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1 Introduction

String theory offers a unique vantage point into the physics of black holes. One the one
hand it gives rise to supergravity theories in ten and eleven dimensions as its low energy
limits and these theories admit a plethora of classical black hole (or more generally black
brane) backgrounds. These black holes are sourced by the massive strings and branes, the
microscopic degrees of freedom in the theory. On the other hand one can understand the
low energy physics of these branes in terms of the quantum field theory living on their
worldvolume. This dichotomy has been the source of many advances in our understand-
ing of black holes, as well as being ultimately responsible for the concrete realization of
the holographic principle in string theory. A famous example of this success story is the
microscopic counting of the entropy for a class of asymptotically flat black holes in string
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theory [1] (see also [2] for earlier important work). However, this perspective on black
holes has not been put to good use in the context of asymptotically AdS black holes. This
state of affairs changed recently with the results in [3]. The authors of [3] employed a
certain supersymmetric index, ZS1×Σg

, defined in [4] to account for the entropy of a large
class of supersymmetric asymptotically AdS4 black holes arising from M2-branes wrapped
on Riemann surfaces. These results were later extended to dyonic black holes in [5]. See
also [6–11] for further recent developments.

Our goal in this work is to build upon this recent success in a number of ways. First, we
show that there is a universal expression for the topologically twisted index in the large N
limit for a large class of N = 2 three-dimensional SCFTs.1 Namely, we find that the index
is related to the three-sphere free energy, FS3 , of the three-dimensional theory through the
simple relation

logZS1×Σg
= (g− 1)FS3 . (1.1)

The universality of this relation stems from a universal partial topological twist that is used
in the definition of the twisted index. In general the index depends on a set of background
fluxes for the global symmetries of the N = 2 SCFT as well as a set of complex fugacities. A
given choice of Riemann surface and background fluxes represents a particular topological
twist of the three-dimensional theory on Σg. It was argued in [3] that for a given such choice
of twist one obtains the degeneracy of vacua after extremizing the index as a function of
the complex fugacities, and this extremal value appears in (1.1). The universal topological
twist, for which the relation in (1.1) is valid, is singled out by choosing the background
fluxes on Σg such that the only non-zero flux is in the direction of the exact superconformal
R-symmetry of the three-dimensional N = 2 SCFT.

Such a simple universal relation in QFT should have an equally simple bulk realization
for three-dimensional N = 2 SCFTs with a holographic dual. Indeed, we show that there is
a simple black hole solution with a hyperbolic horizon in minimal four-dimensional gauged
supergravity which provides the holographic realization of the relation (1.1). In fact, the
entropy of this black hole, originally found in [12] and later studied further in [13], in the
large N limit is simply given by the twisted index and thus we arrive at a microscopic
understanding of the entropy for this simple universal black hole. An important point
in our story is the fact that this simple black hole solution can be embedded in eleven-
dimensional and massive type IIA supergravity in infinitely many ways. This provides
further evidence that the relation (1.1) holds (at least in the planar limit) for a large class
of three-dimensional N = 2 SCFTs.

In the course of our analysis, we also clarify the relation proposed in [3] between the
topologically twisted index and the entropy of the black hole. According to the holographic
dictionary the logarithm of the partition function of the CFT in the large N limit should
correspond to the on-shell action of the dual gravitational background. We show that, for
the universal black hole, the on-shell action indeed coincides with (minus) the entropy. This
computation is subtle and it should be done by considering a non-extremal deformation of
the black hole and carefully taking the extremal limit.

1The conditions on the N = 2 theory are discussed in detail in section 2.
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The string and M-theory embedding of the universal black hole can be interpreted
as arising from D2- or M2-branes wrapped on Σg. As pointed out in [14] these wrapped
branes constructions implement the partial topological twist for the QFT which describes
the low-energy dynamics of the branes. For a large number of branes one has to work in
the supergravity limit in which one typically finds a black hole solution with a near hori-
zon AdS2 × Σg geometry. This holographic construction was first employed for D3- and
M5-branes in [15] and later generalized to M2-branes in [16].2 This prompts us to seek
generalization of the simple black hole solutions in M-theory. Due to the complicated na-
ture of the BPS supergravity equations in eleven-dimensional supergravity we focus only on
finding explicit solutions for the AdS2 near horizon region of the black hole. Employing this
approach we find a large class of analytic explicit AdS2 solutions of the eleven-dimensional
supersymmetry equations with non-trivial internal fluxes. The full black hole solution for
which these backgrounds are a near-horizon limit should correspond to turning on back-
ground magnetic fluxes for the global non-R symmetry in the dual CFT. The entropy of the
black hole should then be captured by the twisted topological index with the given back-
ground global symmetry fluxes. While we do not establish fully this holographic picture
we provide some evidence for its consistency. We should point out that the explicit AdS2

solutions which we find fall into the general classification of such backgrounds in M-theory
discussed in [18, 19]. Other examples of AdS2 vacua in eleven-dimensional supergravity of
the class discussed here can be found in [20–23].

We begin our story in the next section with a discussion of a universal partial topological
twist that can be applied to three-dimensional N = 2 SCFTs and we argue how for a large
class of these twisted theories one can calculate the topologically twisted index of [4] in the
planar limit. We then proceed in section 3 with a holographic description of the RG flow in-
duced by the topological twist, which is realized by a black hole in four-dimensional minimal
gauged supergravity. In addition, we show how to embed this black hole in various ways in
M-theory and massive type IIA string theory. In section 4 we present a large class of AdS2

vacua of eleven-dimensional supergravity which can be viewed as near horizon geometries of
black holes constructed out of wrapped M2-branes. We conclude with some comments and
a discussion on interesting avenues for future research in section 5. In the three appendices
we collect various technical details used in the main text. In appendix A we provide some
details on the calculation of the topologically twisted index for three-dimensional N = 2

SCFTs with massive IIA holographic duals. Appendices B and C contain details on the
construction of our massive IIA and eleven-dimensional supergravity solutions.

Note added. While we were preparing this manuscript the papers [24, 25] appeared.
In them the authors find a supersymmetric AdS4 black hole solution, with a near horizon
AdS2 × Σg geometry, in the four-dimensional maximal ISO(7) gauged supergravity. We
believe that upon an uplift to massive IIA supergravity this black hole is the same as the
universal black hole discussed in section 3.3 below. Soon after this paper appeared on the
arXiv other supersymmetric AdS4 black hole solutions in massive type IIA supergravity were
studied in [26, 27] and their microstates were counted using the topologically twisted index.

2For a review on branes wrapped on calibrated cycles and further references see [17].
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2 A universal twist of 3d N = 2 SCFTs

We consider N = 2 superconformal field theories compactified on a Riemann surface Σg

of genus g with a topological twist. This is implemented by turning on a non-trivial
background for the R-symmetry of the theory. More precisely, there is a magnetic flux
on Σg for the background gauge field AR coupled to the R-symmetry current such that∫

Σg
dAR = 2π(1 − g). This condition ensures that the R-symmetry background field pre-

cisely cancels the spin connection on Σg and the resulting theory preserves two real super-
charges. In general, since the R-symmetry can mix with global symmetries, the choice of AR
is not unique and there is a family of different twists parametrized by the freedom to turn
on magnetic fluxes along the Cartan subgroup of the continuous global flavor symmetry
group.3 On the other hand, in a superconformal field theory there is an exact R-symmetry
that is singled out by the superconformal algebra and can be fixed uniquely by perform-
ing F -maximization [28, 29]. Following the terminology in [30, 31], we refer to a partial
topological twist of the three-dimensional theory on Σg along the exact superconformal
R-symmetry as a universal twist.

The degeneracy of ground states of the compactified theory after this partial topological
twist can be extracted from the topologically twisted index Z, which is defined as the twisted
supersymmetric partition function on Σg × S1 [4, 8, 9]. Let us briefly summarize some of
the salient features of the topologically twisted index.

The index depends on a set of integer magnetic fluxes n = 1
2π

∫
Σg
F flav for the Car-

tan generators of the flavor symmetry group, parameterizing the inequivalent twists. A
convenient parameterization for the fluxes is the following. We can assign a magnetic flux
nI to each chiral field ΦI in the theory with the constraint that, for each term Wa in the
superpotential,4 ∑

I∈Wa

nI = 2(1− g) . (2.1)

Since the superpotential has R-charge 2, this condition ensures that
∫

Σg
dAR = 2π(1 − g)

and supersymmetry is preserved. The Dirac quantization condition further restricts the
flux parameters nI to be integer.

The index also depends on a set of complex fugacities y for the flavor symmetries.
We can again assign a complex number yI to each chiral field ΦI in the theory with the
constraint that, for each term Wa in the superpotential,∏

I∈Wa

yI = 1 . (2.2)

It will be important also to consider the complexified chemical potentials ∆I , defined
by yI ≡ ei∆I . Notice that the chemical potentials are periodic, ∆I ∼ ∆I + 2π.

3By a flavor symmetry here we mean any global symmetry of the N = 2 SCFT which is not the
superconformal U(1) R-symmetry. Later on we will make a distinction between different types of non-R
symmetries.

4In this paper we restrict to three-dimensional N = 2 SCFTs which admit a Lagrangian description,
however we suspect that the universal twist relation (2.9) below is valid more generally.
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Therefore (2.2) becomes ∑
I∈Wa

∆I ∈ 2π Z . (2.3)

Using this periodicity we can always choose 0 ≤ Re ∆I ≤ 2π. With this at hand, (2.3) im-
plies that

∑
I∈Wa

∆I 6= 0 unless all ∆I = 0. This will be important in the discussion below.
The topologically twisted index can be evaluated by localization and reduced to a

matrix model [4]. The large N limit of the matrix model has been analyzed in [3] for the
ABJM theory [32] and generalized to other classes of quiver gauge theories with M-theory
or massive type IIA duals in [6, 7]. The results of this analysis is surprisingly simple. One
finds a consistent large N solution of the matrix model only when∑

I∈Wa

∆I = 2π , (2.4)

for each term Wa in the superpotential. Under this condition, the logarithm of the topo-
logically twisted index is given by5

logZ(∆I , nI) = (1− g)i

(
2

π
V(∆I) +

∑
I

[(
nI

1− g
− ∆I

π

)
∂V
∂∆I

])
, (2.5)

where the function V was called Bethe potential in [4] and is the Yang-Yang function of
an associated integrable system [9, 33].6 Quite remarkably, in the large N limit, the Bethe
potential V is related to the free energy on S3 of the three-dimensional N = 2 theory [6]
through the simple identity

− 2i

π
V(∆I) = FS3

(
∆I

π

)
. (2.6)

This relation might look puzzling at first sight and deserves some comments. Recall that
the free energy FS3 is a function of a set of trial R-charges that parameterize a family
of supersymmetric Lagrangians on S3 [28, 34]. The importance of this functional is that
its extremization gives the exact R-charges of the theory [28]. In (2.6), V is a function of
chemical potentials for the flavor symmetries while FS3 is a function of R-charges. However,
although the ∆I parameterize flavor symmetries in the three-dimensional theory on Σg×S1,
the relation (2.4) ensures that ∆I/π can be consistently identified with a set of R-charges
for the theory on S3.

There is a subtlety that arises when computing the topologically twisted index or the
three-sphere free energy. In three-dimensional N = 2 SCFTs there are finite counterterms
which affect the imaginary part of the complex function FS3 . These are given by Chern-
Simons terms with purely imaginary coefficients for the background gauge fields that couple
to conserved currents, see [29, 35] for a detailed discussion. Moreover, the imaginary part
of logZ is only defined modulo 2π and is effectively O(1) in the large N limit. The upshot

5The formula appears in [6] only for Σg = S2. The generalization to arbitrary g is straightforward and
discussed in details for ABJM in [8]: the general rule is simply logZg = (1− g) logZg=0(nI/(1− g)).

6What we call V(∆I) here is the extremal value with respect to the eigenvalues ui of the Bethe functional
V[∆I , ui], defined in [3, 6, 7].
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of this discussion is that the physically unambiguous quantity in the large N limit are the
real parts of the topologically twisted index and the free energy on S3.

There is an additional important point in the story. To obtain the degeneracy of vacua
of the compactified theory for a given choice of the flux parameters, nI , one has to extremize
the function Z(∆I , nI) with respect to the fugacities ∆I [3]. This prescription is analogous
to the extremization principles that exist in four [36], three [28], and two-dimensional [37, 38]
SCFTs with an Abelian R-symmetry.

After this short introduction to the topologically twisted index we are ready to discuss
the universal twist. This is obtained by choosing fluxes nI proportional to the exact UV
R-charges ∆̄I and these, as we already mentioned, can be found by extremizing FS3 [28].
From the identification (2.6) it is clear that the Bethe potential V is also extremized at the
values ∆̄I . Given the normalizations (2.1) and (2.4), we find that the universal twist is
determined by

n̄I
1− g

=
∆̄I

π
. (2.7)

It is easy to see that, for this choice of fluxes, logZ in (2.5) is also extremized at ∆I = ∆̄I :

∂ logZ

∂∆I

∣∣∣
∆̄I

= 0 , (2.8)

since ∂V(∆̄I) = 0.7 The value at the extremum reads

logZ(∆̄I , n̄I) = (g− 1)FS3

(
∆̄I

π

)
, (2.9)

where we made use of (2.6) and (2.7).
Equation (2.9) amounts to a universal relation between the value of the index of the

universal twist of a 3d N = 2 SCFT and the free energy on S3 of the same superconformal
theory in the planar limit. For theories with a weakly coupled holographic dual this identity
should translate into a universal relation between the entropy of some universal black hole
solution and the AdS4 supersymmetric free energy. As we discuss in detail in section 3 this
expectation indeed bears out for the case of hyperbolic Riemann surfaces, i.e. for g > 1.

It is worth pointing out that the universal relation in (2.9) is the three-dimensional
analog of the universal relation among central charges established in [30] for twisted com-
pactifications of four-dimensional N = 1 SCFTs on R2 × Σg.8 A notable difference is that
for four-dimensional SCFTs the universal relation can be established at finite N . It would
be most interesting to study subleading, i.e. non-planar, corrections to the universal relation
in (2.9).9

7We note in passing that if one imposes nI
1−g

= ∆I
π

before extremizing FS3 then the second term in (2.5)
vanishes. Thus, after using (2.6) we find that the extremization of FS3 is the same as the extremization of
the topologically twisted index.

8Similar relations can be established for SCFTs with a continuous R-symmetry in various dimensions
and with different amount of supersymmetry [31].

9It is interesting to note that similar relations between FS3 and partition functions on S1×Σg with line
operator insertions were discussed in [39].
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2.1 M-theory and massive type IIA models

The derivation of (2.9) is based on the large N identities (2.5) and (2.6), which in turn can
be established for a large class of Yang-Mills-Chern-Simons theories with fundamental and
bi-fundamental chiral fields with M-theory or massive type IIA duals. We now discuss the
class of theories for which these identities are valid.

