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S U M M A R Y

This thesis Crafting Deep Learning Models for Reinforcement Learning and Com-
puter Vision Applications focuses on designing novel and effective representa-
tion learning frameworks. There are two major aspects in our proposed ap-
proaches: neural network model architecture design and objective engineering.
To demonstrate how each aspect can be maneuvered, we delve into represen-
tative applications from two important areas of studies in artificial intelligence,
namely reinforcement and computer vision. In both areas, we emphasize how
to manipulate abstract representations to build in strong inductive biases from
the target tasks and the type of available data. We hope our examples may
shed light on future endeavors in tackling problems from related areas and
beyond.

The first part of the thesis looks into representative tasks in reinforcement learn-
ing. Our contributions are listed as follows:

• As a starting point, we aim at improving general and exploratory behav-
ior and reflect environment uncertainty for a popular class of model-free,
on-policy RL algorithm, actor critic methods. To this end, we propose
stochastic actor-critic methods (Shang et al., 2019b; Chapter 2). It incor-
porates an effective and flexible way to inject randomness into actor-critic
models. The randomness is injected to the high-level abstract representa-
tions. We test several actor-critic models enhanced with stochastic activa-
tions and demonstrate their effectiveness in a wide range of Atari 2600

games, a continuous control problem and a car racing task.

• Next, we turn our attention to how to allow structured exploration in
a more specific albeit common RL problem setting: a persistent envi-
ronment, or world, that hosts a diverse suite of tasks. To this end, we
propose world graph decompositions over the environments to acceler-
ate reinforcement learning (Shang et al., 2019a; Chapter 3). The nodes of

iii
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a world graph are important waypoint states and edges represent feasible
traversals between them. After identifying the world graph, our frame-
work then applies it to a hierarchical RL algorithm to bias exploration
towards task-relevant waypoints and regions. We thoroughly evaluate
our approach on a suite of challenging maze tasks and show that using
the world graph abstraction of the environment significantly accelerates
RL, achieving higher reward and faster learning.

• Lastly, we consider the scenario where multiple agents must cooperate
to achieve a common goal, a subset of multi-agent RL. Specifically, we
propose to incorporate agent-centric representations for multi-agent re-
inforcement learning (Shang et al., 2020a; Chapter 4) in two ways. First,
we introduce an agent-centric attention module with explicit connections
across the agents. The attention module is built over the abstract represen-
tations of the agents. Second, we leverage an agent-centric unsupervised
predictive objective, to be used as an auxiliary loss or as the basis of a
pre-training step. We evaluate these approaches on the Google Research
Football environment as well as DeepMind Lab 2D and show they lead
to the emergence of more complex cooperation strategies between agents
as well as enhanced sample efficiency and generalization.

The second part of the thesis shifts its focus to unsupervised learning for var-
ious computer vision tasks and domains. Our contributions are listed as fol-
lows:

• To better leverage unlabeled data and enhance unsupervised image mod-
eling, we propose channel-recurrent variational autoencoders (crVAE)
(Shang et al., 2018; Chapter 5). It integrates recurrent connections across
channels of the abstract convolutional features to both inference and gen-
eration steps, allowing the resulting high-level features to be captured in
global-to-local, coarse-to-fine manners. Combined with adversarial loss,
the resulting channel-recurrent VAE-GAN (crVAE-GAN) outperforms the
baseline VAE-GAN in generating a diverse spectrum of high resolution
images while maintaining the same level of computational efficacy.

• As an immediate next step, we further extend the channel-recurrent frame-
work and propose attentive conditional channel-recurrent autoencoding
(acVAE) (Shang and Sohn, 2019; Chapter 6) for attribute-conditioned face
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synthesis. Evaluations are performed through both qualitative visual ex-
amination and quantitative metrics, namely inception scores, human pref-
erences, and attribute classification accuracy.

• Finally, we consider unsupervised learning with unlabeled video sequences
and propose to learn video-level statics and dynamics representations
(Shang et al., 2020b; Chapter 7) by decomposing videos from temporal
coherence and dynamics. We demonstrate the significance of the learned
representations over several applications, including a novel dynamics re-
trieval task, on a face, a human activity, and a robotics grasping datasets.
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1

I N T R O D U C T I O N

The introduction chapter provides a general overview and background. It
starts with an introduction to the topic of artificial intelligence. It then fur-
ther introduces a primary subject within AI that has predominantly propelled
its advancements in recent years, deep representation learning, along with two
domains of applications, reinforcement learning, and computer vision. This
thesis centers around these two domains of applications. Finally, we discuss
two crucial ingredients in crafting deep learning models, neural network archi-
tectures, and objective function engineering.

The remainder of the thesis studies and demonstrates in detail how to ma-
neuver these critical ingredients for several applications. Particularly, we ma-
nipulate these ingredients to better shape the abstract representations and in-
corporate the essential inductive biases for a target task and available data.
Starting from applications in reinforcement learning, Part I of the thesis first in-
troduces a layer with injected noise to generally improve exploration for many
RL problems in Chapter 2. Then Part I looks into a more specific setup where
we can represent the environment in a graph format to enable structured explo-
ration in Chapter 3. Finally, in Chapter 4 of Part I, we tackle another important
class of problem, multi-agent RL, by incorporating agent-centric representation
learning. Part II of the thesis moves on to computer vision. We begin with a
novel technique to modulate image latent space in Chapter 5 and extend this
technique to a conditional version in Chapter 6. Lastly, in Chapter 7, we pro-
pose a novel framework to learn video-level features representing the statics
and dynamics aspects of given video sequences.

1



2 introduction

1.1 artificial intelligence and deep learning

Charles Darwin once wrote: “There is no fundamental difference between man
and the higher mammals in their mental faculties" and believed that the differ-
ences between human and animal intelligence are “of degree, not of kind". In-
deed, human intelligence, including our mental feats to learn, to adapt, and to
reason, plays an instrumental role in the thriving of humanity but, at the same
time, holds potential limitations. Many scientific disciplines are motivated by
our desire to understand better and exploit human intelligence, among which
is the study of the intelligence manifested by machines, that is, artificial intelli-
gence (AI). By comprehending and borrowing insight from human intelligence,
the ultimate practical goal of AI is to develop tools and algorithms that help
further advance human society.

A rapidly growing branch of AI is machine learning, which builds and im-
proves mathematical models to solve problems through past experiences in-
stead of explicit rule-based programming. The experiences used to construct
the mathematical models are termed training data. Most commonly, we ex-
tract features from the raw data and then operate these models on top of the
extracted features instead of the raw data. This process of extracting features
is representation learning. The advancement in representation learning signifi-
cantly contributes to essential progress in machine learning.

In the recent decade, an immensely successful approach in machine learning
is deep learning. The “deep” part refers to using multiple layers of non-linear
transformation to extract features from the raw data. The resulting features
are referred to as deep representations and the class of mathematical models as
deep neural networks (DNNs). Although earlier attempts, such as deep Boltz-
mann machines (Salakhutdinov and Hinton, 2009), have performed layer-by-
layer pre-training, most recent breakthroughs (Krizhevsky et al., 2012) directly
train DNNs to optimize a desirable objective via gradient descents in an end-
to-end manner.

Deep learning has achieved success in solving many tasks in various do-
mains, to name a few, image classification in computer vision (Krizhevsky et
al., 2012), playing GO in reinforcement learning (Silver et al., 2016), and ma-
chine translation in natural language processing (Vaswani et al., 2017). A core
ingredient partially contributing to each success is to leverage the inductive
bias (Mitchell, 1980) well inherent to the task by, for example, constructing suit-
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able model architectures and optimization objectives. However, each task can
call for deep representations that incorporate its inductive bias in its partic-
ular way. Many challenges in deep learning research and applications lie in
designing the optimal model to produce such representations.

In this thesis, we delve into how to effectively structure deep representation
learning frameworks for a diversity of tasks in the domains of reinforcement
learning and computer vision. These tasks are highly relevant to many real-
life scenarios but, at the same time, challenging and less explored in their
specific setups. The remainder of this section introduces further background
information on the application of deep learning in reinforcement learning and
computer vision.

1.1.1 Deep Reinforcement Learning

Reinforcement learning is an important field in AI. It aims at enabling au-
tonomous agents to optimally interact with their environments, i.e. maximiz-
ing an accumulative reward. Examples range from game playing (Mnih et
al., 2013) to robotics manipulation (Gu et al., 2017). This process is formally
described as a Markov Decision Process (MDP) (Sutton and Barto, 1998a), con-
sisting of

• states S, which can be finite, infinite or even continuous,

• actions A, which can be discrete or continuous,

• a transition probability P(st+1|at, st) describing the dynamics of the inter-
action,

• and a reward function r(st, at, st+1) = E[Rt+1|st, at, st+1].

RL algorithms can generally be categorized into model-based or model-free (Sut-
ton and Barto, 1998a). Model-based algorithms utilize the underlying environ-
ment dynamics for planning. Model-free algorithms directly use a learned
model to estimate the value of each action directly given current state or ob-
servation. In this thesis, we focus on model-free RL. RL algorithms are trained
either on-policy or off-policy (Sutton and Barto, 1998a). On-policy is trained
on top of trajectories generated by the target policy, whereas off-policy can be
done on other trajectories.
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The objectives used in RL can generally be categorized into value function ap-
proximation, policy function approximation, and a combination of both. Value
function approximation targets at estimating either the state values, V (or Vt at
time t) or the state-action values, Q (or Qt at time t), mathematically

Qt=Q(st, at) = Est+1:∞,at+1:∞

[
Σi≥0γirt+i

]
, Vt = V(st) = Eat [Q(st, at)|st] ,

(1.1)
where γ (0 ≤ γ ≤ 1) is the discount factor. Then based on the estimated values,
one can plan to act optimally. Policy gradient methods (Sutton et al., 2000)
are based on the ground of the policy gradient theorem. A commonly used
algorithm is REINFORCE (Williams, 1992), a gradient-based policy learning
approach. Intuitively REINFORCE encourages policy parameters to produce
actions resulting in positive rewards. But the naive application of policy gradi-
ents faces a major issue of high variance. One variance reduction technique is
to approximate Q instead of using rewards. In addition, an approximated V
is often adopted as a baseline and subtracted from Q when forming the policy
gradient to reduce variance further, referred to as the advantage. In this the-
sis, the foundation RL algorithm we consider is based on on-policy actor-critic
methods, and more mathematical details are in Section 2.

Although RL has been a long-standing area of research, it was limited to low-
dimensional simple problems due to the complexity from the state and action
spaces, as well as the lack of high-level abstract features (Bellemare et al., 2012).
The recent rise of deep learning has brought breakthroughs in RL across many
tasks, from mastering the game of GO (Silver et al., 2016) to robot manipula-
tion (Gu et al., 2017). DNNs can not only perform as powerful value and policy
function approximators but also eases the training of RL objectives by extract-
ing features more effectively. The first major success of deep reinforcement
learning (DRL) is the deep Q-networks (DQN). DQN processes the observa-
tions using convolutional neural networks (Mnih et al., 2013). It then feeds the
subsequent features into a value function approximator, also parametrized by
a DNN. DQN outperforms humans on many Atari 2600 games. In a similar
spirit, DRL-based advantage actor-critic methods use DNNs to represent both
values and policies (Mnih et al., 2016a), which, as aforementioned, serves as
our algorithmic backbone in this thesis.
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1.1.2 Deep Learning in Computer Vision

Computer vision (CV) is a branch of AI that allows computers to understand
the visual world. Although “seeing” and “understanding” images and videos
are effortless to the human vision system, it poses tremendous challenges to
build a similar computational system both due to a lack of thorough under-
standing of the biological perception system and the inherent complexity of
the visual domain. Traditional CV frameworks usually combine hand-crafted
features, such as SIFT (Lowe, 1999), and traditional ML techniques, such as sup-
port vector machines, to solve CV tasks. The hand-crafted feature engineering
step requires many trials and errors as well as domain expertise. However, for
more complicated tasks, such as large-scale image classification, even carefully
tuned features by hand are not sufficiently effective.

DL frameworks have revolutionized CV, starting with the seminal AlexNet (Krizhevsky
et al., 2012). Alex Net introduced the essential concept of end-to-end training,
where, instead of manual engineering, DNNs are stacked on top of raw input
images and explicitly optimized to output the highest scores to the correct class
via a softmax function. Another crucial component in AlexNet is the utiliza-
tion of convolutional layers. Convolutional layers exploit an important induc-
tive bias of images, translation invariance, which we will revisit in Section 1.2.
Combined with other essential architectural components ( e.g., data augmenta-
tion, ReLU activation, max pooling, drop out, etc.), mini-batch stochastic gra-
dient descent, and GPU acceleration, AlexNet achieved state-of-the-art results
in ImageNet classification and outperforming the best traditional CV competi-
tors at the time by a large margin. More crucially, it sets the course for a wave
of follow-up works in applying DL to computer vision tasks, from object de-
tection (Girshick et al., 2014), activity recognition (Simonyan and Zisserman,
2014), to image synthesis (Brock et al., 2018).

Problems in computer vision can be classified into supervised, semi-supervised,
and unsupervised learning based on the amount of labeled data provided dur-
ing training. Supervised learning trains on fully labeled datasets. That is, for
each input, there is an associated answer for the models to evaluate its perfor-
mance. On the other hand, unsupervised learning is not provided with any
labels but relies on the intrinsic patterns of the training datasets. Lastly, semi-
supervised learning is equipped with partially labeled data. In this thesis, we
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mostly focus on investigating unsupervised learning for CV applications on
images and videos.

1.2 deep neural network architectures

A central component of DL is DNN architecture. This thesis especially explores
how to improve and maneuver architectural building blocks to better incorpo-
rate the inductive biases of the tasks in hand (Chapter 2, 4, 5, and 6). In this
section, we introduce the most relevant DNN building blocks.

1.2.1 Fully Connected, Convolutional and Recurrent Neural Networks

The most generic DNNs—also considered in our thesis—is a composition of
non-linear transformation functions, or layers. Each layer typically comes with
learnable parameters θ. Together, a DNN is a complicated and powerful func-
tion approximator:

DNNθ = f L ◦ f L−1 ◦ · · · ◦ f 2 ◦ f 1. (1.2)

A fully connected (FC) layer is mathematically defined as:

f (x) = σ(Wx + b) , (1.3)

where W is the weight matrix and b the bias vector, both learnable. The non-
linearity of the FC layer comes from the activation function σ, e.g. a tanh
function. But most widely used is the rectified linear units (ReLU) defined as
ReLU(x) = max(0, x).

The seminal AlexNet belongs to the class of convolutional neural networks
(CNNs) (LeCun et al., 1998), whose core building block is the convolutional
(conv) layers. A conv layer uses the same operation as an FC layer on local
patches, termed as a kernel, and then spatially convolves the kernel across
the input. As a result, a conv layer is not only efficient in the number of
parameters and fast to be computed on GPUs but also produces translation-
invariant features.

Recurrent neural networks (RNNs) are another important class of neural
networks that takes a sequence of inputs {xi}, where the input at the i-th step
takes in both xi and a hidden state hi−1 and outputs a new hidden state hi.
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In other words, the hidden states carry over the information from previous
outputs. There are a few variations of RNN layers. In our thesis, we mostly
use the long-short-term-memory recurrent layer (Hochreiter and Schmidhuber,
1997).

We refer the readers to the Deep Learning book by Goodfellow et al. (2016)
for full details on CNNs and RNNs,

1.2.2 Attention in Deep Neural Networks

The attention mechanism (Kahneman and Treisman, 1984) incorporates another
important inductive bias of how human intelligence functions to DNNs, that
is, how we pay attention to extract the most relevant information.

In computer vision, spatial attention is well exploited. One ubiquitous tool
to express spatial attention is through spatial transformation networks (STN).
It applies an affine transformation to the feature of an input image to deform
it into another image spatially transformed from the input image (Jaderberg
et al., 2015). It is composed of a localization network to estimate the affine
transformation parameters, a grid generator, and a sampler to apply this trans-
formation to the input features. We refer the readers to the STN paper by
Jaderberg et al. (2015) for full details.

Recently, a more general and powerful self-attention module has enabled
new state-of-the-art performances in many ML tasks, ranging from machine
translation (Vaswani et al., 2017) to image generation (Brock et al., 2018). In a
self-attention module, each input component calculates a query, key, and value
vector. Then, based on the key and query, each component calculates a score
indicating how much attention to pay across different components. Then the
final feature for each component is a weighted sum of the values based on
the scores. We refer the readers to the paper by Vaswani et al. (2017) for full
details.

1.3 representation learning objectives

The training of DNNs is usually done through backpropagating error deriva-
tives from one or multiple objective functions (Werbos, 1982) using stochastic
gradient descent algorithms (Bottou, 1991) such as Adam (Kingma and Ba,
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2014). The choice of objective functions is another central component of DL.
This thesis also explores how to construct the most effective objective functions
for the tasks in hand (Chapter 3, 5, 6 and 7).

An objective function can be part of supervised learning, unsupervised learn-
ing, or reinforcement learning. In supervised learning, the target labels are
given, and the objective function aims at mapping the inputs to the labeled
outputs, such as classification. In reinforcement learning, there are no explicit
labels, but rather the rewards inspire the objectives. In unsupervised learning,
we utilize properties that do not require explicit labeling as objectives to shape
the representations better. The works in this thesis focus on improving unsu-
pervised representation learning objectives. The rest of this section introduces
the main unsupervised approaches used in this thesis to form objectives.

1.3.1 Maximum Likelihood Learning

One long-standing approach to unsupervised learning is the probability den-
sity estimation of the variables of interest. A popular solution to density es-
timation is maximum likelihood estimation (MLE). Given we observe x ∼ p(x),
MLE directly optimizes a set of parameters θ to a probability distribution that
best approximates the true distribution

pθ(x) ≈ p(x). (1.4)

The parameterizations that we focus in this thesis are DNNs. Often, we want
to leverage additional a priori knowledge of the data space structure and learn
a conditional model

pθ(x|y) ≈ p(x|y), (1.5)

rather than the unconditional pθ(x). For instance, given some sequential data,
we can form an unsupervised objective to predict the future from the present,
such as in Chapter 1.2, and learn pθ(xt+1|xt).

1.3.2 Latent Variable Models and Variational Inference

A popular approach for maximum likelihood learning is to explicitly learn
a latent representation by assuming the observed variables x are generated
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conditioning on some unobserved latent variables z. The marginal distribution
of x can be written as:

pθ(x) =
∫

pθ(x, z) dz =
∫

pθ(x|z)p(z) dz , (1.6)

where pθ(x|z)p(z) is termed the generative model and p(z) the prior. How-
ever, the integral in equation 1.6 usually does not have a closed analytic form
or an efficient way to perform estimation. Therefore, we borrow techniques
from variational inference and maximize a variational lower bound (VLB) of
log pθ(x) by introducing an approximated posterior qφ(z|x):

log pθ(x) = log
∫ qφ(z|x)

qφ(z|x)
pθ(x|z)p(z) dz (1.7)

≥
∫

qφ(z|x) log
pθ(x|z)p(z)

qφ(z|x)
dz

= Eqφ(z|x)[log pθ(x|z)]− DKL[qφ(z|x) ‖ p(z)]

The DL framework, where both qφ and pθ are parameterized by DNNs, to
optimize the VLB is the variational autoencoder (VAE). The first term of the
VLB, Eqφ(z|x)[log pθ(x|z)], can be viewed as a reconstruction term. To make the
training of VAEs end-to-end differentiable, we often use the reparameterization
trick (Kingma and Welling, 2013) to perform a Monte Carlo approximation of
the reconstruction term. The prior p(z) can either be parameterized or pre-
defined to a fixed distribution, such as the standard multivariant Gaussian.
We will revisit VAE and its variants in Chapter 3, 5 and 6 and also refer the
readers to the VAE paper by Kingma and Welling (2013) for more details.

1.3.3 Contrastive Learning

Another approach to learn from the structure of the data space in an unsu-
pervised fashion is through contrastive learning. Given an input, it essentially
contrasts data points related to the input against those unrelated. Contrastive
loss dated back more than a decade, including noise contrastive estimation
(NCE) (Gutmann and Hyvärinen, 2010; Mnih and Teh, 2012) and similarity
metric learning (Chopra et al., 2005; Hadsell et al., 2006). A series of promis-
ing adaptations of the unsupervised contrastive loss to deep representation
learning have recently been proposed, such as contrastive predictive coding
(CPC) (Oord et al., 2018) and momentum contrastive coding (MoCo) (He et al.,
2020; Chen et al., 2020b).
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In Chapter 7, we utilize CPC objective in unsupervised learning over unla-
beled video sequences to extract dynamics information. Mathematically, CPC
learns an encoder zi = fθ(xi) to encode observations parametrized by a DNN
and another DNN ẑi+t = gθ(xi) to perform predictive coding of zi+t . Then we
minimize the following CPC objective inspired by NCE, infoNCE:

L = −∑
i,t

log p( fθ(xi+k|gθ(x̂i), { fθ(x̂l}) (1.8)

= −∑
i,t

log
exp(ẑT

i+kzi+k)

exp(ẑT
i+kzi+k) + ∑l exp(ẑT

i+kzl)
,

where xl are the collection of negative examples that are unrelated to xi.
For more details on CPC, we refer the readers to the CPC paper by Oord

et al. (2018).

1.4 scope and research questions

The thesis is formulated into two parts, based on the domains of applications.
Part 1 discusses how to craft deep learning models for RL applications and
Part 2 computer vision. The research questions and contributions of this thesis
are summarized as follows:

Research Question 1: How can we effectively inject noise in actor-critic methods in
RL to improve exploration and uncertainty understanding?

In recent works (Plappert et al., 2017; Fortunato et al., 2017), parametric noise
has been applied to value iteration and policy methods to improve exploration
behaviors. However, this approach has proven less effective for actor-critic
methods. In Chapter 2 and Shang et al. (2019b), we propose an alternative
way to effectively inject noise into actor-critic methods. Inspired by the local
reparameterization trick, randomness is added at the level of activations that
feed into both policy and value functions. By entertaining a combination of
deterministic and stochastic units, the model can learn the desired noise level
for downstream computations. In experiments, we show that this method is
highly effective in modeling both irreducible uncertainty due to stochasticity
of the environment, as well as reducible uncertainty due to insufficient expe-
riences. We test a variety of models enhanced with stochastic activations and
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demonstrate their effectiveness to a range of Atari 2600 games and a continu-
ous control problem.

Research Question 2: Given a persistent environment and a suite of diverse tasks,
how can we effectively learn a representation of the environment to enable structured
exploration in downstream RL?

Efficiently learning to solve a suite of diverse tasks in a complex, albeit persis-
tent environment is a crucial challenge for reinforcement learning (RL) agents.
To this end, in Chapter 3 and Shang et al. (2019a), we propose to decompose
a complex environment using a task-agnostic world graph, an abstraction that
accelerates learning by enabling agents to focus exploration on a subspace of
the environment. The nodes of a world graph are important waypoint states,
and edges represent feasible traversals between them. Our framework has two
learning phases: 1) identifying world graph nodes and edges by training a
binary recurrent VAE on trajectory data and 2) a hierarchical RL framework
that leverages structural and connectivity knowledge from the learned world
graph to bias exploration towards task-relevant waypoints and regions. We
thoroughly evaluate our approach on a suite of challenging maze tasks and
show that using world graphs significantly accelerates RL.

Research Question 3: How can we incorporate general agent-centric representation
learning to improve multi-agent RL?

Object-centric representations have recently enabled significant progress in
tackling relational reasoning tasks (Battaglia et al., 2018; Santoro et al., 2017).
By building a strong object-centric inductive bias into neural architectures, re-
cent efforts have improved generalization and data efficiency of machine learn-
ing algorithms for these problems. One problem class involving relational
reasoning that remains under-explored is multi-agent reinforcement learning
(MARL). Here, in Chapter 4 and Shang et al. (2020a) we investigate whether
object-centric representations are also beneficial in the fully cooperative MARL
setting. Specifically, we study two ways of incorporating an agent-centric in-
ductive bias into our RL algorithm: 1, introducing an agent-centric attention
module with explicit connections across agents 2. Adding an agent-centric
unsupervised predictive objective (i.e., not using action labels), to be used as
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an auxiliary loss for MARL, or as the basis of a pre-training step. We evalu-
ate these approaches on the Google Research Football environment as well as
DeepMind Lab 2D. Empirically, agent-centric representation learning leads to
the emergence of more complex cooperation strategies between agents as well
as enhanced sample efficiency and generalization.

Research Question 4: How can we improve the architectural design of VAEs for
more complex image modeling?

Despite recent successes in synthesizing faces and bedrooms, existing genera-
tive models struggle to capture more complex image types (unless using large-
scale modeling and training (Brock et al., 2018), potentially due to the over-
simplification of their latent space constructions. In Chapter 5 and Shang et al.
(2018), to tackle this issue, building on VAEs, we integrate recurrent connec-
tions across channels to both inference and generation steps, allowing the high-
level features to be captured in global-to-local, coarse-to-fine manners. Com-
bined with adversarial loss, our channel-recurrent VAE-GAN (crVAE-GAN)
outperforms VAE-GAN (Larsen et al., 2016) in generating a diverse spectrum
of high-resolution images while maintaining the same level of computational
efficacy. Our model produces interpretable and expressive latent representa-
tions to benefit downstream tasks such as image completion. Moreover, we
propose two novel regularizations, namely the KL objective weighting scheme
over time steps and mutual information maximization between transformed
latent variables and the outputs, to enhance the training.

Research Question 5: How can we effectively integrate attention mechanisms to
achieve improved and more interpretable conditional image modeling?

As an extension of Research Question 4, we further probe whether we can ap-
ply the structured latent space to attribute-conditioned image modeling, such
that different attributes are embedded in different components of the latent
space. In Chapter 6 and Shang and Sohn (2019), we address this question
by studying an important real-world problem: attribute-conditioned face syn-
thesis. Building on top of a conditional version of VAE-GAN, we augment
the pathways connecting the latent space with channel-recurrent architecture,
to provide not only improved generation qualities but also interpretable high-
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level features. In particular, to better achieve the latter, we further propose an
attention mechanism over each attribute to indicate the specific latent subset
responsible for its modulation. Thanks to the latent semantics formed via the
channel-recurreny, we envision a tool that takes the desired attributes as inputs
and then performs a 2-stage general-to-specific generation of diverse and realis-
tic faces. Lastly, we incorporate the progressive-growth training scheme to the
inference, generation, and discriminator networks of our models to facilitate
higher resolution outputs. Evaluations are performed through both qualitative
visual examination and quantitative metrics, namely inception scores, human
preferences, and attribute classification accuracy.

Research Question 6: How can we learn sequence-level representations for the dy-
namics and statics aspects of videos in an unsupervised fashion?

Video frames present both strong temporal coherence and visual dynamics.
In Chapter 7 and Shang et al. (2020b), we leverage the interplay between these
two fundamental properties as an important inductive bias and propose a fully
unsupervised framework. Specifically, we learn decomposed video represen-
tations using two central objectives: i) a spatial transformation objective that
summarizes temporally coherent content by transforming it into individual
video frames; ii) a latent prediction objective that extracts video-level dynam-
ics into a representation capable of reasoning frame-level dynamics autore-
gressively. In experiments, our proposed framework demonstrates competitive
performance over a diversity of applications, including i) video retrieval based
on either temporally coherent or dynamical content, ii) pretraining for down-
stream tasks such as facial expression and human action recognition, and iii)
interpretable activity classification under the linear protocol.





Part I

Crafting Deep Learning Models for
Reinforcement Learning Applications





M OT I VAT I O N A N D S U M M A R Y

The ultimate goal of reinforcement learning is how to optimize sequential de-
cision makings, which is at the core to many real-world problems: from in-
vestments in the stock market, at-home robot assistance, to autonomous drone
exploration on in the inhabitable area. However, RL is known to be tricky to
train due to its noisey learning signals and the exploration-exploitation trade-
off. Therefore, crafting DL models to either directly alleviate these challenges
is essential to the success of RL.

In Part I of the thesis, we examine several RL setups and investigate means
to construct DRL frameworks to effectively and efficiently conduct learning to
solve a diversity of tasks.

In Chapter 2, we explore a general, effective and flexible technique to im-
prove exploratory behavior and to better reflect uncertainties in the context
of actor-critic methods, termed stochastic actor-critic methods (Shang et al.,
2019b).

In Chapter 3, we look at an RL setup that represents many real-world scenar-
ios, such as an at-home robot doing various chores under the same household:
given a persistent albeit complex environment, how we can efficiently learn
to solve a diversity of tasks. We propose world graph decompositions over
the environments to accelerate reinforcement learning (Shang et al., 2019a).
The nodes of a world graph are important waypoint states, and edges represent
feasible traversals between them. After identifying the world graph, our frame-
work then applies it to a hierarchical RL algorithm to bias exploration towards
task-relevant waypoints and regions.

In Chapter 4, we turn to another highly relevant RL problem class: fully
cooperative multi-agent RL. We propose to incorporate agent-centric represen-
tations for multi-agent reinforcement learning in two ways. First, we introduce
an agent-centric attention module with explicit connections across agents. Sec-
ond, we leverage an agent-centric unsupervised predictive objective, to be used
as an auxiliary loss or as the basis of a pre-training step.
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2

S TO C H A S T I C A C T I VAT I O N A C TO R
C R I T I C M E T H O D S

2.1 introduction

Deep reinforcement learning (DRL)—that is, using deep neural networks (DNNs)
in reinforcement learning—has allowed tremendous progress in areas from
game playing (Mnih et al., 2015) to continuous control (Lillicrap et al., 2016).
These DNNs generally serve to approximate value functions (Sutton and Barto,
1998b), such as in deep Q-network (DQN) and its variants (Mnih et al., 2015),
or to represent policies (Sutton and Barto, 1998b) such as in policy-gradient
methods (Schulman et al., 2015). Another family of Deep RL (DRL) methods
is the hybrid actor-critic approach, which employs DNNs to represent value
functions as well as policies (Mnih et al., 2016a; Wang et al., 2016b) and has
achieved state-of-the-art performances on highly complex RL problems.

Uncertainties play a crucial role in RL, including probabilistic state tran-
sitions, noisy reward functions, non-deterministic action outcomes (Gal and
Ghahramani, 2016), and exploration of infrequently tested actions. Earlier
DRL works addressing uncertainty have proposed the use of stochastic neu-
ral networks (SNNs). SNNs such as Bayesian Neural Networks (BNNs) and
NoisyNets (Blundell et al., 2015; Fortunato et al., 2017; Plappert et al., 2017)
improve exploration through injecting parametric noise. Nevertheless, para-
metric noise has not been equally successful in actor-critic methods ((Fortu-
nato et al., 2017), (Plappert et al., 2017)), which are of particular interest be-
cause they have performed at a state-of-the-art level in many environments,
including Atari games (Bellemare et al., 2013) and continuous robotics con-
trol (Wang et al., 2016b). Similar to other model-free approaches, DRL-based
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actor-critic methods are also highly sensitive concerning model architecture
and other hyperparameter selections. It is therefore essential yet non-trivial
to discover means to strengthen actor-critic methods with stochastic modeling
components. We propose to directly sample intermediate latent representa-
tions shared by both the policy and value network to propagate more complex,
structured perturbations, contrasting parametric noise where the weights for
the two networks are jittered independently1. Particularly, we contribute to the
development of a family of stochastic activation A3C models that effectively in-
corporate stochastic activations on top of the LSTM-Asynchronous Advantage
Actor-Critic (Mnih et al., 2016a, A3C-LSTM), a framework representing the
current state-of-the-art in many RL tasks.

An important subsequent contribution of this work is a thorough investiga-
tion of the empirical performance of stochastic activation A3C on 7 Atari 2600

benchmark games with stochastic skip frames, where our models generally
outperform both the SOTA baseline A3C-LSTM and its NoisyNet variant with
stochastic weights. Further examination over these experiments demonstrates
the decrease of variance over approximated values from multiple samples of
stochastic activations during training, indicating a reduction of model uncer-
tainty. An empirical analysis of the converged value and policy networks also
shows our proposed models reflecting the environment’s intrinsic stochastic-
ity. We then provide a mathematical link between stochastic activations and
a special case of stochastic weights yet highlight their essential practical dis-
crepancies. As an additional contribution, we advance beyond the on-policy
A3C-LSTM and incorporate stochastic activations to methods with experience
replay and continuous action spaces, namely deep deterministic policy gra-
dients (DDPG) (Lillicrap et al., 2016) and actor-critic with experience replay
(ACER) (Wang et al., 2016b). Pseudocode and full experimental details are in
the Appendix; code and video demos are in the Supplementary Materials.

The rest of this paper is organized as follows: first, we discuss related works
and preliminaries. Then, we motivate and introduce stochastic activation A3C
and our primary model, Stochastic A3C (SA3C), along with two important
variants to underline the flexibility of this technique. Next, we present our ex-
perimental setup and results, evaluating stochastic units’ overall performance
against baselines and stochastic weights. Finally, we analyze and interpret

1 This chapter is based on our ECML 2019 paper (Shang et al., 2019b).
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Figure 2.1: The baseline A3C-LSTM has deterministic latent units and weights only

(blue). NoisyNet has stochastic weights (red) over policy and value networks indepen-

dently. Our proposed methods have stochastic units shared by the two pathways with

different configurations. SA3C has half deterministic and half stochastic units in the

intermediate layer; FSA3C has only stochastic units. HPA3C is the same as SA3C but

regularized with hierarchical prior from preceding time step during training.

these results and provide practical advice such as model and hyperparameter
selections along with algorithm limitations.

2.2 related work

The treatment of uncertainty has been a long-standing challenge in RL, and
several lines of research have studied how to address this challenge. Our work
is most connected to two general directions, incorporating stochastic compo-
nents during (1) exploration and (2) inference process.

Epistemic uncertainty, i.e., model uncertainty, reduces as the agents gather
more information via exploration. Many exploration mechanisms employ ran-
domized actions instead of always using the best current model (exploitation)
to gather more information. These mechanisms include Bayesian methods such
as Thompson sampling (Ghavamzadeh et al., 2015), action-dithering schemes
such as ε-greedy (Sutton and Barto, 1998b), value randomization such as ran-
domized least-squares value iteration (RLSVI) or with Gaussian Processes (Os-
band et al., 2016; Kuss and Rasmussen, 2004), et cetera. Many of these mecha-
nisms have also been adapted to the context of DRL, such as Thompson sam-
pling via BNNs (Blundell et al., 2015; Wang and Zhou, 2019) and deep value
randomization (Osband et al., 2017; Touati et al., 2020).

