaller than the length scale of the inhomogeneity. Then S(ε)
α (x, y) is fixed 

solely by SFT
α (x1, x2), as can be seen by plugging equations (3) into (4).

The second possibility is to numerically tabulate the values of cα by studying the homo-
geneous problem for different values of the external parameters. The inhomogeneous system 
can then be addressed by promoting cα to a function of the position x through the local den-
sity approximation (LDA). In this approach, a numerical study of the homogeneous system 
together with the low energy effective theory gives access to the full entanglement entropy (3).

Below, we provide extensive checks of these two possibilities, thus demonstrating that the 
inhomogeneous Luttinger liquid theory can efficiently capture the scaling part of the entan-
glement entropies even in interacting inhomogeneous systems. The lack of conformal sym-
metry in Luttinger liquids with spatially varying coupling constant [23] makes it impossible 
to apply standard methods of conformal invariance and to reach nice closed analytical results. 
Nevertheless the gaussianity of the theory still leads to expressions for entanglement entro-
pies that can be efficiently evaluated numerically. The method we develop here is versatile 
as it applies to all quantum systems described by (inhomogeneous) Luttinger liquid theory, 
some of which—including the Lieb–Liniger model—can be very difficult to simulate by other 
means in general.

Finally, it is important to stress that we are dealing with a free compact boson, and that the 
compactification has non-trivial consequences in the computation of entanglement entropies. 
This is well understood in the homogeneous case with periodic boundary conditions [47–49], 
however for open boundary conditions the entanglement entropy was studied only recently by 
one of us [50]. In this paper we focus on open boundary conditions and make extensive use 
of the results of [50].

The paper is organized as follows. In section 2 we briefly review the theory of the inhomo-
geneous free boson in 1d and explain how to calculate entanglement entropies starting from 
the inhomogeneous Luttinger liquid Hamiltonian. We apply this formalism in sections 3.1 and 
3.2 to study the entanglement entropy of an inhomogeneous XXZ chain. We perform DMRG 
checks in the XXZ chain to validate our approach. In section 3.1 we present our results for the 

A Bastianello et alJ. Phys. A: Math. Theor. 53 (2020) 155001



4

ε-regularized entanglement entropy with Rényi index α = 2. Section 3.2 is focused on the von 
Neumann entanglement entropy (α = 1) and Rényi entropy with index α = 2 of a half-chain 
using numerical tabulation of the cutoff-dependent contribution cα(x). We conclude in sec-
tion 4. The more technical aspects of our results are presented in full detail in the appendices.

2. Entanglement entropy in the inhomogeneous free boson theory

The FT that underlies inhomogeneous Luttinger liquids (see e.g. [4, 17, 20, 22, 23, 28, 43, 
44, 51]) is the free massless boson in a metric g with a spatially-dependent coupling con-
stant—which is called the Luttinger parameter K in this paper—, see the action (9) below. In 
this section we start by briefly reviewing this theory in Hamiltonian formalism (better suited 
than lagrangian formalism for the purposes of this paper). Then we explain how, discretizing 
the theory on a finite grid, one can obtain formulas that allow to calculate the entanglement 
entropy in terms of the Green’s function of that free theory.

2.1. Definition and Hamiltonian

The Hamiltonian of a homogeneous Luttinger liquid defined on the interval [0, L] is (we follow 
the notational conventions of the textbook of Giamarchi [5]):

ĤLL =
1

2π

∫ L

0
dx v

[
K(∂xθ̂)

2 +
1
K
(∂xφ̂)

2
]

, (5)

where v is the sound velocity in the fluid, K is the Luttinger parameter which encodes the 
renormalized interaction strength between the constituents of the microscopic model, and φ̂ 
and πΠ̂ = ∂xθ̂ are canonically conjugated bosonic fields,

[φ̂(x), Π̂(y)] = iδ(x − y). (6)

Throughout this paper, we focus on Dirichlet boundary conditions for the field φ̂ (as in [4, 21, 
23]),

φ̂(x = 0) = φ̂(x = L) = 0. (7)

Importantly, the fields φ̂, Π̂ are compactified: θ̂ is identified with θ̂ + 2π, while φ̂ is iden-
tified with φ̂+ π. One way of understanding this is to look at the identification of opera-
tors in the microscopic theory with local operators in the FT. For instance, in a microscopic 
model of bosons or fermions, the particle density operator has an expansion of the form 
n̂(x) = n0 − 1

π∂xφ̂(x) + . . ., where n0 is the mean value of the density. Thus, adding or 
removing one particle corresponds to a ±π-jump of the field φ̂. Such ±π jumps are most 
conveniently interpreted as non-zero windings when φ̂ takes values in the circle R/(πZ). 
Similarly, the field θ̂ is usually interpreted as a phase, and therefore takes values in the circle 
R/(2πZ). We will see in section 2.3 that this compactification induces non-trivial technicali-
ties in the computation of entanglement entropies.

Finally, we stress that for microscopic models that can be mapped to free fermions, the 
Luttinger parameter K is always equal to one (see for instance the discussions of that point in 
[22, 52]), but in the presence of interactions it can be any positive real number.

Now let us turn to the inhomogeneous case. In the limit of very slow variations of the mean 
density n0(x), it is still possible to describe the low-energy fluctuations of the system by the two 
canonically conjugated fields φ̂(x) and Π̂(x), if one can identify the correct inhomogeneous 
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generalization of the Hamiltonian (5). Of course, the inhomogeneous generalization must be 
such that, locally, it reproduces the results of the homogeneous model. The simplest way of 
ensuring this is to promote the parameters in the Hamiltonian (5) to functions of the position 
v → v(x), K → K(x), the local values of which are fixed by the underlying microscopic theory 
through LDA [4, 20, 22, 23, 28],

ĤLL =
1

2π

∫ L

0
dx v(x)

[
K(x)(πΠ̂)2 +

1
K(x)

(∂xφ̂)
2
]

. (8)

Notice however that, as discussed in detail in [22, 23, 52], promoting the model to inhomoge-
neous v(x) and K(x) leads to possible ambiguities. Different choices are in principle allowed: 
for example, substituting 1/K(∂xφ̂)

2 in the homogeneous Hamiltonian (5) by [∂x(
√

1/K(x)φ̂)]2 
instead of 1/K(x)(∂xφ̂)

2 would lead to another inhomogeneous Hamiltonian which would 
look equally valid. In [23, 52] it is properly argued that, in lagrangian formalism, the correct 
action reads (the field h(x, τ) in these references is 2 × φ(x, τ) here)

