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Building on previous work [4,5] that bridged Formal Learning Theory and Dynamic 
Epistemic Logic in a topological setting, we introduce a Dynamic Logic for Learning 
Theory (DLLT), extending Subset Space Logics [18,10] with dynamic observation modalities
[o]ϕ, as well as with a learning operator L(

#»o ), which encodes the learner’s conjecture
after observing a finite sequence of data #»o . We completely axiomatise DLLT, study its 
expressivity and use it to characterise various notions of knowledge, belief, and learning.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The process of learning consists of incorporating new information into one’s prior information state. Dynamic epistemic 
logic (DEL) studies such one-step information changes from a logical perspective [6,21,25], but the general concept of learn-
ing encompasses not only one-step revisions, but also their long-term horizon. In the long run, learning should lead to 
knowledge—an epistemic state of a particular value. Examples include language learning (inferring the underlying grammar 
from examples of correct sentences), and scientific inquiry (inferring a theory of a phenomenon on the basis of obser-
vations). Our goal in this paper is to provide a simple logic for reasoning about this process of inductive learning from 
successful observations. Understanding inductive inference is of course an infamously difficult open problem, and there 
are many different approaches in the literature, from probabilistic and statistical formalisms based on Bayesian reasoning, 
Popper-style measures of corroboration, through default and non-monotonic logics, Carnap-style ‘inductive logic’, to AGM-
style rational belief revision and theory change. However, in this paper we do not try to solve the problem of induction, but 
only to reason about a (rational) inductive learner. For this, we adopt the more flexible and open-ended approach of Formal 
Learning Theory (FLT). While most other approaches adopt a normative stance, aimed at prescribing ‘the’ correct algorithm 
for forming and changing rational beliefs from observations (e.g., Bayesian conditioning), or at least at prescribing some 
general rational constraints that any such algorithm should obey (e.g., the AGM postulates for belief revision), FLT gives the 
learner a high degree of freedom, allowing the choice of any learning method that produces conjectures based on the data
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Fig. 1. Example 1; P := ‘the car is speeding’, Q := ‘the reading of the radar is 51 km/h’.

(no matter how ‘crazy’ or unjustified are these conjectures, or how erratic is the process of belief change). In FLT the only 
criterion of success is... success: tracking the truth in the limit. In other words, the only thing that matters is whether or 
not the iterated belief revision process will eventually stabilise on a conjecture which matches the truth (about some given 
issue). We are of course not interested in cases of convergence to the truth ‘by accident’, but in determining whether or not 
a given learner is guaranteed to eventually track the truth; hence, the focus is on ‘The Logic of Reliable Inquiry’.1

We propose a formalism that combines ideas from: Subset Space Logics, as introduced by Moss and Parikh [18], in-
vestigated further by Dabrowski et al. [10] and already merged with the DEL tradition in prior work [27,2,23,22,8,7]; the 
topological approach to FLT in [17,5]; and the general agenda of bridging DEL and FLT in [14]. Semantically, we take intersec-
tion spaces (a type of subset spaces that are closed under finite non-empty intersections), with points interpreted as possible 
worlds and neighbourhoods interpreted as observations (or information states) (see, e.g., [19] for a survey on subset space 
logics). We enhance these structures with a learner L, mapping every information state to a conjecture, representing the 
learner’s strongest belief in this state. As in Subset Space Logics, our language features an S5-type ‘knowledge-with-certainty’ 
modality, capturing the learner’s hard information, as well as the so-called ‘effort’ modality, which we interpret as ‘stable 
truth’ (i.e., truth immune to further observations). We add to this observation modalities [o]ϕ , analogous to the dynamic 
modalities in Public Announcement Logic (PAL), as well as a learning operator L(

#»o ), which encodes the learner’s conjecture 
after having observed a finite sequence of pieces of evidence #»o . This can be used to give a natural definition of belief : a 
learner believes P iff she knows that P is entailed by her current conjecture.

We present a sound and complete axiomatisation of DLLT with respect to our learning models. The completeness uses a 
neighbourhood version of the standard canonical model construction. We use this logic to characterise various learnability 
notions. In particular, we are able to model inductive learning as coming to stably believe2 a true fact after observing an incoming 
sequence of true data. The possibility of such learning corresponds to a key concept in FLT, namely identifiability in the limit first 
introduced and studied by Gold in [16]. Finally, we discuss the expressivity of DLLT, showing that the dynamic observation 
modalities are in principle eliminable via reduction laws.

This work can be seen as an extension of [3]: while the main results in [3] and the current paper coincide, the proofs—
which were omitted in the shorter version—are presented in this version in full detail.

1.1. Effort modality and knowledge

In [26], Vickers reconstructed general topology as a logic of observation, in which the points of the space represent 
possible states of the world, while basic open neighbourhoods of a point are interpreted as information states produced by 
accumulating finitely many observations. Moss and Parikh [18] gave an account of learning in terms of observational effort. 
Making the epistemic effort to obtain more information about a possible world has a natural topological interpretation—
it can be seen as shrinking the open neighbourhood (representing the current information state), thus providing a more 
accurate approximation of the actual state of the world [18,10,12,13,19]. A similar line was proposed in Formal Epistemol-
ogy [17,5], where it was combined with more sophisticated notions of learning borrowed from FLT. The following example 
relates the effort modality with knowledge.

Example 1 ([19]). Let us consider some measurement, say of a vehicle’s velocity. Suppose a policeman uses radar to determine 
whether a car is speeding in a 50-mile speed-limit zone. The property speeding can be identified with the interval (50, ∞). 
Suppose the radar shows 51 mph, but the radar’s accuracy is ±2 mph. The intuitive meaning of a speed measurement of 
51 ± 2 is that the car’s true speed v is in the open interval (49, 53). According to [19], ‘anything which we know about v
must hold not only of v itself, but also of any v ′ in the same interval’ [19, p. 300]. Since the interval (49, 53) is not fully 
included in the ‘speeding’ interval (50, ∞), the policeman does not know that the car is speeding. But suppose that he does 
another measurement, using a more accurate radar with an accuracy of ±1 mph, which shows 51.5 mph. Then he will come 
to know that the car is speeding: the open interval (50.5, 52.5) is included in (50, ∞) (see Fig. 1).

1 ‘The Logic of Reliable Inquiry’ is the title of a classic text in FLT-based epistemology [17].
2 By “stably believing (a proposition)” we here mean that the learner believes that proposition and her belief in that proposition cannot be defeated by 

further truthful observations.
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1.2. Infallible knowledge versus inductive knowledge

Let us now extend this picture with learning as understood in FLT. We start by setting the stage—briefly introducing 
learning frames, the underlying structures of learning. We will return to it, with complete definitions, later in the paper. Our 
DLLT is interpreted over such frames and, using them, we will be able to explain and model various epistemic notions.

First, consider a pair (X, O), where X is a non-empty set of possible worlds; O ⊆P(X) is a non-empty set of information 
states (or ‘observables’, or ‘evidence’). We take O to be closed under finite intersections, i.e., for any O 1, O 2 ∈ O , we have 
O 1 ∩ O 2 ∈ O . The resulting (X, O) is called an intersection space. A learning frame is a triplet (X, O, L), where L : O →
P(X) is a learner, i.e., a map associating to every O  ∈ O some ‘conjecture’ L(O ) ⊆ X (see Definition 3 for the full description 
of L and how it can be extended to range over finite sequences of observations).

Let us now reconstruct Example 1 as a learning frame. We take X = (0, ∞) as the set of possible worlds (representing 
possible velocities of the car, where we assume the car is known to be moving); O = {(a, b) ∈Q ×Q : 0 < a < b < ∞} is the 
set of all open intervals with positive rational endpoints (representing possible measurement results by arbitrarily accurate 
radars). The pair (X, O) is an intersection frame, and the topology generated by O is the standard topology on real numbers 
(restricted to X).

Certain (Infallible) Knowledge. In an information state U ∈ O , the learner is said to infallibly know a proposition P ⊆ X
conditional on observation O if her conditional information state entails P , i.e., if U ∩ O  ⊆ P . The learner (unconditionally) 
knows P if U ⊆ P . The possibility of achieving certain knowledge about a proposition P ⊆ X in a possible world x ∈ X
by a learner L if given enough evidence (true at x) is called learnability with certainty. In other worlds P is learnable 
with certainty if there exists some observable property O  ∈ O (with x ∈ O ) such that the learner infallibly knows P in 
information state O . Learnability can be used to define verifiability and falsifiability. A proposition P ⊆ X is verifiable with 
certainty (by L) if it is learnable with certainty by L whenever it is true; i.e., if P is learnable with certainty at all worlds 
x ∈ P . Dually, a proposition P ⊆ X is falsifiable with certainty (by L) if its negation X − P is learnable with certainty by L
whenever P is false; i.e., if X − P is learnable with certainty at all worlds x /∈ P . Finally, a proposition P ⊆ X is decidable 
with certainty (by L) if it is both verifiable and falsifiable with certainty (by L).

In the context of Example 1, let us consider the certain knowledge of the policeman. In the information state 
U = (49, 53), the learner/policeman does not know the proposition P = (50, ∞), so he cannot be certain that the car is 
speeding. However, the speeding property P is verifiable with certainty: whenever P is actually true, he could perform a 
more accurate speed measurement, by which he can get to an information state in which P is infallibly known. In our 
example, the policeman refined his measurement getting to the information state O  = (50.5, 52.5), thus coming to know 
P . In contrast, the property X − P = (0, 50] (‘not speeding’) is not verifiable with certainty: if by some kind of miraculous 
coincidence, the speed of the car is exactly 50 mph, then the car is not speeding, but the policeman will never know that 
for certain (since every speed measurement, of any degree of accuracy, will be consistent both with P and with X − P ). 
Nevertheless, X − P is always falsifiable with certainty: if false (i.e., if the speed is in P , so that car is speeding), then as we 
saw the policeman will come to infallibly know that (by some more accurate measurement).

Inductive (Defeasible) Knowledge. Before we proceed to Inductive Knowledge let us consider epistemic states weaker than 
certainty, namely belief. In an information state U ∈ O , the learner L is said to:

• un-conditionally believe P ⊆ X if L(U ) ⊆ P .3

• believe a proposition P ⊆ X conditional on observation O if L(U ∩ O ) ⊆ P ;
• have undefeated belief in a proposition P ⊆ X at world x if she believes P in every information state O  ∈ O that is true at 

x (i.e., x ∈ O ) and is at least as strong as U (i.e., O  ⊆ U ). This means that, once she reaches information state U , no 
further evidence can defeat the learner’s belief in P .

One of the central problems in epistemology is to define a realistic notion of knowledge that fits the needs of empirical 
sciences. It should allow fallibility, while requiring higher standards of evidence and robustness than simple belief. One 
of the main contenders is the so-called Defeasibility Theory of Knowledge, which defines defeasible (fallible) knowledge as 
true undefeated belief. In the learning-theoretic context, this gives us an evidence-based notion of ‘inductive knowledge’: 
in an information state U , P is inductively known at world x if it is true at x (i.e., x ∈ P ) and it is undefeated belief (in 
the sense defined above). This is the kind of knowledge that can be gained by empirical (incomplete) induction, based on 
experimental evidence.

As in the case of learnability with certainty, achieving inductive knowledge is defined as learnability. A proposition P ⊆ X
is inductively learnable (or ‘learnable in the limit’) by the learner L at world x if L will come to inductively know P if given 
enough evidence (true at x); i.e., if there exists some observable property O  ∈ O of world x (i.e., with x ∈ O ) such that 
L inductively knows P in information state O . Inductive verifiability and falsifiability are defined in terms of learnability. 
A proposition P ⊆ X is inductively verifiable by the learner L, if it is inductively learnable whenever it is true; i.e., if P is 
inductively learnable at all worlds x ∈ P . Dually, a proposition P ⊆ X is inductively falsifiable by the learner L, if its negation 

3 In the tautological information state X , the learner believes P iff L(X) ⊆ P .
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X − P is inductively learnable whenever P is false; i.e., if X − P is inductively learnable at all worlds x /∈ P . A proposition 
P ⊆ X is inductively decidable by L if it is both inductively verifiable and inductively falsifiable by L.

