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Conjecture (WGC) is satisfied by wide classes of effective field theories in which higher-

derivative corrections can be shown to shift the charge-to-mass ratios of extremal black

holes to larger values. However, this mild form does not directly constrain low-energy

physics because the black holes satisfying the WGC have masses above the cutoff of the

effective theory. In this note, we point out that in string theory modular invariance can

connect a light superextremal state to heavy superextremal states; the latter collapse into

black holes at small string coupling. In the context of heterotic string theory, we show that

these states are black holes that have α′-exact charge-to-mass ratios exceeding the classical

extremality bound. This suggests that modular invariance of the string partition function

can be used to relate the existence of a light superextremal particle to the positive shift in

charge-to-mass ratio of extremal black holes.
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1 Introduction

Understanding the low-energy predictions of quantum gravity is a task of utmost impor-

tance. From a naive effective field theory perspective, quantum gravity effects might only

appear near the Planck scale, casting doubt on our ability to observe them. Luckily, nature

has been more generous to us in that quantum gravity appears not to decouple completely

from IR physics. This notion has been captured by the idea of the “swampland” [1, 2]

(see [3, 4] for reviews). The swampland program states that quantum gravity imposes

certain consistency conditions on its low-energy effective theories; we can view these as

universal predictions of quantum gravity. One such condition is the Weak Gravity Conjec-

ture (WGC) [5], which requires that there exists a charged (super)extremal state allowing

(nonsupersymmetric) extremal black holes to decay.

Even if the WGC is true in general, its implications for a low-energy observer are only

clear when we take a sharply-defined statement of the conjecture. In terms of the “electric”

WGC, some strong statements have been proposed. These include requiring the existence

of a light charged particle [5] and a tower of states [6–8]. On the other hand, the mild

form of the WGC only requires some state into which an extremal black hole can decay,

which can be another black hole [9–12]. In this case, higher-derivative corrections shift the

charge-to-mass ratio Z ≡ Q/M (≡ 1 as M → ∞) of large extremal black holes positively

so that larger extremal black holes can decay into them. The restriction to large black

holes allows one to include only the leading higher-derivative correction, but at the cost of

weakening the constraints on low-energy physics.

The difference between the mild and strong forms of the WGC is particularly important

in the context of axion inflation, where (in the axionic statement of the WGC) the strong

form places tighter constraints on transplanckian axion field ranges [13–16].
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In this note, we suggest that having a light superextremal particle in the spectrum is

closely tied to a positive shift in charge-to-mass ratio of an extremal black hole, effectively

relating the mild and strong form of the WGC. We illustrate this with perturbative string

theory, but because the essence of our argument relies on universal modular transformation

properties of partition functions our results may be applicable more generally such as to

the non-perturbative F-theory setup recently considered in [17–19]. We show that modular

invariance imposes certain constraints on the perturbative spectrum, allowing us to relate

light superextremal perturbative string states to superextremal heavy states. These heavy

states collapse to form black holes at small string coupling and connect the strong and

mild forms of the WGC. We use an α′-exact entropy matching to show that in the context

of the heterotic string one can identify Z > 1 higher-derivative corrected black holes as

superextremal perturbative string states at non-zero coupling.

The rest of this note is organized as follows. In section 2 we briefly review how higher-

derivative corrections can modify the black hole charge-to-mass ratio. In section 3 we

show how modular invariance relates light and heavy perturbative string states and their

charge-to-mass ratios. In section 4 we identify certain extremal heterotic black holes as

superextremal fundamental string states via an α′-exact entropy matching. We briefly

remark in section 5 how our arguments might be related to the positivity of black hole

entropy corrections. We discuss our results in section 6.

2 Higher-derivative corrections to extremal black holes

Although general relativity is not renormalizable, we can still consider it as an effective

theory. General relativity should then be modified by higher-derivative corrections that

vanish in the large distance/small curvature limit. In string theory, these corrections are

controlled by (α′)nRn, where Rn is a curvature invariant with 2(n+ 1) derivatives, which

should be small relative to the scalar curvature R for a well-defined perturbative expansion.