Consider first superconformal theories dual to M-theory on AdS4× SE7, where SE7 is a
Sasaki-Einstein manifold. Many quivers describing such theories have been proposed in the
literature. Most of them are obtained by dimensionally reducing a “parent” four-dimensional
quiver gauge theory with bi-fundamentals and adjoints with an AdS5× SE5 dual, and then
adding Chern-Simons terms and flavoring with fundamentals. In such theories, the sum of
all Chern-Simons levels is zero,

∑
a ka = 0. Holography predicts that the S3 free energy and

the twisted index of such theories scales as N3/2 for N � ka. The large N behavior of the
S3 free energy has been computed in [40] and successfully compared with the holographic
predictions only for a particular class of quivers. In particular, for the method in [40]
to work, the bi-fundamental fields must transform in a real representation of the gauge
group and the total number of fundamentals must be equal to the total number of anti-
fundamentals. It turns out that, under the same conditions, the topologically twisted index
scales likeN3/2 and the identities (2.5) and (2.6) are valid [6]. This particular class of quivers
include all the vector-like examples in [41–43] and many of the flavored theories in [44, 45].
In particular, the latter includes the dual of AdS4 ×Q1,1,1/Zk and AdS4 ×N0,1,0/Zk. The
conditions are also satisfied for the N = 3 necklace and D̂- and Ê-type quivers [46–50],
as well as the quiver for the non-toric manifold V 5,2 discussed in [51]. The evaluation
of the index in the large N limit for most of these examples is given in [7], where the
identities (2.5) and (2.6) are also verified by explicit computation. For the “chiral” theories
discussed in [41–43], on the other hand, it is not known how to properly take the large
N limit in the matrix model to obtain the correct scaling predicted by holography. This
applies both for the topologically twisted index and for the S3 partition function. This
class of quivers includes interesting models, like the quiver for M1,1,1 proposed in [43] and
further studied in [52].

Consider now superconformal theories dual to warped AdS4×Y6 flux vacua of massive
type IIA. A well-known example is the N = 2 U(N) gauge theory with three adjoint
multiplets and a Chern-Simons coupling k described in [53]. It corresponds to an internal
manifold Y6 with the topology of S6. This has been generalised in [54] to the case where
Y6 is an S2 fibration over a general Kähler-Einstein manifold KE4. The dual field theory is
obtained by considering the four-dimensional theory dual to AdS5× SE5, where SE5 is the
five-dimensional Sasaki-Einstein with local base KE4, reducing it to three dimensions and
adding a Chern-Simons term with level k for all gauge groups.10 The large N limit at fixed
k of the S3 free energy has been computed in [53] and [54] and shown to scale as N5/3,
as predicted by holography. The large N limit of the topologically twisted index has been

10The original example in [53] has KE4 = CP2, SE5 = S5, and the superconformal theory is obtained by
reducing N = 4 SYM to three-dimensions and adding a Chern-Simons coupling with level k. The solution
in [54] is obtained by replacing CP2 with more general KE4 manifolds.
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computed in [6]. The identities (2.5) and (2.6) also hold for massive type IIA. The explicit
derivation was not reported in [6] and is given in appendix A. Notice that for massive type
IIA quivers there is no need to restrict to vector-like models.

The discussion above shows that there is a large number of three-dimensional supercon-
formal theories with M-theory or massive type IIA duals for which relation (2.9) formally
holds. However, it is important to notice that not all of them really admit a universal twist
since we need to restrict ourselves to N = 2 SCFTs with rational R-charges. Indeed, since
nI and g are integers, the relation in (2.7) implies that the exact R-charge of the fields
must be rational. This slightly restricts the class of theories where we can perform the
universal twist. However, we can still find infinitely many models for which the R-charges
are rational and the universal twist exists. Since N = 3 theories necessarily have rational
R-charges this applies to the N = 3 necklace quivers [46, 47] as well as the D̂- and Ê-type
quivers [48–50], and the N = 3 quiver for N0,1,0 [44, 55, 56]. In addition, one can check
that the N = 2 quivers for Q1,1,1 [45] and V 5,2 [51] in M-theory have rational R-charges.
The same holds for the theory in [53] and some of its generalizations in massive type IIA.11

3 A simple 4d black hole

Here we provide the holographic description of the universal twisted compactification of
3d N = 2 SCFTs discussed in the previous section. As we shall show, this corresponds to
the supersymmetric magnetically charged AdS4 black hole of [12, 13], thus providing the
appropriate field theory interpretation of this solution. We also review the known uplift of
this solution to M-theory and provide a new uplift to massive IIA supergravity.

The appropriate supergravity is 4d minimal N = 2 gauged supergravity [58], with eight
supercharges and bosonic content the graviton and an SO(2) gauge field, dual to the stress
energy tensor and R-symmetry current, respectively. The bosonic action reads12

I =
1

16πG
(4)
N

∫
d4x
√
−g
(
R+ 6− 1

4
F 2

)
, (3.1)

with G(4)
N the 4d Newton constant. We have chosen the cosmological constant such that the

AdS4 vacuum of the theory has RAdS4 = −12 and LAdS4 = 1. The magnetically charged
black hole solution of [12, 13] preserves two supercharges and is given by13

ds2
4 = −

(
ρ− 1

2ρ

)2

dt2 +

(
ρ− 1

2ρ

)−2

dρ2 + ρ2 ds2
H2 ,

F =
dx1 ∧ dx2

x2
2

,

(3.2)

11The R-charges for M-theory vacua can be computed using volume minimization [57] and for massive
type IIA by a-maximization [36]. The result is generically irrational. However, we can easily find special
classes of SE7 or SE5 where the result is rational.

12Here we follow the conventions in [3] and truncate the N = 8 supergravity to the minimal one by setting
La = 1 (φij = 0), Aa = A, and set the coupling constant g = 1/

√
2 which in turn amounts to setting the

radius of the AdS4 vacuum to one.
13A generalization to include rotation while maintaining supersymmetry was also found in these references.
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where ds2
H2 = 1

x2
2

(
dx2

1 + dx2
2

)
is the local constant-curvature metric on a Riemann surface

Σg of genus g > 1,14 normalized such that RH2 = −2. Using the Gauss-Bonnet theorem
the volume of the Riemann surface is then vol(Σg) = 4π(g− 1). Dirac quantization of the
flux requires 1

2π

∫
Σg
F ∈ Z, which holds for any genus g. We note the solution has a fixed

magnetic charge, set by supersymmetry. The entropy of this extremal black hole is given
in terms of the horizon area by the standard Bekenstein-Hawking formula

SBH =
Area

4G
(4)
N

=
(g− 1)π

2G
(4)
N

. (3.3)

As will soon become clear the large N limit of the topologically twisted index reproduces
exactly this entropy. However, there is a slight subtlety in this story. According to the
standard holographic dictionary the logarithm of the partition function of the CFT (in the
appropriate large N limit) should correspond to a properly regularized on-shell action of
the dual gravitational background, rather than the black hole entropy. In the next section
we clarify this relation, showing that the black hole entropy in (3.3) is indeed closely related
to the on-shell action and thus to the topologically twisted index.

3.1 On-shell action

We are interested in calculating the value of the Euclideanized action (3.1), evaluated
on-shell for the solution (3.2). This action is divergent unless properly regularized by
counterterms, following the standard holographic renormalization prescription, which we
carry out explicitly next. As we show, this is intimately related to the entropy of the black
hole. The regularized action we consider is given by:15

IEucl = IEinst+Max + Ict+bdry ,

IEinst+Max = − 1

16πG
(4)
N

∫
d4x
√
g

(
R+ 6− 1

4
F 2

)
Ict+bdry =

1

8πG
(4)
N

∫
d3x
√
γ

(
2 +

1

2
R(γ)−K

)
,

(3.4)

where γ is the induced metric on the boundary, defined by the radial cutoff ρ = r, and K is
the trace of the extrinsic curvature of this boundary metric. Taking r →∞ leads to a diver-
gence in IEinst+Max, which is cancelled by Ict+bdry, where we have collected the appropriate
counterterms as well as boundary terms necessary for a well-defined variational principle.
An important additional subtlety arises, however, in the explicit evaluation of IEucl for the
extremal solution (3.2). Indeed, it is easy to see that this integral is naively not well defined,
as the integrand of IEucl for this solution vanishes, while the integration over Euclidean time∫∞

0 dτ leads to infinity as a consequence of the solution being extremal and thus T = 0. To
obtain the correct finite result we thus consider a non-extremal deformation of the solution,
compute IEucl for the non-extremal solution and take the extremal limit at the end.

14As discussed in [13], there is no supersymmetric static black hole solution with g = 0, 1.
15See for example section 4.4 of [59] as a reference for the counterterms. With respect to their normal-

izations we have F there = F here/2.
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There are two non-extremal deformations. One amounts to allowing for a generic
magnetic charge Q under the graviphoton, and a second to adding a mass η. This non-
extremal generalization was discussed in [12, 13] and the solution reads

ds2 = −V (ρ) dt2 +
1

V (ρ)
dρ2 + ρ2 ds2

H2 ,

F = 2Q
dx1 ∧ dx2

x2
2

,

(3.5)

where

V (ρ) = −1− 2η

ρ
+
Q2

ρ2
+ ρ2 . (3.6)

The extremal solution is recovered for Q → 1/2 and η → 0. The horizon radius ρ0 is ob-
tained by solving the quartic equation V (ρ0) = 0. The temperature T of the black hole can
be obtained by requiring the Euclidean metric to be free of conical singularities, which gives

T =
|V ′(ρ0)|

4π
=

1

2πρ0

∣∣∣∣ρ2
0 +

η

ρ0
− Q2

ρ2
0

∣∣∣∣ . (3.7)

In the extremal limit ρ0 → 1/
√

2 and T → 0. Evaluating the on-shell action (3.4) for
general values of Q and η we find16

IEucl =
(g− 1)

2G
(4)
N

β

ρ0

(
Q2 − ρ4

0 + ηρ0

)
, (3.8)

where β = 1/T is the Euclidean time periodicity. Taking the extremal limit of this expres-
sion gives the finite answer

Iextr = −(g− 1)π

2G
(4)
N

+O
(

(Q− 1/2)1/2
)

+O
(
η1/2

)
. (3.9)

Comparing this to the entropy (3.3) of the extremal black hole, we thus have

Iextr = −SBH . (3.10)

On the other hand, the holographic dictionary relates the gravitational on-shell action to
the partition function of the dual CFT as I = − logZ, leading to the satisfying expression

SBH = logZ . (3.11)

We have thus shown that the black hole entropy can be identified with the topologically
twisted index of the dual CFT to leading order in N . This relation was argued to hold more
generally for a class of black holes in non-minimal gauged supergravity in [3]; it would be
interesting to establish this explicitly by generalizing the computation above to this larger

16Based on general thermodynamics arguments one would expect the non-supersymmetric on-shell action
to obey the relation I = β(M−ST −ΦQ), whereM , Q, and Φ, are the mass, charge and chemical potential
of the black hole. See [60] for a recent discussion on this relation for asymptotically AdS4 black holes.
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class of black holes. It would also be of interest to study these relations to subleading
orders in N .

Finally, let us recall that the renormalized on-shell action for Euclidean AdS4 with an
S3 boundary is given by [61]17

FS3 =
π

2G
(4)
N

, (3.12)

which using (3.3) leads to the relation

SBH = (g− 1)FS3 . (3.13)

With the identification (3.11) one recognizes this result as the holographic analog of the uni-
versal field theory relation (2.9). Thus, the result (3.13) provides strong evidence that the
AdS4 black hole (3.2) describes the RG flow from 3d N = 2 SCFTs with a universal topo-
logical twist on Σg to superconformal quantum mechanical theories with two supercharges.

We emphasize that although the black hole solution (3.2) is derived as a supersym-
metric solution of minimal gauged supergravity, it is also a solution to non-minimal gauged
supergravity, with the additional vector and hyper multiplet bosonic fields set to zero.18

The fact that “freezing” the vector multiplets to zero is consistent corresponds to the prop-
erty of universality of the topological twist (2.7). In other words, as the vector multiplet
scalars in the gauged supergravity are not sourced along the flow from AdS4 to AdS2 real-
ized by the black hole (3.2), there is no mixing between R-symmetry and flavor symmetry
along the flow and the R-symmetry in the IR coincides with the one in the UV. This is
consistent with the field theory discussion of section 2.

3.2 Uplift to M-theory

Here we review the uplift of the universal solution in (3.2) to eleven-dimensional supergrav-
ity, which was carried out in [62]. The metric and four-form read19

ds2
11 = L2

(
1

4
ds2

4 + ds2
7

)
,

ds2
7 =

(
dψ + σ +

1

4
A

)2

+ ds2
KE ,

G4 = L3

(
3

8
vol4 −

1

4
∗4 F ∧ J

)
,

(3.14)

where ds7|A=0 is a seven-dimensional Sasaki-Einstein with RSE7
ij = 6gSE7

ij , dsKE is a six-
dimensional Kähler-Einstein space with RKE

ij = 8gKE
ij and Kähler form J , with dσ = 2J ,

F = dA = volH2 , ds2
4 is given in (3.2), and ∗4 is with respect to this four-dimensional metric.

This solution of eleven-dimensional supergravity can be interpreted as the backreaction of N
M2-branes wrapping a supersymmetric cycle in a Calabi-Yau five-fold. This point of view
was discussed in [16], following the ideas in [15], for the case where the Sasaki-Einstein
manifold is S7 and thus the six-dimensional Kähler-Einstein space is CP3.

17With slight abuse of notation we define the CFT free energy as F = − logZ = I.
18This can be checked, for instance, by setting na = κ

2
, ~φ = 0 , La = 1 in the BPS equations (A.27) in [3].