In the context of Example 1, let us now turn to inductive knowledge of the policeman. Both speeding (P ) and non-
speeding (X − P ) are inductively decidable (and thus both inductively verifiable and inductively falsifiable): for instance, 
they are inductively decidable by the learner L, defined by putting

L((a,b)) =
{

(a,b), if (a,b) ⊆ P

(a,b) ∩ (X − P ), otherwise (i.e., (a,b) ∩ (X − P ) 	= ∅)

Intuitively, such a learner is like a fair ‘judge’ who assumes innocence until proven guilty: she conjectures that the car is 
not speeding as along as her measurement is consistent with (X − P ). The dual learner, the ‘suspicious cop’,

L((a,b)) =
{

(a,b) ∩ P , if (a,b) ∩ P 	= ∅
(a,b), otherwise (i.e., if (a,b) ⊆ X − P ).

on the other hand can not inductively decide the speeding issue. Intuitively, this learner believes the car to be speeding
whenever the available evidence cannot settle the issue, and keeps this conjecture until it is disproven by some more 
accurate measurement. In some cases, this policeman will be right ‘in the limit’: after doing enough accurate measurements, 
he will eventually settle on the correct belief (about speeding or not); though of course (in case the car’s speed is exactly 50
mph) he will never be certain of this. This is because any measurement (a, b) that contains 50 will intersect P , therefore 
the policeman will believe that the car is speeding when in reality it is not. An example of a property which is inductively 
decidable but neither verifiable with certainty nor falsifiable with certainty is the proposition S = [50, 51). It is not verifiable with 
certainty, since if the car’s speed is exactly 50 mph, then S is true but the learner will never be certain of this; and it is not 
falsifiable with certainty, since if the car’s speed is exactly 51 mph, then S is false but the learner will never be certain of 
that. Nevertheless, S is inductively decidable, e.g., by the learner defined by:

L((a,b)) =

⎧⎪⎨⎪⎩
(a,b) ∩ S, if a < 50 < b

(a,b), if (a,b) ⊆ S or (a,b) ∩ S = ∅
[51,b), if 50 < a < 51 < b.

Dependence on the Learner. It is easy to see that learnability (verifiability, falsifiability, decidability) with certainty are 
learner-independent notions (since they are directed towards achieving infallible knowledge), so they do not depend on L, 
but only on the underlying intersection model. In contrast, the corresponding inductive notions above are learner-dependent. As 
a consequence, the interesting concepts in Learning Theory are obtained from them by quantifying existentially over learners: a 
proposition P is inductively learnable (verifiable, falsifiable, decidable) if there exists some learner L such that P is respectively 
inductively learnable (verifiable, falsifiable, decidable) by L. This property of a learning frame is called generic inductive 
learnability.

Topological Characterisations. As it is well-known in learning theory and formal epistemology [26,17], the above notions 
are topological in nature: P is learnable with certainty at world x iff x is in the interior of P with respect to the topology 
generated by O ; P is verifiable with certainty iff it is open in the same topology; P is falsifiable with certainty iff it is 
closed in this topology; finally, P is decidable with certainty iff it is clopen. The corresponding inductive notions can be 
easily characterised (see [17]), in the case when the topology generated by O satisfies the separation condition4 T 1: in this 
case, P is inductively verifiable iff it is �2 in the Borel hierarchy for this topology (i.e., a countable union of closed sets); 
in the same conditions, P is inductively falsifiable iff it is �2 (a countable intersection of open sets), and it is inductively 
decidable iff it is �2 (i.e., �2 and �2). More recently, in [5], these characterisations were generalised to arbitrary topologies 
satisfying the weaker separation condition5 T 0; in particular, P is inductively verifiable iff it is a countable union of locally 
closed sets.6

2. Dynamic logic for learning theory

In this section we introduce our ‘dynamic logic for learning theory’ DLLT. As already mentioned, this is obtained by 
adding two ingredients to the language of Subset Space Logics: dynamic observation modalities [o]ϕ and a learning operator
L(

#»o ).

4 This topology is T 1 iff for every two distinct points x 	= y there exist an observation O  ∈ O with x ∈ O and y /∈ O .
5 The observational topology is T 0 iff points can be distinguished by observations; i.e., if x and y satisfy the same observable properties in O , then x = y. 

Obviously, T 0 is a minimally necessary condition for any kind of learnability of the real world from observations.
6 A set is locally closed if it is the intersection of a closed and an open set.
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2.1. Syntax and semantics of DLLT

Let Prop = {p, q, . . .} be a countable set of propositional variables, denoting arbitrary ‘ontic’ (i.e., non-epistemic) facts 
that might hold in a world (even if they might never be observed), and let PropO = {o, u, v, . . .} be a countable set of 
observational variables, denoting ‘observable facts’ (which, if true, will eventually be observed).

Definition 2. The syntax of our language L is defined by the grammar:

ϕ ::= p | o | L(
#»o ) | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | �ϕ | [o]ϕ

where p ∈ Prop and o ∈ PropO , and #»o = (o1, . . . , on) ∈ Prop∗
O is a finite sequence of observational variables (in particular, 

the empty sequence is denoted by λ). We employ the usual abbreviations for propositional connectives �, ⊥, ∨, →, ↔ and 
for the dual modalities 〈K 〉, �, 〈o〉. We will follow the usual rules for the elimination of the parentheses.

The informal meaning of our formulas is as follows. Propositional variables denote ontic facts (i.e., factual, non-epistemic 
features of a world), while observational variables o denote observable facts (i.e., facts that, if true, will eventually be ob-
served). We read Kϕ as ‘the learner knows ϕ (with absolute certainty)’. �ϕ is the so-called ‘effort modality’ from Subset 
Space Logic; we read �ϕ as ‘ϕ is stably true’. Indeed, �ϕ holds iff ϕ is true and will stay true no matter what new (true) 
evidence is observed. The operator [o]ϕ is similar to the operator [ψ]ϕ in Public Announcement Logic, but it is restricted 
to the cases when ψ is a particular kind of atomic formula, namely an observational variable o ∈ PropO . So we read [o]ϕ
as ‘after o is observed, ϕ will hold’. Finally, L(

#»o ) denotes the learner’s conjecture given observations #»o ; i.e., her strongest 
belief (or the set of worlds considered to be most plausible) after observing #»o .

Definition 3 (Intersection frame/model and learning frame/model). An intersection frame [18,10] is a pair (X, O), where: X is 
a non-empty set of possible worlds (or ‘ontic states’); O ⊆ P(X) is a non-empty set of subsets, called information states (or 
‘observables’, or ‘evidence’), which is assumed to be closed under finite intersections: if F ⊆ O is finite then 

⋂
F ∈ O. An 

intersection model (X, O, ‖ · ‖) is an intersection frame (X, O) together with a valuation map ‖ · ‖ : Prop ∪ PropO → P(X), 
that maps propositional variables p into arbitrary sets ‖p‖ ⊆ X and observational variables o into observable properties 
‖o‖ ∈ O .

A learning frame is a triplet (X, O, L), where (X, O) is an intersection frame and L : O → P(X) is a learner, i.e., a map 
associating to every information state O  ∈ O some ‘conjecture’ L(O ) ⊆ X , and satisfying two properties:

1. L(O ) ⊆ O (conjectures fit the evidence), and
2. if O  	= ∅ then L(O ) 	= ∅ (consistency of conjectures based on consistent evidence).

We can extend L to range over strings of information states #»
O = (O 1, . . . , O n) ∈ O∗ in a natural way, by putting L(

#»
O ) :=

L(
⋂ #»

O ), where 
⋂ #»

O := O 1 ∩ . . . ∩ O n . A learning model M = (X, O, L, ‖ · ‖) is a learning frame (X, O, L) together with a 
valuation map ‖ · ‖ : Prop ∪ PropO → P(X) as above; equivalently, it consists of an intersection model (X, O, ‖ · ‖) together 
with a learner L, as defined above.

Intuitively, the states in X represent possible worlds. The tautological evidence X = ⋂∅ represents the state of ‘no infor-
mation’ (before anything is observed), while the contradictory evidence ∅ represents inconsistent information. Finally, L(O )

represents the learner’s conjecture after observing O , while L(O 1, . . . , O n) = L(O 1 ∩ . . . ∩ O n) represents the conjecture 
after observing a finite sequence of observations O 1, . . . , O n . The fact that O is closed under finite intersections is important 
here for identifying any finite sequence O 1, . . . , O n with a single observation O  = O 1 ∩ . . . ∩ O n ∈ O .

Epistemic Scenarios. As in Subset Space Semantics, the formulas of our logic are not interpreted at possible worlds, but 
at so-called epistemic scenarios, i.e., pairs (x, U ) of an ontic state x ∈ X and an information state U ∈ O such that x ∈ U . 
Therefore, only the truthful observations about the actual state play a role in the evaluation of formulas. We denote by 
E S(M) := {(x, U ) | x ∈ U ∈ O} the set of all epistemic scenarios of a learning model M.

Definition 4 (Semantics). Given a learning model M = (X, O, L, ‖ · ‖) and an epistemic scenario (x, U ), the semantics of 
the language L is given by a binary relation (x, U ) |=M ϕ between epistemic scenario and formulas, called the satisfaction 
relation, as well as a truth set (interpretation) [ [ϕ] ]U

M := {x ∈ U | (x, U ) |=M ϕ}, for all formulas ϕ . We typically omit the 
subscript, simply writing (x, U ) |= ϕ and [ [ϕ] ]U , whenever the model M is understood. The satisfaction relation is defined 
by the following recursive clauses:
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(x, U ) |= p iff x ∈ ‖p‖
(x, U ) |= o iff x ∈ ‖o‖
(x, U ) |= L(o1, . . . ,on) iff x ∈L(U ,‖o1‖, . . . ,‖on‖)
(x, U ) |= ¬ϕ iff (x, U ) 	|= ϕ
(x, U ) |= ϕ ∧ ψ iff (x, U ) |= ϕ and (x, U ) |= ψ

(x, U ) |= Kϕ iff (∀y ∈ U ) ((y, U ) |= ϕ)

(x, U ) |= �ϕ iff (∀O ∈ O) (x ∈ O ⊆ U implies (x, O ) |= ϕ)

i.e. (∀O ∈ O) (x ∈ O implies (x, U ∩ O ) |= ϕ)

(x, U ) |= [o]ϕ iff x ∈ ‖o‖ implies (x, U ∩ ‖o‖) |= ϕ

where p ∈ Prop, o, o1, . . . , on ∈ PropO , and, as discussed before, L(O 1, . . . , O n) := L(O 1 ∩ . . . ∩ O n). We say that a formula 
ϕ is valid in a learning model M, and write M |= ϕ , if (x, U ) |=M ϕ for all epistemic scenarios (x, U ) ∈ E S(M). We say ϕ
is validable in an intersection model (X, O, ‖ · ‖), and write (X, O, ‖ · ‖) |= ϕ , if there exists some learner L : O → P(X) such 
that ϕ is valid in the learning model (X, O, L, ‖ · ‖). We say ϕ is valid, and write |= ϕ , if it is valid in all learning models.

Abbreviations: For any string #»o = (o1, . . . , on) ∈ Prop∗
O of observational variables, and any formula ϕ we set:∧

#»o := o1 ∧ . . . ∧ on (with the convention that
∧

λ := �)

#»o ⇔ #»u := K
(
(
∧

#»o ) ↔ (
∧

#»u )
)

(extensional equivalence of observations)

[ #»o ]ϕ := [o1] . . . [on]ϕ (with the convention that [λ]ϕ := ϕ); similarly for 〈 #»o 〉)
B

#»o ϕ := K (L(
#»o ) → ϕ)

Bϕ := Bλϕ,

where λ is the empty string. We read Bϕ as the ‘observer believes ϕ ’ (given no observations), and B
#»o ϕ as ‘the observer 

believes ϕ conditional on evidence #»o ’.

