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We present a semiclassical treatment of one-dimensional many-body quantum systems in equilibrium, where
quantum corrections to the classical field approximation are systematically included by a renormalization of the
classical field parameters. Our semiclassical approximation is reliable in the limit of weak interactions and high
temperatures. As a specific example, we apply our method to the interacting Bose gas and study experimentally
observable quantities, such as correlation functions of bosonic fields and the full counting statistics of the number
of particles in an interval. Where possible, our method is checked against exact results derived from integrability,
showing excellent agreement.
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I. INTRODUCTION

As experimental techniques in the field of ultracold atoms
reach their maturity [1–4], the characterization of these quan-
tum many-body systems in terms of their correlation proper-
ties becomes an important and timely issue. Indeed, in most of
the experiments, the information about the state of the system
and its macroscopic parameters are inferred from one or two-
particle correlation functions: the momentum distribution and
higher momentum correlations [5–7], phase correlations [8],
local density correlations [9–11], or the density-density corre-
lation functions [12]. Recent experiments [13,14] aim to mea-
sure higher-order correlation functions to provide valuable
insight into effects of the interactions and require theoretical
predictions beyond perturbation theory.

Quite expectedly, the studies of many-body correlations
has been especially numerous in one-dimensional interacting
models where, due to kinematic constraints, interaction effects
are always strong and standard perturbative techniques are
thus of limited applicability. On the other hand, there are
several powerful nonperturbative techniques available in 1D.
For low temperatures, the method of bosonization [3,15–
17] using collective hydrodynamic description of the many
particle degrees of freedom proved to be extremely valuable in
characterizing long-distance, long-time asymptotics of corre-
lation functions. However, bosonization breaks down at higher
temperatures and one should revert to other approaches.

Fortunately, certain one-dimensional models offer exact
solutions due to their integrability [18,19]. In these systems,
some experimentally relevant observables can be exactly

*Corresponding author: marzamasov@xjtu.edu.cn

computed for arbitrary temperatures and interactions, both
in [20] and out of equilibrium [21]. An outstanding exam-
ple is the Lieb-Liniger (LL) model [22,23], which describes
bosons with contact pairwise interactions. This model has
proven to be an excellent description of experiments with one-
dimensional bosons [10,24–31] and will be the example of an
interacting many-body system discussed in this publication.

However, despite its appeal, integrability has its limita-
tions: numerous relevant systems are not exactly solvable and,
even when they are, several experimentally relevant quantities
are out of reach of the state-of-the-art integrable techniques.
For instance, two-point correlation functions are only partially
controlled [32–37] and their exact calculation is still an open
problem.

Analytic approaches aside, 1D interacting systems in the
continuum present a challenge for numerical treatments as
well. In contrast with lattice models, the continuum limit
is notoriously hard to be accessed with the density matrix
renormalization group (DMRG) methods [38]. When applica-
ble, integrability-based numerical methods exist [39,40] and
describe the low energy states reliably, but their efficiency is
drastically reduced at higher temperatures.

On the other hand, it is precisely in this regime that quan-
tum systems are amenable to semiclassical methods [6,41–
47]: in the limit of high temperatures and weak interactions,
the modes of the system are macroscopically occupied and
quantum fluctuations can be neglected in favor of thermal
ones. In the context of ultracold atoms, this approach, known
as the classical field method, was pioneered in studies of equi-
librium and nonequilibrium physics of Bose-Einstein con-
densates in higher dimensions [48–50]. It leads to stochastic
Langevin-type equations for bosonic fields, to be simulated
numerically.
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For one-dimensional bosons the classical field approach
can be complemented by the transfer matrix method [51]
which allows for the computation of one- and two-point
correlation functions [52] and, more recently, calculation
of the momentum correlations [53] in the LL model. Very
recently, combining the classical field and transfer matrix
approaches allowed two of us to access the entire probability
distribution of the particle number on an interval of arbitrary
length, known as the full counting statistics (FCS) [54]. The
FCS contains much more information than the expectation
values of the moments of an operator, and it attracted a lot of
interest in various contexts [55–75]. Moreover, semiclassical
approximations have been successfully merged together with
integrability in several instances to study in- and out- of
equilibrium protocols [75–78].

However, at any finite temperature quantum fluctuations on
top of the classical result still do matter. So far, the systematic
treatment of such quantum corrections has been absent and
the present work is intended to fill this gap. We show how
deviations from the classical limit can be systematically ac-
counted for through a proper renormalization of the parame-
ters of the classical energy functional and observables. Then,
the observables of such METROPOLIS computed either with
the transfer matrix approach [51,52,79] or the METROPOLIS-
Hastings algorithm [80,81]. This approach offers an easy
interpretation of the effect of quantum fluctuations and their
relative importance in different temperature regimes relevant
to experiments. We emphasize that our approach is essentially
different from the standard mapping of 1D quantum systems
onto two-dimensional classical systems since directly tackling
a 2D problem with Monte Carlo methods, or otherwise, is
challenging, while the effective 1D classical system is ac-
cessed relatively straightforwardly. As we will clarify later
on, the small parameter of the expansion is not the inverse
temperature, despite the expansion being valid in the high-
temperature limit. Rather, we expand in the relative strength
of quantum fluctuations compared to the classical ones. The
effective classical action is extracted from the quantum prob-
lem through the following steps: (i) spotting and isolating the
classical degree of freedom from the quantum fluctuations,
(ii) integrating out the quantum variables in a perturbative
manner, and (iii) properly reorganizing the perturbative series
in an effective action for the classical degree of freedom. The
reader can refer to Ref. [82] for the single-particle physics,
while in this work we generalize this approach to the many-
body case.

The paper is organized as follows. In order to provide
a short pedagogical introduction to our method, in Sec. II,
we present a simple toy model consisting of a single de-
gree of freedom, namely the anharmonic oscillator. Quantum
corrections on top of the classical result are considered and
compared with the first principle exact solution to the quantum
mechanical problem, showing an excellent agreement.

In Sec. III, we move to proper many-body systems and, for
the sake of concreteness, focus on the Lieb-Liniger model.
Before embarking on the semiclassical expansion for this
model we provide a short summary of its integrability: exact
results available for the LL model can serve as benchmarks
of the semiclassical expansion. It should be noted, however,
that the semiclassical expansion does not rely on integrability

and hence is of wide applicability. The one-particle density
matrix and the FCS of the number of particles, for which no
exact results are available, are studied within our semiclassical
approach. In Sec. IV, we gather our conclusions, outline pos-
sible future research directions and discuss the relevance of
our results for experiments. Details of the numerical methods
used to deal with the 1D effective classical model are given in
two appendices.

II. SEMICLASSICAL APPROACH TO THE ANHARMONIC
OSCILLATOR

Before turning to many-body systems—the main focus of
this paper—it is useful to introduce the semiclassical expan-
sion formalism using a simple toy model, namely, the anhar-
monic oscillator [82]. This will allow to keep technical details
at the bare minimum later on. Let us consider an anharmonic
quantum oscillator in thermal equilibrium at temperature T ,
described by the density matrix ρ̂ ∝ e−βĤ , with β = 1/T . The
oscillator is governed by the following quantum Hamiltonian

Ĥ = p̂2

2
+ q̂2

2
+ c

4!
q̂4 , (1)

where p̂ and q̂ are canonically conjugate Hermitian operators
[q̂, p̂] = i. Hereafter, we use h̄ = 1, kB = 1 unless stated
otherwise.

