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Abstract. In recent work, Stalnaker proposes a logical framework in which belief is realized
as a weakened form of knowledge [35]. Building on Stalnaker’s core insights, and using frame-
works developed in [11] and [3], we employ topological tools to refine and, we argue, improve on
this analysis. The structure of topological subset spaces allows for a natural distinction between
what is known and (roughly speaking) what is knowable; we argue that the foundational axioms
of Stalnaker’s system rely intuitively on both of these notions. More precisely, we argue that the
plausibility of the principles Stalnaker proposes relating knowledge and belief relies on a subtle
equivocation between an “evidence-in-hand” conception of knowledge and a weaker “evidence-out-
there” notion of what could come to be known. Our analysis leads to a trimodal logic of knowledge,
knowability, and belief interpreted in topological subset spaces in which belief is definable in terms
of knowledge and knowability. We provide a sound and complete axiomatization for this logic as well
as its uni-modal belief fragment. We then consider weaker logics that preserve suitable translations
of Stalnaker’s postulates, yet do not allow for any reduction of belief. We propose novel topological
semantics for these irreducible notions of belief, generalizing our previous semantics, and provide
sound and complete axiomatizations for the corresponding logics.

§1. Introduction. Epistemology has long been concerned with the relationship be-
tween knowledge and belief. There is a long tradition of attempting to strengthen the latter
to attain a satisfactory notion of the former: belief might be improved to true belief, to
“justified” true belief, to “correctly justified” true belief [16], to “undefeated justified”
true belief [27–30], and so on (see, e.g., [26, 34] for a survey). There has also been some
interest in reversing this project—deriving belief from knowledge—or, at least, putting
“knowledge first” [47]. In this spirit, following earlier work by Lenzen [31], Stalnaker has
proposed a framework in which belief is realized as a weakened form of knowledge [35].
More precisely, beginning with a logical system in which both belief and knowledge
are represented as primitives, Stalnaker formalizes some natural-seeming relationships
between the two and proves on the basis of these relationships that belief can be defined
out of knowledge.

This project is of both conceptual and technical interest. Philosophically speaking, it
provides a new perspective from which to investigate knowledge, belief, and their interplay.
Mathematically, it offers a potential route by which to represent belief in formal systems
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LOGIC AND TOPOLOGY FOR KNOWLEDGE, KNOWABILITY, AND BELIEF 749

that are designed to handle only knowledge. Both these themes underlie the present work.
Building on Stalnaker’s core insights, we employ topological tools to refine and, we argue,
improve on Stalnaker’s original system.

Our work brings together two distinct lines of research. Stalnaker’s epistemic-doxastic
axioms have motivated and inspired several prior topological proposals for the semantics
of belief [2–4,33], including most recently and most notably a proposal by Baltag, Bezhan-
ishvili, Özgün, & Smets [3] that is essentially recapitulated in our strongest logic for belief
(§3). Our development of this logic, however (as well as the new, weaker logics we study
in §4), relies crucially on a semantic framework defined in recent work by Bjorndahl [11]
that distinguishes what is known from (roughly speaking) what is knowable.

We argue that the foundational axioms of Stalnaker’s system rely intuitively on both
of these notions at various points. More precisely, we argue that the plausibility of the
principles Stalnaker proposes relating knowledge and belief relies on a subtle equivocation
between an “evidence-in-hand” conception of knowledge and a weaker “evidence-out-
there” notion of what could come to be known. As such, we find it quite natural to study
Stalnaker’s principles in the richer semantic setting developed in [11], which is based
on topological subset spaces, a class of epistemic models of growing interest in recent
years [11, 17, 32, 40, 41]. These models support a careful reworking of Stalnaker’s system
in a manner that respects the distinction described above, yielding a trimodal logic of
knowledge, knowability, and belief that is our main object of study.

Subset spaces have been employed in the representation of a variety of epistemic notions,
including knowledge, learning, and public announcement (see, e.g., [1, 8, 9, 23, 24, 32, 45,
46]), but to the best of our knowledge this article contains the first formalization of belief
in subset space semantics. Stalnaker’s original system is an extension of the basic logic
of knowledge S4; belief emerges as a standard KD45 modality, as it is often assumed to
be, while knowledge turns out to satisfy the stronger but somewhat less common S4.2
axioms. Our system, by contrast, is an extension of the basic bimodal logic of knowledge-
and-knowability introduced in [11]; belief is similarly KD45, while knowledge is S5 and
knowability is S4; thus, our approach preserves what are arguably the desirable properties
of belief while cleanly dividing “knowledge” into two conceptually distinct and familiar
logical constructs.

In Stalnaker’s system, belief can be defined in terms of knowledge; in our system, we
prove that belief can be defined in terms of knowledge and knowability (Proposition 3.3).
This yields a purely topological interpretation of belief that coincides with that previously
proposed by Baltag et al. [3]: roughly speaking, while knowledge is interpreted (as usual)
as “truth in all possible alternatives,” belief becomes “truth in most possible alternatives,”
with the meaning of “most” cashed out topologically. The conceptual underpinning of this
interpretation of belief as developed by Baltag et al., and its connection to the present work,
is discussed further in §5.

In this richer topological setting, the translation of Stalnaker’s postulates do not in them-
selves entail that belief is reducible to knowledge (or even knowledge-and-knowability):
our characterization of belief in these terms relies on two additional principles we call
“weak factivity” and “confident belief.” This motivates the study of weaker logical systems
obtained by rejecting one or both of these principles. We initiate the investigation of these
systems by proposing novel topological semantics that aim to capture the corresponding,
irreducible notions of belief.

This rest of the article is organized as follows. In §2 we present Stalnaker’s original
system, motivate our objections to it, and introduce the formal logical framework that
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750 ADAM BJORNDAHL AND AYBÜKE ÖZGÜN

supports our revision. In §3 we present our revised system, explore its relationship to
Stalnaker’s system, and prove an analogue to Stalnaker’s characterization result: belief
can be defined out of knowledge and knowability. We also establish that our system is
sound and complete with respect to the class of topological subset models, and that the
pure logic of belief it embeds is axiomatized by the standard KD45 system. In §4 we
investigate weaker logics as discussed above and develop the semantic tools needed to
interpret belief in this more general context; we also provide soundness and completeness
results for each of these logics. §5 concludes. Since the technical details are not essential
to the main philosophical arguments of the article, several of the longer proofs are omitted
from the main body and collected in §6.

§2. Knowledge, knowability, and belief. Given unary modalities �1, . . . , �k, let
L�1,...,�k denote the propositional language recursively generated by

ϕ ::= p | ¬ϕ |ϕ ∧ ψ | �i ϕ,

where p ∈ PROP, the (countable) set of primitive propositions, and 1 ≤ i ≤ k. Our focus
in this article is the trimodal language LK,�,B and various fragments thereof, where we
read Kϕ as “the agent knows ϕ”, �ϕ as “ϕ is knowable (by the agent)” or “the agent could
come to know ϕ”, and Bϕ as “the agent believes ϕ”. The Boolean connectives ∨, →, and
↔ are defined as usual, and ⊥ is defined as an abbreviation for p ∧ ¬p. We also employ K̂
as an abbreviation for ¬K¬, � for ¬�¬, and B̂ for ¬B¬.

(K�) 
 �(ϕ → ψ) → (�ϕ → �ψ) Distribution
(D�) 
 �ϕ → ¬ � ¬ϕ Consistency
(T�) 
 �ϕ → ϕ Factivity
(4�) 
 �ϕ → � � ϕ Positive introspection
(.2�) 
 ¬ � ¬ � ϕ → �¬ � ¬ϕ Directedness
(5�) 
 ¬ � ϕ → �¬ � ϕ Negative introspection
(Nec�) From 
 ϕ infer 
 �ϕ Necessitation

Table 1. Some axiom schemes and a rule of inference for �

Let CPL denote an axiomatization of classical propositional logic. Then, following
standard naming conventions, we define the following logical systems:

K� = CPL + (K�) + (Nec�)
S4� = K� + (T�) + (4�)

S4.2� = S4� + (.2�)
S5� = S4� + (5�)

KD45� = K� + (D�) + (4�) + (5�).

2.1. Stalnaker’s system. Stalnaker [35] works with the language LK,B, augmenting
the logic S4K with the additional axioms schemes presented in Table 2. Let Stal denote
this combined logic. Stalnaker proves that this system yields the pure belief logic KD45B;
moreover, he shows that Stal proves the following equivalence: Bϕ ↔ K̂Kϕ. Thus, belief
in this system is reducible to knowledge; every formula of LK,B can be translated into
a provably equivalent formula in LK . Stalnaker also shows that although only the S4K

system is assumed for knowledge, Stal actually derives the stronger system S4.2K .

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020319000509
Downloaded from https://www.cambridge.org/core. UVA Universiteit van Amsterdam, on 09 Mar 2021 at 18:58:50, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000509
https://www.cambridge.org/core


LOGIC AND TOPOLOGY FOR KNOWLEDGE, KNOWABILITY, AND BELIEF 751

Table 2. Stalnaker’s additional axiom schemes

(DB) 
 Bϕ → ¬B¬ϕ Consistency of belief
(sPI) 
 Bϕ → KBϕ Strong positive introspection
(sNI) 
 ¬Bϕ → K¬Bϕ Strong negative introspection
(KB) 
 Kϕ → Bϕ Knowledge implies belief
(FB) 
 Bϕ → BKϕ Full belief

What justifies the assumption of these particular properties of knowledge and belief? It
is, of course, possible to object to any of them (including the features of knowledge picked
out by the system S4K); however, in this article we focus on the relationships expressed
in (KB) and (FB). That knowing implies believing is widely taken for granted—loosely
speaking, it corresponds to a conception of knowledge as a special kind of belief. Full
belief,1 on the other hand, may seem more contentious; this is because it is keyed to a
rather strong notion of belief. The English verb “to believe” has a variety of uses that vary
quite a bit in the nature of the attitude ascribed to the subject. For example, the sentence,
“I believe Mary is in her office, but I’m not sure” makes a clearly possibilistic claim,
whereas, “I believe that nothing can travel faster than the speed of light” might naturally
be interpreted as expressing a kind of certainty. It is this latter sense of belief that Stalnaker
seeks to capture: belief as subjective certainty. On this reading, (FB) essentially stipulates
that being certain is not subjectively distinguishable from knowing: an agent who feels
certain that ϕ is true also feels certain that she knows that ϕ is true.