S =
1

2π

∫ √
gd2x

K(x)
gab(∂aφ)(∂bφ), (9)

where x = (x1, x2) = (x, τ), τ  is the imaginary time coordinate, and the two-dimensional met-
ric gab has euclidean signature and reads in our case

ds2 = gabdxadxb = dx2 + v(x)2dτ 2. (10)

In appendix A we show that the Hamiltonian (8) is indeed the one that is obtained from the 
action (9). The covariant form of the action suggests the change of variables

x → x̃ =

(∫ L

0

dy
v(y)

)−1 ∫ x

0

dy
v(y)

, (11)

which puts the metric in the form ds2 ∝ dx̃2 + dτ 2 [20] and x̃ ∈ [0, 1]. Hence the position-
dependent sound velocity drops from most computations, and we find that it also facilitates 
numerical calculations (see appendix C). The position-dependent Luttinger parameter K(x), 
however, cannot be absorbed in a simple change of variables, and the ground state correlations 
can no longer be calculated analytically, contrary to the case when K is a constant. This is an 
important complication inherent to interacting inhomogeneous Luttinger liquids. The ground 
state correlations can all be expressed in terms of the Green’s function of a generalized lapla-

cian in 2D, ∇x
1

K(x)∇x , and the problem is formally analogous to calculating the Coulomb 
energy of distributions of electric and magnetic charges in a 2d electrostatic problem with a 
spatially varying dielectric constant 1/K(x). We refer to [23] for a more detailed discussion of 
ground state correlations in the inhomogeneous Luttinger liquid.

In this paper, we rather rely on a numerical evaluation of the ground state correlations 
〈φ̂(x)φ̂(x′)〉, 〈φ̂(x)Π̂(x′)〉, 〈Π̂(x)Π̂(x′)〉 which is based on a discretization of the system on a 
finite grid. We refer to appendix C for further details on our numerical procedure.

2.2. Entanglement entropy of an interval at the edge

Let us consider a bipartition I ∪ Ī  of the system, with I  =  [0,x1] and Ī = [x1, L]. For this choice 
of bipartition, one does not need to be particularly careful about the compactification of the 
field φ̂(x) (see figure 1). The calculation can be done straightforwardly, following for instance 
the review [53]. Here we write the calculation for continuous fields, without paying attention 
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to problems of UV regularization. In practice, the formulas we present here will be used in 
sections 3.2 and 3.1 by discretizing the system on a finite grid, thus naturally providing a UV 
regularization (see appendix C for details).

We define the bosonic annihilation/creation operators

ϕ̂(x) =
n

1
2
0 (x)φ̂(x)− in−

1
2

0 (x)Π̂(x)√
2

ϕ̂†(x) =
n

1
2
0 (x)φ̂(x) + in−

1
2

0 (x)Π̂(x)√
2

,

 (12)
such that [ϕ̂(x), ϕ̂†(y)] = δ(x − y). The mean density n0(x) appears because of dimensionality. 
We also define the correlation operator C(x, y) in block form

C(x, y) =
(
〈ϕ̂(x)ϕ̂†(y)〉 〈ϕ̂†(x)ϕ̂†(y)〉
〈ϕ̂(x)ϕ̂(y)〉 〈ϕ̂†(x)ϕ̂(y)〉

)
, (13)

with the following notational convention for product of operators: (AB)(x, y) =
∫

dz A(x, z)B(z, y).
Let us call CI the correlator restricted to the subsystem I  =  [0,x1]. Since the correlation 

functions of the whole system satisfy Wick’s theorem, correlation functions restricted to the 
subspace I automatically satisfy Wick’s theorem as well. This implies that the reduced density 
matrix ρ̂I is gaussian in terms of the bosons and unambiguously fixed by the correlator CI. In 
particular, there exists a canonical transformation to new bosonic fields γ̂(x), γ̂†(x)

(
ϕ̂(x)
ϕ̂†(x)

)
=

∫
dk M(x, k)

(
γ̂(k)
γ̂†(k)

)
, (14)

which diagonalizes the correlation operator:

(MCIM†)(k, q) =
(
〈γ̂(k)γ̂†(q)〉 〈γ̂†(k)γ̂†(q)〉
〈γ̂(k)γ̂(q)〉 〈γ̂†(k)γ̂(q)〉

)
= δ(k − q)

(
1 + 1

eλ(k)−1 0
0 1

eλ(k)−1

)
. (15)

This transformation also diagonalizes the reduced density matrix,

Figure 1. Cartoon of two configurations of particles in the microscopic model, and the 
corresponding expectation value of the field φ̂(x), which jumps by −π at the position 
of each particle according to n̂(x) = n0(x)− 1

π∂xφ̂. Notice that the two configurations 
of particles are globally different, however they are identical inside the subsystem I. 
In terms of the field φ̂(x), the two configurations inside the interval I are viewed as 
different unless one identifies φ̂(x) with φ̂(x) + π. In other words, if one simply treats 
the field φ̂(x) as real-valued, then one is overcounting the configurations inside the 
interval I; if instead the field φ̂(x) is viewed as taking values in R/(πZ) then it correctly 
encodes particle configurations. It is extremely important to properly take into account 
the compactification in the calculation of the entanglement entropy of an interval I in 
the bulk. Notice that, because of the Dirichlet boundary condition satisfied by φ̂(x), 
there is no problem of overcounting when the interval I touches the boundary.

A Bastianello et alJ. Phys. A: Math. Theor. 53 (2020) 155001
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ρ̂I =
e−

∫
dk λ(k)γ̂†(k)γ̂(k)

Tr e−
∫

dk λ(k)γ̂†(k)γ̂(k)
. (16)

The entanglement entropy is then related to the eigenvalues λ(k):

Sα =
1

1 − α
log[Tr ρ̂αI ] =

1
1 − α

∫
dk log

[
(1 − e−λ(k))α

1 − e−αλ(k)

]
=

∫
dk fα(λ(k)),

 (17)

where fα(λ) = 1
1−α log

[
(1−e−λ)α

1−e−αλ

]
 and, in the case α = 1, f1(λ) = limα→1 fα(λ) =  

λ
eλ−1 − log

(
1 − e−λ

)
.

We see that the non-trivial part of the calculation is the diagonalization of the correlation 
operator CI, equations (14) and (15). Let us elaborate on that point. In order to preserve the 
canonical commutation rules, the change of basis (16) must be symplectic,

MσM† = σ with σ(k, q) = δ(k − q)
(

1 0
0 −1

)
. (18)

It is convenient to take advantage of the symplectic transformation to observe that 
M† = σM−1σ, so

(MCIσM−1)(k, q) = (MCIM†σ)(k, q) = δ(k − q)

(
1 + 1

eλ(k)−1 0
0 − 1

eλ(k)−1

)
.