The classical limit of Hamiltonian (1) is expected to
emerge from quantum mechanics in the limit of large oc-
cupation numbers, which is achieved at high temperatures.
However, since the typical value of the coordinate scales as
q̂ ∼ √

T , a naive increase of temperature enhances the role of
the interactions in Eq. (1) as well, making the problem intrin-
sically quantum. Keeping the nonlinear term of the same order
as the linear ones in the classical limit β → 0, one should
also require c → 0. Thus the classical limit is achieved in
the high-temperature/weak interaction limit. More precisely,
consider the classical anharmonic oscillator

H = p2

2
+ q2

2
+ ccl

4!
q4 , (2)

with p and q being classical conjugated variables (notice the
absence of the operator “hats”) with the “classical interaction
strength” ccl = cβ−1 = cT .

Now let O(x) be an analytic function of its argument, then
let us consider quantum observables in the form O[

√
βq̂],

where the β−dependence is inserted to achieve a well-defined
semiclassical limit. Then, in the high-temperature/weak cou-
pling limit, one has the following correspondence:

lim
β→0

1

Zq
Tr[O[

√
βq̂]e−βĤ ] = 1

Z

∫
dqO[q]e− q2

2 − ccl
4! q4

, (3)

where Zq and Z are the classical and quantum partition func-
tions, respectively. On the right we recognize the expectation
value in a classical thermal ensemble with classical energy
Eq. (2) (with the momentum contribution having been inte-
grated out, since the focus is on q− dependent observables).

The right-hand side of Eq. (3) becomes accurate only in
the classical field limit: at any finite temperature quantum
corrections will affect the expectation values of the operators.
We are now going to show how this can be captured by
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means of a suitable renormalization of the classical energy
and observables

1

Zq
Tr[O[

√
βq̂]e−βĤ ] = 1

Z

∫
dqOeff[q]e−Seff[q] . (4)

The effective observable Oeff and action Seff are explicitly
temperature-dependent: hereafter we provide the systematic
expansion of these effective quantities around the classical
limit.

As the first step, we need to express the quantum ex-
pectation value in the form Eq. (4): in order to do so, we
consider the path integral formulation of thermal averages.
We introduce a real field qE (τ ) with τ ∈ [0, β] being the
Euclidean time: the left-hand side (l.h.s.) of Eq. (4) can be
exactly rewritten as∫

DqE O[
√

βqE (0)]e− ∫ β

0 dτ { (∂τ qE )2

2 + q2
E
2 + c

4! q4
E } , (5)

where we neglect an unimportant overall normalization con-
stant and periodic boundary conditions are enforced on
the Matsubara interval τ ∈ [0, β]. Intuitively, in the high-
temperature limit the Matsubara interval shrinks to a point,
hence the oscillations of the field qE (τ ) are expected to be
suppressed. Indeed, if the τ−derivative is neglected in the
expression above, the classical energy functional is recovered.
This statement is made more rigorous by expanding the field
qE in terms of its Fourier components, which we refer to as
Matsubara modes

qE (τ ) = q√
β

+
∑
n �=0

ei2πnτ/β qn√
β

. (6)

As the notation suggests, the n = 0 Matsubara mode can be
interpreted as the emergent classical degree of freedom, while
the modes qn �=0 are responsible for the quantum fluctuations.
Notice that since the Euclidean field is real by definition we
have qn = q∗

−n. We can now express the path integral Eq. (5)
in terms of the Matsubara modes, isolating the contribution of
the classical field from the rest,∫

dq e−Scl[q]
∫

dqn �=0 O
[∑

n

qn

]
e−Sfree[qn �=0]−Sint[q,qn �=0] . (7)

The Euclidean action above is split into three parts: the
classical part Scl which depends only on the classical degree
of freedom, the free action Sfree for the nonzero Matsubara
modes, and the interacting part. The three terms explicitly read

Scl[q] = q2

2
+ ccl

4!
q4 , (8)

Sfree[qn �=0] =
∑
n>0

[(2πnβ−1)2 + 1]|qn|2 , (9)

Sint[q, qn �=0] = ccl

4!

∑
∑4

i=1 ni=0

qn1 qn2 qn3 qn4 − ccl

4!
q4, (10)

where we used the convention q0 ≡ q and the definition c =
βccl: taking the large temperature limit the classical interac-
tion ccl is kept fixed. Physical intuition tells us that in the
semiclassical limit the contribution of the quantum fluctua-
tions qn �=0 must become negligible. Indeed, for small values of
β the coefficients in Sfree diverge, as a consequence the modes

qn �=0 are pinned to zero. At large but finite temperatures the
contributions of qn �=0 are small and a perturbative expansion
of the interacting action Sint around the free part Sfree can
be attempted. From this perspective, let us define the free
propagator of the nonzero Matsubara modes

〈q†
nqn′ 〉free = δn,n′

β2

(2πn)2 + β2
. (11)

Hereafter, 〈. . . 〉free means that the expectation values of the
qn �=0 Matsubara components with respect to the action Sfree

are taken: the modes qn �=0 are treated as Gaussian variables
with zero mean and variance Eq. (11). Within this averaging
procedure q ≡ q0 is treated as a fixed parameter. Hence, one
can write

e−Scl

∫
dqn �=0 Oe−Sfree−Sint ∝ 〈Oe−Sint〉freee−Scl . (12)

In the above an overall q−independent proportionality con-
stant has been neglected, which can be fixed later on by impos-
ing the correct normalization of Eq. (4), and the variables q, qn

have been left out for the sake of lighter notation. Following
the standard perturbation theory procedure the right-hand side
(r.h.s.) of Eq. (12) can be conveniently expressed in terms
of connected expectation values. For example, given two
observables A and B, their connected expectation value is
〈AB〉c = 〈AB〉 − 〈A〉〈B〉. The r.h.s. of Eq. (12) can be rewritten
in terms of the connected expectation values as

〈Oe−Sint〉freee−Scl = Oeffe
−Seff (13)

with

Seff = Scl −
∞∑
j=1

(−1) j

j!
〈(Sint )

j〉c
free , (14)

Oeff =
∞∑
j=0

(−1) j

j!
〈O(Sint )

j〉c
free . (15)

So far no approximations have been made and the true
quantum expectation value can be recovered from Eq. (4),
provided the exact expressions for Seff and Oeff are available.
Therefore, the exact computation of the effective action and
observable is as hard as the original quantum problem and a
proper truncation scheme is needed. The small parameter of
this perturbative expansion is not the classical interaction ccl

itself, which can be arbitrary large, but rather the propagators
of the n �= 0 Matsubara modes (11): for β → 0, the propaga-
tors are suppressed at least as β2. Therefore, the semiclassical
expansion is organized in terms of how many propagators of
the nonzero Matsubara modes (11) are used: the N th order of
the expansion is the sum of all the different terms with N
propagators. It can be easily understood that this truncation
scheme requires the computation of only a finite number of
terms: looking at Sint (10), in each term of the summation at
least two nonzero Matsubara modes are present. Therefore,
if we now consider the expansion of Seff Eq. (14) and focus
on the jth term, we can conclude this contributes with at
least j nonzero Matsubara propagators. Hence, selecting the
N th term in the semiclassical expansion requires one to keep
only terms up to j � N in Eq. (14). However, we stress
once again that the semiclassical expansion is not equivalent

245157-3



BASTIANELLO, ARZAMASOVS, AND GANGARDT PHYSICAL REVIEW B 101, 245157 (2020)

(a) (b)

FIG. 1. The diagrammatic representation of Seff Eq. (16) up to
the second order in the quantum corrections. Diagram (a) takes
into account first-order quantum corrections (notice the presence
of a single propagator for the nonzero Matsubara modes), and
diagram (b) describes the second-order correction (two propagators
are present). The functions f (β ) and g(β ) are defined in Eqs. (17)
and (18), respectively.

to a simple truncation of Eq. (14). This approach is not a
perturbative expansion in the interaction strength: albeit the
qn �=0 modes are only weakly coupled, the classical mode
remains strongly interacting. Following this general treatment,
we frame the resulting expansion within a set of Feynman
diagrams, compute explicitly the first corrections to natural
observables, and compare the semiclassical expansion with
the first-principles quantum results.

