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The Logic of AGM Learning from Partial
Observations

Alexandru Baltag1, Aybüke Özgün1,2, and Ana Lucia Vargas-Sandoval1(B)

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
ana.varsa@gmail.com

2 Arché, University of St. Andrews, St Andrews, UK

Abstract. We present a dynamic logic for inductive learning from par-
tial observations by a “rational” learner, that obeys AGM postulates
for belief revision. We apply our logic to an example, showing how var-
ious concrete properties can be learnt with certainty or inductively by
such an AGM learner. We present a sound and complete axiomatization,
based on a combination of relational and neighbourhood version of the
canonical model method.

1 Introduction

In this paper, we extend our previous work [3], presented at DaLi 2017, in which
we introduced a dynamic logic for learning theory, building on our past work
[4,5] (that bridged Formal Learning Theory and Dynamic Epistemic Logic in a
topological setting): a learner forms conjectures based on a continuous stream
of observations, with the goal of inductively converging to a true conjecture. To
reason about this framework, we added to Subset Space Logics [12,16] dynamic
observation modalities [o]ϕ, as well as a learning operator L( #»o ), which encodes
the learner’s conjecture after observing a finite sequence of data #»o . In [3], we
completely axiomatized this logic, and used it to characterize various epistemo-
logical and learning-theoretic notions.

However, the learner in [3] was assumed to satisfy only very few rationality
constraints (essentially, only consistency of conjectures, and the Success postu-
late requiring that the conjectures fit the evidence). In contrast, in this paper we
focus on fully rational learners, whose conjectures obey all the AGM postulates
for belief revision [1]. Semantically, such an “AGM learner” comes with a family
of nested Grove spheres (encoding the agent’s defaults and her belief-revision
policy), or equivalently with a total plausibility (pre)order on the set of pos-
sible worlds. After observing some evidence, the learner forms a conjecture by
applying “AGM conditioning”: essentially, her conjecture encompasses the most
plausible worlds that fit the evidence. This belief dynamics is non-monotonic,
but only minimally so: it respects the principle of Rational Monotonicity (equiv-
alent to some of the AGM postulates in [1]), requiring that the dynamics is just
monotonic logical updating (the so-called “expansion”, putting together the old

c© Springer Nature Switzerland AG 2020
L. Soares Barbosa and A. Baltag (Eds.): DaĹı 2019, LNCS 12005, pp. 35–52, 2020.
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conjecture with the new evidence) whenever the old conjecture is consistent with
the new evidence.

Our aim is to realize the same program for such AGM learners as the one we
achieved in [3]. There are many reasons to focus on AGM learners: first, AGM
postulates seem inherently plausible, or at least strongly desirable as constraints
on rational learners’ belief dynamics. Second, imposing such constraints does
not lead to any loss in learning power: as shown in [4], AGM conditioning is a
“universal learning method”: any questions that can be inductively solved (or
solved with certainty) by some learner can also be solved by an AGM learner.
Third, the additional constraints posed by the AGM postulates make the logic of
inductive AGM learning more interesting, and its completeness more challenging,
than the logic of unconstrained learners.

And indeed, as it turns out, forming conjectures only based on a sequence
of direct, complete observations (as is standard in Learning Theory, and as we
also assumed in [3]) does not seem to be enough to allow us to characterize
AGM learning! In order to obtain our completeness result, we had to extend
the domain of our learning functions to partial observations: incomplete reports
of a full-fledged observation, equivalent to finite disjunctions of observations.
Technically, we had to move from the framework of intersection spaces adopted
in [3] (in which the observable properties were closed under finite intersections,
to capture the effect of successive observations) to the one of lattice spaces (in
which closure under finite unions is also required, to capture the effect of partial
observations). At the syntactic level, this lead us to replace simple observations
by observational events: like PDL programs, these are built from simple observa-
tions !o, using sequential composition e; e′ (to represent successive observations)
and epistemic non-determinism e � e′ (to capture the receipt of partial infor-
mation, after which the agent is not sure which of the two observations e, e′

has been made). After an observational event e, the learner forms a conjecture
L(e), obtained by applying AGM conditioning (with respect to her plausibility
order ≤) to the event’s informational content pre(e) (its “precondition”, defined
recursively by taking conjunctions of the preconditions in a sequential composi-
tion e; e′, and disjunctions of the preconditions in a epistemic non-determinism
e � e′).

As in Subset Space Logics [12,16], our language features an S5-type ‘infallible
knowledge’ modality, capturing the learner’s hard information, as well as the so-
called ‘effort’ modality, which we interpret as ‘stable truth’ (i.e., truth that
will resist further observations). As in [3], we add dynamic modalities [e]ϕ, this
time capturing updates after observational events (“ϕ becomes true after event
e”), similarly to the role of dynamic modalities in Propositional Dynamic Logic
(PDL) and especially in Dynamic Epistemic Logic (DEL).1 Finally, we have
an AGM learning operator L(e), which encodes the AGM learner’s conjecture
(her “strongest belief”) given an observational event e. As in [3], these can be
used to give natural definitions of belief, stable (undefeated) belief, inductive

1 Indeed, our observational events can be seen as corresponding to a special type of
(single-agent) epistemic events in the so-called BMS style.
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knowledge and inductive learnability. We begin the study of the expressivity of
this language, and we apply it to an example, showing how these notions work
on specific AGM learners.

Though our completeness proof uses some standard techniques in non-
monotonic and conditional logics, there are some important differences. First,
since we don’t allow conditioning on arbitrary formulas, but only on those corre-
sponding to (preconditions of) observational events, the proof is more subtle. In
particular, it shows that AGM has no need for conditioning on negated formulas.
Second, the completeness proof uses a mixture of relational and neighbourhood
versions of the standard canonical model construction, with further complica-
tions due to the presence of the “effort” modality. As in [3], its connection
with dynamic updates is embodied by our Effort Axiom and Effort Rule, which
together say that a proposition ϕ is “stably true” iff its truth is preserved by
every correct observational event. The presence of fresh observational variables
as “witnesses” of stability of ϕ in the Effort Rule requires the restriction of the
canonical model to “witnessed” theories (rather than all maximally consistent
ones).

Due to space limitations, proofs are omitted from the main body
and presented in the Appendix of the longer version, available online at
https://analuciavargassan.com/page/.