These α′ corrections modify the solutions to the theory and in general change the black

hole extremality bound, shifting the charge-to-mass ratio Zext,α′ above which a black hole

forms a naked singularity. The modified ratio is a function of M , asymptoting to the

uncorrected bound in the infinite mass limit, limM→∞Zext,α′ = 1, where α′ corrections

for typical (large) black holes become negligible. Noting that the mild form of the WGC

requires states with Z > 1 and that asymptotically large extremal black holes have Z = 1,

it is natural to suppose that the asymptote Z = 1 should be approached from above [5]

(see figure 1). In other words, at fixed charge, higher-derivative corrections should decrease

an extremal black hole’s mass. Moreover, a shift ∆Z > 0 is consistent with the motivation

for the WGC from the perspective of extremal black hole decay. For an extremal black

hole with charge Q and mass M to be unstable, it must be able to decay into two or more

particles whose total charge is Q and total mass is less than M . This requires that at least

one of the lighter states has Z > Q
M . If Z approaches unity from above, then a lighter state

with larger Z is simply provided by a smaller extremal black hole.

As was mentioned in [5] and later elaborated upon in [9–12, 20], requiring ∆Z > 0

corresponds to a positivity bound on a certain combination of Wilson coefficients of the
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Figure 1. Consistency with the decay of extremal black holes dictates that higher-derivative

corrections should shift an extremal black hole’s charge-to-mass ratio positively (red curve). The

blue curve would imply an infinite family of stable nonsupersymmetric states.

higher-derivative corrections. For example, consider a subset of the leading corrections to

the four-dimensional Einstein-Maxwell action (involving only gauge fields)

L =
M2
P

2
R− F 2

µν + a(F 2)2 + b(FF̃ )2 (2.1)

The charge-to-mass-ratio for a large extremal electrically-charged black hole is then shifted

by [5]

∆Z =
a

5Q2
+O(Q−3) (2.2)

Thus for positive a one has ∆Z > 0 and extremal black holes can decay into smaller

extremal black holes.

The positivity bound for the four-derivative terms modifying an electrically-charged

Reissner-Nordström black hole was calculated in [9] and has been shown to be satisfied

in some (heterotic) string theory examples. More recently, it has been shown that un-

der certain assumptions, this positivity bound follows from causality and unitarity con-

straints on scattering amplitudes [11] (see also [12]). The references [21, 22] calculated

higher-derivative corrections to Kerr black holes respectively up to six derivatives and

eight derivatives.

However, while α′ corrections to extremal black holes provide us with superextremal

states, they do not lead to an entirely satisfying physical picture. The above calculations

are valid only for sufficiently large black holes (such that merely including the leading

perturbative α′ correction is justified). What is the fate of a smaller extremal black hole,

for which higher-order α′ corrections are important? It is not immediately obvious that

these higher-order corrections will also shift Z positively.

Moreover, the goal of the swampland program is to rule out effective models based on

their low-energy physics. The masses of these (heavy) black holes are above the cutoff of
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a low-energy observer. Can the fact that ∆Z > 0 for large extremal black holes give us a

useful prediction for the low-energy observer, like the existence of a light state with Z > 1?

Now that we have learned that ∆Z > 0 for large extremal black holes in a wide variety of

theories, it would be welcome if we could derive a more rigorous statement about the light

spectrum. In this note, we take a first step in this direction and provide evidence that in

theories with a worldsheet description that is modular invariant, the existence of a light

state with Z > 1 is related to having a positive charge-to-mass ratio shift for extremal

black holes, that is ∆Z > 0.

3 Modular invariance and perturbative string states

We have seen that satisfaction of the mild WGC by corrections to the large black hole

extremality bound does not provide an entirely satisfying picture. We do not learn anything

about the fate of small extremal black holes, and as a quantum gravity constraint on low-

energy physics this version of the WGC appears somewhat toothless.