Quantum corrections to the classical approximation

The semiclassical expansion can be efficiently presented
in terms of Feynman diagrams. We start by discussing the
computation of the effective action Seff (14), then the gen-
eralization to Oeff will become clear. First, we associate a
vertex with four departing legs with the interaction Sint, the
legs represent the qn variables. Each vertex carries a factor
ccl and a conservation law for the Matsubara frequencies, as
is clear from Eq. (10). At each vertex there are at least two
legs associated with nonzero Matsubara frequencies, and the
computation of 1

j! 〈(Sint ) j〉c
free goes as follows. Draw j ver-

tices. The propagators 〈q†
nqn〉free are represented contracting

the external legs of two interaction vertices. Since we are
considering the connected parts of the correlators, the legs
must be contracted in such a way that the final diagram does
not have disconnected parts. Finally the sum over all the
allowed Matsubara frequencies is performed. Noncontracted
legs are generally present and associated with q ≡ q0. There is
a symmetry factor associated with this diagram which equals
the number of permutations of legs and vertices that leave the
diagram unchanged. In Fig. 1, we show the Feynman diagrams
contributing to the effective action Seff up to the second order
in the semiclassical expansion, which result in the expression

Seff(q) =
[

1

2
q2 + ccl

4!
q4

]
+

[
ccl

4
q2 f (β )

]

−
[

c2
cl

16
g(β )q4

]
+ . . . (16)

where each term in brackets is a further order in the
semiclassical expansion (from left to right: the classical
approximation, the first-order, and the second-order quantum

corrections). The auxiliary functions f (β ) and g(β ) are de-
fined as

f (β ) =
∑
n �=0

β2

(2πn)2 + β2
= 1

2
(β coth(β/2) − 2) (17)

g(β ) =
∑
n �=0

β4

[(2πn)2 + β2]2

= 4 + β2 − 4 cosh β + β sinh β

8 sinh2(β/2)
(18)

and represent the contributions of the loops in Fig. 1.
For what concerns the observables, a natural choice is

looking at the moments of the operator q̂, hence we define

O(�)[
√

βq̂] ≡ β�

(2�)!
q̂2� . (19)

The factorial is chosen for symmetry reasons: the Feyn-
man rules for computing O(�)

eff are simple generalizations of
those for Seff with the inclusion of a new interaction vertex
associated with O(�). Up to the second order in the quantum
corrections one finds

O(�)
eff [q] =

[
q2�

(2�)!

]
+

[
f (β )q2(�−1)

2[2(� − 1)]!

]

+
[

f 2(β )q2(�−2)

8[2(� − 2)]!
− 1

4

cclg(β )q2�

[2(� − 1)]!

]
+ . . . . (20)

As for Eq. (16), each bracket represents a further order in the
semiclassical expansion. Above, we use the convention that
q powers with negative exponents are actually absent: hence,
for � = 1 the term ∝q2(�−1) must be discarded. In Fig. 2, the
semiclassical expansions for the expectation values of O(�) are
benchmarked with the numerically exact diagonalization of
the quantum problem Eq. (1), showing a good agreement.

In addition to the moments of q̂, the semiclassical approx-
imation can be used to study its FCS. The FCS is the full
probability distribution of measuring a certain value for an ob-
servable O[

√
βq̂]. For example, in the following, we focus on

the observable O = √
βq̂ (the rescaling by

√
β is introduced

for later convenience), its FCS being the probability of finding
the particle at position q. More formally, we are interested in
the probability PO(w) defined as

PO(w) ≡ 1

Zq
Tr[δ(w − O)e−βĤ ] ≡ 〈δ(w − O)〉 . (21)

The distribution above is not directly amenable to the semi-
classical analysis, hence we rather define its generating func-
tion GO(λ)

GO(λ) = 〈eiλO〉 , PO(w) =
∫

dλ

2π
e−iwλGO(λ) . (22)

The generating function in the form Eq. (22) can be treated
within our semiclassical approach since we can set O = eiλO

and evaluate this effective observable by means of Eq. (15).
Moreover, due to the exponential form of the observable O
the series defining Oeff Eq. (15) can be further resummed into
a more convenient expression. Indeed, one can establish the
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FIG. 2. Comparisons of the semiclassical expansion results with
the exact expectation values of the observables Eq. (19) for the
anharmonic oscillator, numerically computed by discretizing the
quantum Hamiltonian Eq. (1). We chose the quantum interaction as
c = cclβ with ccl = 4!, then the results are plotted as functions of
the inverse temperature. We plot the ratios R(�) = 1

�! 〈O(�)〉/(〈O〉)� in
order to stress the role of the interactions: for ccl = 0, the thermal
ensemble is Gaussian, resulting in R(�) = 1. The fact that R(�) is far
from unity confirms the strongly correlated nature of the system. The
N th order is obtained by computing 〈O(�)〉 to the required order in
the quantum fluctuations, then the proper ratio of the observables is
considered.

following identity:

Oeffe
−Seff = e−Seff

∞∑
j=0

(−1) j

j!
〈eiλO(Sint )

j〉c
free

= exp

⎡
⎣ ∞∑

j=1

1

j!
〈(iλO − Sint )

j〉c
free

⎤
⎦ . (23)

The exponentiation of the above series leads to the natural
definition of the effective action

SO,λ
eff [q] = −

∞∑
j=1

1

j!
〈(iλO − Sint )

j〉c
free , (24)

which depends on the observable O and the parameter λ.
Above, we stress that SO,λ

eff [q] is a function of q, the classical
(n = 0) field. With this definition the generating function is
expressed as

GO(λ) =
∫

dq e−SO,λ
eff [q]∫

dq e−Seff[q]
. (25)

Equation (25) is in principle exact: we performed the
semiclassical expansion approximating Eq. (24) with the in-
sertion of a finite number of nonzero Matsubara propagators
(11). More precisely, the N th order of the expansion contains
all those terms with N propagators of the n �= 0 Matsubara
modes. At any order of the expansion the sum in Eq. (24)
is finite with only a finite number of terms to be computed.
A word of caution is in order regarding the behavior of the

expansion for arbitrary values of λ: even though the expansion
induced by truncating Eq. (24) is not perturbative in λ (the
interacting action of the classical mode is taken into account
exactly), any approximated truncation of Eq. (24) will even-
tually fail if λ is too large. As an example, let us consider
O[

√
βq̂] = √

βq̂ which, in the path integral language and after
the replacement Eq. (6), states iλO = iλ

∑
n qn. Since all the

nonzero Matsubara frequencies are suppressed as qn �=0 ∼ β,
as it is clear from the propagator (11), this sets a natural
scale |λ| � 
−1 with 
 � β in which we can reasonably
trust the semiclassical expansion of the effective action. With
the ultimate goal of accessing the FCS of the observable we
define a 
−regularized FCS P


O by imposing a hard cutoff in
the integral Eq. (22). This is equivalent to the calculation of
the coarse grained FCS defined as

P

O (w) =

∫ 
−1

−
−1

dλ

2π
e−iwλGO(λ)

=
∫

dw′

π

sin(
−1(w − w′))
w − w′ PO(w′) . (26)

Hence, rather than directly accessing the FCS, the semiclassi-
cal approximation yields a coarse-grained version of it.

The quality of the semiclassical expansion is estimated by
looking at the typical lengthscale on which the generating
function GO(λ) decays: if for |λ| � 
−1 GO(λ) is negligibly
small, the semiclassical approximation is expected to be good.
As a benchmark we compute SO,λ

eff for the operator O[
√

βq̂] =√
βq̂ up to the second order in the quantum corrections

SO,λ
eff [q] − Seff[q] = [−iλq] +

[
− λ2 f (β )

2

]

+
[

− ccl
λ2g(β )

4
q2

]
. . . (27)

As before, each pair of square brackets corresponds to the
next order of the expansion. For consistency, Seff[q] must
be expanded to the same order, see Eq. (16). In Fig. 3,
we compare the semiclassical expansion for the generating
function and the resulting FCS of the position of the particle in
the anharmonic potential with the exact first-principles results.