2 Syntax and Semantics

Let Prop = {p, q, . . .} be a countable set of propositional variables, denoting
arbitrary ‘ontic’ (i.e., non-epistemic) facts and PropO = {o, u, v, . . .} a countable
set of observational variables, denoting ‘observable facts’.

Observational Events. We consider observational events e (or, in short, obser-
vations) by which the agent acquires some evidence about the world. We denote
the set of all observational events by ΠOb and define it by the following recursive
clauses:

e := !� | !o | e; e | e � e

where o ∈ PropO . Intuitively: for every observational variable o, we have a prim-
itive observational event, denoted by !o, corresponding to the event of observing
variable o. We also denote by !� the null event (in which no new observation has
taken place yet). Observational events are naturally closed under regular oper-
ations on programs, of which we consider only two: e; e′ represents sequential
composition of observational events (first observation e is made then observa-
tion e′ is made); while e � e′ captures epistemic non-determinism: one of the
two observational events e or e′ happens, but the observing agent is uncertain
which of the two. The last construct can be used to represent partial observa-
tions, including indirect evidence obtained from other agents’ reports: the agent
observes (or is told) only some feature of the evidence, so her information is
compatible with multiple fully-determined events.

https://analuciavargassan.com/page/
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The Language of AGM Learning. The dynamic language L of AGM learning
from partial observations is defined recursively as

ϕ := p | o | ¬ϕ | ϕ ∧ ϕ | L(e) | Kϕ | [e]ϕ | �ϕ

where p ∈ Prop, o ∈ PropO , and e ∈ ΠOb. We employ the usual abbreviations for
propositional connectives �,⊥,∨,→,↔, and 〈K〉ϕ, 〈e〉ϕ and ♦ϕ denote ¬K¬ϕ,
¬[e]¬ϕ, and ¬�¬ϕ, respectively. Given a formula ϕ ∈ L, we denote by Oϕ and
Oe the set of all observational variables occurring in ϕ and e, respectively.

Intuitively, L(e) denotes the learner’s conjecture given observation e; i.e., her
“strongest belief” after having performed observational event e. We read Kϕ as
‘the learner knows ϕ (with absolute certainty)’. The operator [e]ϕ is similar to
the update operator in Public Announcement Logic: we read [e]ϕ as ‘after event
e is observed, ϕ holds’. Finally, � is the so-called ‘effort modality’ from Subset
Space Logic [12,16]; we read �ϕ as ‘ϕ is stably true’ (i.e. it is true and will stay
true under any further observations).

We interpret L on plausibility learning models in the style of subset space
semantics, as given in turn.

Definition 1 (Plausibility Learning Frame/Model). A plausibility learn-
ing frame is a triple (X,O,≤), where: X is a non-empty set of possible worlds
(or ‘ontic states’); O ⊆ P(X) is a non-empty set of subsets, called information
states (or ‘partial observations’, or ‘evidence’), which is assumed to be closed
under finite intersections and finite unions: if F ⊆ O is finite then

⋂ F ∈ O and⋃ F ∈ O; and ≤ is a total preorder2 on X, called plausibility order and sat-
isfying the observational version of Lewis’ ‘Limit Condition’: every non-empty
information state O has maximal elements. More precisely, if for any evidence
O ∈ O, we put3

Max≤(O) := {x ∈ O : y ≤ x for all y ∈ O}
for the set of maximal (“most plausible”) worlds compatible with the evidence,
then the Limit Condition requires that Max≤(O) �= ∅ whenever O �= ∅. The pair
(X,O) is known in the literature as a “lattice frame” [12,16], while x ≤ y is read
as ‘world y is at least as plausible as world x’.

A plausibility learning model M = (X,O,≤, ‖ · ‖) consists of a plausibility
learning frame (X,O,≤), together with a valuation map ‖ · ‖ : Prop ∪ PropO →
P(X) that maps propositional variables p into arbitrary sets ‖p‖ ⊆ X and obser-
vational variables o into information states ‖o‖ ∈ O.

A learner L≤ : O → P(X) on a plausibility lattice frame (X,O,≤) is a
function that maps to every information state O ∈ O some ‘conjecture’ L≤(O) ⊆
X. An AGM-learner is a learner who, upon having observed O ∈ O, always
2 A total preorder ≤ on X is a reflexive and transitive binary relation such that every
two points are comparable: for all x, y ∈ X, either x ≤ y or y ≤ x (or both).

3 Since ≤ is a total preorder, this definition coincides with the standard definition of
maximal elements as Max≤(O) := {x ∈ O : ∀y ∈ O(x ≤ y implies x ≤ y)}.
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conjectures the set of most plausible O-states. That is, L≤ : O → P(X) is
an AGM-learner on (X,O,≤) if L≤(O) = Max≤(O) for all O ∈ O. By the
observational Limit Condition given in Definition 1, it is then guaranteed that
L≤(O) �= ∅ for all O ∈ O with O �= ∅. This means that an AGM-learner makes
consistent conjectures whenever her information state is consistent.

Epistemic Scenarios. As in Subset Space Semantics, the formulas of our logic
are interpreted not at possible worlds, but at so-called epistemic scenarios: pairs
(x,U) of an ontic state x ∈ X and an information state U ∈ O such that
x ∈ U . Therefore, only the truthful observations about the actual state play a
role in the evaluation of formulas. Intuitively, x represents the actual state of the
world, while U represents the agent’s current evidence (based on her previous
observations). We denote by ES(M) := {(x,U) | x ∈ U ∈ O} the set of all
epistemic scenarios of model M .

Dynamics: Observational Updates. Each observational event e ∈ ΠOb

induces a dynamic “update” of the agent’s information state. This is encoded
in an update function (also denoted by) e : O → O, that maps any information
state U ∈ O to an updated information state e(U) ∈ O. The map is given by
recursion:

!�(U) = U, !o(U) = U ∩ ‖o‖,

(e; e′)(U) = e′(e(U)), (e � e′)(U) = e(U) ∪ e′(U).