Lemma 5. Given a learning model M = (X, O, L, ‖ · ‖) and (x, U ) ∈ E S(M),

(x, U ) |= [ #»o ]ϕ iff x ∈ [[
∧

#»o ]] implies (x, U ∩ [[
∧

#»o ]]) |= ϕ.

Proof. Let M = (X, O, L, ‖ · ‖), (x, U ) ∈ E S(M) and #»o = (o1, . . . , on).
Observe that (*) [ [∧ #»o ] ] = ⋂

1≤i≤n ‖oi‖. Therefore, we obtain the following:

(x, U ) |= [ #»o ]ϕ iff (x, U ) |= [o1] . . . [on]ϕ (by the Definition of [ #»o ])
iff x ∈ ‖o1‖ implies (x, U ∩ ‖o1‖) |= [o2] . . . [on]ϕ (by the semantics of [o])
iff x ∈ ‖o1‖ implies (x ∈ ‖o2‖ implies (x, U ∩ ‖o1‖ ∩ ‖o2‖) |= [o3] . . . [on]ϕ)

(by the semantics of [o])
iff x ∈ ‖o1‖ ∩ ‖o2‖ implies (x, U ∩ ‖o1‖ ∩ ‖o2‖) |= [o3] . . . [on]ϕ
iff x ∈ [[

∧
#»o ]] implies (x, U ∩ [[

∧
#»o ]]) |= ϕ

(by repetitive applications of the same steps and by (*))

�
2.2. Axiomatisation and proof system

We will now provide the formal definition of our proposed system L of the Dynamic Logic for Learning Theory (DLLT) 
by listing the axioms and derivation rules, see Table 1 below. Given a formula ϕ ∈ L, we denote by Pϕ and Oϕ the set of 
all propositional variables and observational variables respectively occurring in ϕ (we will use the same notation for the 
necessity and possibility forms defined below).

The S5 axioms for epistemic modality K expresses that our notion of certain, infallible knowledge is factive and (posi-
tively and negatively) introspective. Given that observational variables behave like the propositional variables, the reduction 
axioms are as in Public Announcement Logic [20]. The learning axioms (CC), (EC) and (SP) express pre-conditions in formal 
learning theory on observations, namely that they are truthful observations about the world (CC); that the history of obser-
vations is irrelevant for the learner, what is relevant is the extensional evidence provided by observations (EC); and that 
conjectures fit what is observed (SP). Since the effort modality � quantifies over possible observations, we could think of 
the Effort axiom (�-Ax) and the Effort rule (�-Rule) as elimination and introduction rules for �. The former one expresses 
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Table 1
The axiom schemas for the Dynamic Logic of Learning Theory, L.

Basic axioms:
(P) all instantiations of propositional tautologies
(KK ) K (ϕ → ψ) → (Kϕ → Kψ)

(TK ) Kϕ → ϕ
(4K ) Kϕ → K Kϕ
(5K ) ¬Kϕ → K¬Kϕ
(K[o]) [o](ψ → χ) → ([o]ψ → [o]χ)

Basic rules:
(MP) From ϕ and ϕ → ψ , infer ψ

(NecK ) From ϕ, infer Kϕ
(Nec[o]) From ϕ, infer [o]ϕ

Learning axioms:
(CC) (

∧
#»o ) → 〈K 〉L(

#»o ) Consistency of Conjectures
(EC) (

#»o ⇔ #»u ) → (L(
#»o ) ↔ L(

#»u )) Extensionality of Conjectures
(SP) L(

#»o ) → ∧
#»o Success Postulate

Reduction axioms:
(Rp) [o]p ↔ (o → p)

(Ru ) [o]u ↔ (o → u)

(RL ) [o]L(
#»u ) ↔ (o → L(o,

#»u ))

(R¬) [o]¬ψ ↔ (o → ¬[o]ψ)

(RK ) [o]Kψ ↔ (o → K [o]ψ)

(R�) [o]�ψ ↔ �[o]ψ
Effort axiom and rule:

(�-Ax) �ϕ → [#»o ]ϕ, for #»o ∈ Prop∗
O

(�-Rule) From ψ → [o]ϕ, infer ψ → �ϕ, where o /∈ O ψ ∪ Oϕ

the fact that if a property is stably true then it holds after any observations. Finally, the latter states that if a property holds 
after any arbitrary observation, it is stably true.

So each of our axioms is easily readable and has a transparent and intuitive interpretation, in contrast to other axiomati-
sations of (the less expressive) Subset Space Logic over intersection spaces (i.e., the L-free analogues of our models). Having 
such a simple axiomatisation is one of the advantages brought by the addition of dynamic observation modalities. See more 
discussion of this issue in Section 5.

Before moving on to further results, we briefly recall the following usual definitions from basic modal logic (see, e.g., 
[9]). An L-derivation/proof is a finite sequence of formulas such that each element of the sequence is either an axiom of L, 
or obtained from the previous formulas in the sequence by one of the inference rules. We call a formula ϕ ∈ L provable in L, 
or, equivalently, a theorem of L, if it is the last formula of some L-proof. In this case, we write � ϕ (or, equivalently, ϕ ∈ L). 
For any set of formulas 	 ⊆ L and any formula ϕ ∈ L, we write 	 � ϕ if there exist finitely many formulas ϕ1, . . . , ϕn ∈ 	

such that � ϕ1 ∧ · · · ∧ϕn → ϕ . We say that 	 is L-consistent if 	 � ⊥, and L-inconsistent otherwise. A formula ϕ is consistent 
with 	 if 	 ∪ {ϕ} is L-consistent (or, equivalently, if 	 � ¬ϕ). We drop mention of L when it is contextually clear.

We now give derivable reduction laws for conjunction (R∧) and strings of observational variables in Prop∗
O .

Proposition 6 (Reduction laws for strings of observational variables). The following reduction laws are provable in L for all ϕ ∈ L:

1. [u](ϕ ∧ ψ) ↔ ([u]ϕ ∧ [u]ψ) (denoted by R∧)
2. [u](ϕ → ψ) ↔ ([u]ϕ → [u]ψ)

3. 〈o〉ψ ↔ (o ∧ [o]ψ)

4. [ #»u ]p ↔ (
∧

#»u → p)

5. [ #»u ]o ↔ (
∧

#»u → o)

6. [ #»u ]L(
#»o ) ↔ (

∧
#»u → L(

#»u , #»o ))

7. [ #»u ]¬ϕ ↔ (
∧

#»u → ¬[ #»u ]ϕ)

8. [ #»u ]Kϕ ↔ (
∧

#»u → K [ #»u ]ϕ)

9. [ #»u ]�ϕ ↔ �[ #»u ]ϕ
10. [ #»u ](ϕ ∧ ψ) ↔ ([ #»u ]ϕ ∧ [ #»u ]ψ)

11. [ #»u ](ϕ → ψ) ↔ ([ #»u ]ϕ → [ #»u ]ψ)

12. 〈 #»o 〉ψ ↔ (∧
#»o ∧ [ #»o ]ψ)

Proof. (1) follows from (K[o]) and (Nec[o]) in a standard way. (2) follows from (K[o]), (R¬), (R∧) similarly to the proof of [25, 
Exercise 4.50, p. 252]. (3) follows from the definition 〈o〉ψ := ¬[o]¬ψ and (R¬).

The proofs of (4)-(9) follow by induction on the length of #»u . For the base case n = 1, we simply use the corresponding 
reduction axiom for one observational variable. We provide the proof of the inductive step only for [ #»u ]p ↔ (

∧
#»u → p). For 

the other equivalences the inductive step follows exactly with the same procedure by using the corresponding reduction 
axiom.

� [ #»u ]p ↔ (
∧

#»u → p)

Suppose that #»u := un+1, un, . . . , u2, u1 and consider the following induction hypothesis, (IH) : for every #»u of length less 
than n + 1, it follows that � [ #»u ]p ↔ (

∧
#»u → p).

We will prove that the conclusion holds for an arbitrary #»u of length n + 1. Let #»u = un+1, un, . . . , u1 and we denote 
#»v := un, . . . , u1.



8 A. Baltag et al. / Journal of Logical and Algebraic Methods in Programming 109 (2019) 100485
From left to right:

1. �[ #»u ]p → [un+1][ #»v ]p (by the definition of [ #»u ])
2. �[un+1][ #»v ]p → [un+1](

∧
#»v → p) (IH on #»v )

3. �[un+1,
#»v ]p → ([un+1]

∧
#»v → [un+1]p) (K[o])

4. �([un+1]
∧

#»v → [un+1]p) → ([un+1]
∧

#»v → (un+1 → p)) (Rp , P)

5. �([un+1]
∧

#»v → (un+1 → p)) → (([un+1]
∧

#»v ∧ un+1) → p) (P)

6. �(([un+1]
∧

#»v ∧ un+1) → p) → ((
∧

#»v ∧ un+1) → p) (R∧ and Ru)

7. �[ #»u ]p → (
∧

#»u → p) (1 to 6)

From right to left:

�(
∧

#»u → p) → (un+1 ∧
∧

#»v → p) (P)

�(un+1 ∧
∧

#»v → p) → (un+1 → (
∧

#»v → p)) (P)

�(un+1 → (
∧

#»v → p)) → (un+1 → [ #»v ]p) (IH on #»v )

�[un+1]((un+1 → (
∧

#»v → p)) → (un+1 → [ #»v ]p)) (Nec[o])

�[un+1](un+1 → (
∧

#»v → p)) → [un+1](un+1 → [ #»v ]p) (K[o])

�([un+1]un+1 → [un+1](
∧

#»v → p)) → ([un+1]un+1 → [un+1][ #»v ]p) (Proposition 6.2)

�(un+1 → un+1) → ([un+1]
∧

#»v → (un+1 → p)) → ((un+1 → un+1) → [un+1][ #»v ]p) (K[o], Ru and Rp)

�(((un+1 → un+1) ∧ ([un+1]
∧

#»v ) ∧ un+1) → p) → ((un+1 → un+1) → [un+1][ #»v ]p) (P)

�(([un+1]
∧

#»v ) ∧ un+1) → p) → [un+1][ #»v ]p (P)

�((
∧

#»v ∧ un+1) → p) → [un+1][ #»v ]p (R∧, Ru , and P)

�(
∧

#»u → p) → [ #»u ]p (P)

Similarly, the proofs of (10), (11), and (12) follow from (1), (2), and (1), respectively, and the definition of strings of 
observations for #»o and #»u . �

In our framework, belief (B) and conditional beliefs (B
#»o ϕ) are defined in terms of the operators K and L. The ax-

iomatic system L given in Table 1 over the language L can therefore derive the properties describing the type of belief 
and conditional belief modalities we intend to formalise in this paper. More precisely, as stated in Proposition 7, the sys-
tem L yields the standard belief system KD45 for B . More generally, if we replace the D axiom for a ‘weaker’ version 
D ′ := 〈K 〉(∧ #»o ) → ¬B

#»o ⊥ then we have a weak version of the system KD45, denoted by wKD45, for conditional beliefs 
B

#»o .

Proposition 7 (wKD45 axioms and rules for conditional belief). The standard axioms and rules of the doxastic logic KD45 are derivable 
for our belief operator B in the system L. More generally, the following axioms and rules of the weaker system wKD45 are derivable for 
our conditional belief operator B

#»o in the system L:

(NecB
#»o ) From ϕ infer B

#»o ϕ .
(KB

#»o ) B
#»o (ϕ → ψ) → (B

#»o ϕ → B
#»o ψ)

(D′
B

#»o ) 〈K 〉(∧ #»o ) → ¬B
#»o ⊥

(4B
#»o ) B

#»o ϕ → B
#»o (B

#»o ϕ)

(5B
#»o ) ¬B

#»o ϕ → B
#»o (¬B

#»o ϕ)

Proof. We prove (NecB
#»o ), (KB

#»o ), (D′
B

#»o ), and (4B
#»o ). The derivation of (5B

#»o ) follows similarly to the case for (4B
#»o ). Recall 

that B
#»o ϕ := K (L(

#»o ) → ϕ) and let #»o ∈ Prop∗ .
O
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(NecB
#»o ): From � ϕ infer � B

#»o ϕ .