III. THE 1D INTERACTING BOSE GAS

Having presented the method in the simple case of a single
degree of freedom, we now turn to the main purpose of our in-
vestigation, namely describing many-body quantum systems.
For the sake of concreteness and, later, benchmarking, we
focus on the Lieb-Liniger (LL) model describing 1D bosons
with contact pairwise interactions. In the language of the
second quantization, the Hamiltonian is

Ĥ =
∫

dx

{
1

2m
∂xψ̂

†∂xψ̂ + cψ̂†ψ̂†ψ̂ψ̂ − μψ̂†ψ̂

}
, (28)

where [ψ̂ (x), ψ̂†(y)] = δ(x − y). Hereafter we consider only
the repulsive case, c > 0, since the attractive phase is unstable
in thermal equilibrium [83,84].

As it was mentioned before, this model is integrable
[22,23]. Because of integrability its thermodynamics can be
solved exactly by means of the thermodynamic Bethe ansatz
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FIG. 3. We consider the generating function GO(λ) of the FCS of the observable O = √
βq̂ for different temperatures, comparing the exact

numerically computed values to results of the semiclassical approximation [Eqs. (25) and (27)]. At high temperatures β = 0.5, the agreement
is excellent already with the classical prediction. The interaction c = cclβ is chosen as in Fig. 2, i.e., ccl = 4!. Decreasing the temperature
the classical approximation departs from the quantum value, which is still well described by the next orders of the expansion. Notice that the
discrepancy starts to appear from the tails of the distribution: indeed, as we discuss in the main text, the semiclassical approximation of the
generating function has a natural cutoff |λ| � β−1 beyond which it cannot be applied any longer. Increasing β the cutoff is decreased and
corrections become more pronounced.

(TBA) [20], and the expectation values of certain observ-
ables can be computed exactly. Focusing on the Lieb-Liniger
model provides an important benchmark for our approach,
however we emphasize that it is fully general and does not
rely on integrability at all. For example, the moments of
the density operator 〈[ψ̂†(x)]n[ψ̂ (x)]n〉 in thermal states have
been evaluated exactly in Refs. [72,73] for arbitrary integer
n (see also Refs. [85,86] for previous results for n � 4).
The semiclassical expansion, in addition to being able to
correctly reproduce known results of the LL model, also
provides new insights into quantities that are not accessible
with the state-of-the-art techniques in integrability, the prime
example being the two-point correlator 〈ψ̂†(x)ψ̂ (y)〉, also
known as the single-particle density matrix, which is routinely
measured in the laboratory through the time-of-flight capture
of the momentum-density distribution [1]. Another quantity
of interest we consider is the FCS of the number of particles
on an interval, which has recently been studied in the classical
limit by two of us [54]. In the following, we will first present
a short summary of the integrability of the LL model and
quote exact results that will be used for benchmarking before
proceeding to the discussion of the semiclassical expansion.

A. The integrability of the Lieb-Liniger model

The integrability of the LL model was established in the
original works of Lieb and Liniger [22,23] which found exact
eigenstates of the model. The eigenstates can be labeled by
collections of quantum numbers |{k}N

i=1〉, called rapidities
or quasimomenta, which generalize the momentum modes
of free bosons/fermions to the interacting case. The set of
quasimomenta can be interpreted as a collection of excitations
which undergo pairwise scatterings, hence the set {k}N

i=1 is
left unscathed by the time evolution. Despite being elastic,
the scattering processes are nontrivial and the interactions
are encoded in the two-body scattering matrix, which in
this case is just a complex number S(k) = (k − 2imc)/(k +
2imc). Within the thermodynamic limit, one adopts a coarse-
grained description in terms of a filling function ϑ (k), which
generalizes the mode-density occupation number of free sys-
tems: this is the founding idea of the thermodynamic Bethe

ansatz [20]. A proper introduction to the TBA and, more
generally, integrability goes beyond the scope of the current
work, therefore we simply quote the results of interest for
us. The interested reader can refer to Refs. [19,20] for further
details.

The filling function ϑ (k) associated with a given thermal
state is explicitly determined through the following integral
equation:

log
1 − ϑ (k)

ϑ (k)
= β

[
k2

2m
− μ

]

+
∫

dq

2π
ϕ(k − q) log(1 − ϑ (k)) , (29)

where ϕ(k) = −i∂kS(k). In general, no analytic solution to
this equation is known, but it can be easily solved numerically.
Once the filling function is determined, this in principle fixes
any local property of the system, as well as the correlation
functions, however actually evaluating them is a hard task on
its own.

Very recently the expectation values of all the density
moments 〈(ψ̂†)n(ψ̂ )n〉 for arbitrary n have been computed
[72,73], the results being expressed in terms of a set of
coupled integral equations as reported below. The density
moments are accessed by expanding the following generating
function in the dummy variable Y around zero,

1 +
∞∑

n=1

Y n 2n(2mc)n

(n!)2
〈(ψ̂†)n(ψ̂ )n〉 = exp

(
1

π

∞∑
n=1

Y nGn

)
,

(30)
where

Gn = (2mc)2n−1

n

∫
dk ϑ (k)ξ dr

2n−1(k) . (31)

The dressing operation ξ → ξ dr is defined as the solution of
the following linear integral equation

ξ dr
n (k) = ξn(k) +

∫
dq

2π
ϕ(k − q)ϑ (q)ξ dr

n (q) . (32)
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The auxiliary functions ξn(k) are obtained recursively by
solving the following set of integral equations [below we
define �(k) = k(2mc)−1ϕ(k)]:

ξ2n(k) =
∫

d p

2π
ϑ (p)

{
�(k − p)

[
2ξ dr

2n−1(p)

− ξ dr
2n−3(p)

] − ϕ(k − p)ξ dr
2n−2(p)

}
, (33)

ξ2n+1(k) = δn,0 +
∫

d p

2π
ϑ (p)

{
�(k − p)ξ dr

2n(p)

− ϕ(k − p)ξ dr
2n−1(p)

}
, (34)

where ξn<0 = 0. The integral equations have a recursive struc-
ture, since the equation for ξn requires the knowledge of ξn′�n:
these can be solved finding the function ξ0(λ), then the integer
n is progressively increased and the functions ξn(λ) are recur-
sively determined. Note that extracting the nth density moment
requires finding the first 2n − 1 auxiliary functions ξn.

B. The semiclassical expansion

The semiclassical expansion of the 1D interacting Bose
gas closely follows the study of the anharmonic oscillator
presented in Sec. II, therefore we limit the discussion to
the key points of the analysis. We start with a path integral
representation of the thermal state and introduce a complex-
valued field ψE (τ, x) governed by the action

SE =
∫ β

0
dτ

∫
dx

{
1

2
(ψ∗

E∂τψE − ψE∂τψ
∗
E )

+ 1

2m
|∂xψE |2 − μ|ψE |2 + c|ψE |4

}
, (35)

with periodic boundary conditions in the Euclidean time τ ∈
[0, β]. Similarly to the anharmonic oscillator, the field is split
into the Matsubara modes,

ψE (τ, x) = ψ (x)√
β

+
∑
n �=0

ei2πnτ/β ψn(x)√
β

. (36)

Since ψE is complex, the modes ψn are independent complex
fields: this is in contrast to the anharmonic oscillator case. The
field ψ (x) can be identified as the classical variable, the action
of which is renormalized by the integration over the nonzero
frequency Matsubara modes. To this end, we split the action
into three parts SE = Scl + Sfree + Sint