The meaning of these clauses should be obvious: the null event !� does not
change the agent’s information state; the single observation of variable o simply
adds ‖o‖ to the current evidence U (so that the agent will know the world is in
U ∩ ‖o‖); the information state after a sequential composition e; e′ is the same
as the one obtained by updating first with e then with e′; while the information
state produced by a partial observation e�e′ is the disjunction of the information
states produced by the two events (since the agent doesn’t know which of the
two happened).

It is easy to see that the update map is appropriately defined:

Lemma 1. Let M = (X,O,≤, ‖ · ‖) be a plausibility learning model and U ∈ O
be an information state. Then, for all e ∈ ΠOb we have e(U) ∈ O.

Proof. The proof follows easily by induction on the structure of e. For the base
cases !� and !o, we have !�(U) = U ∈ O and !o(U) = ‖o‖ ∩ U ∈ O by the
closure of O under finite intersections. In the inductive case e; e′, we apply the
inductive hypothesis to e and U , yielding that e(U) ∈ O, then we obtain that
(e; e′)(U) = e′(e(U)) (by applying again the inductive hypothesis to e′ and e(U)).
Finally, in the inductive case e � e′, we use the inductive hypothesis for e and
U , as well as for e′ and U , together with the closure of O under finite unions, to
conclude that (e � e′)(U) = e(U) ∪ e′(U) ∈ O.

Definition 2 (Semantics). Given a plausibility learning model M = (X,O,
≤, ‖ · ‖) and an epistemic scenario (x,U), the semantics of the language L is
given by a binary relation (x,U) |=M ϕ between epistemic scenario and formulas,
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called the satisfaction relation, as well as a truth set (interpretation) [[ϕ]]UM :=
{x ∈ U | (x,U) |=M ϕ}, for all formulas ϕ ∈ L. We typically omit the subscript,
simply writing (x,U) |= ϕ and [[ϕ]]U , whenever the model M is understood. The
satisfaction relation is defined by the following recursive clauses:

(x,U) |= p iff x ∈ ‖p‖
(x,U) |= o iff x ∈ ‖o‖
(x,U) |= ¬ϕ iff (x,U) �|= ϕ
(x,U) |= ϕ ∧ ψ iff (x,U) |= ϕ and (x,U) |= ψ
(x,U) |= L(e) iff x ∈ Max≤ e(U)
(x,U) |= Kϕ iff (∀y ∈ U) ((y, U) |= ϕ)
(x,U) |= [e]ϕ iff x ∈ e(U) implies (x, e(U)) |= ϕ
(x,U) |= �ϕ iff (∀O ∈ O) (x ∈ O ⊆ U implies (x,O) |= ϕ)

i.e. (∀O ∈ O) (x ∈ O implies (x,U ∩ O) |= ϕ)

where p ∈ Prop, o ∈ PropO , and e ∈ ΠOb.
We say that a formula ϕ is valid in a plausibility learning model M , and write

M |= ϕ, if (x,U) |=M ϕ for all epistemic scenarios (x,U) ∈ ES(M). We say ϕ
is valid, and write |= ϕ, if it is valid in all plausibility learning models.

Precondition (Informational Content). To each observational event e ∈
ΠOb, we can associate a formula pre(e) ∈ L, called the precondition of event e.
The definition is by recursion: pre(!�) = �, pre(!o) = o, pre(e; e′) = pre(e) ∧
pre(e′), and pre(e � e′) = pre(e) ∨ pre(e′). The precondition formula pre(e)
captures the “condition of possibility” of the event e (i.e. e can happen in a
world x iff pre(e) is true at (x,U), for any U ∈ O with x ∈ U), as well as
its informational content (the learner’s new information after e). Both these
interpretations are justified by the following result:

Lemma 2. Let M = (X,O,≤, ‖ · ‖) be a plausibility learning model and U ∈ O
be an information state. Then, for all e ∈ ΠOb we have:

[[pre(e)]]U = e(U) = [[〈e〉�]]U .

2.1 Expressive Power of L and Its Fragments

In this brief subsection, we compare the expressive power of L to those of its
fragments of interest. Let LKL� denote the fragment of L obtained by removing
only the operators [e]ϕ. The fragment obtained by further removing the effort
modality �ϕ is called the static fragment and denoted by LKL. Finally, we
denote the epistemic fragment having only the knowledge modality K by LK .

Theorem 1 (Expressivity). L is equally expressive as LKL�, and they are
strictly more expressive than the static fragment LKL with respect to plausibility
learning models. Moreover, LKL is strictly more expressive than the epistemic
fragment LK .
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Proof. L is equally expressive as LKL�: use step-by-step the reduction axioms
in Table 1 as a rewriting process and prove termination by defining a strict par-
tial order on L that satisfies similar properties as in [3, Lemma 11].4 For the
second claim, consider the following two-state models M1 = (X,O1,≤, ‖ · ‖)
and M2 = (X,O2,≤, ‖ · ‖) where X = {x, y}, ≤= {(x, x), (y, y), (x, y)} and
the valuation ‖p‖ = {y}. And, take O1 = {X, ∅} (the trivial topology on
X) and O2 = P(X) (the discrete topology on X). It is then easy to see
that M1, (x, {x, y}) and M2, (x, {x, y}) are modally equivalent with respect to
the language LKL. However, M2, (x, {x, y}) |= ♦K¬p (since {x} is an open
set of M2) whereas M1, (x, {x, y}) �|= ♦K¬p, since the only open including
x is {x, y} and x /∈ ‖p‖ = {y}. To prove that LKL is strictly more expres-
sive than the epistemic fragment LK , consider the models M ′

1 = (X,O1,
≤1, ‖ · ‖) and M ′

2 = (X,O2,≤2, ‖ · ‖), where X,O1, and O2 are as above but
≤1=≤ and ≤2= {(x, x), (y, y), (y, x)}. It is then easy to see that M ′

1, (x, {x, y})
and M ′

2, (x, {x, y}) are modally equivalent with respect to the language LK

whereas M ′
1, (x, {x, y}) � |= L(!�) (since x �∈ Max≤1(!�({x, y})) = {y}) but

M ′
2, (x, {x, y}) |= L(!�) (since x ∈ Max≤2(!�({x, y})) = {x}).

3 Expressing Belief and Notions of Learnability

Having presented the Dynamic Logic of AGM Learning, we now explore how
various notions of belief and learnability can be expressed within this framework.
We first recall the definitions of these notions given in [3].