In this note, we suggest that in string theory modular invariance plays an important

role in resolving these issues. Modular transformation properties of conformal field theory

(CFT) partition functions in the presence of conserved currents with quantized charges

give rise to an automorphism of the current algebra, a special case of spectral flow [23].

This was applied by [6] to the CFT2 dual of AdS3 (and used to define the WGC in three

dimensions), and by [7] to the worldsheet CFT. Given a particular state with known charge

and mass in the perturbative spectrum, spectral flow allows one to infer the existence of

an infinite family of states with known perturbative masses and charges.1

We now review how spectral flow follows from modular invariance. We point out that

spectral flow preserves the extremality of a state with respect to a particular asymptotic

charge-to-mass ratio, and can be extrapolated to arbitrarily large mass. It is natural to

expect that this perturbative structure has some bearing on black hole physics. We draw

a connection between the asymptotic charge-to-mass ratio identified by spectral flow and

the asymptotic charge-to-mass ratio of an extremal black hole. Intriguingly, in various

setups these two ratios agree, suggesting a relationship between superextremal states in

both regimes.

Consider the worldsheet CFT of a string theory, whose partition function in the NSNS

sector takes the form2

Z(τ ;µ) ≡ Tr
(
q∆yQq∆̃

)
(3.1)

1Although in this section we consider perturbative string theory, similar structure also arises in certain

F-theory setups. In [17–19] the authors examined the gYM → 0, MP fixed limit of 6d F-theory compactifi-

cations and found the emergence of tensionless heterotic strings. A subset of the excitations of these strings

is described by an elliptic genus. In their setup, the quasiperiodicity of Jacobi forms describing the elliptic

genus implies a structure similar to that arising from the spectral flow we study in this section. In [24]

it was found that for 4d F-theory compactifications with certain background fluxes turned on, the elliptic

genus is not necessarily modular.
2The states we can identify in the perturbative partition function are electrically charged under NSNS

sector fields. It would be interesting to study how structure in other sectors of string theory relates to black

holes and their higher-derivative corrections.

– 4 –
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where τ is the modular parameter of the torus, µ is the chemical potential, q = e2πiτ ,

y = e2πiµ, ∆ = L0− c
24 , Q is the left-moving charge corresponding to a holomorphic world-

sheet current J , and tildes represent the right-moving sector. For notational simplicity,

we consider a single purely holomorphic current. The straightforward generalization to

multiple holomorphic and antiholomorphic currents is presented in [7]. Universal modular

transformation properties of CFTs [25] imply that the partition function transforms as

Z(τ + 1;µ) = Z(τ ;µ), Z(−1/τ ;µ/τ) = eπik
µ2

τ Z(τ ;µ) (3.2)

Here k is the level of the current algebra, with OPE

JL(z)JL(0) ∼ k

z2
+ . . . (3.3)

The level k is non-negative by unitarity, and positive for a non-trivial algebra.

Given a charge lattice ΓQ, the dual lattice Γ∗Q is defined by Γ∗Q = {ρ | ρQ ∈ Z ∀Q ∈ ΓQ},
which implies that

Z(τ ;µ+ ρ) = Z(τ ;µ) ∀ρ ∈ Γ∗Q . (3.4)

This is merely a U(1) transformation [6]. Performing a charge transformation (3.4) in

between two S-transformations (3.2), one has

Z(τ ;µ+ τρ) = exp
(
−πik

[
2µρ+ ρ2τ

])
Z(τ ;µ) (3.5)

Putting in the definition of the partition function (3.1) and pulling the exponential into

the trace on the left side, one finds that the spectrum is invariant under the transformation

L0 → L0 +Qρ+ k
ρ2

2
(3.6)

Q→ Q+ kρ (3.7)

for any ρ. This transformation is familiar as a special case of spectral flow [23]. Thus, given

any state in the perturbative spectrum, we can apply spectral flow to the state, generating

a tower of new states with different masses and charges.