Scl[ψ] =
∫

dx

{ |∂xψ |2
2m

+ ccl|ψ |4 − μ|ψ |2
}

, (37)

Sfree[ψn �=0] =
∫

dx

{ ∑
n

[i2πnβ−1

+(4ccld − μ)]|ψn|2 + |∂xψn|2
2m

}
, (38)

Sint[ψ,ψn �=0] =
∫

dx

{ ∑
n1 + n2 =

n3 + n4

cclψ
∗
n1

ψ∗
n2

ψn3ψn4

−ccl|ψ |4 + 4ccld
∑
n �=0

|ψn|2
}
. (39)

The classical interaction strength is defined as ccl = cβ−1,
same as before. The classical limit is attained by sending
β → 0 while keeping ccl and μ constant. Indeed, each term
in the interacting part of the action Sint contains at least two
n �= 0 Matsubara modes and the prefactor in Sfree diverges
as β → 0. Hence, in the high-temperature limit the modes
ψn �=0 are pinned to zero and only the field ψ (x) ≡ ψ0(x)
is free to fluctuate. In the splitting of the action above, we
included a parameter d which does not appear in the original
action SE . Indeed, summing back the three terms of the action
the d dependence is canceled out. Naively one could pose
d = 0 in such a way to simplify the interacting part of the
action, but this choice is problematic when μ > 0: this would
lead to an action Sfree which is unbounded from below and
cannot serve as a starting point of the perturbation theory any
longer. Indeed, whereas in the LL model both positive and
negative values of μ are allowed, the noninteracting bosons
are well-defined only for μ < 0 and the interactions play a
crucial role in making the case of positive chemical potential
a well-defined ensemble. We choose the free parameter d to be
the density evaluated in the classical limit, d = 〈|ψ |2〉cl, thus
neglecting the n �= 0 Matsubara modes. This choice is inspired
by the Gaussian approximation of the interaction: keeping
only up to two nonzero frequency Matsubara modes in the
interacting term (which will dominate the high-temperature
limit), one has

ccl

∑
n1+n2=n3+n4

ψ∗
n1

ψ∗
n2

ψn3ψn4 � ccl|ψ |4 + ccl

∑
n �=0

|ψn|2|ψ |2.

(40)

Treating the above in perturbation theory under the assump-
tion that |ψn|2 is small, but first integrating out the classical
mode, one replaces |ψ |2 → 〈|ψ |2〉, which in first approx-
imation can be computed with the classical action. It is
numerically verified that 4ccld − μ > 0, making Sfree well
defined, and we stress that the Gaussian approximation is only
used to justify a convenient value for the parameter d , but
then we apply our method to systematically include quantum
corrections on top of the classical approximation.

The expectation values of quantum observables O can
now be computed in an effective one-dimensional classical
field theory, similarly to how it was done for the quantum
anharmonic oscillator,

1

Zq
Tr[O[

√
βψ̂]e−βĤ ] = 1

Z

∫
Dψ Oeff[ψ]e−Seff[ψ] . (41)

The effective action and observables are defined as per
Eqs. (14) and (15) where Sint is now Eq. (39), and the free
expectation value are computed with respect to Eq. (38).
Therefore the basic ingredient we need is the free propagator
of the n �= 0 Matsubara modes,

〈ψ∗
n (x)ψn′ (y)〉free = δn,n′

∫
dk

2π

eik(x−y)

i2πnβ−1 + k2 + �

= δn,n′
exp[−|x − y|

√
� + i2πnβ−1]

2
√

� + i2πnβ−1
,

(42)

where we defined � = 4ccld − μ.
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When performing the quantum expansion, we often need∑
n �=0〈ψ∗

n (x)ψn(x)〉free. This quantity is ill-defined unless
the point-splitting regularization is imposed: the limit of
equal positions is taken only after the summation has been
performed. For later convenience, we define C(x − y) =∑

n �=0〈ψ∗
n (x)ψn(y)〉free, which can be written as

C(x − y) =
∫

dk

2π
eik(x−y)

[
β

eβ(k2+�) − 1
− 1

k2 + �

]
. (43)

Notice that the limit limx→0 C(x) is well defined.
We can now expand Seff by including the quantum correc-

tions. Analogously to what was done in Sec. II, we organize
the expansion in terms of the number of the propagators
of the nonzero frequency Matsubara modes. The expansion
can be efficiently described in terms of Feynman diagrams
with minor modifications compared to those presented for the
anharmonic oscillator. The effective action up to the second
order in the quantum fluctuations is readily computed,

Seff[ψ]

= [Scl[ψ]] +
[

4cclC(0)
∫

dx |ψ (x)|2
]

+
[

16dc2
cl

∫
dy F (y)

∫
dx |ψ (x)|2

− 8c2
cl

∫
dxdy |ψ (x)|2|ψ (y)|2F (x − y)

− 2c2
cl�

(∫
dxdy ψ∗(x)ψ∗(x)ψ (y)ψ (y)R(x − y)

)]

+ . . . (44)

Above we used the square brackets to point out the different
orders in the expansion, as we already did in Sec. II. The
auxiliary functions F (x) and R(x) are defined as

F (x) =
∑
n �=0

〈ψ∗
n (x)ψn(0)〉free〈ψ∗

n (0)ψn(x)〉free

= 1

4

∑
n �=0

exp[−2|x|
√

� + i2πnβ−1]

� + i2πnβ−1
, (45)

R(x) =
∑
n �=0

〈ψn(x)ψ∗
n (0)〉free〈ψ−n(x)ψ∗

−n(0)〉free

= 1

4

∑
n �=0

exp[−|x|2�
√

� + i2πnβ−1]√
�2 + (2πnβ−1)2

. (46)

The effective action resulting from the semiclassical expan-
sion is strictly local up to the first order correction, which
simply consists of a renormalization of the chemical potential.
Classical expectation values in thermal ensembles with local
actions can be efficiently computed with a transfer matrix
approach (see Appendix A) which transforms the classical
field problem into a quantum system with a finite number of
degrees of freedom.

Beyond the first-order terms the effective action develops
nonlocal terms and the transfer matrix approach is not appli-
cable any longer, hence we revert to the METROPOLIS-Hastings
algorithm [81] (see Appendix B). Long-range interactions

are challenging, but this is not the case at hand: as can be
seen from the auxiliary functions F (x) Eq. (45) and R(x)
Eq. (46), the nonlocal terms appearing in the effective action
are short-ranged and do not undermine the efficiency of the
algorithm. In particular, the range of the interaction is reduced
as the temperature is increased.

Having computed the effective action, we now revert to the
observables. In view of the integrability-based exact results
presented in Sec. III A, the moments of the density operator
O(�)[

√
βψ̂] = β�[ψ̂†(x)]�[ψ̂ (x)]� are natural candidates. The

expansion up to the second-order is

O(�)
eff [ψ] = [|ψ |2�] + [�2C(0)|ψ |�−1]

+
[
�2(� − 1)2C2(0)

2
|ψ |2(�−2) − ccl�(� − 1)2�

×
(

|ψ |2(�−2)(ψ )2
∫

dx R(x)ψ∗(x)ψ∗(x)

)

− 4�2ccl|ψ |2(�−1)
∫

dxF (x)(|ψ (x)|2 − d )

]
+ . . .

(47)

For the sake of brevity, the coordinate label is omitted when
the field is evaluated at the origin, ψ ≡ ψ (0). As usual, each
bracket is a further order in the expansion. In the above, we
used the convention that terms with negative powers of the
fields are actually absent, e.g., the term |ψ |2(�−2) must be
dropped for � = 1. As for the effective action, the first-order
corrections are strictly local, while the following orders carry
nonlocal (short-ranged) corrections mediated by F (x) and
R(x). In Fig. 4, we compare the semiclassical expansion of the
local observables with the exact results presented in Sec. III A,
finding excellent agreement.