 (19)
Thus, the spectrum of CIσ gives access to λ(k), which then gives the entanglement entropy 
through equation (17). Again, we emphasize that, in practice, we discretize the inhomoge-
neous Luttinger liquid on a finite grid (appendix C), so the correlation matrix CI is a finite-size 
square matrix and the spectrum of CIσ is obtained numerically.

2.3. Entanglement entropy of an interval in the bulk: the role of compactification

Next, we turn to the case of a bipartition I ∪ Ī  with I = [x1, x2] and Ī = [0, x1] ∪ [x2, L], 
with 0 < x1 < x2 < L . This situation is more complicated than the one in the previous sec-
tion because of the compactification of the field φ̂ which now plays a role. To see this, consider 
the two configurations of particles in the microscopic model drawn in figure 1. Although they 
are identical inside the interval I, the field φ̂(x) takes different real values inside I. One sees 
that the configurations are identical only if one identifies φ̂(x) with φ̂(x) + π. Not taking this 
compactification into account would lead to wrong results for the entanglement entropy.

It is well known that dealing with compactification in the context of calculating entangle-
ment entropies is not an easy task. Indeed, the same problem is faced when calculating the 
entanglement entropy of a multi-interval in an infinitely long system [47–49, 54], and there 
only the Rényi entropies with integer α � 2 have been accessed through a direct analytical 
calculation. No analytical continuation to continuous Rényi parameter α has been found so far 
even in that well-studied case, albeit the analytical continuation can sometimes be performed 
numerically [55, 56]. In [57, 58], by means of conformal blocks techniques, the Rényi entro-
pies for disjoint intervals were analyzed in the PBC case, resulting in an expansion in the small 
distance among the two intervals: such an expression can be analytically continued term by 
term, giving access to the same expansion for the von Neumann entropy. However, connecting 
this method with the exact results of [47–49, 54] is still an open challenge.

A Bastianello et alJ. Phys. A: Math. Theor. 53 (2020) 155001
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Therefore, in this section we also restrict ourselves to the case of Rényi index α integer and 
� 2. The calculation leading to this result was done very recently by one of us in [50], and we 
refer to that reference for details of the derivation. The result of [50] reads

Sα(x1, x2) =
1

1 − α
log



α−1∏
a=1

√√√√ 1
π3Ia/α

1

det
(

1+Φ−1Φa/α

2

) ∑

{mj}α−1
j=1

exp

{
− 4

α−1∑
a,b=1

Mab mamb

}
+ Cα ,

 (20)
where the constant offset does not depend on x1, x2, but may depend on α. The summation 
is over m1, m2, . . . , mα−1 ∈ Z. The matrix M is a square matrix of size (α− 1)× (α− 1), 
while Φ and Φω are operators: their determinants are computed by means of a suitable dis-
cretization of the continuum model on a finite grid, before taking the limit of zero lattice spac-
ing. In doing so, the entanglement entropy is well defined except for a constant offset, which 
diverges logarithmically in the lattice size [50], in agreement with the homogeneous result (1).

The function Iω and the matrix Mab are defined as

Mab =

α−1∑
c=1

e−i2πc(a−b)/α

αIc/α
, Ia/α =

∫ x2

x1

dx sa/α(x) . (21)

Here sω(x) solves the following integral equation
∫ L

0
dy (Φ(x, y) + Φa/α(x, y))sa/α(y) =

{
1 x1 � x � x2

0 otherwise
. (22)

The operator Φ is nothing but the connected correlation function in the ground state, defined 
on the interval [0, L],

Φ(x, y) = 〈φ̂(x)φ̂(y)〉 − 〈φ̂(x)〉〈φ̂(y)〉. (23)

Φω is also defined on the interval [0, L] as

Φω(x, y) = Φ(x, y)ei2πω(χI(y)−χI(x)), (24)

where χI is the characteristic function of the interval I: χI(x) = 1 if x ∈ I  and χ(x) = 0 
otherwise.

The last additive constant Cα was overlooked in [50], where the primary focus was on the 
coordinate dependence of the expression. The validity of the results in [50] holds true apart 
from an overall constant, which is left ambiguous in the definition of the multi-sheet partition 
function defining the α-Rényi entropy. However, determining the exact value of the entropy 
is essential for the applicability of our method (in particular for the results in section 3.1): the 
constant ambiguity can be removing simply by imposing that, in the limit x1 → 0, the results 
of section 2.1 are recovered. This calculation is carried out in appendix D, resulting in

Cα = − 1
1 − α

log

[
α1/2

(2π)α−1

]
. (25)

Again, we emphasize that, in practice, we evaluate all these expressions numerically, by 
discretizing the system on a finite grid (appendix C). Thus, we are always manipulating large 
but finite matrices, and formula (20) is evaluated through standard linear-algebra routines. 
While taking the continuum limit, the logarithm of the ratio of determinants splits into a uni-
versal part and a UV-divergent part ∝ log � , where � is the lattice spacing. All the other quanti-
ties appearing in equation (20) are well defined in the continuum limit: it is possible to show 
[50] that sω(x) acquires power-law singularities at the edges of the interval [x1, x2], however 
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these divergences remain integrable  ∼1/|x − x1,2|max(ω,1−ω) for any 0 < ω < 1. We observe 
that our choice of considering the α = 2 Rényi entropy guarantees the best convergence of 
the expression (20).

3. Entanglement entropy in the inhomogeneous XXZ spin chain

Now that we have presented the general ideas and methods, we turn to a specific microscopic 
model where we can check our approach numerically. We focus on the XXZ spin chain in a 
smoothly varying external magnetic field

ĤXXZ =

N∑
j=1

(
Ŝx

j Ŝx
j+1 + Ŝy

j Ŝy
j+1 +∆Ŝz

j Ŝ
z
j

)
+

N∑
j=1

h( j/N − 1/2)Ŝz
j . (26)

Here Ŝx,y,z are the spin-1/2 operators, and N is the spin chain’s length, assumed to be large. 
The local magnetic field h(x) is some smooth function, so that h( j/N − 1/2) varies very 
slowly when N is large (we shift the argument of the magnetic field in such a way the argu-
ment of h(x) is zero when j   =  N/2). We stress that our chain has open boundary conditions. 
All numerical calculations in the chain were performed using a DMRG algorithm based on 
the Itensor [59] C++ library.