19Compared to equation (2.3) in [62] we have introduced an overall scale L.
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In order for this local supergravity solution to extend to a well defined M-theory back-
ground, some of its parameters should be properly quantized. The quantization condition
on G4 reads

N =
1

(2π`11)6

∫
Y7

∗11G4 , (3.15)

where N is an integer determining the number of M2-branes and `11 is the Planck length in
eleven dimensions. This translates into the quantization of the AdS4 length scale in terms
of the Planck length,20

L = π`11

(
32N

3vol(Y7)

)1/6

. (3.16)

The four-dimensional Newton constant is given by

1

G
(4)
N

=
L7 vol(Y7)

G
(11)
N

, 16πG
(11)
N = (2π)8`911 . (3.17)

3.2.1 Entropy

Using (3.16) and (3.17) we compute the properly normalized horizon area, obtaining the
black hole entropy:

SBH = (g− 1)

√
2π6

27vol(Y7)
N3/2 . (3.18)

This is consistent with (3.13) and the well-known expression for the holographic free energy
on S3 [47, 63]

FS3 =

√
2π6

27vol(Y7)
N3/2 . (3.19)

It is instructive to unpack this equation for a couple of examples of well-known three-
dimensional SCFTs. For the special case of the ABJM theory, i.e., Y7 = S7/Zk, the free
energy on S3 is given by FS3 = π

√
2

3 k1/2N3/2 [63] and thus

SABJM
BH = (g− 1)

π
√

2

3
k1/2N3/2 . (3.20)

This result is correctly reproduced by the topologically twisted index for the ABJM theory.
This follows from the general discussion in section 2, which is model independent. It is
nonetheless instructive to see explicitly how this works. The topologically twisted index for
ABJM is given by [3, 5]

logZABJM = −
√

2

3
k1/2N3/2

√
∆1∆2∆3∆4

4∑
I=1

nI
∆I

, (3.21)

where ∆I , nI are, respectively, the chemical potentials and fluxes associated to the four
chiral bi-fundamental fields of ABJM, subject to the constraints

∑4
I=1 ∆I = 2π and

20Upon a reduction to 10d type IIA supergravity the 11d Planck length is related to the string length
and coupling constant via the equation `11 = lsg

1/3
s .
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∑
I nI = 2(1− g).21 The exact R-symmetry corresponds to ∆I = π/2 and the univer-

sal twist to nI = (1 − g)/2. We see that g must be odd. We obtain logZABJM = SABJM
BH ,

as expected.
As another example, we can consider the Sasaki-Einstein manifold Y7 = Q1,1,1/Zk

whose dual SCFT was discussed in [45]. The free energy on S3 is given by FS3 =
4π

3
√

3
k1/2N3/2 [40]. Then, from (3.13) we have

SQ
1,1,1

BH = (g− 1)
4π

3
√

3
k1/2N3/2 . (3.22)

The dual field theory is a flavored version of ABJM and the exact R-charge of the fields
Ai is 2/3 and that of Bi is 1/3 [40]. Quantization of fluxes then requires g − 1 to be an
integer multiple of 3. The topologically twisted index was computed in [7] and it is easy to
check that logZQ

1,1,1
= SQ

1,1,1

BH , again in agreement with the general result in section 2.22

Combining the results in [40] and [7] one can check many other examples, all in agreement
with the general result (2.9).

As discussed in section 2, the universal twist is not only possible for theories with an
M-theory dual, but also for field theories with massive IIA duals with an N5/3 scaling of
the free energy. We discuss this next.

3.3 Uplift to massive IIA

Here we discuss new black hole solutions in massive IIA supergravity, obtained by uplifts of
the 4d solution (3.2). This can be done by using the formulae of [64–66], where the uplift
of the SU(3)-invariant sector of 4d N = 8 supergravity with ISO(7) gauging is given. The
bosonic content of the 4d SU(3)-invariant sector is the graviton eaµ, 6 scalars ϕ, χ, φ, a, ζ, ζ̃,
2 electric vectors A0, A1 and their magnetic duals Ã0, Ã1, 3 two-forms B0, B1, B2 and 2
three-forms C0, C1. One should keep in mind that these are not all independent as, e.g.,
the field strengths of C0, C1 can be dualized into functions of the scalar fields, see [66] for
more details.

Since we are interested in solutions that asymptote to the N = 2 supersymmetric AdS4

vacuum of the theory described in [53], and we expect the scalars to be set to constant values,
we set them to the values of the AdS4 vacuum solution, provided in (B.3). The electric
potential A1 is identified (up to a normalization, which we fix by using the massive IIA
equations of motion) with the gauge field A of the minimal four-dimensional theory in (3.1).
With this at hand we can use the uplift formulae of [64–66], reproduced in (B.1), to obtain
explicit expressions for the bosonic fields of the ten-dimensional massive IIA supergravity,
i.e., the metric, the dilaton, φ̂, as well as the two-, three-, and four-form fluxes: F̂2, Ĥ3,

21See formula (28) in [5], where the notations are: uI = ∆I and pI = −nI and the case k = 1 is considered.
For k > 1 there could be ambiguities related to other saddle points, but we still expect (3.21) to hold.

22The free energy on S3 is given by formula (6.15) in [40] and the twisted index for g = 0 by formula (5.47)
in [7]. The generalization to general genus g > 0 is obtained by logZg = (1− g) logZg=0(ni/(1− g)) [8]. As
discussed in [40], the exact R-charge of the fields Ai is ∆Ai/π = 2/3 and that of the fields Bi is ∆Ai/π = 1/3,
while ∆m=0. The fluxes for the universal twist are then nAi = 2(1− g)/3, nBi = (1− g)/3 and t + t̃ = 0.
From formula (5.47) in [7] we find logZQ

1,1,1

= (g− 1) 4π

3
√

3
k1/2N3/2.
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and F̂4, respectively. The metric and dilaton read

ds2
10 = L2(cos(2α) + 3)1/2(cos(2α) + 5)1/8

(
ds2

4 + ds2
6

)
,

ds2
6 =

3

2
dα2 +

6 sin2(α)

cos(2α) + 3
ds2

CP2 +
9 sin2(α)

cos(2α) + 5
(dψ + σ + gA1)2 ,

eφ̂ = 21/4g5/6m−5/6 (cos(2α) + 5)3/4

cos(2α) + 3
,

(3.23)

where ds2
4 is the black hole metric (3.2), ds2

CP2 is the standard Einstein metric on CP2

(see (B.2)), A1 = 1
3g
dx1
x2

is the connection on the Riemann surface, and

L2 = 3−12−5/8g−25/12m1/12 . (3.24)

We note that (3.23) can be obtained from the AdS4 vacuum solution of [53] by the simple
replacement ds2

AdS4
→ ds2

4 and dψ → dψ + gA1. The massive IIA form fields, however,
are not so easily obtained and require more work. The basic point is that in order to
determine these one must find a further truncation of the remaining SU(3)-invariant fields
consistent with the duality transformations of [66] and the equations of motion, which
due to the connection on the Riemann surface is non-trivial. We discuss this in detail in
appendix B.1. Here we simply present the final answer:

F̂2 =

(
m

g

)2/3
(
− 4sin2(α)cos(α)

g(cos(2α)+3)(cos(2α)+5)
J− 3sin(α)(cos(2α)−3)

g(cos(2α)+5)2
η∧dα

+
3cos(α)

cos(2α)+5
H1

(2)−
1

2

√
3cos(α)∗4H1

(2)

)
,

Ĥ3 =
1

m

(
m

g

)2/3
(

8sin3(α)

g(cos(2α)+3)2
dα∧J+

1

2

√
3sin(α)dα∧∗4H1

(2)

)
,

F̂4 =
1

g2

(
m

g

)1/3
(
vol4√

3g
+

sin4(α)(3cos(2α)+7)

g(cos(2α)+3)2
J∧J

− 3sin3(α)cos(α)(cos(2α)+9)

g(cos(2α)+3)(cos(2α)+5)
η∧dα∧J+

3

4
sin(α)cos(α)η∧dα∧H1

(2)

− 3sin2(α)cos2(α)

cos(2α)+3
H1

(2)∧J+
3
√

3sin(2α)

4(cos(2α)+5)
η∧dα∧∗4H1

(2)−
√

3sin2(α)

cos(2α)+3
∗4H1

(2)∧J

)
,

(3.25)

where J = 1
2dσ is the Kähler form on CP2, H1

(2) ≡ dA1, vol4 is the volume form of ds4,
and ∗4 is the hodge dual with respect to ds4. We have explicitly checked that (3.23)
and (3.25) indeed satisfy the equations of motion of massive IIA supergravity.23 At large
ρ the solution is locally asymptotic to the N = 2 AdS4 solution of [53] and thus (3.23)
and (3.25) describe the twisted compactification of the corresponding three-dimensional
field theory dual, consisting of a U(N) Chern-Simons theory at level k with three adjoints
superfields Φi.

23These equations can be found in equation (A.5) of [64].
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Based on our field theory analysis we actually expect (3.23) and (3.25) to be part of
a more general class of solutions, where the CP2 is replaced by a general Kähler-Einstein
base. As an example, we have explicitly checked that replacing

ds2
CP2 → ds2

P1×P1 =
1

6

(
dθ2

1 + sin2 θ1 dφ
2
1 + dθ2

2 + sin2 θ2 dφ
2
2

)
,

σ → 1

3
(cos θ1 dφ1 + cos θ2 dφ2) ,

(3.26)

in (3.23) (along with suitable replacements of J and η in (3.25)) is also a solution of the
equations of motion.

More generally, replacing CP2 by a generic Kähler-Einstein base B leads to a large
family of new massive IIA black holes, which are asymptotic to the AdS4 solutions described
in [54]. As discussed there, the 3d field theory duals are obtained from a 4d parent field
theory with an AdS5 × Y5 dual, with B corresponding to the Kähler-Eistein base of the
Sasaki-Einstein Y5, i.e.,

ds2
Y 5 = η2 + ds2

B . (3.27)

Thus, the black hole solutions reported here describe the compactifications of these 3d
SCFTs on a Riemann surface, twisted by the exact superconformal R-symmetry.

To ensure that the local supergravity solution given in (3.23) and (3.25) extends to a
well defined string theory background, it should be properly quantized.24 The four-form
quantization condition in massive IIA reads25

N = − 1

(2π`s)5

∫
M6

(
e

1
2
φ̂ ∗4 F̂(4) + B̂(2) ∧ dÂ(3) +

1

6
mB̂(2) ∧ B̂(2) ∧ B̂(2)

)
, (3.28)

where N is an integer determining the number of D2-branes, and the potentials B̂(2), Â(3)

can be found in [65]. We can evaluate this for the solution in (3.23) and (3.25) for a general
base B. Using the explicit expression for the background fluxes presented in appendix B.1
we find

N =
1

(2π`s)5

∫
M6

sin5(α)(132 cos(2α) + 7 cos(4α) + 213)

4g5(cos(2α) + 3)3
dα ∧ J ∧ J ∧ dψ

=
1

(2π`s)5

16

3g5
vol(Y5) , (3.29)

where we integrated over 0 ≤ α ≤ π and used the identity 1
2J ∧ J ∧ dψ = dvol(Y5).

Using (3.24) this translates into a quantization condition on the asymptotic AdS4 and the
near-horizon AdS2 radii:

LAdS2 =
1

2
LAdS4 =

π`sn
1/24

255/4837/24

(
N

vol(Y5)

)5/24

, (3.30)

where we have used that asymptotically ds2
4 → ds2

AdS4
, while close to the horizon ds2

4 →
1
4(ds2

AdS2
+ 2ds2

Σg
) and defined n ≡ 2π`sm. Note that the quantization condition on LAdS4

24In the case of ds2
4 = ds2

AdS4
this was carried out in [54] for a general base B. The quantization for the

black hole solution here is very similar and we provide it here for completeness.
25See for example equation (4.11) in [65].
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coincides with the one obtained in [54]. This is expected since our solution is asymptotic to
the solutions discussed there. Similarly, the four-dimensional Newton constant is given by26

1

G
(4)
N

=
65/2L6

AdS4
vol(Y5)

5`8sπ
6

. (3.31)

3.3.1 Entropy

Putting all this together, we can compute the properly normalized horizon area and obtain
the following general formula for the black hole entropy:

SBH = (g− 1)
21/3 31/6 π3

5 vol(Y5)2/3
n1/3N5/3 . (3.32)

Let us specialize this to the two simple cases considered above, namely CP2 and P1 × P1,
with corresponding Y5’s equal to S5 and Y 1,0, respectively. We recall that for a U(N)G

gauge theory, where each factor has the same Chern-Simons level k, the parameter n is
related to the Chern-Simons levels by n = Gk [67].

For Y5 = S5 we have vol(Y5) = π3 and n = k and (3.32) reads

SS
5

BH = (g− 1)π 21/331/65−1N5/3k1/3 . (3.33)

The dual three-dimensional field theory is a U(N) Chern-Simons theory with three adjoints
superfields Φi and superpotential W = Φ1[Φ2,Φ3] [40]. The index is explicitly computed in
appendix A; it is given by (A.15) and (A.16), where ∆1 + ∆2 + ∆3 = 2π and n1 +n2 +n3 =

2(1 − g). The exact R-symmetry corresponds to ∆i = 2π/3 and the universal twist to
ni = 2(1 − g)/3. Quantization of fluxes requires g − 1 to be an integer multiple of 3. We
then see that the index is given by

logZ = (g− 1)π 21/331/65−1N5/3k1/3(1− i/
√

3) , (3.34)

while the free energy on S3 is given by equation (A.9),

FS3 = π 21/331/65−1N5/3k1/3(1− i/
√

3) . (3.35)

As expected this leads to logZ = (g − 1)FS3 , in agreement with our general argument in
section 2. We also note that both logZ and FS3 are complex but as discussed above
equation (2.7) we should focus on the real part. We then arrive at the following, by
now familiar, relation between the black hole entropy and the SCFT partition functions;
SBH = Re logZ = (g− 1)ReFS3 .

Similarly, for Y 5 = Y 1,0 one has vol(Y5) = 16π3

27 , n = 2k and (3.32) reads

SY
1,0

BH = (g− 1)π 313/620−1N5/3k1/3 . (3.36)

26For a solution of the form ds2
10 = e2λL2

(
ds2

4 + ds2
6

)
, the effective four-dimensional Newton constant

is given by 1/G
(4)
N = (1/G

(10)
N )L6

∫
d6x
√
g

6
e8λ, with 16πG

(10)
N = (2π)7`8s, following the conventions used

in [53]. Note in particular that in [53] they set gs = 1.
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The three-dimensional field theory dual is a U(N) × U(N) gauge theory with four bifun-
damentals ΦI with the same quiver and superpotential as the 4d N = 1 Klebanov-Witten
theory [68]. In this case the exact R-symmetry corresponds to ∆I = π/2 and the univer-
sal twist to nI = (1 − g)/2, which requires g to be odd. The topologically twisted index,
computed explicitly in appendix A, correctly reproduces the entropy in (3.36).

3.3.2 Checking supersymmetry

As a final consistency check of the supergravity discussion of these new massive IIA black
hole solutions here we show explicitly that the solution in (3.23) and (3.25) preserves two su-
percharges. The supersymmetry variations of the fermionic fields are given in [69] and read27

δψµ =Dµε−
1

32
me

5
4
φ̂Γµε−

1

64
e

3
4
φ̂F̂νρ(Γ

νρ
µ −14δ νµ Γρ)Γ11ε

+
1

96
e−

1
2
φ̂Ĥνρλ(Γ νρλ

µ −9δ νµ Γρλ)Γ11ε+
1

256
e

1
4
φ̂F̂νρλτ

(
Γ νρλτ
µ − 20

3
δ νµ Γρλτ

)
ε ,

δλ=− 1

2
√

2
(∂µφ̂)Γµε− 5

8
√

2
me

5
4
φ̂ε+

3

16
√

2
e

3
4
φ̂F̂µνΓµνΓ11ε

+
1

24
√

2
e−

1
2
φ̂ĤµνρΓ

µνρΓ11ε−
1

192
√

2
e

1
4
φ̂F̂µνρλΓµνρλε .

