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It is now well established that glasses feature quasilocalized
nonphononic excitations—coined “soft spots”—, which follow a
universal ω4 density of states in the limit of low frequencies
ω. All glass-specific properties, such as the dependence on the
preparation protocol or composition, are encapsulated in the
nonuniversal prefactor of the universal ω4 law. The prefactor,
however, is a composite quantity that incorporates information
both about the number of quasilocalized nonphononic excitations
and their characteristic stiffness, in an apparently inseparable
manner. We show that by pinching a glass—i.e., by probing its
response to force dipoles—one can disentangle and indepen-
dently extract these two fundamental pieces of physical infor-
mation. This analysis reveals that the number of quasilocalized
nonphononic excitations follows a Boltzmann-like law in terms of
the parent temperature from which the glass is quenched. The lat-
ter, sometimes termed the fictive (or effective) temperature, plays
important roles in nonequilibrium thermodynamic approaches to
the relaxation, flow, and deformation of glasses. The analysis
also shows that the characteristic stiffness of quasilocalized non-
phononic excitations can be related to their characteristic size, a
long sought-for length scale. These results show that important
physical information, which is relevant for various key questions
in glass physics, can be obtained through pinching a glass.

glasses | elasticity | density of states

Understanding the micromechanical, statistical, and ther-
modynamic properties of soft, nonphononic excitations in

structural glasses remains one of the outstanding challenges
in glass physics, despite decades of intensive research (1–19).
Soft, nonphononic excitations are believed to give rise to a
broad range of glassy phenomena, many of which are still poorly
understood; some noteworthy examples include the universal
thermodynamic and transport properties of glasses at temper-
atures of 10 K and lower (2, 4, 20–22); the low-temperature
yielding transition in which a mechanically loaded brittle glass
fails via the formation of highly localized bands of plastic
strain (23, 24); and anomalous, non-Rayleigh wave-attenuation
rates (25–27).

Computational studies have been invaluable in advancing our
knowledge about the statistical and mechanical properties of
soft, glassy excitations and in revealing the essential roles that
these excitations play in various glassy phenomena. Schober
and Laird (28, 29) were the first to reveal the existence of soft
spots in the form of low-frequency, quasilocalized vibrational
modes in a model computer glass. Soon later, Schober et al. (30)
showed that relaxation events deep in the glassy state exhibit pat-
terns that resemble quasilocalized modes (QLMs), suggesting a
link between soft, glassy structures and dynamics. In an impor-
tant subsequent work (31), this link was further strengthened
by showing that relaxational dynamics in supercooled liquids
strongly correlates with quasilocalized, low-frequency vibrational
modes measured in underlying inherent states. Some years later,
it was shown that plastic activity in model structural glasses
and soft-sphere packings is intimately linked to nonphononic,
low-frequency modes (32–34).

It was, however, only recently that the universal statistical
and structural properties of soft QLMs in glasses were revealed,
first in a Heisenberg spin glass in a random field (35), and

later in model structural glasses (13, 14, 36–38). It is now well
accepted that the density of nonphononic QLMs of frequency
ω grows from zero (i.e., without a gap) as ω4, independently of
microscopic details (13), preparation protocol (15), or spatial
dimension (14). Importantly, as shown in ref. 38 and demon-
strated again in this work, the ω4 distribution of QLMs persists,
even in inherent states that underlie very deeply supercooled
states—i.e., in stable computer glasses whose stability is com-
parable to conventional laboratory glasses. Furthermore, soft
QLMs have been shown to generically feature a disordered
core of linear size of a few particle spacings, decorated by
long-range, Eshelby-like displacement fields, whose amplitude
decays as r1−d- at a distance r from the core, in d- spatial
dimensions (13, 14).

The key challenge in revealing the statistical, structural, and
energetic properties of soft QLMs in computer investigations lies
in the abundance of spatially extended low-frequency phonons in
structural glasses (36, 39). These phononic excitations hybridize
with quasilocalized excitations, as pointed out decades ago by
Schober and Oligschleger (40). These hybridization processes
hinder the accessibility of crucial information regarding charac-
teristic length and frequency scales of QLMs and regarding their
prevalence.