Certain (Infallible) Knowledge and Learnability with Certainty. The
notion of infallible knowledge is in our logic directly represented by the modality
K, whose semantic clause mimics the following definition. The AGM learner is
said to infallibly know a proposition P ⊆ X in an information state U ∈ O
if her information state U entails P , i.e, U ⊆ P . The possibility of learning a
proposition with such certainty in a possible world x ∈ X by a learner L≤ if
given enough evidence (true at x) is called learnability with certainty.5 In other
words, P is learnable with certainty at world x if there exists some truthful
information state O ∈ O (i.e., x ∈ O) such that the learner infallibly knows P
in information state O. As anticipated in [16], the notion of learnability with
certainty is syntactically characterised in our language by ♦Kp, as shown in the
following proposition.

Proposition 1. Given a plausibility learning model M = (X,O,≤, ‖ · ‖) and
(x,U) ∈ ES(M), (x,U) |= ♦Kp iff ‖p‖ is learnable with certainty at x.

4 This is a standard method in Dynamic Epistemic Logic and we refer the reader to
[18, Chap. 7.4] for further details.

5 When we quantify over learners, learnability with certainty (by some learners)
matches the standard concept of “finite identifiability” from Formal Learning
Theory.
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Belief, Inductive Knowledge, and Inductive Learnability. The notion of
infallible knowledge is obviously very strong: we know very few things with such
certainty (maybe some logical or mathematical truths that require only hard
thinking and no empirical evidence). One needs weaker notions of knowledge if
one desires to model the type of knowledge we can acquire from experimental
evidence that is typically partial and incomplete. This type of knowledge is taken
to be fallible, yet resistant to truthful evidence gain and stronger than plain
belief. In this learning theoretical context, it is captured by an evidence-based
notion of inductive knowledge defined as true undefeated belief.

In an information state U , we say that the AGM learner believes a proposition
P ⊆ X if her conjecture given U entails P , that is, L≤(U) ⊆ P . This gives us
the standard interpretation of belief on plausibility models (see, e.g., [9,10,17]):

(x,U) |= Bϕ iff Max≤ e(U) ⊆ [[ϕ]]U .

In our formal language, belief is not a primitive notion, but can be defined as
an abbreviation:

Bϕ := K(L(!�) → ϕ).

Indeed, it is easy to check that this defined notion satisfies the semantic clause
above.

We say that, in information state U and ontic state x, the AGM learner has
undefeated belief in a proposition P ⊆ X if she believes P and will continue to
believe P no matter what new true observations will be made; i.e. iff (x,O) |=
BP for every O ∈ O with x ∈ O. We then say, in an information state U , the
AGM learner inductively knows P at world x if P is true and the learner has
undefeated belief in P . Finally, P is inductively learnable by the AGM learner
L≤ at world x if there exists some truthful information state O ∈ O (i.e., x ∈ O)
such that L≤ inductively knows P in information state O at x.6 The following
proposition shows that the Dynamic Logic of AGM Learning can capture these
notions:

Proposition 2. Given a plausibility learning model M = (X,O,≤, ‖ · ‖) and
(x,U) ∈ ES(M),

1. (x,U) |= �Bp iff the learner L≤ has undefeated belief in ‖p‖ (at world x in
information state U).

2. (x,U) |= p ∧ �Bp iff the learner L≤ inductively knows ‖p‖ (at world x in
information state U).

3. (x,U) |= p ∧ ♦�Bp iff ‖p‖ is inductively knowable by L≤ (at world x in
information state U).

Example: The alcohol inspector. An alcohol inspector needs to randomly
check cars that pass through a security point in a perimetrical highway of
6 When we quantify over learners, inductive learnability (by some learners) matches
the standard concept of “identifiability in the limit” from Formal Learning Theory,
see e.g. [13].
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Munich during the October fest to check the driver’s alcohol levels. The maxi-
mum alcoholic-level allowed is 30 points (which corresponds to two small beers).
His alcohol-measuring tool, known as breathalyser, has an accuracy of ±20. At
some point, a young woman gets the stop sign in order to get inspected. The
breathalyser outputs a reading of 40 points. Given the accuracy of the tool, this
first measurement can be represented by the interval (20, 60) ⊆ R. At this point,
the inspector cannot know for sure that the driver has drunk more beers than
allowed. The inspector then borrows a more advanced and accurate breathal-
yser from one of his colleagues, with an accuracy of ±5. The more accurate
breathalyser outputs a reading of 35 points. So the measurement of the second
breathalyser can be represented by the interval (30, 40). Therefore, after the
reading of the second device, the inspector can know with certainty that the
woman has exceeded the levels of alcohol, so she needs to wait for a couple of
hours before driving again and to pay a costly fine. Moreover, let us assume that
inspector obeys the legal principle of “believing in innocence until proven guilty
beyond doubt”: so, whenever he is in doubt (because his measurements do not
prove either case), he believes the driver is not drunk.

This situation can be represented in a plausibility learning frame7 (X,O,�),
where (X,O) is a lattice frame with X = [0,∞) ⊆ R is the set of “possible
worlds” (=possible alcohol levels), while the family of partial observations O is
the closure under finite intersections and finite unions of the family of breathal-
yser measurements (=single-step total observations) B = {[0, b) ⊆ R : 0 < b ∈
Q} ∪ {(a, b) ⊆ R : 0 < a, b ∈ Q}. The sets in B represent all possible readings of
arbitrarily accurate breathalysers, while the sets in O represent all possible infor-
mation states of the inspector, based on iterated (and possibly) partial reports of
such readings. Finally, the policy of believing in “innocence until proven guilty”
is captured by assuming that (in the absence of any evidence) the inspector con-
siders all non-drunk states to be a priori more plausible than all drunk states:
i.e. x � y for x > 30 and y ≤ 30. This policy is not enough to fully determine the
plausibility relation; to make it precise, let us assume for now that the inspector
has no other strong belief on the matter, i.e. he considers all the drunk states to
be equally plausible (and similarly for the non-drunk states). So the relation is
given by putting: x � y iff either y ≤ 30 or else 30 < x, y. It is easy to check
that � is indeed a total preorder.