One approach developed in the related field of stochastic optimal control
(SOC) uses inference techniques for finding the best actions under uncertain
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dynamics. The return (or related RL objectives) is defined as a factor in a graph-
ical model, and probabilistic inference is applied to determine a sequence of
actions optimizing this objective (Todorov, 2008). These probabilistic frame-
works have inspired DRL algorithms, such as distributive DQN (Bellemare et
al., 2017) and deep probabilistic inference for learning control (PILCO) (Gal
et al., 2016). Recently, DRL models built upon the maximum entropy frame-
work (Ziebart et al., 2008) by augmenting the standard RL objective with an en-
tropy maximization term to achieve probabilistic inference have gained much
attention, thanks to the potential of improving exploration and generalization
in the face of uncertainty (Haarnoja et al., 2018b). These works also shed light
on our proposed framework in retaining a distributive perspective over values
and allowing stochastic policies.

The partially-observable setting explicitly addresses uncertainty about the
state that the agent is in. A common strategy compresses the unbounded
history of observations into belief states and then applies RL to the belief
states (Murphy, 2000). Analytical belief state updates require knowledge of
the observation model and transition model – even then is exponential in the
number of state variables (Murphy, 2000). DRL-based algorithms that incor-
porate recurrent modules (Mnih et al., 2016a) implicitly maintain analogous
internal states. However, these internal states are usually deterministic; in con-
trast, our model samples its internal states from Gaussian distributions, more
similar to belief state approximations in continuous state systems (Prentice and
Roy, 2007).

Our proposed technique fills an important gap in DRL-based actor-critic
methods such as A3C-LSTM, where there has been lacking a general yet ef-
fective way to include stochastic elements. We apply high-level insights from
Bayesian deep learning (Kingma et al., 2015), in particular the use of SNNs, to
RL. Applications of SNNs in ML have a long history, (Neal, 1990) (Tang and
Salakhutdinov, 2013) to list a few. In the regime of RL, SNNs have also shown
promising results. For instance, recently, (Fortunato et al., 2017) and (Plappert
et al., 2017) concurrently proposed to add independent parametric noises to the
FC layers for better exploration, resembling BNNs but without the convergence
to a posterior. In contrast, our model perturbs (part of) the intermediate activa-
tions, which are eventually shared by the actor and critic, allowing structured
exploration via better-correlated randomness on both paths. Similar SNNs
have been employed in several hierarchical RL systems to embed complex
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skills in an abstract form for higher-level tasks (Florensa et al., 2017). (Pritzel
et al., 2017) leverages a special case, the variational autoencoder Kingma and
Welling, 2013, to extract latent representations from raw observations for mea-
suring similarities between states. In these works, the SNNs are separately
trained. We directly alter a part of the deterministic units within the baseline
models to become stochastic and train the model end-to-end. Finally, recent
works propose to measure model uncertainty using DNNs with a special type
of stochastic unit, dropout unit, in the context of, e.g. better safety (Gal and
Ghahramani, 2016; Kahn et al., 2016).

2.3 preliminaries

We consider the standard discrete time step, discounted RL setup. An agent at
time t observes ot, which is a function of its state st, and chooses an action at

guided by a policy πt. Its ultimate objective is to maximize the accumulative
expected return over time R = E(st ,ot ,at)∼πt [rt], where rt is the reward at time t.
This section focuses on introducing the primary baseline algorithm used in our
work, batch A3C-LSTM. To demonstrate the generalizability of our proposed
method, we perform additional experiments using actor-critic methods with
off-policy replays, and the descriptions of these models are introduced later in
Section 2.4.2.

Asynchronous advantage actor-critic (A3C) (Mnih et al., 2016a) is a model-
free, on-policy RL algorithm. Multiple agents are spawned to concurrently
interact with the environments with different random seeds and optimize a
shared model that approximates both the policy and value functions through
asynchronous gradient descent to trade-off bias and variance. A3C models can
either be composed of only Convolutional Neural Networks (CNNs) or with
an additional recurrent module, usually an LSTM cell. We choose the latter, for
it can learn more complex state representations to tackle, e.g. partially observ-
able environments with longer time dependencies. Recently, batch A3C-CNN
was developed for faster training and efficient utilization of GPUs (Adamski
et al., 2016). We also take advantage of mini-batch training on A3C-LSTM for
better stability and apply synchronous descents (Adamski et al., 2016), where
backpropagation waits for all agents to finish their actions to avoid stale gradi-
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ents (Chen et al., 2016a). Some also refer to similar algorithms as A2C (Wang
et al., 2016a).

A3C-LSTM (Figure 2.1) consists of a CNN to extract features from raw ob-
servations, an LSTM cell to compress history, and a value and policy networks.
We denote the features extracted by the LSTM as ht= fLSTM(CNN(ot), ht−1). In
order to be consistent with models introduced later on, we further add two
sets of Fully-Connected (FC) layers on top of ht, obtaining their concatenation
[ fFC1(ht), fFC2(ht)] as inputs to the value and policy networks. This structure
allows us to later make either or both of these pathways stochastic. The objec-
tive for the value network is to estimate the state value Vt by regressing the
estimated tmax-step discounted returns with discount rate γ ∈ (0, 1) (Equa-
tion 2.1); the policy network proposes a policy πt and is guided by advantage-
based policy gradients using the generalized advantage estimation Â (details
see (Schulman et al., 2016)), regularized by an entropy term to encourage ex-
ploration (Equation 2.2).

Value estimation objectvie: LVt = Est ,ot ,at(Σ
tmax
t′=tγ

t′−trt′ −Vt)
2, (2.1)

Policy gradient with entropy regularization: ∇θ log πt(Ât) + β∇H(πt). (2.2)

Finally, we also compare our proposed method with a sthochastic weight vari-
ant of A3C-LSTM, NoisyNet A3C (NN-A3C, Figure 2.1). The construction
mostly follows (Fortunato et al., 2017) and more details are illustrated in the
Appendix.

Our architecture and training protocol produce a state-of-the-art level A3C-
LSTM, which is an essential component in our work since we aim at develop-
ing a technique that is highly competitive, even surpassing the performance
of a very powerful baseline. We compare the baseline A3C implementation
replicated by us with another mainstream version as well as human players in
Table 2.1.

2.4 actor critic methods with stochastic acti-
vation

This section first illustrates how to integrate stochastic activations into A3C-
LSTM, arriving at a family of models named stochastic activation A3C. We
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Algorithm 1 SA3C

Initialize network parameters θ Fix variance σ2 for k = 0, 1, 2, · · · do
Clear gradients dθ ← 0 Simulate under current policy πt−1 until tmax

steps are obtained, where, ht = fLSTM(CNN(ot), ht−1), µt = fmean(ht), kt =

fd(ht), zt ∼ N (µt, σ2
t = σ2), Vt = fv(zt, kt), πt = fp(zt, kt), t = 1, · · · tmax

R =

 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R← rt +γR At ← R−Vt Accumulate gradients from value loss: dθ ←
dθ + λ

∂A2
t

∂θ δt ← rt + γVt+1 − Vt Ât ← γτÂt−1 + δi Accumulate pol-
icy gradients with entropy regularization: dθ ← dθ +∇ log πt(at)Ât +

β∇H(πt)

end

end

then describe in details how to construct the primary stochastic activation A3C
used in our work, along with two additional variants. Finally, we extend the
technique of stochastic units to actor-critic methods with off-policy training,
namely DDPG and ACER.

2.4.1 Stochastic Activation A3C

Inspired by the SNN design from (Tang and Salakhutdinov, 2013) whose inter-
mediate units are half deterministic and half stochastic in order to encode infor-
mation of different uncertainty levels, we craft an initial version of stochastic
activation A3C in a similar manner, termed stochastic A3C (SA3C). Following
the output of the LSTM hidden state ht, the next layer is split into a determin-
istic channel and a stochastic channel. The deterministic channel kt= fdet(ht)

is parameterized by a FC layer. The stochastic units follow factored Gaussian
distributions. The variance is, for now, set to a fixed value and treated as a
hyperparameter, but note that subsequent layers can learn to rely on the de-
terministic or the stochastic units in any proportion to manage the amount
of noise in the value and policy functions. The mean µt= fmean(ht) is also
parameterized by a FC layer. The pseudocode for SA3C is in Algorithm 1.
Fully-Stochastic A3C (FSA3C) is an interesting control setup that replaces the
deterministic channel with a stochastic one and attains a fully-stochastic inter-
mediate representation. Hierarchical Prior stochastic activation A3C (HPA3C)
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Figure 2.2: Training curves over 3 runs (median); vertical: rewards; horizontal: iter-

ations. For Atari games, we plot the curves for the baseline and the best stochastic

activation model along with the interquartile range. For the rest, we compare among

the baseline, SA3C and then stochastic weights.

is inspired by BNNs that craft their priors to the model parameters in order to
achieve certain effects, such as inducing sparsity (Louizos et al., 2017a). Anal-
ogously, HPA3C adds a KL-divergence between the stochastic activation dis-
tribution and a prior to the objective function. Specifically, the prior for the
variance is fixed to a value σ2, treated as a hyperparameter, and the prior for
µt is derived from the previous step stochastic latent sample.2 Our design is
also similar in spirit to latent forward modeling (Tian and Gong, 2017) where
the history predicts and guides the future, but in a more implicit form of prior
regularization:

Derivation of µ
p
t : zt−1∼N (µt−1, σ2), µ

p
t = f p(zt−1),

Prior regularization: KL
[
N (µt, σ2

t )
∥∥∥N (µ

p
t , σ2

]
= log

σ

σt
+

σ2
t +(µt − µ

p
t )

2

2(σ)2 −1
2

.

We found that a proper prior choice is critical — omitting either the prior on
the mean or the variance significantly deteriorates the model performance.The
pseudocode for HPA3C is in the Appendix.

Forward propagation through stochastic activation A3C is identical to A3C-
LSTM, except that the stochastic activations zt are sampled from N (µt, σt) and
then concatenated with the deterministic counterpart kt as the inputs for the

2 All operations are element-wise because of the factored Gaussian assumption.
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Game Human∗ A3C† NN-A3C†

Seaquest 28010 1744±0 943±41

BeamRider 5775 9214±608 11237±1582

MsPacman 15693 2436±249 3401±761

Boxing 4.3 91±1 100±0

Breakout 31 496±56 347±27

Qbert 13455 18586±574 17896±1522

Freeway 29.6 0±0 18±13

Game A3C NN-A3C Stochastic Act.

Seaquest 13922±4920 894±313 29656±5317

BeamRider 9214±608 6117±1808 13779±3605

MsPacman 4670±1864 4096±1351 5590±1521

Boxing 99.5±1.0 94±4.4 100±0.0
Breakout 588±180 570±252 621±194

Qbert 15333±2462 14352±1335 16045±556

Freeway 23.3±1.2 22.4±0.8 23.9±1.3

Table 2.1: Results with ∗ and † are cited from (Mnih et al., 2015) and (Fortunato et al.,

2017). Due to stochastic frame skipping in our setups which generally yield more

difficult environments, our results (last 3 columns) are not precisely comparable to †.

Nonetheless we can still clearly conclude the competitiveness of our baseline imple-

mentation. The last column presents the results from the optimal stochastic activation

models.

policy and value networks. Backpropagation via the stochastic units is done
by the reparametrization trick (Kingma and Welling, 2013).

Lastly, it is worth noting that while our models employ Gaussian units
thanks to their flexibility and ease to train, the proposed framework can adopt
other stochastic units as well. We conduct preliminary experiments with dropout
stochastic units in the Appendix and leave further investigation along this di-
rection to future works.

2.4.2 DDPG and ACER

Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al., 2016) is an off-
policy actor-critic method. It explores via injecting action space noise, com-
monly from the Ornstein-Uhlenbeck process. We equip DDPG with paramet-
ric noise (Plappert et al., 2017) (PG-DDPG) or stochastic activation (SDDPG).
We do not incorporate an LSTM module to DDPG and its variants. Thus, the
baseline algorithm follows exactly as in (Lillicrap et al., 2016) and its paramet-
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ric noise version, PN-DDPG, exactly as in (Plappert et al., 2017) but without
randomizing the convolutional layers. Unlike A3C-LSTM, DDPG keeps sepa-
rate encoders for the actor and critic. We only use stochastic activations to the
behavior actor network and not to off-policy training.

Actor Critic with Experience Replay (ACER) (Wang et al., 2016b) is a sample-
efficient actor-critic algorithm with a hybrid of on/off-policy gradients. We
compare amongst ACER and its variants with stochastic units or noisy layer.
Augmenting ACER with stochastic activation (SACER) follows the same pro-
tocol as augmenting A3C-LSTM with stochastic activation and we also use
stochastic activations for off-policy training. As an additional comparison, we
construct a NoisyNet version of ACER, NN-ACER by similarly randomizing
the value and policy networks as in NN-A3C. The pseudocode of our ACER
and its stochastic variants are in the Appendix.

2.5 experimental setup and results

This section first introduces the environments used in our experiments. Exten-
sive ablation studies are done on the Atari games. We then discuss the empiri-
cal advantages of stochastic activation A3C over its deterministic baseline and
how its design flexibility can adapt well to a variety of environments and tasks.
Finally, we present additional results generalizing SA3C to off-policy methods,
namely DDPG and ACER, on BipedalWalker2D and CarRacing.

2.5.1 Environments

Our experiments are primarily done in an on-policy manner on seven selected
classic Atari 2600 games contained in the Arcade Learning Environment (Belle-
mare et al., 2013) and interfaced via OpenAI Gym (Brockman et al., 2016) to
cover a diverse range of tasks and exploration types (Bellemare et al., 2016).
Full descriptions of these games are in the Appendix. To avoid memoriza-
tion and impose more randomness, we use the stochastic frame-skipping: each
action is repeated for a number, uniformly sampled between 2 and 4, of con-
secutive frames. Exploration type is categorized by the taxonomy from (Belle-
mare et al., 2016). The stochasticity of Atari games originates from multiple
sources, including frame-skipping, partial observation of some environments,
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: 2 : 2 : 1 : 3 : 2 +fire: 5

Figure 2.3: For SA3C, stochastic activations can result in stochastic policies. The less

ambiguous the environment is, the more certain the policies become (left to right).

Arrows indicate the direction of movement, followed by the number of times this

action being selected (out of 5 samples).

the non-stationary policy during training, approximation errors, et cetera. For
preprocessing, we crop Atari games to display only the game playing region,
subtract estimated mean and divide standard deviation, and rescale to 80× 80.

DDPG models are tested on a continuous task, BipedalWalker2D, where a
robot needs to reach the end of a path within a time limit and positive reward
is given for moving forward, totaling ≥ 300 for reaching the end, while a
negative reward of −100 is given for falling. No preprocessing is done for
this environment. ACER models are tested with CarRacing, a simple driving
simulator whose observations consist of an RGB top-view of a race car and
a black bar containing other driving information. We only receive the pixel-
valued observations and also discretize its action space. More details on the
preprocessing of CarRacing is provided in the Appendix.

2.5.2 Stochastic Activation A3C Results

hyperparameters and model architecture For Atari, hyperparameters
are tuned on Seaquest A3C-LSTM and then transferred to other games. We
inherit all common hyperparameters from A3C-LSTM to stochastic activation
A3Cs and only tune the additional ones, namely σ2 for SA3C and FSA3C,
HPA3C and the KL term weight for HPA3C. In particular, we would like to em-
phasize the coefficient for entropy regularization is tuned to perform optimally
on the baseline–a higher value in fact deteriorates its performance; in other
words, any performance gain via stochastic activations cannot be replaced by
increasing the entropy term. For other environments, hyperparameters are
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tuned on the baseline and then transferred to stochastic weight/activation
models. Most games share a common model architecture, but we use a slightly
slimmer CNN for Boxing, Breakout and Freeway. Since HPA3C needs to learn
σt, more variance is introduced to the gradients and the resulting stochastic
activations require further normalization. After trial-and-error with several
techniques such as Batch (Ioffe and Szegedy, 2015) and Layer (Ba et al., 2016)
Normalization, we pick the most effective option–concatenated ReLU (Shang
et al., 2016). The full details are in the Appendix.

evaluation protocol We report Atari results on A3C-LSTM, NN-A3C, SA3C
and the best performing stochastic activation A3C variant in Table 2.2 follow-
ing the protocol:

1. Train 3 independent runs—a standard DRL practice (Ostrovski et al.,
2017; Wu et al., 2017).

2. For each run, validate the current model on a non-training random seed,
select the best (validated) one after training.

3. Test the selected model for each run on 10 other random seeds not in-
cluded in training or validation, obtaining µ1 ± σ1, µ2 ± σ2, µ3 ± σ3.

4. Report the best µi ± σi under the column “Best”.

5. Average across the 3 models, i.e. µ± σ over µ1, µ2, µ3, and report under
“Avg.”.

The proceeding protocol not only showcases how good a policy the algorithm
can attain if optimized well but also indicates variances in performance due to
policy gradient training. We also plot the training curves composed of average
validation scores with the standard deviation bars for Seaquest, Boxing and
Freeway in Figure 2.2, other games in the Appendix.

inference and stochastic policies Based on the protocol from (Fortunato
et al., 2017), NoisyNet is tested by setting the stochastic weights equal to the
learned mean. For stochastic activation A3Cs, there are multiple possibilities
during evaluation time. One is to only use the mean from the stochastic units,
referred to as Maximum A Posteriori (MAP)–borrowing the Bayesian terminol-
ogy. Alternatively, we sample the stochastic activations and vote the majority
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decision, leading to stochastic policies. Figure 2.3 shows the decisions out of
5 sampled policies for selected states: when there is no clear immediate goal,
e.g. no enemy around, decisions tend to diverge, but otherwise they agree.
Videos of Seaquest with deterministic polices from A3C-LSTM versus stochas-
tic policies from SA3C are included in the Supplementary Materials. Table 2.3
compares different evaluation schemes from Seaquest — for stochastic policies
we attempt 1, 5, and 50 samples — and 5 samples give the optimal results for
most models. If not mentioned otherwise, all stochastic activation A3C results
are obtained by voting among policies from 5 sampled activations.3

2.5.3 Actor-Critic Models with Experience Replay

We further integrate this technique to actor-critic methods with experience re-
play, namely ACER and DDPG. Complete hyperparameter details are in the
Appendix. For DDPG, we plot the median training curves out of 3 indepen-
dent runs in Figure 2.2. We found that DDPG is much less stable in training
comparing with A3C-LSTM. Adding stochasticity to DDPG does not improve
its training stability, which remains an open question. Nonetheless, SDDPG
tends to converge significantly faster than DDPG and DDPG-PN, at iteration
4000, 5900, and 6300, respectively (Table 2.4). For ACER, we plot the median
training curves out of 3 independent runs in 10K iterations in Figure 2.2. How-
ever, note that we stop the training once the environment is solved, i.e., average
validation score over 10 random runs ≥ 900 . Out of the 3 runs (with maximum
10K iterations), only SACER manages to solve the environment. The median
best scores attained by ACER is 891 and NN-ACER 859 (Table 2.5).

Stochastic activations boost the performances of the baselines and outper-
form parametric space noise. These results confirm the effectiveness of our
proposed method when coupled with experience replay.

2.6 discussion

To further investigate the roles of stochastic activations, we first inspect the
significance of a shared intermediate stochastic layer and then study the value

3 We use 1 sample for Freeway. As it only has 2 actions, voting would strongly diminish policy
stochasticity.
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t=340

t=340

Figure 2.4: A zoom-in of the variance plot at convergence (iter 150K). The variance

is generally low except for periods with high unpredictability. Around step 340, the

submarine has reached divers’ max capacity while the enemy is still emerging; the

submarine chooses to surface over shooting the enemy to gain more points. More

details see Section 2.6.2.

and policy learning process of SA3C. Our analyses support our conjecture that
the stochastic units implicitly reflect the unpredictability of the environment.
Lastly, we compare stochastic activations with stochastic weights, both theo-
retically and empirically. All of the experiments in this section are done on
Seaquest.

2.6.1 Shared Intermediate Stochastic Layer

One feature of our proposed SA3C is to incorporate the stochasticity in the
intermediate hidden layer shared by the value and policy networks4. As a re-
sult, the two paths adapt to a systematically propagated randomness instead
of their own independent jittering as in (Fortunato et al., 2017; Plappert et al.,
2017). Experimentally, we compare passing the perturbed mean (i.e., stochas-
tic activations) to the value network only, to the policy network only, and to
both as proposed. Injecting randomness to just the value network hamper the
training (2438 ± 372), indicating the difficulty of capturing the value uncer-
tainty without acting accordingly. The policy network only version leads to a
comparable performance as the baseline (13410± 6281) but much worse than
SA3C, meaning that the stochastic signals cannot be fully leveraged if not well
coordinated with the critic.

4 For DDPG, since the encoding network is not shared, the stochastic activations are only for the
policy.
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2.6.2 Value Learning

Motivated by recent works using dropout units to estimate uncertainty (Gal
and Ghahramani, 2016; Kahn et al., 2016), we obtain and analyze uncertainty
estimations by calculating the sample variance of multiple approximated val-
ues over sampled stochastic activations. Concretely, for SA3C models at differ-
ent training stages, we sample stochastic activations 5 times for each time step,
calculate the variances of those resulting values and plot these in Figure 2.5 for
the first 700 time steps, that is

ˆσv2=
1

N − 1

N

∑
i=1

(
fV(kt, zt)i − f̄V

)2 , f̄V=
1
N

N

∑
i=1

fV(kt, zt)i, N=5, t=1 · · · 700.

The variances tend to go down over training (Figure 2.5). This behavior is rem-
iniscent of (Bayesian) models employing distributions over the weights, where
these distributions reflect parametric uncertainty. Indeed, there is a connection
between stochastic weights and activations that we will discuss more later. De-
spite the fixed variance of the noise in the stochastic units, the value network
is clearly capable of gradually adapting the variance through learning. This
can be achieved by shifting focus from stochastic units to deterministic units
in downstream computations.

At convergence time, the value network usually approximates with little vari-
ance, reflecting low uncertainty, except for a surge period around step 340 (Fig-
ure 2.4).

Time Step 100 200 300 400 500 600
0

0.0005

0.001

0.0015

0.002

Iter 100 Iter 2000 Iter 6000 Iter 75000 Iter 150000

Figure 2.5: At different training iterations

for SA3C, we sample 5 Vts via stochastic ac-

tivations for t = 1..700, plot their variances

and observe the general trend of variances

descends over training.

This corresponds to a special event
where different actions can lead to
varying amounts of rewards: the sub-
marine has reached the maximum ca-
pacity of rescued divers, and it can
either shoot the upcoming enemy to
gain some points or surface to collect
a large number of rewards by releas-
ing the divers—eventually the subma-
rine chooses the latter. The ambigu-
ous situation can increase the vari-
ance compared to those with a clear
target, compared to 340, 600, and
160. Therefore, we argue that SA3C’s
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@Iter 75K Iter 150KIter 75KIter 6KIter 2KIter 100

A3C-LSTM SA3C

Figure 2.6: The entropy distributions of actions sampled via Boltzmann exploration

for A3C-LSTM and via Boltzmann exploration plus stochastic activations for SA3C.

The entropy of SA3C spreads evenly over time, allowing structured exploration, while

A3C-LSTM stays around 2.75.

adaption to stochastic activations is not merely reducing the influence of the
stochastic units, but rather carefully balancing between the deterministic and
stochastic signals to implicitly establish a distributional perspective over re-
turns and values, a beneficial trait for RL (Barth-Maron et al., 2018) and a
proper reflection of the environment unpredictability.

2.6.3 Policy Learning

Next, we study the distributions of actions sampled during training. The de-
fault exploration for A3C-LSTM samples the next action from the distribution
output by the policy network. In the case of stochastic activation A3Cs, on
top of the default exploration, there is another sampling step over latent repre-
sentations, i.e., to obtain stochastic activations. We are interested in how this
additional modulation can make a difference. At different training iterations,
we sample 50 actions from A3C-LSTM and SA3C for each time step follow-
ing the above protocols, calculate the empirical entropy based on the sampled
action spaces and plot the distributions in Figure 2.6 (over time step 1-700).

Initially (iteration 100), the sampled actions from both models are of high
entropy. While training progresses, the entropy of SA3C starts to spread over
a relatively even spectrum of values, whereas that of A3C-LSTM still concen-
trates around 2.75. The entropy regularization can explain the persistent high
entropy for A3C-LSTM. Nonetheless, SA3C is given the same objective. Thus
we reckon SA3C overcomes the entropy objective once the model has reached
some level of parametric certainty. Then, based on how ambiguous the current
environment is, SA3C modulates the amount of uncertainty communicated
through the policy network distributions and leads to more structured action
sampling for exploration compared to the closer-to-uniform action sampling
in A3C-LSTM.
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2.6.4 Comparison to Parametric Noise

Mathematically, stochastic activation SA3Cs can be linked to parametric noise
with the aid of the local reparametrization trick (Kingma et al., 2015), which
theoretically corroborates the reduction of model uncertainty. As an example,
we derive the correspondence between SA3C and a special case of parametric
noise where the hyperparameter-variance of the weights are fixed:

Proposition 1. For an MLP layer, denote its input X ∈ Rn and output Y ∈ Rm, if the
posterior approximation of the weights to the MLP follows the distribution of a factored
Gaussian W ∼ N (U, V)5 with U, V ∈ Rn×m and vi,j = σ2 to be a fixed value, then
sampling the weights is equivalent to sampling its activation Y ∼ N (UTX, σ2‖X‖2).

Proof. With the chosen posterior, the activation of the FC layer with stochastic
weights follows the distribution yi ∼ N (∑n

j uijxj, ∑n
j vijx2

j ), where yi is the ith
entry in Y. Since vij = σ2 for any i, j, we conclude Y ∼ N (UTX, ‖X‖2

2V).

In practice, Atari experiments skip the scaling of V in proportion to ‖X‖2
2, as

the pre-activation ht’s are generally of similar magnitude thanks to the LSTM
module.

Despite the connection, in practice, SA3C differs from parametric noise from (Plap-
pert et al., 2017) as it does not need adaptive variance adjustment to per-
form competitively; it also differs from NoisyNet, as it does not learn the
variance—in fact, we empirically observe naive learning of the variance can
hurt the training. But similarly to NoisyNet and in contrast to BNNs, ap-
proximated posteriors to the weights are absent to avoid complication over
optimization. This practical trick has appeared in other algorithms derived
from variational Bayes (Sohn et al., 2015). Meanwhile, the general framework
of stochastic activation A3C still allows variance learning and the presence of
a prior, as in the case of HPA3C. The setup of HPA3C, shown to be highly
effective for several Atari games, is arduous to formulate in the context of
stochastic weights, highlighting another important advantage of our proposed
method—design flexibility.

There are other differences between stochastic weights and activations, which
we will explain using NoisyNet. First, generally, NoisyNet does not surpass the

5 We abuse the notation here to represent factored Gaussian: U, V are both matrices of dim
n×m and each entry of V represents the variance of the corresponding entry in U.
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performance of deterministic A3C-LSTMs; we conjecture that although para-
metric noise properly facilitates optimization in value methods, it might not
be suitable when the actor and critic are intertwined. In contrast, stochastic ac-
tivations add randomness on top of representations simultaneously impacting
both the actor and critic, henceforth yielding more structured perturbations
than independently jittering the two networks’ weights. Also, in (Fortunato
et al., 2017), during training, stochastic weights for each agent are sampled per
iteration (update). In contrast, we sample stochastic activation per time-step
(game frame) and potentially induces a more complex change over policy and
value learning. Although in practice, stochastic weights can also be sampled ei-
ther way, empirical comparison (Table 2.5, both evaluated with MAP) confirms
that NoisyNet is more compatible with per-iteration sampling and SA3C with
per-time step. Consequently, the per-time step sampling can give rise to policy
stochasticity based on the states’ ambiguity level, as discussed in Section 2.5.2.

2.7 practical advice and algorithm limitations

Stochastic activation is a general approach to improve A3C but not the panacea
to every environment and task. Fully observable environments, such as Break-
out, benefit less from stochastic activations. Environments with sparse rewards
like Freeway also receive a more limited performance boost. RL problems with
sparse rewards and/or more complex logic will require more specialized sys-
tems combined with stochastic units, such as curiosity-driven exploration.

The flexibility of stochastic activation A3C allows an effective application to
a diversity of tasks, but the model selection can appear labor-demanding at first
glance. From our experiences, SA3C is the go-to model as an initial attempt;
if more aggressive exploration seems appropriate, FSA3C is a good candidate;
if forecasting the upcoming states is essential in solving the task or rewards
are sparse, HPA3C will likely perform better and more stable. One can thus
always easily customize the stochastic activation A3C to meet the need of the
task.
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2.8 conclusion

We proposed a flexible and straightforward technique to improve DRL-based
actor-critic methods by adding stochastic activations. The proposed method
outperforms existing state-of-the-art baselines on a variety of benchmarks. In
future work, we hope to integrate the proposed technique with curiosity-driven
exploration to address problems with sparse rewards and experiment with
other types of stochastic units such as binary units for feature level count-
based exploration (Ostrovski et al., 2017) or other intrinsic motivations (Aubret
et al., 2019).
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Game A3C-LSTM SA3C NoisyNet

Best Avg. Best Avg. Best Avg.

Seaquest 13922 6785 28876 23411 849 1332

±4920 ±5050 ±4270 ±4783 ±313 ±367

BeamRider 9214 8723 9994 8966 6117 5838

±608 ±627 ±3717 ±1013 ±1808 ±287

MsPacman 4670 3973 4960 4743 4096 3705

±1864 ±543 ±1639 ±220 ±1351 ±297

Boxing 100 99.7 100 99.9 94 11.6

±0.0 ±0.2 ±0.0 ±0.0 ±4.4 ±59.6

Breakout 588 560 621 556 570 551

±180 ±22 ±194 ±45 ±252 ±25

Qbert 15333 14732 15560 15365 14352 11231

±2462 ±482 ±184 ±150 ±1335 ±3348

Freeway 23.3 22.8 22.4 21.6 22.4 21.5

±1.2 ±0.7 ±1.1 ±0.5 ±0.8 ±0.6

Game Optimal Model

Best Avg.

Seaquest HPA3C 29656±5317 24992±3356

BeamRider FSA3C 13779 ±3605 10551 ±2341

MsPacman FSA3C 5590 ±1521 5382 ±268

Boxing HPA3C 100.0±0.0 99.6±0.23

Breakout HPA3C 596±197 569±22

Qbert HPA3C 16045 ±556 15365 ±150

Freeway HPA3C 23.9 ±1.3 23.2±0.5

Table 2.2: We report Atari results following the evaluation protocol in Sec 2.5. SA3C

outperforms the baselines most of the time. The last column displays the results from

the optimal stochastic activation variants for each game which can further boost the

testing scores.
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Seaquest SA3C FSA3C HPA3C

MAP 27695±9096 4387±171 25474±8067

1 27081±6817 5090±1099 24475±4765

5 28876±4270 4453±592 29656±5317

50 28341±9839 4794±523 28341±9839

Table 2.3: Compare evaluating using µ only (MAP), using a single sampled stochastic

activation and averging over 5 or 50 stochastic activation outcomes. Sampling and

averaging 5 activations tend to be optimal.

DDPG SDDPG PN-DDPG

BipedalWalker 5900 3500 6300

ACER SACER NN-ACER

CarRacing 891 900+ 859

Table 2.4: Compare various actor-critic baselines with their stochastic-

activation/weight variants, tested on BipedalWalker and CarRacing. We report

the median iteration of solving the environmen for BipedalWalker and the median

best score in 10K iteration for CarRacing, where 300+ and 900+ are considered solved

for each task respectively.

Seaquest Per Iteration Per Time Step

NoisyNet 894±313 536±359

SA3C 3796±26 27695±9096

Table 2.5: Comparing per iteration and time-step noise injection to NoisyNet and

SA3C.





C H A P T E R A P P E N D I X

2.A more atari results

We provide more experimental results for Atari games. Table 2.G.1 compares
different evaluation schemes for stochastic activation A3Cs. Figure 2.G.2 com-
pares the training curves among the stochastic activation A3C variants from
the main text with the baseline A3C-LSTM.

2.B pseudocode

Pesudocode for baseline A3C-LSTM is Algorithm 2, for HPA3C is Algorithm 3,
ACER is Algorithm 4, and SACER is Algorithm 5.

2.C atari 2600 environment

See Table 2.C.1.

2.D carracing environment

CarRacing is a simple driving environment from the Box2D module of OpenAI
Gym. The observations consist of 96× 96 RGB top-view of the race car and
a black bar containing information regarding speed, ABS sensor outputs per
each wheel, steering wheel position, and gyroscope. During training, we only
receive pixel-valued observations. The observations are normalized by sub-
tracting mean and dividing by standard deviation and then resized to 80× 80.
The beginning of the game shows a top view of the entire track and slowly

41
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Exploration Type Remarks

Seaquest-v4 easy, score exploit
Players drive around a submarine to eliminate

enemies and save divers.

Boxing-v4 easy, human optimal
Players hit the opponent in a boxing game.

max score: 100

BeamRider-v4 easy, score exploit
Players pilot a fixed ship to clear enemy

sectors in the outer space.

Breakout-v4 easy, human optimal
Players bounce a traveling ball to hit and

eliminate bricks. max score: 864

MsPacman-v4 hard, dense reward
Players navigate Pacman through a 2D maze

to eat pellets and avoid ghosts.

Qbert-v4 hard, dense reward
Players need to alter the cube color in a

pyramid by making Qbert hop around while

avoiding obstacles and enemies.

Freeway-v4 hard, sparse reward
Players control chickens to run across highway

filled with traffic to reach the other side.