At a high level, then, each of (KB) and (FB) have a certain plausibility. Crucially,
however, we contend that their joint plausibility is predicated on an abstract conception
of knowledge that permits a kind of equivocation. In particular, tension between the two
emerges when knowledge is interpreted more concretely in terms of what is justified by a
body of evidence.

Consider the following informal account of knowledge: an agent knows something just
in case it is entailed by the available evidence. To be sure, this is still vague since we have
not yet specified what “evidence” is or what “available” means (we return to formalize
these notions in §2.2). But it is motivated by a very commonsense interpretation of knowl-
edge, as, for example, in a card game when one player is said to know their opponent
is not holding two aces on the basis of the fact that they are themselves holding three
aces.

Even at this informal level, one can see that something like this conception of knowledge
lies at the root of the standard possible worlds semantics for epistemic logic. Roughly
speaking, such semantics work as follows: each world w is associated with a set of ac-
cessible worlds R(w), and the agent is said to know ϕ at w just in case ϕ is true at all
worlds in R(w). A standard intuition for this interpretation of knowledge is given in terms
of evidence: the worlds in R(w) are exactly those compatible with the agent’s evidence
at w, and so the agent knows ϕ just in case the evidence rules out all not-ϕ possibilities.
Suppose, for instance, that you have measured your height and obtained a reading of 5 feet
and 10 inches ±1 inch. With this measurement in hand, you can be said to know that you
are less than 6 feet tall, having ruled out the possibility that you are taller.

1 Stalnaker calls this property “strong belief” but we, following [2, 5], adopt the term “full belief”
instead.
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Call this the evidence-in-hand conception of knowledge. Observe that it fits well with
the (KB) principle: evidence-in-hand that entails ϕ should surely also cause you to believe
ϕ. On the other hand, it does not sit comfortably with (FB): presumably you can be
(subjectively) certain of ϕ without simultaneously being certain that you currently have
evidence-in-hand that guarantees ϕ.2 However, the intuition for (FB) can be recovered
by shifting the meaning of “available evidence” to a weaker existential claim: that there is
evidence entailing ϕ—even if you don’t happen to personally have it in hand at the moment.
This corresponds to a transition from the known to the knowable. On this account, (FB) is
recast as “If you are certain of ϕ, then you are certain that there is evidence entailing ϕ”,
a sort of dictum of responsible belief: do not believe anything unless you think you could
come to know it. Returning to (KB), on the other hand, we see that it is not supported by
this weaker sense of evidence-availability: the fact that you could, in principle, discover
evidence entailing ϕ should not in itself imply that you believe ϕ.

This way of reconciling Stalnaker’s proposed axioms with an evidence-based account of
knowledge—namely, by carefully distinguishing between knowledge and knowability—
is the focus of the remainder of this article. We begin by defining a class of models rich
enough to interpret both of these modalities at once.

2.2. Topological subset models. A subset space is a pair (X,S)where X is a nonempty
set of worlds and S ⊆ 2X is a collection of subsets of X. A subset model X = (X,S, v) is a
subset space (X,S) together with a function v : PROP → 2X specifying, for each primitive
proposition p ∈ PROP, its extension v(p).

Subset space semantics interpret formulas not at worlds x but at epistemic scenarios of
the form (x,U), where x ∈ U ∈ S . Let ES(X ) denote the collection of all such pairs in
X . Given an epistemic scenario (x,U) ∈ ES(X ), the set U is called its epistemic range;
intuitively, it represents the agent’s current information as determined, for example, by the
measurements she has taken. We interpret LK in X as follows:

(X , x,U) |� p iff x ∈ v(p)
(X , x,U) |� ¬ϕ iff (X , x,U) |� ϕ
(X , x,U) |� ϕ ∧ ψ iff (X , x,U) |� ϕ and (X , x,U) |� ψ
(X , x,U) |� Kϕ iff (∀y ∈ U)((X , y,U) |� ϕ).

Thus, knowledge is cashed out as truth in all epistemically possible worlds, analogously
to the standard semantics for knowledge in relational models. A formula ϕ is said to be
satisfiable in X if there is some (x,U) ∈ ES(X ) such that (X , x,U) |� ϕ, and valid in X
if for all (x,U) ∈ ES(X ) we have (X , x,U) |� ϕ. The set

[[ϕ]]U
X = {x ∈ U : (X , x,U) |� ϕ}

is called the extension of ϕ under U. We sometimes drop mention of the subset model X
when it is clear from context.

Subset space models are well-equipped to give an account of evidence-based knowledge
and its dynamics. Elements of S can be thought of as potential pieces of evidence, while

2 Indeed, if we assume (as seems natural in many contexts, e.g., the card game example) that
evidence-in-hand is “transparent” to the agent—she cannot have mistaken beliefs about what
evidence she has or what it entails—then (FB) actually collapses the distinction between belief
and knowledge. Of course, a model rich enough to represent nontransparency, i.e., uncertainty
about evidence, is also of interest, though it is beyond the scope of the present work. We tackle
precisely this issue in [12].
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the epistemic range U of an epistemic scenario (x,U) corresponds to the “evidence-in-
hand” by means of which the agent’s knowledge is evaluated. This is made precise in the
semantic clause for Kϕ, which stipulates that the agent knows ϕ just in case ϕ is entailed
by the evidence-in-hand.

In this framework, stronger evidence corresponds to a smaller epistemic range, and
whether a given proposition can come to be known corresponds (roughly speaking) to
whether there exists a sufficiently strong piece of (true) evidence that entails it. This notion
is naturally and succinctly formalized topologically.

A topological space is a pair (X, T ) where X is a nonempty set and T ⊆ 2X is a
collection of subsets of X that covers X and is closed under finite intersections and arbitrary
unions. The collection T is called a topology on X and elements of T are called open
sets. In what follows we assume familiarity with basic topological notions; for a general
introduction to topology we refer the reader to [18, 19].

A topological subset model is a subset model X = (X, T , v) in which T is a topology
on X. Clearly every topological space is a subset space. But topological spaces possess ad-
ditional structure that enables us to study the kinds of epistemic dynamics we are interested
in. More precisely, we can capture a notion of knowability via the following definition: for
A ⊆ X, say that x lies in the interior of A if there is some U ∈ T such that x ∈ U ⊆ A.
The set of all points in the interior of A is denoted int(A); it is easy to see that int(A) is
the largest open set contained in A. Given an epistemic scenario (x,U) and a primitive
proposition p, we have x ∈ int([[p]]U) precisely when there is some evidence V ∈ T that is
true at x and that entails p. We therefore interpret the extended language LK,� that includes
the “knowable” modality in X via the additional recursive clause

(X , x,U) |� �ϕ iff x ∈ int([[ϕ]]U).

The formula �ϕ thus represents knowability as a restricted existential claim over the set T
of available pieces of evidence. The dual modality correspondingly satisfies

(X , x,U) |� �ϕ iff x ∈ cl([[ϕ]]U),

where cl denotes the topological closure operator.3 Since the formula �¬ϕ reads as “the
agent could come to know that ϕ is false,” one intuitive reading of its negation, �ϕ, is “ϕ
is unfalsifiable”.

It is worth noting that the intuition behind reading �ϕ as “ϕ is knowable” can falter
when ϕ is itself an epistemic formula. In particular, if ϕ is the Moore sentence p ∧ ¬Kp,
then Kϕ is not satisfiable in any subset model, so in this sense ϕ can never be known;
nonetheless, �ϕ is satisfiable. Loosely speaking, this is because our language abstracts
away from the implicit temporal and dynamic dimension of knowability. In this respect,
�ϕ might be more accurately glossed as “one could come to know what ϕ used to express
(before you came to know it)”.4 In the case of the Moore sentence, the satisfiability of �ϕ

3 It is not hard to see that [[�ϕ]]U = int([[ϕ]]U) as one might expect; however, since the closure of
[[ϕ]]U need not be a subset of U, we have [[�ϕ]]U = cl([[ϕ]]U) ∩ U.

4 This reading suggests a strong link to conditional belief modalities, which are meant to capture
an agent’s revised beliefs about how the world was before learning the new information. More
precisely, a conditional belief formula Bϕψ is read as “if the agent would learn ϕ, then she would
come to believe thatψ was the case (before the learning)” [6, p. 14]. Borrowing this interpretation,
we might say that �ϕ represents hypothetical, conditional knowledge of ϕ where the condition
consists in having some piece of evidence V entailing ϕ as evidence-in-hand: “if the agent were
to have V as evidence-in-hand, she would know ϕ was the case (before having had the evidence).”
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simply corresponds to the existence of evidence-out-there that implies both that p is true
and that you don’t currently know p, though of course if you were to get this evidence,
you would thereafter come to know p. Since primitive propositions do not change their
truth value based on the agent’s epistemic state, this subtlety is irrelevant for propositional
knowledge and knowability.

A closely related epistemic puzzle is Fitch’s famous Paradox of Knowability [20]. This
much discussed paradox consists of a proof which shows that the Verification Thesis
that every truth is knowable—where “knowable” here is understood as the metaphysical
possibility of knowledge, not as potential knowledge—erases the distinction between the
notions of truth and knowledge (see, e.g., [14] for a concise summary of Fitch’s proof
and responses to the paradox). The notion of knowability we endorse in this article—
understood as evidence-based potential knowledge—on the other hand does not fall prey
to Fitch’s paradox. Appealing to Fuhrmann’s reformulation of the Fitch-argument based
on the potential-knowledge interpretation of knowability [21], the verification thesis in the
current framework takes the shape of the “knowability thesis”,

ϕ → �ϕ,

stating that for every true proposition there is an available piece of evidence(-out-there)
that supports it. While this principle is arguably too strong (and is certainly not a validity
with respect to topological subset spaces in general), even adopting it does not lead to the
collapse of knowledge and truth in our system.5

For the purposes of this article, we opt for the simplified “knowability” gloss of the �

modality, and leave further investigation of the subtleties concerning Moore sentences to
future work.6

§3. Stalnaker’s system revised. Like Stalnaker, we augment a basic logic of knowl-
edge with some additional axiom schemes that speak to the relationship between belief and
knowledge. Unlike Stalnaker, however, we work with the language LK,�,B and take as our
“basic logic of knowledge” the system

ELK,� = S5K + S4� + (KI),

where (KI) denotes the axiom scheme Kϕ → �ϕ. The evidence-in-hand conception of
knowledge captured by these semantics for K is based on the idea that evidence-in-hand
is completely transparent to the agent (as discussed in footnote 2). That is, we assume that
evidence-in-hand always counts as evidence that the agent possesses that very evidence
(for example, in a card game, holding two aces is not only evidence that your opponent
doesn’t hold three aces but also that you are holding two aces). For this reason, the agent is
fully introspective with regard to the evidence-in-hand, that is, K is an S5-type modality.7

This similarly accounts for the � modality satisfying axiom (4�) but not (5�): if there is

5 It is easy to see that ϕ → �ϕ is valid in X = (X,T , v) iff (X,T ) is a discrete space. However,
it is straightforward to show that the Omniscience Principle, ϕ → Kϕ, which equates knowledge
and truth in the presence of (TK ), is not guaranteed to be valid in discrete spaces.