Consider a string state with perturbative mass m =
√

4
α′∆ =

√
4
α′ ∆̃ and charge q.

Then, in the large ρ limit, Z ′2 ≡ 2
kα′

q′2

m′2 for the transformed state is

Z ′2 = 1 +
kα′

2
m2

(
Z2 − 1

)
k2ρ2

+O(ρ−3) (3.8)

Under spectral flow, states asymptote to Z ′2 = 1. Moreover, a perturbative state never

crosses this asymptotic line (see figure 2). One may see this by noting that the combination

∆− q2

2k is invariant under the transformation (3.6), (3.7). In other words, given a state with

Z > 1, spectral flow implies the existence of a tower of states monotonically approaching

Z = 1 from above. Considering the very massive regime, at which a very small but nonzero

gs will cause a state to collapse into a black hole, suggests that Z = 1 could perhaps be

– 5 –



J
H
E
P
0
8
(
2
0
1
9
)
0
2
2

Figure 2. Under spectral flow, the sign of
√

2
kα′

q
m − 1 is preserved. At large mass, string states

undergo gravitational collapse and form black holes at small gs.

identified with the asymptotic black hole extremality bound. Indeed, for toroidal orbifolds

of type II and heterotic strings, the charge-to-mass ratio of the string state approaching

the asymptotic line matches that of the black hole. Despite this, one might worry that we

do not have a good worldsheet description of black holes generically at non-zero coupling,

as in [7]. However, as we will see, the symmetries of the near-horizon geometry of an

extremal black hole allow us to make more precise the matching of the string and black

hole descriptions. Indeed, we will see in section 4 that the entropy of a heterotic two-charge

black hole at the transition matches the entropy of a perturbative heterotic string, so that

at least the perturbative mass relation is sufficiently well-controlled. Thus quantitative

statements can be made about the corrected charge-to-mass ratio at the transition, and

we can connect mild and strong forms of the WGC.

This all suggests that the existence of a light state with Z > 1 is related to a pos-

itive charge-to-mass ratio shift ∆Z > 0 for large extremal black holes. Given a single

superextremal perturbative string state, spectral flow dictates that there are very massive

superextremal string states, which will collapse into black holes for gs � 1. If the correc-

tion to the perturbative string charge-to-mass ratio is not too large at the transition, one

would expect the corresponding black holes to also have Z > 1, so that higher-derivative

corrections must shift the extremality bound positively in order to avoid creating a naked

singularity. To bound the size of corrections, we need to understand some generalities of

the string-black hole transition.

4 Black holes as strings

A qualitative description of the string-black hole transition is given by the “correspondence

principle” of Horowitz and Polchinski [26], which formalized and generalized earlier spec-

– 6 –
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ulations about the relationship between strings and black holes [27–29]. If we consider a

perturbative string state at large level N � 1 and increase the string coupling slightly, the

correspondence principle tells us that at a critical string coupling gc ∼ N−1/4 � 1, the

string’s Schwarzschild radius will be of the order of the string scale. In d = 4, interactions

will confine the string to the string scale at this coupling,3 and we should begin to regard

the state as a black hole.

The critical coupling gc is determined by setting the curvature (in string units) of the

black hole horizon to string scale. Intuitively, at this point α′ corrections will start to

correct the black hole geometry significantly. Interestingly, one finds that by matching

the perturbative string mass and the classical black hole mass at this coupling, the string

entropy agrees with the black hole’s Bekenstein-Hawking entropy up to factor of order

unity for a variety of (even nonsupersymmetric) examples.

We are particularly interested in the corrected charge-to-mass ratio Z at the transition.

For BPS-saturated states Z is protected, so the extremal string charge-to-mass ratio agrees

with that of an extremal black hole. For non-BPS states, finite gs corrections can in

general modify the charge-to-mass ratio. However, if the corrections are small enough, a

(perturbatively) superextremal string state will remain superextremal at the transition.