Having checked the one-point functions, we now revert
to quantities where no integrability results are available.
One prominent example it the one-particle density matrix,
O1dm[

√
βψ̂] = β〈ψ̂†(x)ψ̂ (y)〉, its expansion up to the second

order being

O1dm
eff [ψ] = [ψ∗(x)ψ (y)]+[C(x−y)] +

[
− 4ccl(|ψ |2 − d )

×
∫

dz F

( |x − z| + |y − z|
2

)]
+ . . . (48)

As usual, square brackets are used to separate different orders
of the expansion. In Fig. 5, we plot the semiclassical expan-
sion results for 〈O1dm[

√
βψ̂]〉, since there are no analytical or

numerical exact results to be used as benchmarks, comparing
different orders of the expansion is of utmost importance for
checking the reliability of the approximation.

Quantum corrections are particularly important for the
short-distance behavior of the one-body density matrix. In-
deed, the classical result is not differentiable at the origin. In
other words, considering the momentum distribution n(k) =∫

dxe−ikx〈ψ̂†(x)ψ̂ (0)〉, in the classical limit one finds n(k) ∼
k−2 for large k. These “fat tails” of the momentum distribution
eventually cause the UV catastrophe, similarly to the famous
example of the black body radiation: the classical expectation
value of the energy density is UV-divergent. On the other
hand, the large k behavior of the momentum density n(k)
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FIG. 4. Above we compare the semiclassical expansions of the expectation values of the moments of the local density with the exact results
presented in Sec. III A. More specifically, we consider O(�)[

√
βψ̂] = β�[ψ̂ (x)]�[ψ̂ (x)]� and R(�) = 〈O(�)〉/[�!(〈O(1)〉)�]. The normalization of

R(�) is chosen in such a way that, in the absence of interactions, we would have had R(�) = 1: thus, any deviation from unity signals the strongly
correlated nature of the model. In the LL Hamiltonian (28), we choose m = 1/2, c = cclβ with ccl = 1 and μ = 1 and then vary T = β−1.
We see that the exact prediction (solid line) in the high-temperature limit clearly approaches the classical result (dashed line), but corrections
are important and they are nicely captured by the first-order (red triangles) and second-order (blue circles) quantum corrections. The classical
results and the first-order corrections are computed with the transfer matrix method (see Appendix A), while the second-order corrections are
obtained with the METROPOLIS-Hastings algorithm (Appendix B).

in the quantum model is known to decay as n(k) ∼ C/k4

[87–90]; furthermore the power law decay is linked to the
average of the interaction term C = mc2〈ψ̂†ψ̂†ψ̂ψ̂〉. Within
our expansion, the first-order correction in Eq. (48) is crucial
in converting the classical result n(k) ∼ k−2 into the quantum
behavior. Indeed, in the Fourier space the function C (43)
exhibits the ∼k−2 decay with the opposite sign when com-
pared to the classical “fat tails”” arising from 〈ψ∗(x)ψ (y)〉,
leading to cancellation. From the computational point of view,
a short distance study of the one-body density matrix is
greatly affected by the finite lattice space in the numerical
implementation. Therefore a careful extrapolation is needed
for the continuum model. Such an extensive study would go
beyond the purpose of the current work, hence we simply
point out that inclusion of the quantum corrections smooths
the one-body density matrix.

Finally, we apply the semiclassical expansion to study the
FCS of the number of particles on an interval. So far some
results for the FCS of the number operator in the LL model
have been obtained only in the classical limit [54] (see also
Ref. [75] for FCS of the density operator in the classical
limit and out-of-equilibrium), in the quantum case for very
small intervals [72,73]. A related problem of emptiness for-
mation probability in the LL model was investigated using
the Luttinger liquid techniques in [91,92]. Let us consider the

observable N (L)[
√

βψ̂] defined as

N (L)[
√

βψ̂] = β√
L

∫ L

0
dx [ψ̂†(x)ψ̂ (x) − 〈ψ̂†(x)ψ̂ (x)〉] .

(49)

We define the FCS as PN (L) (w) = 〈δ(w − N (L)[
√

βψ̂])〉,
and use the semiclassical expansion to access its generating
function, GN (L) (λ) = 〈eiλN (L)[

√
βψ̂]〉, i.e. the Fourier transform

of the FCS. The particular normalization of N (L) is chosen
by considering the limit of large intervals. Indeed, for inter-
vals much larger than the correlation length the central limit
theorem is expected to hold with the FCS approaching the

Gaussian distribution, limL→∞ PN (L) (w) = 1√
2πσ

e− w2

2σ2 , with
σ depending on both the temperature and the chemical
potential.

Our semiclassical expansion formalism utilizes the path
integral representations of thermal states, therefore quantum
expressions must be properly normal-ordered before being fed
into the semiclassical formalism as observables. In the case of
the number operator normal ordering simply gives [93–96]

GN (L) (λ) = e−iλβ
√

L〈ψ̂†ψ̂〉〈 : e(eiλβ/
√

L−1)
∫ L

0 dx ψ̂†(x)ψ̂ (x) :
〉
. (50)
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FIG. 5. We consider the semiclassical expansion of the one-body
density matrix β〈ψ̂†(x)ψ̂ (0)〉 (which is real and symmetric with
the respect to x → −x) for two illustrative different temperatures
T = 50 and 200. While appreciable corrections to the classical result
(dashed line) are introduced including the first-order quantum correc-
tions (solid lines), considering the second-order quantum corrections
(symbols) does not change the result on an appreciable scale. This
suggests that the first-order corrections are sufficient to approach the
true quantum expectation values with good precision. As discussed
in the text, quantum corrections are essential to smoothen the nonan-
alyticity at the origin (inset).

Notice that the number of particles on an interval is an
integer number, hence the operator N (L) (49) has a discrete
spectrum. This is reflected into a periodic structure of the gen-
erating function, GN (L) (λ + 2π

√
L/β ) = e−i2π〈ψ̂†ψ̂〉GN (L) (λ),

which, after taking the Fourier transform, results in a Dirac
comb in the FCS

PN (L) (w) = 2πδ(ei2π[(
√

L/β )w+〈ψ̂†ψ̂〉] − 1)P̄N (L) (w) , (51)

with P̄N (L) (w) being the smooth part

P̄N (L) (w) =
∫ π

√
Lβ−1

−π
√

Lβ−1

dλ

2π
e−iλwGN (L) (λ) . (52)

Analogously to the anharmonic oscillator of Sec. II, the
generating function can be represented as

GN (L) (λ) = e−iλβ
√

L〈ψ̂†ψ̂〉
∫
Dψ e−SN (L) ,λ

eff [ψ]∫
Dψ e−Seff[ψ]

, (53)

where SN (L),λ
eff [ψ] is defined as

SN (L),λ
eff [ψ] = −

∞∑
j=1

1

j!

〈(
eiλβ/

√
L − 1

β
N (L) − Sint

) j〉c

free

.