6 For a discussion of different notions of knowability and their link to Fitch’s paradox, we refer the
interested reader to [14, 21, 42]. In particular, [21] discusses a notion of knowability as potential
knowledge in the same spirit of our work, and [36, 42] consider dynamic notions of knowability.

7 Once again, this implicitly assumes that possessing a piece of evidence also means understanding
that piece of evidence—what it entails and does not entail. Relaxing this assumption is the subject
of our work in [12].
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evidence-out-there entailing ϕ, then that very evidence also entails (trivially) that there is
evidence(-out-there) entailing ϕ. On the other hand, absence of evidence does not itself
constitute evidence of absence: when there is no evidence-out-there entailing ϕ, it doesn’t
follow that this lack of evidence is itself entailed by some piece of evidence.

The system ELK,� was defined by Bjorndahl [11] and shown to be exactly the logic of
topological subset spaces.

THEOREM 3.1 ([11]). ELK,� is a sound and complete axiomatization of LK,� with respect
to the class of all topological subset spaces: for every ϕ ∈ LK,�, ϕ is provable in ELK,� if
and only if ϕ is valid in all topological subset models.

We strengthen ELK,� with the additional axiom schemes given in Table 3. Let SELK,�,B

denote the resulting logic. (sPI) and (KB) occur here just as they do in Stalnaker’s original
system (Table 2), and though (KB) is not an axiom of Stal, it is derivable in that system. The
remaining axioms involve the � modality and thus cannot themselves be part of Stalnaker’s
system; however, if we forget the distinction between � and K (and between � and K̂), all
of them do hold in Stal, as made precise in Proposition 3.2.

PROPOSITION 3.2. Let t : LK,�,B → LK,B be the map that replaces each instance of
� with K. Then for every ϕ that is an instance of an axiom scheme from Table 3, we have

Stal t(ϕ).

Proof. This is trivial for (sPI), (KB), and (RB). (KB) follows immediately from the fact
that Stal validates KD45B. After applying t, (wF) becomes Bϕ → K̂ϕ, which follows
easily from the fact that 
Stal Bϕ ↔ K̂Kϕ. Finally, under t, (CB) becomes B(¬Kϕ →
K¬Kϕ), which follows directly from the aforementioned equivalence together with the
fact that 
S4K K̂K(¬Kϕ → K¬Kϕ). �

Thus, modulo the distinction between knowledge and knowablity, we make no assump-
tions beyond what follows from Stalnaker’s own stipulations. Of course, the distinction
between knowledge and knowability is crucial for us. Responsible belief differs from full
belief in that K is replaced by �, exactly as motivated in §2.1; it says that if you are
sure of ϕ, then you must also be sure that there is some evidence that entails ϕ. Weak
factivity and confident belief do not directly correspond to any of Stalnaker’s axioms, but
they are necessary to establish an analogue of Stalnaker’s reduction of belief to knowledge
(Proposition 3.3). Of course, one need not adopt these principles; indeed, rejecting them
allows one to assent to the spirit of Stalnaker’s premises without committing oneself to his
conclusion that belief can be defined out of knowledge (or knowability). We return in §4
to consider weaker logics that omit one or both of (wF) and (CB).

Weak factivity can be understood, given (KI), as a strengthening of the formula Bϕ →
K̂ϕ (which is provable in Stal). Intuitively, it says that if you are certain of ϕ, then ϕ must

Table 3. Additional axioms schemes for SELK,�,B

(KB) 
 B(ϕ → ψ) → (Bϕ → Bψ) Distribution of belief
(sPI) 
 Bϕ → KBϕ Strong positive introspection
(KB) 
 Kϕ → Bϕ Knowledge implies belief
(RB) 
 Bϕ → B�ϕ Responsible belief
(wF) 
 Bϕ → �ϕ Weak factivity
(CB) 
 B(¬�ϕ → �¬�ϕ) Confident belief
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be compatible with all the available evidence (in hand or not). Thus, while belief is not
required to be factive—you can believe false things—(wF) does impose a weaker kind of
connection to the world—you cannot believe knowably false things.

Confident belief expresses a kind of faith in the justificatory power of evidence. Consider
the implication ¬�ϕ → �¬�ϕ, which effectively says that ϕ is either knowable or, if not,
that you could come to know that it is unknowable. This is just the negative introspection
axiom for the � modality, and does not hold in general; topologically speaking, it fails at
the boundary points of the extension of �ϕ—where no measurement can entail ϕ yet every
measurement leaves open the possibility that some further measurement will. What (CB)
stipulates is that the agent is sure that they are not in such a “boundary case”—that every
formula ϕ is either knowable or, if not, knowably unknowable.

Stalnaker’s reduction of belief to knowledge has an analogue in this setting: every for-
mula in LK,�,B is provably equivalent to a formula in LK,� via the following equivalence.

PROPOSITION 3.3. The formula Bϕ ↔ K��ϕ is provable in SELK,�,B.

Proof. We present an abridged derivation:

1. Bϕ → ��ϕ (RB), (wF)
2. KBϕ → K��ϕ (NecK ), (KK )
3. Bϕ → KBϕ (sPI)
4. Bϕ → K��ϕ CPL: 2, 3
5. B(¬�ϕ → �¬�ϕ) (CB)
6. (¬�ϕ → �¬�ϕ) → (��ϕ → ϕ) (T�), CPL
7. B(¬�ϕ → �¬�ϕ) → B(��ϕ → ϕ) (NecK ), (KB), (KB)
8. B(��ϕ → ϕ) CPL: 5, 7
9. B��ϕ → Bϕ (KB)
10. K��ϕ → B��ϕ (KB)
11. K��ϕ → Bϕ CPL: 9, 10
12. Bϕ ↔ K��ϕ CPL: 4, 11.

Thus, rather than being identified with the “epistemic possibility of knowledge” [35] as
in Stalnaker’s framework, to believe ϕ in this framework is to know that the knowability
of ϕ is unfalsifiable. This is a bit of a mouthful, so consider for a moment the meaning of
the subformula ��ϕ: in the informal language of evidence, this says that every piece of
evidence is compatible not only with the truth of ϕ, but with the knowability of ϕ. In other
words: no possible measurement can rule out the prospect that some further measurement
will definitively establish ϕ. To believe ϕ, according to Proposition 3.3, is to know this.

This equivalence also tells us exactly how to extend topological subset space semantics
to the language LK,�,B:

(X , x,U) |� Bϕ iff (X , x,U) |� K��ϕ
iff (∀y ∈ U)(y ∈ cl(int([[ϕ]]U)))
iff U ⊆ cl(int([[ϕ]]U)).

Thus, the agent believes ϕ at (x,U) just in case the interior of [[ϕ]]U is dense in U.
The collection of sets that have dense interiors on U forms a filter,8 making it a good

8 A nonempty collection of subsets forms a filter if it is closed under taking supersets and finite
intersections.
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mathematical notion of largeness: sets with dense interior can be thought of as taking up
“most” of the space. This provides an appealing intuition for the semantics of belief that
runs parallel to that for knowledge: the agent knows ϕ at (x,U) iff ϕ is true at all points in
U, whereas the agent believes ϕ at (x,U) iff ϕ is true at most points in U.

As mentioned in the introduction, this interpretation of belief as “truth at most points”
(in a given domain) was first studied by Baltag et al. as a topologically natural, evidence-
based notion of belief [3]. Though their motivation and conceptual underpinning differ
from ours, the semantics for belief we have derived in this section essentially coincide
with those given in [3]. We discuss this connection further in §5.

3.1. Technical results. Let (EQ) denote the scheme Bϕ ↔ K��ϕ. It turns out that
this equivalence is not only provable in SELK,�,B, but in fact it characterizes SELK,�,B as
an extension of ELK,�. To make this precise, let

EL+
K,� = ELK,� + (EQ).

We then have:

PROPOSITION 3.4. EL+
K,� and SELK,�,B prove the same theorems.

From this it is not hard to establish soundness and completeness of SELK,�,B:

THEOREM 3.5. SELK,�,B is a sound and complete axiomatization of LK,�,B with respect
to the class of topological subset models: for every ϕ ∈ LK,�,B, ϕ is valid in all topological
subset models if and only if ϕ is provable in SELK,�,B.

Much work in belief representation takes the logical principles of KD45B for granted
(see, e.g., [7, 25, 43]). An important feature of SELK,�,B is that it derives these principles:

PROPOSITION 3.6. For every ϕ ∈ LB, if 
KD45B ϕ, then 
SELK,�,B ϕ.

In fact, KD45B is not merely derivable in our logic—it completely characterizes belief as
interpreted in topological models. That is, KD45B proves exactly the validities expressible
in the language LB:

THEOREM 3.7. KD45B is a sound and complete axiomatization of LB with respect to the
class of all topological subset spaces: for every ϕ ∈ LB, ϕ is provable in KD45B if and
only if ϕ is valid in all topological subset models.

Soundness follows easily from the above. The proof of completeness is more involved;
we include it in §6.

§4. Weaker notions of belief. In §3, we motivated the axioms of our system SELK,�,B

in part by the fact that they allowed us to achieve a reduction of belief to knowledge-
and-knowability in the spirit of Stalnaker’s result. SELK,�,B includes several of Stalnaker
original axioms (or modifications thereof), but also two new schemes: weak factivity (wF)
and confident belief (CB). As noted, if we forget the distinction between knowledge and
knowability, each of these schemes holds in Stal (Proposition 3.2). Nonetheless, in our
tri-modal logic these two principles do not follow from the others: one can adopt (our
translations of) Stalnaker’s original principles while rejecting one or both of (wF) and
(CB). In particular, this allows one to essentially accept all of Stalnaker’s premises without
being forced to the conclusion that belief is reducible to knowledge (or even knowledge-
and-knowability). We are therefore motivated to generalize our earlier semantics in order
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Table 4. Additional axiom schemes for ELK,�,B

(KB) 
 B(ϕ → ψ) → (Bϕ → Bψ) Distribution of belief
(sPI) 
 Bϕ → KBϕ Strong positive introspection
(KB) 
 Kϕ → Bϕ Knowledge implies belief
(RB) 
 Bϕ → B�ϕ Responsible belief

to study weaker logics in which the belief modality is not definable and so requires its own
semantic machinery.