When the magnetic field h is constant, the model is integrable [60, 61]: this provides a 
powerful set of tools which allows an exact determination of its spectrum, together with an 
exact computation of the Luttinger parameters v, K, as sketched in appendix B. Within the 
paramagnetic phase |∆| < 1, the ground state of the homogeneous XXZ chain is gapless for 
|h| < 1 +∆. In our numerics we focus on the values ∆ = ±1/2 and h  >  0, but other choices 
of the parameters would lead to similar results, as long as one stays in the gapless regime. 
For details on the bosonization of the XXZ spin chain we refer to the existing literature (e.g. 
[4, 5]). Here we only need to determine the local velocity of gapless excitations v(x) and the 
Luttinger parameter K(x), which we do through the LDA.

Hereafter, we chose the magnetic field in such a way that only a subregion of the spin 
chain has non-trivial magnetization  −0.5  <  m  <  0.5. The magnetization is maximal out-
side that region, and the spins do not fluctuate there. The inhomogeneous Luttinger liquid 
decribes only the subregion of the spin chain where the spins are critically fluctuating. Thus 
we stress that the spatial domain in which our Luttinger liquid lives is not the whole chain but 
only that subregion, which is the only one giving non-zero contribution to the entanglement 
entropy to the leading order (see figures 2 and 3). The subleading edge behavior of the entropy 
corre sponding to near-saturating magnetic field can also be obtained exactly [39, 62, 63], but 
belongs to a different edge universality class. Our focus is on bulk Luttinger liquid behavior 
in this paper. In this section the bipartition consists of the two intervals I = {1, . . . , j} and 
Ī = { j + 1, . . . , N} of spins in the XXZ chain (26).

3.1. ε-regularized (Rényi) entanglement entropy in the inhomogeneous XXZ spin chain

We approach the FT using the following flat discretization (i.e. in the isothermal coordinates 
equation (11)),

ĤLL(�) =
�

2π

M∑
j=1

π2KjΠ̂
2
j +

�

π

M+1∑
j=1

1
Kj + Kj−1

(
φ̂j−1 − φ̂j

�

)2

, (27)
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where the discrete fields satisfy the canonical commutation relations

[φ̂j, Π̂j′ ] = iδj,j′ , (28)

and � = M−1 is the lattice spacing is isothermal coordinates. We impose Dirichlet boundary 
conditions

φ̂0 = φ̂M+1 = 0. (29)

Further details about our discretization of the free boson theory are deferred to appendix C. Of 
course, both the XXZ spin chain and the (discretized) Luttinger Liquid bear their own cutoffs, 
however, in the same spirit of equation (4), from the equation (3) we can construct cut-off 
independent identities such as

SXXZ(ε)
α (0, j) = SLL(�)(ε)

α (0, j) (30)

where, making use the entanglement entropy in the XXZ model SXXZ
α  and in the discretized 

Luttinger SLL(�)
α , we defined the regularized entropy

S(ε)
α (0, j) =

1
2
[Sα(0, j) + Sα(0, j + ε)− Sα( j, j + ε)] . (31)

While equation (30) is expected to hold true for arbitrary Rényi entropies (and therefore also 
in the limit corresponding to the von Neumann α → 1), computing equation  (31) requires 

Figure 2. Comparison of ε-regularized entanglement entropies for the XXZ spin 
chain (solid blue line) and discretized Luttinger Liquid (dashed red line). We focus 
on the second Rényi entropy S2, testing ∆ = ±0.5 for different magnetic traps (see 
inset of each plot). The comparison is excellent for ∆ = −0.5, while for ∆ = 0.5 there 
are persistent oscillations. Indeed, as discussed in the text, corrections to the scaling 
limit in the form of oscillating terms are expected [64] and they are enhanced as 
∆ → 1. The Rényi of the small interval [ j, j + ε] used in the regularization suffers from 
the mentioned corrections, due to the small size of the interval. The data for the XXZ 
spin chain are obtained for N  =  1024 sites, the small regulator is chosen homogeneous 
and encompassing a few lattice sites ε = 8. In the discretized Luttinger liquid, we used 
isothermal coordinates and 2000 lattice sites, resulting in � = 5 × 10−4: such a small 
discretization is required to faithfully describe the small interval of length ε in the 
original spin chain. The small asymmetry of the curve around j   =  N/2 is induced by the 
ε-regularization which explicitly breaks parity invariance.
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the knowledge of the entropies of an interval embedded in the bulk ( j, j + ε). In this case, 
the non trivial compactification of the bosonic field plays an important role and, to the best 
of our knowledge, equation (20) [50] is the only available result for open boundary condi-
tions: this allows us to address the Rényi entropies of integer indexes, but leaves out the von 
Neumann entropy from our analysis. In figure 2 we compare the regularized Rényi entropy 
(31) for α = 2 in the XXZ model and in the discretized Luttinger, for different values of the 
interaction ∆ and the magnetic trap, finding good agreement. One can observe oscillations, 
which are much more pronounced for ∆ = 0.5 than for ∆ = −0.5. This observation is con-
sistent with known results for corrections to scaling in homogeneous systems [64], which are 
controlled by the Luttinger parameter. While they disappear in the thermodynamic limit, the 
corre sponding exponent becomes smaller as K is smaller, so they significantly affect finite-
size calcul ations when ∆ approaches 1.

3.2. Results from numerical tabulation of the UV contribution to the entropy

According to the discussion around equation (3) in the introduction, the entanglement entropy 
in the XXZ chain will be of the form

SXXZ
α (0, j) = SFT

α (0, j) + cXXZ
α

(
h( j/N − 1/2)

)
, (32)

where ‘FT’ stands for the FT result, which itself depends on a FT cutoff. To evaluate the FT 
part we rely on the discrete Luttinger liquid Hamiltonian (27): the entanglement entropy in 
the discretized Luttinger liquid (which we note ‘LL(�)’) satisfies a relation similar to equa-
tion (32), with a different non-universal O(1) part cα,

SLL(�)
α (0, j) = SFT

α (0, j) + cLL(�)
α

(
v( j/N), K( j/N), �

)
. (33)

Here the O(1) part depends on the microscopic parameters of the discretized Luttinger liquid: 
the lattice spacing �, and the local parameters v(x) and K(x) entering the Hamiltonian. Thus, 
we have

SXXZ
α (0, j) = SLL(�)

α (0, j) + dXXZ/LL(�)
α

(
h( j/N − 1/2)

)
, (34)

where dXXZ/LL(�)
α (h(x)) is the difference of the non-universal O(1) parts, 

cXXZ
α (h(x))− cLL(�)

α (v(x), K(x), �). Importantly, dXXZ/LL(�)
α (h(x)) should be a function of the 

local parameters in the model only, so we can fix it by the LDA; we see that it depends only on 
the local magnetic field hx. Notice that, on the discrete Luttinger liquid side, the local param-
eters v(x) and K(x) do themselves depend on h(x) through the LDA.