(3.37)

Plugging in the background (3.23) and (3.25) and setting these variations to zero we obtain
a set of differential equations for ε, with the following solution (see appendix B.2 for details):

ε = |gtt|1/4e
3
2

Γ67ψR(θ1, θ2)η , (3.38)

where gtt the time-time component of the 10d metric in (3.23). The quantity R(θ1, θ2) is
an α-dependent “rotation operator,” defined as

R(θ1, θ2) ≡ R29(θ1)R1234(θ2) ;

R29(θ1) ≡
(
cos (θ1/2)− sin (θ1/2) Γ29

)
,

R1234(θ2) ≡
(
cos (θ2/2)− sin (θ2/2) Γ1234

)
,

(3.39)

where the functions θ1,2 = θ1,2(α) are given in (B.29), and η is a constant ten-dimensional
spinor obeying the projection conditions

Π1η = Π2η = Π3η = Π4η = 0 . (3.40)

Here we have defined the projectors

Π1 ≡
1

2

(
1− Γ5678

)
, Π2 ≡

1

2

(
1 + Γ3467

)
,

Π3 ≡
1

2

(
1 + Γ134

)
, Π4 ≡

1

2

(
1 + Γ67910

)
.

Using (3.39) one may alternatively express (3.40) as projection conditions on ε:

Π1ε = Π2ε = Π̂3ε = Π̂4ε = 0 , (3.41)
27The conventions of this reference are related to ours by φ ↔ − 1

2
φ̂, Fmnpq ↔ 1

2
F̂mnpq, Gpqr ↔ Ĥpqr,

Bpq ↔ B̂pq.
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where we defined the “rotated projectors,”

Π̂3 ≡ R(θ1, θ2) Π3R−1(θ1, θ2) , Π̂4 ≡ R(θ1, θ2) Π4R−1(θ1, θ2) . (3.42)

Similar rotated projectors have appeared in [70, 71], albeit in a somewhat different class of
supergravity solutions with internal fluxes. Note that the Π3 projector can be understood
as a dielectric deformation of the standard D2-brane projector due to the internal fluxes.
The four projection conditions in (3.40) determine that the black hole solution of interest
preserves 2 out of the 32 supercharges of the massive IIA supergravity.28 Note this is half
the number of supercharges of the AdS4 solution of [53], since the Π2 projector is absent in
that case.

4 AdS2 horizons in 11d

The discussion thus far has been restricted to the so-called universal twist of 3d N = 2

SCFTs and its holographic dual description in terms of a magnetically charged black hole in
AdS4. As emphasized, the universal twist is characterized by the fact that the background
magnetic flux in the CFT is only along the direction of the 3d superconformal R-symmetry.
Most 3dN = 2 SCFTs with holographic duals, however, admit continuous flavor symmetries
and it is natural to study the behavior of these theories in the presence of magnetic fluxes
for these global symmetries, as well as their holographic duals. In this section we begin
exploring this question for a class of 3d N = 2 SCFTs arising from M2-branes placed at the
tip of a CY4 conical singularity in M-theory. It is well-known that upon backreaction of the
branes this setup leads to a supersymmetric Freund-Rubin vacuum of M-theory of the form
AdS4 ×X7 where X7 is a Sasaki-Einstein manifold which is the base of the CY4 cone. We
have already mentioned a few of these spaces above, for example M1,1,1, Q1,1,1, and V 5,2.
Many other examples of such Sasaki-Einstein manifolds with explicit metrics are known in
the literature (see for example [72] and references thereof). In addition to the omnipresent
Reeb vector, which exists on all such spaces and is dual to the superconformal R-symmetry,
these examples of Sasaki-Einstein manifolds typically have additional isometries, which are
dual to mesonic flavor symmetries in the dual CFT. In addition, if the seven-dimensional
manifold has non-trivial two-cycles (and thus by Poincaré duality five-cycles) the dual CFT
has continuous baryonic symmetries. After placing the 3d SCFT on S1 × Σg we can turn
on background magnetic fluxes for these mesonic and baryonic flavor symmetries while
still preserving supersymmetry.29 The holographic dual description of this setup should be
given by a magnetically charged supersymmetric black hole which preserves (at least) two
supercharges and is asymptotic to the original AdS4 × X7 background. The near horizon
limit of this black hole should be given by a warped product of the form AdS2×wM9 where

28As usual here we discuss only the Poincaré type supercharges. For a supersymmetric background with
an AdS factor in the metric the number of supercharges is doubled due to the presence of superconformal
supercharges.

29From the point of view of the M2-brane picture this corresponds to wrapping the M2-branes on Σg

which then by the general result in [14] automatically implements the topological twist and fibers the CY4

over the Riemann surface.

– 18 –



J
H
E
P
0
2
(
2
0
1
8
)
0
5
4

the manifold M9 is a fibration of the Sasaki-Einstein space X7 over Σg. Our goal in this
section is to construct explicit examples of such warped AdS2 supersymmetric vacua of
eleven-dimensional supergravity.

A few comments on our strategy to attack this technically challenging problem are in
order. A classification of warped AdS2 solutions of 11d supergravity was given in [18, 19].
The result of these papers is that the manifold M9 should be given as a U(1) bundle over
an eight-dimensional Kähler manifold. The metric on this eight-dimensional space should
obey a certain fourth-order non-linear PDE.30 Finding explicit expressions for such metrics
is a challenging problem to tackle (see however [20, 74, 75] for some examples) so we employ
a different strategy, which closely follows the one in [30] where many explicit AdS3 vacua of
type IIB supergravity with (0, 2) supersymmetry were constructed. To be more concrete we
propose an Ansatz for the metric and four-form flux, G4 of the 11d theory and impose the
vanishing of the gravitino supersymmetry variation as well as the equations of motion and
the Bianchi identity for G4. We show that all solutions within our Ansatz are determined
by a single function satisfying a nonlinear ODE. This nonlinear equation admits quartic
polynomial solutions which lead to a rich class of supergravity solutions. This class contains
the near horizon AdS2 region of the universal solution (3.14) as a special case.

After this brief introduction let us proceed with the construction of our solutions.
The eleven-dimensional space is of the form AdS2 ×w M9 where M9 is a nine-dimensional
manifold given by a seven-dimensional space M7 fibered over a Riemann surface Σg:

M7 ↪→ M9

↓ .

Σg

We will take Σg to be compact (i.e. with no punctures) and have a constant-curvature
metric,31 given by

ds2
Σg

= e2h(x1,x2)
(
dx2

1 + dx2
2

)
, (4.1)

with

h(x1, x2) =


− log

1+x2
1+x2

2
2 g = 0

1
2 log 2π g = 1 .

− log x2 g > 1

(4.2)

The Ansatz for M7 will be modelled on a large class of seven-dimensional Sasaki-Einstein
manifolds found and studied in [72, 77], denoted by Y p,q(B), where B, in our case, is a four-
dimensional Kähler-Einstein manifold that can be either CP1×CP1 or CP2, upon which the
full manifold is constructed. M7 is then spanned by the four coordinates on B and (y, β, ψ),
the latter two being angles. In particular, ψ is the angle associated to the Reeb vector of
M7. Thus, we employ an eleven-dimensional metric Ansatz which has explicit AdS2, Σg

30It is curious to note that such Kähler manifolds have appeared recently in a seemingly unrelated context
in [73].

31In principle, this assumption could be relaxed but the analysis is more involved. In addition the results
of [76] suggest that all the interesting physics in the IR is captured by the constant-curvature metric.
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and B factors as well as two U(1) isometry directions, β and ψ, which are fibered over Σg

and B. With these assumptions we arrive at the following general metric Ansatz:

ds2
11 = f2

1 ds
2
AdS2

+ f2
2 ds

2
Σg

+ f2
3 dy

2 + f2
4 (Dβ)2 + f2

5 ds
2
B + f2

7 (Dψ)2, (4.3)

where fn = fn(y) are functions of the coordinate y only, and

Dβ ≡ dβ + cA+ bAB , Dψ ≡ dψ + aAB + c̃A− f8(y)Dβ , (4.4)

with A = A1(x1, x2) dx1 + A2(x1, x2) dx2 a connection on the Riemann surface and AB a
connection on B, satisfying,

dA = volΣg , dAB = JB , (4.5)

with JB the Kähler form on B. The most general Ansatz for the 4-form compatible with
the symmetries of the problem reads

G4 = f2
1 volAdS2∧

(
f2

2 g1volΣg +f3f4g2dy∧Dβ+f4f7g3Dβ∧Dψ+f3f7g4dy∧Dψ+f2
5 g5JB

)
+f2

2 volΣg∧
(
f3f4i1dy∧Dβ+f2

5 i2JB+f4f7i4Dβ∧Dψ+f3f7i5dy∧Dψ
)

(4.6)

+f2
5JB∧

(
f3f4l1dy∧Dβ+f2

5 l2JB+f4f7l3Dβ∧Dψ+f3f7l4dy∧Dψ
)
,

where gn = gn(y), in = in(y), and ln = ln(y) are functions of the coordinate y only.
Before we describe the solutions, let us discuss the interpretation of various terms in

the Ansatz. Since the Reeb vector ∂ψ corresponds to the U(1)R R-symmetry of the 3d
N = 2 field theory dual, the c̃A term in Dψ thus corresponds to the part of the topological
twist along the three-dimensional superconformal R-symmetry. The isometry ∂β , on the
other hand, is dual to a flavor symmetry and thus the cA term in Dβ corresponds to flavor
flux in the dual field theory (which should be set to zero in the special case of the universal
twist). The parameters a, b specify the structure of the fibration over B. From the black
hole perspective, since the reduction along Dψ and Dβ leads to a graviphoton and a vector
field, respectively, the coefficients c, c̃ are related to the magnetic charges of the black hole
under these two gauge fields. Other charges may arise in four dimensions from the reduction
of the 4-form, i.e., Betti multiplets. These arise from the terms proportional to elements of
H2(M7) and volΣg and correspond to a background for a baryonic symmetry in the dual
picture; we discuss a class of examples of this in section 4.3. It is worth pointing out that
the map between the parameters in our supergravity Ansatz and quantities in the dual
CFT could in general be complicated by a possible mixing between the three-dimensional
superconformal R-symmetry and flavor and baryonic symmetries as one flows to the IR.
Thus, one should take the field theory interpretation of the supergravity parameters with
a healthy dose of skepticism.

Plugging the Ansatz (4.3) and (4.6) into the BPS equations and the equations of motion
and Bianchi identity for the four-form: dG4 = d∗11G4 + 1

2G4∧G4 = 0, one obtains a set of
differential equations, analyzed in detail in appendix C. As discussed there it is convenient
to introduce a new basis of functions Fi(y), related to the original functions fi(y) by (C.37).
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Here we give the final result of our analysis, which gives a metric

ds2
11 =

(
F 2

2F
4
3

F 2
1

)1/3

ds2
AdS2

+

(
F1F

2
2

F 2
3

)1/3

ds2
Σg

+K

(
F1F

2
2F

4
3

)1/3
F5

dy2

+KF5

(
F1

F 4
2F

8
3

)1/3

(Dβ)2 +

(
F1F3

F2

)1/3

ds2
B (4.7)

+ 4ω2
1

(
F 2

2F
4
3

F 2
1

)1/3(
dψ + aAB + c̃A− F6

F2F 2
3

Dβ

)2

and 4-form

G4 = volAdS2∧
[

2F1F2−2κF2F
2
3 +cF ′5

2F1
volΣg +

(
2ω1

F2F
2
3

F1

(
F6

F2F 2
3

)′
+K

)
dy∧Dβ

−2ω1

(
cKF 2

3 +2bKF2F3

)
F1−F2F

2
3F
′
1

F 2
1

dy∧Dψ+
2F1F3−4qF2F

2
3 +bF ′5

2F1
JB

]
(4.8)

+
F2I0

F 2
3

[
volΣg∧(−2dy∧Dβ+JB)+JB∧(dy∧Dβ−JB)

]
,

where ω1 and I0 are integration constants, the functions F2, F3 are linear in y and F1, F6

are given in terms of F2, F3 and the function F5 by:

F1 = − F
′′
5

2K
+ κF 2

3 + 4qF2F3 ,

F2 = cKy + S2 ,

F3 = bKy + S3 ,

F6 =
F ′5 − 4ω2F2F

2
3

4ω1
,

(4.9)

with {S2, S3, ω2,K} integration constants32 and q is related to the Ricci curvature of B by:

q =
RB
8
. (4.10)

The entire class of solutions is thus characterized by the single function F5 which, as shown
in appendix C, satisfies the second-order nonlinear ODE given in (C.55) coming from the
Bianchi identity for G4, which for b 6= 0 reads

1

KF2F 2
3

[
−F ′25 + 2F5

(
F ′′5 − 2K

(
4qF2F3 + κF 2

3

))]
− 4I2

0 (3bcKy + bS2 + 2cS3)

b3KF 2
3

+
16

3
Kqy2 (bκKy + cKqy + 3κS3 + 3qS2) + p0 + p1y = 0 ,

(4.11)

with p0, p1 two more integration constants. Finally, there are some constraints on a, b, c, c̃:

c ω2 + c̃ ω1 =
κ

2
, b ω2 + aω1 = q . (4.12)

32In appendix C.3 we show that actually ω2 can be always set to zero without loss of generality. Further-
more, ω1 and K can be set to convenient non-zero values.
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Thus, the most general solution within our Ansatz is characterized by solutions to the non-
linear second-order ODE (4.11).33 Although we have not found the most general solution,
one can show that the most general polynomial solution is at most quartic, i.e.,

F5(y) =

4∑
n=0

αn y
n . (4.13)

Plugging this into (4.11) leads to a set of algebraic equations for the coefficients αn and the
other integration constants specifying the solution, given in (C.57). Solutions to this set of
algebraic constraints leads to a rich family of local AdS2 solutions. As we discuss next, it
contains the universal solution as a special case, as well as interesting generalizations of it
by the addition of mesonic and baryonic flavor fluxes.

4.1 Universal twist

The universal solution is characterized by the absence of flavor fluxes. To this end we will
set c = I0 = 0. We will also assume b 6= 0, leaving the case b = 0 to the next section,
as this case admits a more general solution. One can show that there are no solutions for
κ = 0, but the values κ = ±1 are allowed by the constraints. We will now discuss the
solution for κ = −1 and discuss the case κ = 1 in section 4.2. Plugging in the polynomial
Ansatz (4.13) for F5 into the Bianchi constraint (4.11) fixes {p0, p1, α1, α2, α3, α4}, leaving
α0 undetermined. There are in fact two solutions to the Bianchi constraint, but only one
obeys the metric positivity constraint F1 > 0. The parameters a, c̃ are fixed by (4.12) to be

a =
q

ω1
, c̃ =

κ

2ω1
.

The dependence of the solution on the parameters ω1, ω2,K and S3 can be removed by
rescaling and shifting y, β and ψ. It is convenient to define S2 ≡ L3/32 and to perform
a rescaling β′ = 2β, ψ′ = (ω1/2)ψ so that now Dβ′ = dβ′ + 2cA + 2bAB, and define the
polynomial

Q2(x) ≡ 3x2 + 2x+ 1 .