In this section we do just this: we augment ELK,� with the axiom schemes given in Table
4 to form the logic ELK,�,B, and prove that this system is sound and complete with respect
to the new semantics defined below. We then consider logics intermediate in strength
between ELK,�,B and SELK,�,B—specifically, those obtained by augmenting ELK,�,B

with the axioms (DB) (consistency of belief), (wF), or (CB)—and establish soundness and
completeness results for these logics as well.

As before, we rely on topological subset models X = (X, T , v) for the requisite se-
mantic structure (see §2.2); however, we define the evaluation of formulas with respect to
epistemic-doxastic (e-d) scenarios, which are tuples of the form (x,U,V) where (x,U) is
an epistemic scenario, V ∈ T , and V ⊆ U. We call V the doxastic range.9

The semantic evaluation for the primitive propositions and the Boolean connectives is
defined as usual; for the modal operators, we make use of the following semantic clauses:

(X , x,U,V) |� Kϕ iff U = [[ϕ]]U,V

(X , x,U,V) |� �ϕ iff x ∈ int([[ϕ]]U,V)
(X , x,U,V) |� Bϕ iff V ⊆ [[ϕ]]U,V ,

where

[[ϕ]]U,V = {x ∈ U : (X , x,U,V) |� ϕ}.
Thus, the modalities K and � are interpreted essentially as they were before, while the

modality B is rendered as universal quantification over the doxastic range. Intuitively, we
might think of V as the agent’s “conjecture” about the way the world is, typically stronger
than what is guaranteed by her evidence-in-hand U. On this view, states in V might be
conceptualized as “more plausible” than states in U V from the agent’s perspective, with
belief being interpreted as truth in all these more plausible states (see, e.g., [6,22,37,39,44]
for more details on plausibility models for belief). Note that we do not require that x ∈ V;
this corresponds to the intuition that the agent may have false beliefs. Note also that none
of the modalities alter either the epistemic or the doxastic range; this is essentially what
guarantees the validity of the strong introspection axioms.10

In order to distinguish these semantics from those previous, we refer to them as epistemic-
doxastic (e-d) semantics for topological subset spaces.

9 If we want to insist on consistent beliefs, we should add the axiom (DB): Bϕ → B̂ϕ (or,
equivalently, B̂�) and require that V = ∅. We begin with the more general case, without these
assumptions.

10 We could, of course, consider even more general semantics that do not validate these axioms, but
as our goal here is to understand the role of weak factivity and confident belief in the context of
Stalnaker’s reduction of belief to knowledge, we leave such investigations to future work.
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THEOREM 4.1. ELK,�,B is a sound and complete axiomatization of LK,�,B with respect to
the class of all topological subset spaces under e-d semantics.

Call an e-d scenario (x,U,V) consistent if V = ∅, and call it dense if V is dense in U
(i.e., if U ⊆ cl(V)).

THEOREM 4.2. ELK,�,B + (DB) is a sound and complete axiomatization of LK,�,B with
respect to the class of all topological subset spaces under e-d semantics for consistent e-d
scenarios. ELK,�,B + (wF) is a sound and complete axiomatization of LK,�,B with respect
to the class of all topological subset spaces under e-d semantics for dense e-d scenarios.

4.1. Confident belief. It turns out that the strong semantics for the belief modality
presented in §3, namely

(X , x,U) |� Bϕ iff U ⊆ cl(int([[ϕ]]U)),

does not arise as a special case of our new e-d semantics: there is no condition (e.g.,
density) one can put on the doxastic range V so that these two interpretations of Bϕ agree
in general. Roughly speaking, this is because the formulas of the form ¬�ψ → �¬�ψ
correspond to the open and dense sets (i.e., [[¬�ψ → �¬�ψ]]U is always an open, dense
subset of U), but in general one cannot find a (nonempty) open set V that is simultaneously
contained in every open, dense set. As such, one cannot hope to validate (CB) in the e-d
semantics presented above without also validating B⊥.

However, we can validate (CB) on topological subset spaces by altering the semantic
interpretation of the belief modality so that, intuitively, it “ignores” nowhere dense sets.11

Loosely speaking, this works because nowhere dense sets are exactly the complements of
sets with dense interiors.

More precisely, we work with the same notion of e-d scenarios as before, but use the
following semantics clauses:

(X , x,U,V) |≈ p iff x ∈ v(p)
(X , x,U,V) |≈ ¬ϕ iff (X , x,U,V) |≈ ϕ
(X , x,U,V) |≈ ϕ ∧ ψ iff (X , x,U,V) |≈ ϕ and (X , x,U,V) |≈ ψ
(X , x,U,V) |≈ Kϕ iff U = [(ϕ)]U,V

(X , x,U,V) |≈ �ϕ iff x ∈ int([(ϕ)]U,V)
(X , x,U,V) |≈ Bϕ iff V ⊆∗ [(ϕ)]U,V ,

where

[(ϕ)]U,V = {x ∈ U : (X , x,U,V) |≈ ϕ},
and we write A ⊆∗ B iff A B is nowhere dense. In other words, we interpret everything
as before with the exception of the belief modality, which now effectively quantifies over
almost all worlds in the doxastic range V rather than over all worlds.12

THEOREM 4.3. ELK,�,B + (CB) is a sound and complete axiomatization of LK,�,B with
respect to the class of all topological subset spaces under e-d semantics using the semantics
given above: for all formulas ϕ ∈ LK,�,B, if |≈ ϕ, then 
ELK,�,B+(CB) ϕ. Moreover,

11 A subset S of a topological space is called nowhere dense if its closure has empty interior:
int(cl(S)) = ∅.

12 Given a subset A of a topological space X, we say that a property P holds for almost all points in
A just in case A ⊆∗ {x : P(x)}.
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SELK,�,B is sound and complete with respect to these semantics for e-d scenarios where
V = U.

Moreover, analogous to the results presented in §3.1, the unimodal system KD45B

soundly and completely axiomatizes confident belief in topological models with respect
to the consistent e-d scenarios under the e-d semantics given above.

THEOREM 4.4. KD45B is a sound and complete axiomatization of LB with respect to
the class of all topological subset spaces under e-d semantics for consistent e-d scenarios
using the semantics given above.

§5. Conclusion and discussion. When we think of knowledge as what is entailed
by the “available evidence”, a tension between two foundational principles proposed by
Stalnaker emerges. First, that whatever the available evidence entails is believed (Kϕ →
Bϕ), and second, that what is believed is believed to be entailed by the available evidence
(Bϕ → BKϕ). In the former case, it is natural to interpret “available” as, roughly speaking,
“currently in hand,” whereas in the latter, intuition better accords with a broader interpre-
tation of availability as referring to any evidence one could potentially access.

Being careful about this distinction leads to a natural division between what we might
call “knowledge” and “knowability”; the space of logical relationships between knowl-
edge, knowability, and belief turns out to be subtle and interesting. We have examined
several logics meant to capture some of these relationships, making essential use of topo-
logical structure, which is ideally suited to the representation of evidence and the epis-
temic/doxastic attitudes it informs. In this refined setting, belief can also be defined in
terms of knowledge and knowability, provided we take on two additional principles, “weak
factivity” (wF) and “confident belief” (CB); in this case, the semantics for belief have a
particularly appealing topological character: roughly speaking, a proposition is believed
just in case it is true in most possible alternatives, where “most” is interpreted topologically
as “everywhere except on a nowhere dense set.”

This interpretation of belief first appeared in the topological belief semantics presented
in [3]: Baltag et al. take the believed propositions to be the sets with dense interiors in a
given evidential topology. Interestingly, however, although these semantics essentially co-
incide with those we present in §3, the motivations and intuitions behind the two proposals
are quite different. Baltag et al. start with a subbase model in which the (subbasic) open sets
represent pieces of evidence that the agent has obtained directly via some observation or
measurement. They do not distinguish between evidence-in-hand and evidence-out-there
as we do; moreover, the notion of belief they seek to capture is that of justified belief, where
“justification”, roughly speaking, involves having evidence that cannot be defeated by any
other available evidence. (They also consider a weaker, defeasible type of knowledge,
correctly justified belief, and obtain topological semantics for it under which Stalnaker’s
original system Stal is sound and complete.) The fact that two rather different conceptions
of belief correspond to essentially the same topological interpretation is, we feel, quite
striking, and deserves a closer look.

Despite the elegance of this topological characterization of belief, our investigation of
the interplay between knowledge, knowability, and belief naturally leads to consideration
of weaker logics in which belief is not interpreted in this way. In particular, we focus on the
principles (wF) and (CB) and what is lost by their omission. Again we rely on topological
subset models to interpret these weaker logics, proposing novel semantic machinery to
do so. This machinery includes the introduction of the doxastic range and, perhaps more
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dramatically, a modification to the semantic satisfaction relation ( |≈ ) that builds the topo-
logical notion of “almost everywhere” quantification directly into the foundations of the
semantics. We believe this approach is an interesting area for future research, and in this
regard our soundness and completeness results may be taken as proof-of-concept.

§6. Proofs.

6.1. Soundness and completeness of SELK,�,B. Let e : LK,�,B → LK,� be the map
that replaces each instance of B with K��.

LEMMA 6.1. For all ϕ ∈ LK,�,B, we have 
EL+
K,�

ϕ ↔ e(ϕ).

Proof. This is a straightforward induction on the structure of ϕ using (EQ). �

PROPOSITION 6.2. EL+
K,� and SELK,�,B prove the same theorems.

Proof. In light of Proposition 3.3, it suffices to show that EL+
K,� proves everything in

Table 3. By Lemma 6.1, then, it suffices to show that for every ϕ that is an instance of an
axiom scheme from Table 3, we have 
ELK,� e(ϕ). And for this, by Theorem 3.1, we need
only show that each such e(ϕ) is valid in all topological subset models.

Let X = (X, T , v) be a topological subset model and (x,U) ∈ ES(X ).