In this case, the corresponding α′-corrected black hole will also have Z > 1, so that

higher-derivative corrections must shift the extremality bound positively to avoid a naked

singularity.

As a concrete example, we now consider black holes in string theory carrying two

electric charges. These black holes have a particularly simple microscopic description as

fundamental strings carrying momentum and winding charge.

4.1 Two-charge black holes

We now construct four-dimensional black holes carrying winding and momentum charge,

following [30]. We start with the metric of a five-dimensional black string in the string frame

ds2
BS5

= H−1
1

(
−f(r)dt2 + dz2

)
+ f(r)−1dr2 + r2dΩ2

2 , (4.1)

where

f(r) = 1− r0

r
, (4.2)

Hi = 1 +
r0

r
sinh2 γi .

Here the γi, i = 1, p are boost parameters. To add charge in four dimensions, we boost

along the z direction

t→ cosh γpt− sinh γpz , (4.3)

z → cosh γpz − sinh γpt .

The boosted black string metric is then

ds2
BBS5

= H−1
1

[
−dt2 + dz2 +

r0

r
(cosh γpdt− sinh γpdz)2

]
+ f(r)−1dr2 + r2dΩ2

2 . (4.4)

3For subtleties related to spacetime dimension, see [30].

– 7 –
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We now compactify the z direction z = z+ 2πR and perform a Kaluza-Klein reduction. In

string frame, the metric is

ds2
BH4

= − f(r)

H1Hp
dt2 + f(r)−1dr2 + r2dΩ2

2 , (4.5)

In four dimensions, the dilaton is given by

e−2φ =
√
H1Hp . (4.6)

In Einstein frame, the metric is

ds2
BH4

= − f(r)√
H1Hp

dt2 +

√
H1Hp

f(r)
dr2 + r2dΩ2

2 (4.7)

and the ADM mass is

M4 =
r0

8G4
(2 + cosh 2γ1 + cosh 2γp) , (4.8)

where G4 is the four-dimensional Newton constant. The event horizon is located at r = r0

and the two integer-normalized charges corresponding to momentum and winding are given

by

n =
r0R

8G4
sinh 2γp , w =

r0α
′

8G4R
sinh 2γ1 . (4.9)

These are related to the left and right-moving charges of a fundamental string as

QL =
r0

8G4
(sinh 2γp − sinh 2γ1) =

n

R
− wR

α′
, (4.10)

QR =
r0

8G4
(sinh 2γp + sinh 2γ1) =

n

R
+
wR

α′
.

We can now take two different extremal limits by

1. Sending γp →∞ and r0 → 0 while keeping r0e
2γp and γp + γ1 fixed. This leads to an

extremal black hole with

Z2 =
Q2
L

M2
= 1 . (4.11)

In heterotic string theory, this black hole is non-BPS.

2. Sending γ1 →∞ and r0 → 0 while keeping r0e
2γ1 and γp− γ1 fixed. This leads to an

extremal black hole with

Z2 =
Q2
R

M2
= 1 . (4.12)

In heterotic string theory, this black hole is BPS.

The area of the horizon in Einstein frame is given by

A = 4πr2
0 cosh γ1 cosh γp . (4.13)

– 8 –
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We see that in both extremal limits the area vanishes, so that classically the black holes have

vanishing Bekenstein-Hawking entropy. These are thus called small black holes. However,

in the extremal limit the horizon size is string scale, so α′ corrections should significantly

correct the geometry. In the context of heterotic string theory, it is now well understood

that α′ corrections “stretch” the horizon, cloaking the singularity and giving a finite Wald

entropy, see [31] for a review and [32, 33] for a subset of the original references.4

We now show that including α′ corrections gives the black hole a Wald entropy that

agrees with the statistical entropy of a perturbative heterotic string. We shall exploit this

relation to argue that Z receives sufficiently small corrections at the transition to preserve

superextremality of a perturbative string state.