1. �ϕ (assumption)

2. �L(
#»o ) → ϕ (1, classical propositional logic (P))

3. �K (L(
#»o ) → ϕ) (NecK )

(KB
#»o ): we need to show that

� K (L(
#»o ) → (ϕ → ψ)) → (K (L(

#»o ) → ϕ) → K (L(
#»o ) → ψ)).

1. �(L(
#»o ) → (ϕ → ψ)) → ((L(

#»o ) → ϕ) → (L(
#»o ) → ψ)) (P)

2. �K ((L(
#»o ) → (ϕ → ψ)) → ((L(

#»o ) → ϕ) → (L(
#»o ) → ψ))) (NecK )

3. �K (L(
#»o ) → (ϕ → ψ)) → K ((L(

#»o ) → ϕ) → (L(
#»o ) → ψ)) (KK )

4. �K (L(
#»o ) → (ϕ → ψ)) → (K (L(

#»o ) → ϕ) → K (L(
#»o ) → ψ)) (KK , 3, MP)

(D′
B

#»o ): we need to show that

� 〈K 〉(
∧

#»o ) → 〈K 〉L(
#»o ).

1. �(
∧

#»o ) → 〈K 〉L(
#»o ) (CC)

2. �K¬L(
#»o ) → ¬(

∧
#»o ) (contraposition of CC)

3. �K (K¬L(
#»o ) → ¬(

∧
#»o )) (NecK )

4. �K K¬L(
#»o ) → K¬(

∧
#»o ) (KK , 3, MP)

5. �K¬L(
#»o ) → K¬(

∧
#»o ) (4K )

6. �〈K 〉(
∧

#»o ) → 〈K 〉L(
#»o ) (contraposition of 5)

(4B
#»o ): we need to show that

� K (L(
#»o ) → ϕ) → K (L(

#»o ) → K (L(
#»o ) → ϕ)).

1. �K (L(
#»o ) → ϕ) → (L(

#»o ) → K (L(
#»o ) → ϕ)) (P)

2. �K K (L(
#»o ) → ϕ) → K (L(

#»o ) → K (L(
#»o ) → ϕ)) (NecK , KK , 1, MP)

3. �K (L(
#»o ) → ϕ) → K (L(

#»o ) → K (L(
#»o ) → ϕ)) (4K )

(5B
#»o ): we need to show that

� ¬K (L(
#»o ) → ϕ) → K (L(

#»o ) → ¬K (L(
#»o ) → ϕ)).

1. �¬K (L(
#»o ) → ϕ) → (L(

#»o ) → ¬K (L(
#»o ) → ϕ)) (P)

2. �K¬K (L(
#»o ) → ϕ) → K (L(

#»o ) → ¬K (L(
#»o ) → ϕ)) (NecK , KK , 1, MP)

3. �¬K (L(
#»o ) → ϕ) → K (L(

#»o ) → ¬K (L(
#»o ) → ϕ)) (5K )

The KD45 axioms and rules for B follows from the system wKD45 as a special case when #»o = λ. �
Proposition 8. The S4 axioms for the effort modality � are derivable in L.

Proof. The derivation of (Nec�) easily follows from (Nec[o]) and (�-Rule). The T-axiom for � follows from (�-Ax) for #»o = λ.
For the K-axiom:

1. �(�(ϕ → ψ) ∧ �ϕ) → ([o](ϕ → ψ) ∧ [o]ϕ) (�-Ax, for some o /∈ Oϕ ∪ O ψ )

2. �([o](ϕ → ψ) ∧ [o]ϕ) → [o]ψ (K[o])
3. �(�(ϕ → ψ) ∧ �ϕ) → [o]ψ (P, 1, 2)

4. �(�(ϕ → ψ) ∧ �ϕ) → �ψ (�-Rule, o /∈ Oϕ ∪ O ψ )
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For the 4-axiom:

1. ��ϕ → [o, u]ϕ (�-Ax, for some o, u /∈ Oϕ)

2. ��ϕ → [o][u]ϕ (by the definition of [o, u])
3. ��ϕ → �[u]ϕ (�-Rule)

4. ��ϕ → [u]�ϕ (R�)

5. ��ϕ → ��ϕ (�-Rule)

�
3. Soundness and completeness

In this section we prove soundness and completeness. Note that, although our logic is more expressive than Subset Space 
Logic (interpreted on intersection spaces), our completeness proof is much simpler, via a canonical construction: this is one of 
the advantages of having the (expressively redundant) dynamic observation modalities.

3.1. Soundness

We first prove soundness, for which we need the following lemma. Note that by the definition of the valuation || · || in 
a learning model M, we have that for all U ∈ O , U ∩ ||p|| = [ [p] ]U

M and U ∩ ||o|| = [ [o] ]U
M, for all p ∈ Prop and o ∈ PropO .

Lemma 9. Let M = (X, O, L, ‖ · ‖) and M′ = (X, O, L, ‖ · ‖′) be two learning models and ϕ ∈ L, such that M and M′ differ only 
in the valuation of some o /∈ Oϕ . Then, for all U ∈ O , we have [ [ϕ] ]U

M = [ [ϕ] ]U
M′ .

Proof. The proof follows by subformula induction on ϕ . Let M = (X, O, L, ‖ · ‖) and M′ = (X, O, L, ‖ · ‖′) be two learning 
models such that M and M′ differ only in the valuation of some o /∈ Oϕ , and let U ∈ O .

Base case, ϕ := q ∈ Prop, follows by the fact that q is not an observational variable, thus, for all q ∈ Pϕ we have that 
||q|| = ||q||′. Since M and M′ have the same set of opens O , for all U ∈ O we have that [ [q] ]U

M = U ∩ ||q|| = U ∩ ||q||′ =
[ [q] ]U

M′ .
Base case ϕ := o ∈ PropO . Since o ∈ Oϕ , we have that ||o|| = ||o||′. By the same reasoning as above, [ [o] ]U

M = [ [o] ]U
M′ .

Case ϕ := L(
#»o )

Let #»o = (o1, . . . , on) and note that O L(
#»o ) = O #»o = {o1, . . . , on}. Thus, ||oi|| = ||oi ||′ for every 1 ≤ i ≤ n. Therefore, since 

L and O are the same in both models we have that [ [L(
#»o )] ]U

M = L(U , ||o1||, . . . ||on||) = L(U , ||o1||′, . . . ||on||′) =
[ [L(

#»o )] ]U
M′ .

The cases for Booleans ϕ := ¬ψ and ϕ := ψ ∧ χ are straightforward.
Case ϕ := Kψ

Note that O Kψ = O ψ . Then, by induction hypothesis (IH), we have that [ [ψ] ]U
M = [ [ψ] ]U

M′ . We have two cases (1) if 
U = [ [ψ] ]U

M = [ [ψ] ]U
M′ , then [ [Kψ] ]U

M = [ [Kψ] ]U
M′ = U , and (2) if [ [ψ] ]U

M = [ [ψ] ]U
M′ 	= U , then [ [Kψ] ]U

M = [ [Kψ] ]U
M′ = ∅.

Case ϕ := [o]ψ
Note that O [o]ψ = {o} ∪ O ψ . Suppose x ∈ [ [[o]ψ] ]U

M and x ∈ ||o||′. Since o ∈ O [o]ψ , we have ||o|| = ||o||′. Therefore, from 
x ∈ [ [[o]ψ] ]U

M and x ∈ ||o||, we have (x, U ∩ ||o||) |=M ψ . Since U ∩ ||o|| = U ∩ ||o||′ and U ∩ ||o||′ ∈ O (as O is closed 
under finite intersections), by IH on ψ , we obtain (x, U ∩||o||′) |=M′ ψ . We then conclude that x ∈ [ [[o]ψ] ]U

M′ . The other 
direction follows similarly.
Case ϕ := �ψ

Suppose x ∈ [ [�ψ] ]U
M . This means, by the semantics of �, that for all V ∈ O with x ∈ V ⊆ U we have that (x, V ) |=M ψ , 

i.e., that x ∈ [ [ψ] ]V
M . Therefore, by IH and the fact that O�ψ = O ψ , we obtain x ∈ [ [ψ] ]V

M′ for all V ⊆ U with x ∈ V . 
Since M and M′ carry exactly the same collection O , we conclude that x ∈ [ [�ψ] ]U

M′ . The opposite direction follows 
similarly. �

Theorem 1. The system L in Table 1 is sound wrt the class of learning models.

Proof. The soundness proof follows standardly via validity check. We here only present the validity proofs for the Learning 
axioms (all), the Reduction axioms RL , R� , as well as the Effort-axiom (�-Ax) and Effort-rule (�-Rule). The other cases 
follow standardly.

Let M = (X, O, L, ‖ · ‖) be a learning model and (x, U ) ∈ E S(M).
Learning axioms:
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(CC): Suppose (x, U ) |= ∧
#»o with #»o = (o1, . . . , on). We want to show that (x, U ) |= 〈K 〉L(

#»o ), i.e., that there is a y ∈ U
s.t. (y, U ) |= L(

#»o ), i.e., by the semantic definition of L, that there is a y ∈ U s.t. y ∈ L(U , ||o1||, . . . , ||on||). Recall that 
L(U , ||o1||, . . . , ||on||) := L(U ∩ ⋂

1≤i≤n ||oi ||), L(O ) ⊆ O for every O  ∈ O (Definition 3.1), and L(O ) 	= ∅ if O  	= ∅
(Definition 3.2). Since x ∈ [ [oi] ]U for every 1 ≤ i ≤ n and x ∈ U , we have that L(U , ||o1||, . . . , ||on||) 	= ∅, i.e., there is 
y ∈L(U , ||o1||, . . . , ||on||). Then, by the semantics of L, we obtain that (y, U ) |= L(

#»o ). Thus (x, U ) |= 〈K 〉L(
#»o ).

(EC): Suppose (x, U ) |= #»o ⇔ #»u . This means that x ∈ [ [K (
∧

#»o ↔ ∧
#»u )] ]U . Therefore, by the semantics of K , we obtain 

that [ [∧ #»o ] ]U = [ [∧ #»u ] ]U . This means that [ [∧ #»o ] ]U = U ∩ ||o1|| ∩ . . . ||on|| = [ [∧ #»u ] ]U = U ∩ ||u1|| ∩ . . . ||uk||, where #»o =
(o1, . . . , on) and #»u = (u1, . . . , uk). Recall that L(U , ||o1||, . . . , ||on||) :=L(U ∩⋂

1≤i≤n ||oi ||) and L(U , ||u1||, . . . , ||uk||) :=
L(U ∩ ⋂

1≤i≤k ||ui ||). Hence, since L is a function, we obtain L(U , ||o1||, . . . , ||on||) =L(U , ||u1||, . . . , ||uk||). Therefore, 
by the semantics of L, we conclude that [ [L(

#»o )] ]U = [ [L(
#»u )] ]U , i.e., that (x, U ) |= L(

#»o ) ↔ L(
#»u ).