While promising attempts to overcome the aforementioned
hybridization issues have been put forward (36, 40–42), a com-
plete statistical–mechanical picture of QLMs is still lacking. In
particular, recent work has revealed that annealing processes
affect QLMs in three ways: Firstly, the number of QLMs appears
to decrease upon deeper annealing—i.e., they are depleted—as
first pointed out in refs. 15 and 43. Secondly, the core size of
QLMs, ξQLM, was shown to decrease with deeper annealing (13,
44). Lastly, in refs. 13 and 15, it was shown that the characteristic
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frequencies of QLMs also increase upon deeper annealing—i.e.,
they stiffen—in addition to their depletion. These three effects,
and other concepts discussed below, are graphically illustrated in
Fig. 1.

In this work, we investigate the effect of very deep
supercooling/annealing on the statistical, structural, and ener-

Fig. 1. A graphical representation of the population of QLMs in poorly
annealed (Upper) and deeply annealed (Lower) two-dimensional computer
glasses. Each blob represents a QLM; its size is proportional to our estimation
of the mode’s core size ξQLM, and the color code represents the mode’s fre-
quency, decreasing from bright to dark; the Upper (Lower) color code range
is [0.18, 0.42] ([0.54, 0.74]), expressed in terms of c∞/a0, with c∞ being the
high-Tp shear wave speed, and a0 is the interparticle distance. The typical
distance between QLMs, ξs, is also marked. Details of the calculation can be
found in SI Appendix. Note that the deeply annealed case shown in Lower
might be representative of laboratory molecular or metallic glasses.

getic properties of QLMs in a model computer glass (see
Materials and Methods for details). First, we explain why
information regarding the number of QLMs cannot typ-
ically be obtained from the universal vibrational density
of states (vDOS) of QLMs alone. Instead, we show that
the vDOS grants access to a composite physical observ-
able, which encodes information regarding both the char-
acteristic frequency scale of QLMs, ωg , and their number,
N . Then, following recent suggestions (15, 45), we use the
average response of the glass to a local pinch—more for-
mally, we use the bulk-average response of a glass to force
dipoles—as a measure of ωg . This assumption, in turn, allows
us to quantitatively disentangle the processes of annealing-
induced stiffening of QLMs from their annealing-induced
depletion.

Interestingly, this analysis reveals that N follows an equili-
brium-like Boltzmann relation N ∝ exp

(
−EQLM

k
B
Tp

)
, with Tp

denoting the parent temperature from which glassy states are
quenched, kB is Boltzmann’s constant, and EQLM is the ener-
getic cost of creating a QLM. That is, our results indicate that
QLMs behave as “quasiparticles,” whose number is determined
by equilibrium statistical thermodynamics at the parent equilib-
rium temperature Tp , and that this number is preserved when
the glass goes out-of-equilibrium during a quick quench to a
temperature much smaller than Tp . The QLMs thus appear
to correspond to configurational degrees of freedom that carry
memory of the equilibrium state at Tp , deep into the nonequi-
librium glassy state, and, in this sense, Tp has a clear thermo-
dynamic interpretation as a nonequilibrium temperature. This
physical picture has been, for quite some time, the cornerstone
of the nonequilibrium thermodynamic Shear-Transformation-
Zones (STZs) theory of glass deformation (46–48), where
Tp is termed a fictive/effective/configurational temperature,
once QLMs are identified with STZs, i.e., with glassy “flow
defects” (49).

Furthermore, we show that ωg can be used to define a length
that appears to match the independently determined core size
of QLMs, argued to mark the cross-over between the disorder-
dominated elastic response of glasses at the mesoscale and the
continuum-like elastic response at the macroscale (50). Taken
together, these results show that important physical information,
which is relevant for various key questions concerning the for-
mation, relaxation, and flow of glasses, can be obtained through
pinching a glass.

The QLMs Depletion vs. Stiffening Conundrum
It is now established that the vDOS of QLMs, D(ω), follows a
universal gapless law (13, 14, 36–38)

D(ω)=Ag ω
4 for 0≤ω≤ωg , [1]

where ωg is the upper cutoff of this scaling regime, and the
prefactor Ag is extensively discussed below. The ω4 law has
been rationalized by various models (1–4, 16–19) and is known
to be intimately related to the existence of frustration-induced
internal stresses in glasses (44), but its theoretical founda-
tions are not yet fully developed. The prefactor Ag in Eq. 1
(denoted by A4 in refs. 18, 38, and 51) is a nonuniversal quan-
tity that encodes information about a particular glassy state,
most notably its composition (constituent elements, interaction
potential, etc.) and its preparation protocol (15, 38, 43). The
ultimate goal of this work is to explore the physical information
encapsulated in Ag and its dependence on the glass-preparation
protocol.