The metric (4.7) can then be written as

ds2
11 = L2

[
1

4

(
1

4
ds2

AdS2
+

1

2
ds2

Σg

)
+

3

4

(1− cY p,qy)2

aY p,q − y2Q2(1− cY p,qy)
dy2

+
q2

48

aY p,q − y2Q2(1− cY p,qy)

(1− cY p,qy)2 (Dβ′)2 +
q

4
(1− cY p,qy) ds2

B (4.14)

+

(
dψ′ +

q

2
AB −

1

4
A+

q

4
yDβ′

)2
]
,

where, inspired by the notation in [72], we defined aY p,q to be a constant related to α0 and
cY p,q = −b. This metric has exactly the form of the near horizon limit of the universal
metric in (3.14). The seven-dimensional manifold parametrized by x,B, ψ′, β′ at a fixed

33For b = 0 the ODE follows from the general equation (C.55).
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point on the Riemann surface, coincides with the seven-manifold described in [72].34 The
corresponding 4-form reads

G4 =

(
L

4

)3

volAdS2 ∧
(
3volΣg + q dx ∧Dβ′ + 2q (1− cY p,q)JB

)
. (4.15)

Deformations of this solution with c 6= 0, which we do not analyze in full detail here, should
thus describe the twisted compactification of the corresponding SCFTs with flavor flux.

4.2 AdS2 × S3 × T 6

As mentioned in section 4.1, there is another solution within our Ansatz with b 6= 0, κ = 1

and c = 0, which reads

ds2 = L2

(
ds2

AdS2
+ ds2

S2 +
3

4

x2 dx2

C + x3
+

4

3

C + x3

x2
q2 (dβ′ +AB)2 + x q ds2

B + (dψ′ +A)2

)
,

(4.16)
where x is related to y by a shift and rescaling, β′ = β/b, ψ′ = 2(ω1ψ − qβ′), and C is a
constant. The flux for this solution is given by

G4 = L3 volAdS2 ∧
(
dx ∧ dβ′ + xqJB

)
. (4.17)

For B = CP2 and C = 0, the solution becomes the well-known AdS2×S3× T 6 background
of 11d supergravity. To see this note that the S2 combines with (dψ′+A)2 into an S3, and
(Dβ′)2 combines with ds2

CP2 into an S5. Then, with the coordinate transformation x = ρ2,
we recognize a six-dimensional metric which is simply R6, written as a cone over S5. We
can then periodically identify the coordinates on this R6 to obtain T 6.35 For C 6= 0, instead,
the internal manifold is singular and we thus discard the solution.

4.3 Baryonic fluxes

As mentioned above, in the special case b = 0 there is a more general solution to the
constraints imposed by Bianchi, even while keeping c = 0 (i.e., no mesonic fluxes). Note
that setting b = 0 and using the results in [72] amounts to limiting the discussion to the
Sasaki-Einstein manifolds Q1,1,1 and M1,1,1, and orbifolds thereof. As discussed in detail
below, these solutions are characterized by the presence of 4-form flux through non-trivial
cycles in M9. This, in four dimensions, means that the corresponding black hole is charged
under the Betti multiplets and thus the dual field theory is twisted by baryonic flux, in
addition to R-symmetry flux. These charges may be of electric or magnetic type, depending
on whether the flux is through AdS2 or Σg. Here we analyze the general case in which they
are both present, leaving to the following paragraphs a more detailed presentation of the
purely electric and purely magnetic solutions.36

34In their notation we have Λ = 8, λ = 2q.
35For B = P1 × P1 and C = 0 one obtains a cone over the conifold Y 1,0. The resulting six-dimensional

manifold cannot be made compact and regular.
36Black holes charged under Betti multiplets have been numerically found in [78] in four-dimensional

supergravity in the particular case of the homogeneous manifolds Q1,1,1 and M1,1,1 using the consistent
truncation in [79].
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A general result that follows when we set b = c = 0, is that the functions f1 and f2 are
constant.37 Let us denote these by

f1 ≡ L , f2 ≡
√
uL , (4.18)

with u, L > 0. Using (4.9) and the definitions (C.37) gives the constraint on α2:

F ′′5 = 2K
(
(κ− u)S2

3 + 4qS2S3

)
= 2α2 . (4.19)

On the other hand, the parameters α0 and α1 are not constrained, but we will assume that
α0α2 < 0. Then, the part of the metric involving y and β, namely

K
uL2S2

3

F5
dy2 +KF5

1

uL4S2
3

dβ2 ,

can be recast, via rescaling and shifts of the coordinates y and β, into the metric of a
two-sphere with a certain radius L

√
v:

vL2

(
1

1− y2
dy2 + (1− y2)dβ2

)
.

This choice of coordinates is equivalent to setting

K = vL3, α2 = −S2S
2
3 , α0 = −α2 , α1 = 0 . (4.20)

Combining (4.20) with (4.19), we can determine S3 in terms of the other parameters:

S3 = − 4qS2K

S2 +K (κ− u)
. (4.21)

It is convenient to write I0 = wS2
3 , with w a real parameter. Then, the general solution reads

ds2
11 = L2

(
ds2

AdS2
+ u ds2

Σg
+ v ds2

S2 +
4quv

−u+ v(u− κ)
ds2
B + (dψ + 2q AB + κA+ y dβ)2

)
,

G4 = L3 volAdS2 ∧
(

(u− κ) volΣg + (v − 1) dy ∧ dβ + 2q
u+ v(u+ κ)

−u+ v (u− κ)
JB

)
(4.22)

+ uwL3
[
volΣg ∧ (−2dy ∧Dβ + JB) + JB ∧ (dy ∧Dβ − JB)

]
.

The three parameters u, v, w are not independent, but are constrained by the Bianchi iden-
tity to satisfy:

4q2
(
−3κ2v2 + 2κu(v − 1)v + u2(v − 1)(v + 3)

)
+ 3w2(κv − uv + u)2

(κv − uv + u)4
= 0 . (4.23)

We thus obtain a two-parameter family of deformations of the near-horizon geometry of
the universal black hole associated to either the Q1,1,1 or M1,1,1 3d SCFT, according to the
choice of B. The black hole entropy reads:

SBH =
u volΣgL

2

4G
(4)
N

. (4.24)

37This follows from the constraint (C.55), which implies that F5 is at most a polynomial of degree
two, (4.9) and the definitions (C.37).
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4.3.1 Electric baryonic charges

In this section, we consider a purely electric baryonic flux and therefore set w = 0, to
eliminate any magnetic baryonic fluxes that could arise from the terms proportional to
volΣg in the third line of (4.22). Setting w = 0 in the constraint (4.23) we find that the
resulting metric is acceptable only for κ = −1 and the solution reads:

ds2
11 =L2

(
ds2

AdS2
+uds2

Σg
+vds2

S2 +
4quv

v−u+uv
ds2
B+(dψ+2qAB−A+ydβ)2

)
,

G4 =L3 volAdS2∧
(

(u+1)volΣg +(v−1)dy∧dβ+2q
u−v+uv

v−u+uv
JB

)
.

(4.25)

The corresponding entropy, given by (4.24), reads

SBH = (g− 1)
uπL2

G
(4)
N

. (4.26)

We note that in the special case u = v = 2 the solution reduces to the universal twist of
M1,1,1 or Q1,1,1. The latter was first derived in [22] (see equation (3.25) there). To better
understand the physical interpretation of the deformation consider the reduction of this
eleven-dimensional background to four dimensions. The terms in the 4-form proportional
to H2(M7) give rise to four-dimensional Betti vector multiplets. Since G4 in (4.25) is
proportional to volAdS2 , the black hole is electrically charged under this vector field, as
measured by the flux of ∗11G4 through non-trivial 7-cycles.

Let us take for example Q1,1,1. This space is a fibration of ψ over the product of three
two-spheres, which we denote by S1,S2,S3. The generators of H2(Q1,1,1) are then given by

h1 = volS1 − volS2 , h2 = volS2 − volS3 , (4.27)

since38

volS1 + volS2 + volS3 = d(Dψ)

is trivial. Define now the 7-cycles C1, C2, C3 as the submanifolds obtained by fixing a point
in AdS2 and S1,S2,S3, respectively. Cohomology suggests that the non-trivial 7-cycles on
which we should integrate ∗11G4 are

H1 = C1 − C2 , H2 = C2 − C3 .

Denoting the sphere spanned by (y, β) by S1, it is easy to see that only the Betti multiplet
associated to H1 has a non-vanishing flux,39 due to the presence of JB = volS2 +volS3 in G4:

F1 ≡
∫
H1

∗11G4 = −64π3 (g− 1) ∆ψ L
6 uv(u(v − 1)− v)(u(v − 3) + v)

(u(v − 1) + v)2
, (4.28)

F2 ≡
∫
H2

∗11G4 = 0 ,

38Here by Dψ we mean dψ +AKE6 .
39Since b2(Q1,1,1) = 2 one should expect a more general solution with two electric baryonic fluxes. The

fact that we only see one flux here can be understood as follows. Recall that in our Ansatz (4.3), (4.6) we
have assumed the base B is a Kähler-Einstein manifold. This implies that volS2 and volS3 cannot appear
in an arbitrary combination, but instead are always added so as to give JB. If one relaxes the Einstein
condition on B, the resulting equations are almost identical to the ones presented here and their solutions
allow for both baryonic fluxes to be present at once. In contrast, since b2(M1,1,1) = 1 our Ansatz captures
the most general baryonic solution in that case.
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where ∆ψ is the period of ψ. Since Betti multiplets are dual to baryonic symmetries in the
field theory, for general values of the parameter v > 0 (or u > 0), the solution describes
the twisted compactification with baryonic fluxes. In the special case u = v = 2 one has
F1 = 0 and there is no baryonic flux. Indeed, the 4-form can be written as

G4 = L3 volAdS2 ∧
(
4 volΣg + d (Dψ)

)
,

and only a trivial cocycle of M7 appears.
The solution described here is reminiscent of the AdS3 solutions of type IIB supergravity

presented in section 2.2 of [30] (see also [80] for a five-dimensional perspective on this
solution), describing the twisted compactification of the Klebanov-Witten theory (and its
Zp orbifolds) with magnetic baryonic flux.

4.3.2 Magnetic baryonic charges

Magnetic baryonic charges can be obtained by a non-zero w. For concreteness, we present
the case B = CP1 × CP1 (the CP2 case is analogous) and we analyze the solution with
a purely magnetic baryonic flux and thus impose that (4.28) vanishes. Combining this
constraint with (4.23) determines u and v in terms of w. In contrast to the purely electric
case, there are solutions for all κ = {0,±1}.

For κ = −1 we find

ds2
11 = L2

(
ds2

AdS2
+
(
3w2 + 2

)
ds2

Σg
+

3w2 + 2

3w2 + 1
ds2
S2 +

(
3w2 + 2

)
ds2
B +Dψ2

)
,

G4 = L3 volAdS2 ∧
((

3w2 + 3
)

volΣg +
1

3w2 + 1
dy ∧Dβ +

(
3w2 + 1

)
JB

)
+ L3

(
3w2 + 2

)
w
[
volΣg ∧ (−2dy ∧ dβ + JB) + JB ∧ (dy ∧ dβ − JB)

]
.

(4.29)

The universal solution is recovered for w = 0. For any other value the baryonic charges are
given by the integral of G4 through the non-trivial 4-cycles of M9, whose form is suggested
by (4.27) and schematically reads

H̃1 ≡ Σg × S1 − Σg × S2 , H̃2 ≡ Σg × S2 − Σg × S3 .

The result for the fluxes is

F̃1 ≡
∫
H̃1

G4 = −48 |g− 1|π2 L3
(
3w2 + 2

)
w , (4.30)

F̃2 ≡
∫
H̃2

G4 = 0 .

The entropy reads

SBH = (3w2 + 2) (g− 1)
πL2

G
(4)
N

. (4.31)
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For κ = 1 and |w| > 1, we find

ds2
11 = L2

(
ds2

AdS2
+
w2 + 2

w2 − 1
ds2
S2 + (w2 + 2) ds2

S2 + (w2 + 2) ds2
B +Dψ2

)
,

G4 = L3 volAdS2 ∧
(

3

w2 − 1
volS2 +

3

w2 − 1
dθ1 ∧ dφ1 + (w2 + 1) JB

)
+ w

w2 + 2

w2 − 1
L3 [ volS2 ∧ (−2 dy ∧ dβ + JB) + JB ∧ (dy ∧ dβ − JB)] .

(4.32)

The resulting magnetic flux along H̃1 is

F̃1 = −48π2L3w
w2 + 2

w2 − 1
, (4.33)

and the entropy is given by

SBH =
w2 + 2

w2 − 1

πL2

G
(4)
N

. (4.34)

For the special value w =
√

2 we obtain a solution analogous to the one presented in [22]
(see equation (3.16) there), where the other Betti multiplet was turned on. As discussed in
footnote 39, the absence of the second Betti multiplet is a consequence of our Ansatz.

Finally, for κ = 0 the solution can be expressed in terms of u alone and reads40

ds2
11 = L2

(
ds2

AdS2
+ u ds2

T 2 + 3 ds2
S2 + 3 ds2

B + (dψ +AB + y dβ)2
)
,

G4 = L3 volAdS2 ∧ (u volT 2 + 2 dy ∧ dβ + 2JB)

± uL3 [ volT 2 ∧ (−2 dy ∧Dβ + JB) + JB ∧ (dy ∧Dβ − JB)] .

(4.35)

By fixing u one recovers a solution analogous to the one found in [22] (see equation (2.17)
there). The entropy and baryonic flux are given by

SBH =
uπL2

2G
(4)
N

, F̃1 = −48π2L3 u . (4.36)

4.4 Field theory interpretation

It would be very interesting to reproduce the entropy of the black hole horizons we found
above through a field theory computation. The dual three-dimensional SCFTs for some
specific Y p,q(B) have been studied in [43, 45, 52]. The dual of M1,1,1/Zk = Y 2k,3k(CP2)

is a chiral theory and, as we already mentioned, the large N limit of the three-sphere
partition function as well as the topologically twisted index are not very well understood.
The quiver for Q1,1,1/Zk = Y k,k(CP1 ×CP1) on the other hand is vector-like [45] and thus
we have calculational control over the large N limit of the localization calculations. Any
comparison of the black hole entropy for the near-horizon geometries discussed above with
the field theory would require a proper understanding of the cycles of the internal manifold
and of the quantization of fluxes. The solution with no mesonic flavor and only baryonic

40The constraint (4.23) has two acceptable solutions leading to the two signs in the last line of (4.35).
This choice of sign amounts to the sign of the magnetic baryonic charge.
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magnetic flux presented in section 4.3.2 should be the simplest case study. However, for
reasons that are still elusive, the fugacity and flux parameters associated with baryonic
symmetries seem to disappear in the large N limit of the twisted index, as is evident from
the results in [6, 7]. The same phenomenon has been noticed for the S3 free energy in [40].
These are all very interesting open problems that we leave for future work.

5 Discussion

In this paper we provided overwhelming evidence for the existence of a universal RG flow
across dimensions between partially topologically twisted three-dimensional N = 2 SCFTs
on S1×Σg and one-dimensional quantum mechanical theories with two supercharges. This
flow results in a universal relation between the topologically twisted index and the three-
sphere partition function of the N = 2 SCFT, given by (1.1). If the three-dimensional
SCFT admits a weakly-coupled supergravity dual description this universal RG flow has a
simple holographic description in terms of a supersymmetric black hole solution of minimal
four-dimensional gauged supergravity. This solution can then be embedded into string or
M-theory in infinitely many distinct ways, which distinguish the different features of the
N = 2 SCFTs.