4.2 Higher-derivative corrections, entropy and charge-to-mass ratio

Typically, extremal black holes have an AdS2 near-horizon geometry. However, in cases

when the black hole arises from compactification of a higher-dimensional theory, the AdS2

can combine with an S1 of the compact space to form an AdS3 geometry, or more precisely

a BTZ black hole. Examples of this are four-charge black holes in four dimensions and

three-charge black holes in five dimensions, which arise as compactifications of five- and

six-dimensional black strings, respectively [36]. The situation for two-charge black holes is

slightly more complicated, since at the classical level their near-horizon geometries are sin-

gular and actually correspond to massless BTZ black holes.5 However, after α′ corrections

are taken into account, one can have a massive BTZ near-horizon geometry [38].

When a near-horizon BTZ geometry exists, the black hole entropy is given by the

Cardy formula

SBH = 2π

(√
cL
6
hL +

√
cR
6
hR

)
. (4.14)

Here, cL, cR are the left and right-moving central charges and hL, hR are the left and right-

moving excitation levels. They are related to the mass and angular momentum of the BTZ

geometry via

`M3 = hL + hR , 8G3J3 = hR − hL , (4.15)

where ` is the AdS3 radius and G3 (which is small in our semiclassical approximation) is

the three-dimensional Newton constant. The extremality bound is given by

8G3|J3|
`M3

≤ 1 . (4.16)

Note that `/G3 = 2c/3, where c is the usual Brown-Henneaux central charge [39]. In terms

of the left- and right-moving central charges, we have [40]

c =
3`

2G3
=

1

2
(cL + cR) . (4.17)

4This conclusion has been contested in [34], but because this result crucially relies on having a black

hole solution that contains a conical singularity [35] we believe such a claim is premature.
5One way of seeing this is by dualizing the fundamental string carrying momentum and winding charges

(the F1-P system) to the D1-D5 system [37].
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The effect of including higher-derivative corrections in the three-dimensional action is to

shift the AdS radius as `→ Ω`, where

Ω =
1

3
gµν

∂L3

∂Rµν
. (4.18)

This quantity parametrizes the higher-derivative corrections in terms of the three-

dimensional Lagrangian L3 [41] (see also [42]). We see that higher-derivative corrections

have two effects. First, they modify the effective AdS length and thus the value of the cen-

tral charges. By Cardy’s formula, this implies that the black hole entropy is also corrected.

Second, by modifying the AdS length, the extremality bound is also corrected.

For the heterotic two-charge black holes, Kraus and Larsen showed that (under the

assumption that a near-horizon BTZ geometry exists after including higher-derivative cor-

rections) the central charges are completely fixed by anomalies [41]. The central charges

are related to the coefficients appearing in front of Chern-Simons terms. The gravitational

Chern-Simons term yields the combination cL − cR. Supersymmetry in the right-moving

sector fixes cR in terms of the level of the SU(2) current algebra, which can be computed

from the SU(2) Chern-Simons term. Because the central charges are fixed by anomalies,

they are not modified by other higher-derivative corrections and are therefore exact in α′.

One thus finds cL = 24 and cR = 12, so that the entropy of heterotic two-charge black

holes is

SBH = 2π
(

2
√
hL +

√
2hR

)
. (4.19)

This expression exactly matches the statistical entropy of a weakly coupled heterotic string.

Recall that the mass of a weakly coupled heterotic string is given by

M2
s =

4

α′
NR +Q2

R =
4

α′
(NL − 1) +Q2

L (4.20)

States at NR = 0 are BPS-saturated. The entropy of a perturbative string at large excita-

tion level is given by (see e.g. [43])

Sstat = 2π
(

2
√
NL +

√
2NR

)
, (4.21)

which matches (4.19) upon identifying hL,R = NL,R.6 Notably, this agreement holds for

strings with both left- and right-moving sectors excited and therefore even for non-BPS

and non-extremal black holes.