To evaluate dXXZ/LL(�)
α (h), we can focus on a homogeneous spin chain. For a fixed magn-

etic field h, the difference

SXXZ
α (0, j)− SLL(�)

α (0, j) (35)

is constant as a function of j , up to terms that go to zero in the thermodynamic limit. We tabu-
late the measured constants as a function of the field h, and this gives us access to the function 
dXXZ/LL(�)
α (h), in the homogeneous spin chain.

There is one minor subtlety that is left to discuss when one goes from the homogeneous 
to the inhomogeneous case. Indeed, the discrete Luttinger liquid Hamiltonian does not need 
to rely on the spatial discretization corresponding to the spin chain one. In general there is a 
change of variables j → x̃ such that the spatial discretization of the discrete Luttinger liquid 
corresponds to x̃ ∈ �Z. Then one needs to keep track of that change of variables. This is 
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done as follows. Recall that in FT the calculation of entanglement entropy maps to the one 

of a correlation function of twist fields [65] with scaling dimension α−1/α
12 . Then a change of 

variables generates an additive term in the final result for the entanglement entropy, which is 
the logarithm of the Jacobian of the change of variables, times the scaling dimensions. Thus, 
if we want to use a general coordinate x̃ for the discretized Luttinger liquid, equation (36) 
becomes instead

SXXZ
α (0, j) = SLL(�)

α (0, x̃) + dXXZ/LL(�)
α (h( j/N − 1/2)) +

1 + 1/α
12

log

∣∣∣∣
dx̃
dj

∣∣∣∣ .

 (36)
In figure 3 we compare the data of several DMRG simulations of the full inhomogeneous 

system, with those extracted from the (discretized) Luttinger liquid, using equation (36). We 
focus on the von Neumann entanglement entropy S1 and the Rényi entropy S2: the agreement 
is excellent in both cases.

4. Conclusion

We have developed a method to calculate the entanglement entropy of Luttinger liquids in 
inhomogeneous situations, where the Luttinger parameter K becomes position dependent. The 
crucial ingredient in our analysis is a careful treatment of the contribution to the entanglement 
entropy coming from the UV cutoff, both in the microscopic model one is interested in (in this 
paper, the XXZ chain) and in the discretized free boson FT one uses to do the calculations. 

Figure 3. Comparison of entanglement entropies in the XXZ spin chain (solid lines) 
against discretized Luttinger (dashed lines) through the method of the cutoff extraction 
equation (34). We focus on the von Neumann entropy S1 and on the second Rényi S2 for 
∆ = ±0.5 and several magnetic trap (see insets). The XXZ spin chain has N  =  1024 
lattice sites. In the case of the discretized Luttinger liquid we considered isothermal 
coordinates and used 200 sites, which were enough to reach convergence. In contrast 
with figure  2, the XXZ data show smaller oscillations around the Luttinger liquid 
prediction.
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Contrary to homogeneous situations, where this contribution is simply a constant often treated 
as a fitting parameter, here that constant depends on position. It is possible to construct combi-
nations of entanglement entropies, like the ε-regularized entropy we considered (see also [45, 
46] for similar definitions of regularized entanglement entropies), such that the non-universal 
position-dependent constant disappears. Alternatively, we showed that this position-depen-
dent contribution to the entanglement entropy can be tabulated, and then used in numerics to 
arrive at concrete predictions for the standard (i.e. not regularized) entanglement entropy. In 
addition, our analysis provides a numerical benchmark for the results of [50] in the interacting 
case (K �= 1), which was not tested in the original reference.

It would be very interesting to extend our results to deal with out-of-equilibrium inhomo-
geneous situations in critical spin chains or 1D quantum gases. One paradigmatic example 
of such situations corresponds to the Riemann problem in hydrodynamics, where two semi-
infinite systems with different thermodynamic characteristics are suddenly joined together 
[31, 66–70]. In the particular case of two initial half-systems at zero temperature (but, say, at 
different filling fractions), the system must be described by a time-dependent inhomogene-
ous Luttinger liquid. The free fermion case is mostly understood [20], however in the truly 
interacting case where the Luttinger parameter K is expected to depend on x and t, there is 
no theory allowing a calculation of the entanglement entropy, to our knowledge. A number of 
numerical observations on entanglement entropies have been made [71–74], and it would be 
very nice to adapt our results to the time-dependent case and make contact with those works. 
Here again, the non-universal position-dependent (and also time-dependent) contribution to 
the entanglement entropy will require a careful treatment. This time, to tabulate it one might 
need to look at homogeneous states that are not just the ground state of the homogeneous 
problem, but highly excited states. In particular, in some cases it might be necessary to go 
beyond the simple Luttinger liquid and consider so-called ‘split Fermi seas’ [42, 75–78], and 
calculate entanglement entropies in those, which could be hard. Alternatively, focusing on 
ε-regularized entanglement entropies should be easier in those out-of-equilibrium situations; 
this could be a good starting point to investigate this class of problems.
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Appendix A. Inhomogeneous Luttinger liquid: from Lagrangian to Hamiltonian

In this appendix we work with Lorentzian signature. The action of the inhomogeneous 
Luttinger liquid is

S =
1

2π

∫
dxdt

K
√
−g gab(∂aφ)(∂bφ)

=
1

2π

∫
dxdt

K
√
−g [gxx(∂xφ)

2 + gtt(∂tφ)
2 + 2gtx(∂tφ)(∂xφ)],

 (A.1)
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which gives the Lagrangian L = 1
2π

∫
dx
√
−g [gxx(∂xφ)

2 + gtt(∂tφ)
2 + 2gtx(∂tφ)(∂xφ)]. 