In Fig. 2, we plot the cumulative vDOS calculated for glassy
samples rapidly quenched from parent equilibrium temperatures
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Fig. 2. Cumulative density of states CDF≡
∫ ω

0 D(ω′)dω′ for various parent
temperatures Tp (see values in the legend). Here, we present data measured
in 10,000 glassy samples of N = 2,000 particles for Tp≤11/18 and 2,000 sam-
ples of N = 16,000 particles for Tp>11/18. (Inset) The prefactors Ag vs. Tp;
see text for discussion.

Tp (as appears in the figure legend) to zero temperature. The
system size was chosen so as to avoid hybridization with phonons
at the lowest frequencies, as explained in ref. 13. The figure
shows, in agreement with ref. 38, that the ω4 scaling persists all
the way down to the deepest supercooled states accessible to us,
Tp=1/3 (the units used to report Tp are defined below). Fig. 2,
Inset shows that the prefactor Ag varies by nearly three orders
of magnitude in the simulated Tp range. The huge variability of
Ag with the preparation protocol, here quantified by the parent
equilibrium temperature Tp , indicates dramatic changes in the
resulting glassy states, despite the fact that all of them follow the
universal ω4 law.

What physics is encapsulated in Ag? To start addressing this
question, let us first consider the dimensions of Ag . When D(ω)
is integrated over the frequency range in which Eq. 1 is valid—
i.e., in the range 0≤ω≤ωg—one obtains an estimate for the total
number of QLMs, N . Consequently, Ag has the dimensions of
an inverse frequency to the fifth power, where the dimension-
less prefactor is proportional to N . Since D(ω) follows a power
law—i.e., it is scale-free in the range 0≤ω≤ωg—the only possi-
ble frequency scale that can appear in it is the upper cutoff ωg .
Hence, we expect to have Ag∼Nω−5

g , which implies that Eq. 1
should be rewritten as

D(ω)∼N ω−5
g ω4 for 0≤ω≤ωg . [2]

We would like to note the analogy, and the fundamental differ-
ence, between Eq. 2 and Debye’s vDOS of (acoustic) phononic
excitations in crystalline solids (52). The latter takes the form
D(ω)=AD ω

2 (in three dimensions), with AD =9N /ω3
D , where

ωD is Debye’s frequency and N is the number of particles. The
integral over D(ω) in the range 0≤ω≤ωD equals the number
of degrees of freedom in the system, 3N . The analogy between
Debye’s vDOS and the glassy vDOS in Eq. 2, and between ωg

and Debye’s frequency, is evident. Yet, there is a crucial differ-
ence between the two cases; in Debye’s theory, the number of
phononic excitations is a priori known to equal the number of
degrees of freedom 3N (in fact, ωD is precisely defined so as
to ensure the latter). In the glassy case, however, there is nei-
ther an a priori constraint on the number of QLMs N , nor on
the upper-frequency cutoff ωg (the total number of vibrational
modes, both glassy and phononic, is, of course, still determined
by the total number of degrees of freedom, but there is no a pri-
ori constraint on the fraction of QLMs out of the total number
of vibrational modes). Hence, N and ωg should be treated as
independent quantities that can feature different dependencies
on the glass history (preparation protocol).

In order to disentangle the number of QLMs (N ) and
their characteristic frequency (ωg) contributions to Ag∼Nω−5

g ,
one needs to estimate one of them—i.e., either N or ωg—
independently of Ag . In principle, as the characteristic frequency
ωg represents the upper cutoff on the ω4 scaling regime (as
explained above), one can try to estimate it through the deviation
from the universal ω4 law. This has been, in fact, demonstrated
in ref. 14 for rapidly quenched glassy samples in a narrow range
of system sizes, in three and four dimensions. Some of the data
appearing in figure 2 b and c of ref. 14 are reproduced here in
Fig. 3, where the lowest phononic band is shown in orange in
each graph. It is observed that, in these examples, the vDOS devi-
ates from the ω4 scaling at a frequency smaller than the lowest
phonon frequency, which can be identified with ωg (marked by
the vertical dashed lines).