It is remarkable that the black hole entropy matches the entropy of a perturbative het-

erotic string. For an arbitrary (nonsupersymmetric) string state, we might have expected

the degeneracy of states to be significantly modified from the perturbative degeneracy at

the string-black hole transition, but this is not the case. The appearance of the perturba-

tive string entropy is useful for understanding Z at the transition. Since the black hole and

perturbative string entropies match at leading order in gs, to this order the charge-to-mass

ratio of the black hole is also given by the charge-to-mass ratio of the perturbative string.

6Implicitly, we are matching at the string-black hole transition, so this identification holds for gs ∼
N−1/4 � 1.
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Consider for example the non-BPS state at NL = 0 and NR � 1. At fixed charge, the

mass can be expanded in the closed string coupling g2
s

Ms '
√

4

α′
NR + g2

s∆M(NR) . (4.22)

The mass correction will modify the density of states (at fixed energy) and thus the entropy.

Requiring that the entropy is not modified to leading order at the transition means ∆M �
g−2
s

√
NR/α′ ∼ NR/

√
α′, so that in the large NR limit the mass correction is negligible.

In other words, we can trust the perturbative mass relation at the transition for large

enough excitation level. This relies crucially on the fact that the entropies match exactly

to leading order in gs. Given only an approximate entropy matching (as in [26]), the string

mass can be corrected by an O(1) factor at the transition. In this case, one might hope to

make statements about extremality by generally constraining the sign/magnitude of ∆M

via arguments like self-energy7 or explicit loop calculations [45].

For general black holes, the extremality bound is given by

|J3|
M3

=
c

12

|NR −NL|
NR +NL

≤ c

12
, (4.23)

Note that the extremality bound can be modified by α′-corrections via the Brown-Henneaux

central charge c = 3`/(2G3). The extremality bound is saturated for NL = 0 or NR = 0.

In the first case, we have a black hole with NR � 1, related to the BTZ charges via

`M3 =
α′

4
M2
s , 8G3J3 =

α′

4
Q2
L − 1 . (4.24)

Thus, the charge-to-mass ratio of this black hole is given by

Znon−BPS =
Q2
L

M2
s

=
Q2
L

Q2
L − 4/α′

> 1 . (4.25)

In the second case, we obtain an NL � 1 BPS-saturated black hole with

`M3 =
α′

4
M2
s + 1 , 8G3|J3| =

α′

4
Q2
R + 1 , (4.26)

that has a charge-to-mass ratio of

Z2
BPS =

Q2
R

M2
s

= 1 . (4.27)

Thus α′ corrections shift the charge-to-mass ratio of the non-BPS extremal black hole

positively and do not modify the supersymmetric black hole’s charge-to-mass ratio.

For the BPS-saturated state this should not come as a surprise. The BPS bound

prevents corrections to the charge-to-mass ratio, guaranteeing the agreement between per-

turbative strings and black holes. The non-BPS case is more interesting. As we have

7For example, gravitational/dilatonic self-interactions should decrease the mass. Moreover, in some

cases, the string’s ADM mass taking into account backreaction on the massless fields can be calculated [44]
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argued, the matching of entropy implies that we can ignore gs corrections to the string’s

perturbative mass formula, and the extremality bound of non-BPS black holes is only

modified by α′ corrections. Spectral flow on superextremal (NL = 0) string states now

guarantees that at large excitation level we will find a black hole with Z > 1. In other

words, the existence of black holes with Z > 1 is intimately related to the presence of

superextremal states in the light spectrum.

5 Connection to positivity of entropy corrections

In [10] it was suggested that the shifts in ZBH and black hole entropy due to higher-

derivative corrections are related. However, the argument of [10] that higher-derivative

corrections to Reissner-Nordström black holes always increase the entropy relies on some

assumptions that need not be true [11]. Nevertheless, it has been shown for extremal black

holes8 that an increase in ZBH due to higher-derivative corrections can be equivalently

understood as an increase in entropy [11]. The crux of the argument in [11] is that the

entropy shift for a large extremal black hole (for which higher derivative corrections are

small) is dominated by the horizon shift. Resolving the degeneracy of the inner and outer

horizon for an extremal black hole without introducing a naked singularity requires ZBH >

1. Here, we briefly mention how the WGC could be related to monotonicity theorems along

renormalization group flows for black holes with BTZ near-horizon geometries.