Consider the propositions drunk D = (30,∞) and not drunk ND = [0, 30]
in the context of this example. We can then ask if the inspector knows with
certainty that the woman is outside the permitted alcohol levels, namely if the
inspector knows proposition D. After the second reading, the inspector knows
with certainty that the woman has drunk more than allowed. Thus, given enough
more accurate measurements, the inspector can infallibly know D (whenever D is
actually the case); i.e. D is always learnable with certainty. However proposition
ND is not always learnable with certainty: if the real level of alcohol happens
to be exactly 30, then the driver is not drunk (ND) but the inspector will never

7 We use � to denote the plausibility order in this frame, to distinguish it from the
natural order on X ⊆ R.
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come to infallibly know ND. (This is simply because any interval containing
30 has non-empty intersection with D.) Still, ND is “falsifiable” with certainty
(since its negation is learnable with certainty whenever true). A property that
is neither learnable with certainty nor falsifiable with certainty is having alcohol
level barely-above-permitted BAP = (30, 31].

Inductive learnability is of course a weaker, more general form of knowl-
edge: both properties drunk D := (30,∞) and not-drunk ND := [0, 30] are
inductively learnable by the inspector, if endowed with the above plausibil-
ity order �. Indeed, if the true alcohol level is some w ∈ ND = [0, 30],
then the inspector (in the absence of any evidence), starts by believing ND
(since L(X) = Max�X = [0, 30]); and no matter what further direct evi-
dence (a, b) she gets, with a < w < b, she will still believe ND (since in this
case L(a, b) = Max�(a, b) ⊆ [0, 30]). So in this case the inspector inductively
knows ND from the start! While if w ∈ D = (30,∞), then after doing an accu-
rate enough measurement, the inspector will obtain some evidence (a, b), with
30 < a < w < b. For any further refinement (a′, b′) ⊆ (a, b) of this evidence,
we will have (a′, b′) ⊆ (a, b) ⊆ (30,∞) = D, hence L(a′, b′) = Max�(a′, b′) =
(a′, b′) ⊆ D. Which means that, after reading (a, b), the inspector achieves induc-
tive knowledge of D: he will believe D no matter what further observations might
be made.

What about the property BAP = (30, 31] of having a barely-above-permitted
alcohol level? This property is in principle also inductively learnable (by some
learners), but not by the above AGM learner! To design an AGM learner who can
inductively learn it, we need to change the plausibility relation, using a different
refinement of the general “innocent until proven guilty” policy. The inspector
still believes all the non-drunk states to be more plausible than all the drunk ones;
but now, within the drunk-world zone, he has a similarly generous attitude: “if
guilty then barely guilty”. In other words, he considers the barely-above-permitted
levels in BAP = (30, 31] to be more plausible than the way-above-permitted ones
in WAV = (31,∞); and in the rest, he is indifferent, as before. This amounts to
adopting a plausibility order �, given by putting x � y iff: either we have y ≤
30, or else we have both 30 < x and y ≤ 31, or otherwise we have 31 < x, y < ∞.
It is easy to check that � is a linear pre-order, and moreover that properties
D, ND, BAP , NBAP = X − BAP = (0, 30] ∪ (31,∞), WAV = (31,∞) and
NWAV = [0, 31] are all inductively learnable by an inspector endowed with this
plausibility order.

4 A Complete Proof System

In this section, we present a sound and complete proof system for our logic.

4.1 Axiomatization

Table 1 presents the axioms and inference rules of the Logic of AGM Learning
(L).
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Table 1. The axiom schemas for the Dynamic Logic of AGM Learning (L)

Basic axioms:

(P) All instantiations of propositional tautologies

(KK) K(ϕ → ψ) → (Kϕ → Kψ)

(TK) Kϕ → ϕ

(4K) Kϕ → KKϕ

(5K) ¬Kϕ → K¬Kϕ

(K[e]) [e](ψ → χ) → ([e]ψ → [e]χ)

Basic rules:

(MP) From � ϕ and � ϕ → ψ, infer � ψ

(NecK) From � ϕ, infer � Kϕ

(Nec[e]) From � ϕ, infer � [e]ϕ

Learning axioms:

(CC) pre(e) → 〈K〉L(e) Consistency of Conjecture

(EC) K(pre(e) ↔ pre(e′)) → (L(e) ↔ L(e′)) Extensionality of Conjecture

(SP) L(e) → pre(e) Success Postulate

(Inc) (pre(e) ∧ L(e′)) → L(e; e′) Inclusion

(RMon) 〈K〉(L(e′) ∧ pre(e)) → (L(e; e′) → (pre(e) ∧ L(e′))) Rational Monotonicity

Reduction axioms:

(Rp) [e]p ↔ (pre(e) → p)

(Ro) [e]o ↔ (pre(e) → o)

(RL) [e]L(e′) ↔ (pre(e) → L(e; e′))
(R¬) [e]¬ψ ↔ (pre(e) → ¬[e]ψ)

(RK) [e]Kψ ↔ (pre(e) → K[e]ψ)

(Re) [e][e′]ψ ↔ [e; e′]ψ
(R�) [e]�ψ ↔ �[e]ψ

Effort axiom and rule:

(�Ax) �ϕ → [e]ϕ, for e ∈ ΠOb

(�Ru) From � ψ → [e; !o]ϕ, infer � ψ → [e]�ϕ, where o 	∈ Oψ ∪ Oe ∪ Oϕ

Proposition 3. The following formulas are derivable in L for all ϕ ∈ L and
e ∈ ΠOb:

1. 〈K〉(L(e′) ∧ pre(e)) → (L(e; e′) ↔ (pre(e) ∧ L(e′)))
2. [e](ϕ ∧ ψ) ↔ ([e]ϕ ∧ [e]ψ)
3. 〈e〉ψ ↔ (pre(e) ∧ [e]ψ)
4. from � ϕ ↔ ψ, infer � [e]ϕ ↔ [e]ψ
5. 〈e〉pre(e′) ↔ pre(e; e′)
6. from � pre(e) ↔ pre(e′), infer � [e]ϕ ↔ [e′]ϕ
7. [!�]ϕ ↔ ϕ (we denote it R[�])
8. from � ψ → [!o]ϕ infer � ψ → �ϕ (where o /∈ Oψ ∪ Oϕ)