(SP): Suppose (x, U ) |= L(
#»o ). By the semantics and the fact that L(U , ||o1||, . . . , ||on||) := L(U ∩ ⋂

1≤i≤n ||oi||) where 
#»o = (o1, . . . , on), we have x ∈ L(U ∩ ⋂

1≤i≤n ||oi ||) = L(U ∩ [ [∧ #»o ] ]U ). Since we have that L(U ∩ [ [∧ #»o ] ]U ) ⊆ U ∩
[ [∧ #»o ] ]U ⊆ [ [∧ #»o ] ]U (Definition 3.1), we obtain that x ∈ [ [∧ #»o ] ]U , i.e., that (x, U ) |= ∧

#»o .
Reduction Axioms:
(RL ): From left-to-right: Suppose (x, U ) |= [o]L(

#»u ). This means that x ∈ ||o|| implies (x, U ∩ ||o||) |= L(
#»u ), i.e., that 

x ∈ ||o|| implies x ∈ L(U ∩ ||o|| ∩ ⋂
1≤i≤k ||ui ||) where #»u = (u1, . . . , uk). Then, by the semantics of L, we obtain that 

(x, U ) |= o → L(o, #»u ). The opposite direction follows similarly.
(R�):

(x, U ) |= [o]�ϕ

iff x ∈ ||o|| implies (x, U ∩ ||o||) |= �ϕ (by the semantics of [o])
iff x ∈ ||o|| implies (∀O ∈ O)(x ∈ O implies (x, (U ∩ ||o||) ∩ O ) |= ϕ) (by the semantics of �)

iff (∀O ∈ O)((x ∈ ||o|| and x ∈ O ) implies (x, (U ∩ ||o||) ∩ O ) |= ϕ)

iff (∀O ∈ O)(x ∈ O implies (x ∈ ||o|| implies (x, (U ∩ O ) ∩ ||o||) |= ϕ))

iff (∀O ∈ O)(x ∈ O implies (x, U ∩ O ) |= [o]ϕ) (by the semantics of [o])
iff (x, U ) |= �[o]ϕ (by the semantics of �)

Effort Axiom and Rule:
(�-Ax): Suppose (x, U ) |= �ϕ . This mean, by the semantics of �, that for all O  ∈ O with x ∈ O we have (x, U ∩ O ) |= ϕ . 
In particular, since ||o|| ∈ O for all o ∈ PropO , we obtain that x ∈ ||o|| implies (x, U ∩ ||o||) |= ϕ . Therefore, since O is 
closed under finite intersections, x ∈ [ [∧ #»o ] ] implies (x, U ∩ [ [∧ #»o ] ]) |= ϕ for every #»o ∈ Prop∗

O . Therefore, by Lemma 5, 
we obtain that (x, U ) |= [ #»o ]ϕ for every finite string #»o of observational variables.
(�-Rule): Suppose towards a contradiction that |= ψ → [o]ϕ and 	|= ψ → �ϕ where o /∈ O ψ ∪ Oϕ . The latter means that 
there is a learning model M and (x, U ) ∈ E S(M) such that (x, U ) 	|=M ψ → �ϕ , i.e., (x, U ) |=M ψ and (x, U ) 	|=M �ϕ . 
Thus, (x, U ) |=M ψ and (x, U ) |=M �¬ϕ . By the semantics of �, there exists a U0 ⊆ U s.t. x ∈ U0 and (x, U0) |=M ¬ϕ . 
Now consider the model M′ = (X, O, L, || · ||′) where ||o||′ = U0, ||u||′ = ||u|| for all u ∈ PropO such that u 	= o, and 
||p||′ = ||p|| for all p ∈ Prop. It is easy to see that M′ = (X, O, L, || · ||′) is a learning model. By Lemma 9, we have that 
[ [ψ] ]U

M′ = [ [ψ] ]U
M and [ [¬ϕ] ]U0

M′ = [ [¬ϕ] ]U0
M. Therefore (x, U ) |=M′ ψ and (x, U0) |=M′ ¬ϕ . Since ||o||′ = U0, we have 

(x, U ) |=M′ ψ and (x, ||o||′) |=M′ ¬ϕ . By the semantics of 〈o〉, we obtain (x, U ) |=M′ ψ ∧ 〈o〉¬ϕ . Thus (x, U ) 	|=M′ ψ →
[o]ϕ , contradicting the validity of |= ψ → [o]ϕ . �

3.2. Completeness

We now move to the completeness proof for our logic L, which will be shown via a ‘simple’ canonical model construction. 
But its simplicity is deceiving, due to two main technical differences between our construction and the standard canonical 
model from Modal Logic. First, this is not a relational (Kripke) model, but a neighbourhood model; so the closest analogue is 
the type of canonical construction used in Topological Modal Logic or Neighbourhood Semantics [1]. Second, the standard 
notion of maximally consistent theory (a set of formulas 	 ⊆ L is consistent if 	 does not derive a contradiction, and it is 
maximally consistent if any consistent theory 	′ ⊇ 	, 	′ = 	) is not very useful for our logic, since such theories do not 
‘internalise’ the �-Rule. To do this, we need instead to consider ‘witnessed’ (maximally consistent) theories, in which every 
occurrence of a �ϕ in any ‘existential context’ is ‘witnessed’ by some 〈o〉ϕ (with o observational variable). The appropriate 
notion of ‘existential contexts’ is represented by possibility forms, in the following sense:

Definition 10 (‘Pseudo-modalities’: necessity and possibility forms). The set of necessity-form expressions of our language is given 
by N FL := ({ϕ → | ϕ ∈ L} ∪ {K } ∪ PropO)∗ . For any finite string s ∈ N FL , we define pseudo-modalities [s] (called neces-
sity form) and 〈s〉 (called possibility form) that generalize our dynamic modalities [o] and 〈o〉. These pseudo-modalities are 
functions mapping any formula ϕ ∈ L to another formula [s]ϕ ∈ L, and respectively 〈s〉ϕ ∈ L. Necessity forms are defined 
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recursively, by putting: [λ]ϕ := ϕ , [s, ϕ →]ϕ := [s](ϕ → ϕ), [s, K ]ϕ := [s]Kϕ , [s, o]ϕ := [s][o]ϕ . As for possibility forms, we 
put 〈s〉ϕ := ¬[s]¬ϕ .

To illustrate, expression [K , o, �p →, u] constitutes a necessity form such that [K , o, �p →, u]ϕ = K [o](�p → [u]ϕ).

Lemma 11. For every necessity form [s], there exist a string of observational variables #»o ∈ Prop∗
O and a formula ψ ∈ L, with O ψ ∪

O #»o ⊆ O s, such that for all ϕ ∈ L, we have

� [s]ϕ iff � ψ → [ #»o ]ϕ.

Proof. We proceed by induction on the structure of necessity forms. For s := λ, take ψ := � and #»o := λ, then it follows 
from classical propositional logic.

s := s′, η →

� [s′, η →]ϕ iff � [s′](η → ϕ) (Definition 10)

iff � ψ ′ → [ #»o ](η → ϕ) (for some ψ ′ ∈ L and #»o ∈ Prop∗
O with O ψ ′ ∪ O #»o ⊆ O s′ , by IH)

iff � ψ ′ → ([ #»o ]η → [ #»o ]ϕ) (Proposition 6.11)

iff � (ψ ′ ∧ [ #»o ]η) → [ #»o ]ϕ (P)

iff � ψ → [ #»o ]ϕ (ψ := ψ ′ ∧ [ #»o ]η, thus, O ψ ∪ O #»o ⊆ O s)

s := s′, K

� [s′, K ]ϕ iff � [s′]Kϕ (Definition 10)

iff � ψ ′ → [ #»o ]Kϕ (for some ψ ′ ∈ L and #»o ∈ Prop∗
O with O ψ ′ ∪ O #»o ⊆ O s′ , by IH)

iff � ψ ′ → (
∧

#»o → K [ #»o ]ϕ) (Proposition 6.8)

iff � (ψ ′ ∧
∧

#»o ) → K [ #»o ]ϕ (P)

iff � 〈K 〉(ψ ′ ∧
∧

#»o ) → [ #»o ]ϕ (pushing K back with its dual 〈K 〉, since K is an S5 modality)

iff � ψ → [ #»o ]ϕ (ψ := 〈K 〉(ψ ′ ∧ ∧
#»o ) ∈ L, thus, O ψ ∪ O #»o ⊆ O s)

s := s′, u

� [s′, u]ϕ iff � [s′][u]ϕ (Definition 10)

iff � ψ ′ → [ #»o ][u]ϕ (for some ψ ′ ∈ L and #»o ∈ Prop∗
O with O ψ ′ ∪ O #»o ⊆ O s′ , by IH)

iff � ψ ′ → [ #»o , u]ϕ (by the definition of [ #»o ][u], and (
#»o , u) ∈ Prop∗

O )

�
Lemma 12. For all #»u , #»o ∈ Prop∗

O and ϕ ∈ L, we have � [ #»u , #»o ]ϕ ↔ [ #»o , #»u ]ϕ .

Proof. The proof follows by subformula induction on ϕ . Along the proof we will make use of the following observation:
(a) � (

∧
#»u ∧ ∧

#»o ) ↔ (
∧

#»o ∧ ∧
#»u ), and the following induction hypothesis (IH):

for all subformula ψ of ϕ , and all #»u , #»o ∈ Prop∗
O , � [ #»u , #»o ]ψ ↔ [ #»o , #»u ]ψ .

Base case ϕ := v ∈ PropO (ϕ := p ∈ Prop follows analogously).

1. � [ #»u ,
#»o ]v ↔ ((

∧
#»u ∧

∧
#»o ) → v) (Proposition 6.5)

2. � ((
∧

#»u ∧
∧

#»o ) → v) ↔ ((
∧

#»o ∧
∧

#»u ) → v) (by obs. (a) above)

3. � ((
∧

#»o ∧
∧

#»u ) → v) ↔ [ #»o ,
#»u ]v (Proposition 6.5)

4. � [ #»u ,
#»o ]v ↔ [ #»o ,

#»u ]v (P, 1-3)

Cases for Booleans and K follow from observation (a) and the corresponding reduction laws for strings of observations 
presented in Proposition 6 in a straightforward way. We here present the inductive cases for ϕ := L(

#»v ), ϕ := [ #»v ]ψ , and 
ϕ := �ψ .
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Case ϕ := L(
#»v )

1. � [ #»u ,
#»o ]L(

#»v ) ↔ ((
∧

#»u ∧
∧

#»o ) → L(
#»u ,

#»o ,
#»v )) (Proposition 6.6)

2. �
(
(
∧

#»u ∧
∧

#»o ) → L(
#»u ,

#»o ,
#»v )

)
↔

(∧
#»o ∧

∧
#»u ) → L(

#»u ,
#»o ,

#»v )
)

(by obs. (a))

3. � (
∧

#»u ∧
∧

#»o ∧
∧

#»v ) ↔ (
∧

#»o ∧
∧

#»u ∧
∧

#»v ) (by obs. (a))

4. � K
(
(
∧

#»u ∧
∧

#»o ∧
∧

#»v ) ↔ (
∧

#»o ∧
∧

#»u ∧
∧

#»v )
)

(by NecK )

5. � L(
#»u ,

#»o ,
#»v ) ↔ L(

#»o ,
#»u ,

#»v ) (EC and MP with 4)

6. �
(
(
∧

#»u ∧
∧

#»o ) → L(
#»u ,

#»o ,
#»v )

)
↔

(
(
∧

#»o ∧
∧

#»u ) → L(
#»o ,

#»u ,
#»v )

)
(P, 2, 5)

7. �
(
(
∧

#»o ∧
∧

#»u ) → L(
#»o ,

#»u ,
#»v )

)
↔ [ #»o ,

#»u ]L(
#»v ) (Proposition 6.6)

8. � [ #»u ,
#»o ]L(

#»v ) ↔ [ #»o ,
#»u ]L(

#»v ) (P, 1, 6, 7)

Case ϕ := [ #»v ]ψ
1. � [ #»u ,

#»o ][ #»v ]ψ ↔ [ #»u ,
#»o ,

#»v ]ψ (by the definition of [ #»o ]ϕ)

2. � [ #»u ,
#»o ,

#»v ]ψ ↔ [ #»o ,
#»v ,

#»u ]ψ (IH, reorder #»u and ( #»o ,
#»v ))

3. � [ #»o ,
#»v ,

#»u ]ψ ↔ [ #»o ][ #»v ,
#»u ]ψ (by definition)

4. � [ #»o ][ #»v ,
#»u ]ψ ↔ [ #»o ][ #»u ,

#»v ]ψ (IH, reorder #»v and #»u )

5. � [ #»o ][ #»u ,
#»v ]ψ ↔ [ #»o ,

#»u ,
#»v ]ψ (by the definition of [ #»o ]ϕ)

6. � [ #»o ,
#»u ,

#»v ]ψ ↔ [ #»o ,
#»u ][ #»v ]ψ (by the definition of [ #»o ]ϕ)

7. � [ #»u ,
#»o ][ #»v ]ψ ↔ [ #»o ,

#»u ][ #»v ]ψ (P, 1-6)

Case ϕ := �ψ

1. � [ #»u ,
#»o ]�ψ ↔ �[ #»u ,

#»o ]ψ (Proposition 6.9)

2. � �[ #»u ,
#»o ]ψ ↔ �[ #»o ,

#»u ]ψ (IH)

3. � �[ #»o ,
#»u ]ψ ↔ [ #»o ,

#»u ]�ψ (Proposition 6.9)

4. � [ #»u ,
#»o ]�ψ ↔ [ #»o ,

#»u ]�ψ (P, 1-3)

�
Lemma 13. The following rule is admissible in L:

if � [s][o]ϕ then � [s]�ϕ, where o /∈ O s ∪ Oϕ.