Table 2.C.1: Selected Atari Game Descriptions.

zooms in. As this period is irrelevant to our task, we set the zoom to a static
value. The original action space consists of 3 continuous values, namely break-
ing (0 to 1), steering wheel left to right (-1 to 1), and acceleration (0 to 1). We
discretize the continuous space to 4 general categories: braking, acceleration,
turning right, and turning left. We further provide 3 levels of intensity in ap-
plying the action for each category, namely soft, medium, and full-throttle, in
total yielding 12 discrete action options. The maximum total score possible, if
without any negative rewards, is 1000. Every tile the car clears is given 1000/N
points where N is the total number of tiles on the track, and every second used
for the game is given −5 points. We also reduce the FPS from 50 to 12.5 and re-
peat the action 4 times, to simulate the effect of (deterministic) frame-skipping,
while making the game computationally more efficient. The environment is
considered to be solved when the agent consistently achieves more than 900

points, and the OpenAI oracle agent scores 837, averaging over 100 games. We
test on 10 randomly generated games with different random seeds outside of
the training seeds at each iteration.
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2.E more on architecture and hyperparameters

We document the complete details on model architecture and hyperparameters
in this section.

model architecture All models start with a CNN encoder. Most envi-
ronments also use an LSTM module to incorporate longer time dependencies,
except for DDPG where we find that the training is much more stable with a
single CNN and stacked frames (4 frames). DDPG also uses separate encoders
on the actor and critic’s observations, whereas the other models share the same
CNN encoder. The CNN or CNN-LSTM part of the model architecture is doc-
umented in Table 2.G.2.

The CNN encoders are a generic composition of convolutional layers and
LeakyReLU nonlinearities. Two types of CNN encoders are used for Atari
games: one with fewer parameters for simpler games (Breakout, Boxing, and
Freeway) and the other with more parameters for the rest of the games. The
LSTM module has 512 hidden units. DDPG uses the same CNN encoder as
in (a3c2018) but without the LSTM module. ACER shares the same architecture
as A3C-LSTM for Seaquest, except that the value network now outputs 12

(number of actions for CarRacing) state-action value estimations instead of a
single state value estimation.

Seaquest BeamRider MsPacman Boxing Breakout Qbert Freeway

MAP 24601±4614 9886±1936 3665±1942 99.7±0.9 427±19 14772±2257 21.7±2.3

1 18749±6386 7331±1135 3368±1540 99.5±1.2 410±30 13535±2886 5.1±1.1

5 26550±8240 7826±1519 3344±1788 100.0±0.0 495±152 14772±1033 10.2±1.0

50 24552±6911 8580±1824 4267±1962 99.9±0.3 448±159 15227±290 19.8±0.9

Table 2.E.1: Dropout stochastic units tested on 10 random seeded games with MAP,

and voting from 1, 5, and 50 stochastic policies.

normalization of hpa3c. Since HPA3C needs to learn σt, more variance is
introduced to the gradients and the resulting stochastic activations require fur-
ther normalization. Because LeakyReLU allows the activations to concentrate
below 0 in avoidance of the noisy gradients from variance learning, stochas-
tic units’ effects are diminished. After trial-and-error with techniques such
as Batch (Ioffe and Szegedy, 2015) and Layer (Ba et al., 2016) Normalization,
we pick the most effective option—concatenated ReLU (Shang et al., 2016). In
theory, normalization techniques such as BatchNorm and LayerNorm can also
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adjust the output distribution, but they are not as effective in practice. We note
that with the right normalization, HPA3C exhibits more stable and consistent
training than A3C-LSTM and the other stochastic activation A3Cs.

normalization of ddpg In (Plappert et al., 2017), the authors achieve mean-
ingful perturbation from a uniform spherical Gaussian noise distribution by
normalizing the noisy layer’s activations. We also discover that without proper
normalization, the additional randomness from either weights or activations
can catastrophically hamper optimization. We conjecture that the lack of tanh
non-linear activation from LSTM can contribute to this issue. Therefore we
apply layer normalization after the linear layers with stochastic weights or ac-
tivations in DDPG.

hyperparameters Our models are optimized with Adam (Kingma and Ba,
2014) through gradient descent using mini-batches of size 64, thus spawning 64
asynchronous agents—except for CarRacing, where we use 8 agents. For Atari,
hyperparameters are tuned on Seaquest A3C-LSTM baseline and then trans-
ferred to other games, with only small adjustments if necessary. We inherit all
common hyperparameters from A3C-LSTM to stochastic activation A3Cs and
only tune the additional ones, namely the variance for SA3C and FSA3C, the
variance prior and the KL term weight for HPA3C. For other environments,
hyperparameters are tuned on the baseline algorithm then transferred to other
related models, such as with parametric noise and stochastic activations.

For Adam optimizer, initial learning rate for all Atari games is 0.0005, ε =

0.001, β1 = 0.9, β2 = 0.999; gradients over 40 are clipped to 40. Discount
rate γ for return is 0.95. The objective for value estimation is weighted with
λ = 5 except for Freeway6 where λ = 0.5. The entropy term is weighted with
β = 0.01. The rewards are clipped between −1 and 1 except for Freeway, where
the reward is not clipped. The maximum rollout for LSTM is 20 time steps
except for Freeway’s 30 steps. The trace decay parameter for the generalized
advantage estimator is τ = 1.0 except for Freeway τ = 0.92. For the variance,
we set log(σ2) = −6 for Seaquest, MsPacman and Breakout and log(σ2) = −4
for the rest. The variance prior of HPA3C is set in the same way, and the KL
term is weighted with ψ = 0.0001. The maximum training iteration is 150K,

6 Freeway is a sparse reward game hence its hyperparameters are additionally tuned.
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but training is stopped early if model performance reaches a plateau or the
score is maximized.

In our ACER experiments, we follow most of the hyperparameters used for
Seaquest and train 10K iterations. Additional ACER hyperparameters include
the replay ratio to be 1, replay buffer size 15000, and replay start when the
buffer reaches 5000, trust decay for TRPO 0.99, trust threshold 1, model aver-
aging ratio 0.99, and importance weight truncation 10.

In our DDPG experiments, we use batch size 128, initial learning rate 0.0005.
For parametric noise, the initial noise standard deviation 0.05, the distance
threshold is 0.3, and the adapt coefficient is 1.05. For stochastic activation, we
set log(σ2) = −5.

2.F dropout stochastic units

Existing works (Gal and Ghahramani, 2016) have interpreted hidden units
equipped with stochastic dropout, traditionally a means to prevent overfitting,
from a Bayesian point of view. We test this alternative by replacing the Gaus-
sian units in SA3C with dropout units of an optimal dropout rate 0.25. We
test with no dropout (MAP) during the evaluation, a single forward pass with
dropout, and averaging over 5 or 50 forward passes with dropout. Dropout
can improve upon baseline A3C-LSTM in some of the games but does not out-
perform the best Gaussian stochastic activation model (Table 2.G.1). However,
it is a worthwhile future direction to more closely investigate the link with,
and potential benefits of, a formal Bayesian treatment of stochastic activations
with the aid of dropout stochastic units.

2.G more on noisynet a3c-lstm

As there is no existing published implementation of NoisyNet to A3C-LSTM
frameworks, we experimented with different configurations as shown in Fig-
ure 2.G.1. NoisyNet-v1 only randomize the value and policy networks (in red).
As we have additional FC layers after LSTM before the policy and value net-
works, NoisyNet-v2 attempts to randomize those connecting FC layers only.
Finally, NoisyNet-v3 randomize both connecting FC layers and the policy and
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LSTM

NoisyNet-v1

LSTM

NoisyNet-v2

LSTM

NoisyNet-v3

LSTM

NoisyNet-SA3C

Figure 2.G.1: Different variations of NoisyNet that we test for A3C-LSTM as well as

an integration with SA3C. Stochastic connections and activations are in red.

value networks, following the protocol of the A3C-NoisyNet in Fortunato et al.,
2017.

For fairness, all models are evaluated using the MAP protocol. We test the
3 NoisyNet configurations on Seaquest. NoisyNet-v2 and v3 results in per-
formance at the level of random moves, indicating that no meaningful train-
ing happened, and randomizing the connecting FC layer is detrimental to
optimization. NoisyNet-v1 indeed learns up to some degree, but the per-
formance (894± 313) is significantly worsened from the baseline A3C-LSTM
model (13922± 4920); however, since it is the most promising configurations
out of all possibilities, throughout the main text, we apply this architecture for
any NoisyNet related experiment.

Lastly, we investigate how weight randomization affects stochastic activa-
tions and integrate NoisyNet to SA3C, forming NoisyNet-SA3C. NoisyNet-
SA3C achieves 16037± 7438, better than NoisyNet-A3C-LSTM or A3C-LSTM,
but substantially worse than SA3C (27695± 9096). Indeed, stochastic activa-
tions can help alleviate the difficulty of taming stochastic weights to some de-
gree. Still, the two are not necessarily complementary, and stochastic weights
can lower stochastic activations’ performance.
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Figure 2.G.2: Compare different stochastic activation A3C with baseline. Training

curves over 3 runs (median).

Seaquest BeamRider MsPacman Boxing Breakout Qbert Freeway

SA3C

MAP 27695±9096 9970±3428 4816±1569 99.4±1.2 497±139 15530±480 22.4±1.1

1 27081±6817 9648±2623 4819±1569 99.5±0.8 524±180 15330±146 22.4±1.1

5 28876±4270 9319±2125 4830±1595 99.2±1.6 493±135 15570±462 21.3±0.6

50 28341±9839 10540±3176 5096±1283 99.9±0.3 552±162 15530±480 21.2±0.6

FSA3C

MAP 4287±171 11105±3402 5590±1521 99.4±1.0 409±14 14095±1762 21.2±2.3

1 5090±1099 10108±2858 4464±1638 98.7±2.0 422±27 14592±1943 24.2±0.6

5 4453±592 13779±3650 5304±1920 99.6±0.8 412±18 14017±1935 21.2±0.6

50 4794±523 9401±2207 3988±1697 99.4±1.8 423±89 14412±1652 21.3±0.6

HPA3C

MAP 25474±8067 3349±2171 4515±2116 98.9±1.4 437±197 15302±2535 21.2±0.6

1 24475±4765 4338±3017 4287±1765 99.6±1.2 564±167 13160±147 23.9±1.3

5 29656±5317 4951±2171 4131±1345 100±0.0 596±197 12035±4306 21.3±0.6

50 28341±9839 5278±2234 3988±1697 99.2±1.6 378±192 12030±4923 21.2±0.6

Table 2.G.1: We compare testing on 10 random seeded games with MAP, and voting

from 1, 5, and 50 stochastic policies.

Algorithm 2 A3C-LSTM

Initialize network parameters θ for k = 0, 1, 2, · · · do
Clear gradients dθ ← 0 Simulate under current policy πt−1 until tmax

steps are obtained, where, ht = fLSTM(CNN(ot), ht−1), wt = fFC1(ht), kt =

fFC2(ht), Vt = fv(wt, kt), πt = fp(wt, kt), t = 1, · · · tmax R = 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R← rt +γR At ← R−Vt Accumulate gradients from value loss: dθ ←
dθ + λ

∂A2
t

∂θ δt ← rt + γVt+1 − Vt Ât ← γτÂt−1 + δi Accumulate pol-
icy gradients with entropy regularization: dθ ← dθ +∇ log πt(at)Ât +

β∇H(πt)

end

end
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Algorithm 3 HPA3C

Initialize network parameters θ Fix variance σ2 for k = 0, 1, 2, · · · do
Clear gradients dθ ← 0 Simulate under current policy πt−1 until tmax steps
are obtained, where, ht = fLSTM(CNN(ot), ht−1), µ

p
t = f p

mean(zt−1),µt =

fmean(ht), σ2
t = fvar(ht), kt = fd(ht), zt ∼ N (µt, σ2

t ), Vt = fv(zt, kt), πt =

fp(zt, kt), t = 1, · · · tmax R =

 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R← rt +γR At ← R−Vt Accumulate gradients from value loss: dθ ←
dθ + λ

∂A2
t

∂θ δt ← rt + γVt+1 − Vt Ât ← γτÂt−1 + δi Accumulate pol-
icy gradients with entropy regularization: dθ ← dθ +∇ log πt(at)Ât +

β∇H(πt) + φDKL(N (µt, σ2
t )||N (µ

p
t , (σp)2))

end

end
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Algorithm 4 ACER
Initialize network parameters θ Initialize average network parameters θa for
k = 0, 1, 2, · · · do

Clear gradients dθ ← 0 if on policy then
Simulate under current policy πt−1 until tmax steps are obtained, where,
ht = fLSTM(CNN(ot), ht−1), wt = fFC1(ht), kt = fFC2(ht), Qt = fv(wt, kt),
πt = fp(wt, kt), Vt = Qt · πt, t = 1, · · · tmax, set ρ̄t = 1

else
Retrieve experience (o1···tmax , r1···tmax , a1···tmax , µ1···tmax) from the memory
buffer, compute hi = fLSTM(CNN(ot), ht−1), wt = fFC1(ht), kt = fFC2(ht),
Qt = fv(wt, kt), πt = fp(wt, kt), Vt = Qt · πt, ρ̄t = πt/µt,t = 1, · · · tmax.

end

R =

 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R ← rt + γR At ← R − Vt LV ← 1
2(R − Qt(at))2 Calculate advan-

tage policy gradients: g ← ∇ log π(at)Ât Calculate KL gradients:
k ← ∇DKL(π

a
t ||πt) Accumulate trust region policy gradients with

entropy regularization: dθ ← dθ +∇θ(g−max(0, kT g−δ

||k||22
)k) + β∇H(πt)

Accumulate gradients from value loss: dθ ← dθ + λ ∂LV
∂θ Update Retrace

target: R← ρt(R−Qt(at)) + Vt

end
Update average model parameter: θa ← 0.99 ∗ θa + 0.01 ∗ θ

end
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Algorithm 5 SACER
Initialize network parameters θ Fix variance σ2 Initialize average network pa-
rameters θa for k = 0, 1, 2, · · · do

Clear gradients dθ ← 0 if on policy then
Simulate under current policy πt−1 until tmax steps are obtained, where,
ht = fLSTM(CNN(ot), ht−1), µt = fmean(ht), kt = fd(ht), zt ∼ N (µt, σ2),
Qt = fv(zt, kt), πt = fp(zt, kt), Vt = Qt · πt, t = 1, · · · tmax

else
Retrieve experience (o1···tmax , r1···tmax , a1···tmax , µ1···tmax) from the memory
buffer, compute ht = fLSTM(CNN(ot), ht−1), µt = fmean(ht), kt = fd(ht),
zt ∼ N (µt, σ2), Qt = fv(zt, kt), πt = fp(zt, kt), Vt = Qt · πt, ρ̄t =

πt/µt,t = 1, · · · tmax.
end

R =

 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R ← rt + γR At ← R − Vt LV ← 1
2(R − Qt(at))2 Calculate advan-

tage policy gradients: g ← ∇ log π(at)Ât Calculate KL gradients:
k ← ∇DKL(π

a
t ||πt) Accumulate trust region policy gradients with

entropy regularization: dθ ← dθ +∇θ(g−max(0, kT g−δ

||k||22
)k) + β∇H(πt)

Accumulate gradients from value loss: dθ ← dθ + λ ∂LV
∂θ Update Retrace

target: R← ρt(R−Qt(at)) + Vt

end
Update average model parameter: θa ← 0.99 ∗ θa + 0.01 ∗ θ

end
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layer input output size parameters

Default

conv1 observation 32×80×80 32, 5, 1, 2

conv2 conv1 32×40×40 32, 3, 2, 1

conv3 conv2 32×40×40 32, 5, 1, 2

conv4 conv3 32×20×20 32, 3, 2, 1

conv5 conv4 64×20×20 64, 3, 1, 1

conv6 conv5 64×10×10 64, 3, 2, 1

conv7 conv6 64×10×10 64, 3, 1, 0

conv8 conv7 64×5×5 64, 3, 2, 1

lstm conv8 512 1024

[FC1, FC2] lstm 1024

Slimmer

conv1 observation 32×80×80 16, 5, 1, 2

conv2 conv1 32×40×40 32, 3, 2, 1

conv3 conv2 16×40×40 32, 5, 1, 2

conv4 conv3 32×20×20 32, 3, 2, 1

conv5 conv4 64×20×20 32, 3, 1, 1

conv6 conv5 64×10×10 64, 3, 2, 1

conv7 conv6 32×10×10 64, 3, 1, 0

conv8 conv7 64×5×5 64, 3, 2, 1

lstm conv8 512 1024

[FC1, FC2] lstm 1024

1D

conv1 observation 32×24 32, 3, 1, 1

conv2 conv1 32×24 32, 3, 1, 1

conv3 conv2 64×25 64, 2, 1, 1

conv4 conv3 64×25 64, 1, 1, 0

Table 2.G.2: The encoder and recurrent modules for A3C-LSTM and ACER. The pa-

rameter tuple for convolutional layers corresponds to number of filters, kernel size,

stride size and padding size and for LSTM corresponds to number of hidden units.

After the conv layers are followed by LeakyReLU activation function, except some of

the slimmer CNN’s conv layers with the number of channels doubled at output stage

are followed by CReLU. The 1D CNN encoder is for DDPG on BipedalWalker2D.
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W O R L D G R A P H D E C O M P O S I T I O N TO
A C C E L E R AT E R E I N F O R C E M E N T
L E A R N I N G

3.1 introduction

Having investigated a general method of stochastic activation to improve explo-
ration in actor-critic methods for general RL problems, we turn our attention to
improve exploration and sample efficiency for a more specific scenario. Many
real-world applications, e.g., self-driving cars and in-home robotics, require
an autonomous agent to execute different tasks within a single environment
that features, e.g., high-dimensional state space, complex world dynamics, or
structured layouts. In these settings, model-free reinforcement learning (RL)
agents often struggle to learn efficiently, requiring a large number of experi-
ence collections to converge to optimal behaviors. Intuitively, an agent could
learn more efficiently by focusing its exploration in task-relevant regions, if it
knows the high-level structure of the environment.

We propose a method1 to 1) learn and 2) use an environment decomposition
in the form of a world graph, a task-agnostic abstraction. World graph nodes
are waypoint states, a set of salient states that can summarize agent trajectories
and provide meaningful starting points for efficient exploration (Chatzigior-
gaki and Skodras, 2009; Jayaraman et al., 2018; Ghosh et al., 2018). The di-
rected and weighted world graph edges characterize feasible traversals among
the waypoints. To leverage the world graph, we model hierarchical RL (HRL)
agents where a high-level policy chooses a waypoint state as a goal to guide ex-

1 This chapter is based on our ICML 2019 paper (Shang et al., 2019a).
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ploration towards task-relevant regions, and a low-level policy strives to reach
the chosen goals.

Our framework consists of two phases. In the task-agnostic phase, we obtain
world graphs by training a recurrent variational auto-encoder (VAE) (Chung
et al., 2015; Gregor et al., 2015; Kingma and Welling, 2013) with binary la-
tent variables (Nalisnick and Smyth, 2016) over trajectories collected using a
random walk policy (Ha and Schmidhuber, 2018) and a curiosity-driven goal-
conditioned policy (Ghosh et al., 2018; Nair et al., 2018). World graph nodes
are states that are most frequently selected by the binary latent variables, while
edges are inferred from empirical transition statistics between neighboring
waypoints. In the task-specific phase, taking advantage of the learned world
graph for structured exploration, we efficiently train an HRL model (Taylor
and Stone, 2009).

In summary, our main contributions are:

• A task-agnostic unsupervised approach to learn world graphs, using a
recurrent VAE with binary latent variables and a curiosity-driven goal-
conditioned policy.

• An HRL scheme for the task-specific phase features multi-goal selection
(Wide-then-Narrow) and navigation via world graph traversal.

• Empirical evaluations on multiple tasks in complex 2D grid worlds to
validate that our framework produces descriptive world graphs and sig-
nificantly improves both sample efficiency and final performance on these
tasks over baselines, especially thanks to transferring learning from the
unsupervised phase and world graph traversal.

3.2 related work

An understanding of the environment and its dynamics is essential for effec-
tive planning and control in model-based RL. For example, a robotics agent
often locates or navigates by interpreting a map (Lowry et al., 2015; Thrun,
1998; Angeli et al., 2008). Our exploration strategy draws inspiration from
active localization, where robots are actively guided to investigate unfamiliar
regions (Fox et al., 1998; Li et al., 2016). Besides mapping, recent works (Azar
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Proposed Framework Outline

Figure 3.1: Top Left: overall pipeline of our 2-phase framework. Top Right (world
graph discovery): a subgraph exemplifies traversal between waypoint states (in blue),

see Section 3.3 for more details. Bottom (Hierarhical RL): an example rollout from our

proposed HRL policy with Wide-then-Narrow Manager instructions and world graph

traversals, solving a challenging Door-Key task, see Section 3.4 for more details.

et al., 2019; Ha and Schmidhuber, 2018; Guo et al., 2018) learn to represent
the world with generative latent states (Tian and Gong, 2017; Haarnoja et al.,
2018a; Racanière et al., 2017). If the latent dynamics are also extrapolated, the
latent states can assist planning (Mnih et al., 2016b; Hafner et al., 2018) or
model-based RL (Gregor and Besse, 2018; Kaiser et al., 2019).

While also aiming to model the world, we approach this as abstracting both
the structure and dynamics of the environment in a graph representation. The
nodes are states from the environment and edges encode actionable, efficient
transitions between nodes. Existing works (Metzen, 2013; Mannor et al., 2004;
Eysenbach et al., 2019; Entezari et al., 2010) have shown benefits of such graph
abstractions but typically select nodes only subject to a good coverage the ob-
served state space. Instead, we identify a parsimonious subset of states that
can summarize trajectories and provide more useful intermediate landmarks,
i.e., waypoints, for navigating complex environments.

Our method for estimating waypoint states can be viewed as performing
automatic (sub)goal discovery. Subgoal and subpolicy learning are two major
approaches to identify a set of temporally-extended actions, “skills”, that allow
agents to learn to solve complex tasks efficiently. Subpolicy learning identifies
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Figure 3.2: Our recurrent latent model with differentiable binary latent units to iden-

tify waypoint states. A prior network (left) learns the state-conditioned prior in

Beta distribution, pψ(zt|st)=Beta(αt, βt). An inference encoder learns an approximate

posterior in HardKuma distribution inferred from the state-action sequence input,

qφ(zt|a, z)=HardKuma(α̃t, 1). A generation network pθ reconstructs a from {st|zt=1}.

policies useful to solve RL tasks, such as option-based methods (Daniel et al.,
2016; Bacon et al., 2017) and subtask segmentations (Pertsch et al., 2019; Kipf
et al., 2018). Subgoal learning, on the other hand, identifies “important states”
to reach (Şimşek et al., 2005).

Previous works consider various definitions of “important” states: frequently
visited states during successful task completions (Digney, 1998; McGovern
and Barto, 2001), states introducing the most novel information (Goyal et al.,
2019), bottleneck states connecting densely-populated regions (Chen et al.,
2007; Şimşek et al., 2005), or environment-specific heuristics (Ecoffet et al.,
2019). Our work draws intuition from unsupervised temporal segmentation
(Chatzigiorgaki and Skodras, 2009; Jayaraman et al., 2018) and imitation learn-
ing (Abbeel and Ng, 2004; Hussein et al., 2017). We define “important” states
(waypoints) as the most critical states in recovering action sequences generated
by some agents, which indicates that these states contain the richest informa-
tion about the executed policy (Azar et al., 2019).

3.3 learning world graphs

We propose a method for learning a world graph Gw, a task-agnostic abstraction
of an environment that captures its high-level structure and dynamics. In this
work, the primary use of world graphs is to accelerate reinforcement learning
of downstream tasks. The nodes of Gw, denoted by a set of waypoints states
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sp ∈ Vp, are generically “important” for accomplishing tasks within the envi-
ronment, and therefore useful as starting points for exploration. Our method
identifies such waypoint states from interactions with the environment. In ad-
dition, we embed feasible transitions between nearby waypoint states as the
edges of Gw.

In this work, we define important states in the context of learning Gw (see
Section 3.2 for alternative definitions). That is, we wish to discover a small
set of states that, when used as world graph nodes, concisely summarize the
structure and dynamics of the environment. Below, we describe 1) how to
collect state-action trajectories and an unsupervised learning objective to iden-
tify world graph nodes, and 2) how the graph’s edges (i.e., how to transition
between nodes) are formed from trajectories.

3.3.1 Waypoint State Identification

The structure and dynamics of an environment are implicit in the state-action
trajectories observed during exploration. To identify world graph nodes from
such data, we train a recurrent variational autoencoder (VAE) that, given a
sequence of state-action pairs, identifies a subset of the states in the sequence
from which the full action sequence can be reconstructed (Figure 3.2). In partic-
ular, the VAE infers binary latent variables that controls whether each state in the
sequence is used by the generative decoder, i.e., whether a state is “important”
or not. Binary Latent VAE The VAE consists of an inference, a generative and
a prior network. These are structured as follows: the input to the inference
network qφ is a trajectory of state-action pairs observed from the environment
ø={(st, at)}T

t=0, with s={st}T
t=0 and a={at}T

t=0 denoting the state and action
sequences respectively. The output of the inference network is the approxi-
mated posterior over a sequence z={zt}T

t=0 of binary latent variables, denoted
as qφ(z|a, s). The generative network pθ computes a distribution over the full
action sequence a using the masked state sequence, where st is masked if zt=0
(we fix z0=zT=1 during training), denoted as pθ(a|s, z).

Finally, a state-conditioned pψ(zt|st) given by the prior network pψ for each
st encodes the empirical average probability that state st is activated for recon-
struction. This choice encourages inference to select within a consistent subset
of states for use in action reconstruction. In particular, the waypoint states Vp are
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chosen as the states with the largest prior means and during training, once every
few iterations, Vp is updated based on the current prior network.

Objective Formally, we optimize the VAE using the following evidence
lower bound (ELBO):

ELBO = Eqφ(z|a,s) [log pθ(a|s, z)]− DKL
(
qφ(z|a, s)|pψ(z|s)

)
. (3.1)

To ensure differentiability, we apply a continuous relaxation over the discrete zt.
We use the Beta distribution pψ(zt) = Beta(αt, βt) for the prior and the Hard
Kumaraswamy distribution qψ(zt|a, z) = HardKuma(α̃t, β̃t) for the approxi-
mate posterior, which resembles the Beta distribution but is outside the expo-
nential family (Bastings et al., 2019). This choice allows us to sample 0s and
1s without sacrificing differentiability, accomplished via the stretch-and-rectify
procedure (Bastings et al., 2019; Louizos et al., 2017b) and the reparametriza-
tion trick (Kingma and Welling, 2013). Lastly, to prevent the trivial solution
of using all states for reconstruction, we use a secondary objective L0 to regu-
larize the L0 norm of z at a targeted value µ0 (Louizos et al., 2017b; Bastings
et al., 2019), the desired number of selected states out of T steps, e.g., for when
T = 25, we set µ0 = 5, meaning ideally 5 out of 25 states are activated for
action reconstruction. Another term LT to encourage temporal separation be-
tween selected states by targeting the number of 0/1 switches among z at 2µ0:

L0 =
∥∥∥Eqφ(z|s,a)[‖z‖0]− µ0

∥∥∥2
, LT =

∥∥∥∥∥Eqφ(z|s,a)

[
T

∑
t=0

1[zt 6= zt+1]

]
− 2µ0

∥∥∥∥∥
2

.

(3.2)
See Appendix 3.A for details on training the VAE with binary zt, including
integration of the Hard Kumaraswamy distribution and how to regularize the
statistics of z.

3.3.2 Exploration for World Graph Discovery

Naturally, the latent structure learned by the VAE depends on the trajectories
used to train it. Hence, collecting a rich set of trajectories is crucial. Here,
we propose a strategy to bootstrap a useful set of trajectories by alternately
exploring the environment based on the current iteration’s Vp and updating
the VAE and Vp, repeating this cycle until the action reconstruction accuracy
plateaus (Algorithm 6).
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Algorithm 6 Identifying waypoint states Vp and learning a goal-conditioned
policy πg

Result: Waypoint states Vp and a goal-conditioned policy πg

Initialize network parameters for the recurrent variational inference model V
Initialize network parameters for the goal-conditioned policy πg Initialize
Vp with the initial position of the agent, i.e. Vp = {s0 = (1, 1)} while VAE
reconstruction error has not converged do

for n← 1 to N do
Sample random waypoint sp ∈ Vp Navigate agent to sp and per-
form T-step rollout using a randow walk policy: τr

n ← {(s0 =

sp, a0), ..., (sT , aT)} gn ← sT Navigate agent to sp and per-
form T-step rollout using πg with goal gn: τπ

n ← {(s0 =

sp, a0), ..., (sT , aT)}at∼πg(·|st ,gn) Re-label πg rewards with action re-
construction error as curiosity bonus: rπ

n ← {1st+1=gn − λ ·
pθ(at|s, z)}T

t=0

end
Perform policy gradient update of πg using τπ and rπ Update V using τr

and τπ Update Vp as set of states with largest prior mean αs
αs+βs

.

end

During exploration, we use action replay to navigate the agent to a state
drawn from the current iteration’s Vp. Although resetting via action replay
assumes our underneath environment to be deterministic, in cases where this
resetting strategy is infeasible, it may be modified so long as to allow the explo-
ration starting points to expand as the agent discovers more of its environment.
For each such starting point, we collect two rollouts. In the first rollout, we per-
form a random walk to explore the nearby region. In the second rollout, we
perform actions using a goal-conditioned policy πg (GCP), setting the final
state reached by the random walk as the goal. Both rollouts are used for train-
ing the VAE, and the latter is also used for training πg. GCP provides a venue
to integrate intrinsic motivation, such as curiosity (Burda et al., 2018; Achiam
and Sastry, 2017; Pathak et al., 2017; Azar et al., 2019) to generate more diverse
rollouts. Specifically, we use the action reconstruction error of the VAE as an
intrinsic reward signal when training πg. This choice of curiosity also prevents
the VAE from collapsing to the simple behaviors of a vanilla πg.
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Figure 3.3: Left: a standard Feudal Network. Right: using Wide-then-Narrow goals.

The Manager first outputs a waypoint state as the wide goal gw, then attends to a

closer-up area around gw to narrow down the final goal gn.

3.3.3 Edge Formation

The final stage is to construct the edges of Gw, which should ideally capture the
environment dynamics, i.e., how to transition between waypoint states. Once
VAE training is complete and Vp is fixed, we collect random walk rollouts from
each of the waypoints sp ∈ Vp to estimate the underlying adjacency matrix
(Biggs, 1993). More precisely, we claim a directed edge sp → sq if there exists a
random walk trajectory from sp to sq that does not intersect a third waypoint.
We also consider paths taken by πg (starting at sp and setting sq as the goal) and
keep the shortest observed path from sp to sq as a world graph edge transition.
We use the action sequence length of the edge transition between adjacent
waypoints as the weight of the edge. As shown experimentally, a key benefit
of our approach is the ability to plan over Gw. To navigate from one waypoint
to another, we can use dynamic programming (Sutton and Barto, 1998b; Feng
et al., 2004) to output the optimal traversal of the graph.

3.4 accelerating reinforcement learning with
world graphs

World graphs present a high-level, task-agnostic abstraction of the environment
through waypoints and feasible transition routes between them. A key exam-
ple of world graph applications for task-specific RL is structured exploration:
instead of exploring the entire environment, RL agents can use world graphs
to quickly identify task-relevant regions and bias low-level exploration to these
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regions. Our framework to leverage world graphs for structured exploration
consists of two parts:

1. Hierarchical RL wherein the high-level policy selects subgoals from Vp.

2. Traversals using world graph edges.

3.4.1 Hierarchical RL over World Graphs

Formally, an RL agent learning to solve a task is formulated as a Markov Deci-
sion Process: at time t, the agent is in a state st, executes an action at via a policy
π(at|st) and receives a rewards rt. The agent’s goal is to maximize its cumu-
lative expected return R = E(st ,at)∼π,p,p0

[
∑t≥0 γtrt

]
, where p(st+1|st, at), p0(s0)

are the transition and initial state distributions.
To incorporate world graphs with RL, we use a hierarchical approach based

on the Feudal Network (FN) (Dayan and Hinton, 1993; Vezhnevets et al., 2017),
depicted in Figure 3.3. A standard FN decomposes the policy of the agent into
two separate policies that receive distinct streams of reward: a high-level policy
(“Manager”) learns to propose subgoals; a low-level policy (“Worker”) receives
subgoals from the Manager as inputs and is rewarded for taking actions in the
environment that reach the subgoals. The Manager receives the environment
reward defined by the task and therefore must learn to emit subgoals that lead
to task completion. The Manager and Worker do not share weights and operate
at different temporal resolutions: the Manager only outputs a new subgoal if
either the Worker reaches the chosen one or a subgoal horizon c is exceeded.

For all our experiments, policies are trained using advantage actor-critic
(A2C), an on-policy RL algorithm (Wu and Tian, 2016; Pane et al., 2016; Mnih
et al., 2016a). To ease optimization, the feature extraction layers of the Manager
and Worker that encode st are initialized with the corresponding layers from
πg, the GCP learned during the world graph discovery phase. More details are
in Appendix 3.B.

3.4.2 Wide-then-Narrow Goals and World Graphs

To incorporate the world graph, we introduce a Manager policy that factorizes
subgoal selection as follows: a wide policy πw(gw

t |st) selects a waypoint state as
the wide goal gw ∈ Vp, and a narrow policy πn(gn

t |st, gw
t ) selects a state within a
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local neighborhood of gw
t , i.e. its ε-net (Mahadevan and Maggioni, 2007), as the

narrow goal gn ∈ {s : D(s, gw
t ) ≤ ε}. The Worker policy πworker(at|st, gn

t , gw
t )

chooses the action taken by the agent given the current state and the wide
and narrow goals from the Manager. A visual illustration is in Figure 3.3 and
training details in Appendix 3.C.2.

3.4.3 World Graph Traversal

The wide-then-narrow subgoal format simplifies the search space for the Man-
ager policy. Using waypoints as wide goals also makes it possible to leverage
the world graph’s edges for planning and executing the planned traversals.
This process breaks down as follows:

1. When to Traverse: When the agent encounters a waypoint state st ∈ Vp,
a “traversal” is initiated if st has a feasible connection in Gw to the active
wide goal gw

t .

2. Planning: Upon triggering a traversal, the optimal traversal route from
the initiating state to gw

t is estimated from the Gw edge weights using
classic dynamic programming planning (Sutton and Barto, 1998b; Feng
et al., 2004). This yields a sequence of intermediate waypoint states.

3. Execution: The execution of graph traversals depends on the nature of
the environment. If deterministic, the agent simply follows the action
sequences given by the edges of the traversal. Otherwise, the agent uses
the pretrained GCP πg to sequentially reach each of the intermediate
waypoint states along the traversal (we fine-tune πg in parallel where
applicable). If the agent fails to reach the next waypoint state within a
certain time limit, it stops its current pursuit, and a new (gw, gn) pair is
received from the Manager.