Intuitive Reading of the Axioms and Rules. The axiomatization of the
Dynamic Logic of AGM Learning, roughly speaking, extends that of Dynamic
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Logic for Learning Theory (DLLT) presented in [3] with axioms capturing AGM-
type learning from partial observations. Group Basic Axioms and rules are quite
standard: S5 axioms and rules for K says that the notion of knowledge with
absolute certainty we study in this paper is factive and fully (both positively
and negatively) introspective. (K[e]) and (Nec[e]) together show that dynamic
modalities [e]ϕ behave like normal modal operators. The reduction axioms are
as in Epistemic Action Logic (EAL) [6,8] (a.k.a., Action Model Logic [18]), where
the precondition of an observational event e is captured by pre(e), that is, the
informational content of the event e being true. The first three learning axioms -
in slightly different forms - are also part of DLLT. To recap, (CC) states that the
learner conjectures consistent propositions upon having received truthful infor-
mation; (EC) says that the form of the observational event (primitive, sequential,
or non-deteministic) is irrelevant for learning, what is important is the informa-
tional content of the observation: observing informationally equivalent events
gives rise to equivalent conjectures. Moreover, (SP) states that what the learner
conjectures fits what is observed, that is, the learner conjectures propositions
that support what she has observed. The last two learning axioms (Inc) and
(RMon) are novel to the current system and corresponds to the AGM postu-
lates Inclusion and Rational Monotonicity in [1], respectively. These are better
understood in terms of belief. (Inc) states that the agent believes a proposition
P after having observed e only if she initially believes that e entails P . (RMon)
on the other hand says that the agent revises her beliefs in a monotonic way
as long as the newly observed event is consistent with her previous conjecture.
Finally, we have the Effort rule (�Ru) and axiom (�Ax) which together explain
the dynamic behavior of the effort modality. While the former expresses that if
ϕ is stably true then it holds after any observational event has taken place, the
latter states that if ϕ holds after any more informative event has taken place
([e; o]), ϕ is stably true after e has taken place.

4.2 Soundness and Completeness

The soundness of the axiomatization L is not entirely straightforward due to
the non-standard inference rule �Ru. We present validity proofs for �Ax and
�Ru and the completeness proof in full detail in the longer online version of
this paper. We here provide sketches of the aforementioned proofs by listing the
crucial lemmas.

The following lemma plays an important role in the soundness of �Ru.

Lemma 3. Let M = (X,O,≤, ‖·‖) and M ′ = (X,O,≤, ‖·‖′) be two plausibility
learning models and ϕ ∈ L such that M and M ′ differ only in the valuation of
some o �∈ Oϕ. Then, for all U ∈ O, we have [[ϕ]]UM = [[ϕ]]UM ′ .

Theorem 2. The system L in Table 1 is sound wrt the class of plausibility learn-
ing models.
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Canonical Model Construction. The standard notion of maximally consis-
tent theory is not very useful for our logic, since such theories do not ‘internalize’
the Effort rule �Ru. To do this, we need instead to consider ‘witnessed’ (maxi-
mally consistent) theories, in which every occurrence of a ♦ϕ in any ‘existential
context’ is ‘witnessed’ by some 〈!o〉ϕ (with o observational variable). The appro-
priate notion of ‘existential contexts’ is represented by possibility forms, as in
e.g., [2,3,7], given in Definition 3.

Definition 3 (‘Pseudo-modalities’: Necessity and Possibility Forms).
The set of necessity-form expressions of our language is given by NFL := ({ϕ →
| ϕ ∈ L} ∪ {K} ∪ {e : e ∈ ΠOb})∗. For any finite string s ∈ NFL, we define
pseudo-modalities [s] (called necessity form) and 〈s〉 (called possibility form)
that generalize our dynamic modalities [e] and 〈e〉. These pseudo-modalities are
functions mapping any formula ϕ ∈ L to another formula [s]ϕ ∈ L, and respec-
tively 〈s〉ϕ ∈ L. Necessity forms are defined recursively, by putting: [ε]ϕ := ϕ
(where ε is the empty string), [s, ϕ →]ϕ := [s](ϕ → ϕ), [s,K]ϕ := [s]Kϕ,
[s, e]ϕ := [s][e]ϕ. As for possibility forms, we put 〈s〉ϕ := ¬[s]¬ϕ.

Lemma 4. For every necessity form [s], there exist an observational event e ∈
ΠOb and a formula ψ ∈ L , with Oψ ∪ Oe ⊆ Os , such that for all ϕ ∈ L, we
have

� [s]ϕ iff � ψ → [e]ϕ.

Lemma 5. The following rule is admissible in L:

if � [s][!o]ϕ then � [s]�ϕ, where o �∈ Os ∪ Oϕ.

Proof. Suppose � [s][!o]ϕ where o �∈ Os ∪ Oϕ. Then, by Lemma 4, there exist
e ∈ ΠOb and ψ ∈ L with Oψ ∪ Oe ⊆ Os such that � ψ → [e][!o]ϕ. Thus we get
� ψ → [e; !o]ϕ by an instance of Re. Therefore, by the Effort rule (�Ru) we have
� ψ → [e]�ϕ. Then, again by Lemma 4, we obtain � [s]�ϕ.

Definition 4. For every countable set O, let LO be the language of the logic LO

based only on the observational variables in O (i.e., having as set of observational
variables PropO := O). Let NFO

L denote the set of necessity-form expressions
of LO (i.e., necessity forms involving only observational variables in O). An O-
theory is a consistent set of formulas in LO. Here, ‘consistent’ means consistent
with respect to the axiomatization L formulated for LO. A maximal O-theory is
an O-theory Γ that is maximal with respect to ⊆ among all O-theories; in other
words, Γ cannot be extended to another O-theory. An O-witnessed theory is an
O-theory Γ such that, for every s ∈ NFO

L and ϕ ∈ LO, if 〈s〉♦ϕ is consistent
with Γ then there is o ∈ O such that 〈s〉〈!o〉ϕ is consistent with Γ . A maximal
O-witnessed theory Γ is an O-witnessed theory that is not a proper subset of
any O-witnessed theory.