(54)

Notice that, in comparison with Eq. (24), we replaced iλ →
β−1(eiλβ/

√
L − 1) due to the normal ordering. The effective

action SN (L),λ
eff [ψ] can be now systematically expanded in

the quantum corrections. For the sake of simplicity, we only

consider the first order of the expansion

SN (L),λ
eff [ψ] − Seff[ψ]

=
[

− eiλβ/
√

L − 1

β
N (L)[ψ]

]

+
[

− eiλβ/
√

L − 1

β
LC(0) −

(
eiλβ/

√
L − 1

β

)2

×
∫ L

0
dxdy �[

C(x − y)ψ†(x)ψ (y)
]] + . . . (55)

Square brackets are used to point out the zeroth and the
first orders, respectively, and Seff[ψ] Eq. (44) and 〈ψ̂†ψ̂〉
appearing in Eq. (53) must be expanded to the same order for
consistency. The expansion of the generating function above
is not expected to be valid for arbitrary values of λ, but it has
a natural cutoff |λ| � 
−1 � β−1

√
L. Notice that in the limit

of small temperatures and large intervals the λ−domain where
the semiclassical expansion is valid is expected to grow: since
GN (L) (λ) is a fast decaying function (see Fig. 6), this ultimately
implies that the role of the cutoff 
 becomes negligible.
As was discussed in the case of the anharmonic oscillator
(26), imposing a hard cutoff on the generating function is
equivalent to coarse-graining the FCS on an interval ∼
. In
Fig. 6, we present the FCS for different temperatures and
sizes of the interval, comparing the classical result with the
first-order quantum corrections. In particular, we focus on
the real part of the generating function (first row) for λ > 0
(the function is symmetric). Appreciable differences between
the quantum corrections and the classical approximation are
visible (see insets). Then, we consider the Fourier transform of
the generating function and access the full counting statistics.
We consider a hard cut-off in the Fourier space, 
−1 = 20,
computing the associated smoothed version of the FCS, ac-
cording with Eq. (26). As expected, increasing L the FCS
approaches a Gaussian. Notice that the smoothed FCS P̄


N (L) ,
contrary to the P̄N (L) , is not guaranteed to be positive due to the
presence of the oscillating kernel (26). Indeed, we observe the
presence of small negative values (see inset). Such oscillations
observed in P̄


N (L) are consequences of the hard cut-off rather
than a true feature of the FCS.

Several comments are due when comparing the result of
Ref. [54] with the zeroth order of the semiclassical expansion
here presented. Apart from the global rescaling and the shift in
the definition of the number operator (49), the classical field
result of Ref. [54] is obtained from Eq. (55) by keeping only
the zeroth-order term of the expansion, and with the further

approximation eiλβ/
√

L−1
β

� iλ/
√

L, which is the dominant con-
tribution in the high-temperature limit. Because of this further
approximation the classical field result of Ref. [54] does not
exactly coincide with the zeroth order of Eq. (55), but they do
agree in the high-temperature limit.

IV. CONCLUSIONS

We presented a semiclassical approach to one-dimensional
quantum many-body systems in thermal equilibrium. The
classical limit is achieved in the high-temperature and weak
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FIG. 6. We consider the generating functions and the FCS of the number of particles Eq. (49) for different interval sizes and temperatures,
comparing the semiclassical approximation results (solid lines) to the first-order quantum corrections (symbols). (Top) Real parts of the
generating functions. (Insets) Zoom to appreciate the differences between the classical results and the first-order corrections. (Bottom) FCS
Eq. (52) smoothened according to Eq. (26) with 
−1 = 20. (Insets) Zooms on particular regions. The finite cutoff causes the appearance of
negative values due to the nonconstant sign of the kernel Eq. (26). The presence of negative values of P̄


N (L) is particularly evident in the case
of the smallest interval L = 2, where the hard cut-off on the generating function matters the most.

interactions regime, but at any finite temperature quantum
mechanics affects the classical approximation. We show how
quantum corrections can be systematically taken into account
by means of a renormalization of the energy and observables
of the classical model. For the sake of concreteness we
focused on the 1D Bose gas with contact interactions; we
benchmarked our approach using exact results obtained from
the integrability.

In particular, quantum corrections correctly capture the
expectation values of the moments of the density operator,
〈(ψ†)nψn〉, in the high-temperature regime. We show how
quantum corrections account for important deviations from
the classical result with a rapid convergence to the exact
value, which in turn is poorly approximated by the classical
computation at any large, but finite, temperature. We then
applied our method to study experimentally relevant quantities
which are not accessible by means of the state-of-the-art
integrable techniques, namely the one-body density matrix
〈ψ†(x)ψ (y)〉 and the full counting statistics of the number of
particles on an interval. Our method is completely general and
does not rely on the specific form of the interactions, hence it
can be easily generalized to, e.g., finite-range interactions, or
multicomponent gases.

The current study is immediately suitable for comparison
with experimental and theoretical works studying 1D bosons
with contact interactions from the ultracold atom perspec-
tive: the connections of our parameters and those in the

experiments can be easily obtained. Going back to the dimen-
sional units, the condition that cT = ccl and μ are kept fixed
translates into keeping the following dimensionless quantity
constant: (

h̄2

2m
|μ|

)1/2 |μ|
kBT

1

c
. (56)

In the classical limit, the quantity (h̄2n2 · |μ|/2m)1/2/kBT is
a constant as well, meaning that the average density n scales
linearly with temperature. Approaching the limit, the density n
is still expected to scale almost linearly with T , the deviations
being determined by the quantum corrections. For example,
the average density for the range of temperatures considered
in this work is given by (h̄2n2 |μ|/2m)1/2/kBT ≈ 0.55, as can
be read from Fig. 4. Hence, one can easily pinpoint physical
regimes of the gas as discussed in Ref. [97] by calculating
the 1D interaction parameter γ = mc/h̄2n ≈ 0.9(|μ|/kBT )2

and the dimensionless ratio τ = mkBT/h̄2n2 ≈ 1.7(|μ|/kBT )
of T and the temperature of quantum degeneracy. In Fig. 7, we
schematically represent the validity region of the semiclassi-
cal expansion in the interacting Bose gas parameter space.

By further computing the coherence length of the gas, lφ =
h̄2n/mkBT , direct comparisons with Ref. [54] can be made.
For example, the case discussed on Fig. 6 corresponds to the
weakly interacting gas in the decoherent quantum regime, in
the limit of large interval sizes L/lφ � 1.
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FIG. 7. Regions of 1D Bose gas marked on the τ -γ plane, where
τ is the ratio of T and the temperature of quantum degeneracy,
τ = T/Td = mkBT/h̄2n2, and γ = mc/h̄2n is the 1D interaction
parameter. The regimes are classified according to Ref. [97], with
the relevant regimes being decoherent quantum (DQ), τ � 1, γ �
τ 2; weakly interacting (WI - hight T ), γ � τ � √

γ ; and weakly
interacting (WI - low T ), τ � γ � 1. The classical field limit is
attained at the origin, γ , τ → 0 by approaching it from either the
high-T WI or DQ regions. The semiclassical expansion is expected
to be valid for small but finite values of the parameters γ and τ , which
is schematically represented by gradient color filling. As an example,
the red solid line is shown, corresponding to the exact Lieb-Liniger
solution for the μ = 1, ccl = 1, and m = 1/2 case, for which the data
is plotted on Fig. 4. The red arrow shows the direction of the classical
field limit.

Several interesting directions remain open for the future.
First of all, it would be interesting to compare our findings
with actual experimental data: for instance, in Ref. [13] two
tunneling-coupled Bose gas are effectively described by the
sine-Gordon model, classical treatment of which proved to be
in good agreement with experimental observations. Studying
the effects of quantum corrections is extremely interesting.

A natural direction is to address out-of-equilibrium setups,
for example including quantum corrections to the stochas-
tic Gross-Pitaevskii approach [50,98,99]. Another interesting
challenge at the interface of out-of-equilibrium and integra-
bility is determining the steady-state after a quantum quench
[100]. In principle, in integrable models, the steady-state
is completely determined by the expectation value of the
conserved charges (or their generating function) in the initial
state. However, in most of cases this problem is extremely
hard to solve [21]: very recently an efficient numerical method
has been devised for the classical limit, allowing to extract the
steady state directly from the prequench state [75]. It would
be extremely interesting to put quantum corrections back in
the game in the spirit of the present work.
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APPENDIX A: THE TRANSFER MATRIX APPROACH

One-dimensional classical field theories with lo cal actions
can be equivalently formulated in terms of single-particle
quantum mechanics, this is known as the transfer matrix (TM)
method [51,52,79]. By omitting the n �= 0 Matsubara modes
in the expansion of ψE (x), which is equivalent to neglecting
the Euclidean time dependence of the fields in the quantum
action Eq. (35), directly yields the classical field action

Scl[ψ] =
∫

dx

{ |∂xψ |2
2m

+ ccl|ψ |4 − μ|ψ |2
}

, (A1)

while the quantum corrections are being ignored. Relabelling
the dummy integration variable having the meaning of imagi-
nary time t ≡ x, and making further suggestive identifications,

ψ = reiφ, ψ∗ = re−iφ, (A2)

where r and φ are the polar coordinates of a two-dimensional
particle. makes it obvious that the classical field action (A1)
also describes a quantum particle of mass M = 1/m moving
in the 2D quartic potential,

Scl[ψ]

=
∫

dt

{
M

2

(
dr

dt

)2

+ Mr2

2

(
dφ

dt

)2

+ cclr
4 − μr2

}
.