(KB). Suppose (x,U) |� K��(ϕ → ψ) and (x,U) |� K��ϕ. Then U ⊆ cl(int([[ϕ →
ψ]]U)) ∩ cl(int([[ϕ]]U)). Let y ∈ U and let V be an open set containing y. Then
we must have V ∩ int([[ϕ → ψ]]U) = ∅ and so, since this set is also open,

V ∩ int([[ϕ → ψ]]U) ∩ int([[ϕ]]U) = ∅
∴ V ∩ int([[ϕ → ψ]]U ∩ [[ϕ]]U) = ∅

∴ V ∩ int([[ψ]]U) = ∅,
which establishes that y ∈ cl(int([[ψ]]U)). This shows that U ⊆ cl(int([[ψ]]U)),
and therefore (x,U) |� K��ψ .

(sPI). Suppose (x,U) |� K��ϕ. Then U = [[��ϕ]]U , and so for all y ∈ U we have
(y,U) |� K��ϕ. This implies that U = [[K��ϕ]]U , hence (x,U) |� KK��ϕ.

(KB). Suppose (x,U) |� Kϕ. Then U = [[ϕ]]U , and so (since U is open), U ⊆
cl(int([[ϕ]]U)), which implies (x,U) |� K��ϕ.

(RB). Suppose (x,U) |� K��ϕ. Then U ⊆ cl(int([[ϕ]]U)), so U ⊆ cl(int(int([[ϕ]]U))),
hence U = [[���ϕ]]U , which implies that (x,U) |� K���ϕ.

(wF). Suppose (x,U) |� K��ϕ. Then x ∈ U ⊆ cl(int([[ϕ]]U)) ⊆ cl([[ϕ]]U), which
implies that (x,U) |� �ϕ.

(CB). Observe that

[[¬�ϕ → �¬�ϕ]]U = [[�ϕ ∨ �¬�ϕ]]U = int([[ϕ]]U) ∪ int(X int([[ϕ]]U))

is an open set. Moreover, it is dense in U; to see this, let y ∈ U and let V be
an open neighbourhood of y. Then either V ∩ int([[ϕ]]U) = ∅ or, if not, V ⊆
X int([[ϕ]]U), hence V ⊆ int(X int([[ϕ]]U)). We therefore have

U ⊆ cl(int([[¬�ϕ → �¬�ϕ]]U)),

whence (x,U) |� K��(¬�ϕ → �¬�ϕ). �
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PROPOSITION 6.3. EL+
K,� is a sound axiomatization of LK,�,B with respect to the class

of topological subset models: for every ϕ ∈ LK,�,B, if ϕ is provable in EL+
K,� then ϕ is

valid in all topological subset models.

Proof. This follows from the soundness of ELK,� (Theorem 3.1) together with the fact
that the semantics for the B modality ensures that (EQ) is valid is all topological subset
models. �

COROLLARY 6.4. SELK,�,B is a sound axiomatization of LK,�,B with respect to the
class of topological subset models.

Proof. Immediate from Propositions 6.2 and 6.3. �

THEOREM 6.5. SELK,�,B is a complete axiomatization of LK,�,B with respect to the class
of topological subset models: for every ϕ ∈ LK,�,B, if ϕ is valid in all topological subset
models then ϕ is provable in SELK,�,B.

Proof. We show the contrapositive. Let ϕ ∈ LK,�,B be such that 
SELK,�,B ϕ. By Lemma
6.1 and Proposition 6.2 we have 
SELK,�,B ϕ ↔ e(ϕ), and so also 
SELK,�,B e(ϕ). Since
e(ϕ) ∈ LK,� and SELK,�,B is an extension of ELK,�, we know that 
ELK,� e(ϕ). Thus,
by Theorem 3.1, there exists a topological subset model X and (x,U) ∈ ES(X ) such that
(X , x,U) |� e(ϕ) and so, by the soundness of SELK,�,B, we obtain (X , x,U) |� ϕ. �

6.2. KD45B and the doxastic fragment LB.

PROPOSITION 6.6. For every ϕ ∈ LB, if 
KD45B ϕ, then 
SELK,�,B ϕ.

Proof. It suffices to show that SELK,�,B derives all the axioms and the rule of inference
of KD45B. (KB) is itself an axiom of SELK,�,B. It is not hard to see, using (wF) and
S4�, that 
SELK,�,B ¬B⊥; given this, (DB) follows from (KB) with ψ replaced by ⊥. (4B)
follows easily from (sPI) and (KB). To derive (5B), first observe that by (5K) we have

SELK,�,B ¬K��ϕ → K¬K��ϕ; from Proposition 3.3 it then follows that 
SELK,�,B¬Bϕ → K¬Bϕ, and so from (KB) we can deduce (5B). Lastly, (NecB) follows directly
from (NecK) together with (KB). �

THEOREM 6.7. KD45B is a sound and complete axiomatization of LB with respect to the
class of all topological subset spaces: for every ϕ ∈ LB, ϕ is provable in KD45B if and
only if ϕ is valid in all topological subset models.

Soundness follows immediately from Proposition 6.6 together with the soundness of
SELK,�,B (Corollary 6.4). The remainder of this section is devoted to developing the
tools needed to prove completeness. Our proof relies crucially on the standard Kripke-
style interpretation of LB in relational models and the completeness results pertaining
thereto. We therefore begin with a brief review of these notions (for a more comprehensive
overview, we direct the reader to [13, 15]).

A relational frame is a pair (X,R) where X is a nonempty set and R is a binary relation
on X. A relational model is a relational frame (X,R) equipped with a valuation function
v : PROP → 2X . The language LB is interpreted in a relational model M = (X,R, v)
by extending the valuation function via the standard recursive clauses for the Boolean
connectives together with the following:

(M, x) |� Bϕ iff (∀y ∈ X)(xRy implies (M, y) |� ϕ).
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Let ‖ϕ‖M = {x ∈ X : (M, x) |� ϕ}. A belief frame is a frame (X,R) where R is serial,
transitive, and Euclidean.13

THEOREM 6.8. KD45B is a sound and complete axiomatization of LB with respect to the
class of belief frames.

Proof. See, e.g., [15, chap. 5] or [13, chaps. 2, 4]. �
A frame (X,R) is called a brush if there exists a nonempty subset C ⊆ X such that

R = X × C. If such a C exists, clearly it is unique; call it the final cluster of the brush. A
brush is called a pin if |X C| = 1. It is not hard to see that every brush is a belief frame.
Conversely, the following Lemma shows that every belief frame (X,R) is a disjoint union
of brushes.14

LEMMA 6.9. Let (X,R) be a belief frame, and define

x ∼ y iff (∃z ∈ X)(xRz and yRz).

Then ∼ is an equivalence relation extending R. Moreover, if [x] denotes the equivalence
class of x under ∼, then ([x],R|[x]) is a brush, and (X,R) is the disjoint union of all such
brushes.

Proof. Reflexivity of ∼ follows from seriality of R, and symmetry is immediate. To see
that ∼ is transitive, suppose x ∼ x′ and x′ ∼ x′′. Then there exist y, z ∈ X such that xRy,
x′Ry, x′Rz, and x′′Rz. Because R is Euclidean, it follows that yRz; because R is transitive,
we can deduce that xRz; it follows that x ∼ x′′. To see that ∼ extends R, suppose xRy. Then
because R is Euclidean, we have yRy, which implies x ∼ y.

The fact that ∼ is an equivalence relation tells us that the sets [x] partition X; furthermore,
since xRy implies [x] = [y], we also know that the sets R|[x] partition R. Thus (X,R) is the
disjoint union of the frames ([x],R|[x]).

Finally we show that each such frame ([x],R|[x]) is a brush. Set Cx = {y ∈ [x] : yRy};
that Cx = ∅ follows easily from R being serial and Euclidean. Let y ∈ Cx. Then for all
x′ ∈ [x] we have x′ ∼ y, so there is some z ∈ X with x′Rz and yRz; now because R is
Euclidean, we can deduce that zRy, so by transitivity x′Ry. It follows that [x] × {y} ⊆ R,
hence [x] × Cx ⊆ R. On the other hand, if y /∈ Cx, then for every x′ ∈ [x] we have ¬(x′Ry),
or else the Euclidean property would imply yRy, a contradiction. Thus, R|[x] = [x] × Cx,
so ([x],R|[x]) is a brush with final cluster Cx. �

COROLLARY 6.10. KD45B is a sound and complete axiomatization of LB with respect
to the class of brushes and with respect to the class of pins.

There is a close connection between the relational semantics for LB presented above
and our topological semantics for this language. For any frame (X,R), let R+ denote the
reflexive closure of R:

R+ = R ∪ {(x, x) : x ∈ X}.
Given a transitive frame (X,R), the set BR+ = {R+(x) : x ∈ X} constitutes a topological
basis on X; denote by TR+ the topology generated by BR+ (see, e.g., [10, 38] for a more

13 A relation is serial if (∀x)(∃y)(xRy); it is transitive if (∀x, y, z)((xRy & yRz) ⇒ xRz); it is
Euclidean if (∀x, y, z)((xRy & xRz) ⇒ yRz).

14 A frame (X,R) is said to be a disjoint union of frames (Xi,Ri) provided the Xi partition X and the
Ri partition R.
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detailed discussion of this construction). It is well-known that (X, TR+) is an Alexandroff
space and, for every x ∈ X, the set R+(x) is the smallest open neighborhood of x.

LEMMA 6.11. Let (X,R) be a belief frame. For each x ∈ X, let Cx denote the final
cluster of the brush ([x],R|[x]) as in Lemma 6.9, and let int and cl denote the interior and
closure operators, respectively, in the topological space (X, TR+). Then for all x ∈ X and
every A ⊆ X:

1. [x] ∈ TR+ , and so (x, [x]) ∈ ES(XM);

2. R(x) = Cx ∈ TR+ ;

3. int(A) ∩ Cx = ∅ if and only if A ⊇ Cx;

4. cl(A) ⊇ [x] if and only if A ∩ Cx = ∅.

Proof.

1. This follows from the fact that y ∈ [x] implies R+(y) ⊆ [x], which in turn follows
from the fact that ∼ extends R (Lemma 6.9).

2. That R(x) = Cx follows from the fact that R|[x] = [x] × Cx (Lemma 6.9). To see that
Cx is open, observe that if y ∈ Cx, then R+(y) = R(y) = Cy = Cx.

3. Since Cx is open, it follows immediately that if A ⊇ Cx then int(A) ⊇ Cx, so in
particular int(A) ∩ Cx = ∅. Conversely, if y ∈ int(A) ∩ Cx then R+(y) ⊆ A, since
R+(y) is the smallest open neigbourhood of y; therefore, since R+(y) = R(y) = Cx,
we have A ⊇ Cx.