Proof. Suppose � [s][o]ϕ where o /∈ O s ∪ Oϕ . Then, by Lemma 11, there exist #»u ∈ Prop∗
O and ψ ∈ L with O ψ ∪ O #»u ⊆ O s

such that � ψ → [ #»u ][o]ϕ . Thus we get � ψ → [ #»u , o]ϕ . By Lemma 12, we know that � [ #»u , o]ϕ ↔ [o, #»u ]ϕ . Therefore, 
� ψ → [ #»u , o]ϕ iff � ψ → [o, #»u ]ϕ . Hence we obtain � ψ → [o, #»u ]ϕ , i.e., � ψ → [o][ #»u ]ϕ . Since O ψ ∪ O #»u ⊆ O s , and so 
o /∈ O ψ ∪ O #»u ∪ Oϕ . Therefore, by the Effort rule (�-Rule) we have � ψ → �[ #»u ]ϕ , implying, by the reduction axiom (R�), 
that � ψ → [ #»u ]�ϕ . Applying again Lemma 11, we obtain � [s]�ϕ . �
Definition 14. For every countable set O, let LO be the language of the logic LO based only on the observational variables 
in O (i.e., having as set of observational variables PropO := O). Let N F O

L
denote the set of necessity-form expressions of LO

(i.e., necessity forms involving only observational variables in O). An O-theory is a consistent set of formulas in LO. Here, 
‘consistent’ means consistent with respect to the axiomatisation L formulated for LO. A maximal O-theory is an O-theory 	
that is maximal with respect to ⊆ among all O-theories; in other words, 	 cannot be extended to another O-theory. An 
O-witnessed theory is an O-theory 	 such that, for every s ∈ N F O

L
and ϕ ∈ LO, if 〈s〉�ϕ is consistent with 	 then there is 

o ∈ O such that 〈s〉〈o〉ϕ is consistent with 	. A maximal O-witnessed theory 	 is an O-witnessed theory that is not a proper 
subset of any O-witnessed theory.

Lemma 15. For every maximal O-witnessed theory 	, and any ϕ, ψ ∈ LO ,

1. either ϕ ∈ 	 or ¬ϕ ∈ 	,
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2. ϕ ∧ ψ ∈ 	 iff ϕ ∈ 	 and ψ ∈ 	,
3. ϕ ∈ 	 and ϕ → ψ ∈ 	 implies ψ ∈ 	.

Lemma 16. For every 	 ⊆ LO , if 	 is an O-theory and 	 � ¬ϕ for some ϕ ∈ LO , then 	 ∪ {ϕ} is an O-theory. Moreover, if 	 is 
O-witnessed, then 	 ∪ {ϕ} is also O-witnessed.

Proof. Let 	 ⊆ LO be an O-theory and ϕ ∈ LO such that 	 � ¬ϕ . We first show that 	 ∪{ϕ} is an O-theory. Suppose, toward 
a contradiction, that 	 ∪ {ϕ} is not an O-theory, i.e., that 	 ∪ {ϕ} � ⊥. Thus, there is a finite � ⊆ 	 such that � � ¬ϕ and 
therefore 	 � ¬ϕ , which contradicts the assumption that 	 � ¬ϕ .

Now suppose that 	 is O-witnessed but 	 ∪ {ϕ} is not O-witnessed. By the previous statement, we know that 	 ∪ {ϕ}
consistent. Therefore, the latter means that there is s ∈ N F O

L
and ψ ∈ LO such that 	 ∪ {ϕ} is consistent with 〈s〉�ψ but 

	 ∪ {ϕ} � ¬〈s〉〈o〉ψ for all o ∈ O. This implies that 	 ∪ {ϕ} � [s][o]¬ψ for all o ∈ O. Therefore, 	 � ϕ → [s][o]¬ψ for all 
o ∈ O. Note that ϕ → [s][o]¬ψ := [ϕ →, s][o]¬ψ , and [ϕ →, s] ∈ N F O

L
. We thus have 	 � [ϕ →, s][o]¬ψ for all o ∈ O. Since 

	 is O-witnessed, we obtain 	 � [ϕ →, s]�¬ψ . By unravelling the necessity form [ϕ →, s], we get 	 � ϕ → [s]�¬ψ , thus, 
	 ∪ {ϕ} � [s]�¬ψ , i.e., 	 ∪ {ϕ} � ¬〈s〉�ψ , contradicting the assumption that 	 ∪ {ϕ} is consistent with 〈s〉�ψ . �
Lemma 17. If {	i}i∈N an increasing chain of O-theories such that 	i ⊆ 	i+1 , then 

⋃
n∈N 	n is an O-theory.

Proof. Let 	0 ⊆ 	1 ⊆ · · · ⊆ 	n ⊆ . . . be an increasing chain of O-theories and suppose, toward contradiction, that 
⋃

n∈N 	n
is not an O-theory, i.e., suppose that 

⋃
n∈N 	n � ⊥. This means that there exists a finite � ⊆ ⋃

n∈N 	n such that � � ⊥. 
Then, since 

⋃
n∈N 	n is a union of an increasing chain of O-theories, there is some m ∈ N such that � ⊆ 	m . Therefore, 

	m � ⊥ contradicting the fact that 	m is an O-theory. �
Lemma 18 (Lindenbaum’s Lemma). Every O-witnessed theory 	 can be extended to a maximal O-witnessed theory T	.

Proof. The proof follows by constructing an increasing chain

	0 ⊆ 	1 ⊆ · · · ⊆ 	n ⊆ . . . ,

of O-witnessed theories where 	0 := 	, and each 	i will be recursively defined. We have to guarantee that each 	i is 
O-witnessed and, in order to do so, we follow a two-fold construction, where 	0 = 	′

0 := 	. Let γn := (sn, ϕn) be the 
nth-pair in the enumeration A of all pairs of the form (s, ϕ) consisting of a necessity form expression s ∈ N F O

L
and a 

formula ϕ ∈ LO. Note that all pairs of the form (λ, ϕ), for every formula ϕ ∈ LO and the empty string λ of observational 
variables, are in A. By the definition of necessity forms and possibility forms we have that every formula ϕ ∈ LO can be 
written as ϕ := 〈λ〉ϕ = [λ]ϕ . Therefore, every formula ϕ ∈ LO is considered in the form of (λ, ϕ) in the enumeration A. We 
then set

	′
n =

{
	n ∪ {〈sn〉ϕn} if 	 � ¬〈sn〉ϕn

	n otherwise

By Lemma 16, each 	′
n is O-witnessed. Therefore, if ϕn is of the form ϕn := �θ for some θ ∈ LO, there must exist an 

o ∈ O such that 	′
n is consistent with 〈s〉〈o〉θ (since 	′

n is O-witnessed). We then define

	n+1 =

⎧⎪⎨⎪⎩
	′

n if 	n � ¬〈sn〉ϕn and ϕn is not of the form �θ

	′
n ∪ {〈sn〉〈o〉θ} if 	n � ¬〈sn〉ϕn and ϕn := �θ for some θ ∈ LO

	n otherwise

where o ∈ O such that 	′
n is consistent with 〈s〉〈o〉θ . Again by Lemma 16, it is guaranteed that each 	n is O-witnessed. 

Now consider the union T	 = ⋃
n∈N 	n . By Lemma 17, we know that T	 is an O-theory. To show that T	 is O-witnessed, 

let s ∈ N F O
L

and θ ∈ LO and suppose 〈s〉�θ is consistent with T	 . The pair (s, �θ) appears in the enumeration A, thus 
γm := (sm, ϕm) = (s, �θ) with sm := s and ϕm := �θ , for some γm ∈A. Since 〈sm〉ϕm is consistent with T	 and 	m ⊆ T	 , we 
know that 〈sm〉�θ is in particular consistent with 	m . Therefore, by the above construction, 〈s〉〈o〉θ ∈ 	m+1 for some o ∈ O
such that 	′

m is consistent with 〈s〉〈o〉θ . Thus, as T	 is consistent and 	m+1 ⊆ T	 , we have that 〈s〉〈o〉θ is also consistent 
with T	 , moreover 〈s〉〈o〉θ ∈ T	 . Hence, we conclude that T	 is O-witnessed. Finally, T	 is also maximal by construction: 
otherwise there would be an O-witnessed theory T such that T	 ⊂ T . This implies that there exists ϕ ∈ LO with ϕ ∈ T but 
ϕ /∈ T	 . Then, by the construction of T	 , we obtain 	i � ¬〈λ〉ϕ for all i ∈ N . Thus 	i � ¬ϕ for all i ∈ N . Therefore, since 
T	 ⊆ T , we have T � ¬ϕ . Hence, since ϕ ∈ T , we obtain T � ⊥ (contradicting T being consistent). �
Lemma 19 (Extension Lemma). Let O be a set of observational variables and O′ be a countable set of fresh observational variables, 
i.e., O ∩ O′ = ∅. Let 

∼
O = O ∪ O′ . Then, every O-theory 	 can be extended to a 

∼
O-witnessed theory 

∼
	 ⊇ 	, and hence to a maximal 

∼
O-witnessed theory T	 ⊇ 	.
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Proof. Let A = {γ0, γ1, . . . , γn, . . .} be an enumeration of all pairs of the form γi := (si, ϕi) consisting of any necessity form 

si ∈ N F
∼
O
L

and every formula ϕi ∈ L
∼
O. We will recursively construct a chain of 

∼
O-theories 	0 ⊆ · · · ⊆ 	n ⊆ . . . such that:

1. 	0 = 	,
2. O′

n = {o ∈ O′ : o occurs in 	n} is finite for every n ∈N , and,

3. for every γn := (sn, ϕn) with sn ∈ N F
∼
O
L

and ϕn ∈ L
∼
O:

If 	n � ¬〈sn〉�ϕn then there is om ‘fresh’ such that 〈sn〉〈om〉ϕn ∈ 	n+1. Otherwise we will define 	n+1 = 	n .

For every γn ∈ A, let O′(n) = {o ∈ O′ : o occurs either in sn or ϕn}. Clearly every O′(n) is always finite. We now construct 

an increasing chain of 
∼
O-theories recursively: We fix 	0 := 	 and let

	n+1 =
{

	n ∪ {〈sn〉〈om〉ϕn} if 	n � ¬〈sn〉�ϕn

	n otherwise

where m is the least natural number bigger than the indices in O′
n ∪ O′(n), i.e., om is fresh. We now need to show that 

∼
	 := ⋃

n∈N 	n is an 
∼
O-witnessed theory.

We first show that 
∼
	 is an 

∼
O-theory. By Lemma 17, it suffices to show by induction that every 	n is an 

∼
O-theory. Clearly 

	0 is an 
∼
O-theory. For the inductive step suppose that 	n is consistent but 	n+1 is not. Hence 	n+1 	= 	n , and moreover 

	n+1 � ⊥. Then, since 	n+1 = 	n ∪{〈sn〉〈om〉ϕn}, we have 	n � [sn][om]¬ϕn . Therefore there exists {θ1, . . . , θk} ⊆ 	n such that 
{θ1, . . . , θk} � [sn][om]¬ϕn . Let θ = ∧

1≤i≤k θi . Then � θ → [sn][om]¬ϕn , so � [θ →, sn][om]¬ϕn with om /∈ O 	n ∪ O sn ∪ Oϕn .
By the admissible rule in Lemma 13 we obtain that � [θ →, sn]�¬ϕn , thus � θ → [sn]�¬ϕn . It follows θ � [sn]�¬ϕn and 

therefore θ � ¬〈sn〉�ϕn . Since {θ1, . . . , θk} ⊆ 	n , we obtain 	n � ¬〈sn〉�ϕn , contradicting our assumption. Therefore 	n+1

is consistent and thus an 
∼
O-theory. Therefore, by Lemma 17, 

∼
	 is an 

∼
O-theory. Condition (3) above implies that 

∼
	 is also 

∼
O-witnessed. Then, by Lindenbaum’s Lemma, there is a maximal O-witnessed theory T	 such that T	 ⊇ ∼

	 ⊇ 	. �
We are now ready to build the canonical model.