In general, though, the lowest phonon frequency is, in fact,
smaller than ωg , which obscures the identification of the lat-
ter due to hybridizations (39). Indeed, in Fig. 2, it is observed
that, as Tp decreases, the lowest phonon band pushes the vDOS
upwards in the middle of the scaling regime, disallowing to
extract ωg . Hence, we conclude that the vDOS alone does not
allow one to distinguish between changes in the number of QLMs

Fig. 3. The vDOS D(ω) of small glassy samples (the number of particles N is specified in each graph) in three dimensions (3D; Left) and four dimensions
(4D; Right), obtained by a rapid quench in ref. 14. The data are adapted from figure 2 b and c of ref. 14, where frequencies are normalized as detailed in
SI Appendix. The vertical continuous lines indicate the position of the first phonon band, whereas the dashed lines mark the breakdown of the ω4 scaling
regime.

5230 | www.pnas.org/cgi/doi/10.1073/pnas.1919958117 Rainone et al.
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(e.g., a decrease, i.e., depletion) and in their characteristic fre-
quency (e.g., an increase, i.e., stiffening). How to disentangle
the N and ωg dependence of Ag , and the possible depletion
and stiffening of QLMs associated with them, is the question we
address next.

Estimating QLMs’ Frequency Scale by Pinching a Glass
The previous discussion showed that the Tp dependence of
Ag∼Nω−5

g cannot be readily used to extract the Tp depen-
dence of N and ωg separately. Consequently, one needs addi-
tional physical input in order to disentangle the two quantities.
Here, we follow the suggestion put forward in ref. 15 that the
characteristic frequency ωg of QLMs can be probed through
pinching a glass. Formally, by pinching, we mean applying a
force dipole d(ij) to a pair of interacting particles i , j in a glassy
sample. The displacement response to d(ij), which was shown
to closely resemble the spatial pattern of QLMs (15), can be
associated with a frequency ω(ij)

g (see additional details in SI
Appendix). By averaging ω

(ij)
g over many interacting pairs i , j

in a glassy sample, one obtains a characteristic frequency scale,
which was proposed to represent ωg . This suggestion was dis-
cussed at length and tested, under various circumstances, in ref.
15; here, we follow it—i.e., assume that the Tp dependence of
the dipole response is proportional to ωg(Tp). The remainder
of the paper is devoted to exploring the implications of this
assumption.

In Fig. 4, Left, we plot the characteristic frequency ωg vs.
the parent temperature Tp , where ωg(Tp) is estimated by the
pinching procedure just described. It is observed that ωg varies
by nearly a factor of two at low parent temperatures Tp and
reaches a plateau at higher Tp . We further find that the sample-
to-sample mean athermal shear modulus, G , shown in Fig. 4,
Left, Inset, also plateaus at the same Tp as ωg does. Conse-
quently, in what follows, we conveniently express temperatures
in terms of the onset temperature Tonset of the high-Tp plateaus
of G and ωg .

We conclude that, in the Tp range considered here, QLMs
appear to stiffen by a factor of approximately two with decreasing
Tp . Interestingly, in ref. 38, it was reported that the boson peak
frequency ωBP varies by approximately a factor of two over a sim-
ilar range of Tp , suggesting that ωBP and ωg might be related.
In ref. 45, a similar proposition was put forward in the con-
text of the unjamming transition (53–55), where it was argued
that the renowned “unjamming” frequency scale ω∗ (5, 53) can

be extracted by considering the frequencies associated with the
responses to a local pinch. However, since ω∗ and ωBP may differ
(10), it is not currently clear which of these frequencies is better
represented by ωg .