The proofs of the following lemmas are exactly as in the corresponding
proofs in [3], taking into account that (maximaly) O-(witnessed) theories here
are defined using primitive observational events (!o) (rather than observational
variables o).
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Lemma 6. For every maximal O-witnessed theory Γ , and any ϕ,ψ ∈ LO,

1. either ϕ ∈ Γ or ¬ϕ ∈ Γ ,
2. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ ,
3. ϕ ∈ Γ and ϕ → ψ ∈ Γ implies ψ ∈ Γ .

Lemma 7 (Lindenbaum’s Lemma). Every O-witnessed theory Γ can be
extended to a maximal O-witnessed theory TΓ .

Lemma 8 (Extension Lemma). Let O be a set of observational variables
and O′ be a countable set of fresh observational variables, i.e., O ∩ O′ = ∅. Let
∼
O = O ∪ O′. Then, every O-theory Γ can be extended to an

∼
O-witnessed theory

∼
Γ ⊇ Γ , and hence to a maximal

∼
O-witnessed theory TΓ ⊇ Γ .

Canonical Model for T0. For any consistent set of formulas Φ, consider a max-
imally consistent O-witnessed extension T0 ⊇ Φ. As our canonical set of worlds,
we take the set Xc := {T : T maximally consistent O-witnessed theory with
T ∼K T0}, where we put

T ∼K T ′ iff ∀ϕ ∈ LO (Kϕ ∈ T implies ϕ ∈ T ′) .

It is easy to see (given the S5 axioms for K) that ∼K is an equivalence relation.
For any formula ϕ, we use the notation ϕ̂ := {T ∈ Xc : ϕ ∈ T}. As the canonical
set of information states, we take Oc := {p̂re(e) : e ∈ ΠO

Ob}. Toward defining
the canonical plausibility relation ≤c, let

Se =
⋃

{L̂(e′) : p̂re(e) ⊆ p̂re(e′) and e′ ∈ ΠO
Ob},

and $ = {Se : e ∈ ΠO
Ob} ∪ {Xc}. The canonical plausibility order ≤c on Xc is

given by, for any T, T ′ ∈ Xc:

T ≤c T ′ iff ∀S ∈ $ (T ∈ S implies T ′ ∈ S).

The definition of ≤c is inspired by the construction of the so-called order models
from sphere and selection models presented in [14]. Roughly speaking, while
L̂(e′) plays the role of a selection function that picks out a set of maximally
consistent O-witnessed theories given e′ (see, e.g., [11,14] for selection models),
the collection of sets $ forms a sphere system (see, e.g., [15] for sphere models).

The canonical valuation ‖ · ‖c is given as ||p||c = p̂ and ||o||c = ô. The tuple
M c = (Xc,Oc,≤c, ‖ · ‖c) is called the canonical model.

Theorem 3. M c = (Xc,Oc,≤c, ‖ · ‖c) is a plausibility learning model.

The following lemmas will be useful for proving the Truth Lemma.

Lemma 9. For all e ∈ ΠO
Ob, Max≤c(p̂re(e)) = L̂(e).
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Lemma 10. For every maximal O-witnessed theory T , the set {θ : Kθ ∈ T} is
O-witnessed.

Lemma 11. Let T ∈ Xc. Then, Kϕ ∈ T iff ϕ ∈ T ′ for all T ′ ∈ Xc.

Lemma 12. Let T ∈ Xc. Then, �ϕ ∈ T iff [e]ϕ ∈ T for all e ∈ ΠO
Ob.

Proof. The direction from left-to-right follows by the axiom (�Ax). For the
direction from right-to-left, suppose, toward a contradiction, that for all e ∈ ΠO

Ob,
[e]ϕ ∈ T and �ϕ �∈ T . Then, since T is a maximally consistent theory, ♦¬ϕ ∈ T .
Since T is an O-witnessed theory, there is o ∈ O such that 〈!o〉¬ϕ is consistent
with T . Since T is also maximally consistent, we obtain that 〈!o〉¬ϕ ∈ T , i.e.,
that ¬[!o]ϕ ∈ T , contradicting our initial assumption.

Lemma 13 (Truth Lemma). Let M c = (Xc,Oc,≤c, ‖ · ‖c) be the canonical
model for some T0. For all formulas ϕ ∈ LO, all T ∈ Xc and all e ∈ ΠO

Ob, we
have:

〈e〉ϕ ∈ T iff (T, p̂re(e)) |=Mc ϕ.

Proof. The proof is by induction on the structure of ϕ and uses the fol-
lowing induction hypothesis (IH): for all ψ subformula of ϕ, and e ∈ ΠO

Ob,
〈e〉ψ ∈ T iff (T, p̂re(e)) |=Mc ψ. The base case for propositional and observa-
tional variables, as well as Boolean formulas are straightforward. We only verify
the remaining inductive cases.

Observe that at this point of the proof we have that: ∀e, e′ ∈ ΠO
Ob,

̂〈e〉pre(e′) = [[pre(e′)]]
̂pre(e)
Mc since pre(e) is a Boolean formula.

– Case ϕ := L(e′). We have the following sequence of equivalencies: 〈e〉L(e′) ∈ T
iff (pre(e) ∧ [e]L(e′)) ∈ T (by Proposition 3.3) iff (pre(e) ∧ L(e; e′)) ∈ T (by
RL and CPL) iff pre(e) ∈ T ∧ L(e; e′) ∈ T iff T ∈ p̂re(e) ∧ T ∈ L̂(e; e′)
(by Def. of ϕ̂) iff T ∈ p̂re(e) ∧ T ∈ Max≤c( ̂pre(e; e′)) (by Lemma 9) iff
T ∈ p̂re(e) ∧ T ∈ Max≤c( ̂〈e〉pre(e′)) (by Proposition 3.5) iff T ∈ p̂re(e) ∧ T ∈
Max≤c([[pre(e′)]]

̂pre(e)
Mc ) (by the above observation) iff (T, p̂re(e)) |=Mc L(e′)

(by the semantics).
– Case ϕ := Kψ. We have the sequence of equivalencies: 〈e〉Kψ ∈ T iff (pre(e)∧

K[e]ψ) ∈ T (by Proposition 3.3 and RK) iff pre(e) ∈ T ∧ K[e]ψ ∈ T iff
pre(e) ∈ T ∧ (∀T ′ ∼K T )([e]ψ ∈ T ′) (by Lemma 11) iff pre(e) ∈ T ∧
(∀T ′ ∼K T s.t. pre(e) ∈ T ′)(〈e〉ψ ∈ T ′) (by Proposition 3.3) iff T ∈ p̂re(e) ∧
(∀T ′ ∈ p̂re(e))(T ′, p̂re(e)) |=Mc ψ) (by I.H.) iff (T, p̂re(e)) |=Mc Kψ (by the
semantics).