Canonical Model for T0. For any consistent set of formulas 
, consider a maximally consistent O-witnessed extension T0 ⊇

. As our canonical set of worlds, we take the set X c := {T : T maximally consistent O-witnessed theory with T ∼K T0}, 
where we put

T ∼K T ′ iff ∀ϕ ∈ LO
(
(Kϕ) ∈ T → ϕ ∈ T ′) .

As usual, it is easy to see (given the S5 axioms for K ) that ∼K is an equivalence relation. For any formula ϕ , we use 
the notation ϕ̂ := {T ∈ X c : ϕ ∈ T }. In particular, for any observational variable o ∈ O, we have ô = {T ∈ X c : o ∈ T }. We 
can generalize this notation to finite sequences #»o = (o1, . . . , on) ∈ O∗ of observational variables, by putting: #̂»o := {T ∈ X c :
o1, . . . , on ∈ T }.

As canonical set of information states, we take Oc := { #̂»o : #»o ∈ O∗}. Finally, our canonical learner is given by Lc( ̂#»o ) :=
L̂(

#»o ), and the canonical valuation ‖ · ‖c is given as ||p||c = p̂ and ||o||c = ô. The learning model Mc = (X c, Oc, Lc, ‖ · ‖c) is 
called the canonical model. Note that we use c as a subindex instead of a superindex for the canonical valuation ‖ · ‖c , this 
is in order to avoid confusion with our ‘open-restriction’ notation for the truth set of a formula [ [ϕ] ]U .

Before proving that the canonical model is well-defined, we need the following.

Lemma 20. For every maximal O-witnessed theory T , the set {θ : Kθ ∈ T } is an O-witnessed theory.

Proof. Observe that, by axiom (TK ), {θ : Kθ ∈ T } ⊆ T . Therefore, as T is consistent, the set {θ : Kθ ∈ T } is consistent. Let 
s ∈ N F O

L
and ϕ ∈ LO such that {θ : Kθ ∈ T } � [s][o]¬ϕ for all o ∈ O. Then, by normality of K , T � K [s][o]¬ϕ for all o ∈ O. 

Since K [s][o]¬ϕ := [K , s][o]¬ϕ is a necessity form and T is O-witnessed, we obtain T � [K , s]�¬ϕ , i.e., T � K [s]�¬ϕ . As T
is maximal, we have K [s]�¬ϕ ∈ T , thus [s]�¬ϕ ∈ {θ : Kθ ∈ T }. �
Lemma 21. Let T ∈X c . Then, Kϕ ∈ T iff ϕ ∈ S for all S ∈X c .

Proof. From left-to-right follows directly from the definition of X c and ∼K . For the right-to-left direction, we prove the 
contrapositive: Let ϕ ∈ L such that Kϕ /∈ T . Then, by Lemma 20 and Lemma 16, we obtain that {ψ : Kψ ∈ T } ∪ {¬ϕ} is an 
O-witnessed theory. We can then apply Lindenbaum’s Lemma (Lemma 18) and extend it to a maximal O-witnessed theory 
S such that ϕ /∈ S . �
Corollary 22. Let T ∈X c . Then, 〈K 〉ϕ ∈ T iff there is S ∈X c such that ϕ ∈ S.
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Proposition 23. The canonical model is well-defined.

Proof. We need to show that the following properties hold:

1. If F = { #̂»o1, . . . , ̂# »om} ⊆ Oc is finite then 
⋂

F ∈ Oc : Let F = { #̂»o1, . . . , ̂# »om} ⊆ Oc . It is easy to see that 
⋂{ #̂»o1, . . . , ̂# »om} = #̂»o , 

where #»o is the concatenation of all the #»oi ’s with 1 ≤ i ≤ m. Since each #»oi is finite, #»o is also finite. By the definition of 
Oc in the canonical model we obtain 

⋂{ #̂»o1, . . . , ̂# »om} = #̂»o ∈ Oc .

2. Lc is a well-defined function and a learner: For this, note that Lc(
#̂»o ) := L̂(

#»o ) ⊆ Xc . We will first prove that:
(2a) if #̂»o = #̂»u then Lc(

#̂»o ) = Lc(
#̂»u ): Suppose #̂»o = #̂»u . This means that (∀T ∈ Xc)(

∧
#»o ∈ T iff

∧
#»u ∈ T ). Therefore, we 

obtain � ∧
#»o ↔ ∧

#»u . Then, by (NecK ), we have � K
(∧

#»o ↔ ∧
#»u

)
, i.e., � #»o ⇔ #»u . Since Lc(

#̂»o ) := L̂(
#»o ), showing 

Lc(
#̂»o ) =Lc(

#̂»u ) boils down to showing that L̂(
#»o ) = L̂(

#»u ), i.e., that � L(
#»o ) ↔ L(

#»u ), which follows from axiom (EC) and 
that � #»o ⇔ #»u .
Next, we must prove that
(2b) Lc is a learner, i.e., Lc satisfies the properties of a learner given in Definition 3. To show this, we first check that 
Lc(

#̂»o ) ⊆ #̂»o holds. Let T ∈ Lc(
#̂»o ). This means, by the definition of Lc(

#̂»o ), that L(
#»o ) ∈ T . Since (L(

#»o ) → ∧
#»o ) ∈ T

(by the axiom (SP)), we have that 
∧

#»o ∈ T . Therefore, as T is maximally consistent, we obtain o1, . . . , om ∈ T for 
#»o = (o1, . . . , om), meaning that #»o ∈ T . Thus, T ∈ #̂»o . Finally we show that if #̂»o 	= ∅ then Lc(

#̂»o ) 	= ∅. Suppose #̂»o 	= ∅, i.e., 
there is T ∈ Xc with T ∈ #̂»o . This means, by the definition of #̂»o , that o1, . . . , om ∈ T for #»o = (o1, . . . , om). Then, since T
is a maximal consistent theory, we have 

∧
#»o ∈ T . Therefore, by ((

∧
#»o ) → 〈K 〉L(

#»o )) ∈ T (the axiom (CC)), we obtain 
that 〈K 〉L(

#»o ) ∈ T . Then, by Corollary 22, there is S ∈ Xc such that L(
#»o ) ∈ S . Thus, by the definition of L̂(

#»o ), we have 
S ∈ L̂(

#»o ) meaning that L̂(
#»o ) =Lc(

#̂»o ) 	= ∅. �
Our aim is to prove a Truth Lemma for the canonical model, that will immediately imply completeness, as usual. For this 

we need the following result.

Lemma 24. Let T ∈X c . Then, �ϕ ∈ T iff [ #»u ]ϕ ∈ T for all #»u ∈ Prop∗
O .

Proof. The direction from left-to-right follows by the axiom (�-Ax). For the direction from right-to-left, suppose, toward a 
contradiction, that for all #»u ∈ Prop∗

O , [ #»u ]ϕ ∈ T and �ϕ /∈ T . Then, since T is a maximally consistent theory, �¬ϕ ∈ T . Since 
T is an O-witnessed theory, there is v ∈ O such that 〈v〉¬ϕ is consistent with T . Since T is also maximally consistent, we 
obtain that 〈v〉¬ϕ ∈ T , i.e., that ¬[v]ϕ ∈ T , contradicting our initial assumption. �

We now proceed to our key result:

Lemma 25 (Truth Lemma). For all formulas ϕ , all T ∈ Xc and all #̂»o ∈ Oc , we have:

〈 #»o 〉ϕ ∈ T iff (T ,
#̂»o ) |=Mc ϕ.

Proof. The proof is by induction over subformulas using the following induction hypothesis (IH): for all ψ subformula of ϕ , 
and all #̂»o ∈ Oc , 〈 #»o 〉ψ ∈ T iff (T , ̂#»o ) |=Mc ψ .

The base cases for propositional and observational variables, as well as for Boolean formulas are straightforward. We only 
verify the remaining inductive cases. At each step of the proof, 

∧
#»o ∈ T guarantees that the pair (T , ̂#»o ) is a well-defined 

epistemic scenario of the canonical model since 
∧̂

#»o = #̂»o .

• Case ϕ := L(
#»u ).

〈 #»o 〉L(
#»u ) ∈ T iff (

∧
#»o ∧ [ #»o ]L(

#»u )) ∈ T (Proposition 6.12)

iff (
∧

#»o ∧ L(
#»o ,

#»u )) ∈ T (Proposition 6.6)

iff
∧

#»o ∈ T and L(
#»o ,

#»u ) ∈ T

iff T ∈ #̂»o and T ∈ L(
#»o ,

#»u )
∧

= Lc(
#̂»o ,

#̂»u ) (since
∧̂

#»o = #̂»o )

iff (T ,
#̂»o ) |=Mc L(

#»u ) (the semantics of L)

• Case ϕ := Kψ .

〈 #»o 〉Kψ ∈ T iff (
∧

#»o ∧ K [ #»o ]ψ) ∈ T (Propositions 6.12 and 6.8)
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iff
∧

#»o ∈ T and K [ #»o ]ψ ∈ T

iff
∧

#»o ∈ T and (∀S ∼K T )([ #»o ]ψ ∈ S) (Lemma 21)

iff
∧

#»o ∈ T and (∀S ∼K T s.t.
∧

#»o ∈ S)(〈 #»o 〉ψ ∈ S) (Proposition 6.12)

iff #̂»o ∈ T and (∀S ∈ #̂»o )((S,
#̂»o ) |= ψ) (

∧̂
#»o = #̂»o and I.H)

iff (T ,
#̂»o ) |=Mc Kψ (Semantics of K )

• Case ϕ := 〈 #»u 〉ψ .