The stiffening of QLMs by a factor of approximately two
accounts for an approximate 30-fold variation of Ag , due to the
ω−5
g dependence in Eq. 2. The remaining variation is attributed

to the number of QLMs, N =Ag ω
5
g (note that here, we use an

equality, as the Tp-independent prefactor is of no interest), plot-
ted in Fig. 4, Right. The result indicates that QLMs are depleted
by slightly less than two orders of magnitude in the simulated Tp

range. The strong depletion of QLMs upon deeper supercool-
ing has dramatic consequences for the properties of the resulting
glassy states. For example, brittle failure (56, 57) and reduced
fracture toughness (58–60) are claimed to be a consequence of
this depletion. It is interesting to note that the range of vari-
ability observed in Fig. 4, Right appears to be consistent with
a very recent study (61) of the depletion of tunneling two-level
systems in stable computer glasses, possibly indicating that a sub-
set of the QLMs is associated with tunneling two-level systems
(1, 2, 36, 62).

The results presented in Fig. 4 demonstrate that pinching a
glass may offer a procedure to separate the depletion and stiffen-
ing processes that take place with progressive supercooling. Next,
we aim at exploring the physical implications of disentangling
N and ωg .

A Thermodynamic Signature of the QLMs
QLMs correspond to compact zones (though they also have long-
range elastic manifestations), which are embedded inside a glass,
and characterized by particularly soft structures. It is tempting,
then, to think of them as quasiparticles that feature well-defined
properties (e.g., formation energy). If true, one may hypothesize
that QLMs can be created and annihilated by thermodynamic
fluctuations and follow an equilibrium distribution at the parent
equilibrium temperatures Tp . Moreover, their equilibrium ther-
modynamic nature might be manifested in nonequilibrium glassy
states as they become frozen in during the rapid quench upon
glass formation.

As we have now at hand an estimate of the number N as a
function of Tp (cf. Fig. 4, Right), we can start testing these ideas.
To this aim, we plot in Fig. 5 N vs. T−1

p on a semilogarithmic
scale; the outcome reveals a key result: the number of QLMs fol-
lows a Boltzmann-like law, with the parent temperature Tp playing
the role of the equilibrium temperature, namely,

Fig. 4. (Left) The characteristic frequency ωg of QLMs, estimated by the pinching procedure discussed in the text, plotted vs. the parent temperature Tp.
(Left, Inset) The sample-to-sample mean athermal shear modulus, G, plotted against Tp. (Right) N is proportional to the number of QLMs and is plotted
here against Tp.
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Fig. 5. The density of QLMs, plotted against 1/Tp, revealing that it is
controlled by a Boltzmann-like factor e−EQLM/kBTp , with the parent temper-
ature playing the role of the equilibrium temperature. We find EQLM≈3.3,
expressed in terms of kBTonset.

N ∝ exp

(
−EQLM

kBTp

)
. [3]

A possibly related Boltzmann-like law, albeit for Ag(Tp) itself,
was observed in ref. 51 for reheated stable glasses (63). A corol-
lary of Eq. 3 is that QLMs seem to feature a well-defined
formation energy, EQLM≈3.3 (in units of kBTonset). It is sur-
prising that EQLM appears to be independent of Tp , while the
characteristic energy scale associated with ωg does appear to
depend on it. Future research should shed additional light on
this nontrivial observation.

The results in Eq. 3 and Fig. 5 indicate that QLMs might
indeed correspond to a subset of configurational degrees of
freedom that equilibrate at the parent temperature Tp and
that carry memory of their equilibrium distribution when the
glass goes out of equilibrium during a quench to lower tem-
peratures. This physical picture strongly resembles the idea of
a fictive/effective/configurational temperature, which was quite
extensively used in models of the relaxation, flow, and defor-
mation of glasses (46–48, 64–67). This connection is further
strengthened in light of available evidence indicating that the
cores of deformation-coupled QLMs are the loci of irreversible
plastic events that occur once a glass is driven by external forces
(68–70).

The Boltzmann-like relation in Eq. 3, when interpreted in
terms of STZs, is a cornerstone of the nonequilibrium thermo-
dynamic STZ theory of the glassy deformation (46–48), where
Tp is treated as a thermodynamic temperature that character-
izes configurational degrees of freedom and that differs from the
bath temperature. The strong depletion of STZs with decreasing
Tp , as predicted by the Boltzmann-like relation, was shown to
give rise to a ductile-to-brittle transition in the fracture tough-
ness of glasses (58, 59). This prediction was recently supported
by experiments on the toughness of bulk metallic glasses, where
Tp was carefully controlled and varied (60).