The entries of the metric g and the Luttinger parameter K depend on x and t. The canonical 
momentum associated to φ(x) is

Π(x) =
∂L

∂(∂tφ(x))
=

1
πK

√
−g [gtt(∂tφ) + gtx(∂xφ)],

so

gtt(∂tφ) =
πK√
−g

Π(x)− gtx(∂xφ)

and the Hamiltonian derived from the action S is then

H =

∫
dxΠ∂tφ− 1

2π

∫
dx
K
√
−g [gxx(∂xφ)

2 + gtt(∂tφ)
2 + 2gtx(∂tφ)(∂xφ)]

=

∫
dx
πK

√
−g [gtt(∂tφ)

2 + gtx(∂xφ)(∂tφ)]−
1

2π

∫
dx
K
√
−g [gxx(∂xφ)

2 + gtt(∂tφ)
2 + 2gtx(∂tφ)(∂xφ)]

=

∫
dx

2πK
√
−g [gtt(∂tφ)

2 − gxx(∂xφ)
2]

=

∫
dx

2πK
√
−g

[
1
gtt

(
πK√
−g

Π(x)− gtx(∂xφ)

)2

− gxx(∂xφ)
2

]
.

In the (t, x) basis, the metric is the 2 × 2 matrix

g =

(
v − u2

v
u
v

u
v − 1

v

)

where u ± v are the velocities of sound waves in the fluid. In this paper we are working with 
a time-independent Luttinger liquid with u  =  0; but more generally it is useful to consider the 
case where u does not necessarily vanish. The above metric has determinant  −1, so 

√
−g = 1, 

gtt = 1
v, gxt = u

v, gxx = u2

v − v. Then the final form of the Hamiltonian is

H =

∫
dx

2πK

[
v
(
−πK Π̂(x) +

u
v
(∂xφ̂)

)2
− (

u2

v
− v)(∂xφ̂)

2
]

, (A.2)

where φ̂ and Π̂ are canonically conjugated: [φ̂(x), Π̂(y)] = iδ(x − y). When u  =  0, this is the 
Hamiltonian (8) in the main text.

Appendix B. Luttinger parameters v , K  in the XXZ spin chain

The Luttinger description captures the low energy sector of interacting 1D systems, but the 
difficult task of determining the effective parameters v and K is left open. In general, one is 
forced to use some approximations or numerical analysis, except for an important set of mod-
els, namely integrable systems [60, 61]. Their thermodynamics can be exactly computed in 
terms of proper integral equations, thanks to the Thermodynamic Bethe ansatz: then, the exact 
solution is matched with the Luttinger prediction, providing the expressions of v and K. In the 
spirit of the LDA, we can compute the local v(x) and K(x) as if the model was homogeneous. 
Since in this work we tested our prediction on the XXZ spin chain, we restrict the discussion 
of the TBA and the subsequent extraction of v and K to this model. We closely follow [79].

We take for granted a basic knowledge of TBA, for which the reader can refer to [60, 61], 
and just give the main formulas. Thus, we consider the Hamiltonian (26) for an homogeneous 
magnetic field h.

A Bastianello et alJ. Phys. A: Math. Theor. 53 (2020) 155001



15

Notice that with a rotation along the x axis one can send Ŝx → Ŝx, ̂Sy → −Ŝy and ̂Sz → −Ŝz: 
thus we can change the sign h → −h . Therefore, we limit ourselves to study the case h  >  0 
and focus on |∆| < 1, which we parametrize as ∆ = cos(πγ). Due to integrability, the model 
can be understood in terms of stable quasiparticle excitations which are distributed accord-
ingly to functions known as root densities. The description of the ground state requires a 
single root density, which satisfies the following linear integral equation

ρ(λ) = a(λ) +
∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)ρ(µ) (B.1)

where

a(λ) =
1
π

sin(πγ)

cosh(2λ)− cos(πγ)
ϕ(λ) = −2

sin(2πγ)
cosh(2λ)− cos(2πγ)

. (B.2)

The Fermi sea Λ is identified by the constraint that the dressed energy

ε(λ) = E(λ) + h +

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)ε(µ) (B.3)

is equal to zero at the Fermi point ε(Λ) = 0. Above, the bare energy is E(λ) = −π sin(πγ)a(λ).
We now consider the problem of fixing the Luttinger parameters: the velocity of sound 

appearing in the Luttinger is nothing else than the dressed velocity of the excitations at the 
edge of the fermi sea, namely

v =
(∂λE(λ))dr

(∂λp(λ))dr

∣∣∣
λ=Λ

 (B.4)

where, for an arbitrary test function τ , the dressing operation is defined through the following 
integral equations

τ dr(λ) = τ(λ) +

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)τ dr(µ) . (B.5)

Above, we need to use that ∂λp(λ) = 2πa(λ). In order to find K, we proceed as it follows.
Conveniently, the Hamiltonian (26) can be regarded as a fermionic system with the cor-

respondence Ŝz → 1
2 − ĉ†j ĉj, being ĉj standard spinless fermions [61]. Let n = 〈ĉ†j ĉj〉 be the 

density of Fermions, thus from Bethe Ansatz we have

n =

∫ Λ

−Λ

dλ ρ(λ). (B.6)

We define the compressibility as the system’s response to external variations of the magnetic 
field κ = −∂hn. In the fermionic language, adding a small magnetic field δh to the Hamiltonian 
couples to the fermion density, thus in the Luttinger liquid one gets a shift proportional to ∂xφ̂

Ĥ → Ĥ′ =
1

2π

∫ L

0
dx v

[
K(πΠ̂)2 +

1
K
(∂xφ̂)

2
]
+

∫ L

0
dx

δh
π
∂xφ̂ . (B.7)

One can then redefine ∂xφ̂
′ = ∂xφ̂+ K

v δh and Ĥ′ is back to the Hamiltonian for h  =  0, but 
expressed in terms of the new variables, thus 〈∂xφ̂

′〉δh = 〈∂xφ̂〉δh=0. Therefore

n(δh)− n(δh = 0) = − 1
π

(
〈∂xφ̂〉δh − 〈∂xφ̂〉δh=0

)
= − K

vπ
δh. (B.8)
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Thus, within the Luttinger Liquid theory we get

κ =
K
vπ

. (B.9)

We now compute the same object in the Bethe Ansatz formalism. Firstly, we need to study 
how the Fermi sea Λ is affected by a change in h. Thus, we regard the effective energy ε as 
an independent function of the rapidity, the magnatic field and Λ, i.e. ε(λ,Λ, h). Considering 
a small variation in the magnetic field h → h + δh and in the Fermi sea Λ → Λ + δΛ, we get

ε(λ,Λ + δΛ, h + δh) = ε(λ,Λ, h) + δhZ(λ,Λ) . (B.10)

Above, we defined

Z(λ,Λ) = 1 +

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)Z(λ,Λ) (B.11)

and we explicitly used ε(Λ,Λ, h) = 0. Let us now compute equation (B.10) at λ = Λ+ δΛ 
imposing ε(Λ + δΛ,Λ + δΛ, h + δh) = 0. One gets