World graph traversal allows the Manager to assign task-relevant wide goals gw

that can be far away from the agent yet still reachable, which consequentially
accelerates learning by focusing exploration around the task-relevant region
near gw.
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Task Task Description Environment Characteristics
MultiGoal Collect randomly spawned balls. Each ball

gives +1 reward. To end an episode, the agent
has to exit at a designated point.

Balls are located randomly, dense reward.

MultiGoal-
Sparse

Agents receive a single reward r ≤ 1 propor-
tional to the number of balls collected upon ex-
iting.

Balls are located randomly, sparse reward.

MultiGoal-
Stochastic

Spawn lava blocks at random locations each
time step that immediately terminates the
episode if stepped on.

Stochastic environment. Multiple objects: lava
and balls are randomly located, dense reward.

Door-Key Agent has to pick up a key to open a door (re-
ward +1) and reach the exit point on the other
side (reward +1).

Walls, door, and key are located randomly.
Agents have additional actions: pick and tog-
gle.

Table 3.1: An overview of tasks used to evaluate the benefit of using world graphs.

Visualizations can be found in Appendix 3.D.

3.5 experimental validation

We now assess each component of our framework on a set of challenging 2D
grid worlds. Our ablation studies demonstrate the following benefits of our
framework:

• It improves sample efficiency and performance over the baseline HRL
model.

• It benefits tasks varying in environment scale, task type, reward structure,
and stochasticity.

• The identified waypoints provide superior world representations for solv-
ing downstream tasks compared to graphs using randomly selected states
as nodes.

Implementation details, snippets of the tasks and mazes are in Appendix 3.C-
3.D.

3.5.1 Ablation Studies on 2D Grid Worlds

For our ablation studies, we construct 2D grid worlds of increasing sizes (small,
medium, and large) along with challenging tasks with different reward struc-
tures, levels of stochasticity, and logic (summarized in Table 3.1). In all tasks,
every action taken by the agent receives a negative reward penalty. We follow a
rigorous evaluation protocol (Wu et al., 2017; Ostrovski et al., 2017; Henderson
et al., 2018): each experiment is repeated with 3 training seeds. 10 additional
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Task Size A2C FN +πg init Ours
+πg-init + Gw-traversal + πg-init + Gw-traversal

MultiGoal Small 2.04±0.05 2.93±0.74 5.25±0.13 3.92±0.22 5.05±0.03
Medium - - 5.15±0.11 2.56±0.09 3.00±0.90
Larger - - - 2.18±0.12 2.72±0.59

MultiGoal-Sparse Small - - 0.39±0.09 0.24±0.04 0.42±0.07
Medium - - - 0.20±0.04 0.25±0.03
Larger - - - 0.16±0.22 0.26±0.11

MultiGoal-Stochastic Small 1.38±1.20 1.93±0.16 3.06±0.31 - 2.92±0.45
Medium - - 2.99±0.12 2.42±0.24 2.64±0.14
Larger - - - - 0.60±0.12

Door-Key Small - - 0.99±0.00 0.37±0.15 0.92±0.02
Medium - - 0.56±0.02 - 0.76±0.06
Larger - - - - 0.26±0.19

Table 3.2: On a variety of tasks and environment setups, we evaluate RL models

trained with GCP πg initialization, with Gw world graph traversal, and with both.

All models on the right are equipped with WN. Left are baselines for additional com-

parison. We report final rewards for MultiGoal tasks, and success rates for Door-Key
are reported. If no result was reported, the agent failed to solve the task.

Waypoint type MultiGoal MultiGoal-Sparse MultiGoal-Stochastic Door-Key
Learned 2.72±0.59 0.26±0.11 0.60±0.12 0.26±0.19
Random 2.30±0.49 0.19±0.11 0.41±0.25 0.27±0.40

Table 3.3: Comparing learned Vp versus random Vrand as wide subgoals on large

mazes, all trained with πg initialization and graph traversal. Vp generally is supe-

rior in terms of performance and consistency. We report final rewards for MultiGoal
tasks and success rates for Door-Key are reported.

validation seeds are used to pick the model with the best reward performance.
This model is then tested on 100 testing seeds. We report the mean reward and
standard deviation.

We ablate each of the following components in our framework and compare
against non-hierarchical (A2C) and hierarchical baselines (FN):

1. initializing the feature extraction layers of the Manager and Worker from
πg,

2. applying Wide-then-Narrow Manager (WN) goal instruction, and

3. allowing the Worker to traverse along Gw.

Results are shown in Table 3.2. In sum, each component improves performance
over the baselines.
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wide and narrow goals Using two-goal types is a highly effective way
to structure the Manager instructions and enables the Worker to differentiate
the transition and local task-solving phases. We note that for small MultiGoal,
agents do not benefit much from Gw traversal: it can rely solely on the guidance
from WN goals to master both phases. However, with increasing maze size,
the Worker struggles to master traversals on its own and thus fails to solve the
tasks.

world graph traversal As conjectured in Section 3.4.3, the performance
gain of our framework can be explained by the broader range and more tar-
geted exploration strategy. In addition, the Worker does not have to learn
long-distance transitions with the aid of Gw traversals. Figure 3.4 confirms that
Gw traversal speeds up convergence and its effect becomes more evident with
larger mazes. Note that the graph learning stage only needs 2.4K iterations
to converge. Even when taking these additional environment interactions into
account, Gw traversal still exhibits superior sample efficiency, not to mention
that the graph is shared among all tasks. Moreover, solving Door-Key involves
a complex combination of sub-tasks: find and pick up the key, reach and open
the door and finally exit. With limited reward feedback, this is particularly
difficult to learn. The ability to traverse along Gw enables longer-horizon plan-
ning on top of the waypoints, thanks to which the agents boost the success rate
on medium Door-Key from 0.56±0.02 to 0.75±0.06.

benefits of learned waypoints To highlight the benefit of establishing
the waypoints learned by the VAE as nodes for Gw, we compare against results
using a Gw constructed around randomly selected states (Vrand). The random-
node graph edges are formed in the same way as described in Section 3.3.3, and
its feature extractor is also initialized from πg. Although granting knowledge
acquired during the unsupervised phase to Vrand is unfair to Vp, deploying
both initialization and traversal while only varying Vrand and Vp isolates the
effect from the nodes to the best extent. The comparative results (in Table 3.3,
learning curves for MultiGoal in Figure 3.4) suggest Vp generally outperforms
Vrand. Door-Key is the only task in which the two matches. However, Vrand ex-
hibits a large variance, implying that certain sets of random states can be suit-
able for this task, but using learned waypoints gives the strong performance
more consistently.
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Figure 3.4: Validation performance during training (mean and standard-deviation of

reward, 3 seeds) for MultiGoal. Left: Comparing Vp and Vrand, with or without traver-

sal, all models use WN and πg initialization. We see that 1) traversal speeds up conver-

gence, 2) Vrand gives higher variance, and slightly worse performance than Vp. Right:

comparing with or without πg initialization on Vp, all models use WN. We see that ini-

tializing the task-specific phase with the task-agnostic goal-conditioned policy boosts

learning.

initialization with gcp Initializing the weights of the Worker and Man-
ager feature extractors from πg (learned during the task-agnostic phase) con-
sistently benefits learning.We observe that models starting from scratch fail
on almost all tasks within the maximal number of training iterations unless
coupled with Gw traversal, which is still inferior to using πg-initialization. No-
tably, for the small MultiGoal-Stochastic environment, there is a high chance
that a lava square blocks traversal; therefore, without the environment knowl-
edge from πg transferred by weight initialization, the interference created by
the episode-terminating lava prevents the agent from learning the task.

3.6 conclusion

We have shown that world graphs are powerful environment abstractions,
which, in particular, are capable of accelerating reinforcement learning. Fu-
ture works may extend their applications to more challenging RL setups, such
as real-world multi-task learning and navigation. It is also interesting to gen-
eralize the proposed framework to learn dynamic world graphs for evolving
environments and apply world graphs to multi-agent problems, where agents
become part of other agents’ world graphs.
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3.A recurrent vae with differentiable binary
latent variables

As illustrated in the main text, the main objective for the recurrent VAE is the
following evidence lower bound with derivation:

log p(a|s) = log
∫

p(a|s, z)dz

= log
∫

p(a|s, z)p(z|s)q(z|a, s)
q(z|a, s)

dz

= log
∫

p(a|s, z)
p(z|s)

q(z|a, s)
q(z|a, s)dz

≥ Eq(z|a,s)[log p(a|s, z)− log
q(z|a, s)
p(z|s) ]

= Eq(z|a,s)[log p(a|s, z)]− DKL(q(z|a, s)||p(z|s))

The inference network qψ takes in the trajectories of state-action pairs τ and at
each time step approximates the posterior of the corresponding latent variable
zt. The prior network pψ takes the state st at each time step and outputs the
state-conditioned prior pψ(st). We choose Beta as the prior distribution and the
Hard Kuma as the approximated posterior to relax the discrete latent variables
to continuous surrogates.

The Kuma distribution Kuma(α, β) highly resembles the Beta Distribution
in shape but does not come from the exponential family. Similar to Beta,
the Kuma distribution also ranges from bimodal (when α ≈ β) to unimodal
(α/β → 0 or α/β → ∞). Also, when α = 1 or β = 1, Kuma(α, β) = Beta(α, β).
We observe empirically better performance when we fix β = 1 for the Kuma
approximated posterior. One major advantage of the Kuma distribution is its
simple Cumulative Distribution Function (CDF):

FKuma(x, α, β) = (1− (1− xα))β. (3.3)

67
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It is therefore amendable to the reparametrization trick (Kingma and Welling,
2013; Rezende et al., 2014; Maddison et al., 2017) by sampling from uniform
distribution u ∼ U (0, 1):

z = F−1
Kuma(u; α, β) ∼ Kuma(α, β). (3.4)

Lastly, the KL-divergence between the Kuma and Beta distributions can be
approximated in closed form (Nalisnick and Smyth, 2016):

DKL(Kuma(a, b)|Beta(α, β)) =
a− α

a

(
−γ−Ψ(b)− 1

b

)
+ log(ab) + log Beta(α, β)− b− 1

b
+ (β− 1)b

∞

∑
m=1

1
m + ab

Beta
(m

a
, b
)

,

(3.5)

where Ψ is the Digamma function, γ the Euler constant, and the approximation
uses the first few terms of the Taylor series expansion. We take the first 5 terms
here.

Next, we make the Kuma distribution “hard” by following the steps in Bast-
ings et al., 2019. First stretch the support to (r = 0− ε1, l = 1 + ε2), ε1, ε2 > 0,
and the resulting CDF distribution takes the form:

FS(z) = FKuma

(
z− l
r− l

; α, β

)
. (3.6)

Then, the non-eligible probabilities for 0’s and 1’s are attained by rectifying all
samples below 0 to 0 and above 1 to 1, and other value as it is, that is

P(z = 0) = FKuma

(
−l

r− l
; α, β

)
, P(z = 1) = 1− FKuma

(
1− l
r− l

; α, β

)
. (3.7)

Lastly, we impose two additional regularization terms L′ and LT on the
approximated posteriors. As described in the main text, L′ prevents the model
from selecting all states to reconstruct {at}T−1

0 by restraining the expected L0

norm of z = (z1 · · · zT−1) to approximately be at a targeted value µ0 (Louizos
et al., 2017b; Bastings et al., 2019). In other words, this objective adds the
constraint that there should be µ0 of activated zt = 1 given a sequence of length
T. The other term LT encourages temporally isolated activation of zt, meaning
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the number of transitions between 0 and 1 among zt’s should roughly be 2µ0.
Note that both expectations in Equation 3.2 have closed forms for HardKuma.

L0 =
∥∥∥Eq(z|s,a) [‖z‖0]− µ0

∥∥∥2
, where (3.8)

Eq(z|s,a) [‖z‖0] =
T

∑
t=1

Eq(zt|s,a)
[
1zt 6=0

]
=

T

∑
t=1

1− p (zt = 0) =
T

∑
t=1

1− FKuma

(
−l

r− l
; αt, βt

)
,

(3.9)

LT = ‖Eq(z|s,a)

T−1

∑
t=1

1zt 6=zt+1 − 2µ0‖2, where (3.10)

Eq(z|s,a)[
T−1

∑
t=1

1zt 6=zt+1 ] =
T−1

∑
t=1

p (zt = 0) (1− p (zt+1 = 0)) + (1− p (zt = 0)) p (zt+1 = 0) .

(3.11)

lagrangian relaxation. The overall optimization objective consists of ac-
tion sequence reconstruction, KL-divergence between the posterior and prior,
L0 and LT (Equation 3.12). We tune the objective weights λi using Lagrangian
relaxation (Higgins et al., 2017a; Bastings et al., 2019; Bertsekas, 1999), treating
λi’s as learnable parameters and performing alternative optimization between
λi’s and the model parameters. We observe that as long as their initialization
is within a reasonable range, λi’s converge to a local optimum:

max
{λ1,2,3}

min
{θ,φ,ψ}

−Eqψ(z|a,s) [log pθ(a|s, z)] +λ1DKL
(
qφ(z|a, s)|pψ(z|s)

)
+λ2L0+λ3LT.

(3.12)
We observe this approach to produce efficient and stable mini-batch training.

3.B goal-conditioned policy initialization for
hrl

Optimizing composite neural networks like HRL (Co-Reyes et al., 2018) is sen-
sitive to weight initialization (Mishkin and Matas, 2015; Le et al., 2015), due to
its complexity and lack of clear supervision at various levels. Therefore, taking
inspiration from prevailing pre-training procedures in computer vision (Rus-
sakovsky et al., 2015; Donahue et al., 2014) and NLP (Devlin et al., 2018;
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Radford et al., 2019), we take advantage of the weights learned by πg during
world graph discovery when initializing the Worker and Manager policies for
downstream HRL, as πg has already implicitly embodied much environment
dynamics information.

More specifically, we extract the weights of the feature extractor, i.e., the
state encoder, and use them as the initial weights for the state encoders of the
HRL policies. Our empirical results demonstrate that such weight initialization
consistently improves performance and validates the value of skill/knowledge
transfer from GCP (Taylor and Stone, 2009; Barreto et al., 2017).

3.C additional implementation details

Model code folder including all architecture details is shared in comment.

3.c.1 Hyperparameters for VAE training

Our models are optimized with Adam (Kingma and Ba, 2014) using mini-
batches of size 128, thus spawning 128 asynchronous agents to explore. We
use an initial learning rate of 0.0001, with ε = 0.001, β1 = 0.9, β2 = 0.999; gra-
dients are clipped to 40 for inference and generation nets. For HardKuma, we
set l = −0.1 and r = 1.1. The maximum sequence length for BiLSTM is 25.
The total number of training iterations is 3600 and model usually converges
around 2400 iterations. We train the prior, inference, and generation networks
end-to-end.

We initialize λi’s (see Lagrangian Relaxation) to be λ1 = 0.01 (KL-divergence),λ2 =

0.06 (L0), λ3 = 0.02 (LT). After each update of the latent model, we update
λi’s, whose initial learning rate is 0.0005, by maximizing the original objective
in a similar way as using Lagrangian Multiplier. At the end of optimization,
λi’s converge to locally optimal values. For example, with the medium maze,
λ1 = 0.067 for the KL-term, λ2 = 0.070 for the L0 and λ3 = 0.051 for the LT

term. The total number of waypoints |Vp| is set to be 20% of the full state
space.
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3.c.2 Training HRL models

The procedure of the Manager and the Worker in sending/receiving orders
using either traversal paths among Vp from replay buffer for deterministic en-
vironments or with πg for stochastic ones follows:

1. The Manager gives a wide-narrow subgoal pair (gw, gn).

2. The agent takes action based on the Worker policy πω conditioned on
(gw, gn) and reaches a new state s′. If s′ ∈ Vp, gw has not yet met, and
there exists a valid path basing on the edge paths from the world graph
s′ → gw, agent then either follows replay actions or πg to reach gw. If πg

still does not reach the desired destination in certain steps, then stop the
agent wherever it stands; also, πg can be finetuned here.

3. The Worker receives a positive reward for reaching gw for the first time.

4. If the agent reaches gn, the Worker also receives positive rewards and
terminates this horizon.

5. The Worker receives negative for every action taken except for during
traversal; the Manager receives a negative reward for every action taken,
including traversal.

6. When either gn is reached or the maximum time step for this horizon is
met, the Manager renews its subgoal pair.

The training of the Worker policy πω follows the same A2C algorithm as πg.

The training of the Manager policy πm also follows a similar procedure,
but as it operates at a lower temporal resolution, its value function regresses
against the tm-step discounted reward where tm covers all actions and rewards
generated from the Worker.

When using the Wide-then-Narrow instruction, the policy gradient for the
Manager policy πm becomes:

E(st ,at)∼π,p,p0
[Am,t∇ log (πω (gw,t|st)πn (gn,t|st, gw,t, sw,t))] +∇ [H (πω) +H (πn(·|gw,t))] ,

where Am,t is the Manager’s advantage at time t. Also, for Manager, as the
size of the action space scales linearly with |S|, the exact entropy for the πm

can quickly become intractable. Essentially there are O
(
|V| × (N2)

)
possible
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actions. To calculate the entropy exactly, all of them has to be summed, making
it easily computationally intractable:

H = ∑
w∈V

∑
wn∈sw

πn(wn|sw, st)π
ω(w|st) log∇πn(wn|sw, st)π

ω(w|st).

Thus in practice we resort to an effective alternative H (πω) +H (πn(·|gw,t)).
Psuedo-code for Manager training is in Algorithm 7.

Algorithm 7 Training of πm for HRL models
Initialize network parameters θ for πm, here πm,t refers to the policy at time
rollout time step t Given a map of V , sV for iter = 0, 1, 2, · · · do

Clear gradients dθ ← 0 Reset the set of time steps where πm,t omits a new
subgoal Sm = {} and tm = 0. while t <= tmax or episode not terminated do

Simulate under current policy πm,t−1, πw,t−1 if the Worker has met the
previous subgoal or exceeded the horizon c then

Sample a new subgoal gm,t from πm,t zm,t =

fLSTM(CNN(sm,t, sV ), hm,tm), Vm,t = fv(zm,t), πt = fp(zm,t)

end
Sm = Sm ∪ {tm} and tm = t

end

R =

 0, if terminal

Vtmax+1, otherwise
for t = tmax, · · · 1 do

R← rt + γR if t ∈ Sm then
Am,t ← R − Vm,t Accumulate gradients from value loss: dθ ←
dθ + λ

∂A2
m,t

∂θ Accumulate policy gradients with entropy regulariza-
tion: dθ ← dθ +∇ log πm,t(gm,t)Am,t + β∇H(πm,t)

end

end

end

3.c.3 Hyperparameters for HRL

For training the HRL policies, we inherit most hyperparameters from those
used when training πg, as the Manager and the Worker both share similar ar-
chitectures with πg. The hyperparameters used when training πg follow those
from Shang et al., 2019b. Because the tasks used in HRL experiments are more
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difficult than the generic goal-reaching task, we set the maximal number of
training iterations to 100K, and training is stopped early if model performance
reaches a plateau. The rollout steps for each iteration is 60. Hyperparameters
specific to HRL is the horizon c = 20 and the size of the Manager’s local atten-
tion range (that is, the neighborhood around gw within which gn is selected),
which are N = 5 for small and medium mazes, and N = 7 for the large maze.

3.D 2d grid world visualizations

Initial (Iteration 100) Intermediate (Iteration 1200)

Small Medium
Large

Figure 3.D.1: Visualization of the 2D grid environments in our experiments, along

with the learned waypoints in blue.

Goal-Oriented Task for Trajectory Rollout Multi-Goal Task

Figure 3.D.2: Visualization of tasks in our experiments.
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A G E N T- C E N T R I C R E P R E S E N TAT I O N S
F O R M U LT I - A G E N T R E I N F O R C E M E N T
L E A R N I N G

4.1 introduction

So far, we have tackled single-agent RL problems. Meanwhile, many real-world
settings involve multiple agents. In this chapter, we look at the important prob-
lem class, multi-agent reinforcement learning (MARL). A distinct feature of
MARL is the intrinsic relational reasoning among agents for e.g. cooperation.
Of course, relational reasoning is fundamental to human intelligence. Human
perception and understanding of the world are structured around objects. In-
spired by this cognitive foundation, many recent efforts have successfully built
strong object-centric inductive biases into neural architectures and algorithms
to tackle relational reasoning tasks, from robotics manipulation (Devin et al.,
2018) to visual question answering (Shi et al., 2019). Nonetheless, in MARL,
such relational reasoning is still under-explored.

This work studies how agent-centric representations can benefit model-free
MARL where each agent generates its policy independently. We consider a
fully cooperative scenario, which can be modeled as a Multi-Agent Markov
Decision Process (MAMDP), an extension of the single-agent MDP (Boutilier,
1996). In light of recent advances in model-free RL and neural relational rea-
soning (Jaderberg et al., 2016; Zambaldi et al., 2018), we study two ways of
incorporating agent-centric inductive biases into our algorithm1.

1 This chapter is based on our paper (Shang et al., 2020a) on arxiv.

75
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First, we introduce an attention module (Vaswani et al., 2017) with explicit
connections across the decentralized agents. Existing RL works (Zambaldi et
al., 2018; Mott et al., 2019; Liu et al., 2019) have adapted similar self-attention
modules on top of a single network. In our setup, the agents share a model
to generate their actions individually to ensure scalability when the number of
agents increases. The proposed attention module is then implemented across
intermediate features from forward passes of the agents, explicitly connecting
them. As we will show in experiments, this leads to the emergence of more
complex cooperation strategies as well as better generalization. The closest
approach to ours is Multi-Attention-Actor-Critic (MAAC) (Iqbal and Sha, 2018),
which also applies a shared encoder across agents and aggregate features for an
attention module. However, each agent has its unique critic that takes actions
and observations of all agents through the attention features.

Secondly, we develop an unsupervised trajectory predictive task—i.e., with-
out using action labels—for pre-training and/or as an auxiliary task in RL.
Observations, without action labels, are often readily available, which is a de-
sirable property for pre-training. Unlike prior works in multi-agent trajectory
forecasting (Yeh et al., 2019; Sun et al., 2019), we consider an agent-centric ver-
sion where the location of each agent position is predicted separately. This
task encourages the model to reason over an agent’s internal states, such as
its velocity, intent, etc. We explore two ways to leverage the pre-trained mod-
els in RL: (1) as weight initialization and (2) as a frozen column inspired by
Progressive Neural Networks (Rusu et al., 2016) (Figure 4.1c). Furthermore,
we investigate whether the agent-centric predictive objective serves as a suit-
able auxiliary loss for MARL. Auxiliary tasks have been used to facilitate RL
representation learning in terms of stability and efficiency (Oord et al., 2018;
Jaderberg et al., 2016).

Our key contributions are as follows: (1) we introduce an agent-centric at-
tention module for MARL to encourage complex cooperation strategies and
generalization (2) we employ an agent-centric predictive task as an auxiliary
loss for MARL and/or for pre-training to improve sample efficiency and (3)
we assess incorporating agent-centric inductive biases on MARL using the pro-
posed approaches on tasks from Google Research Football and DeepMind Lab
2D.
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Figure 4.1: (a) MARL CNN baseline, agents share the model but with separate for-

ward passes (b) ACNN with the agent-centric attention module (c) Progressive CNN

(PrCNN) with pre-trained model as a frozen column.

4.2 methods

Section 4.2.1 describes our problem setup, fully cooperative multi-agent rein-
forcement learning (MARL), in a policy gradient setting. Section 4.2.2 intro-
duces the agent-centric attention module. Section 4.2.3 motivates the agent-
centric prediction objective to learn from observations as an unsupervised pre-
training step and/or as an auxiliary loss for MARL.

4.2.1 Multiagent Reinforcement Learning

We consider a group of N agents, denoted by N , operating cooperatively in a
shared environment towards a common goal. It can be formalized as a multi-
agent Markov decision process (MAMDP) (Boutilier, 1996). A MAMDP is a
tuple (S, {Ai}i∈N , P, {Ri}i∈N ) where S is the shared state space, Ai the set of
actions for the i-th agent, A = A1× · · · AN, P : S×A× S→ [0, 1] the transition
function, and R : S× A → R the reward function. In our experiments, S are
2D maps of the environments.

We adapt an actor-critic method, V-trace (Espeholt et al., 2018) implemented
with SEED RL (Espeholt et al., 2019). The actor and critic are parameterized by
deep neural networks. Each agent receives a state input si, covering the global
s ∈ S and a specification of the agent’s location, and generates its policy πi =

π(si) and state value Vi = V(si). The model is shared between agents, adding
scalability when the number of agents grows larger and the environment more
complex (Iqbal and Sha, 2018; Jiang and Lu, 2018; Jeon et al., 2020). It also
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Home Agents (ACNN) Active Agent Opponent Agents (Self-Play) BallAttention Intensity

Agent 1

Agent 2

Figure 4.2: Visualization of attention for two different home player agents. Green is

the active agent being controlled. Yellow are the other home agents. The red borders

signify attention intensity, blue the opponents, and white the ball. Attention is mostly

on the agents around the ball, but the two agents’ attention weights differ. E.g., in the

5th frame, one looks at the agent possessing the ball, the other at the agent to whom

it is passing the ball. Complete video replays of all players are in the Supplementary

Materials.

potentially alleviates instability due to the non-stationary nature of multi-agent
environments by sharing the same embedding space (Lowe et al., 2017).

The goal for all agents is to maximize the expected long term discounted
global return

J(θ) = Es∼d,a∼π

[
Σt≥0γtR(st, a)

]
= Es∼d [V(s)] , (4.1)

where 0 ≤ γ ≤ 1 is the discount factor, V(s) = Eπ

[
Σt≥t0γtR(st, at)|s0 = s

]
the

state value, and θ the parameterization for policy and value functions. In a de-
centralized cooperative setting, (Zhang et al., 2018) proves the policy gradient
theorem

∇θ J(θ)=Ed,π

[
∇ log πi(s, ai)Q(s, a)

]
=Ed,π [∇ log π(s, a)A(s, a)] , (4.2)

where a = (a1, · · · aN), Q(s, a)=Eπ [R(st, at)+γV(st+1)] is the state-action value
and A(s, a)=Q(s, a)−V(s) the advantage for variance reduction. In theory,
Vi≈V, and we can directly apply V-trace for each agent with the policy gradi-
ent above. In practice, we slightly shape each agent’s reward (see Section 4.3),
but the policy gradient direction is approximately retained (proof in Appendix
1).

4.2.2 Agent-Centric Attention Module

In the MARL baseline CNN (Figure 4.1a), an agent makes independent de-
cisions without considering the high-level representations from other agents.
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This can hinder the formation of more complex cooperation strategies. To ad-
dress the issue, we propose a novel attention module built upon the multi-head
self-attention mechanism (Vaswani et al., 2017) to enable relational reasoning
across agents explicitly. As shown in Figure 4.1b and Equation 4.3, the forward
pass of each agent produces the key, query, and value independently, which are
congregated to output the final features for each agent. These features are then
sent to the RL value and policy heads. The attention module allows easy model
interpretation (Mott et al., 2019), see Figure 4.2 with a detailed explanation in
Section 4.4.3. We term the model ACNN.

Many RL related works for both multi-agent and single-agent setups (Zam-
baldi et al., 2018; Mott et al., 2019; Liu et al., 2019; Sun et al., 2019; Yeh et al.,
2019; Parisotto et al., 2019) that use self-attention usually implement this mod-
ule on top of a single network. To scale better with multiple agents, many at-
tempts to apply attention across features from independent agents with model
sharing, similarly to this work. A multi-agent extension of DDPG (Jiang and
Lu, 2018) shares an actor and critic but its attention module is a binary clas-
sifier designed to narrow down a subset of agents for communication. The
aforementioned MAAC (Iqbal and Sha, 2018), based on soft actor-critic, only
shares an encoder across agents to extract features for the attention module.
But each agent is equipped with its own critic that takes in all of the outputs
from the attention module, essentially covering observations and actions from
all agents.

The following summarizes the operations of our attention module:

zi= ffc( fcnn(si)), qi=q
(

LN(zi)
)

, ki=k
(

LN(zi)
)

, vi=v
(

LN(zi)
)

;

(4.3)

K=(k1 · · · kN), Q=(q1 · · · qN), V=(v1 · · · vN), Ṽ = Attn(Q, K, V)=σ(
QKT
√

dk
)V;

z̃i = LN(zi + ṽi) −→ πi = fπ(z̃i), vi = fv(z̃i),

where K, Q, V are the key, query and value as used in the transformer pa-
per (Vaswani et al., 2017). We find a proper placement of Layer Normaliza-
tion (Ba et al., 2016) within the attention module is crucial.
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4.2.3 Multi-agent Observation Prediction

When developing a new skill, humans often extract knowledge by simply ob-
serving how others approach the problem. We do not necessarily pair the
observations with well-defined granular actions but grasp the general pat-
terns and logic. Observations without action labels are often readily available,
such as recordings of historical football matches and team-based FPS gameplay
videos. Therefore, in this work, we explore how to transfer knowledge from
existing observations to downstream MARL without action labels.

A useful supervision signal from observation is the agent’s location. Even
when not directly accessible, existing techniques (He et al., 2017; Ren et al.,
2015) can extract this information in many cases. We thus adopt an agent’s
future location as a prediction target. It is worth noting that the same action
can lead to different outcomes for different agents depending on their internal
states, such as velocity. Therefore, we expect the location predictive objective
to provide cues, independent of actions taken, for the model to comprehend
an agent’s intent and internal states.

Recent works (Yeh et al., 2019; Sun et al., 2019; Zhan et al., 2018) develop
models that predict trajectories over all agents at once. We, on the other hand,
task each agent to predict its future location, arriving at an agent-centric predic-
tive objective, as illustrated in Figure 4.1a. The motivation for the agent-centric
objective is two-fold. For one, as discussed later in this section, the agent-
centric loss can be integrated as an auxiliary loss to MARL in a straightforward
manner.

Concretely, after collecting observation rollouts, we minimize a prediction
loss over the observations instead of maximizing return as in RL training (for
details see Section 4.4.2). Our observation is in a 2D map format, and the
prediction task for each agent consists of predicting location heatmaps along
height σi

h and width σi
w as softmax vectors. We train these predictions by

minimizing the negative log likelihood via cross-entropy loss,

arg min
θ

Eσi
h

[
− log σi

h[h
i
t+1]

]
, arg min

θ

Eσi
w

[
− log σi

w[w
i
t+1]

]
, (4.4)

where hi
t+1 and wi

t+1 are the ground truth next step locations of the ith agent.
The pre-training is applied to both the CNN and ACNN architectures. Next,
we investigate two ways to transfer knowledge from the pre-trained models to
MARL.
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Weight Initialization Transfer via weight initialization is a long-standing
method for transfer learning in many domains (Donahue et al., 2013; Devlin et
al., 2018). Often, the initialization model is trained on larger related supervised
task (Donahue et al., 2013; Carreira and Zisserman, 2017), but unsupervised
pre-training (He et al., 2019; Devlin et al., 2018) has also made much progress.
In RL, some prior works initialize models with weights trained for another
relevant RL task, such as in Chapter 3 but general pre-training through a non-
RL objective has been explored less.

Progressive Neural Networks Progressive Neural Networks (Rusu et al.,
2016) are originally designed to prevent catastrophic forgetting and enable
transfer between RL tasks. They build lateral connections between features
from an existing RL model—on a relevant task—to the RL model in training.
The setup is also a promising candidate for transferring knowledge from our
pre-trained models to MARL. Specifically, a pre-trained model becomes a frozen
column from which the intermediate features, after a non-linear function, are
concatenated to the corresponding activation from the RL model, as shown in
Figure 4.1c. We experiment with Progressive Networks combined with CNN
and ACNN, called PrCNN and PrACNN.

Multi-agent Observation Prediction as Auxiliary Task for MARL

Auxiliary objectives for single-agent RL in terms of stability, efficiency, and gen-
eralization have been widely studied (Oord et al., 2018; Jaderberg et al., 2016).
In light of prior works, we assess using the agent-centric prediction objective
as an auxiliary task for MARL. Thanks to the convenient formulation of the
agent-centric objective, we can simply add prediction heads in juxtaposition
with the policy and value heads, as in Figure 4.1a.

4.3 environments and setups

We consider two multi-agent domains, Google Research Football (Kurach et
al., 2019) (GRF) and DeepMind Lab 2D (DeepMind, 2020) (DMLab2D), with a
focus on the more dynamically complex GRF.
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4.3.1 Google Research Football

Google Research Football (Kurach et al., 2019) (GRF) is a FIFA-like environ-
ment. Home player agents match against the opponent agents in the game
of 5-vs-5 football. All agents are individually controlled except for the goalie,
which is operated under the built-in rules by default. Each agent picks 1 out
of 19 actions to execute at each step, with 3000 frames per game. We com-
pete against two types of opponent policies: the built-in AI and the self-play
AI. The built-in AI is a rule-based policy adapted from (Schuiling, 2017). Its
behavioral patterns reflect simple and logical football strategies and can be ex-
ploited easily2 . To add more challenge to training against built-in AI, we also
take control of the goalie. The other more robust and generalized opponent
policy is trained via self-play(for more details in Table 4.1 and Appendix 3). It
requires more advanced cooperative strategies to win against the self-play AI.
Our experiments also include ablation studies on a single-agent setup, 11-vs-11

“Hard Stochastic”, from (Kurach et al., 2019). In this case, one active player is
being controlled at one time.

The home agents are all rewarded +1 after scoring and −1 if a goal is con-
ceded. To speed up training, we reward the agent in possession of the ball
an additional +0.1 if it advances towards the opponent’s goal (see full details
in (Kurach et al., 2019)).

Observations are in the Super Mini Map (SMM) (Kurach et al., 2019) format.
An SMM is a 2D bit map of spatial dimension 72 × 96, covering the entire
football field. It comprises four channels: positions of the home agents, the
opponents, the ball, and the active agent. SMMs across four time steps are
stacked to convey information such as velocity. We predict an agent’s height
and width locations on the SMM by outputting 72- and 96-dim heatmap vec-
tors separately when learning from observations.

4.3.2 DeepMind Lab 2D

DeepMind Lab 2D (DMLab2D) (DeepMind, 2020) is a framework supporting
multi-agent 2D puzzles. We experiment on the task “Cleanup” (Figure 4.3).
At the top of the screen, mud is randomly spawned in the water, and at the
bottom, apples spawned at a rate inversely proportional to the amount of mud.