4. First suppose that y ∈ A ∩ Cx and let z ∈ [x]. By part 2, R+(z) ⊇ R(z) = Cx, and
so since R+(z) is the smallest open neighbourhood of z and y ∈ Cx, it follows that
z ∈ cl({y}) ⊆ cl(A), hence [x] ⊆ cl(A). Conversely, suppose that A ∩ Cx = ∅. Then
since Cx is open it follows that Cx ∩ cl(A) = ∅, which shows that [x] ⊆ cl(A).

�
Given a transitive model M = (X,R, v), let XM denote the topological subset model

constructed from M, namely (X, TR+ , v).

LEMMA 6.12. Let M = (X,R, v) be a relational model based on a belief frame. Then
for every formula ϕ ∈ LB, for every x ∈ X we have

(M, x) |� ϕ iff (XM, x, [x]) |� ϕ.

Proof. The proof follows by induction on the structure of ϕ; cases for the primitive
propositions and the Boolean connectives are elementary. So assume inductively that the
result holds for ϕ; we must show that it holds also for Bϕ. Note that the inductive hypothesis
implies that [[ϕ]][x] = ‖ϕ‖M ∩ [x], since by Lemma 6.9, y ∈ [x] implies [y] = [x].

(M, x) |� Bϕ iff R(x) ⊆ ‖ϕ‖M

iff Cx ⊆ ‖ϕ‖M (Lemma 6.11.2)

iff Cx ⊆ ‖ϕ‖M ∩ [x] (since Cx ⊆ [x])

iff Cx ⊆ [[ϕ]][x] (inductive hypothesis)

iff int([[ϕ]][x]) ∩ Cx = ∅ (Lemma 6.11.3)

iff cl(int([[ϕ]][x])) ⊇ [x] (Lemma 6.11.4)

iff (XM, x, [x]) |� Bϕ. �
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Completeness is an easy consequence of this lemma: if ϕ ∈ LB is such that 
KD45B ϕ,
then by Theorem 6.8 there is a relational model M based on a belief frame that refutes ϕ
at some point x. Then, by Lemma 6.12, ϕ is also refuted in XM at the epistemic scenario
(x, [x]). This completes the proof of Theorem 6.7.

6.3. Soundness and completeness of ELK,�,B.

THEOREM 6.13. ELK,�,B is a sound axiomatization of LK,�,B with respect to the class of
all topological subset spaces under e-d semantics.

Proof. The validity of the axioms without the modality B follows as in Theorem 3.1,
since the only difference here lies in the semantic clause for B. Let X = (X, T , v) be a
topological subset model, (x,U,V) an e-d scenario, and ϕ,ψ ∈ LK,�,B.

(KB). Suppose (x,U,V) |� B(ϕ → ψ) and (x,U,V) |� Bϕ. This means V ⊆ [[ϕ →
ψ]]U,V = (U \ [[ϕ]]U,V) ∪ [[ψ]]U,V and V ⊆ [[ϕ]]U,V , from which we obtain V ⊆
[[ψ]]U,V , i.e., (x,U,V) |� Bψ .

(sPI). Suppose (x,U,V) |� Bϕ. This means V ⊆ [[ϕ]]U,V . As such, for every y ∈ U we
have (y,U,V) |� Bϕ, which implies that [[Bϕ]]U,V = U, so (x,U,V) |� KBϕ.

(KB). Suppose (x,U,V) |� Kϕ. This means [[ϕ]]U,V = U. As V ⊆ U (by definition of
(x,U,V)), we obtain (x,U,V) |� Bϕ.

(RB). Suppose (x,U,V) |� Bϕ. This means V ⊆ [[ϕ]]U,V . Thus, since V is open, we
obtain V ⊆ int([[ϕ]]U,V). As int([[ϕ]]U,V) = [[�ϕ]]U,V , we have V ⊆ [[�ϕ]]U,V , i.e.,
(x,U,V) |� B�ϕ. �

Completeness follows from a fairly straightforward canonical model construction, simi-
lar to the completeness proof of ELK,� in [11]. Roughly speaking, we extend the canonical
model in [11] in order to be able to prove the truth lemma for the belief modality B.

Let Xc be the set of all maximal ELK,�,B-consistent sets of formulas. Define binary
relations ∼ and R on Xc by

x ∼ y iff (∀ϕ ∈ LK,�,B)(Kϕ ∈ x ⇔ Kϕ ∈ y)15

and

xRy iff (∀ϕ ∈ LK,�,B)(Bϕ ∈ x ⇒ ϕ ∈ y).

It is not hard to see that ∼ is an equivalence relation, hence, it induces equivalence classes
on Xc. Let [x] denote the equivalence class of x induced by the relation ∼ and let R(x) =
{y ∈ Xc | xRy}. Define ϕ̂ = {y ∈ Xc | ϕ ∈ y}, so x ∈ ϕ̂ iff ϕ ∈ x.

The axioms of ELK,�,B that relate K and B induce the following important links between
∼ and R:

LEMMA 6.14. For any x, y ∈ Xc, the following holds:

1. if x ∼ y then (∀ϕ ∈ LK,�,B)(Bϕ ∈ x iff Bϕ ∈ y);

2. if x ∼ y then R(x) = R(y);

3. R(x) ⊆ [x];

4. either R(x) ∩ R(y) = ∅ or R(x) = R(y).

Proof. Let x, y ∈ Xc.

15 In fact, this is equivalent to (∀ϕ ∈ LK,�,B)(Kϕ ∈ x ⇒ ϕ ∈ y), since K is an S5 modality.
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1. Suppose x ∼ y and let ϕ ∈ LK,�,B such that Bϕ ∈ x. By (sPI), we have KBϕ ∈ x. As
x ∼ y, we have KBϕ ∈ y. Thus, by (TK), we conclude Bϕ ∈ y. The other direction
follows analogously.

2. Suppose x ∼ y and take z ∈ R(x); let ϕ ∈ LK,�,B be such that Bϕ ∈ y. Since x ∼ y,
by Lemma 6.14.1, we have Bϕ ∈ x. Therefore, z ∈ R(x) implies that ϕ ∈ z. This
shows that z ∈ R(y), hence R(x) ⊆ R(y). The reverse inclusion follows similarly.

3. Let z ∈ R(x) and ϕ ∈ LK,�,B; we will show that Kϕ ∈ x iff Kϕ ∈ z. Suppose Kϕ ∈ x.
Then, by (4K), we have KKϕ ∈ x. This implies, by (KB), that BKϕ ∈ x. Hence, since
z ∈ R(x), we obtain Kϕ ∈ z. For the converse, suppose Kϕ ∈ x, i.e., ¬Kϕ ∈ x. Then,
by (5K), we have K¬Kϕ ∈ x. Again by (KB), we obtain B¬Kϕ ∈ x. Thus, since
z ∈ R(x), we obtain ¬Kϕ ∈ z, i.e., Kϕ ∈ z. We therefore conclude that z ∈ [x], hence
R(x) ⊆ [x].

4. Suppose R(x) ∩ R(y) = ∅. This means there is z ∈ Xc such that z ∈ R(x) and
z ∈ R(y). Then, by Lemma 6.14.3, we have x ∼ z and y ∼ z. Thus, by Lemma
6.14.2, R(x) = R(z) = R(y). �

Let T c be the topology on Xc generated by the collection

B = {[x] ∩ �̂ϕ | x ∈ Xc, ϕ ∈ LK,�,B} ∪ {R(x) ∩ �̂ϕ | x ∈ Xc, ϕ ∈ LK,�,B}.
It is not hard to prove that B is in fact a basis for T c. Define the canonical model X c

to be the tuple (Xc, T c, vc), where vc(p) = p̂. Observe that since �̂� = Xc, we have
[x],R(x) ∈ T c for all x ∈ Xc; therefore, by Lemma 6.14.3, for each x ∈ Xc the tuple
(x, [x],R(x)) is an e-d scenario.

LEMMA 6.15 (Truth lemma). For every ϕ ∈ LK,�,B and for each x ∈ Xc,

ϕ ∈ x iff (X c, x, [x],R(x)) |� ϕ.

Proof. The proof proceeds as usual by induction on the structure of ϕ; cases for the
primitive propositions and the Boolean connectives are elementary and the case for K is
presented in [11, Theorem 1, p. 16]. So assume inductively that the result holds for ϕ; we
must show that it holds also for �ϕ and Bϕ.

Case for �ϕ:

(⇒) Let �ϕ ∈ x. Then, observe that x ∈ �̂ϕ∩ [x] ⊆ {y ∈ [x] | ϕ ∈ y} (by x ∈ [x]
and (T�)). Since �̂ϕ ∩ [x] is open, it follows that

x ∈ int{y ∈ [x] | ϕ ∈ y}. (1)

By (IH), we also have

{y ∈ [x] | ϕ ∈ y} = {y ∈ [x] | (y, [y],R(y)) |� ϕ}
= {y ∈ [x] | (y, [x],R(x)) |� ϕ} (Lemma 6.14)

= [[ϕ]][x],R(x).

Therefore, by (1), we conclude that x ∈ int([[ϕ]][x],R(x)), i.e., (x, [x],R(x)) |�
�ϕ.

(⇐) Now suppose that (x, [x],R(x)) |� �ϕ. This means, by the semantics, that
x ∈ int([[ϕ]][x],R(x)). As above, this is equivalent to x ∈ int{y ∈ [x] | ϕ ∈ y}.
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It then follows that there exists U ∈ B such that

x ∈ U ⊆ {y ∈ [x] | ϕ ∈ y}.
By definition of B, the basic open neighbourhood U can be of the following
forms:

1. U = [z] ∩ �̂ψ , for some z ∈ Xc and ψ ∈ LK,�,B;

2. U = R(z) ∩ �̂ψ , for some z ∈ Xc and ψ ∈ LK,�,B.

However, since x ∈ U, we can simply replace the above cases by:

1. U = [x] ∩ �̂ψ , for some ψ ∈ LK,�,B;

2. U = R(x) ∩ �̂ψ , for some ψ ∈ LK,�,B, respectively.

The case for U = [x] ∩ �̂ψ follows similarly as in [11, Theorem 1, p. 16].
We here only prove the case for U = R(x) ∩ �̂ψ . We therefore have

x ∈ R(x) ∩ �̂ψ ⊆ {y ∈ [x] | ϕ ∈ y}. (2)

This means that for every y ∈ R(x), if �ψ ∈ y then ϕ ∈ y. Thus, we obtain
that {χ | Bχ ∈ x}∪{¬(�ψ → ϕ)} is an inconsistent set. Otherwise, it could
be extended to a maximally consistent set y such that y ∈ R(x), �ψ ∈ y and
ϕ ∈ y, contradicting (2). Thus, there exists a finite subset � ⊆ {χ | Bχ ∈ x}
such that



∧
χ∈�

χ → (�ψ → ϕ),

which implies by S4� that



∧
χ∈�

�χ → �(�ψ → ϕ).