δΛ∂λε
∣∣
λ=Λ

+ δhZ(Λ) = 0 , (B.12)

where we neglect to write explicitly the Λ, h dependence, since there is no risk of ambiguities. 
From the above it follows

δΛ = −δh
Z(Λ)

∂λε
∣∣
λ=Λ

. (B.13)

We can now take the variation of the integral equation defining the root density (B.1)

δρ(λ) = δΛ

[
1

2π
ϕ(λ− Λ)ρ(Λ) +

1
2π

ϕ(λ+ Λ)ρ(−Λ)

]
+

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)δρ(µ) . (B.14)

It is convenient to define the function F(λ), which satisfies the following integral equa-
tion (we explicitly use that ρ(Λ) = ρ(−Λ))

Figure B1. Luttinger parameters and local magnetization in the XXZ spin chain 
obtained from the Bethe Ansatz solution as a function of the local magnetic field h. We 
focus on the cases ∆ = ±0.5. See also [28], where similar plots are shown for different 
interactions.
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F(λ) =
[

1
2π

ϕ(λ− Λ) +
1

2π
ϕ(λ+ Λ)

]
+

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)F(µ) . (B.15)

In this way δρ(λ) = δΛρ(Λ)F(λ). Finally, we compute the variation of the density

δn = δΛ
[
2ρ(Λ)

]
+ δΛρ(Λ)

∫ Λ

−Λ

dλF(λ) . (B.16)

Using the integral equation it is rather simple to show
∫ Λ

−Λ

dλF(λ) =
∫ Λ

−Λ

dλ Z(λ)
[

1
2π

ϕ(λ− Λ) +
1

2π
ϕ(λ+ Λ)

]
. (B.17)

Above, using the definition of Z(λ) (B.11) and the symmetry of the kernel, one gets
∫ Λ

−Λ

dλF(λ) = Z(Λ) + Z(−Λ)− 2 , (B.18)

thus

δn = δΛρ(Λ)2Z(Λ), (B.19)

where we also used Z(λ) = Z(−λ). One then reaches the following expression for the 
compressibility

κ =
2ρ(Λ)Z2(Λ)

∂λε
∣∣
λ=Λ

, (B.20)

which can be further simplified. Deriving the integral equation (B.3), using the symmetry of 
the kernel, integrating by parts and using that ε(±Λ) = 0 one gets

∂λε(λ) = ∂λE +

∫ Λ

−Λ

dµ
2π

ϕ(λ− µ)∂µε(µ) , (B.21)

from which we can conclude ∂λε(λ) = (∂λE(λ))dr. Using that 2πρ(λ) = (∂λp)dr  and 
v = (∂λE(λ))dr/(∂λp)dr , we can compactly write

κ =
1
πv

Z2(Λ) . (B.22)

Comparing with the Luttinger compressibility (B.9), we finally have

K = Z2(Λ) . (B.23)

Of course, in the non interacting limit ∆ → 0 case there is no dressing and Z(Λ) = 1, i.e. the 
free fermion result as it should be. In figure B1 we plot the magnetization, the sound velocity 
v and the Luttinger parameter K as a function of the magnetic field h for the two values of D 
we consider.

Appendix C. Numerical methods for the discrete inhomogeneous Luttinger 
liquid

In this appendix we provide a numerical algorithm to compute the correlator 〈φ̂(x)φ̂(y)〉 on the 
ground state of the Hamiltonian (27). Similarly to what we did in section 2.2 in the continuum 
case, it is useful to define new bosonic fields
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ϕ̂j =
φ̂j + iΠ̂j√

2
, ϕ̂†

j =
φ̂j − iΠ̂j√

2
. (C.1)

Clearly [ϕ̂j, ϕ̂j′ ] = 0 and [ϕ̂j, ϕ̂
†
j′ ] = δj,j′. It is then convenient to collect the operators in an 

unique vector

Ψ̂ =




ϕ̂1

ϕ̂2

. . .

ϕ̂M

ϕ̂†
1

ϕ̂†
2

. . .

ϕ̂†
M




. (C.2)

Subsequently, the correlation matrix can be written as 〈Ψ̂Ψ̂†〉, which is a 2M × 2M  hermitian 
matrix. Since we are ultimately interested in the correlation functions of the ϕ̂j operators, it is 
convenient to express the Hamiltonian in this language as well. In particular, in this matrix-
vector notation we can rephrase ĤLL(�) as a bilinear form

ĤLL(�) = Ψ̂†HΨ̂ . (C.3)

The matrix H has the following block form

H =

(
H11 H12

H21 H22

)
. (C.4)

With

H11
ij = �δi,j

(
πKj

4
+

1
2π�2(Kj+1 + Kj)

+
1

2π�2(Kj−1 + Kj)

)
− δ|j−i|,1

1
2π�(Kj + Ki)

 (C.5)

H12
ij = �δi,j

(
−
πKj

4
+

1
2π�2(Kj+1 + Kj)

+
1

2π�2(Kj−1 + Kj)

)
− δ|j−i|,1

1
2π�(Kj + Ki)

. (C.6)

Then H22 = H11 and H21 = [H12]†.
The Hilbert space can be regarded as a Fock space of the mode operators, which diagonal-

ize the Hamiltonian. Let us call {γ̂j}j=1,M the diagonal modes and collect them in a vector Γ̂ 
similarly to what we did with ϕ̂ and Ψ̂. Then, it exists a Bogoliubov rotation implemented by 
a matrix B connecting the two

Ψ̂ = BΓ̂ (C.7)

such that the Hamiltonian is diagonal in these modes

ĤLL(�) = Γ̂†B†HBΓ̂ (C.8)

where B†HB is diagonal. Crucially, the matrix B, in order to preserve the bosonic commuta-
tion rules, must be symplectic

B
(

Id 0
0 −Id

)
B† =

(
Id 0
0 −Id

)
. (C.9)
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Above, Id is the M × M  identity matrix. Thanks to the commutation rules of the modes, we 
get further information on the spectrum of H. Indeed, we must have

[B†HB]ij = δi,jdj dj =

{
λj j � n
λj−n j > n. (C.10)

In order to have a proper well defined ground state, one must have λj > 0. Assuming that B 
has been properly chosen, the Hamiltonian in terms of the new modes looks like

ĤLL(�) =
∑

j

λjγ̂
†
j γ̂j + λjγ̂jγ̂

†
j . (C.11)

In order to find the ground state, i.e. the state such that γ̂j|0〉 = 0, and its correlation func-
tions, we rather consider a new matrix G