It is natural to define a length scale corresponding to the typ-
ical distance between QLMs as ξs ∼ N−1/d-, once an estimate
of their number N is at hand. Such a “site length” ξs was intro-
duced in ref. 13, where it was related to the sample-to-sample
average minimal QLM frequency 〈ωmin〉, according to 〈ωmin〉 ∼
ωg(L/ξs)

−d-/5. The latter implies that the lowest QLM frequency
is selected among (L/ξs)

d-∝ N N possible candidates, which is
directly related to the extreme value statistics of ωmin (13). The

site length ξs is expected to control finite-size effects in studies of
athermal plasticity in stable glasses, as discussed in detail in ref.
71. Similar definitions of a site length were proposed in refs. 71
and 72; an important message here is that the disentangling of
the stiffening effect from the prefactor Ag is imperative for the
purpose of obtaining a consistent definition of a length scale in
such a setting.

A Glassy Length Scale Revealed by Pinching a Glass
What additional physics can pinching a glass reveal? Up to now,
we explored the physics of the QLMs number N ; we now turn
to the other contribution to Ag , i.e., to the frequency scale ωg

that characterizes the typical stiffness of QLMs. ωg was shown
to undergo stiffening with decreasing Tp (cf. Fig. 4, Left); is
this stiffening related to other properties of QLMs that vary
with Tp? An interesting possibility we explore here is whether
it might be related to a glassy length scale that is associated
with QLMs.

To that aim, we construct a length scale ξg as

ξg ≡ 2π cs/ωg , [4]

which corresponds to the wavelength of transverse phonons
propagating at the shear wave-speed cs with an angular fre-
quency ωg . This length is similar in spirit to the “boson peak”
length ξBP∼cs/ωBP (73). The physical rationale behind our con-
structed length ξg is that the emerging length scale is expected
to mark a cross-over in the elastic response of a glass to a
local pinch, as discussed below. In Fig. 6, we plot ξg vs. the
parent temperature Tp ; we find that ξg decreases upon deeper
annealing by ∼40%, a manifestation of the modest stiffen-
ing of the macroscopic shear modulus compared to that of
QLMs (recall that cs is proportional to the square root of the
shear modulus). This decreasing length is of unique charac-
ter among the plethora of glassy length scales previously put
forward in the context of the glass transition, most of which
are increasing functions of decreasing temperature or parent
temperature (74–79).

In order to shed light on the physical meaning of ξg , we
consider also (i) the cross-over length ξco, as observed in the
displacement response to local pinches, between an atomistic-
disorder-dominated response at distances r . ξco from the

Fig. 6. The glassy length ξg, the cross-over length ξco, and the QLM core
size ξQLM (see SI Appendix for details), plotted against the parent tempera-
ture Tp. These lengths vary together with parent temperature Tp, supporting
their equivalence.

5232 | www.pnas.org/cgi/doi/10.1073/pnas.1919958117 Rainone et al.
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perturbation, to the expected continuum behavior seen at r>ξco,
and (ii) the core size of QLMs, ξQLM, which is known to decrease
upon annealing (38, 43, 44), as is also illustrated graphically
in Fig. 1. In Fig. 6, we directly compare between ξg and our
measurements of ξco and ξQLM (see SI Appendix for details).
These three length scales feature very similar variations with Tp ,
strongly supporting their equivalence. Consequently, ξg—which
was defined through the dipole response frequency ωg (cf. Eq.
4)—seems to provide a measure of the core size of QLMs, and in
light of the suggested relation between the latter and STZs, also
of the size of STZs.

Additional insight may be gained by invoking the relation—
established in ref. 45—between ωg and the characteristic fre-
quency ω∗ that emerges near the unjamming transition (53–55).
Indeed, in the unjamming scenario, the length ξg (often denoted
`c) was shown to diverge upon approaching the unjamming point
(50) and to mark the cross-over between disorder-dominated
responses near a local perturbation and the continuum-like
response observed in the far field, away from the perturbation.
The same length was shown in ref. 80 to characterize the core size
of QLMs near the unjamming point of harmonic-sphere pack-
ings. In light of the results shown in Fig. 6, we hypothesize that
the fundamental cross-over length—below which responses to
local perturbations are microstructural/disorder-dominated, and
above which responses to local perturbations follow the expected
continuum-like behavior—is, in fact, ξg , which, in turn, we show
to agree well with the size of QLMs.