There are a number of interesting open questions that stem from our results. The
most obvious one is to understand in detail the plethora of AdS2 solutions in M-theory
presented in section 4. The natural guess is that many of these solutions correspond to
twisted compactifications of three-dimensional N = 2 SCFTs with background flavor and
baryonic fluxes. The three-dimensional theories should arise from M2-branes probing a CY4

singularity in M-theory. The topological twist should then be realized by wrapping these
branes on Σg and the AdS2 vacua we find should describe the low-energy behavior of this
system upon backreaction. Clearly, these expectations await an explicit confirmation which
hinges on a more detailed understanding of the global properties of the AdS2 backgrounds
in section 4. A particularly puzzling feature is that in supergravity the background flux for
baryonic U(1) symmetries affects the details of the AdS2 vacuum and thus the black hole
entropy. On the other hand, it seems that such baryonic magnetic fluxes do not change the
large N limit of the topologically twisted index. It would be most interesting to resolve
this apparent puzzle.

Another interesting avenue for generalizing our results is to incorporate electric charges
into the supersymmetric black hole solutions we studied. While one can show that there is
no dyonic generalization of the universal twist, it is clear that the more general supergravity
solutions in section 4 should admit dyonic counterparts.41 The entropy of these dyonic
black hole near-horizon geometries can then be accounted for by a generalization of the
topologically twisted index which incorporates both electric and magnetic flavor fluxes.
This was pursued successfully in [5] for supersymetric dyonic black holes asymptotic to
AdS4×S7 which are dual to the ABJM theory on S1×Σg deformed by magnetic fluxes on
Σg and Wilson lines along S1.

41These dyonic solutions should be additional new examples of the type of dyonic black holes studied in
the four-dimensional gauged supergravity literature. See for example [81–84] and reference thereof.
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We have limited the discussion in this work to the large N limit of the topologically
twisted index which, for theories with a holographic dual, is captured by the supergravity
approximation of string or M-theory. It is of great interest to go beyond this limit, both in
the field theory as well as in the gravitational analysis. On the field theory side it is natural
to ask whether some remnant of the universal twist relation in (1.1) survives beyond the
large N approximation. There might be reasons to be cautiously optimistic, given that
similar universal relations were derived in [30, 31] for the conformal anomaly coefficients of
even-dimensional SCFTs related by RG flows across dimensions. On the gravity side the
problem is equally challenging. One has to find subleading (in N) corrections to the entropy
of the universal black hole presented in section 3. Perhaps the methods employed in [85]
can be useful in finding these corrections.42 It is worth noting that a similar question was
addressed successfully in [88] for the subleading corrections to the S3 partition function for
three-dimensional N = 2 theories with an AdS4 dual in M-theory. Resolving this question
for the class of asymptotically AdS4 black holes studied here is bound to teach us important
lessons about holography and the quantum structure of black holes.
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A The large N index for massive IIA theories

The large N limit of the topologically twisted index for three-dimensional N = 2 SCFTs
with massive type IIA holographic duals has been derived in [6]. Here we present some
more details on this construction.43 The Bethe potential V(∆I) is obtained by extremizing
an auxiliary functional V[∆I , ρ(t), v(t)] with respect to the density ρ(t) and the distribution
of eigenvalues u(t) = N1/3(i t+ v(t)) of the matrix model. The functional V[∆I , ρ(t), v(t)]

42Other related work on corrections to black hole entropy beyond the leading order includes [86, 87].
43Some of these results arise from discussions with S. M. Hosseini and N. Mekareeya.
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for a generic Yang-Mills-Chern-Simons theory with bi-fundamentals in the limit N � ka is
constructed as follows. There is a contribution

− ikaN5/3

∫
dt ρ(t) t v(t) +

ka
2
N5/3

∫
dt ρ(t)

(
t2 − v(t)2

)
, (A.1)

for each Chern-Simons coupling ka and a contribution

i g+ (∆I)N
5/3

∫
dt

ρ(t)2

1− iv′(t)
, (A.2)

where g+(u) ≡ u3

6 −
π
2u

2 + π2

3 u, for any bi-fundamental field with chemical potential ∆I .
These formulae are derived under the assumption that 0 ≤ ∆I ≤ 2π. Since the Bethe
equations involve multivalued functions, one must treat this with care. Setting all ka = k,
we find

V[∆I , ρ(t), v(t)] = iN5/3

∫
dt

(
ρ(t)

Gk

2
(−2tv(t)− i(t2 − v(t)2)) +

∑
I

g+(∆I)
ρ(t)2

1− iv′(t)

)
,

(A.3)
where G is the number of gauge groups. It is easy to extremize this functional with respect
to ρ(t) when ∑

I∈a
∆I = 2π , (A.4)

for each term Wa in the superpotential. The distribution of eigenvalues and the Bethe
potential read

ρ(t) =
3µ− 4Gkt2

6
√

3(
∑

I g+(∆I))
, y(t) = − t√

3
, µ =

(
3
√
Gk
∑
I

g+(∆I)

)2/3

,

V = i
313/6

20

(
1− i√

3

)(∑
I

g+(∆I)

)2/3

(Gk)1/3N5/3 .

(A.5)

We can compare the result with the free energy on S3 derived in [40, 54]. Although the set
of rules for constructing V and FS3 seem different, the final result is the same. Indeed we
find again relation (2.6)

− 2i

π
V(∆I) = FS3

(
∆I

π

)
. (A.6)

In order to check this relation, it is important to remember that, although ∆I are param-
eterizing global symmetries, due to (A.4), the quantities ∆I/π behave for all calculational
purposes as R-symmetry parameters. To this end it is convenient to introduce trial central
charges for the parent 4d quiver using the standard formulae [89]

a(∆I/π) =
9

32
TrR3 − 3

32
TrR , c(∆I/π) =

1

32

(
9TrR3 − 5TrR

)
, (A.7)
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where we take a trace over all fermions and we assign R-charge ∆I/π to the I-th chiral
multiplet and R-charge 1 to the gauginos. In the large N limit, for theories with an AdS
dual, we have c = a, and therefore

TrR =

(
G+

∑
I

(
∆I

π
− 1

))
N2 = 0 . (A.8)

Using this it follows that, in the large N limit,∑
I

g+(∆I) =
∑
I

π3

6

[(
∆I

π
− 1

)3

−
(

∆I

π
− 1

)]

=
π3

6

[∑
I

(
∆I

π
− 1

)3

+G

]
=

π3

6N2
TrR3 =

16π3

27N2
a(∆I/π) .

Comparing this result with (3.30) in [54] we finally find

− 2i

π
V(∆I) = FS3

(
∆I

π

)
=

25/331/6π

5

(
1− i√

3

)
a(∆I/π)2/3(NGk)1/3 . (A.9)

The index at large N is obtained by combining (6.9) and (6.10) in [6] and reads44

logZ = −N5/3

(
π2G

3
(1− g) +

∑
I

(nI − 1 + g)g′+(∆I)

)∫
dt

ρ(t)2

1− iv′(t)
. (A.10)

We want now to prove that

logZ = i(1− g)

(
2

π
V (∆I) +

∑
I

[(
nI

1− g
− ∆I

π

)
∂V (∆I)

∂∆I

])
. (A.11)

Proof. First notice that we can consider all the ∆I in (A.11) as independent variables and
impose the constraints

∑
I∈a ∆I = 2π only after differentiation. This is due to the form of

the differential operator in (A.11) and the topological twist constraint
∑

I∈a nI = 2(1− g),
as it is easy to check by an explicit computation. To prove (A.11), we promote the explicit
factors of π appearing in g+ to a formal variable π. Notice that the “on-shell” Bethe
potential V , at large N , is a homogeneous function of g+ and therefore of ∆I and π, i.e.

V(λ∆I , λπ) = λ2 V(∆I ,π) . (A.12)

Hence,

1

π

[
2V(∆I)−

∑
I

∆I
∂V(∆I)

∂∆I

]
=
∂V(∆I ,π)

∂π
= iN5/3

∫
dt
∑
I

(
2

3
π∆I−

1

2
∆2
I

)
ρ(t)2

1−iv′(t)

= iN5/3

∫
dt
∑
I

[
−g′+(∆I)−

π2

3

(
∆I

π
−1

)]
ρ(t)2

1−iv′(t)

= iN5/3

∫
dt

[
−
∑
I

g′+(∆I)+
π2G

3

]
ρ(t)2

1−iv′(t)
, (A.13)

44The introduction of g is straightforward — see section 6 of [8].
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where we used (A.8) and the fact that ∂V/∂ρ(t) = ∂V/∂v(t) = 0 on shell. Similarly,

∑
I

nI
∂V (∆I)

∂∆I
= iN5/3

∫
dt
∑
I

nIg
′
+(∆I)

ρ(t)2

1− iv′(t)
. (A.14)

Multiplying (A.13) by (1−g) and using (A.14) and (A.10) we see that indeed (A.11) holds.

It is always possible to choose a parametrization for the ∆I , subject to the constraint
in (A.4), such that the trial central charge a is a homogeneous function of degree three. In
this case, (A.11) simplifies to

logZ = i
∑
I

nI
∂V (∆I)

∂∆I
= ĉ(NGk)1/3

∑
I

nI
∂a(∆I/π)2/3

∂∆I
, (A.15)

where we defined ĉ ≡ −22/331/6π2

5 (1 − i/
√

3). For example, for the Chern-Simons theory
in [40], with three adjoints Φi and superpotentialW = Φ1[Φ2,Φ3], with

∑
I ∆I = 2π we find

a(∆I/π) =
27N2

32π3
∆1∆2∆3 . (A.16)

Similarly, for a U(N) × U(N) theory with equal Chern-Simons couplings k based on
the conifold quiver with superpotential W = A1B1A2B2 − A1B2A2B1 and the constraint∑4

I=1 ∆I = 2π we find

a(∆I/π) =
27N2

32π3

∑
I<J<K

∆I∆J∆K . (A.17)

The previous derivation is based on the assumption (A.4). In principle, it is possible
that there exist other extrema of V in regions where

∑
I∈a ∆I = 2πn with n 6= 1, and they

might contribute to the index. For example, for the quiver in [53], since 0 ≤ ∆I ≤ 2π we
can have ∆1 +∆2 +∆3 = 0, 2π, 4π, 6π. It is easy to see that the cases 0 and 6π give singular
solutions for ρ(t) and 4π is related to 2π by the redefinition ∆̂i = 2π−∆I . We have checked
in many models that, for the case of the universal twist, where the fluxes are proportional
to the exact R-charges, the other solutions are singular or related to

∑
I∈a ∆I = 2π by some

discrete symmetry. However, we have no general proof of this fact. In general, one must
alway check whether there are other saddle points for different values of the sum

∑
I∈a ∆I .

For those other saddle points, the index theorem (A.11) does not hold and one needs to
perform an explicit computation to check whether they contribute or not.
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B Uplift of universal solution to massive IIA

In this appendix, we provide the details of the uplift of the universal solution (3.2) to
massive IIA supergravity using the formulae of [64–66]. The metric and dilaton read

dŝ2
10 = e

2φ−ϕ
8 X

1
4 ∆

1
2
1 ∆

1
8
2

(
d̃s

2

4 + g−2eϕ−2φX−1dα2

+ g−2 sin2(α)
(
∆−1

1 ds2
CP2 +X−1∆−1

2 η2
))

,

eφ̂ = e
1
4

(6φ+4ϕ)X−1/2∆−1
1 ∆

3/4
2 ,

X ≡ e2ϕχ2 + 1 ,

∆1 ≡ eϕ sin2(α) + cos2(α)
(
e2ϕχ2 + 1

)
e2φ−ϕ ,

∆2 ≡ eϕ sin2(α) + cos2(α)e2φ−ϕ ,

(B.1)

where we write d̃s
2

4 for the 4d metric, as it will turn out to be related by a rescaling to
ds2

4 from section 3 and ranges of the angles used is 0 ≤ ψ ≤ 2π, 0 ≤ α ≤ π. Furthermore,
η = dψ + σ + gA1 and the standard Einstein metric on CP2 is given by

ds2
CP2 = dµ2 +

sin2 µ

4

(
σ2

1 + σ2
2 + cos2 µσ2

3

)
,

σ1 ≡ cosα3dα1 + sinα1 sinα3dα2 ,

σ2 ≡ sinα3dα1 − sinα1 cosα3dα2 ,

σ3 ≡ dα3 + cosα1dα2 ,

σ ≡ sin2 µ

2
σ3 , J =

1

2
dσ ,

(B.2)

where J is the Kähler form on CP2, normalized such that
∫
CP2 J ∧ J = 2 volCP2 = π2.

Since we are interested in solutions that are asymptotic to the AdS4 vacuum of the
theory with N = 2 supersymmetry we set the scalars to (see equation (7) in [53] or table 3
in [66]):

χ = −1

2

(
m

g

) 1
3

, e−ϕ =

√
3

2

(
m

g

) 1
3

, ζ = ζ̃ = 0 , e−φ =
1√
2

(
m

g

) 1
3

. (B.3)

We discuss the scalar a below. For the solution of interest, the 4d metric and connection read

d̃s
2

4 =
m1/3

2
√

3g7/3
ds2

4 , A1 =
1

3g

dx1

x2
. (B.4)

B.1 Determining the fluxes

Here we show how to obtain the uplifted fluxes (3.25). The massive IIA field strengths
F̂2, Ĥ3, F̂4 are given in terms of their potentials by (see, e.g., equation (A.4) in [64])

F̂(2) = dÂ(1) +mB̂(2) ,

Ĥ(3) = dB̂(2) ,

F̂(4) = dÂ(3) + Â(1) ∧ dB̂(2) +
1

2
mB̂(2) ∧ B̂(2) .