G =

(
Id 0
0 −Id

)
B†HB = B−1

(
Id 0
0 −Id

)
HB , (C.12)

where in the last passage we used equation (C.9). This matrix is trivially diagonal, but now 
notice that the 〈Γ̂Γ̂†〉 correlator can be expressed as a projector on the positive spectrum of G

〈Γ̂Γ̂†〉 =
∑
ωj>0

uωj u
†
ωj (C.13)

where Guωj = ωjuωj. Going back to the 〈Ψ̂Ψ̂†〉 correlator one has

〈Ψ̂Ψ̂†〉 = B〈Γ̂Γ̂†〉B† . (C.14)

Consider now the vectors Buωi. Using that the vectors uωi are eigenvectors of G  one can write

Guωi = ωiuωi =⇒ H−(Buωi

)
= λi

(
Buωi

)
, (C.15)

where we defined H− as

H− =

(
Id 0
0 −Id

)
H . (C.16)

Thus, it is convenient to introduce new vectors vωi = Buωi. The vectors vωi are such that

H−vωi = ωivωi . (C.17)

The eigenvalue equation is not enough to unambiguously determine vωi. One also needs 
the orthogonality condition

v†
ωj

(
Id 0
0 −Id

)
vωi = u†

ωj
B†

(
Id 0
0 −Id

)
Buωi = u†

ωj

(
Id 0
0 −Id

)
uωi . (C.18)

If ωi > 0, the last term is simply δi,j . We now have all the ingredients we need to give the 
numerical recipe to construct the correlation matrix 〈Ψ̂Ψ̂†〉, which is as it follows. First of all, 
find a set of independent vectors wi  such that

H−wi = ωwi wi λwi > 0 . (C.19)

The set {wi} spans the subspace of positive eigenvalues of H−. No orthogonality condi-
tions are imposed on wi  so far. Subsequently, let us construct a matrix O whose entries are

Oij = w†
i

(
Id 0
0 −Id

)
wj . (C.20)
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By definition O is hermitian and thus it can be diagonalized. Let B be the matrix of the change 
of basis such that B†OB is diagonal, with B unitary. Once in the diagonal form, we must have 
only positive eigenvalues according with equation (C.18). However, we do not have the cor-
rect normalization yet. Once we define the unnormalized vectors

ṽi =
∑

j

wjBji , (C.21)

we finally pose

vi =

∣∣∣∣ṽ†
i

(
Id 0
0 −Id

)
ṽi

∣∣∣∣
−1/2

ṽi . (C.22)

Which have now the correct normalization. With these normalized vectors we can construct 
the correlation matrix as

〈Ψ̂Ψ̂†〉 =
∑

i

viv†i , (C.23)

from which the discretized two point correlator of φ̂j is easily derived, according to 
equation (C.1).

Appendix D. The constant Cα

In this appendix we determine the constant Cα (25), which has been overlooked in the origi-
nal [50]. Equation (20) was computed by means of a direct computation of Trρ̂αI  using path 
int egral methods: while doing so, constraints on the field configurations where imposed by 
means of Dirac’s δ-functions. However, notice that replacing δ(. . .) → (const.)× δ(. . .) 
enforces the same constraint. This ambiguity in the normalization, after taking the logarithm, 
results in an undetermined constant offset in the Rényi entropies, which can be fixed by  
consistency arguments, as we are going to see. We start by quoting a result from [50] concern-
ing the Rényi entropies for open boundary conditions for a bipartition [0, L] = I ∪ Ī  where 
I  =  [0, x2] is an interval attached to the boundary. It reads

Sα(0, x2) =
1

1 − α
log



α−1∏
a=1

√√√√ 1

det
(

1+Φ−1Φa/α

2

)

+ const. (D.1)

Above, the definition of Φω is the same as in equation (24),the only difference being that we 
use the characteristic function of the interval attached to the boundary

χB(x) =
{

1 x ∈ B = [0, x2]

0 otherwise
. (D.2)

As already mentioned, the constant offset (which does not depend on the point x2, but it could 
depend on the integer α) is undetermined in the method of [50], but it can be computed from 
the alternative technique presented in section 2.2, which does not suffer from any ambiguity. 
A direct analytical comparison between equation (D.1) and section 2.2 is difficult. However 
one can check numerically, to at least 7 significant digits, that for arbitrary discretization step 
�, the constant in equation (D.1) must be zero. In the following we assume that this identity 
holds exactly.
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We now use equation (D.1) to fix Cα in equation (20). This can be done noticing that, when 
considering the entanglement of the bipartition I ∪ Ī  with I = [x1, x2], if we send x1 → 0 the 
result (D.1) must be recovered. Comparing the two, one is immediately led to the conclusion

Cα = − lim
x1→0

1
1 − α

log



α−1∏
a=1

√
1

π3Ia/α

∑

{mj}α−1
j=1

exp

{
− 4

α−1∑
a,b=1

Mab mamb

}
 .

 

(D.3)

Above, Ia/α and M are defined in equation (21). In principle, Ia/α (and thus M) still bear a 
non-trivial dependence on x2, but the resulting expression must be x2-independent.

One can also check numerically to high acccuracy that Ia/α diverges in the x1 → 0 limit. 
The matrix elements of M are given by

Mab =

α−1∑
c,d

(A†)acδc,dα
−1I−1

c/αAdb , Aab = ei2πab/α . (D.4)

Since the I−1
a/α also enters in the definition above, this means the matrix elements Mab go to 

zero also. Let us now check that (D.3) has a non trivial finite limit when x1 → 0. To access it 
we just approximate the sum by an integral:

Cα = − lim
x1→0

1
1 − α

log

[
α−1∏
a=1

√
1

π3Ia/α

∫
dα−1τ exp

{
− 4

α−1∑
a,b=1

Mab τaτb

}]
.

 

(D.5)

The integral can be explicitly performed, leading to

α−1∏
a=1

√
1

π3Ia/α

∫
dα−1τ exp

{
− 4

α−1∑
a,b=1

Mab τaτb

}
=

1
(2π)α−1

1√
DetM

α−1∏
a=1

√
1

Ia/α
. (D.6)

The determinant in the expression above can be computed explicitly:

DetM = Det(A†A)
α−1∏
a=1

I−1
a/α . (D.7)

The product of Ia/α in the above exactly balances the product in equation (D.6), so that the 
limit is, indeed, finite. The determinant Det(A†A) can also be calculated:

Det(A†A) = αα−2 . (D.8)

Putting together all the terms, the value of Cα in equation (25) immediately follows.
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