Summary and Outlook
In this work, we have employed a computer-glass model, which
can be deeply annealed (81), to quantitatively study the variation
of the properties of QLMs (soft spots) with the depth of anneal-
ing. Most notably, we calculated the variation of the number,
characteristic frequency, and core size of QLMs with the par-
ent temperature from which the glass is formed. This has been
achieved by assuming that the characteristic frequency scale of
QLMs can be estimated through the bulk-average response of a
glass to a local pinch. This frequency scale, in turn, allowed us to
disentangle the apparently inseparable effects of the depletion
and stiffening of QLMs, which are both encoded in the prefactor
of the universal ω4 vDOS of QLMs.

We found that the number of QLMs follows a Boltzmann-
like factor, with the parent temperature—from which equi-
librium configurations were vitrified—playing the role of the
equilibrium temperature. Consequently, the parent tempera-
ture may be regarded as a nonequilibrium temperature that
characterizes QLMs deep inside the glassy state. Furthermore,
our analysis reveals that both the core size of QLMS and
the mesoscopic length scale that marks the cross-over between
atomistic-disorder-dominated responses near local perturba-
tions, and continuum-like responses far away from local pertur-
bations, can be estimated by using the characteristic frequency of

QLMs—obtained by pinching the glass—and the speed of shear
waves.

Our results may have important implications for various basic
problems in glass physics. We mention a few of them here; first,
the Boltzmann-like law of the number of QLMs may play a major
role in theories of the relaxation, flow, and deformation of glasses
and may support some existing approaches. Second, together
with other available observations (38, 45, 80), our results may
suggest that the boson-peak frequency could be robustly probed
by pinching glassy samples, instead of the more involved analy-
sis required otherwise (9, 38). Finally, the variation of the energy
scale proportional to ω2

g with annealing temperature appears to
match very well the variation of activation barriers required to
rationalize fragility measurements in laboratory glasses (com-
pare Fig. 4, Left with figure 8 of ref. 82). If valid, our results
appear to support elasticity-based theories of the glass transition
(83–85) and indicate that QLMs play important roles in relax-
ation processes in deeply supercooled liquids (31). We hope that
these interesting investigation directions will be pursued in the
near future.

Materials and Methods
We employed a computer-glass-forming model in three dimensions, simu-
lated by using the swap Monte Carlo method, explained, e.g., in ref. 81.
The model consists of soft repulsive spheres interacting via a ∝ r−10 pair-
wise potential (with r denoting the distance between the centers of a pair
of particles), enclosed in a fixed-volume box with periodic boundary condi-
tions. The particles’ sizes are drawn from a distribution designed such that
crystallization is avoided (81). A comprehensive description of the model,
and of all parameter choices, can be found in ref. 86, including an impor-
tant discussion about how we handled large sample-to-sample realization
fluctuations of particle sizes that can arise in small system sizes due to the
breadth of the employed particle size distribution. Ensembles of 10,000;
1,000; and 2,000 glassy samples were made for systems of N = 2,000; 8,000;
and 16,000 particles, respectively, by instantaneously quenching (to zero
temperature) independent configurations equilibrated at various parent
temperatures Tp. All data, except for those shown in Fig. 6, were cal-
culated by using the smaller glasses. Lengths are expressed in terms of
a0≡ (V/N)1/d-, where V is the system’s volume. All particles share the same
mass m, which we set as our microscopic unit of mass. Frequencies are
expressed in terms of c∞/a0, where c∞≡

√
G∞/ρ is the high-Tp shear wave

speed, with G∞ denoting the high-Tp sample-to-sample mean athermal
shear modulus, and ρ≡mN/V denoting the mass density. Tp is expressed
in terms of the cross-over temperature Tonset, above which the sample-
to-sample mean athermal shear modulus saturates to a high-temperature
plateau, as shown in Fig. 4, Left, Inset and in ref. 86. In our model, we
find G∞a3

0/kBTonset≈17. Data will be made available upon request from the
corresponding author.
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