2 video demo: https://www.dropbox.com/s/zofgl382xv9hnff/neurips2020.mp4?dl=0

https://www.dropbox.com/s/zofgl382xv9hnff/neurips2020.mp4?dl=0
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Figure 4.3: DMLab2D “Cleanup”

The agents are rewarded +1 for each apple eaten. Four agents must cooperate
between cleaning up and eating apples. The list of actions is in Appendix 2.
There are 1000 RGB frames per episode with a spatial dimension 72× 96. The
state input for each agent colors itself blue and the others red. Again, frames
across four time steps are stacked for temporal information.

4.4 experiments and discussions

This section describes our model architectures, implementation details for pre-
training from observations, and then for MARL. Next, we dive into analyzing
the efficacy of agent-centric representations for MARL. Finally, we conduct two
additional ablation studies: comparing agent-centric representation learning
against an agent-agnostic alternative on MARL and evaluating agent-centric
representation learning on single-agent RL.

4.4.1 Model Architecture

The baseline in our experiments is a Convolutional Neural Network (CNN)
followed by a Fully Connected (FC) layer (Figure 4.1a). The policy, value, and
height/width predictive heads are immediately after the FC layer. In experi-
ments with the attention module, the FC layer is replaced by a 2-head attention
module as illustrated in Figure 4.1 and Equation 4.3. The detailed architectures
are adapted from (Espeholt et al., 2019) and attached in the Supplementary Ma-
terials.
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Figure 4.4: Comparison of baseline CNN and ACNN with agent-centric attention. On

the simpler DMLab2D and GRF build-in AI, ACNN does not improve over CNN.

But on the harder self-play GRF which requires more advanced relational reasoning,

attention becomes crucial—without it, the average return does not pass the zero mark.

Plots are averaged over 3 random seeds.

4.4.2 Representation Learning from Observations

We collect replays without action labels for the unsupervised representation
learning from observations. For GRF built-in AI and DMLab2D “Cleanup”,
we record replays evenly throughout RL training, from the early stage of train-
ing to convergence. For GRF self-play, we record checkpoints evenly through-
out self-play training (details in Appendix 3) and sample checkpoints to play
against each other. We collect approximately 300K frames from each task. In
principle, one can utilize any reasonable replays. Unlike learning from demon-
stration, the unsupervised approaches we study do not require action annota-
tions, enabling potential usage of observations for which it would be infeasible
to label actions (Schmeckpeper et al., 2019).

We learn two predictive models from observations as described in Section 4.2.3,
based on CNN and ACNN. The predictive objectives are optimized via nega-
tive log-likelihood (NLL) minimization using Adam (Kingma and Ba, 2014)
with default parameters in TensorFlow (Abadi et al., 2016) and a sweep over
learning rate.

The batch size is 32, and we train till convergence on the validation set.
More training details and NLL results are summarized in Appendix 4. The
attention module does not offer a significant advantage in terms of NLL. We
conjecture that because each agent’s location is predicted independently, the
CNN architecture has sufficient model complexity to handle the tasks used in
our experiments.
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4.4.3 MARL and Main Results

The RL training procedures closely follow SEED RL (Espeholt et al., 2019).
When adding the auxiliary loss, we sweep its weighting coefficient over a range
of values. See the full set of hyperparameters in Appendix 5. Figures 4.4, 4.5
and 4.6 show plots of our core results, where the horizontal axis is the number
of frames and the vertical axis the episode return. We train on 500M frames for
GRF built-in AI, 4.5G for self-play AI, and 100M for DMLab2D. All plots are
averaged over 3 random seeds of the best performing set of hyperparameters.
The rest of this section examines and discusses the experiments.

Attention is essential to form complex strategies among agents. Figure 4.4
compares the baseline CNN with the attention-based ACNN, all trained from
random initialization. Although performing comparably on the simpler tasks
DMLab2D “Cleanup” and GRF built-in AI, ACNN clearly outperforms CNN
when tackling the much more challenging self-play AI in GRF. By examining
the replays against the built-in AI and self-play AI (attached in the Supplemen-
tary Materials), we find it is possible to exploit the built-in AI with elementary
tactics. In other words, the most critical phase in GRF is when the agent
transitions from passively defending to actively scoring, i.e. when the scores
cross the 0 mark. This transition signifies the agent’s understanding of the op-
ponent’s offensive as well as defensive policy. After the transition, the agent
may excessively exploit the opponent’s weaknesses. For example, a flaw of
built-in AI is that it can easily be tricked into an offside position (see the demo
video) and thus CNN with auxiliary loss scoring more than ACNN with aux-
iliary loss in absolute term merely means the former is good at exploiting this
weakness. On the other hand, when against self-play AI, ACNN can pass the
0 mark to start winning, while none of the CNN models are able to achieve so.
This strongly indicates that the attention module plays an essential role in pro-
viding the reasoning capacity to form complex cooperative strategies. That is,
it demands more sophisticated play to perform well against the more general
and robust self-play policies. It indicates the attention module plays an essen-
tial role in forming cooperation strategies complex enough to allow winning
against the self-play AI.

Figure 4.2 takes two players from ACNN trained against the self-play AI and
visualize their attention patterns. Green dots are the active player agents, and
yellow ones are the other agents on the home team. We visualize the attention
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Figure 4.5: Comparison of models trained without and with the auxiliary loss. On

both GRF tasks, the auxiliary loss improves performance and sample efficiency. Plots

are averaged over 3 random seeds.

weights from one of the two heads. The intensity of the red circles surrounding
the home agents reflects the weights. The most-watched area is in the vicinity
of the ball. E.g., in the 5th frame, one agent (top row) focuses on the player in
possession of the ball, whereas the other agent (bottom row) is looking at the
player to whom it is passing the ball.

Finally, note that for two out of three tasks in our experiments, namely self-
play GRF and DMLab2D, PrACNN are the best performing models (Figure).
Particularly for DMLab2D, PrACNNconverges significantly faster and more
stably than its CNN counterpart without the attention module.

The agent-centric auxiliary loss complements MARL. Figure 4.5 compares
the effects of adding the agent-centric auxiliary loss as described in Section 4.2.3
to the CNN and ACNN model, both trained from random initialization. As
RL is sensitive to tuning, an incompatible auxiliary loss can hinder its training.
In our experiments, however, the auxiliary loss for the most part improves the
models’ performance and efficiency, particularly for the CNN models. This
suggests the agent-centric loss is supportive of the reward structure in the
game.

Unsupervised pre-training improves sample-efficiency. We compare train-
ing the CNN (Figure 4.6a) and ACNN (Figure 4.6b) from scratch with the two
ways of integrating unsupervised pre-training to MARL, namely weight initial-
ization and progressive neural networks. For a fair comparison, we use the
same hyperparameter tuning protocol from baseline training to tune models
involving pre-training. Both integration methods provide significant improve-
ments to sample-efficiency, especially on the simpler DMLab2D and GRF with
the built-in AI. In some cases, progressive models can achieve better perfor-
mance and efficiency than those with weight initialization. Even when the
impact of pre-training is limited, it does not hurt the performance of MARL.
Hence in practice, it can be beneficial to perform a simple pre-training step
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Figure 4.6: Comparison of training from scratch, using pre-trained models as initial-

ization and as a frozen column in progressive networks, on top of (a) CNN and (b)

ACNN models. Initialization and progressive networks show better or comparable

performance as well as sample efficiency, with more evident effects on the simpler

tasks, built-in AI and DMLab2D. Plots are averaged over 3 random seeds.

with existing observation recordings to speed up downstream MARL. We re-
peat the same control experiments on RL models trained with the auxiliary
loss in Appendix 5. The same trend is observed, albeit to a lesser degree, as
expected because the auxiliary objectives and pre-training carry overlapping
information.

4.4.4 Agent-Centric Representation Learning for Single-Agent RL

We have demonstrated the efficacy of agent-centric representation learning for
multi-agent RL. To evaluate whether similar conclusions hold for single-agent
RL, we use the 11-vs-11 “Hard Stochastic” task from (Kurach et al., 2019),
where only one player is controlled a time (similarly to FIFA).

Although the game logic has much in common between single and multiple
players, the experimental outcome is different, as in Figure 4.7. The attention
module brings down baseline performance, likely because cooperation matters
less here—the rest of the home players are controlled by the built-in AI—, and
the attention module is harder to optimize. The agent-centric prediction task
still helps as auxiliary loss or for pre-training, but to a limited extent.
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Figure 4.7: Results of incorporating agent-centric inductive biases to single-agent RL
(GRF 11-vs-11 Hard Stochastic). The attention module is no longer optimal as co-

operation matters less for single-agent RL. The auxiliary loss and pre-training from

observations still help albeit to a lesser degree.
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Figure 4.8: Comparison between the agent-centric objective and the observe-all objec-

tive that predicts for all agents’ location at once for MARL on GRF Built-in AI. The

former exhibits clear advantage.

4.4.5 Agent-agnostic Observe-All Representation Learning for MARL

Finally, to verify the necessity for MARL representations to be agent-centric, we
implement an alternative agent-agnostic observation prediction objective, re-
ferred to as observe-all, and test with playing against the GRF built-in AI. Con-
cretely, the height and width predictive heads for observe-all output 72− and
96− dimension binary masks respectively, where 1 indicates player occupation
and 0 vacancy, taking over all agents. In this way, the prediction is agnostic of
agent identity and can predict for all players at once. First, we use the observe-
all objective as an auxiliary loss to RL and train from scratch. Next, we apply
the observe-all objective to pre-training from observations, which is then used
for MARL, either via weight initialization or as a progressive frozen column.
Figure 4.8 clearly shows the agent-centric auxiliary loss is more competitive
than the observe-all one in all setups. It confirms that the agent-centric nature
of the prediction task is indeed important for MARL.
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CNN +aux. +init. +prgs. ACNN +aux. +init. +prgs. rating
CNN 5/8/7 9/1/10 7/5/8 4/4/12 5/2/13 2/7/11 3/5/12 −323
+aux. 7/8/5 6/4/10 6/1/13 3/4/13 2/4/14 2/8/10 2/5/13 −420
+init. 10/1/9 10/4/6 6/5/9 5/5/10 2/5/13 3/6/11 4/6/10 −283
+prgs. 8/5/7 13/1/6 9/5/6 2/8/10 2/4/14 5/1/14 2/5/13 −322

ACNN 12/4/4 13/4/3 10/5/5 10/8/2 8/4/8 7/7/6 10/6/4 147
+aux. 13/2/5 14/4/2 13/5/2 14/4/2 8/4/8 11/3/6 7/5/8 182
+init 11/7/2 10/8/2 11/6/3 14/1/5 6/7/7 6/3/11 8/4/8 24

+prgs. 12/5/3 13/2/5 10/6/4 13/5/2 4/6/10 8/5/7 8/4/8 35

GRF Leaderboard Results

Agent Opponent Rating

ACNN+aux CNN-v1/v2 1992
ACNN CNN-v1/v2 1841

CNN-v1 itself 1659
CNN-v2 itself 1630

CNN+aux Built-in 1048
Built-in NA 1000

Table 4.1: Left: selected agents play 20 matches among each other, all trained against

the self-play AI. Each entry records win/tie/loss between row agent and column agent.

Ratings are estimated ELO scores. ACNNs shows clear superiority over CNNs. ACNN

trained from scratch generalizes better. Right: GRF Multi-Agent public leaderboard

results by the time of paper submission. Opponent refers to the policy the agent

trained against. Each submitted agent plays 300 games. ACNNs trained against self-

play AI perform the best. The CNN trained against built-in AI performs poorly and

does not generalize. The self-play AI used in our experiments CNN-v1/v2 are clearly

superior to the built-in AI.

4.5 grf agent tournament and public leader-
board

Table 4.1 (Left) investigates how various agent-centric representation learning
components generalize by hosting a tournament among selected agents. We
include agents trained from scratch, from scratch plus auxiliary loss, from ini-
tialization plus auxiliary loss, and with progressive column plus auxiliary loss.
All are trained against self-play AI for a total of 4.5 billion frames, and each
play 20 matches against another. Each entry records win/tie/loss between row
agent (home) and column agent (opponent). We also estimate their ELO rat-
ings (for details, see Appendix 6). Clearly, ACNN based models outperform
CNN models, corroborating the claim that the agent-centric attention module
enhances generalization. Meanwhile, the ACNN models using pre-training are
inferior to the ones trained from scratch. It suggests that although pre-training
speeds up convergence, it can also limit the model’s ability to generalize.

Finally, we upload our best performing agent trained against the built-in
AI, i.e., CNN with auxiliary loss, and best agents against the self-play AI,
i.e., ACNN and ACNN with auxiliary loss, to the public GRF Multi-agent
League (Zurich, 2020). For comparison, we also upload the two self-play AI
models used in our experiments, i.e., CNN-v1 and CNN-v2. Each of the sub-
mitted agents plays 300 games against agents submitted by other participants,
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and their ELO ratings are listed in Table 4.1 (Right). The self-play AI agents
deliver a decent performance, showing clear advantages over the built-in AI.
The agents trained against the self-play AI overall perform the best. In contrast,
the agent trained against the built-in AI, although dominating the built-in AI,
is hugely fragile against other agents. This supports our observation that the
built-in AI can be exploited with little cooperation. It is also worth mentioning
that, at the time of submission, our ACNN agent with auxiliary loss ranks top
1 on the leaderboard.

4.6 conclusions

We propose integrating novel agent-centric representation learning components,
namely the agent-centric attention module and the agent-centric predictive ob-
jective, to multi-agent RL. In experiments, we show that the attention module
leads to complex cooperative strategies and better generalization. In addition,
leveraging the agent-centric predictive objectives as an auxiliary loss and/or
for unsupervised pre-training from observations improves sample efficiency.
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4.A policy gradient for mamdp

Recall that we consider a fully cooperative multi-agent MDP with N agents
and finite horizon with a maximum of tmax steps. A MAMDP is a tuple
(S, {Ai}i∈N , P, {Ri}i∈N ) where S is the shared state space, Ai the set of actions
for the i-th agent and A = A1 × · · · AN, P : S× A× S → [0, 1] the transition
function, and R : S×A → R the reward function. For a policy π : S×A, the
respective state value function is defined as

V(s) = Eπ

[
Σt≥t0γtR(st, at)|s0 = s

]
, (4.5)

or in the Bellman form

V(s) = Eπ [R(s0, a0) + γV(s1)|s0 = s] ,

where 0 ≤ γ < 1 is the discount factor over time. The respective state-action
value function can also be defined in Monte Carlo, Bellman forms as well as in
terms of V

Q(s, a) = Eπ

[
tend

∑
t0

γtR(st, at)|s0 = s, a0 = a

]
, (4.6)

Q(s, a) = Eπ [R(st, at) + γEπ [Q(st+1, at+1)]] = Eπ [R(st, at) + γV(st+1)] .

The common goal for all agents is to identify policy π that maximizes the
expected long term discounted global return

J(θ) = Es∼d [V(s)] = Es∼d,a∼π

[
Σt≥0γtR(st, a)

]
, (4.7)

where d is the stationary distribution of states.
A popular method in tackling this task is via policy gradient (Williams, 1992)

by directly ascending gradients of π along the direction ∇θ J. The single-agent
policy gradient theorem rewrites ∇θ J in the following form

∇θ J(θ) = Es∼d,a∼π [∇ log π(s, a)Q(s, a)] .

91
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Often Q is also approximated by a parameterized function, leading to actor-
critic algorithms (Konda and Tsitsiklis, 2000). To reduce variance, a baseline
is usually subtracted from Q. One candidate for baseline, used in V-trace (Es-
peholt et al., 2018), is the state-value V, resulting in the advantage actor-critic
algorithm (Mnih et al., 2016a), that is

∇θ J(θ) = Es∼d,a∼π [∇ log π(s, a)A(s, a)] , where A(s, a) = Q(s, a)−V(s).

In the case of fully-cooperative MARL, Zhang et al. (2018) proves the corre-
sponding policy gradient theorem, following the original proof in Williams
(1992)

Theorem 1. (Policy Gradient Theorem for MARL.) For any θ ∈ Θ be parametriza-
tions for actor and critic. Let πi : S × Ai be a policy for i-th agent, let J(θ) be the
global discounted long term return defined in 4.7, Q and V defined in 4.6 and 4.5. The
gradient of J(θ) with respect to θi, the parametrization for i-th agent, is given by

∇θ J(θ) = Es∼d,a∼π

[
∇ log πi(ai|s)Q(s, a)

]
(4.8)

= Es∼d,a∼π

[
∇ log πi(ai|s) (Q(s, a)−V(s))

]
. (4.9)

Our setup closely follows that in Theorem 1. We parameterize π and V using
deep neural networks, denoted by θ. The state-action Q in practice is thus de-
rived through Q(s, a) = R(st, at) + γV(st+1). All agents share the same π and
v. In our case, the policy for each agent is differentiated by adding additional
agent specific information to the input state si. As we update the gradients
for all agents altogether, it does not affect the policy gradient formulation in
practice.

Since all agents share a common global reward, ideally V(si) = V(sj) = V(s),
and denote Vi(s) = V(si). We add a small amount of additional reward for
faster convergence and ease of training if an agent is explicitly making positive
contributions. For example, an active player, i.e., the player in control of the
ball, receives 0.1 if advancing to the opponent’s half of the field. However, this
slight reshaping of reward does not deviate the empirical∇ Ĵ too far away from
the true ∇J.

Proposition 1. Consider for each agent, when taking action, it receives a reward

Ri(st, at) = R(st, at) + βtε,
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where βt∼Bernoulli(p) is i.i.d and ε > 0. Assume Vi converges, that is Vi(st) =

Eπ

[
Σt≥t0γtRi(st, at)

]
, then we have

|Q(st, at)−Qi(st, at)| = |V(st)−Vi(st)| ≤ pε
1− γtmax

1− γ
,

and

‖∇θ J(θ)−∇θ Ĵ(θ)‖ ≤ pε
1− γtmax

1− γ
‖Es∼d,a∼π

[
∇ log πi(a|s)

]
‖

Proof. We start with the value functions

Vi(st)−V(st) = Eπ

[
Σt≥t0γtRi(st, at)

]
−Eπ

[
Σt≥t0γtR(st, at)

]
= Eπ

[
Σt≥t0γt (R(st, at) + βtε)− Σt≥t0γtR(st, at)

]
= Eπ

[
Σt≥t0γtβtε

]
= Σt≥t0γt pε.

Therefore

|Vi(st)−V(st)| ≤ Σt≥t0γt pε =
pε(1− γtend−t0)

1− γ
≤ pε

1− γtmax

1− γ
.

Since we have

Qi(st, at)−Q(st, at) = Eπ

[
Ri(st, at) + γVi(st+1)− R(st, at)− γV(st+1)

]
= pε + γ(Vi(st+1)−V(st+1)) = Vi(st)−V(st),

from there

|Qi(st, at)−Q(st, at)| ≤ pε
1− γtmax

1− γ
.

Now turn to the policy gradients

∇θ J(θ)−∇θ Ĵ(θ) = Es∼d,a∼π

[
∇ log πi(a|s)Q(s, a)

]
−Es∼d,a∼π

[
∇ log πi(a|s)Qi(s, a)

]
= Es∼d,a∼π

[
∇ log πi(a|s)

(
Q(s, a)−Qi(s, a)

)]
therefore

‖∇θ J(θ)−∇θ Ĵ(θ)‖ = ‖Es∼d,a∼π

[
∇ log πi(a|s)

(
Q(s, a)−Qi(s, a)

)]
‖

= ‖Es∼d,a∼π

[
∇ log πi(a|s)Σt≥t0γtβtε

]
‖

= ‖Es∼d,a∼π

[
∇ log πi(a|s)pε

1− γtend

1− γ

]
‖

= pε
1− γtend

1− γ
‖Es∼d,a∼π

[
∇ log πi(a|s)

]
‖

≤ pε
1− γtmax

1− γ
‖Es∼d,a∼π

[
∇ log πi(a|s)

]
‖.
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4.B action lists

google research football There are in total 19 actions, which are: idle,
left, top left, top, top right, right, bottom right, bottom, bottom left, long
pass, high pass, short pass, shot, keeper rush, sliding, pressure, team pressure,
switch, sprint, dribble, release direction, release long pass, release high pass,
short pass, release shot, release keeper rush, release sliding, release pressure,
release team pressure, release switch, release spring, release dribble.

Top Bottom Left Right
Top-Left Top-Right Bottom-Left Bottom-Right

Short Pass High Pass Long Pass Shot
Do-Nothing Sliding Dribble Stop-Dribble

Sprint Stop-Moving Stop-Sprint —

deepmind lab 2d “cleanup” In Cleanup, there are 4 categories of action.
At each step, an agent chooses one act from each. The categories are move (up,
down, right, left, idle), turning (left, right, idle), firing cleaning laser (fire, no
fire), firing fine laser (fire, no fire). Thus in total, there are 60 combinations.
The leaning laser is for cleaning up the mud. The fine laser is purposed to
freeze other agents when they become too greedy and keep consuming apples
without cleaning.

4.C grf self-play training

Self-play follows the same general training protocol as the non-self-play MARL.
The biggest differences are (1) the opponent policy and (2) policy gradient up-
dates on the opponents. For (1), the opponent policies are a mix of the current
model and the built-in AI. Concretely, we control a subset of opponent player
agents using the training policy and the other player agents using built-in AI.
The two self-play policies on the GRF Leaderboard (Zurich, 2020), smarl:b3
(CNN-v1 from Section 5) and smarl:b2 (CNN-v2 from Section 5) are trained
with controlling 2 and 1 agents with the current training policy respectively.
For (2), we calculate the policy gradients for the opponent players controlled
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by the model in training in the same way as home players and backpropagate
the gradients as well.

4.D more details and results on multi-agent
observation prediction

DMLab built-in self-play

CNN 4.81 5.18 8.11 8.06 7.70 7.98

ACNN4.56 4.80 8.22 7.91 7.74 7.92

Table 4.D.1: Negative log likelihood re-
sults for CNN, ACNN on observations
from the 3 tasks.

The input format for multi-agent obser-
vation prediction is exactly the same
as used for RL. This consistency al-
lows straightforward transfer of the pre-
trained model to MARL. The Adam op-
timizer has parameters β1 = 0.9, β2 =

0.999, ε = 1e − 07 and initial learning
rate 0.002. For validation, we set aside
1/15 of the data and train till NLL plateau on the validation data. The results
are summarized in Table 4.D.1. The attention module does not offer significant
advantage in terms of NLL. We conjecture that because each agent’s location is
predicted independently, the CNN architecture has sufficient model complex-
ity to handle the tasks used in our experiments.

4.E more details and results on multi-agent
rl

For all MARL experiments, we sweep the initial learning rate over the set of val-
ues (0.00007, 0.00014, 0.00028), for the auxiliary loss coefficient (0.0001, 0.0005).
The loss coefficient for value approximation is 0.5. We use TensorFlow Abadi et
al., 2016 default values for other parameters in ADAM. The unroll length is 32,
discounting factor 0.99, entropy coefficient in V-trace 0.0005. The multi-agent
experiments for GRF are run on 16 TPU cores, 10 of which are for training and
6 for inference, and 2400 CPU cores for actors with 18 actors per core. The
batch size is 120. We train 500M frames when against the built-in AI and 4.5G
frames when against the built-in AI. The single-agent experiments for GRF are
run on 32 TPU cores, 20 of which for training and the rest for inference, and
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with auxiliary loss

Figure 4.E.1: Plots are averaged over 3 random seeds.

480 CPU cores for actors with 18 actors per core. The batch size is 160. We
train 900M frames for the single-agent RL tasks. The DMLab2D experiments
are run on 8 TPU cores, 5 of which for training the other for inference, and
1472 CPU cores with 18 actors per core.

When analyzing the effects of incorporating pre-trained models to MARL,
besides the results in Section 4 of the main text, we also conduct experiments by
adding initialization or progressive frozen column to CNN and ACNN models
with auxiliary loss in Figure 4.E.1. The same trend is observed, albeit to a
lesser degree, as expected because the auxiliary objectives and pre-training
carry overlapping information.

4.F elo

The ELO rating system is designed to compare a group of players in zero-sum
games. In our tournament (Table 1 Left), we compute the ELO scores among
the selected agents in the following way.

1. Initialize all agents to have an ELO score 1000.

2. Shuffle the order of the matches taken place.
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3. Go through the matches and update the ELO score for the two players
A and B in two steps. First, calculate the expected scores based on their
current ELO ratings RA and Rb:

EA =
1

1 + 10(RB−RA)/400
, EB =

1
1 + 10(RA−RB)/400

.

Then update the ELO ratings based on the expected scores and the actual
score, where winning is 1, losing −1, and tie 0:

RA = RA + k(SA − EA), RB = RB + k(SB − EB),

where k is the k-factor for ELO, which we set to be 16.





Part II

Crafting Deep Learning Models for
Computer Vision Applications





M OT I VAT I O N A N D S U M M A R Y

Computer vision is fundamental to AI, as it is one of the dominating venues
for the digital world to interact with the physical world. Computer vision
tools can not only be directly useful in applications such as image recognition,
activity recognition, face verification, etc., but also serve as a crucial basis for
much larger scale problems such as autonomous driving, robotic arm manip-
ulation, virtual reality applications, etc. Recently, there has been tremendous
progress in computer vision research, thanks to the rise of deep learning. It has
achieved human-level performance in many supervised learning tasks, such as
image recognition. Meanwhile, the physical world provides us with a wealth
of unlabeled data. Therefore, it has been a central research challenge to better
craft deep computer vision representations from data that is either unlabeled
or with limited labels.

Part II investigates how to enhance unsupervised image modeling, condi-
tional image modeling, and unsupervised video representation learning.

In Chapter 5, we propose channel-recurrent variational autoencoders (cr-
VAE (Shang et al., 2018) for image modeling. It integrates recurrent connec-
tions across channels to both inference and generation steps, allowing the
high-level features to capture global-to-local, coarse-to-fine content. Combined
with adversarial loss, the resulting channel-recurrent VAE-GAN (crVAE-GAN)
outperforms the baseline VAE-GAN in generating a diverse spectrum of high-
resolution images while maintaining the same level of computational efficacy.

In Chapter 6, we further extend the channel-recurrent framework and pro-
pose attentive conditional channel-recurrent autoencoding (acVAE) (Shang and
Sohn, 2019) for attribute-conditioned face synthesis. Evaluations are performed
through both qualitative visual examination and quantitative metrics, namely
inception scores, human preferences, and attribute classification accuracy.

Finally, in Chapter 7, we propose to learn video level statics and dynam-
ics representations (Shang et al., 2020b) by decomposing videos from temporal
coherence and dynamics. We demonstrate the significance of the learned repre-
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sentations over several applications, including a novel dynamics retrieval task,
on a face, and a human activity datasets.



5

C H A N N E L- R E C U R R E N T
A U TO E N C O D I N G F O R I M A G E
M O D E L I N G

5.1 introduction

Tremendous progress has been made in generative image modeling in recent
years. Autoregressive models, such as PixelRNN (Oord et al., 2016a), describe
image densities autoregressively in the pixel level, leading to sharp genera-
tions, albeit at a high computational cost and without providing latent repre-
sentations. Generative adversarial networks (GANs) (Goodfellow et al., 2014)
have shown promise, but are limited to modeling high-density regions of data
distributions (Arora et al., 2017; Wu et al., 2016; Theis et al., 2016) and difficult
to train (Radford et al., 2016; Arjovsky et al., 2017).

Variational Autoencoder (VAE) (Kingma and Welling, 2013) is a directed
graphical model that approximates a data distribution through a variational
lower bound (VLB) of its log-likelihood. VAE introduces an approximate pos-
terior parameterized by a deep neural network (DNN) that probabilistically

GAN VAE-GAN crVAE-GAN (proposed) 128x128 Stage2 generationVAE

Figure 5.1: Comparison demonstrating our channel-recurrent VAE-GAN’s superior

ability to model complex bird images. Based on the high-quality generation of Stage1

64×64 images, higher-resolution Stage2 images can be further synthesized unsuper-

visedly.
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Figure 5.2: Illustrations of (a) standard VAE, (b) its convolutional variant cVAE and (c)

the proposed crVAE.

encodes the input to a latent representation. It is directly applicable for a
wide range of downstream tasks from photo-editing (Guo et al., 2017) to policy
learning (Higgins et al., 2017b), which neither GANs nor autoregressive mod-
els are equipped with. Inference in VAE can be made efficiently by a forward
pass of the DNN, making it promising for real-time applications. As opposed
to GANs, the reconstruction objective of VAE assures a comprehensive input
space mode coverage. However, such comprehensive mode coverage, when
combined with the KL regularization to the approximated posterior, becomes
a downside for modeling complex and high-dimensional images, resulting in
blurry image generation (Bousquet et al., 2017). To resolve blurriness while
preserving a meaningful latent space, (Larsen et al., 2016) augments a VAE
with an auxiliary adversarial loss, obtaining VAE-GAN.

However, recent works for high resolution (64×64 and above) unsupervised
image modeling are restricted to images such as faces and bedrooms, whose in-
trinsic degrees of freedom are low (Larsen et al., 2016; Cha, 2017; Mescheder et
al., 2017). Once images become spatially and contextually complex, e.g. birds
photographed in their natural habitats, aforementioned models struggle to pro-
duce sensible outputs (Figure 5.1), likely due to their latent space constructions
lacking the capacity to represent complex input distributions.

In this work, we aim at resolving the limitations of VAE, such as blurry
image generation and lack of expressiveness to model complex input spaces,
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in an unsupervised way1. While keeping graphical model unchanged to re-
tain its original efficacy such as efficient probabilistic inference and generation,
we propose to augment the architecture of inference and generation networks
via recurrent connections across channels of convolutional features, leading
to the channel-recurrent VAE (crVAE). Our approach is motivated by observ-
ing a common drawback to VAE and VAE-GAN: the fully-connected (FC) lay-
ers between the latent space and convolutional encoder/decoder. Although
FC layers can extract abstract information for high-level tasks such as recogni-
tion (Krizhevsky et al., 2012), it omits much local descriptions that are essential
for detailed image modeling as in our case. Instead, we build latent features
on convolutional activation without FC layers. The proposed architecture se-
quentially feed groups of convolutional features sliced across channels into an
LSTM (Hochreiter and Schmidhuber, 1997), so that for each time step, the as-
sociated latent channels are processed based upon accumulated information
from previous time steps to ensure temporal coherence while reducing the
redundancy and rigidity from FC layers by representing distinguishing infor-
mation at different time steps. As a result, our model disentangles factors of
variation by assigning general outlining to early time steps and refinements to
later time steps. Analogously to VAE-GAN, We derive crVAE-GAN by adding
an additional adversarial loss, along with two novel regularization methods to
assist training further.

We evaluate the performance of our crVAE-GAN in generative image mod-
eling of a variety of objects and scenes, namely birds (Van Horn et al., 2015;
Berg et al., 2014; Wah et al., 2011), faces (Liu et al., 2015), and bedrooms (Yu
et al., 2015). We demonstrate the superiority of our crVAE-GAN qualitatively
via 64×64 image generation, completion, and an analysis of semantic contents
for blocks of latent channels, as well as quantitatively via inception scores (Sal-
imans et al., 2016) and human evaluation. Specifically, significant visual en-
hancement is observed on the more spatially and contextually complex birds
dataset. We provide further empirical evidence through higher-resolution (128×128
or 224×224) image synthesis by stacking an extra generation network on top
of 64×64 generations from crVAE-GAN and VAE-GAN, similarly to (Zhang
et al., 2016a). Unlike (Zhang et al., 2016a), the success of generating higher-
resolution 2nd stage images without condition variables is heavily dependent
on the quality of the 1st stage generations. Our results verify the importance

1 This chapter is based on our WACV 2018 paper (Shang et al., 2018).
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of channel-recurrent architecture in providing a solid 1st stage foundation to
achieve high-quality 2nd stage generation. Lastly, we remark on the computa-
tional virtues of crVAE-GAN.

The merits of our method are summarized as follows:

• We integrate temporal structure to the latent space via LSTMs to replace
the rigid FC layers to recurrently process latent channels, attaining a
global-to-local, coarse-to-fine generation.
• Our framework not only preserves the beneficial probabilistic latent space

from VAE, allowing wide mode coverage, efficient posterior inference,
and training but improves its expressiveness and interpretability.
• Our crVAE-GAN, combined with two novel regularization methods, can

model complex input spaces when existing models fail. We visually and
quantitatively demonstrate significant improvement in high-resolution
image generation and related tasks over VAE-GAN.
• Our model, while producing state-of-the-art level image generations, main-

tains the computational efficacy from VAE.

Code and pretrained models are published.

5.2 related works

Recent advances in deep generative modeling predominantly come from au-
toregressive models, Generative Adversarial Networks (GANs), and Variational
Autoencoders (VAEs). Autoregressive models such as PixelRNN and Pixel-
CNN (Oord et al., 2016b; Oord et al., 2016a; Salimans et al., 2017) directly
characterize the probability density function over the pixel space. Although
these models produce sharp images, they have slow inference, demand heavy
GPU parallelization for training, and do not explicitly learn a latent space.
GAN (Goodfellow et al., 2014; Zhang et al., 2019; Brock et al., 2018) is an-
other popular method in which a generator competes against a discriminator,
producing outputs that imitate the inputs. GANs suffer from several notable
issues: limited distribution coverage (Arora et al., 2017; Wu et al., 2016; Theis
et al., 2016), training instability (Radford et al., 2016; Arjovsky et al., 2017;
Mao et al., 2016). It also lacks probabilistic latent spaces to encode a given
input, although there have been attempts to build latent representations on top
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of GANs (Donahue and Simonyan, 2019). VAEs (Kingma and Welling, 2013)
consist of a bottom-up inference network and a top-down generation network
parameterized by DNNs that are jointly trained to maximize the VLB of the
data log-likelihood. Although VAEs are mathematically elegant, easy to train,
fast in inference, and less GPU demanding than autoregressive models, its KL
divergence penalty paired with reconstruction objective hampers realistic im-
age generation since it overly stretches the latent space over the entire training
set (Theis et al., 2016; Bousquet et al., 2017).