(A3)

For macroscopically large systems the interval of t integration
can be taken (−∞,∞), corresponding to quantum statistical
physics at zero temperature, which is entirely determined by
the low-energy quantum states.

The Hamiltonian of the effective quantum problem is

Ĥ = − 1

2M

(
1

r
∂r (r∂r ) + 1

r2
∂2
φ

)
+ V (r),

(A4)
V (r) = cclr

4 − μr2.

The corresponding 2D Schrodinger’s equation is separable,
and by introducing the angular momentum quantum number
l = 0,±1, . . . ,±∞, such that

〈r, φ |nl〉 = ψnl (r, φ) = Rnl (r)eilφ, (A5)

results in a 1D eigenvalue problem[
− 1

2M

1

r
∂r (r∂r ) + l2

2Mr2
+ V (r)

]
Rnl (r) = EnlRnl (r),

(A6)

where n = 0, 1, 2, . . . enumerates the discrete spectrum of the
bounded potential for the given l . The essence of the TM
method is finding the classical field-theoretic correlators by
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solving for the low energy eigenvalues and eigenstates of
Eq. (A6), numerically or otherwise.

In particular, field-theoretic observables such as correlation
functions of the fields are found by expressing them in terms
of the eigenstates and eigenvalues of Eq. (A6). For example,
the partition function is expressed as

Z =
∫

Dψ e−Scl[ψ] =
∑

nl

e−Enl D, (A7)

where D is the total length of the system, and the over-
all normalization factor has been omitted as irrelevant. For
macroscopic systems, Z ≈ e−E00D with exponential accuracy,
where E00 is the energy of the ground state of Eq. (A11).
Similarly, one-particle correlation function is given by〈

ψ∗(x)ψ (0)
〉 =

∑
n

|〈00|r|n1〉|2e−(En1−E00 )|x|, (A8)

again with exponential accuracy in D.
Moreover the classical field FCS can be accessed as well

by evaluating its coarse-grained generating function (53).
Within the classical field approximation, the effective action
SN (L)

eff (55) is a strictly local object, hence it is amenable to
the transfer matrix treatment. As described in Ref. [54], the
generating function of the FCS can be accessed by mean of
the identity

∫
Dψ e−SN (L) ,λ

eff [ψ]∫
Dψ e−Seff[ψ]

= 〈00|e−(Ĥλ−E00 )L|00〉 , (A9)

which is then fed into Eq. (53). Above, the modified, non-
Hermitian Hamiltonian Ĥλ is obtained from the transfer-
matrix representation of the zeroth-order effective action
Eq. (55), namely

Ĥλ = − 1

2M

(
1

r
∂r (r∂r ) + 1

r2
∂2
φ

)
+ Vλ(r) (A10)

with

Vλ(r̂) = cclr
4 +

(
eiλβ/

√
L − 1

β
√

L
− μ

)
r2 . (A11)

In other words, the classical field probability generating
function is calculated by evolving the original ground state
of the equivalent quantum-mechanical problem with the mod-
ified Hamiltonian Ĥλ over “time” L, and then calculating
the overlap with the original ground state. This approach
not only provides an alternative formulation for numerical
computation of the generating function, but also serves as a
convenient starting point for various approximations which
result in analytic expressions for FCS in various regimes of
temperature and interval size.

APPENDIX B: THE METROPOLIS-HASTINGS
ALGORITHM

The METROPOLIS-Hastings algorithm [80] allows for a sys-
tematic sampling of the phase-space density of the classical
theory in equilibrium. The idea is to construct a suitable

ergodic random walk in the phase space, then the thermal
expectation values of the observables can be replaced with the
averages along the evolution. The interested reader can refer
to Ref. [81] for a detailed discussion of the method, here we
provide a short summary of the algorithm, then apply it to
our case of interest. Let us assume that we are interested in a
system of M complex variables {ψi}M

i=1 (which later on will be
a lattice discretization of the classical field), let us also assume
the probability for a certain field configuration p[{ψi}M

i=1] is of
the form

p
[{ψi}M

i=1

] = 1

Z e−Seff[{ψi}M
i=1] , (B1)

where the partition function Z is needed for normalization
reasons, but its actual value is not important. We will refer
to Seff as the METROPOLIS energy. Then, we give a dynamics
to the system {ψi}M

i=1 → {ψ ′
i }M

i=1 through the following rules.
(1) Randomly choose a lattice site j with equal probability.
(2) Update the field configuration modifying the field on
the chosen site ψ j → ψ j + δψ j , the shift in the field can
be chosen as random complex Gaussian variable of zero
mean and variance χ = 〈|δψ j |2〉. The variance χ is a free
parameter to be adjusted, as we discuss below. (3) Then, the
new field configuration is accepted or rejected with some
probability. This is determined computing the energy shift
δE = Seff[{ψ ′

i }M
i=1] − Seff[{ψi}M

i=1]. If δE < 0 the new config-
uration is accepted, otherwise it is randomly accepted with
probability e−δE .

The above steps together constitute the fundamental update
of the METROPOLIS evolution, which is then repeated. The
variance χ must be tuned in such a way that, on average,
the acceptance rate is roughly 0.5. Apart from exceptional
cases, any initial field configuration will converge towards the
desired ensemble that is then sampled averaging the desired
observables along the METROPOLIS evolution. The most time-
consuming step of the algorithm is computing the energy
difference δE : the more degrees of freedom are coupled to
the updated field ψ j , the more demanding the computation
of δE is. From this perspective, including nonlocal terms in
Seff slows down the METROPOLIS evolution as the range of the
interaction is increased.

In our case of interest, we discretize the continuum theory
on a lattice ψ (x = ja) → ψ j , with a being the lattice spacing.
Integrals are represented by discrete summations and deriva-
tives are replaced with the first-order increments, ∂xψ (x =
ja) → a−1(ψ j+1 − ψ j ). The lattice spacing is chosen small
enough to attain convergence (within the statistical fluctua-
tions intrinsic to the method) and the system large enough
in order to avoid finite-size effects. In our simulations, we
used a = 0.03 and M = 2000, since this choice guaranteed
us convergence both to the continuum and thermodynamic
limits. The error bars are estimated with the variance obtained
from four independent samplings for each set of data.

For what concerns the generating function of the FCS, it is
straightforwardly computed as per Eq. (53) and noticing

∫
dMψi e−SN (L) ,λ

eff [{ψi}M
i=1]∫

dMψi e−Seff[{ψi}M
i=1]

= 〈
eSeff[{ψi}M

i=1]−SN (L) ,λ
eff [{ψi}M

i=1]
〉
p , (B2)
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where the l.h.s. is the discretized version of the analog ex-
pression in Eq. (53), on the r.h.s. with 〈. . . 〉p we denote the
average with respect to the probability distribution Eq. (B1).

Then, the function eSeff[{ψi}M
i=1]−SN (L) ,λ

eff [{ψi}M
i=1] is regarded as a λ

and L dependent observable and its value is sampled along the
METROPOLIS evolution.
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