– Case ϕ := 〈e′〉ψ. We have the sequence of equivalencies: 〈e〉〈e′〉ψ ∈ T iff
〈e; e′〉ψ ∈ T (by Re) iff pre(e; e′) ∧ 〈e; e′〉ψ ∈ T (by Proposition 3.3) iff
pre(e; e′) ∈ T ∧ 〈e; e′〉ψ ∈ T iff T ∈ p̂re(e) ∩ p̂re(e′) ∧ T ∈ ̂〈e; e′〉ψ iff
(T, p̂re(e)∩ p̂re(e′)) |=Mc ψ (by I.H.) iff (T, p̂re(e)) |=Mc 〈e′〉ψ (by the seman-
tics).
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– Case ϕ := �ψ. First observe the following: 〈e〉�ψ ∈ T iff e ∧ [e]�ψ ∈ T
(by Proposition 3.3) iff pre(e) ∈ T and �[e]ψ ∈ T (by R�) iff pre(e) ∈ T
and [e′][e]ψ ∈ T ,∀e′ ∈ ΠO

Ob (by Lemma 12) iff pre(e) ∈ T and [e′; e]ψ ∈
T ,∀e′ ∈ ΠO

Ob (by Re) iff pre(e) ∈ T and [e; e′]ψ ∈ T ,∀e′ ∈ ΠO
Ob (by

Proposition 3.6).

(⇒) Suppose 〈e〉�ψ ∈ T . Now let U ∈ Oc such that T ∈ U . By the definition
of Oc we know that U = ̂pre(e′′) for some e′′ ∈ ΠO

Ob. Since T ∈ ̂pre(e′′) and
by the observation above we obtain, pre(e; e′′) ∈ T and [e; e′′]ψ ∈ T . Thus,
T ∈ ̂pre(e; e′′) and T ∈ ̂[e; e′′]ψ. By Proposition 3.3 we have T ∈ ̂pre(e; e′′)
and T ∈ ̂〈e; e′′〉ψ. Since ̂pre(e; e′′) = p̂re(e)∩ ̂pre(e′′) and 〈e; e′′〉ψ ∈ T , by I.H.
we get (T, p̂re(e) ∩ ̂pre(e′′)) |=Mc ψ. Since ̂pre(e′′) = U was taken arbitrarily
in Oc, by the semantics, we obtain (T, p̂re(e)) |=Mc �ψ.

(⇐) Suppose (T, p̂re(e)) |=Mc �ψ. By the semantics of � and the definition
of Oc, we have that for all e′ ∈ ΠO

Ob, if T ∈ p̂re(e) ∩ p̂re(e′) then (T, p̂re(e) ∩
p̂re(e′)) |=Mc ψ. Let e′′ ∈ ΠO

Ob such that T ∈ ̂pre(e′′), therefore T ∈ p̂re(e) ∩
̂pre(e′′). Since p̂re(e) ∩ ̂pre(e′′) ∈ Oc, we obtain, by the assumption, that

(T, p̂re(e) ∩ ̂pre(e′′)) |=Mc ψ. Thus, by I.H., we have pre(e; e′′) ∈ T and
〈e; e′′〉ψ ∈ T . By Propositions 3.3 and 3.6, [e′′; e]ψ ∈ T . By (Re) we have
[e′′][e]ψ ∈ T . Since e′′ was taken arbitrarily, by Lemma 12, we have �[e]ψ ∈ T .
Then, by (R�), we obtain [e]�ψ ∈ T . Since pre(e) ∈ T and [e]�ψ ∈ T , we
have 〈e〉�ψ ∈ T by Proposition 3.3.

Theorem 4. L is complete with respect to the class of plausibility learning
models.

Proof. Let ϕ be an L-consistent formula, i.e., it is an Oϕ-theory. Then, by Lemma
8, it can be extended to some maximal O-witnessed theory T . Then, we have
〈!�〉ϕ ∈ T i.e., T ∈ 〈̂!�〉ϕ (by Proposition 3.7). Then, by Truth Lemma (Lemma
13), we obtain that (T, ̂pre(!�)) |=Mc ϕ, where M c = (Xc,Oc,≤c, ‖ · ‖c) is the
canonical model for T . This proves completeness.

5 Conclusions and Open Questions

In this paper, we enriched the dynamic logic for learning theory (DLLT) from
[3] with additional structure in order to model learners whose conjectures satisfy
standard rationality constraints (namely, the AGM postulates for belief revision).
The standard model for such learners is provided by “AGM conditioning”: learn-
ers are endowed with a total preorder, describing their prior plausibility relation,
and at each step they believe the set of most plausible states compatible with all
the previous observations. To axiomatize the DLLT logic of AGM conditioning,
we were lead to assume that the learner has access to a wider range of potential
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information than in [3]: not only sequences of full observations, but also partial
observations (finite unions of observations). Semantically, this required a techni-
cal shift from intersection spaces to lattice spaces, while on the syntactic side we
needed to extended our dynamic modalities from simple observations to more
complex PDL-like “observational events”. This leads to a rich evidential setting,
with a more interesting logic and an elegant axiomatization.

Note that our move to partial observations and observational events still
requires less information than the classical axiomatizations of AGM conditioning
in the literature (which assumed full Boolean closure of the set of “conditions”,
i.e. the observable sets formed a Boolean algebra). Still, while this move to par-
tial observations seems general enough, as well as natural and desirable in itself,
it does require a much wider access to information than the setting in [3]. So it
is fair to ask the question: is there a way to axiomatize AGM learners without
requiring them to access partial information? In other words, is AGM condition-
ing over intersection spaces axiomatizable in a simple, elegant way (similar to
our axiomatization)? This problem is still open, though we conjecture that the
answer is no. If we are right, this would be an argument for a deeper philosoph-
ical point: it may be that AGM postulates are best suited to “rich” evidential
settings, in which both total and partial observations are available.
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