Attempts are made to combine the methods as mentioned above. Pixel-
VAE (Gulrajani et al., 2016) integrates PixelCNN into VAE decoder but is still
computationally heavy. RealNVP and other flow-based methods (Dinh et al.,
2017; Kingma and Dhariwal, 2018) employ an invertible transformation be-
tween latent space and pixel space that enables exact log-likelihood compu-
tation and inference, but the model is restricted by the invertibility require-
ment. Adversarial Variational Bayes (AVB) (Mescheder et al., 2017) theoreti-
cally builds more flexible approximated posterior via adversarial learning but
empirically still outputs blurry generations. VAE-GAN (Larsen et al., 2016)
stitches VAE with GAN to enhance the generation quality while preserving an
expressive latent space without introducing excessive computational overhead.
However, VAE-GANs are still not competitive in complex image classes, as we
note from Figure 5.1. To tame complex input spaces, recent works (Reed et al.,
2016; Yan et al., 2016; Odena et al., 2017) leverage side information such as text
description, foreground mask, and class labels as conditional variables hoping
that the consequential conditional distributions are less tangled. But learning
a conditional distribution requires additional labeling efforts both at training
and downstream applications. Our approach handles complex input spaces
well without the aid of conditional information. It follows the pipeline of
VAE-GAN but employs a core channel recurrency to transform convolutional
features into and out of the latent space. Such changes are similar in spirit as re-
cent works on improving approximate posterior and prior for VAEs (Kingma et
al., 2016; Chen et al., 2016c; Rezende and Mohamed, 2015), however, we do not
change the prior or the posterior to maintain algorithmic simplicity and com-
putational efficiency. Our recurrent module builds lateral connections between
latent channels following a similar philosophy as in the deep autoregressive
networks (DARN) (Gregor et al., 2014). But latent variables in DARN are se-
quentially drawn conditioned on the samples from the previous time steps and
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(a) VAE (b) cVAE (c) crVAE

(d) VAE (e) cVAE (f) crVAE

Figure 5.3: (top) reconstructions with latent variables drawn from the approximated

posterior and (bottom) generations from the prior for VAE, convolutional VAE (cVAE),

and the proposed crVAE.

can be slow in inference. DRAW networks (Gregor et al., 2015; Gregor et al.,
2016) are related to ours as they also recurrently iterate over latent variables
for generation. DRAW iterates over the entire latent variables multiple times
and incrementally reconstructs pixel-level input at each iteration. In contrast,
we only iterate between blocks of latent channels and reconstruct once. Thus
it is computationally more efficient and learns interpretable latent subspaces.

5.3 channel-recurrent autoencoding

This section introduces the proposed channel-recurrent architecture, motivated
by observing the limitations of the standard VAE and convolutional VAE (cVAE).
Then, we extend crVAE-GAN with an adversarial loss to render realistic im-
ages. Furthermore, we introduce two latent space regularization techniques
specific to our proposed channel-recurrent architecture, namely, the KL objec-
tive weighting and the mutual information maximization.

5.3.1 Latent Space Analysis of VAEs

VAE approximates the intractable posterior of a directed graphical model with
DNNs (Figure 5.2a), maximizing a VLB of the data log-likelihood:

LVAE = −Eqφ(z|x)
[

log pθ(x|z)
]
+ DKL(qφ(z|x)‖p(z))

]
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(a) ground truth (b) VAE-GAN (c) crVAE-GAN

Figure 5.4: 64×64 resolution image generation of (top) Birds, (middle) CelebA and

(bottom) LSUN using (b) baseline VAE-GAN and (c) our proposed crVAE-GAN along

with (a) real examples.

where the approximate posterior qφ(z|x) is modeled as a diagonal Gaussian
and the prior p(z) as a standard Gaussian. We refer to qφ(z|x) as an inference
network and pθ(x|z) a generation network. The latent space of standard VAE is
modeled as 1-dim vector z∈Rc (Kingma and Welling, 2013), whereas for cVAE
the latent space is modeled as a 3-dim tensor z∈Rw×h×c (Sohn et al., 2015).

Overly smoothed reconstructions (Figure 5.3a) and generations (Figure 5.3d)
as well as a lack of sample diversity are major downsides of VAEs. A potential
cause is that the naive parameterization of the latent space, its associated prior
and approximated posterior, may not be able to reflect a complex data distribu-
tion (Theis et al., 2016; Kingma et al., 2016; Chen et al., 2016c). One would be
tempted to provide a fix by adding an image-specific prior to the latent space,
such as spatial structure, leading to cVAE (Figure 5.2b), whose inference and
generation networks, different from standard VAE, are fully convolutional. By
making the approximated posterior spatially correlated, cVAE can learn with
more local details during inference, reflected by higher quality reconstructions
(Figure 5.3b). However, the latent variables sampled from spatially indepen-
dent prior of cVAE ignores the global structure of face shapes and produce
chaotic samples (Figure 5.3e).
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5.3.2 Channel-Recurrent Variational Autoencoder

Employing a prior with spatially dependent latent variables, such as a full-
covariance Gaussian prior, is one remedy to the problem of chaotic image
generation in cVAEs. However, such prior complicates the optimization due
to significantly increased number of parameters (e.g., full covariance matrix
∼ O((w×h×c)2)), especially when the latent space is large (Duchi, 2007; Gre-
gor et al., 2014). Alternatively, we can structure the covariance to have dense
dependencies across the spatial dimension and conditional dependencies along
channels, hoping that such a setup can guide each channel to model different
aspects of an image.

One possible way to apply the desired structure is to introduce hierarchy to
the latent variables, which requires sequential sampling and complicates the
training. Thus, tackling from a different direction, we opt to adapt to the net-
work architecture. We propose to factorize the convolutional latent space into
blocks across channels, flatten the activation to model spatial dependency, and
connect the blocks via an LSTM (Hochreiter and Schmidhuber, 1997) to allow
communication and coordination among them for coherency across channels.
That is, the transformation of the current block of latent channels always takes
account of the accumulative information from the preceding time steps, serv-
ing as guidance. Concretely, during generation, z=[z1, ··, zT] with zi∈Rw×h× c

T

sampled from standard Gaussian prior is passed through an LSTM to obtain a
transformed representation u = [u1, ··, uT]=LSTM(z), which is then projected
back to the pixel space. Similarly, during inference, the mean path shares
the same architecture as in cVAE; the variance path slices latent variables into
T blocks of size w×h× c

T , each referred to as σi and feeds σi’s into another
LSTM to output σrnn

i as the final variances for the approximate posterior. Our
proposed model, referred to as the channel-recurrent VAE (crVAE), can both
reconstruct and generate with higher visual quality than VAE and cVAE, as
shown in Figure 5.3c and 5.3f. More mathematical intuition and details for our
design are in the Supplementary Materials.

5.3.3 Additional Regularization

Inspired by (Larsen et al., 2016), we adopt an adversarial loss to generate real-
istic images, leading to crVAE-GAN. Additionally, we propose two novel regu-
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Figure 5.5: (Left) generations from the baseline VAE-GAN without MI regularization

has much less artifacts than those from models trained with MI regularization on z
(middle) or FCgen(z) (right), implying such regularization is not compatible with VAE-

GAN.

larizers to enhance the latent space quality of crVAE-GAN for better semantic
disentanglement and more stable optimization.

Generating Realistic Images with crVAE-GAN

We extend crVAE to crVAE-GAN with an auxiliary adversarial loss on top of
the generation network outputs for realistic image synthesis. The discriminator
D maps an image sampled from either the posterior or prior into a binary
value:

max
φ,θ
LVAE + βEz∼{qφ(z|x),p(z)} [log D(pθ(x|z))]

max
D

Ex∼X [log D(x)] +Ez∼{qφ(z|x),p(z)} [log(1−D(pθ(x|z))] .

Training can be done by min-max optimization as in (Larsen et al., 2016).

Weighting the KL Objective

The KL objective of crVAE can be written as follows:

T

∑
t=1

(1− αt)DKL(qφ(zt|x)‖p(zt)), (5.1)

where αt=0, ∀t∈{1, · · · , T} yields the equivalent expression to standard VAE
objective. The channel recurrent architecture additionally enables different
weights to regularize the KL objective at each time step. Specifically, noting
that the earlier ones can heavily influence the later time steps due to the recur-
rent connection, we gradually reduce the regularization coefficients of the KL
divergence to balance. From an information-theoretic perspective (Alemi et al.,
2016; Tishby et al., 2000), the earlier time steps with larger coefficients hold a
tighter information bottleneck, meaning that these latent channels shall convey
general outlines, whereas the later time steps with smaller coefficients, i.e., a
more flexible information flow, constitute diverse details conditioned on the
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sketched outlines. Figure 5.8 demonstrates the resulting effects where earlier
time steps output rough profiles and later ones craft the details.

Mutual Information Regularization

To increase training stability, we borrow the idea of mutual information (MI)
maximization from (Chen et al., 2016b) as an additional regularization. By re-
covering the latent variables from the generated image, the generation network
encourages the administration of latent information to the output space. The
regularization objective is written as:

Ez∼{qφ(z|x),p(z)},x̃∼pθ(x|z)
[
qψ(z|x̃)

]
(5.2)

where z can be sampled either from approximate posterior qφ(z|x) or prior
p(z). The CNN encoding path is shared between qψ and D as in (Chen et
al., 2016b), mapping generated image to reconstruct z and to a binary value,
respectively.

Note that the formulation in Equation (5.2) is not restricted to z, and we
empirically found that relating the transformed representation u=LSTMgen(z)
with the output of qψ under crVAE-GAN framework is much more effective.
However, similar regularization is found detrimental for VAE-GAN, both with
z and the transformed representation FCgen(z), as shown in Figure 5.5. We
compare samples generated from the baseline VAE-GAN and those trained
with additional regularization to relate z or FCgen(z) with the outputs, but the
outcomes of the latter are visibly worse. We contemplate that VAE-GAN lacks
an equivalent transformation step as in crVAE-GAN via channel-recurrent ar-
chitecture, which particularly functions to enhance the latent representations.
More empirical demonstrations are in Section 5.4.2 and implementation details
in the Supplementary Materials.

5.4 experiments

For evaluation, we first synthesize 64×64 natural images, followed by a 2nd
stage generation to 128×128 or 224×224 on top of the 1st stage generation. To
demonstrate the latent space capacity, image completion tasks are performed
via optimization based on latent representations. Finally, we explore the se-
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Model (64×64) Birds CelebA LSUN

VAE-GAN 5.81±0.09 21.70±0.15 16.6%

crVAE-GAN 10.62±0.12 24.16±0.33 29.9%

crVAE-GAN + MI 11.07±0.12 26.20±0.19 53.5%

Model (128 or 224) Birds CelebA LSUN

VAE-GAN 14.97±0.11 19.09±0.19 20.5%

VAE-GAN + Perc. 14.61±0.24 27.09±0.26 10.5%

crVAE-GAN 29.14±0.45 42.66±0.45 34.8%

crVAE-GAN + Perc. 32.13±0.37 35.03±0.39 34.2%

Table 5.1: Quantitative evaluation on generating 64×64 and higher-resolution images.

For Birds and CelebA, inception scores are reported. For LSUN, the frequency of

selection by mechanical turk workers as the most realistc generation among all models

is reported.

Occlusion VAE-GAN crVAE-GAN

Birds lower 28.9% 71.1%

upper 35.2% 64.8%

CelebA eye 18.0% 82.0%

mouth 22.7% 77.3%

half 34.4% 65.6%

LSUN center 23.4% 76.6%

Table 5.2: The frequency of selection by mechanical turk workers as the more realistic

completion using VAE-GAN and crVAE-GAN.

mantics of the learned latent channels, particularly with respect to different
time steps.

Three datasets, covering a diverse spectrum of contents, are used for eval-
uation. Birds dataset is composed of three datasets, namely Birdsnap (Berg
et al., 2014), NABirds (Van Horn et al., 2015) and Caltech-UCSD Birds-200-
2011 (Wah et al., 2011), containing 106, 474 training and 5974 validation im-
ages. CelebA (Liu et al., 2015) contains 163, 770 training and 19, 867 validation
images of face. LSUN bedroom (LSUN) (Yu et al., 2015) contains 3, 033, 042
training and 300 validation images. The ROIs are cropped and scaled to 64×64

and 128×128 for Birds and CelebA; the images are scaled and cropped to
64×64 and 224×224 for LSUN. Complete Implementation details are in the
Supplementary Materials.
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5.4.1 Stage 1: 64×64 Image Generation

We compare our crVAE-GAN to the baseline VAE-GAN for 64×64 image gen-
eration (Figure 5.4). This also serves as the first step towards generating higher-
resolution images later on. For Birds, VAE-GAN generates colorful images (Fig-
ure 5.4b), but details are highly obscured, indicating the latent space conveys
mostly low-level information such as color and edges, but not much high-level
semantic concepts. By contrast, crVAE-GAN generates significantly more real-
istic birds with decent diversity in color, background, and poses (Figure 5.4c).
Generating aligned faces and structured bedrooms are less difficult than birds,
but crVAE-GAN still exhibits clear superiority over VAE-GAN.

For quantitative evaluation, we measure inception scores on Birds and CelebA
using ImageNet pretrained VGG11 models finetuned on bird and face recogni-
tion task (Yi et al., 2014), respectively. As no bedroom classification dataset is
available, we instead conduct a user study for LSUN. We ask a mechanical turk
worker to select the most realistic out of 3 generated images (corresponding
to VAE-GAN and crVAE-GAN, with and without MI regularization), repeat-
ing for 2000 times. We observe improved inception scores in Table 5.1, which
agrees with the visual observation. The frequency of selection of each model by
mechanical turk workers on generated LSUN images in Table 5.1 also verifies
that our proposed model outperforms the baseline with a significant margin.

5.4.2 Effect of Mutual Information Regularization.

We examine the effects of Mutual Information (MI) regularization on training
crVAE-GAN by projecting the same z to the output pixel space via generation
networks through the last 10 epochs of training. Figure 5.6a and 5.6b show
the results without and with MI regularization, respectively, where the top 4

rows are successful samples, 5th and 6th rows lower quality samples, and the
bottom 2 rows failure cases. First, note that both models supply crisp, coher-
ent, and realistic samples when successful, and their inception scores are also
close (Table 5.1). Nonetheless, without MI regularization, generated samples
between consecutive epochs oscillate, and failure cases tend to collapse to the
same mode despite originating from different z’s. By contrast, with the regular-
ization, the convergence becomes stable, and the mode collapsing phenomenon
no longer exists even for failed generations. High variance and mode collaps-
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ing are two well-known issues of adversarial training (Radford et al., 2016). MI
maximization overcomes these issues by (1) enforcing the latent messages to be
passed to the outputs and (2) regulating the adversarial gradients–recall that
MI and adversarial objectives share the same encoding path. Unless specified
otherwise, the crVAE-GAN results reported are trained with MI regularization.

5.4.3 Stage2: Higher Resolution Image Generation

To further assess the quality of Stage1 64×64 generations, we raise the gener-
ation resolution to 128×128 for Birds and CelebA,2 and to 224×224 for LSUN.
Our Stage2 generation network is designed similarly to that of StackGAN (Zhang
et al., 2016a), but the generation is done in an unsupervised way without any
condition variables. Thanks to the nature of our framework, the Stage1 out-
puts are composed of both generated and reconstructed samples. We can uti-
lize not only both sources of “fake” images in training but also an additional
perceptual loss (Johnson et al., 2016) of the reconstructed images to regular-
ize the Stage2 network. Figure 5.9 presents generated samples from Stage2

networks with and without perceptual loss while taking generation outputs of
VAE-GAN and crVAE-GAN Stage1 models as input. Table 5.1 provides quan-
titative evaluations following the protocol of Section 5.4.1. The qualitative and
quantitative results imply that a high-quality Stage1 generation is essential for
Stage2 success, despite that the Stage2 network can correct some of the Stage1

mistakes. Since crVAE-GAN supplies much higher quality Stage1 generations
than VAE-GAN, it also produces more visually pleasing Stage2 generations.
We also observe that the inception scores, in this case, can diverge from visual
fidelity, e.g., the Stage2 CelebA results with perceptual loss exhibit higher vi-
sual quality than without but lower inception scores. Lastly, other mechanisms
besides stacking generation networks can be applied to further raise image res-
olution, such as variations of the recently proposed progressive GAN (Karras
et al., 2017), a worthy future direction but out of the scope of this paper.

2 We decide to generate higher-resolution images of 128×128 for Birds and CelebA since the
ROIs of are approximately of this resolution.
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5.4.4 Image Completion

To verify how faithfully the latent manifold from crVAE-GAN reflects the se-
mantic meaning of the input space, we conduct an image completion task using
Stage1 models. We occlude parts of validation images, namely right-half, eye
and mouth regions for CelebA, upper and lower part in Birds and blocks for
LSUN, and then optimize their latent representations z’s to fill in the missing
parts (Yan et al., 2016):

min
z

[
‖x̂�m− x�m‖2

2 + γ logN (z; 0, I) + τ log(1− D(x̂)
]
,

where x̂ = gen(z) refers to the output of the generation network, m ∈ {0, 1}3×64×64

is a mask whose entries are 0 if corresponding pixel locations are occluded and
1 otherwise, and � represents element-wise multiplication. Qualitative exam-
ples are in Figure 5.7. VAE-GAN struggles to complete some missing regions,
e.g., right half of the faces and sunglasses in Figure 5.7a, or generates excessive
noise, e.g., the sky in Figure 5.7b. By contrast, crVAE-GAN is more competent
in retracting off-orbit latent points back to the actual manifold by better em-
bedding the high-level semantic information. Since there may exist multiple
solutions in completing an image besides the ground truth, reconstruction er-
ror is not an ideal metric for quantitative measurement. Instead, we conduct
human evaluation by presenting completed results from VAE-GAN and crVAE-
GAN to mechanical turk workers and asking them to select the more realistic
one. The selection frequency of each model out of 128 randomly selected pairs
is reported in Table 5.2. Overall our crVAE-GAN again outperforms VAE-GAN
with a substantial margin.

5.4.5 Latent Channel Semantics

Our crVAE-GAN processes the latent variables sequentially, allowing a global-
to-local and coarse-to-fine progression. Figure 5.8 highlights this progression
by first initializing all latent variables to be zero, and then gradually sam-
pling blocks of latent variables from the standard Gaussian prior. Due to
the weighted KL penalty, the first four time steps tend to operate on an im-
age’s overall tone: defining the background color theme, outlining the general
shapes, etc. The second half attends the details: the texture of feathers for Birds,
facial expressions for CelebA, lighting for LSUN, etc. For a concrete example,
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the first two rows from CelebA demonstration both start with an outline of men
with glasses, then gradually diverge to different hairstyles, opposite poses, one
taking off while the other solidifying the presence of glasses, etc. Such a pro-
gressing phenomenon also suggests that latent channels at different time steps
carry their interpretable semantics.

To investigate this hypothesis, we first draw random samples from the prior
across 8 time steps, denoted by z = [z1, ··, zt, ··, z8]; we then draw a new sam-
ple z̃ = [z1, ··, z̃t, ··, z8] by only changing a representation at time t that shows
semantically meaningful changes from z; finally we generate images by in-
terpolating between zt and z̃t while fixing other zi’s. We note an interesting
tendency where images sharing certain characteristics can be manipulated in
the same way by interpolating towards the same z̃t. For example, the CelebA
samples in Figure 5.8 suggest that t=5 decides to pose variation; indeed, if two
faces both look into the right (Figure 5.10b), traversing z5’s of these faces to
the same z̃5 (selected by visual inspection) will smoothly frontalize their poses
while retaining other factors. Similar observations can also be made with Birds
and LSUN.

Additionally, we conjecture that our model grants more freedom for seman-
tic variations by associating an explainable factor to a latent subspace rather
than a single latent unit (Higgins et al., 2017a; Chen et al., 2016b). To investi-
gate this hypothesis, we generate several different styles of the same factor by
sampling different zt’s while fixing the other zi’s. For instance, Figure ?? not
only takes the glasses on/off but also switches from eyeglasses to sunglasses,
from thin frame to thick frame. In comparison, existing works on controlling
factors of variation through latent unit manipulation, such as infoGAN (Chen
et al., 2016b) and β-VAE (Higgins et al., 2017a), can only shift the controlled
factor along a single direction, e.g., a latent unit that controls the existence of
glasses does not allow different glasses styles.

Channel recurrency is not yet perfect in explaining latent semantics. In par-
ticular, determining the direction representing a certain factor of variation still
requires visual inspection. Nevertheless, the preliminary demonstrations of
this intriguing property shed light on future research in learning more seman-
tically meaningful latent spaces.
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5.5 computations

Another prominent advantage of crVAE-GAN to the baseline as well as other
state-of-the-art autoregressive models (Oord et al., 2016a; Kingma et al., 2016)
is found from computational aspects. First, as LSTMs share weights over time,
for Stage1 generations, our proposed model has 130M parameters, when the
baseline VAE-GAN with the same number of latent variables and the same
encoder/decoder architecture has 164M. For the same reason, training our
model consumes much less GPU memory. For example, in our implementa-
tion, during Stage1 optimization, crVAE-GAN requires around 4.5GB memory
with a batch size of 128 while VAE-GAN requires 6.2GB. Finally, the inference
and generation complexities for crVAE-GAN is on the same order as those for
VAE-GAN. In wall clock time, for a mini-batch of 128 images using a Titan X,
crVAE-GAN on average takes 5.8 ms for inference and 4.0 ms for generation;
VAE-GAN takes 2.6 ms for inference and 2.2 ms for generation. Meanwhile,
autoregressive models are significantly slower in evaluation: even under care-
ful parallelization, it is reported that PixelCNN (Oord et al., 2016a) takes 52K
ms and inverse autoregressive flow (Kingma et al., 2016) 50 ms to generate a
single 32×32 image on a Titan X.

5.6 conclusion

We propose the channel-recurrent autoencoding framework to improve the la-
tent space constructions for image modeling upon the baseline VAE models.
We evaluate the performance of our proposed framework via generative image
modeling, such as image generation, completion, and latent space manipula-
tion. Future research includes building more interpretable features via channel
recurrency and extrapolating our framework to other tasks.
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(a) crVAE-GAN without MI regularization

(b) crVAE-GAN with MI regularization

Figure 5.6: The same z’s are sampled for each row from a standard Gaussian prior and

projected back to the pixel space using the snapshot of decoders at last 10 epochs of

training. (a) and (b) correspond to crVAE-GAN trained without and with the MI reg-

ularization. Top 4 rows are successful samples, 5th and 6th are low-quality ones, and

bottom 2 are failure cases. Clear improvement in stability is observed for (b) in terms

of color oscillations between consecutive epochs and failure case mode collapsing.
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Ground Truth Ground Truth Ground TruthOccluded Occluded OccludedVAE-GAN crVAE-GAN VAE-GAN crVAE-GAN crVAE-GANVAE-GAN

(a) CelebA: mouth, right-half, eyes

Ground Truth Ground TruthOccluded OccludedVAE-GAN crVAE-GAN VAE-GAN crVAE-GAN

(b) Birds: lower, upper

Ground Truth Occluded VAE-GAN crVAE-GAN

(c) LSUN: blocks

Figure 5.7: Image completion with VAE-GAN and crVAE-GAN.

t=1 t=1 t=8t=8 t=1 t=8

Figure 5.8: Progressively drawing samples from a standard Gaussian prior over time

steps. We observe how image generation evolves by determining global structure at

earlier time steps and gradually adding more details later on. Recall the first 3 time

steps carry more KL-weight than the rest hence a visual leap occurs around t = 3 or 4.
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Stage I
Generation

Stage II
Generation

without 
Perc. Loss

Stage II
Generation

with 
Perc. Loss

VAE-GAN crVAE-GAN VAE-GAN crVAE-GAN VAE-GAN crVAE-GAN

Figure 5.9: Stage2 generation from 64×64 to 128×128 (Birds and CelebA) and 224×224

(LSUN). Proposed crVAE-GAN provides a solid foundation to assure Stage2 success,

clearly contrasting the baseline VAE-GAN.

(a) expression (t = 8) (b) azimuth (t = 5) (c) background (t = 5)

(d) background (t = 5) (e) color (t = 3) (f) window (t = 7)

Figure 5.10: Interpolating between zt and z̃t, for a selected t, while fixing other zi’s.

We observe a gradual shift of an attribute towards the semantic direction encoded by

z̃t while preserving most of the other factors.
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5.A mathematical intuition on model design

We provide more details on the mathematics that motivates our proposed
channel-recurrent architecture. Particularly, our architecture attempts to imi-
tate the effects of having a non-diagonal multivariate Gaussian approximated
posterior and prior, which is too computationally expensive to achieve exactly
in practice when the latent dimension is big (Duchi, 2007). In practice, to draw
a sample from a non-diagonal multivariate Gaussian, one first draw from the
standard multivariate Gaussian and operate the following procedures are per-
formed:

z = Aε + µ, AA> = Σ, ε ∼ N (0, I).

Therefore, to imitate the variance transformation via multiplication of A, we
apply an LSTM layer on the variance inference path to allow all latent variables
to communicate with one another and similarly, to imitate the inverse of that,
we apply another LSTM layer on the generation path. To imitate the mean
addition, on the mean inference path, we integrate an element-wise addition
layer and on the generation path, we add another element-wise addition layer
after the LSTM layer.

5.B ablation studies on mnist

We ablate our model architecture on MNIST, by comparing models including
standard VAE, cVAE, crVAEs with channel recurrency on the inference path
only, the generation path only and on both paths. We also conduct control
experiments to search the optimal number of recurrent channels on crVAE.

The negative log-likelihood (NLL) of MNIST has been used as a benchmark
to evaluate probabilistic generative models. NLL is approximated via impor-

123
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Model specifications NLL Model specifications NLL

VAE – 82.04 crVAE T = 4 81.09

cVAE – 83.12 crVAE T = 4 80.84

crVAE @inference 81.86 crVAE T = 16 81.35

crVAE @generation 81.71 crIWAE – 80.02

crVAE both 80.84 crVAE 2 stochastic layers 79.65

Table 5.B.1: Ablation studies on MNIST comparing VAE, cVAE, and crVAE for differ-

ent configurations.

tance sampling (Rezende et al., 2014), i.e., for each image from the statistically
binarized MNIST test set (Larochelle, 2015), we sample from its approximated
posterior 10K times. We keep the same latent dimension for all the models.
The results obtained with our and a number of previously proposed generative
models are summarized in Table 5.B.1. The baseline, standard VAE (Kingma
and Welling, 2013), obtains 82.04 NLL. As expected, cVAE shows worse perfor-
mance (83.12), because it can not sufficiently capture globally coherent patterns.
Among crVAE models, positioning the recurrency on either the inference path
or the generation path marginally improves upon the standard VAE and cVAE.
The most substantial improvement happens when the recurrency is used both
for inference and generation paths, achieving 80.84 NLL.

To assess the impact of the number of recurrent time steps, we train crVAEs
with T = 4, 8, 16 while maintaining other hyperparameters. Table 5.B.1 shows
that T = 8 achieves the best NLL. We conjecture that including too many
latent channels at one step (T = 4) burdens the recurrent layers to establish
meaningful intra-block connections, whereas too few latent channels (T = 16)
limits the expressive power of the LSTM.

Our crVAE is generalizable and compatible with many other advanced train-
ing methods of directed graphical models. For example, by integrating k-
sample importance weighted estimation (Burda et al., 2015), we can improve
the NLL to 80.02; a hierarchical crVAE with 2 stochastic layers reduces NLL to
79.65



5.c details of network architecture 125

5.C details of network architecture

5.c.1 Stage1 Generation

Please refer to the paper repository (https://github.com/WendyShang/crVAE)
for Stage1 model architecture details.

5.c.2 Stage2 for Birds

The Stage2 generation network for Birds follows similar architecture as in (Zhang
et al., 2016a), but without the text encoding parts. We have uploaded the pre-
trained Stage2 Birds models to the repository.

5.c.3 Stage2 for CelebA

For Stage2 generation of crVAE-GAN on CelebA dataset, we found the original
stackGAN (Zhang et al., 2016a) architecture does not perform well. Instead, we
replace the nearest neighbor upsampling followed by 3×3 convolutions with a
deconvolution layer, i.e., a full convolution of kernel 4×4 and stride 2, padding
1. In the case of Stage2 generation of VAE-GAN, we found that the generation
performance is sensitive to the generator architecture. We only reduce the spa-
tial dimension once from 64×64 to 32×32 instead of downsampling to spatial
dimension 16×16.

We also have uploaded the pretrained Stage2 CelebA models to the reposi-
tory.

5.c.4 Stage2 for LSUN

We integrated more modifications over the model from (Zhang et al., 2016a) to
generate 224×224 LSUN bedroom images and uploaded the pretrained LSUN
model to the repository.

https://github.com/WendyShang/crVAE
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5.D implementation details

modification of vae-gan objective. We empirically found that reconstruct-
ing the last convolutional layer of the discriminator to maximize Eqφ(z|x)

[
log pθ(x|z)

]
as proposed in (Larsen et al., 2016) leads to more instability in training com-
paring to reconstructing at the pixel-level. Hence, throughout our work, we
reconstruct at the pixel level for both VAE-GAN and crVAE-GAN.

data augmentation. For Birds and CelebA, random horizontal flipping is
used during training as data augmentation. For LSUN, random cropping and
horizontal flipping are used.

optimization. Our models are optimized with ADAM (Kingma and Ba,
2014), where we set ε = 1 × 10−8, β1 = 0.9, β2 = 0.999. For the discrimi-
nator, we use a variation of ADAM with additional thresholding (Larsen and
Sønderby, 2016): if the classification accuracy of the discriminator for a batch
consisting of half real and half fake images is over 90%, we do not update the
model parameters of the discriminator.

initial learning rate. For Stage1 models, Birds has initial learning rate
0.0003, CelebA 0.003 for VAE-GAN and 0.001 for crVAE-GAN, LSUN 0.0003
for VAE-GAN and 0.0001 for crVAE-GAN. For all Stage2 networks, we use
0.0002 as initial learning rate.

objectives. Recall the VAE objective:

LVAE = −Eqφ(z|x)
[

log pθ(x|z)
]︸ ︷︷ ︸

Lrecon

+ DKL(qφ(z|x)‖p(z))︸ ︷︷ ︸
Lprior

≥ − log(p(x)). (5.3)

Conventionally, for RGB images, pθ(x|z), a diagonal multivariate Gaussian, is
assumed to have fixed variance σ and only the mean values are estimated
which correspond to pixel values. We follow this convention and apply MSE
loss at the pixel level, which we find effective even without feature-level re-
construction, and defer σ to be adjusted through weighting the Lprior, i.e., the
KL-divergence term, by introducing an additional hyperparameter α. Recall
that we weigh the KL-divergence term differently for different time steps when
training crVAE, i.e., for the first 3 time steps with α1 and the rest α2. Moreover,
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the adversarial loss is weighted by hyperparameter β. Together, we have the
following training objective for RGB images:

LVAE-GAN = Lrecon + αLprior + βLD, (5.4)

where

LD = − log(D(x))− log(1− D(gen(z))), z ∼ p(z), or z ∼ qφ(z|x).

It is worth mentioning that the generated samples, which are decoded from
z sampled from the prior p(z), and the reconstructed samples, which are de-
coded from z sampled from the approximated posterior qφ(z|x), are both used
for training with adversarial loss. Specifically, a mini-batch for discriminator
update is assembled with 50% real examples (half), 25% generated samples (a
quarter), and 25% reconstructed samples. Also, note that Lrecon is divided not
only by the batch size but also by the channel, width, and height of the images
for implementation convenience, while Lprior or LD are divided by the batch
size only. This explains why the optimal α or β values are considerably smaller
than one.

α and β For Birds, VAE-GAN is trained with α = 0.0002 and β = 0.0125 and
crVAE-GAN α1 = 0.0003, α2 = 0.0002 and β = 0.0125; for CelebA, VAE-GAN is
trained with α = 0.0003 and β = 0.01 and crVAE-GAN α1 = 0.0003, α2 = 0.0002
and β = 0.01; for LSUN, VAE-GAN is trained with α = 0.0002, β = 0.025 and
crVAE-GAN α1 = 0.0003, α2 = 0.0002, β = 0.0125.

mi objectives. In the main text, for crVAE-GAN, we introduce a regular-
ization term based on the maximization of mutual information between the
generation x̃ and its sampled latent variable z. We now mathematically justify
and illustrate the formulation of the auxiliary objective:

I(z, x̃) = H(z)− H(z|x̃)

= Ex̃∼pθ(x|z)

[
Ez̃∼p(z|x̃) [log p(z̃|x̃)]

]
+ H(z)

≥ Ex̃∼pθ(x|z)

[
Ez̃∼p(z|x̃) [log q(z̃|x̃)]

]
+ H(z)

= Ez∼p(z),x̃∼pθ(x|z)

[
Ez̃∼p(z|x̃)

[
log qψ(z̃|x̃)

]]
+ H(z)

= Ez∼p(z),x̃∼pθ(x|z)
[
log qψ(z|x̃)

]
+ H(z),



128 channel-recurrent autoencoding for image modeling

where qψ(z̃|x̃) is a variational approximation to p(z̃|x̃), parametrized by a neu-
ral network which shares the same encoding path with the discriminator. The
last equality transformation comes from Lemma 5.1 in (Chen et al., 2016b).
Similarly, as done in (Chen et al., 2016b), we bypass the optimization of H(z)
by treating it as a constant and leverage the reparametrization trick to sample
from z. As in the case for the adversarial loss, when given the ground truth x,
we sample z from its approximated posterior qφ(z|x), otherwise sample from
prior p(z). Therefore, the overall objective for the auxiliary task becomes:

LMI = Ez∼p(z),x̃∼pθ(x|z)
[
log qψ(z|x̃)

]
+ Ex∼X,z∼qφ(z|x),x̃∼pθ(x|z)

[
log qψ(z|x̃)

]
Recall that in RGB images, the formulation pθ(x|z) estimates the mean of the
Gaussian distribution while fixing variance. Therefore, in practice, we do not
perform an additional sample from pθ(x|z) but directly take the mean. Also,
we assume qψ(z|x̃) to be a diagonal multivariate Gaussian with fixed σ. In this
way, the auxiliary objective boils down to L2 reconstruction of z from x̃. Finally,
as explained in the main text, we found empirically reconstructing z does not
work as well as reconstructing the transformed latent variable u = LSTM(z).
Thus we set the objective to be the latter. Now the overall objective for crVAE-
GAN becomes

LVAE-GAN = Lrecon + α1L1
prior + α2L2

prior + βLD + κLMI,

where for Birds, κ = 0.02, for CelebA, κ = 0.01 and for LSUN, κ = 0.01.

stage2 objective. The objective for the discriminator during Stage2 train-
ing is to maximize:

LD = Es∼S [log(D(s))]+Ez∼p(z),x̃∼pθ(x|z) [log(1− D(G(x̃))]+Ez∼qφ(z|x),x̃∼pθ(x|z) [log(1− D(G(x̃))] .