Observe that, since x ∈ R(x), we have {χ | Bχ ∈ x} ⊆ x. Moreover, by
(RB), we also obtain that {�χ | Bχ ∈ x} ⊆ {χ | Bχ ∈ x} ⊆ x. We therefore
obtain that

∧
χ∈� �χ ∈ x, thus, that �(�ψ → ϕ) ∈ x. Then, by S4�, we

have �ψ → �ϕ ∈ x. As x ∈ �̂ψ , we conclude �ϕ ∈ x.

Case for Bϕ:

(⇒) Let Bϕ ∈ x. Then, by defn. of R, we have ϕ ∈ y for all y ∈ R(x). Then, by
(IH), we obtain (∀y ∈ R(x))(y, [y],R(y)) |� ϕ. By Lemma 6.14.3, y ∈ R(x)
implies x ∼ y. Thus, as [y] = [x] and R(x) = R(y) (Lemma 6.14.2), we
obtain, (∀y ∈ R(x))(y, [x],R(x)) |� ϕ. This means, R(x) ⊆ [[ϕ]][x],R(x),
thus, (x, [x],R(x)) |� Bϕ.

(⇐) Let Bϕ ∈ x. This implies, {ψ | Bψ ∈ x} ∪ {¬ϕ} is consistent. Otherwise,
there exists a finite subset � ⊆ {ψ | Bψ ∈ x} such that



∧
χ∈�

χ → ϕ.

Then, by normality of B,



∧
χ∈�

Bχ → Bϕ.
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Since Bχ ∈ x for all χ ∈ �, we have Bϕ ∈ x, contradicting the fact that x is
a consistent set.
Then, by Lindenbaum’s Lemma, {ψ | Bψ ∈ x} ∪ {¬ϕ} can be extended
to a maximally consistent set y. ¬ϕ ∈ y means that ϕ ∈ y. Thus, by IH,
(y, [y],R(y)) |� ϕ. Since {ψ | Bψ ∈ x} ⊆ y, we have y ∈ R(x). This means,
by Lemmas 6.14.3 and 6.14.2, [y] = [x] and R(x) = R(y). Therefore, as
[y] = [x] and R(x) = R(y), we have (y, [x],R(x)) |� ϕ. Thus, y ∈ R(x) but
y ∈ [[ϕ]][x],R(x) implying that (x, [x],R(x)) |� Bϕ. �

Moreover, Lemma 6.14.3 guarantees that the evaluation tuple (x, [x],R(x)) is of desired
kind (more precisely, the construction of the canonical model guarantees that R(x) ∈ T c,
for all x ∈ Xc and the aforementioned lemma makes sure that R(x) ⊆ [x]).

COROLLARY 6.16. ELK,�,B is a complete axiomatization of LK,�,B with respect to the
class of all topological subset spaces under e-d semantics.

Proof. Let ϕ ∈ LK,�,B such that 
ELK,�,B ϕ. Then, {¬ϕ} is consistent and can be
extended to a maximally consistent set x ∈ Xc. Then, by Lemma 6.15, we obtain that
(X c, x, [x],R(x)) |� ϕ. �

6.4. Consistent belief and weak factivity.

PROPOSITION 6.17. ELK,�,B + (DB) is a sound axiomatization of LK,�,B with re-
spect to the class of all topological subset spaces under e-d semantics for consistent e-d
scenarios.

Proof. The validity of the axioms of ELK,�,B follows as in Theorem 6.13, we only
need to prove the validity of (DB) for consistent e-d scenarios. Let X = (X, T , v) be a
topological subset model, (x,U,V) a consistent e-d scenario, and ϕ ∈ LK,�,B.

(DB). Suppose (x,U,V) |� Bϕ. This means V ⊆ [[ϕ]]U,V . Then, since V = ∅, we have
V ⊆ U \ [[ϕ]]U,V , therefore, (x,U,V) |� ¬B¬ϕ. �

The completeness proof follows similarly to the completeness proof of ELK,�,B and the
only difference lies in the requirement of a consistent e-d scenario in the corresponding
Truth Lemma. We therefore only need to prove that the canonical epistemic scenario
(x, [x],R(x)) of the system ELK,�,B+(DB) is consistent, i.e., we need to show that R(x) = ∅
for all maximally consistent sets of ELK,�,B + (DB). The canonical model for the system
ELK,�,B + (DB) is constructed as usual, exactly the same way as the one for
ELK,�,B.

LEMMA 6.18. The relation R of the canonical model X c = (Xc, T c, νc) for the system
ELK,�,B + (DB) is serial.

Proof. For any x ∈ Xc, the set {ψ | Bψ ∈ x} is consistent. Otherwise, there is a finite
subset � ⊆ {ψ | Bψ ∈ x} and ϕ ∈ {ψ | Bψ ∈ x} such that



∧
χ∈�

χ → ¬ϕ.

Then, by normality of B,



∧
χ∈�

Bχ → B¬ϕ.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020319000509
Downloaded from https://www.cambridge.org/core. UVA Universiteit van Amsterdam, on 09 Mar 2021 at 18:58:50, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020319000509
https://www.cambridge.org/core


LOGIC AND TOPOLOGY FOR KNOWLEDGE, KNOWABILITY, AND BELIEF 769

Since Bχ ∈ x for all χ ∈ �, we have B¬ϕ ∈ x. On the other hand, since Bϕ ∈ x
and 
 Bϕ → ¬B¬ϕ ((DB)-axiom), we obtain ¬B¬ϕ ∈ x, contradicting the fact that x
a maximally consistent set. Therefore, {ψ | Bψ ∈ x} can be extended to a maximally
consistent set y and, since {ψ | Bψ ∈ x} ⊆ y, we have xRy. �

COROLLARY 6.19. Let X c = (Xc, T c, νc) be the canonical model of the system
ELK,�,B + (DB). Then, for all x ∈ Xc, we have R(x) = ∅.

PROPOSITION 6.20. ELK,�,B + (DB) is a complete axiomatization of LK,�,B with
respect to the class of all topological subset spaces under e-d semantics for consistent
e-d scenarios.

Proof. Follows from Corollary 6.19 similarly to the proof of Corollary 6.16. �

PROPOSITION 6.21. ELK,�,B + (wF) is a sound axiomatization of LK,�,B with respect
to the class of all topological subset spaces under e-d semantics for dense e-d scenarios.

Proof. The validity of the axioms of ELK,�,B follows as in Theorem 6.13, we only need
to prove the validity of (wF) for dense e-d scenarios. Let X = (X, T , v) be a topological
subset model, (x,U,V) a dense e-d scenario, and ϕ ∈ LK,�,B.

(wF). Suppose (x,U,V) |� Bϕ. This means V ⊆ [[ϕ]]U,V . Then, since x ∈ U ⊆ cl(V),
we obtain x ∈ U ⊆ cl([[ϕ]]U,V), meaning that (x,U,V) |� �ϕ. �

The completeness result for ELK,�,B + (wF) follows similarly to the above case: the
only key step we need to show is that the canonical epistemic scenario (x, [x],R(x)) of the
system ELK,�,B + (wF) is dense.

LEMMA 6.22. Let X c = (Xc, T c, νc) be the canonical model of the system ELK,�,B +
(wF). Then, for all x ∈ Xc, we have that R(x) is dense in [x], i.e., that [x] ⊆ cl(R(x)).

Proof. Let x ∈ Xc and y ∈ [x]. We want to show that y ∈ cl(R(x)), i.e., for all U ∈ B
with y ∈ U, we should show that U ∩ R(x) = ∅ holds. Let U ∈ B such that y ∈ U. By
definition of B, the basic open neighbourhood U can be of the following forms:

1. U = R(z) ∩ �̂ϕ, for some z ∈ Xc and ϕ ∈ LK,�,B;

2. U = [z] ∩ �̂ϕ, for some z ∈ Xc and ϕ ∈ LK,�,B.

However, since y ∈ [x] and y ∈ U, we can simply replace the above cases by:

1. U = R(x) ∩ �̂ϕ, for some ϕ ∈ LK,�,B;

2. U = [x] ∩ �̂ϕ, for some ϕ ∈ LK,�,B, respectively.

If (1) is the case, the result follows trivially since y ∈ U = R(x) ∩ �̂ϕ = U ∩ R(x).
If (2) is the case, U ∩ R(x) = ([x] ∩ �̂ϕ) ∩ R(x) = �̂ϕ ∩ R(x) (by Lemma 6.14.3).

Therefore, we need to show that R(x) ∩ �̂ϕ = ∅:
Consider the set {ψ | Bψ ∈ y} ∪ {�ϕ}. This set is consistent, otherwise, there exists a

finite subset � ⊆ {ψ | Bψ ∈ y} such that



∧
χ∈�

χ → �¬ϕ.

Then, by normality of B,
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∧
χ∈�

Bχ → B�¬ϕ.

We also have

1. 
 B�¬ϕ → ��¬ϕ (wF)
2. 
 ��¬ϕ → �¬ϕ (4�)
3. 
 B�¬ϕ → �¬ϕ CPL: 1, 2.

Hence,



∧
χ∈�

Bχ → �¬ϕ.

Therefore, since Bχ ∈ y for all χ ∈ �, we have �¬ϕ ∈ y. But we know that �ϕ(:=
¬�¬ϕ) ∈ y (since y ∈ U = [x] ∩ �̂ϕ), contradicting the maximal consistency of y.
Therefore, {ψ | Bψ ∈ y} ∪ {�ϕ} is consistent. Moreover, by Lindenbaum’s Lemma, it can
be extended to a maximally consistent set z. Therefore, as {ψ | Bψ ∈ y} ⊆ z, we have
z ∈ R(y) = R(x) (since y ∈ [x], we have R(x) = R(y) (by Lemma 6.14.2)). Moreover,
�ϕ ∈ z, i.e., z ∈ �̂ϕ. We therefore conclude that z ∈ �̂ϕ ∩ R(x) = ∅. �

COROLLARY 6.23. Let X c = (Xc, T c, νc) be the canonical model of the system
ELK,�,B + (wF). Then, for all x ∈ Xc, the e-d scenario (x, [x],R(x)) is dense.