(B.5)
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The uplifted potentials Â(1), B̂(2), Â(3) are given in terms of SU(3)-invariant fields in equa-
tion (2.6) of [65]. Plugging these into (B.5), together with the values for the scalar
fields (B.3), gives

F̂2 =− sin(α)Da∧dα
g

+
3sin(α)

(
m
g

)2/3 (
2sin2(α)+cos2(α)

)
η∧dα

2g
(
2sin2(α)+3cos2(α)

)2 −H0
(2) cos(α)

+
H1

(2) sin2(α)cos(α)
(

m
g

)2/3
2
(
2sin2(α)+3cos2(α)

) − J sin2(α)cos(α)
(

m
g

)2/3
g
(
sin2(α)+2cos2(α)

)(
2sin2(α)+3cos2(α)

) (B.6)

Ĥ3 =
sin(α)

(
m
g

)2/3
dα∧H1

(2)

2m
+

2sin3(α)
(

m
g

)2/3
dα∧J

gm
(
sin2(α)+2cos2(α)

)2 +
sin(α)dα∧H̃(2)0

g
−H0

(3) cos(α) (B.7)

F̂4 =
asin(α)cos(α)dα∧H0

(3)

g
+

sin3(α)cos(α)
(

m
g

)2/3
Da∧dα∧J

g2m
(
sin2(α)+2cos2(α)

)
−

sin(α)cos(α)
(

m
g

)2/3
η∧dα∧H0

(2)

2gm
+

sin3(α)cos(α)
(

m
g

)1/3
η∧dα∧H1

(2)

4g2
(
2sin2(α)+3cos2(α)

)
−

3sin3(α)cos(α)
(

m
g

)1/3 (
4sin2(α)+5cos2(α)

)
η∧dα∧J

2g3
(
sin2(α)+2cos2(α)

)(
2sin2(α)+3cos2(α)

)
+

sin3(α)cos(α)
(

m
g

)2/3
η∧dα∧H̃(2)0

2g2
(
2sin2(α)+3cos2(α)

) −
sin(α)cos(α)η∧dα∧H̃(2)1

3g2

+
sin(α)cos(α)dα∧H(3)1

g
+

sin2(α)cos2(α)
(

m
g

)2/3
H0

(2)∧J

gm
(
sin2(α)+2cos2(α)

) +
sin4(α)

(
m
g

)1/3
H1

(2)∧J

2g2
(
sin2(α)+2cos2(α)

)
+

sin4(α)
(

m
g

)1/3
J∧J

(
2sin2(α)+5cos2(α)

)
2g3
(
sin2(α)+2cos2(α)

)2 +
sin2(α)J∧H̃(2)1

3g2

−
sin2(α)cos2(α)

(
m
g

)2/3
η∧H0

(3)

2g
(
2sin2(α)+3cos2(α)

) +
sin2(α)η∧H(3)2

3g
+H0

(4) cos2(α)+H1
(4) sin2(α) ,

(B.8)

where we replaced exterior derivatives of the invariant potentials A0, A1, Ã0, Ã1, B0, B1,
B2, C0, C1 by their field strengths, defined as,

H0
(2) = dA0+mB0 , H1

(2) = dA1 , (B.9)

H̃(2)0 = dÃ0+gB0 , H̃(2)1 = dÃ1−2gB2 , (B.10)

H0
(3) = dB0 , H(3)2 = dB2 , (B.11)

H0
(4) = dC0+H0

(2)∧B
0− 1

2
mB0∧B0 , H1

(4) = dC1− 1

3
H1

(2)∧B2 , (B.12)

H(3)1 = dB1−gA0∧B0+mÃ0∧B0+2g(C1−C0)

+
1

2

(
A0∧dÃ0+Ã0∧dA0− 1

3
A1∧dÃ1−

1

3
Ã1∧dA1

)
.

(B.13)
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The gauge potential A1, and corresponding field strength H1
(2), are identified with the

graviphoton A, and field strength F , of section 3 up to a normalization, provided in (B.4).
To fully determine the uplifted fluxes (B.6)–(B.8) we must determine the remaining SU(3)-
invariant forms H0

(2), H̃(2)0, H̃(2)1, H
0
(3), H(3)1, H(3)2, H

0
(4), H

1
(4) in terms of the data of the

minimal supergravity. A naive guess would be to set these to zero to obtain the minimal
theory, but this is inconsistent with the duality relations of [66]. To determine the consistent
result we note that setting

Da ≡ da+ gA0 −mÃ0 = 0 (B.14)

is consistent with the equations of motion of the Lagrangian (3.7) in [66]. Taking an exterior
derivative of this equation implies g dA0 = mdÃ0 and from the definitions (B.9) and (B.10),
we find

gH0
(2) = mH̃(2)0 . (B.15)

Then, using (B.14) and (B.15) in the duality relations (3.17), (3.18), (3.19) in [66], we obtain

H̃(2)0 = −1

2

( g
m

)1/3
(H1

(2) −
√

3 ∗4 H1
(2)) , H̃(2)1 = −3

2

(
m

g

)1/3 (
H1

(2) +
√

3 ∗4 H1
(2)

)
,

H0
(3) = H(3)1 = H(3)2 = 0 , H0

(4) = H1
(4) =

vol4√
3g3

(
m

g

)1/3

. (B.16)

We see from here that it would have been inconsistent to set the fields H0
(2), H̃(2)0, H̃(2)1,

H0
(4), H

1
(4) to zero since they are related to vol4 and H1

(2) by the duality relations. Finally,
plugging (B.15) and (B.16) into the massive IIA field strengths (B.6) and (B.7) and (B.8)
we obtain the result presented in (3.25). To minimize the possibility of mistakes introduced
during this unwieldy uplifting procedure we have checked explicitly that the uplifted mas-
sive IIA black hole background is a solution of the ten-dimensional equations of motion.
We now proceed to show that it preserves two supercharges.

B.2 Proving supersymmetry

Here we give the details establishing supersymmetry of the black hole solution (3.23), (3.25)
in massive IIA supergravity. It is useful to define the following basis of vielbeins

e1 = eλL

(
ρ− 1

2ρ

)
dt , e2 = eλL

(
ρ− 1

2ρ

)−1

dρ ,

e3 = eλL
ρdx1

x2
, e4 = eλL

ρdx2

x2
,

e5 = ω sin(α)∆
−1/2
1 dµ ,

e6 = ω sin(α)∆
−1/2
1

sinµ

2
σ1 ,

e7 = ω sin(α)∆
−1/2
1

sinµ

2
σ2 ,

e8 = ω sin(α)∆
−1/2
1

sinµ cosµ

2
σ3 ,

e9 = ω e
1
2

(ϕ−2φ)X−1/2dα ,

e10 = ω sin(α)X−1/2∆
−1/2
2 η ,

(B.17)
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where

e2λ ≡ (cos(2α) + 3)1/2(cos(2α) + 5)1/8 , L2 ≡ 1

3
2−5/8g−25/12m1/12 ,

ω0 ≡
21/231/4g1/6

m1/6
, ω ≡ eλLω0 .

(B.18)

In our conventions Γ11 = −Γ12345678910.
The general supersymmetry variations of massive IIA are written in (3.37). Using

the basis (B.17) and plugging in the massive IIA forms (3.25) we obtain a series of dif-
ferential equations for ε. Assuming that the spinor is independent of the coordinates
t, x1, x2, µ, α1, α2, α3 leads to a series of algebraic equations along these directions. It is
useful to take linear combinations of (3.37), such as

Γ1δψ1 − Γ2δψ2 = N0

√
3Γ2

2ρ2

(
1 + 2ρ2 + 2ρ

(
1− 2ρ2

)
∂ρ
)
ε , (B.19)

where N−1
0 ≡ 211/16 4

√
cos(2α) + 3 16

√
cos(2α) + 5 24

√
m
g25 . The above equation is solved by

taking the spinor be proportional to
√
ρ− 1

2ρ . We continue with

Γ3δψ3 − Γ4δψ4 = − 2N0√
3ρ

Γ3

(
3

2
Γ34 + ∂ψ

)
ε , (B.20)

which is solved by the ψ-dependence

ε ∝ e−
3
2

Γ34ψ . (B.21)

Using this we find

Γ5δψ5 − Γ8δψ8 ∝
(
Γ678(3− cos(2µ)) + 2Γ5 cos(2µ) + 6Γ348 sin2(µ)

)
ε . (B.22)

This is solved by imposing ε to be in the kernel of the following two projectors

Π1 ≡
1

2

(
1− Γ5678

)
, Π2 ≡

1

2

(
1 + Γ3467

)
. (B.23)

Using these projectors to replace Γ34 and Γ58 by Γ67 we can write

δλ

2
√

2
− Γ5δψ5 = N0

(
− 1 +

2
√

3Γ1267

cos(2α) + 5
+

Γ9(22 sin(2α) + sin(4α)− 96 cot(α))√
2(16 cos(2α) + cos(4α) + 31)

+
4Γ1210 sin(α)

(cos(2α) + 3)
√

cos(2α) + 5
−
√

3Γ6710(cos(2α) + 3) csc(α)

2
√

cos(2α) + 5

)
ε .

(B.24)

This equation can be interpreted as imposing a further projection condition (one can check
that the combination on the right hand side of (B.24) indeed squares to itself as a projector
should). Now we can use the results so far to replace the Γ34,Γ58,Γ9 gamma matrices.
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Doing so, we see that all variations vanish, except for δψ1,2,3,4,9. The following combination
is useful(

Γ2(cos(2α)+5)+2
√

3Γ167
)(

Γ1δψ1+Γ3δψ3

)
=N0

(
4
√

3Γ6710 sin(α)
√

cos(2α)+5

+12Γ167+2
√

3Γ2(cos(2α)+5)−6(cos(2α)+3)
)
ε .

(B.25)

The two equations (B.24) and (B.25) can be solved by imposing ε to be in the kernel of the
following two projectors:

Π̂3 ≡
1

2

(
1− 2

cos(2α) + 3
Γ134 +

2
√

3 cos2(α)

cos(2α) + 3
Γ2 −

√
2 sin(2α)

cos(2α) + 3
Γ9

)
,

Π̂4 ≡
1

2

(
1−

( √
6 cos(α)√

cos(2α) + 5
Γ9 +

2 sin(α)√
cos(2α) + 5

Γ2

)
Γ6710

)
.

(B.26)

The reason for the notation with the “hat” in these two projectors will be made clear
below. Together with (B.23), we have now imposed four projectors, leaving 32 × 2−4 = 2

supercharges. We note the projectors (B.26) can be rewritten, inspired by the discussion
in [70, 71], in a more insightful way as

Π̂3 =
1

2

(
1 + cos(θ2)Γ134 + sin(θ2)

(
cos(θ1)Γ2 + sin(θ1)Γ9

))
= R(θ1, θ2)Π3R−1 (θ1, θ2) ,

Π̂4 =
1

2

(
1−

(
cos(θ1)Γ2 − sin(θ1)Γ9

)
Γ6710

)
= R(θ1, θ2)Π4R−1(θ1, θ2) ,

(B.27)

where Π3,Π4 are the standard projectors

Π3 ≡
1

2

(
1 + Γ134

)
,

Π4 ≡
1

2

(
1 + Γ67910

)
,

(B.28)

and R(θ1, θ2) is a rotation operator defined by

R(θ1, θ2) ≡ R29(θ1)R1234(θ2) ,

R29(θ1) ≡
(
cos (θ1/2)− sin (θ1/2) Γ29

)
,

R1234(θ2) ≡
(
cos (θ2/2)− sin (θ2/2) Γ1234

)
,

with the “angles” θ1 = θ1(α), θ2 = θ2(α) defined as the following functions of α

cos(θ1/2)≡

√√
cos(2α)+5−

√
6cos(α)

2
√

cos(2α)+5
, sin(θ1/2)≡

√√
6cos(α)+

√
cos(2α)+5

2
√

cos(2α)+5
,

(B.29)

cos(θ2/2)≡ cos(α)√
cos(2α)+3

, sin(θ2/2)≡− 1√
2

√
cos(2α)+5

cos(2α)+3
. (B.30)
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The spinor can thus be written as

ε = R(θ1, θ2)ε̃ , (B.31)

where ε̃ is a spinor in the kernel of the unrotated projectors Π1,Π2,Π3,Π4. The only equa-
tion remaining at this point is δψ9 = 0, which can be solved by taking ε̃ to be proportional
to the function eλ/2 defined in (B.18).

We thus find that our massive type IIA black hole solution is indeed supersymmetric,
with the following explicit Killing spinor

ε =

√
ρ− 1

2ρ
eλ/2e

3
2

Γ67ψR(θ1, θ2)η , (B.32)

where η is a constant spinor in the kernel of the four projectors Π1,Π2,Π3,Π4 and hence
there are a total of 2 supercharges preserved. Note that the factor

√
ρ− 1

2ρe
λ/2 is precisely

proportional to |gtt|1/4, where gtt is the time-time component of the ten-dimensional metric
in (B.1).

C Details on the construction of the 11D solutions

In this appendix we give the details of the derivation of the family of solutions of eleven
dimensional supergravity described in section 4. Before starting, it is convenient to choose
an elfbein:

e0 =
f1

z
dt , e1 =

f1

z
dz ,

e2 = f2e
hdx1 , e3 = f2e

hdx2 ,

e4 = f3dy , e5 = f4Dβ , (C.1)

e6 = f5E
1 , e7 = f5E

2 , e8 = f5E
3 , e9 = f5E

4 ,

e10 = f7Dψ ,

where (t, z) are the Poincaré coordinates for AdS2 and E1,2,3,4 is a vierbein on the Kähler
manifold B such that

JB = E1 ∧ E2 + E3 ∧ E4 . (C.2)

We can thus rewrite the 4-form as

G4 = e0 ∧ e1 ∧
(
g1 e

2 ∧ e3 + g2 e
4 ∧ e5 + g3 e

5 ∧ e10 + g4 e
4 ∧ e10 + g5

(
e6 ∧ e7 + e8 ∧ e9

))
+ e2 ∧ e3 ∧

(
i1 e

4 ∧ e5 + i2 (e6 ∧ e7 + e8 ∧ e9) + i4 e
5 ∧ e10 + i5 e

4 ∧ e10
)

+
(
e6 ∧ e7 + e8 ∧ e9

)
∧
(
l1 e

4 ∧ e5 + l2
(
e6 ∧ e7 + e8 ∧ e9

)
+ l3 e

5 ∧ e10 + l4 e
4 ∧ e10

)
.

C.1 BPS equations

Imposing the vanishing of the gravitino variations in eleven-dimensional supergravity gives
the following Killing spinor equation:

δψµ = ∇µε+
G4
αβγδ

288

(
Γ αβγδ
µ − 8δαµΓβγδ

)
ε = 0 . (C.3)
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Motivated by the symmetry of the problem and the underlying M2-brane interpretation we
impose the following projection conditions on ε:

Γ23ε = Γ45ε = Γ67ε = Γ89ε = Γ1 10ε = iε . (C.4)

Equation (C.3) leads to the system of differential equations:45

f ′1
2f1f3

+
g4

6
= 0 , (C.5)

f ′2
f2f3

− g4

6
− 1

2

cf4

f2
2

= 0 , (C.6)

f ′5
f5f3

− g4

6
− f4b

2f2
5

= 0 , (C.7)

1

2

f ′7
f7f3

+
g4

6
= 0 , (C.8)

− 3

f1
+ g1 + g2 + 2g5 = 0 , (C.9)

1

4

f7 (c̃− f8c)

f2
2

− −2g1 + g2 + 2g5

12
= 0 , (C.10)

−1

4

f7f
′
8

f3f4
− g1 − 2g2 + 2g5

12
= 0 , (C.11)

1

4

f7 (a− f8b)

f2
5

− g1 + g2 − g5

12
= 0 , (C.12)

some constraints on the in and ln coefficients,

i1 = −2i2 , l1 = i2 , l2 = −i2 , i5 = l4 = 0 , (C.13)

and a set of PDEs for ε:

∂tε= 0 , (C.14)

z∂zε+
1

2
ε= 0 , (C.15)

1

f3
∂yε+

g4

6
ε= 0 , (C.16)

∂βε+f8∂ψε−
i

2
f4

(
f ′4
f3f4

− g4

6
+
cf4

2f2
2

+
f4b

f2
5

)
ε= 0 , (C.17)(

∂x1−cA1∂β−c̃A1∂ψ±
i

2
∂x2h

)
ε= 0 , (C.18)(

∂x2−cA2∂β−c̃A2∂ψ∓
i

2
∂x1h

)
ε= 0 , (C.19)(

∇iB−AiB (a∂ψ+b∂β)
)
ε= 0 , (C.20)

4

f7
∂ψε−i

1

4

(
f7 (c̃−f8c)

f2
2

+2
f7 (a−f8b)

f2
5

− f7f
′
8

f3f4
+
g1+g2+2g5

3

)
ε= 0 , (C.21)

45Here it is convenient to anticipate one of results from the Bianchi identity for G4, namely g3, i4, l3 = 0.
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where ∇iB denotes the covariant derivative on B and i = 1, 2, 3, 4 spans its four real
coordinates.