The loss for the generator is to minimize

LG = Ez∼p(z),x̃∼pθ(x|z) [log(1− D(G(x̃))] + Ez∼qφ(z|x),x̃∼pθ(x|z) [log(1− D(G(x̃))] +

γEz∼qφ(z|x),x̃∼pθ(x|z)

[
‖ f (S(x))− f (G(x̃))‖2

2

]
,

where S(x) is the ground truth upsampled x and f represent feature extrac-
tion via some pre-trained deep CNNs, namely VGG11 for Birds and CelebA
and ResNet50 for LSUN. For the experiments without perceptual loss, γ = 0,
otherwise γ = 1 for Birds and CelebA, and γ = 10 for bedroom.
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image completion hyperparameters. Recall the image completion objec-
tive:

min
z

[
‖x̂�m− x�m‖2

2 + γ logN (z; 0, I) + τ log(1− D(x̂)
]
.

We use γ = 0.00001 and τ = 0.003.
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AT T E N T I V E C O N D I T I O N A L
C H A N N E L- R E C U R R E N T
A U TO E N C O D I N G

6.1 introduction

Having introduced the unsupervised unconditional channel-recurrent autoen-
coding, we proceed to extend the channel-recurrency to a conditional version.
Conditional image generation can be of practical significance. Let’s take a look
at a motivational example. Assaults, burglaries, and thefts are among the top
common crimes taking place in the United States (FBI, 2017). The witnesses’
post-trauma memories become susceptible to even a short period of delay due
to factors such as stress and potential contamination from other events. It is
shown that the recall of a suspect’s face from a witness is the most accurate
within 3-4 hours after the incidence and drastically declines after 2 days (Frowd
et al., 2005). However, traditional sketching methods such as Forensic artists or
composition softwares (FACES 4.0 2016) both require a certain level of human
expertise, where the former takes a long time to complete, and the latter can
be less descriptive (Klum et al., 2013). To this end, we strive for a data-driven

Ground Truth cVAE cGAN cVAE-GAN crVAE-GAN acVAE-GAN (proposed)

Figure 6.1: Generations using attributes from ground truth images. Comparison

shows our attentive conditional channel-recurrent VAE-GAN’s superiority in attribute-

conditioned face synthesis.
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Figure 6.2: Illustration of models used in our work.

tool to synthesize realistic and diverse face candidates basing on attribute in-
formation that returns instantaneous feedback to aid the identification of, e.g.,
a crime suspect1.

Deep conditional generative modeling is a natural approach to such an
attribute-conditioned face synthesis application. There has been tremendous
recent progress in constructing such models for a variety of tasks. Applications
related to generating face images have been especially well-studied, with tech-
niques mainly derived from the 3 most dominating generative model frame-
works, namely autoregressive models (Oord et al., 2016a), generative adversar-
ial networks (GANs) (Goodfellow et al., 2014), and variational autoencoders
(VAEs) (Kingma and Welling, 2013).

Conditional autoregressive models have been proposed to synthesize images
from conditional variables such as text, key points, and the initial frame of a
video (Reed et al., 2017). However, few works have applied this method on

1 This chapter is based on our WACV 2019 paper (Shang and Sohn, 2019).
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faces, likely because the pixel level autoregression is computationally costly
and slow in inference time without complex parallelization. Conditional GANs,
on the other hand, have been more widely utilized on faces. In particular, (Gau-
thier, 2014) generates attribute-conditioned faces from scratch but the outputs
(Figure 6.1) can be flawed with artifacts. Conditional VAE (Kingma et al., 2014)
(cVAE)—an extension of VAE (Kingma and Welling, 2013)—is a conditional di-
rected graphical model to approximate conditional data distribution through
maximizing its variational lower bound. In (Yan et al., 2016), attributes and
background masks are used as conditional variables in their cVAE formulation
to generate faces. Although the reconstruction component in the variational
lower bound gives the advantage of a more comprehensive input space cover-
age opposed to cGAN, cVAE suffers from a blurry generation when optimized
in combination with a highly restricted KL regularization on the approximated
posterior (Figure 6.1).

To alleviate the blurriness in generation while maintaining the probabilistic
latent space, (Larsen et al., 2016) augments a VAE with an adversarial loss,
arriving at VAE-GAN. As a follow-up, (Bao et al., 2017) formulates a condi-
tional version of VAE-GAN, cVAE-GAN for face synthesis, where the condi-
tional variables are identity labels, i.e., one-hot categorical vectors. However,
this model is not directly applicable for our application as it would require
2N-dimensional conditional variable to represent all possible attribute combi-
nations, where N is the number of attributes. Therefore, in this work, we es-
tablish a cVAE-GAN baseline specifically targeting at generations out of high-
dimensional attribute information (Figure 6.1), where the attribute condition is
embedded in a N-dim binary vectors instead one-hot vectors.

On top of our baseline, we integrate the channel-recurrent architecture (Shang
et al., 2018), where the latent space is divided into consecutive and non-overlapping
blocks that are connected via a recurrent module, leading to conditional channel-
recurrent VAE-GAN (crVAE-GAN). The benefit of doing so is two-fold. Firstly,
by introducing a more complex architecture to maneuver the pathways into
and out of the latent space characterized by simple diagonal Gaussians, the
image generation quality is substantially enhanced (Figure 6.1). Secondly, the
channel-recurrent architecture captures the high-level information in a course-
to-fine manner, allowing more explainable latent features, which inspires us
to propose our final model, the attentive conditional channel-recurrent VAE-
GAN (acVAE-GAN). Our acVAE-GAN learns attention over the attribute vec-
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tors so that each attribute attends a specific latent block. In addition to being
responsible for different attributes, the channel-recurrent layout also assigns
different content for each latent block to modulate: some block predominately
controls the global content, whereas others focus more on finetuning locally.
This unique property of channel-recurrency enables us to envision an applica-
tion tool to performs a 2-stage general-to-specific conditional face generation.

Lastly, we incorporate progressive-growth training (Karras et al., 2017) to the
cVAE-GAN framework to facilitate higher resolution outputs.

The merits of our work are summarized as follows:

• Construct the cVAE-GAN baseline for attribute-conditioned face synthe-
sis.

• Improve the generation quality of cVAE-GAN by integrating the channel-
recurrent architecture, arriving at crVAE-GAN.

• Towards more interpretable models, learn an attention mask over at-
tribute vectors so that each attribute “chooses” to be modulated by a
specific latent block.

• Implement progressive-growth to our models to increase generation res-
olution.

• Envision a tool that performs 2-stage general-to-specific attribute-conditioned
face generations.

6.2 related works

Traditional methods in controllable face synthesis (Yang et al., 2011; Laput et al.,
2013; Kemelmacher-Shlizerman et al., 2014) typically require domain-specific
knowledge (e.g., 3D face information) to control a limited set of attributes (e.g.,
illumination, expression, or age) by editing a reference image. Recently, deep
generative models have been successful in learning visual object representa-
tions in a data-driven way while controlling many visual attributes for face
editing and synthesis (Yan et al., 2016). In the regime of deep generative mod-
eling, the most significant recent progress comes from autoregressive mod-
els, Generative Adversarial Networks (GANs), and Variational Autoencoders
(VAEs). Framed initially as unsupervised learning, all three themes have also
evolved to model conditional distributions with side information.
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Pixel RNN and Pixel CNN (Oord et al., 2016b; Oord et al., 2016a; Salimans
et al., 2017) explicitly model the pixel space distribution in an autogressive
manner. Conditional versions (Reed et al., 2017; Gao et al., 2017) have been
developed to generate a scene from text, a video from an initial frame, a seg-
mentation mask from an image, etc. Although granting high-quality outputs
and an exact log-likelihood, these methods do not learn a latent representation
and demand heavy GPU parallelization for training.

GAN (Goodfellow et al., 2014) is another mainstream method to render
sharp images in which a generator attempts to fool a discriminator with genera-
tions resembling examples from the input space. Conditional GANs (cGANs) (Mirza
and Osindero, 2014; Kaneko et al., 2017; Choi et al., 2018) introduce condi-
tional information to the generator, and the outputs are expected to not only
imitate the inputs but also obey the conditions. Consequently, the discrimina-
tor must learn to distinguish correctly-matched real-condition pairs from both
fake-condition pairs and wrongly-matched pairs (Reed et al., 2016). Adver-
sarial training suffers from several notable drawbacks, such as limited input
space coverage (Arora et al., 2017; Wu et al., 2016; Theis et al., 2016), gener-
ation artifacts, and lack of probabilistic latent representations. The training
of GANs is also known to be unstable, albeit there have been many works
attempting to address this, for both unsupervised and conditional cases (Ar-
jovsky et al., 2017; Mao et al., 2016; Miyato and Koyama, 2018; Miyato et al.,
2018). Figure 6.1 shows results from cGAN as done in (Gauthier, 2014), where
we observe some of the aforementioned issues. Cycle-GAN (Zhu et al., 2017;
Lu et al., 2017) is another conditional adversarial model basing on the concept
of cycle-consistency. Since the publication of this work, there have also been
efforts to build conditional cycle-GAN (Chen et al., 2020a). However, such
models usually require an encoding image as the condition variable, hence it
is not applicable in our case.

VAEs (Kingma and Welling, 2013) parameterize the inference and genera-
tion paths of a directed graphical model with DNNs and are trained to max-
imize the corresponding variational lower bounds of the data log-likelihood
via stochastic backpropagation. A conditional VAE (Kingma et al., 2014) intro-
duces a new node to the graphical model as conditions to assist and constraint
the generation process. Despite the many merits of this method, e.g. training
stability, fast inference, GPU efficiency, etc, the combination of KL regulariza-
tion and reconstruction objectives in the VLB (Theis et al., 2016; Bousquet et
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Figure 6.3: The generation and inference paths for the graphical model used in our

work.

al., 2017) often result in blurry generations—Figure 6.1 displays an example of
attribute-conditioned face generation (Yan et al., 2016).

Many research efforts have been made to alleviate VAEs’ generation blurri-
ness. One approach is to enrich the posterior/prior distributions or the model
architecture itself (Kingma et al., 2016; Chen et al., 2016c; Rezende and Mo-
hamed, 2015; Gregor et al., 2015; Gregor et al., 2016; Shang et al., 2018). In
our work, we opt to enhance with the channel-recurrent autoencoding frame-
work (Shang et al., 2018), motivated by its resulting latent semantics. The other
approach combines VAE with autoregressive modules (Gulrajani et al., 2016)
or adversarial training (Larsen et al., 2016), in the hope of taking the best from
both worlds. Here we also employ an adversarial objective under a conditional
setup, similar to (Bao et al., 2017). But (Bao et al., 2017) generates based on
one-hot identity label, whereas we tackle the high-dimensional attribute infor-
mation.

6.3 preliminaries

In this section, we first elaborate our cVAE formulation along with its graphi-
cal model, followed by an introduction of cGAN as well as their combination
cVAE-GAN.

6.3.1 conditional VAE and Graphical Model

An important building block in our work is the conditional variational autoen-
coder (cVAE) (Kingma et al., 2014; Yan et al., 2016). In our work, we choose
to follow the graphical model described in Figure 6.3, where the attributes A
are always given in our case, Z are the latent variables and X images. The
intuition behind our graphical model is to construct meaningful submanifolds
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within the latent space, where each submanifold associates with a designated
combination of attributes. In other words, our graphical model choice assumes
that p(z|a) is more feasible than p(z) as latent distributions, where a is the
attribute condition. The variational lower bound can be derived as

log(p(x|a)) = log
∫

p(x, z|a)dz

= log
∫

p(x|a, z)p(z|a)q(z|x, a)
q(z|x, a)

dz

= log
∫

p(x|a, z)
p(z|a)

q(z|x, a)
q(z|x, a)dz

≥ Eq(z|x,a)(log p(x|a, z)− log
q(z|x, a)

p(z|a) )

= −KL(q(z|x)||p(z|a)) + Eq(z|x,a)[log p(x|a, z)] = LcVAE,

where the approximate posterior q(z|x) and the prior p(z|a) are modeled as
diagonal Gaussians. As done in (Yan et al., 2016), we model the latent space as
1-dim vector space z ∈ Rc, which is connected via fully-connected (FC) layers.
The prior network also connects attribute vectors—an N-dim vector composed
of ±1 entries where N is the number of attributes, —to the distribution of
p(z|a) via an FC layer. The generations of cVAEs, as shown in Figure 6.1
and (Yan et al., 2016), are very blurry.

6.3.2 conditional GAN

In (Gauthier, 2014), the author uses attribute-conditioned cGAN to generate
faces: on top of GAN, cGAN feeds attribute information a(x) to the genera-
tor G and discriminator D. Also, the discriminator not only needs to detect
generated images but also mismatched image-attribute pairs, which yields the
following over-all game played by D and G:

min
G

max
D

V(D, G) =Ex∼X[log D(x, a(x))]

+Ez∼p(z)[log(1− D(G(z, a), a))]

+Ex,x′∼X,x 6=x′ [log(1− D(x, a(x′)))],

where z is sampled from a standard Gaussian distribution, a is the attribute
condition and a(x) is the attribute for x. The output images indeed reflect the
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Step Attributes
1 Heavy Makeup, Pale Skin, Rosy Cheeks
2 Brown Hair, Pointy Nose, Straight Hair
3 Arched Eyebrows, Attractive, Blond Hair
4 Blurry, Double Chin, High Cheekbones, Mouth Slightly Open, No Beard, Bags under Eyes
5 5’o clock shadow, Big Lips, Bushy Eyebrows, Chubby, Goatee, Gray Hair, Oval Face, Necktie
6 Bangs, Black Hair, Mustache, Receding Hairline, Smiling, Wavy Hair, Earrings, Hat
7 Bald, Eyeglasses, Male, Narrow Eyes
8 Big Nose, Lipstick

Table 6.1: In acVAE-GAN, each attribute attends a specific block.

specified attributes, but they contain many artifacts (Figure 6.1). Also, cGAN
can suffer from low probability region coverage.

6.3.3 conditional VAE-GAN

The combination of VAE and GAN, VAE-GAN (Larsen et al., 2016) is proposed
to take the best from both worlds: high input space coverage from VAE and
sharp generations from GAN. In (Bao et al., 2017), a conditional version of VAE-
GAN is crafted but limited to a single-class condition, i.e. identity label. But
we have multiple attribute classes associated with a single image. Therefore,
we propose our version of conditional VAE-GAN (cVAE-GAN), by directly
combining cVAE from Section 6.3.1 and cGAN from Section 6.3.2 to obtain the
following objective:

maxLcVAE + βEz∼{q(z|x,a(x)),p(z|a)} [log D(z, a)]

max
D

Ex∼X [log D(x, a(x))]

+Ez∼{q(z|x,a(x)),p(z|a)} [log(1−D(z, a)]

+Ex,x′∼X,x 6=x′ [log(1− D(G(x, a(x′))))], (6.1)

where β is the hyperparameter to weight the gradients from the adversarial
loss. The model layout is shown in Figure 6.2a and generation examples in
Figure 6.1, where the image quality is improved yet still distant from being
realistic. As cVAE and cGAN are clearly inferior to cVAE-GAN in terms of
visual quality, we regard cVAE-GAN as our main baseline to compare with for
the rest of the paper.
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6.4 method

This section introduces the conditional channel-recurrent VAE-GAN (crVAE-GAN).
It proposes an attention module such that each latent block focuses on a subset
of attributes, arriving at the attentive conditional crVAE-GAN (acVAE-GAN),
followed by a description of how to increase generation resolution via progressive-
growth training.

6.4.1 Channel-Recurrency

To enhance the latent space construction, which in turn improves generation
quality, (Shang et al., 2018) proposes the channel-recurrent architecture with
which the inference and generation paths connect to the latent space. The
distributions for the approximate posteriors and priors are still diagonal Gaus-
sians, but since channel-recurrency imposes more complex manipulation to the
latent space, the features, captured in a global-to-local, coarse-to-fine manner,
become more abstract with more interpretable semantics.

Here, we integrate this technique to cVAE-GAN to similarly improve the
conditional synthesis. The latent space is now a 3-dim space z ∈ Rc×w×h. The
prior network still connects the attribute vectors to the prior latent space via
FC layers and reshape the resulting distributions to µp, σp|a ∈ Rc×w×h (Fig-
ure 6.2b). Before being sent to the LSTM module, an attribute vector is simply
repeated T times, i.e., [a1, a2, · · · aT], a=ai, where T is the number of time steps.
During generation, z=[z1, ··, zT], with zi∈Rw×h× c

T , are sampled fromN (µp, σp)

and concatenated with ai at each time step i before passing through an LSTM to
obtain a transformed representation u = [u1, ··, uT]=LSTM(z, a), which is then
projected back to the pixel space by a decoder. Similarly, during inference,
we first transform the attribute vector with an FC layer a′=FC(a) ∈ Rw×h× c

T ,
repeat the outputs T times, [a′1, a′2, · · · a′T], and concatenate each to the T cor-
responding blocks within the convolutional features from the encoder. Then,
the mean path performs convolution on the concatenated features; the variance
path slices features back into T blocks, each referred to as σi, and feeds σi’s into
another LSTM to output σrnn

i .
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Figure 6.4: Illustration of progressive growing of acVAE-GAN. 64×64 acVAE-GAN is

first trained without up/down sampling layers and used to initialize blue boxes of PG

acVAE-GAN. The model is trained to generate 128×128 images with α being linearly

interpolated from 0 to 1 over the first half of the training and remains 1 for the rest.

6.4.2 Attending Attributes

Repeating the same attribute vector T times for all of the LSTM time steps can
appear redundant. To obtain better interpretable features, it is desirable to un-
derstand that for each block, which attributes are being modulated, motivating
us to propose an Attention Operator over the attribute vectors. In essence, we
learn a T×N mask matrix M. Each row vector is constrained to be an T-dim
probability vector, which is additionally regularized by minimizing its entropy
H(Mn) so that ideally, only one out of the T slots has a high probability. In
other words, each attribute is learned to primarily focuses on one of the blocks.

Concretely, the Attention Operator first repeats the attribute vector T times to
form a T×N attribute matrix A, performs element-wise multiplication A�M,
and separates the row vectors into [a1, a2, · · · , aT]. Thus instead of using the
same attribute vector to all LSTM steps, we input at to the t-th step, reflecting
the attributes attending this particular time step. Ideally, the attention from the
attributes is divided evenly to all time steps: it is desirable for each time step
to take in approximately N/T attributes rather than having a single time step
getting most of the attribute information. Luckily, we discover no additional
regularization is required to achieve such effects. For example, we summarize
the attribute attention from our 8-time step acVAE-GAN in Table 6.1. The
prior network (Figure 6.2b) now can also be meaningfully modeled with an
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LSTM where the tth time step takes at and outputs µ
p
i , σ

p
i . The remaining of

acVAE-GAN are the same as crVAE-GAN.

6.4.3 Progressive Growing Conditional Synthesis

While our model can generate 64×64 face images from attributes, generating
higher-resolution remains a challenge. Following the idea of stackGAN (Zhang
et al., 2016a), (Shang et al., 2018) achieves higher-resolution outputs by em-
ploying an upsampling network that takes generated low-resolution images as
input. However, one drawback of such an approach is that the performance
of the upsampling network is significantly limited by the initial image gen-
eration module as it is trained greedily without finetuning the entire system.
Furthermore, the upsampling network is usually composed of multiple convo-
lution and deconvolution layers, making the whole pipeline computationally
inefficient.

Instead, we borrow the idea of progressive growing GAN (PGGAN) (Karras
et al., 2017) for attribute-conditioned high-resolution image generation. Specifi-
cally, we first train a model to generate 64×64 images. Then, for the generation
network, we append a nearest-neighbor upsampling layer and two 3×3 convo-
lution followed by one image decoding layer (1×1 convolution with 3 output
channels) to the last feature response map to generate 128×128 images. The
original and generated images of size 128×128 are then fed to the encoder and
discriminator heads, respectively, which are composed of 1×1 convolution fol-
lowed by two 3×3 convolutions and average pooling layer with a pool size of
2 to generate 64×64 feature response maps. We illustrate the construction of
progressive growing acVAE-GAN in Figure 6.4.

Similarly to (Karras et al., 2017), we train our progressive growing model
by linearly interpolating the generated images of naive upsampling and the
upsampling network. Note that our approach does not require to start from
extremely low-resolution images (e.g., 4×4) as 64× 64 generations can be di-
rectly achieved with decent quality. The overall training objective still follows
that in Equation (6.1).
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Arched Eyebrows, Big Lips, Big Nose, Grey Hair, High 
Cheekbones, Mouth Slightly Open, Narrow Eyes, No 
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Big Nose, Male, Wearing Hat,  Wearing Necktie, No 
Beard

Double Chin, Eyeglasses, Male, Mouth Slightly Open, 
Smiling, Receding Hairline,  No Beard

Attractive, Arched Eyebrows, Black Hair, Heavy Makeup, 
Young, Oval Face, Wearing Lipsticks, No Beard

Figure 6.5: We select attribute combinations from the testing set and compare 64×64

and 128×128 resolution image generations of cVAE-GAN (baseline), crVAE-GAN and

acVAE-GAN, along with the ground truth images.

6.5 experiments

We introduce the dataset used in our experiments and describe important im-
plementation details. For evaluation, we generate 64×64 attribute-conditioned
face images, then progressively grow the resolution to 128×128. We perform a
qualitative visual examination and quantitative assessments, namely the incep-
tion scores, human preferences, and attribute classification accuracy. Finally,
we conduct more qualitative analysis, such as conditional latent space interpo-
lation and progressively adding attributes to an image.

6.5.1 CelebA Dataset and Implementation Details

Our experiments are on the CelebA (Liu et al., 2015) dataset, containing 163, 770
training, 19, 867 validation, and 19, 962 testing images of face. The face ROIs
are cropped and scaled to 64×64/128×128. Random horizontal flipping is
used during training as data augmentation. There are 40 binary attributes
annotated in CelebA (see Table 6.1), making it a perfect venue for our experi-
ments.

There have been many works to improve the stability of adversarial train-
ing, many of which we have experimented with, such as projective discrim-
inator (Miyato and Koyama, 2018), self-attention (zhang2018self), hinge ad-
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Models 64×64 128×128 128×128

cVAE-GAN 37.48±0.96 93.74±2.25 23%

crVAE-GAN 54.66±0.67 87.51±1.46 28%

acVAE-GAN 55.12±0.64 102.23±1.81 47%

Table 6.2: Inception Scores on 64×64/128×128 generated images from testing set at-

tributes. We perform 10-fold calculation and report the mean±std. We also report the

percentage humans prefer a model in a 3-way classification setup.

versarial loss (lim2017geometric), etc. In the end, our model adapts three
main methods to stabilize the optimization: batch discriminator (Salimans et
al., 2016), controlled discriminator update (Larsen and Sønderby, 2016), and
mutual information regularization (Shang et al., 2018).

The inference, generation, and discriminator networks of our models share
a common convolutional encoder/decoder architecture, composed of convolu-
tional layers, batch normalization layers (Ioffe and Szegedy, 2015), and activa-
tion layers (maas2013rectifier; Shang et al., 2016). See the code in the Supple-
mental Materials for details.

Stocahstic gradinet descent is done using ADAM (Kingma and Ba, 2014)
with ε = 1× 10−8, β1 = 0.9, β2 = 0.999 for 150 epochs. The initial learning rate
is 0.0003 for (cVAE-GAN) and 0.001 for the rest. We follow the control protocol
in (Larsen and Sønderby, 2016) to update the discriminator with a variation of
ADAM that imposes a threshold for updating: if the classification accuracy for
a batch consisting of a third of real pairs, a third fake of pairs, and a third of
mis-matched pairs is over 90%, we skip the update. During progressive-growth
training, the resolution transition is linearly done in 75 epochs. Training code
is in the Supplemental Materials.

6.5.2 Attribute-Conditioned Face Synthesis

Evaluation of the conditional generative models in our work primarily focuses
on the visual fidelity and the faithfulness to the assigned attributes. To this
end, we first visually compare the baseline cVAE-GAN with crVAE-GAN and
acVAE-GAN in Figure 6.5, where our proposed model produces more photo-
realistic generations that satisfy the attribute conditions, even for some of the
more challenging ones such as eyeglasses and hats.
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Table 6.3: We train an independently trained classifier, we test attribute classification

results on real images as benchmark and generated ones from the baseline cVAE-GAN,

crVAE-GAN and acVAE-GAN. All models perform competatively, likely due to the

adversarial loss and the proposed graphical model. All numbers are in %.

We also measure the inception scores (Salimans et al., 2016) for 64×64 and
128×128 images. The classification model used here is a VGG11 trained on
CASIA (Yi et al., 2014) for face recognition with input resolution 128×128.
During testing, we generate images conditioning on all attribute combinations
from the testing set, randomly divide them to 10 subsets, obtain inception
scores for these subsets and report their mean±standard deviation in Table 6.2.
However, since inception score is not an absolutely truthful metric on visual
quality (barratt2018note), we present 200 128×128 generated tuples from the 3

models with the same set of attributes to mechanical turks, out of which they
select the one with the highest visual quality. The results are also summarized
in Table 6.2. Our proposed model substantially outperforms the baseline in
both metrics.

To quantitatively judge the attribute qualities, we train an attribute classi-
fier on 64×64/128×128 CelebA images. Our classifier is composed of a stan-
dard convolutional encoder and a fully connected layer ending with 40 dimen-
sion binary predictions for the 40 attributes. We follow the standard training-
validation procedures and report the testing results in Table 6.3. Note that our
classifier achieves competitive accuracy comparing (Liu et al., 2015). Next, we
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cVAE-GAN crVAE-GAN acVAE-GAN

Figure 6.6: We generate faces by linearly interpolating latent variable between 2 sam-

ples drawn from the conditional priors conditioned with the same attributes. The

conditional prior latent space in all models appears to deliver smooth transitioning

while maintaining the attributes; acVAE-GAN especially excels at traversing across

diverse samples and at the same time, maintaining image qualities.

run our attribute classifiers on the generated images, with accuracy results in
Table 6.3. All of the models reach promising accuracy, meaning that our graph-
ical model design is very effective in delivering the attributes, among which
our proposed model has the highest score.

6.5.3 Content Interpolation

For our goal of generating diverse and realistic images given a set of attributes,
it is important to learn a prior latent space that densely covers valid images in
the pixel space conditioned on the attributes. This section investigates this qual-
ity of the latent spaces learned by our models by checking how well two dis-
tinct modes on the latent submanifold conditioned on the same attributes can
mix, also an indicator of the representation abstractness (bengio2013better).
Concretely, we select four sets of attribute combinations from the testing set,
obtain the conditional prior space for these combinations, and sample 2 exam-
ples each to represent 2 modes Z1 and Z2 on the latent submanifold. Then we
traverse from Z1 to Z2 using the interpolation formula

Zi = cos2(ψ)Z1 + (1− cos2(ψ))Z2, ψ ∈ [0, π/2].

The generation network projects the interpolated latent codes to the pixel space.
Figure 6.6 shows, likely thanks to our proposed graphical model learning con-
ditional submanifold distributions, the resulting latent representations from
all models can be consistently mixed in a semantically meaningful manner.
Our proposed acVAE-GAN especially excels at transiting through very dis-
tinct looking modes, such as the pose variations in the 2nd row, the glasses
changing from clear to dark in the 3rd row, and the background color shifting
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Figure 6.7: We progressively construct the conditional prior latent space by sending

in the attended attributes for each time step, and then fill in the latent representations

sequentially. The first few time steps do not carry enough content information to

distinctively show the progression; for the latter ones, after sampling each latent block,

its associated attributes indeed appear (correspondence see Table 6.1). We list out a

few examples such as gender, hair color, etc.

from the last row. Meanwhile, some of the generations from the other models
associated with certain attributes appear to be repetitive, such as the 2nd row
of cVAE-GAN and crVAE-GAN; some other generations from cVAE-GAN are
prone to artifacts such as the 3rd and 4th row.

6.5.4 Generation Progression

Our proposed acVAE-GAN has each attribute to focus its attention to a spe-
cific time-step latent block to achieve more interpretable high-level features, in
the sense that we in theory can pinpoint the exact block modulating a given
attribute. To verify this assertion, we attempt to visualize the emergence of
attributes by progressively sampling each latent blocks. Recall that the condi-
tional prior space is generated via sending the attended attribute at through an
LSTM module at tth time-step, which then outputs the distribution N (µ

p
t , σ

p
t )

of the corresponding prior latent block. From N (µ
p
t , σ

p
t ), we sample zt and, in

combination of the previously sampled z’s, decode [(z1, a1), · · · (zi, ai), (0, 0), · · · , (0, 0)]
via the generation network back to the pixel space. We plot the t = 1 · · · 8 gen-
erations in Figure 6.7. The first 3 time steps do not carry enough content
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Attractive 
Bangs 

Black Hair 
Heavy Makeup 

No Beard 
Oval Face 

Smiling 
Straight Hair

Pale
Young

Step 0: Input Attributes Step 1: Initial Generation Step 2: Finetuning 

Figure 6.8: A 2-stage generation tool where the model first outputs a diversity of faces

following the given attributes and then, after selecting an initial output, resamples one

of the blocks in charge of minor modifications to give more finetuned options.

information to distinctively show the progression. However, for the latter ones,
after sampling each zt, its associated attributes at do emerge (attribute corre-
spondence see Table 6.1). For example, we can already see the mouth open in
step 3; hat forms in step 4 and glasses step 7; the gender is finalized at step 7;
mustache and bangs become clear at step 6; step 8 brings subtle changes over
the lip color and nose shape. The visualization demonstrates that up to a cer-
tain degree we can confirm a latent block is indeed modulating its attending
attributes.

6.6 application

The recurrent learning of latent blocks enables each of them to be in charge
of a different aspect of the input content (Shang et al., 2018). In particular,
some latent blocks can impose a more drastic global impact and some others
in a more subtle way. We leverage this unique feature from channel-recurrency
and propose the following 2-stage generation pipeline. As a preparation step,
through trial-and-error, we locate the latent block that performs a minor ad-
justment on the content of the generation; in the case of the model used in
Figure 6.7, a progressive-growing acVAE-GAN, is z5. The first step generates a
diversity of samples from the corresponding prior latent space based on given
attributes, and the user selects the most desirable ones. For finetuning, the
2nd step resamples multiple z5 of the selected example while fixing the rest
of zt’s, and the user finalizes on the most closely-matching image. An exam-
ple is demonstrated in Figure 6.8, where the first step outputs distinct faces
obeying the same set of attributes and the second step finetunes face shape,
skin tone, hair details, etc. The user can further use existing neural editing
tools (brock2016neural) to refine the image, but it is out of scope of this work.
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6.7 conclusion

We propose an attentive conditional channel-recurrent VAE-GAN for high-
quality attribute-to-face synthesis while learning better interpretable high-level
features. We also incorporate progressive-growth training to generate higher-
resolution images. We demonstrate the superiority of our models, both in
quantitative and qualitative evaluations. In application, we envision a tool
for a general-to-specific 2-stage attribute-conditioned face synthesis. Future
research includes extending our framework in a semi-supervised manner and
extrapolating our models to other tasks.
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D E C O M P O S E V I D E O
R E P R E S E N TAT I O N S F R O M T E M P O R A L
C O H E R E N C E A N D DY N A M I C S

7.1 introduction

We have explored both unconditional and conditional modeling in image do-
main. Now, we switch our focus to another dominating data domain of the
digital world, videos. Videos constitute a large portion of Internet traffic, pos-
ing great challenges and opportunities for video understanding. Yet, represen-
tation learning for videos is not as mature as for images. Most video appli-
cations parse videos frame-by-frame via an image-based model (Perazzi et al.,
2016; Thies et al., 2016), ignoring their rich temporal structure. Two main fac-
tors have hindered progress in video understanding: videos contain orders of
magnitude more raw information than images and annotation of videos, es-
pecially in a per-frame manner, requires excessive labor. On the bright side,
video data possesses appealing intrinsic properties that can be leveraged as
important inductive biases (Locatello et al., 2018). For one, since most video
footage evolves continuously, raw video contains repeated objects and scenes
that are highly correlated and redundant in appearance. For another, videos
present strong semantic coherence in terms of object motion along the temporal
direction, which can be modeled as rearrangement of objects via inter-frame
transformation.

Many computer vision applications make effective use of the video appear-
ance redundancy and temporal semantics coherence. E.g., most video com-
pression algorithms (Le Gall, 1991; Chen et al., 2001) only sparsely store full
reference frames along with the motion differences for the in-between frames;

149
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Figure 7.1: An overview of the proposed representation learning of video statics and

dynamics. The videos retrieved based on the video statics (the 2
nd row) and dynam-

ics (the 3
rd row) resemble the input reference video (the 1

st row) in appearance and

motion, respectively.

state-of-the-art video predictions (Denton, 2017; Li and Mandt, 2018; Hsieh
et al., 2018) are accomplished by disentangling content and motion. However,
these algorithms are application-specific and do not output broadly applicable
representations.

In terms of representation learning, current efforts primarily rely on tem-
poral coherence, specifically inter-frame correspondences, as self-supervision
signals (Li et al., 2019; Wang et al., 2019a). However, their end products are
still image features benefiting image-level downstream tasks. Meanwhile, less
research has been carried out to model the temporal coherence as video-level
representations.