〈 #»o 〉〈 #»u 〉ψ ∈ T iff 〈 #»o ,
#»u 〉ψ ∈ T (since [ #»o ,

#»u ] := [ #»o ][ #»u ])
iff (

∧
#»o ∧

∧
#»u ) ∧ 〈 #»o ,

#»u 〉ψ ∈ T (Proposition 6.12)

iff (
∧

#»o ∧
∧

#»u ) ∈ T and 〈 #»o ,
#»u 〉ψ ∈ T

iff T ∈ #̂»o ∩ #̂»u and 〈 #»o ,
#»u 〉ψ ∈ T (since

∧
#»o ∧ ∧

#»u
∧

= #̂»o ∩ #̂»u )

iff T ∈ #̂»o ∩ #̂»u and (T , (
#»o ,

#»u )
∧

) |= ψ (I.H)

iff T ∈ #̂»u and (T ,
#̂»o ∩ #̂»u ) |= ψ (since (

#»o ,
#»u )

∧
= #̂»o ∩ #̂»u , and T ∈ #̂»o )

iff T ∈ [[
∧

#»u ]]c and (T ,
#̂»o ∩ [[

∧
#»u ]]c) |= ψ

(since [[∧ #»u ]]c = #̂»u , by the base case for o and the case for ∧)

iff (T ,
#»o ) |= 〈 #»u 〉ψ (Lemma 5)

• Case ϕ := �ψ .
(⇐) Suppose 〈 #»o 〉�ψ ∈ T . Then, by Proposition 6.12 and Proposition 6.9, we obtain that (1) 

∧
#»o ∈ T , i.e., T ∈ #̂»o , and 

(2) �[ #»o ]ψ ∈ T . Thus, by Lemma 24 and (2), we have [ #»u ][ #»o ]ψ ∈ T , i.e., [ #»u , #»o ]ψ ∈ T , for all #»u ∈ Prop∗
O . Now let 

O  ∈ Oc such that T ∈ O . By the construction of Oc , we know that O  = #̂»v for some #»v ∈ Prop∗
O . We want to show that 

(T , ̂#»o ∩ #̂»v ) |= ψ . Since T ∈ #̂»o ∩ #̂»v and Mc is an intersection space, we know that (T , ̂#»o ∩ #̂»v ) is a well-defined epistemic 
scenario. T ∈ #̂»o ∩ #̂»v also implies that (

∧
#»o ∧ ∧

#»v ) ∈ T as in the above case. Hence, by Proposition 6.12 and the fact 
that [ #»v , #»o ]ψ ∈ T , we obtain 〈 #»v , #»o 〉ψ ∈ T . Then, by I.H., we obtain (T , ̂#»v ∩ #̂»o ) |= ψ . Therefore, by the semantics of �, 
we obtain (T , ̂#»o ) |= �ψ .
(⇒) Suppose (T , ̂#»o ) |= �ψ . This means, by the definition of Oc , that for all #»u ∈ Prop∗

O , if T ∈ #̂»u then (T , ̂#»o ∩ #̂»u ) |= ψ . 
Now let #»v ∈ Prop∗

O such that T ∈ #̂»v . Therefore, T ∈ #̂»v ∩ #̂»o . Since ( #»v , #»o ) ∈ Prop∗
O and #̂»v ∩ #̂»o = (

#»v ,
#»o )

∧
, we obtain, by 

the assumption, that (T , ̂#»v ∩ #̂»o ) |= ψ . Thus, by I.H., we have 〈 #»v , #»o 〉ψ ∈ T . As � 〈 #»v , #»o 〉ψ → [ #»v , #»o ]ψ and T is maximal, 
we obtain [ #»v , #»o ]ψ ∈ T , i.e., [ #»v ][ #»o ]ψ ∈ T . Since #»v has been chosen from Prop∗

O arbitrarily, by Lemma 24, we have �[ #»o ]ψ ∈ T . Then, by Proposition 6.9, the fact that 
∧

#»o ∈ T and Proposition 6.12, we obtain 〈 #»o 〉�ψ ∈ T . �
Theorem 2. L is complete with respect to the class of all learning models.

Proof. Let ϕ be an L-consistent formula, i.e., it is an Oϕ -theory. Then, by Lemma 19, it can be extended to some maximal 
O-witnessed theory T . Then, we have 〈λ〉ϕ ∈ T where λ is the empty string, i.e., T ∈ 〈̂λ〉ϕ . Note that 

∧̂
λ = ⋂∅ = Xc . Then, 

by Truth Lemma (Lemma 25), we obtain that (T , Xc) |=Mc ϕ , where Mc = (Xc, Oc, Lc, ‖ · ‖c) is the canonical model for T . 
This proves completeness. �
4. Expressivity

We first investigate how various notions of learnability can be expressed in our language. In fact, the following was 
already noticed in [18].

Proposition 26. �Kp is true at (x, U ) in a model M iff ‖p‖ is learnable with certainty at state x. Similarly, p → �Kp is valid (i.e., 
true at all epistemic scenarios) in a model M iff ‖p‖ is verifiable with certainty (i.e., ‘finitely identifiable’ in the sense of FLT [11,15]). 
A similar statement holds for falsifiability with certainty.

Proof. As we know from Section 1.2, ‖p‖ is learnable with certainty x iff x ∈ Int‖p‖, and ‖p‖ is verifiable with certainty iff 
it is open in the topology generated by O . It is well-known [18] that these properties are expressible in SSL via the above 
validities. �
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In particular, the following validity of our logic expresses the fact that all observable properties are verifiable with certainty:

o → �K o.

By adding the learning operator to subset space logic, DLLT can capture, not only belief, but also the various inductive 
notions of knowledge and learnability:

Proposition 27 (Inductive notions of knowledge and learnability).

• �Bp holds at (x, U ) in a model M iff the learner L has undefeated belief in ‖p‖ (at world x in information state U ). Hence, 
p ∧ �Bp captures inductive knowledge of p, and so p ∧ ��Bp captures inductive learnability of p by learner L.

• Similarly, p → ��Bp is valid in a model M iff ‖p‖ is inductively verifiable by L. For the corresponding generic notion: ‖p‖ is 
inductively verifiable (by some learner) iff p → ��Bp is validable in the intersection space (X, O). Similar statements hold 
for inductive fasifiability.

• Finally, �L(λ) is true if (given enough observations) the observer will eventually reach a true conjecture (though he might later 
fall again into false ones); and similarly, ��L(λ) is true if (given enough observations) the observer will eventually produce only 
true conjectures thereafter.

Proof. Easy to verify, given the relevant definitions and our semantics. �
As usual in Dynamic Epistemic Logic, the dynamic ‘observation’ modalities [u]ϕ are only a convenient way to express 

complex properties in a succinct manner, but they can in principle be eliminated. To show this, we first need the following 
lemma.

Lemma 28. There is a well-founded strict partial order < on formulas (called ‘complexity order’), satisfying the following conditions:

• if ϕ is a (proper) subformula of ψ then ϕ < ψ

• (u → p) < [u]p
• (u → o) < [u]o
• (u → L(u, #»o )) < [u]L(

#»o )

• ([u]ϕ ∧ [u]ψ) < [u](ϕ ∧ ψ)

• (u → K [u]ϕ) < [u]Kϕ
• �[u]ϕ < [u]�ϕ

Proof. A complexity measure c : L → N that gives such a strict partial order on L can be defined by extending and, in a 
sense, simplifying the one in [25, Definition 7.21] as follows:

c(p) = c(o) = 1

c(L(o1, . . . ,on)) = 1 + n

c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ))

c(¬ϕ) = c(Kϕ) = c(�ϕ) = c(ϕ) + 1,

c([o]ϕ) = 5 · c(ϕ).

We then define <⊆ L ×L as ϕ < ψ iff c(ϕ) < c(ψ). The lemma then follows via easy calculations using c. �
Proposition 29. (Expressivity) The above language is co-expressive with the one obtained by removing all dynamic modalities [u]ϕ . 
Moreover, this can be proved in the above proof system: for every formula ϕ there exists some formula ϕ′ free of any dynamic modalities, 
such that ϕ ↔ ϕ′ is a theorem in the above proof system. Furthermore, if ϕ contains dynamic modalities then ϕ′ can be chosen such 
that ϕ′ < ϕ .

Proof. Suppose, towards contradiction, that ϕ is a formula which is not free of dynamic modalities, and moreover that ϕ
is not provably equivalent to any formula of lower complexity (in the sense of <) that is free of dynamic modalities. We 
construct an infinite descending sequence

ϕ0 > ϕ1 > . . . > ϕn > . . .

of provably equivalent formulas, none of which is free of dynamic modalities. The construction goes as follows. We first 
put ϕ0 := ϕ . Then, at step n, assuming given ϕn not free of dynamic modalities, and provably equivalent to all the previous 
formulas, we chose the first dynamic modality occurring in ϕn , and apply once to it the relevant Reduction Axiom (from 
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left to right), obtaining a provably equivalent formula ϕn+1, which by Lemma 28 has the property that ϕn+1 < ϕn . By 
transitivity of provable equivalence, ϕn+1 is provably equivalent to ϕ0 = ϕ , and (by transitivity of <) it is of lower complexity 
than ϕ0 = ϕ; so, by our assumption above, ϕn+1 is still not free of dynamic modalities. But the existence of this infinite 
descending sequence contradicts the well-foundedness of <. �
5. Conclusion and comparison with other work

In this paper we proposed a dynamic logic which allows reasoning about inductive inference. Our Dynamic Logic of 
Learning Theory (DLLT) is an extension of previously studied Subset Space Logics, and a natural continuation of the work 
bridging Dynamic Epistemic Logic and Formal Learning Theory. Together with a syntax, featuring dynamic observation op-
erators, and a topological semantics, we give a sound and complete axiomatisation of this logic. We show how natural 
learnability properties, such as learnability in the limit and learnability with certainty, can be expressed in DLLT.

Our technical results (the complete axiomatisation and expressivity results), as well as the methods used to prove them 
(the canonical neighbourhood model and the reduction laws), may look deceivingly simple. But in fact, achieving this sim-
plicity is one of the major contributions of our paper. The most well-known relative to our logic is Subset Space Logic (SSL) 
over intersection spaces, completely axiomatised by Weiss and Parikh [28] (and, indeed, our operator � originates in the 
‘effort modality’ of the SSL formalism introduced in [18,10]). Although less expressive than our logic (since it has no notion 
of belief B or conjecture L), the Weiss-Parikh axiomatisation of SSL over intersection spaces is in a sense more complex and 
less transparent (such as is their completeness proof, which is non-canonical). That axiomatisation consists of the following 
list:

S5K The S5 axioms and rules for K
S4� The S4 axioms and rules for �
Cross Axiom K�ϕ → �Kϕ
Weak Directedness ��ϕ → ��ϕ
Mn (for all n) (�〈K 〉ϕ ∧ �Kψ1 ∧ . . . ∧ �Kψn) → 〈K 〉(�ϕ ∧ �Kψ1 ∧ . . . ∧ �Kψn)

Although this list looks shorter than our list in Table 1, each of our axioms is simple and readable and has a transparent 
intuitive interpretation. In contrast, note the complexity and opaqueness of the last axiom schemata Mn above (having one 
schema for each natural number n). Our completeness result implies that all these complex validities are provable in our 
simple system (and in fact in the even simpler system that omits all the axioms that refer to the learner L). This shows 
the usefulness of adding the (expressively redundant) dynamic observation modalities: they help to describe the behaviour 
of the effort modality � in a much simpler and natural manner, by combining the Effort axiom and the Effort rule (which 
together capture the meaning of � as universally quantifying over observation modalities).

Moreover, our completeness proof is also much simpler (though with some technical twists). Traditionally, the use of 
canonical models has been considered impossible for Subset Space Logics, and so authors had to use other, more ad-hoc
methods (e.g., step-by-step constructions). The fact that in this paper we can get away with a canonical construction is again 
due to the addition of the dynamic modalities.

More recent papers, closely related to our contribution, are Bjorndahl [8], van Ditmarsch et al. [23,24], and Baltag et al. 
[7]. Bjorndahl [8] introduces dynamic modalities [ϕ] for arbitrary formulas (rather than restricting to observational variables 
[o], as we do), though with a different semantics (according to which [ϕ] restricts the space to the interior of ϕ , in contrast 
to our simpler semantics, that follows the standard definition of update or ‘public announcement’). His syntax does not con-
tain the effort modality, or any other form of quantifying over observations. The work of van Ditmarsch et al. [23,24] uses 
Bjorndahl-style dynamic modalities in combination with a topological version of the so-called ‘arbitrary public announce-
ment’ operator, which is a more syntactic-driven relative of the effort modality. This syntactic nature comes with a price: 
the logic of arbitrary public announcements is much less well-behaved than SSL (or our logic), in particular it has non-
compositional features (the meaning of a formula may depend on the meaning of all atomic variables, including the ones 
that do not occur in that formula). As a consequence, the soundness of (the arbitrary-public announcement analogue of) our 
Effort Rule is not at all obvious for their logic, which instead relies on an infinitary inference rule. Since that rule makes use 
of infinitely many premises, their complete axiomatisation is truly infinitary, and impossible to automatise: indeed, it does 
not even necessarily imply that the set of their validities is recursively enumerable (in contrast with our finitary axiomati-
sation, which immediately implies such a result). In [7] these problems are solved by replacing the arbitrary announcement 
modality with the effort modality (or equivalently, extending SSL with Bjorndahl-style dynamic modalities). But note that, in 
contrast to the work presented here, all the above papers are concerned only with axiomatisations over topological spaces (rather 
than the wider class of intersection spaces), and that none of them has any belief B or conjecture operators L. Hence, none of 
them can be used to capture any learning-theoretic notions going beyond finite identifiability.
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