Let us now solve for the dependence of ε on the various coordinates. From (C.14) we
deduce that it is constant in time. We also assume that ∂x1ε = ∂x2ε = 0 and that ε does not
depend on the coordinates of B, checking a posteriori the consistency of such assumption.

The coefficients f1 and f7 are related by (C.5) and (C.8), which can be combined to
obtain

f ′1
f1

=
f ′7
f7
, (C.22)

and thus
f7 = 2ω1f1 , (C.23)

with ω1 an integration constant.
Then, adding (C.10), (C.11) and (C.12) and using (C.9) and (C.22), (C.21) leads to

∂ψε = iω1ε . (C.24)

Then, from equations (C.18) and (C.19) we find

(−ic∂βε+ c̃ω1ε) dA = −1

2

(
∂2
x1
h+ ∂2

x2
h
)
dx1 ∧ dx2 .

Using the constant curvature metric (4.2), the combination on the r.h.s. of this equation is
constant and proportional to κ, the normalized curvature of the Riemann surface Σg,

κ =


1 for g = 0

0 for g = 1

−1 for g > 1

.

Thus, we find the dependence of ε on β is given by

∂βε ≡ iω2 , (C.25)

with ω2 a constant satisfying
cω2 + c̃ω1 =

κ

2
. (C.26)

One can think of this algebraic constraint as the supergravity implementation of the topo-
logical twist condition in the dual 3d N = 2 SCFT.

Equations (C.16) and (C.5) allow us to determine also the dependence on y:

∂yε =
f ′1
2f1

ε =
d
(√
f1

)
dy

ε , (C.27)

while (C.15) the one on z:

ε ∝ 1√
z
.

Combining this result with (C.24), (C.25) and (C.27) we see that

ε = ei(ω2β+ω1ψ)

√
f1

z
ε0 , (C.28)

with ε0 a constant spinor.
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Let us now turn to condition (C.20). Referring to (C.1) and (C.2) for the indices of the
coordinates on B, for both CP1 × CP1 and CP2, equipped with the standard Fubini-Study
metric, we have that

ω13
B = ω24

B = ω23
B = ω41

B , (C.29)

where ωB is the spin connection in B. Therefore equation (C.20):

1

4
ωjkB Γ(j+5)(k+5)ε = iAB (aω1 + bω2) ε (C.30)

can be rewritten by (C.29) as

1

2

(
ω12
B + ω34

B
)

= AB (aω1 + bω2) ,

since other combinations, such as(
ω31
B Γ86 + ω24

B Γ79
)
ε =

(
ω31
B + ω24

B
)

Γ78ε = 0 ,

vanish identically. On the other hand, the fact that B is Einstein, implies that its Ricci
2-form is proportional to its Kähler form by a constant 2q:

1

2

(
dω i
B j + ωiB k ∧ ω k

B j

)
J j
B i = 2qJB . (C.31)

We notice now that when one computes the only non-vanishing contributions to (C.31) from
the Riemann 2-form, namely the components (1, 2) and (3, 4), the quadratic part vanishes
because of (C.29). For instance one finds

ω1
B 3 ∧ ω32

B + ω1
B 4 ∧ ω42

B = 0 .

Therefore, taking the differential in (C.30), we can replace the first member with the second
of (C.31) and, by (4.5), arrive at the following constraint:

bω2 + aω1 = q . (C.32)

From equations (C.9), (C.10), (C.11), (C.12) and (C.5), we can express the functions gi in
terms of the metric funtions:

g1 = −f7 (c̃− f8c)

f2
2

+
1

f1
,

g2 =
f7f
′
8

f3f4
+

1

f1
,

g4 = −3
f ′1
f1f3

,

g5 = −f7 (a− f8b)

f2
5

+
1

f1
,

(C.33)

and find the constraint

f7 (c̃− f8c)

f2
2

+ 2
f7 (a− f8b)

f2
5

− f7f
′
8

f3f4
=

1

f1
, (C.34)
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which then can be solved by using (C.23) to eliminate f7. This results in the relation,

−f2
2 f

4
5 + 2ω1 (c̃− f8c) f

2
1 f

4
5 + 4ω1 (a− f8b) f

2
2 f

2
1 f

2
5 − 2ω1

K f
3
1 f

2
2 f

4
5 f
′
8

f2
2 f

4
5 f

2
1

= 0 . (C.35)

We note that f3 is in fact redundant, as it can be set to an arbitrary function by redefinitions
of the coordinate y. A convenient choice is such that

f1(y)f3(y)f4(y) = K , (C.36)

with K an arbitrary constant; we consider this as an equation determining f4. Taking
also (C.23) into account, we are left with f1,2,3,5,8 as five independent functions. It is
convenient to trade these for F1,2,3,5,6, defined by:

F1 ≡ f2
2 f

4
5 , F2 ≡ f1f

2
2 , F3 ≡ f1f

2
5 , F5 ≡ K

f2
1 f

2
2 f

4
5

f2
3

, F6 ≡ f8f
3
1 f

2
2 f

4
5 . (C.37)

In terms of this new basis, equations (C.6) and (C.7) simplify to

F ′2 = cK, F ′3 = bK , (C.38)

and thus

F2 = cK y + S2, F3 = bK y + S3 , (C.39)

with S2 and S3 integration constants.
Furthermore, the complicated equation (C.35) becomes

F1 = 2ω1

(
−F

′
6

K
+ c̃F 2

3 + 2aF2F3

)
. (C.40)

Finally, F6 can be found through (C.17), which, after using (C.5), (C.25), (C.24) and (C.36),
reads

F6 =
F ′5 − 4ω2F2F

2
3

4ω1
. (C.41)

Thus, at this point the solution is completely controlled by the single function F5, which is
determined by the Bianchi identity for G4, as we discuss next.

C.2 4-form equations

The equation of motion for the 4-form,

d ∗11 G4 = 0 ,
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implies the following relations:

g4i2f
2
1 f7f3f

4
5 +
(
i2f7f

2
1 f

4
5

)′
+bi2f3f4f7f

2
1 f

2
5 = 0 , (C.42)(

i2f7f
2
1 f

2
5 f

2
2

)′−ci2f3f4f7f
2
1 f

2
5 +2bi2f3f4f

2
2 f7f

2
1 +g4i2f

2
1 f7f3f

2
2 f

2
5 = 0 , (C.43)

i2f7f
2
1 f

2
2 f

2
5 (a−bf8)−i2f7f

2
1 f

4
5 (c̃−cf8)+(g1i2−g5i2)f2

1 f
2
2 f

4
5 = 0 , (C.44)

i2f
′
8f7f

2
1 f

2
5 +i2f3f4f7f

2
1 f

2
5 (a−bf8)−(g2i2−g5i2)f2

1 f3f4f
4
5 = 0 , (C.45)

2i2f3f4f
2
2 f7f

2
1 (a−bf8)+i2f

′
8f7f

2
1 f

2
5 f

2
2−i2f3f4f7f

2
1 f

2
5 (c̃−cf8)

−(g2i2−2g5i2+g1i2)f2
1 f

2
2 f3f4f

2
5 = 0 , (C.46)(

g2f
2
2 f

4
5 f7

)′−cg1f3f4f
2
5 f

2
6 f7−2bg5f3f4f

2
2 f

2
5 f7 = 0 , (C.47)

c̃g1f3f4f
4
5 f7−

(
f8g2f

2
2 f

4
5 f7

)′
+2ag5f3f4f

2
5 f

2
2 f7−

(
g4f

2
2 f4f

4
5

)′−6f2
2 f3f4f

4
5 i

2
2 = 0 . (C.48)

It turns out that after imposing the BPS equations studied above, all these equations
are satisfied automatically. The first two are actually equivalent to the conditions (C.51)
and (C.52) implied by the Bianchi identity that we examine later, after inserting (C.5)
and (C.23). Equations (C.44), (C.45), (C.46) are identically satisfied when we plug (C.33)
and (C.13) in. The same happens to (C.47) and (C.48) using (C.36) and (C.38).

On the other hand, the Bianchi identity,

dG4 = 0 ,

provides a wealth of information: it implies, as mentioned before, that g3 = i4 = l3 = 0

and the four additional equations

−bf2
1 f3f4g2−f2

1 f3f7g4 (a−bf8)+
(
f2

1 f
2
5 g5

)′
= 0 , (C.49)(

f2
1 f

2
2 g1

)′−c(f2
1 f3f4g2

)
−f2

1 f3f7g4 (c̃−cf8) = 0 , (C.50)

−bf2
2 f3f4i1−cf2

5 f3f4l1+
(
f2

2 f
2
5 i2
)′−f2

2 f3f7i5 (a−bf8)−f2
5 f3f7l4 (c̃−cf8) = 0 , (C.51)

−bf2
5 f3f4l1+

(
f4

5 l2
)′−f2

5 f3f7l4 (a−bf8) = 0 . (C.52)

While (C.50) is satisfied automatically, the value of i2, the last unknown coefficient ap-
pearing in G4 we are left with, is determined by (C.51) and (C.52). Using (C.38) and
defining

I ≡ i2
f2

1

,

we arrive at

3bKI + F3I ′ = 0 , (C.53)

which is solved by

I =
I0

F 3
3

, (C.54)

for some constant I0.
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Thus, the only remaining equation is (C.49), which is a fourth-order nonlinear ODE
for F5. Remarkably, this equation can be integrated twice into the second-order ODE:46

1

KF2F 2
3

[
−F ′25 + 2F5

(
F ′′5 − 2K

(
4qF2F3 + κF 2

3

))]
−∆ + P3 = 0 , (C.55)

where ∆(y) and P3(y) satisfy the simple differential equations:

∆′′ = 24KF2
I2

0

F 4
3

, P ′′3 = 32Kq (κF3 + qF2) .

Using (C.39) and for b 6= 0 one may write (C.55) as (4.11).
Although we have not found the most general solution to (C.55), one can show that

the most general polynomial solution is at most quartic, i.e.,

F5(y) =
4∑

n=0

αn y
n , (C.56)

where αn are real constants. Plugging this into (C.55) leads to a set of algebraic equations
for the coefficients αn and the other parameters specifying the solution:

6α2
4−3α4bK

3(bκ+4cq)+4b2cK6q(bκ+cq) = 0 ,

+2K2
(
2bK3q

(
b2κS2+5bcκS3+4bcqS2+2c2qS3

)
−3α4(bκS3+2bqS2+2cqS3)

)
+3α3

(
3α4−bK3(bκ+4cq)

)
= 0 ,

12

K
α2

(
3α4−bK3(bκ+4cq)

)
+9α2

3−24α3K(bκS3+2bqS2+2cqS3)

+4S3

(
4c2K3q2S3−3α4(κS3+4qS2)

)
+b2K3(3cp1+16qS2(5κS3+3qS2))

+16bcK3qS3(7κS3+8qS2) = 0 ,

4α1

(
4α4−bK3(bκ+4cq)

)
+4α2

(
α3−2K2(bκS3+2bqS2+2cqS3)

)
−4α3κKS

2
3−16α3KqS3S2+b2cK4p0+b2K3p1S2+2bcK3p1S3

+
112

3
bκK3qS2

3S2+32bK3q2S3S
2
2 +16cκK3qS3

3 +
64

3
cK3q2S2

3S2 = 0 ,

− 4

K
α0b

2
(
bK3(bκ+4cq)−6α4

)
− 2

K
α1b

2
(
4K2(bκS3+2bqS2+2cqS3)−3α3

)
+b2S3(KS3(cp1+16qS2(κS3+qS2))−4α2(κS3+4qS2))

+b4K2p0S2+2b3KS3(cKp0+p1S2)−12c2KI2
0 = 0 ,

4α0b
3(α2−KS3(κS3+4qS2))+S2

(
b3Kp0S

2
3−4bS2I2

0−8cS3I2
0

)
−α2

1b
3 = 0 ,

K
(
−4α1b

3S3(κS3+4qS2)+2b4Kp0S3S2+b3S2
3(cKp0+p1S2)−16bcS2I2

0−8c2S3I2
0

)
−4α0b

3
(
2K2(bκS3+2bqS2+2cqS3)−3α3

)
= 0 .

(C.57)

46The same technical simplification happens in the analysis of supersymmetric AdS3 solution of type IIB
supergravity in [30].
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All the solutions discussed in this paper correspond to different solutions to this set of
algebraic constraints.

We note that assuming b 6= 0 the sixth equation above becomes

cKI2
0 (bS2 − cS3)

S3
3b

= 0

after solving the others. When instead b = 0, one of the equations is not independent of
the others. In both cases, the system leaves (at least) one free parameter.

C.3 Singularity analysis

The metric (4.7) could in principle have conical singularities when y = ỹ such that F5(ỹ)=0.
In this section, we analyze what happens in these points and show that they are regular.
Let us consider the following linear combination of the angles β and ψ:(

β

ψ

)
= W

(
β′

ψ′

)
, W =

(
w1 w2

w3 w4

)
, W invertible .

Under this transformation the metric retains its structure, i.e., upon some redefinitions of
the functions Fn, we can rewrite it in the same form, with new parameters given by(

c

c̃

)
= W

(
c′

c̃′

)
,

(
b

a

)
= W

(
b′

a′

)
. (C.58)

In particular, the part that involves y and β, near ỹ, becomes

ds2
yβ = K

3
√
F1F 2

2F
4
3

(y − ỹ) F̃ ′5

dy2 +
(y − ỹ)2

(
F̃ ′5

)2
det2W(

w4F̃2F̃ 2
3 − F̃6w2

)2 Dβ2

 .

Assuming y > ỹ and performing the change of variables r2 ≡ 2 (y − ỹ) and choosing
w4 = 4ω2, w2 = −4ω1 and w1, w3 so that detW = 1 and using (C.41) we obtain

ds2
yβ = K

3
√
F1F 2

2F
4
3

F̃ ′5

(
dr2 + r2Dβ2

)
.

We thus see that there are no conical singularities, provided β ∈ [0, 2π].47 Moreover,
from (C.58), we see that, using (C.32), we can set ω2 to zero by an appropriate W .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

47Again, this is very similar to the regularity analysis of the solutions in [30].
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