This chapter fills these gaps1. Assuming a video clip is single-shot by one
camera, we consider the interplay of video statics (the temporally coherent
part) and dynamics (the temporally evolving part) as an important inductive
bias and explicitly extract decomposed video-level representations of each part
in an unsupervised fashion, as illustrated by Figure 7.1. Here, the video stat-

1 This chapter is based on our paper (Shang et al., 2020b) on arxiv.



7.1 introduction 151

Figure 7.2: Our framework learns video statics and dynamics through (a) a spatial

transformer T trained to warp between frames, (b)-left a video encoder extracting

video statics S to represent the temporal coherent content that reproduces all frames

to the best extend via T , (c) a conditional (condition on S) autoencoder whose latent

space corresponds to the frame-level dynamics pt, and (b)-right the video encoder also

generates video dynamics P which is encouraged to reason about temporal dynamics

by predicting frame-level dynamics pt.

ics is a compact representation holding visual resemblance to all frames when
decoded. The video dynamics is another single representation encoding the ab-
stract motion trajectories. Each can retrieve videos with similar appearance or
dynamics. To extract video statics, we build on a key intuition that video stat-
ics should describe the common appearance to the best extent. To this end, we
first train a spatial transformer to match frames to each other. The transformer
then assists in learning a single common video-level representation, which can
be deformed back to each frame. Video dynamics are hierarchically distilled
from the frame-level up to the video-level. A low-dimensional frame-level dy-
namics representation is learned such that when being conditioned on video
statics, it can reconstruct the corresponding frame. We then abstract the en-
tire motion trajectory into a compact video-level dynamics representation via
a frame-level dynamics prediction task.

To the best of our knowledge, we are the first to propose unsupervised learning
of decomposed video representations by transforming video-level representa-
tions to frame-level. Our main contributions are:

• We leverage video temporal coherence to learn a video statics representa-
tion. In this process, we propose a novel transformation framework going
from video-level to each individual frame-level representation.
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• Conditioning on video statics, we learn an abstract video-level dynamics
representation that describes motion trends independent of spatial loca-
tions.
• We demonstrate a competitive performance of our framework when ap-

plying the learned representations to a variety of applications.

7.2 related work

Unsupervised video representation learning can be roughly categorized into
two groups based on the signals used to learn from: temporal coherence or
dynamics. There are also efforts to take advantage of both.

Works leveraging video statics include enforcing temporal feature steadi-
ness (Jayaraman and Grauman, 2016; Mobahi et al., 2009), learning from ego-
motion (Agrawal et al., 2015; Jayaraman and Grauman, 2015) or pose transfor-
mation (Purushwalkam and Gupta, 2016), and matching correspondences (Schmidt
et al., 2016; Wang et al., 2019a; Li et al., 2019; Wang and Gupta, 2015). However,
statics cues alone generally provide frame-level feedback leading to image fea-
tures and tend to overlook inter-frame connections. Our framework, although
also leverages inter-frame spatial transformations, upgrades the output to an
explicit representation for the entire video.

The temporal dimension of videos contains rich structural information that
provides signals for many unsupervised frameworks. Frame interpolation not
only builds context-aware features but is also practically useful, e.g., to in-
crease frame rate (Long et al., 2016; Niklaus and Liu, 2018; Janai et al., 2018).
Sequence ordering is another venue to impose temporal understanding (Misra
et al., 2016; Lee et al., 2017; Fernando et al., 2017; Kim et al., 2019). More-
over, video prediction is often used to extract abstract features for high-level
tasks (Srivastava et al., 2015; Han et al., 2019; Diba et al., 2019). Our frame-
work also involves understanding video dynamics, using a training objective
that shares similarities with the contrastive predictive loss in (Han et al., 2019).
However, unlike (Han et al., 2019), our focus is not the prediction of the future
but rather a compact summary of the current dynamics.

Several approaches combine ideas from both the temporal coherence and
dynamics paradigms. Identification of time-invariant versus time-varying com-
ponents has been at the core of many applications for video generation (Von-
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drick et al., 2016), video prediction (Denton, 2017; Hsieh et al., 2018; Li and
Mandt, 2018; Villegas et al., 2017) and video style-transfer (Tulyakov et al.,
2018; Siarohin et al., 2019). In terms of representation learning, (Wang et al.,
2019b) regresses both motion and appearance statistics but requires RGB as
well as optical flow inputs. In contrast, our framework considers RGB frames
only. More importantly, we produce explicit representations reflecting video
statics and dynamics, which can be directly used in a broad range of down-
stream tasks.

7.3 methodology

We propose a unified unsupervised framework for video-level representation
learning from both video statics and dynamics. Essentially, we decompose a
video sequence V = {xt} for t ∈ {1 · · · T}, with xt denoting the frame at time t,
into two components: a video statics S, representing temporal coherent content
and a video dynamics P, representing dynamics content.

We leverage inter-frame spatial transformers to distill video statics, detailed
in Section 7.3.1. Ideally, the remaining information is thus related to video
dynamics. To learn a video-level dynamics representation, inspired by the in-
formation bottleneck principle (Alemi et al., 2016), we formulate a hierarchical
procedure that: (a) learns an individual frame-level representation pt, which is
the complement of the extracted video statics from each frame, and (b) learns
a video-level representation P that summarizes all the frame-level dynamics pt.
These steps are detailed in Section 7.3.2. We use the Moving MNIST synthetic
dataset (Srivastava et al., 2015) (MMNIST) as running examples to better de-
scribe our framework, since its statics and dynamics, i.e., the digits and their
trajectories, are clearly defined.

7.3.1 Learning Video Statics

A compact statics representation is encoded from the whole video, which can
be spatially transformed into each frame. To learn such a representation, we
propose two building blocks as shown in Figure 7.2(a) and (b): a transformer
module T that performs inter-frame spatial transformation, and a 3D convolu-
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tional neural network (3DCNN) video encoder Encv that outputs the video-level
statics S.

Inter-Frame Matching

A spatial transformer T is an operator that spatially rearranges pixels or fea-
tures of one image to match another if the two share common content. The
T itself can be any module that outputs either the parameters of a geometric
transformation, such as an affine transformation, or a general pixel-to-pixel
mapping, such as optical flow.

In the upcoming step, we rely on a transformer T that outputs a mapping
G that matches video statics S to frames upon receiving S and frame features.
Therefore, we first learn T to perform inter-frame transformation by minimiz-
ing the matching error of transforming one frame to another.

Concretely, we apply an autoencoder and conduct the transformation on its
bottleneck latent space instead of the raw image space (Figure 7.2(a)-left). The
encoder genc embeds an input frame xi and a target frame xj to

si=genc(xi), sj=genc(xj), si.sj ∈ RcT ×hT ×wT . (7.1)

Then T produces the transformation mapping Gij that acts on si to obtain
ŝj. The decoder gdec projects ŝj to x̂j, the final transformed xi to match the
target frame xj. Overall, we train the reconstruction and the transformer T
(via spatial transformation) objectives:

Li,j
T =λr |xi−gdec((si))‖2︸ ︷︷ ︸

reconstruction

+λt ‖xj−gdec(Gij(si))‖2︸ ︷︷ ︸
spatial transformation

, (7.2)

where λr and λt are coefficients to balance the losses. More implementation
details on the transformers are in Section 7.4.2.

Video-Frame Matching

The T provides us with a latent space in which video frames can be recon-
structed and spatially modified to generate other frames. To learn S, we seek
a single video representation in the same latent space that can summarize tem-
poral coherence across all frames to the best extent. To this end, we construct
a 3DCNN video encoder Encv (see Figure 7.2(b)) that takes in raw video se-
quences and outputs S ∈ RcT ×hT ×wT . To ensure the re-projection of S through
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Figure 7.3: Visualization of video statics from different datasets by passing S through

gdec. S extracts time-invariant appearance.

the decoder gdec back to the frames with minimal reconstruction error, we min-
imize:

Lstatics =
1
T

T

∑
t=1
‖xt − gdec(Gvt ◦ S)‖2, (7.3)

where we use Gvt = T (S, st) to denote the transformation parameters between
S and each frame feature st, and Gvt ◦ S represents to warp S using Gvt. For-
mulations of Gvt are specified in Section 7.4. Figure 7.3 shows that on different
datasets our video statics representations express the common appearance of
the sequences, e.g., lighting, objects and scene background.

7.3.2 Learning Video Dynamics

We regard video dynamics as a video-level representation that encodes tempo-
ral evolution. There is no explicit way to annotate such information, making
unsupervised learning an attractive approach.

Assuming that the video statics part S extracts the content shared by all
frames, we can learn a frame-level dynamic representation pt describing the
transition from S to each xt, such that together with S, it can reconstruct xt.
Consequentially, pt encodes the relative spatial locations of content in xt w.r.t.
content in S. We, on the other hand, desire an abstraction of motion trajecto-
ries that is independent of locality. Therefore, we further construct a video-level
dynamics representation P using an objective function that predicts pt. Tak-
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ing MMNIST as an example, pt describes the spatial transition of the digits
and P the trajectory of how the digits move in a video. The rest of this sec-
tion presents our unsupervised approach to learning the frame-level and then
video-level dynamics representations.

Frame-wise dynamics representation

The information bottleneck principle (Saxe et al., 2018; Alemi et al., 2016) spec-
ulates that an autoencoder with a low-dimensional latent space condenses task-
relevant information and discards the irrelevant part. Inspired by this princi-
ple, we construct a frame-level conditional autoencoder (Kingma et al., 2014)
(see Figure 7.2(c)), where S is provided to both the encoder and decoder and
the latent space is much smaller than the input space. Thus, the reconstruction
objective encourages the network to take full advantage of S and squeeze in-
formation not conveyed through S into pt. Therefore, pt is forced to encode
mostly dynamics content. The objective is formulated as follows:

Lt
f rame=‖xt− fDec(pt, S)‖2, where pt= fEnc(xt, S). (7.4)

Video-Level dynamics representation

Furthermore, we aim to attain a video-level dynamics representation P that
summarizes motion trajectory independent of location. We achieve this us-
ing a latent prediction task. Concretely, the video encoder Encv outputs P in
conjunction with S. We then condition on p1, providing the initial location
information, and P predicts future frame dynamics pt>1 autoregressively. We
apply a contrastive loss (Gutmann and Hyvärinen, 2010) for the latent pre-
diction task, based on contrastive predictive coding (Oord et al., 2018; Sohn,
2016). In theory, the contrastive loss maximizes a lower bound on the mutual
information between frame-level and video-level dynamics (Hjelm et al., 2018).
Therefore, for a video v at time step t, the loss encourages the predicted p̂v,t to
be only close to the true frame-level representation for v at t, pv,t, but far away
from the rest. That is, distant from frame representations in either a different
video (pn,i for n 6= v), or at a different time step (pv,i with i 6= t). In practice,
the contrastive loss takes a batch of size N× (T− 1) from N videos, consisting
of {pt

v}v=1:N,t=2:T:

Lpred=−∑
v,t

[
log

exp( p̂tr
v,t pv,t)

∑n,i exp( p̂tr
v,t pn,i)

]
, (7.5)



7.4 important implementation details 157

Figure 7.4: (a): combine video statics from (i) and dynamics from (ii) to compose

(iii). (b): visualization of retrieved MMNIST sequences based on video dynamics, (i)

reference (ii) retrieved.

where p̂t= fauto.(P, p<t) is generated via an autoregressive model fauto. for t =
2, . . . , T. Intuitively, this objective encourages the model to reason about the
dynamics progression over frames using video dynamics.

7.4 important implementation details

In this section, we discuss our training pipeline, transformers, and model
architecture. Then we explore the synthetic MMNIST dataset to provide in-
sights into our proposed framework. Full implementation details are in the
Appendix.
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7.4.1 Learning Pipeline

The full training pipeline of the proposed framework starts with the training
of the transformer with the objective of matching one frame from a video se-
quence to (not necessarily consecutive) another in equation 7.2. Next, we freeze
the transformer and train the rest of the model (see Figure 7.2(b)). Precisely,
we first backpropagate the error derivatives for S in equation 7.3, then detach S
from the computational graph while backpropagating to the frame-level mod-
els with the objective in equation 7.4. Lastly, we detach the obtained p from
the computational graph to update Encv with the contrastive objective in equa-
tion 7.5

7.4.2 Self-supervised Transformer T : BlockSTN

In our experiments, we adopt the block spatial transformation networks (block-
STN) as our transformer T , an extension of the spatial transformation net-
works (STN) (Jaderberg et al., 2015). An STN applies an affine transformation
to the feature of an input frame in order to deform it into another frame. It
is composed of a localization network to estimate the affine transformation
parameters, a grid generator, and a sampler to apply this transformation to
the input features. But a single affine transformation can be too rigid. For
instance, when digits in MMNIST are transitioning along two independent tra-
jectories, a single affine transformation is insufficient. In this case, we turn
to blockSTN, where the feature maps are divided into blocks, and each block
applies its affine transformation. BlockSTN equivalently performs local rigid
transformations, striking a balance between rigidity and flexibility. The trans-
formation module takes the latent features of two frames and learns a stack of
block-wise transformation parameters, which optimally warp one to the other,
i.e., Gij = T (si, sj).

7.4.3 Network Architecture

We describe our network architecture in the following.

The transformation module consists of an image encoder, decoder, and trans-
former T . The encoder, in this case, uses a stack of 4 basic residual blocks (He
et al., 2016). We split the end feature channels into blocks multiple blocks
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Figure 7.5: Visualization of how the final linear classifier attends to features from S
and P for the Weizmann human action sequences.

according to the dataset complexity. Each block is processed following the
original STN. The decoder is symmetric to the encoder, with the additional
transposed convolution layers for upsampling.

The video encoder Encv follows a Res3D-18 backbone (Hara et al., 2018).
After the first 3 residual blocks, Encv branches out to a convolution layer that
outputs S and a fourth residual block followed by fully-connected (FC) layers
to output P.

The frame-level encoder shares the same architecture as the transformation
module’s encoder for the initial convolution layers. Then, where the trans-
former originally outputs s, we condition S via concatenation, followed by
more convolution and finally fully connected layers to output p. The frame-
level decoder reverses the encoder operations.

The autoregressive model, where P conditioned on p1, predicts the rest of
the pt>1, is a one-layer LSTM (Hochreiter and Schmidhuber, 1997) as in Fig-
ure 7.2(b).

7.4.4 A Toy Example: the MMNIST dataset

As a synthetic dataset, the video statics and dynamics of MMNIST are well
defined and thus provide an intuitive understanding of the working of the
proposed framework. For MMNIST, we use 2 blocks for BlockSTN.

Visualization of S. In Figure 7.3, we project S back to the pixel level through
gdec. Not only does S capture the temporal coherence, namely the two digits,
but it also positions them in a way to be easily warped to each frame.

Unsupervised 2-digit classification. We examine the quality of the represen-
tation S via unsupervised 2-digit classification (55 classes) by adding a simple
linear classifier directly on S. It achieves a test accuracy of 69.1%. As a baseline
comparison, we perform the same experiment with st’s (see equation 7.2) and



160 decompose video representations from temporal coherence and dynamics

Dataset Classification Recon. Ours

MMNIST 61 24 24
Weizmann 1.87 0.96 0.92
RADVESS 3.03 3.07 2.75

Table 7.1: Average keypoint displacement distance between reference video frames

and retrieved video frames. Compare retrieving based on video features trained

from supervised classification, unsupervised reconstruction and our proposed unsu-

pervised framework. Retrieved videos from our proposed video dynamics represen-

tations more faithfully resemble the reference video dynamics and thus achieves the

smallest keypoint displacement distances across all datasets.

aggregate votes from each frame to reach a final classification decision. The
baseline network gives a test accuracy of 63.0%, which is significantly lower
than using the over-all video statics S.

Dynamics-relevant retrieval. We conduct a retrieval task using P, by taking
a reference sequence from the test set and searching for the nearest neighbors
in the feature space of P. The results are shown in Figure 7.4(b) exhibiting mo-
tion trajectories highly resembling their corresponding references, whereas the
digit contents can significantly differ. More detailed results on the dynamics-
relevant retrieval are in Section 7.5.2.

Swapping video statics and dynamics. We also notice a curious tendency
that even though our method is not explicitly optimized with the content-
motion disentanglement objective (Li and Mandt, 2018; Hsieh et al., 2018; Den-
ton, 2017), it still manages to distinguish them to a certain degree. Notably, in
Figure 7.4(a), we pair S from the sequence in row (i) with p’s from the sequence
in row (ii) to compose a new sequence with digit appearances from the former
and trajectory from the latter.

7.5 experimental results

This section introduces the datasets in our experiments and then evaluates
the proposed framework through several empirical tasks. Our primary task is
to retrieve videos using the learned dynamics representations. The retrieved
videos bear assembling dynamical content to the reference videos—a prop-
erty that is infeasible to manually label but practically very useful—, albeit
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independent appearances. In this application, we follow the “frozen net” con-
vention (Kolesnikov et al., 2019) and directly apply representations extracted
using our unsupervised model. Additionally, we further analyze the statics
and dynamics representations through classification tasks. First, we classify
actions in videos under the linear protocol while focusing on how video statics
and dynamics contribute to the classification decisions. Next, we employ our
unsupervised phase as a pretraining step for expression recognition.

7.5.1 Datasets

To ensure generalization of the proposed framework, we evaluate on a diversity
of video domains: the Weizmann human action dataset (“Actions as space-time
shapes”), and RAVDESS (video only) facial expression dataset (Livingstone
and Russo, 2018). Video length is kept at 8 frames for all datasets.

The Weizmann human action dataset, a widely-used benchmark, contains
93 sequences of 9 actors performing 10 actions. We crop and normalize each
frame from resolution 180×144 to 96×96 as done in (Tulyakov et al., 2018).
Data augmentation includes random horizontal flipping. We use 4 blocks for
BlockSTN on Weizmann.

The RAVDESS dataset contains 2452 audio-visual sequences of 24 actors
singing and speaking with 8 facial expressions. Our experiments use the
video channel only. We preprocess faces using the normalization procedure
from (Karras et al., 2019) after detecting facial landmarks (Zhang et al., 2016b),
where we apply a similarity transform to remove the effect of in-plane rotation
of faces and scale them to 128×128. Data augmentation includes random hori-
zontal flipping. Uniform temporal downsampling by a factor of 3 is performed,
i.e., taking every 3rd frame to form sequences. We use 8 blocks for BlockSTN
on RAVDESS.

7.5.2 Video Retrieval based on Dynamics

A unique direct application of our learned representations is to retrieve rel-
evant videos based on the video dynamics representations P, since manual
annotation of video dynamics is infeasible. For example, given a facial ex-
pression sequence, if one desires to discover other sequences sharing the same
facial movements while ignoring the appearances, we can extract P from the
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reference sequence and search for its nearest neighbors in the representation
space. Another important downstream application is learning through demon-
stration without action labels: if we can recover the actions from a demon-
stration video by identifying a video sequence with similar motion trajectories
whose actions are known, the rich amount of unlabeled demonstrations can be
easily leveraged.

In this section, we experiment on 3 datasets, MMNIST, Weizmann, and RAD-
VESS. For MMNIST, we hold out the validation set from training; for Weiz-
mann and RADVESS, we hold out one identity from training. Then we take
sequences from the holdout set as reference (top of each row) and retrieve
videos from the rest of the database based on the high-level features. We
compare and extract features from 3 types of models, namely, a supervised
model trained on classification tasks, an unsupervised model trained on recon-
struction loss—i.e., a standard autoencoder, and our proposed model, which
is also unsupervised. The classification task for MMNIST is digit classification,
Weizmann human activity recognition, and RADVESS facial expression recog-
nition. To extract features after training, concretely, we take the last FC layer
outputs before softmax from the classification models, the middle bottleneck
layer outputs of unsupervised reconstructive autoencoders, and the video dy-
namics representations P of our proposed models. The model architecture is
consistent across all models, and the high-level features are all of the same
dimensions across models, which are 32 for MMNIST and 512 for the other
datasets.

Quantitative evaluation of dynamics based retrieval is challenging since it
is infeasible to explicitly “label” the dynamics of a video clip. Therefore, we
approximate the retrieval results through average keypoint displacement distance.
For each dataset, we define detectable key points that are most relevant to the
motion and dynamics of the video. For MMNIST, we directly use the center
coordinate of each digit from the simulator; for Weizmann, we apply a pre-
trained human-pose estimator, OpenPose (Cao et al., 2019), to detect keypoints;
for RADVESS, we use the same set of facial landmarks (Zhang et al., 2016b) as
used in Section 7.5.1. Then we calculate the displacements of keypoints between
frames instead of directly using their absolute locations for both reference and
retrieved video sequences. Finally, Table 7.1 reports the L1 norm of the key-
point displacement distance between reference and retrieved videos averaged
overall key points. The video dynamics representations from our proposed
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model achieve the smallest differences. Although the representations from the
reconstruction models appear to perform well for MNIST and Weizmann, we
qualitatively show that the retrieved videos bear a lot more static visual resem-
blance to the reference videos, i.e., the retrieval is based on both statics and
dynamics instead of dynamics alone in the next paragraphs.

Figure 7.6 shows examples of reference (top of each pair) vs. retrieved (bot-
tom) pairs. The videos retrieved with classification features in Figure 7.6a
share high-level content as the reference videos, such as the digit classes, the
human activities, and the facial expressions but differ significantly in detailed
motion trajectories. On the one hand, when using reconstructive features, the
MMNIST and Weizmann retrievals do cover similar motion content to the ref-
erence as these trajectories significantly contribute to reconstruction. This also
explains the competitive keypoint displacement distance from reconstruction
models in Table 7.1. On the other hand, for RADVESS, the retrieved sequences
share much fewer motion dynamics with the reference. They mostly come
from the same identity, which is highly resembling the held-out identity in ap-
pearance. Even in the case of MMNIST and Weizmann, the retrieved videos
also share significant appearance cues with the referenced sequences. In con-
trast to both the classification model and the reconstruction model, retrieved
sequences based on our proposed P share highly similar motion trajectories
but distinct appearances. Take the last row of Weizmann from Figure 7.6c as
an example: not only does the positioning of each actor agree between refer-
ence and retrieved, but also more subtle body movements such as the rhythm
of the stride.

Therefore, using our representation learning framework, we can envision
a set of practical applications that automatically identify sequences from a
database carrying analogous video dynamics independent of statics appear-
ance.

7.5.3 Additional Empirical Analysis

As a bonus, we further analyze the statics and dynamics representations through
classification tasks. In Section 7.5.3, under the linear protocol on top of the
learned video statics and dynamics representations, we perform human activ-
ity classification on Weizmann while focusing on how each component con-
tributes to the classification decisions. Next, in Section 7.5.3, we employ our
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Weizmann Avg. accuracy

(bregonzio2012fusing) 96%
(sharif2017framework) 95%

supervised 3DCNN 75%
ours, S+P 96%

Table 7.2: Compare average action recognition accuracy using leave-one-actor-out

cross validation on the Weizmann dataset.

unsupervised phase as a pretraining step for expression recognition to high-
light the proposed framework arrives at a suite of meaningful weights for po-
tentially higher level application.

Interplay between Statics and Dynamics

With the Weizmann dataset, we are interested in investigating how our video
statics and dynamics contribute to the final action recognition task. Such anal-
ysis not only helps us provide insight about the extracted representations, but
also sheds light towards the potential direction of more interpretable data-
driven decision making.

Concretely, we train a linear classifier directly on top of S and P. Instead
of naive concatenation and weighing the two equally, we learn an attention
scalar 0≤a≤1 to balance their contributions. In other words, we apply linear
transformations on both S and P to obtain feature vectors gS, gP ∈ Rcg and
then use another linear layer f to derive the attention scalar, a=σ (f(gS, gP)).
The attention scalar re-distributes the two feature vectors to the concatenation
(a·gS,(1−a)·gD) as input for a final FC layer to make a classification decision.
We average the logits over all sequences within a video during training and
pool a single score to backpropagate through. We adopt leave-one-actor-out
cross-validation (Kong and Fu, 2018).

Table 7.2 reports our result in comparison to a fully supervised 3DCNN
baseline that has the same architecture as Encv. We also list other previously
proposed systems that follow the same evaluation protocol. Since the Weiz-
mann dataset has been thoroughly studied, although the frozen features with
an attentive linear classifier achieve good results, our focus is the interplay
between S and P in the decision making process. Figure 7.7 shows how the
classifier attention distributes between S and P. Roughly half of the time, the
classifier attends to S and the other half to P. However, there is a significant
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RADVESS Avg. accuracy

supervised 3DCNN 67%
pretrain with S only 68%

ours, S + P 72%

Table 7.3: We compare recognition accuracy on RADVESS.

shift from dynamics to statics then back to dynamics. Indeed, when the actor
moves from the edge of the frame, the classifier attends more to P. When the
actor is around the center of the frame, it turns to S.

We also attempted to assign all attention to S or P. But both fail, since
averaging logits cause the false leads from either S or P to easily overshadow
the right signals. This observation confirms that at different stages of the video,
S and P contribute differently towards action recognition.

Pretraining for Expression Recognition

Another popular evaluation of unsupervised representation learning is to use
the pretrained weights from the unsupervised phase as initialization for a
downstream supervised task (Zhai and al., 2019). We follow the same proce-
dure to assess our framework on RADVESS for expression recognition. We use
5-splits cross-validation for RADVESS We keep a vanilla evaluation protocol:
all sequences within a video vote together to reach a final verdict. We strive
to keep consistency across different methods for any comparative experiments,
namely model architecture, preprocessing, data augmentation, and evaluation
protocol.

Specifically, we first conduct unsupervised pretraining as described in Sec-
tion 7.4. Taking Encv, we replace the FC layer that originally outputs P with an
average pooling layer followed by another linear classifier.

As a baseline, we train the same 3DCNN from scratch with random initial-
ization. For both RADVESS, our unsupervised pretraining improves upon the
random initialization, from 67% to 72% for RADVESS.

As another ablation, we perform unsupervised pretraining using the S objec-
tive in equation 7.3 only. It yields results comparable to the random baseline,
68% vs. 67% for RADVESS, demonstrating that joint learning from video stat-
ics and dynamics leads to better representations.
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7.6 conclusion

We introduce a novel unsupervised framework to explicitly learn decomposed
video representations from video temporal coherence and dynamics. The
learned representations are directly useful for interesting applications, partic-
ularly dynamics relevant retrieval. Our framework can also help other down-
stream tasks video-level classification tasks such as action and facial expression
recognition. An immediate add-on in future works is spatial and/or temporal
attention. For example, use representations from video statics to identify “mov-
ing” regions to attend to when distilling frame-wise dynamics. It is also worth
integrating other existing unsupervised techniques in our framework. Lastly,
by building an additional hierarchy on top of video-level representations, we
can perform video understanding over much longer sequences.
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(a) classification, super-

vised

(b) reconstruction, unsu-

pervised

(c) proposed, unsuper-

vised

Figure 7.6: Visualization of retrievals based on (a) the last FC layer before softmax

of supervised classification models (b) the middle bottleneck layer of unsupervised

reconstructive autoencoders and (c) the proposed video dynamics representations. In

each pair, the reference is at the top and retrieved the bottom. Our video dynamics

encode motion very well on all datasets independent of static appearance. Meanwhile,

the classification features tend to ignore motion details; the reconstruction features

tend to select retrievals assembling in appearance besides motion.
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Figure 7.7: Visualization of how the final linear classifier attends to features from S
and P for the Weizmann human action sequences.



C H A P T E R A P P E N D I X

In the supplementary materials, we provide full implementation details, in-
cluding model architecture and training details.

7.A model architecture

All the experiments w.r.t different datasets share similar model layouts. More
details are discussed in the following.

7.a.1 Transformer

The transformer module consists of three components: encoding, decoding,
and transformation T , BlockSTN. The encoders here use a stack of four basic
residual blocks. The last residual output features of 64× 8× 8 for MMNIST,
64× 12× 12 for Weizmann and 128× 16× 16 for RADVESS. Then we split the
channels into blocks, MMNIST 2 blocks, Weizmann 4 blocks, and RADVESS
8 blocks. Each block is processed following the original STN (Jaderberg et
al., 2015). Specifically, each block is connected to a localization network to
output the 6 affine-transformation parameters, a gird generator to generate
transformation grids from the transformation parameters, and a final step that
transfers each block using the transformation grids. The transformed features
then go through the decoder, which is symmetric to the encoder, with the
additional transposed convolution layers for upsampling.

7.a.2 Video Encoder

The video encoder follows a 3D-Res18 backbone (Hara et al., 2018). After the
first three 3D residual layers, the network branches out to output S and P. The

169
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former is done via merging features along time dimension then applying 2D
convolutional layers. The latter first goes through more 3D layers, followed
by fully connected layers. The final dimensionality of P is 512 for all datasets
except MNIST’s 32.

7.a.3 Frame Encoder and Decoder

The frame encoder and decoder copy the same architecture as the encoder and
decoder from the transformation module up to the transformation step. Then
instead of performing the transformation, we concatenate the feature with S,
which is followed by additional convolutional layers and, finally, an FC layer
outputting p. The dimensionality of p is 128 for all datasets except MNIST’s
16.

7.a.4 Autoregressive Model

To predict pt’s, for t = 2, · · · T, we use a one-layer LSTM with 1024 hidden units.
At the first step, the input is a combination of p1 and P. For the remaining time
steps, the input is p̂t−1 and P, where p̂t−1 is the predicted previous time step.

7.B implementation details

We set our sequence length to be 8 and batch size 64 for all datasets. We also
use Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999 and
ε = 1e−08 for all experiments.

7.b.1 MMNIST

Moving MNIST (Srivastava et al., 2015) (MMNIST), used by many previous
works in video representation learning (Hsieh et al., 2018; Srivastava et al.,
2015; Denton, 2017), is consist of two randomly sampled digits following in-
dependently generated random trajectories in 64× 64-sized frames. We train
with digits sampled from the MNIST training set, validate with digits from the
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validation set and fix a set of 10, 000 sequences of 8 frames with digits from the
test set for testing.

To train the BlockSTN transformer, we warp between different random frames
within 25 frames of each other. We set the initial learning rate 0.005, decayed by
half every 50 epochs, and run at most 250 epochs. The reconstruction objective
coefficient is 0.1, and the spatial transformation coefficient is 1.0. To train the
rest of the proposed model, we set the initial learning rate at 0.001, decayed
by half every 50 epochs, and run at most 150 epochs. The coefficient for the
contrastive objective is 0.25, and the frame-level reconstruction is 1.0.

7.b.2 Weizmann

For preprocessing, we center and resize each frame to 96× 96 as done in (Tulyakov
et al., 2018), then map the pixel values to between −1 and 1. For data augmen-
tation, we perform random horizontal flip over sequences.

To train the BlockSTN transformation module, we warp between different
random frames within 25 frames of each other. We set the initial learning rate
at 0.0001, decayed by half every 50 epochs, and run at most 250 epochs. To
train the rest of the proposed model, we set the initial learning rate at 0.0005,
decayed by half every 50 epochs, and run at most 150 epochs. The coefficient
for the contrastive objective is 0.01. For this dataset, there are frames where
humans do not appear or fully appear in the sequence, causing the learning of
S difficult. For this reason, we add an additional regularization term: first use
transformation error to identify which frame can be best warped to the other
frames and then use a perceptual loss to encourage S close to that frame’s s.
This term has a coefficient 0.5.

The same “no-human” issue also affects action recognition. In this case, we
use simple median-based background subtraction to automatically cut frames
at the beginning or the end if there are no humans in them.

7.b.3 RADVESS

For preprocessing, we crop based on facial landmarks and resize each frame to
96× 96 as done in (Karras et al., 2019), then map the pixel values to between
−1 and 1. For data augmentation, we perform random horizontal flip over
sequences.
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To train the BlockSTN transformation module, we warp between different
random frames within 25 frames of each other but at least 5 frames apart. We
set the initial learning rate at 0.001, decayed by half every 50 epochs, and run
at most 500 epochs. To train the rest of the proposed model, we set the initial
learning rate at 0.0005, decayed by half every 50 epochs, and run at most 500

epochs. The coefficient for the contrastive objective is 0.1. To train the classifier,
for both random initialization and initialization using the proposed model, we
use an initial learning rate of 0.001, decayed by half every 50 epochs, and run
at most 200 epochs.



8

C O N C L U S I O N

Deep learning has become one of the most prominent ways to tackle problems
in modern artificial intelligence. The tools in deep learning are expressive,
abundant, and flexible. At the same time, given a specific application, it is
becoming increasingly non-trivial to pinpoint the optimal framework in terms
of e.g. model design and training. This thesis showcases how to effectively
craft deep learning frameworks. In particular, we incorporate the essential
inductive biases from the target tasks and the type of available data to high-
level abstract representations. We demonstrate over a wide range of important
example problems from reinforcement learning and computer vision applica-
tions.

For reinforcement learning, exploration and uncertainty are among its most
unique challenges. First, we demonstrate a generic technique, stochastic ac-
tivation, to improve exploration and reflect uncertainty on top of actor-critic
methods. Then, we delve further into a special case of RL setup—a persistent
environment coupling with a diverse suite of potential tasks —and provide
a solution of decomposing the environment into a graph representation as a
building block for downstream hierarchical RL. Lastly, we look at another im-
portant class of problem, multi-agent RL, and devise an attentive framework
to coordinate exploration and execution among multiple agents.

For computer vision, it has been a long-standing goal to utilize the wealth of
unlabeled digital data better. We are thus inspired to study unsupervised rep-
resentation learning of images and videos. For images, we construct the latent
space from a coarse to fine progression, from which we can generate realistic-
looking, complex-structured images. A conditional version that further pays
attention to different attributes during different stages of the progression is
also deployed to a face synthesis application. For videos, we take advantage of
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the interplay of temporal coherence and dynamics to extract video-level statics
and dynamics representations.

The field of deep learning and AI is ever-evolving. Therefore the possibilities
in forming a deep learning framework seem to grow more overwhelming over
time. Especially given limited resources, it has become more valuable to be able
to streamline the design of deep learning frameworks. In this thesis, we show
that, when tackling an ML problem, it is important to understand the nature
of the problem and assemble the most suitable tools wisely together. We hope
our works inspire future models and training designs for future research and
applications.
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S A M E N VAT T I N G - S U M M A R Y I N
D U TC H

Dit proefschrift Crafting Deep Learning Models for Reinforcement Learning and
Computer Vision Applications richt zich op het ontwerpen van nieuwe en effec-
tieve kaders voor het leren van representaties. Er zijn twee belangrijke aspecten
in onze voorgestelde benaderingen: architectuurontwerp van neurale netwerk-
modellen en het opstellen van doelfuncties. Om aan te tonen hoe elk aspect
kan worden ontworpen, verdiepen we ons in representatieve toepassingen uit
twee belangrijke studiegebieden in de kunstmatige intelligentie, namelijk rein-
forcement learning en computervisie. In beide gebieden benadrukken we hoe
abstracte representaties kunnen worden gemanipuleerd om sterke inductieve
aannames in te bouwen over de doeltaken en het type beschikbare data. We
hopen dat onze voorbeelden licht kunnen werpen op toekomstige inspannin-
gen om problemen op aanverwante gebieden en daarbuiten aan te pakken. .
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