PROPOSITION 6.24. ELK,�,B + (wF) is a complete axiomatization of LK,�,B with
respect to the class of all topological subset spaces under e-d semantics for dense e-d
scenarios.

Proof. Follows from Corollary 6.23 similarly to the proof of Corollary 6.16. �

6.5. Confident belief.

LEMMA 6.25. Let (X, T ) be a topological space and A an open subset of X. Then for
any B ⊆ X, we have A ⊆∗ B iff A ⊆ cl(int(B)).

Proof. First suppose that A ⊆ cl(int(B)). Then there is some x ∈ A and some open set U
with x ∈ U and U ∩ int(B) = ∅. Since A is open, so is U ∩ A. In fact, U ∩ A ⊆ cl(A B); to
see this, take any y ∈ U∩A and any open V containing y and observe that if V ∩(A B) = ∅,
then it follows that V ∩ A ⊆ B, and therefore y ∈ V ∩ U ∩ A ⊆ int(B), so y ∈ U ∩ int(B), a
contradiction. We have therefore shown that int(cl(A B)) = ∅, so A ⊆∗ B.

Conversely, suppose that A ⊆∗ B. Then there is some nonempty open set U with U ⊆
cl(A B). Note that this implies that U∩(A B) = ∅, so in particular there is some x ∈ U∩A.
Observe that (A ∩ int(B))∩ (A B) = ∅; as such, (A ∩ int(B))∩ cl(A B) = ∅, so we must
have U ∩ A ∩ int(B) = ∅. It then follows that (U ∩ A) ∩ cl(int(B)) = ∅; this shows that
x /∈ cl(int(B)), so since x ∈ A, we have A ⊆ cl(int(B)). �

Let α : LK,�,B → LK,�,B be the map that replaces every occurence of B with B��.

LEMMA 6.26. For all topological subset models X and every e-d scenario (x,U,V)
therein, we have

(X , x,U,V) |≈ ϕ iff (X , x,U,V) |� α(ϕ).

Proof. This follows from Lemma 6.25 using structural induction on ϕ. �

LEMMA 6.27. For all ϕ ∈ LK,�,B, if 
ELK,�,B α(ϕ), then 
ELK,�,B+(CB) ϕ.
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Proof. This follows by structural induction on ϕ using the easy fact that 
ELK,�,B+(CB)
Bϕ ↔ B��ϕ. �

THEOREM 6.28. ELK,�,B + (CB) is a complete axiomatization of LK,�,B with respect to
the class of all topological subset spaces under e-d semantics using the semantics given
above: for all formulas ϕ ∈ LK,�,B, if |≈ ϕ, then 
ELK,�,B+(CB) ϕ.

Proof. Suppose that |≈ ϕ. Then by Lemma 6.26 we know that |� α(ϕ). By Corol-
lary 6.16, then, we can deduce that 
ELK,�,B α(ϕ), and so by Lemma 6.27 we obtain

ELK,�,B+(CB) ϕ, as desired. �

6.6. Soundness and completeness of KD45B for |≈ . The proof of Theorem 4.4 is
similar to the proof of Theorem 3.7, however, they involve subtle difference reflecting
the fact that the belief modality in the |≈ -sematics effectively quantifies over almost all
worlds in the doxastic range rather than over all worlds as in the e-d semantics (using |�)
introduced in §4. The detailed proof of Theorem 4.4 is presented below.

LEMMA 6.29. Let (X, T ) be a topological space and V a non-empty open subset of X.
Then for any A ⊆ X, we have V ⊆ cl(int(A)) iff (U ∩ V) ∩ int(A) = ∅ for all U ∈ T with
U ∩ V = ∅.

Proof. First suppose that V ⊆ cl(int(A)) and let U ∈ T such that U ∩ V = ∅. The latter
means that there is a y ∈ U ∩ V . Then, by the assumption and the fact that U ∩ V ⊆ V ,
we obtain that y ∈ cl(int(A)). Thus, for every open set W ∈ T with y ∈ W, we have
W ∩ int(A) = ∅. Observe that U ∩ V is an open set including y. Therefore, we conclude
that (U ∩ V) ∩ int(A) = ∅

Conversely, suppose that (U ∩ V) ∩ int(A) = ∅ for all U ∈ T with U ∩ V = ∅ and let
y ∈ V . Let W ∈ T such that y ∈ W. Thus, y ∈ W∩V = ∅ with W∩V ∈ T . Therefore, by the
first assumption, we obtain that (W ∩V)∩ int(A) = ∅. As (W ∩V)∩ int(A) ⊆ (W ∩ int(A)),
we conclude that W ∩ int(A) = ∅. Hence, y ∈ cl(int(A)). �

PROPOSITION 6.30. KD45B is a sound axiomatization of LB with respect to the class
of all topological subset spaces under e-d semantics for consistent e-d scenarios using the
semantics given by |≈ .

Proof. We prove only the validity of (KB), (DB), and (4B), the validity proof of (5B)
is similarly to that of (4B). Let X = (X, T , v) be a topological subset model, (x,U,V) a
consistent e-d scenario, and ϕ ∈ LB.

(KB). Suppose (x,U,V) |≈ B(ϕ → ψ) and (x,U,V) |≈ Bϕ. Then, by the semantics
and Lemma 6.25, V ⊆ cl(int([(ϕ → ψ)]U,V)) ∩ cl(int([(ϕ)]U,V)). Let W ∈ T such
that W ∩ V = ∅. Then, by Lemma 6.29, we must have (W ∩ V) ∩ int([(ϕ →
ψ)]U,V) = ∅ and so, since this set is also open,

(W ∩ V) ∩ int([(ϕ → ψ)]U,V) ∩ int([(ϕ)]U,V) = ∅
∴ (W ∩ V) ∩ int([(ϕ → ψ)]U,V ∩ [(ϕ)]U,V) = ∅

∴ (W ∩ V) ∩ int([(ψ)]U,V) = ∅,
which, by Lemmas 6.29 and 6.25, establishes that V ⊆∗ [(ψ)]U,V . Therefore
(x,U,V) |≈ Bψ .

(DB). Suppose (x,U,V) |≈ Bϕ. This means, by Lemmas 6.29 and 6.25, that (W ∩ V) ∩
[(ϕ)]U,V = ∅ for all W ∈ T with W ∩ V = ∅. Since V = ∅, we in particular
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have that V ∩ int([(ϕ)]U,V) = ∅. However, (V ∩ int([(ϕ)]U,V)) ∩ int([(¬ϕ)]U,V) =
V ∩ int([(ϕ)]U,V ∩ [(¬ϕ)]U,V) = V ∩ ∅ = ∅. Therefore, again by Lemma 6.29,
V ⊆ cl(int([(¬ϕ)]U,V)). Hence, by Lemma 6.25 and the semantics, we conclude
that (x,U,V)  |≈ B¬ϕ, i.e., (x,U,V) |≈ ¬B¬ϕ.

(4B). Suppose (x,U,V) |≈ Bϕ. This means, by Lemma 6.25, that V ⊆ cl(int([(ϕ)]U,V)).
This implies that for all y ∈ U, (y,U,V) |≈ Bϕ. Therefore, [(Bϕ)]U,V = U.
Observe that V ⊆ cl(int([(ϕ)]U,V)) ⊆ cl(int(U)) = cl(int([(Bϕ)]U,V)). Thus, by
Lemma 6.25 and the semantics, we conclude that (x,U,V) |≈ BBϕ. �

For the completeness, we follow a similar argument as in the proof of Theorem 3.7.
Recall that given a transitive relational model M = (X,R, v), let XM denote the topological
subset model constructed from M, namely (X, TR+ , v) (see §6.2 to recall the relational
belief frames/models and the construction of (X, TR+ , v)).

LEMMA 6.31. Let (X,R) be a belief frame. Then for all x ∈ X and every A ⊆ X,
cl(A) ⊇ Cx if and only if A ∩ Cx = ∅, where Cx is the final cluster of the brush ([x],R|[x])
as in Lemma 6.9.

Proof. This follows similarly to the proof of Lemma 6.11.4, using the fact that
Cx = ∅. �

LEMMA 6.32. Let M = (X,R, v) be a relational model based on a belief frame. Then
for every formula ϕ ∈ LB, for every x ∈ X we have

1. (x, [x],R(x)) is a consistent e-d scenario of XM, and

2. (M, x) |� ϕ iff (XM, x, [x],R(x)) |≈ ϕ.

Proof.

1. By Lemma 6.11, we know that [x],R(x) ∈ TR+ . Moreover, by Lemma 6.9, we have
R(x) ⊆ [x] and x ∈ [x], thus, (x, [x],R(x)) is an e-d scenario. Moreover, since R is
serial, we have R(x) = ∅.

2. The proof follows by induction on the structure of ϕ; cases for the primitive propo-
sitions and the Boolean connectives are elementary. So assume inductively that the
result holds for ϕ; we must show that it holds also for Bϕ. Note that the inductive
hypothesis implies that [(ϕ)][x],R(x) = ‖ϕ‖M∩[x], since by Lemma 6.9, y ∈ [x] implies
[y] = [x].

(M, x) |� Bϕ iff R(x) ⊆ ‖ϕ‖M

iff Cx ⊆ ‖ϕ‖M (Lemma 6.11.2)

iff Cx ⊆ ‖ϕ‖M ∩ [x] (since Cx ⊆ [x])

iff Cx ⊆ [(ϕ)][x],R(x) (inductive hypothesis)

iff int([(ϕ)][x],R(x)) ∩ Cx = ∅ (Lemma 6.11.3)

iff cl(int([(ϕ)][x],R(x))) ⊇ Cx (Lemma 6.31)

iff cl(int([(ϕ)][x],R(x))) ⊇ R(x) (Lemma 6.11.2)

iff [(ϕ)][x],R(x) ⊇∗ R(x) (Lemma 6.25)

iff (XM, x, [x],R(x)) |≈ Bϕ. �
Completeness is an easy consequence of this lemma: if ϕ ∈ LB is such that 
KD45B ϕ,

then by Theorem 6.8 there is a relational model M based on a belief frame that refutes ϕ at
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some point x. Then, by Lemma 6.32.2, ϕ is also refuted in XM at the consistent e-d scenario
(x, [x],R(x)) under the |≈ -semantics: (XM, x, [x],R(x))  |≈ ϕ. This completes the proof
of Theorem 4.4.
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