As in section 4, in some cases a string theory black hole has a BTZ near-horizon geom-

etry. Higher-derivative corrections shift this geometry’s Brown-Henneaux central charge,

correcting both the entropy and the extremality bound. If the central charge is corrected

positively, both the charge-to-mass ratio and entropy are shifted positively. In CFTs, this

arises naturally. Consider a CFT2 at a UV fixed point. If we add an irrelevant deformation

(such as a higher-derivative correction) to the theory, this triggers a renormalization group

flow. If this flow reaches an IR fixed point we have obtained a new IR CFT at which

the irrelevant deformation is negligible. The c-theorem [46] now implies that the central

charge of the theory monotonically decreases along the flow from the UV to the IR. The

corresponding black holes with higher-derivative corrections should therefore have larger

entropies than their uncorrected counterparts. For the particular class of black holes with

BTZ near-horizon geometries, it would be very interesting to confirm this behaviour.

Notice that this is not in conflict with the example of [11], in which a higher-derivative

corrected black hole was constructed that has a lower entropy than the black hole without

higher-derivative corrections. That example violates unitarity, so we do not expect any

sensible UV completion admitting a CFT2 dual.

6 Discussion

The WGC has many avatars. In particular, its mild form has been derived via unitarity and

causality [11] and the AdS/CFT correspondence [47]. It has also been argued for, though

8In [11], the same result was also shown for general (i.e. nonextremal) electrically-charged Reissner-

Nördstrom black holes, though an additional assumption about the Gauss-Bonnet term needed to be made.
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only heuristically, based on the consistency of black hole thermodynamics [10, 48]. Despite

this progress, it is not transparent how the mild form of the WGC constrains low-energy

physics, which is the goal of the swampland program. Low-energy implications are clearest

if we demand the existence of a light superextremal particle, as in some of the stronger

forms of the conjecture [5].

In this note, we have provided evidence that in string theory the existence of a light su-

perextremal particle is deeply related to a positive shift in charge-to-mass ratio for extremal

black holes. We observed that under spectral flow (a consequence of modular invariance),

the charge-to-mass ratio of an electrically charged perturbative fundamental string asymp-

totes to unity (in appropriate units) as we increase the perturbative mass. In many cases,

this asymptote can be identified as the classical black hole extremality bound. For very

massive string states, a small string coupling will suffice to cause a string-black hole tran-

sition. To check the preservation of perturbative superextremality for string states, we

constructed two-charge black holes in heterotic string theory, microscopically described by

fundamental strings with winding and momentum charge. The leading α′-correction for

these black holes far from extremality was computed in [49]. Although the leading cor-

rection indeed decreases the black hole mass at fixed charge, to make statements about

the WGC, we need to consider extremal black holes. As these black holes have classically

vanishing area, one has to sum over infinitely many higher derivative corrections and α′-

exact techniques would be necessary. Using the symmetries of the near horizon geometry

of an extremal black hole, we peformed an α′-exact entropy matching to show that in the

extremal limit, the α′-exact correction to the charge-to-mass ratio of extremal non-BPS

two-charge black holes is positive.

This suggests that spectral flow connects having a light superextremal state to the

positive shift in charge-to-mass ratio of extremal black holes, at least in the context of

heterotic string theory. On the black hole side, it would be interesting to see how this

behaviour is encoded in the sign of the coefficients of the infinitely many higher-derivative

operators obtained by directly integrating out massive (superextremal) states.

It is worth noting that for very large k, the superextremal states related via spectral

flow are rather sparse in the charge lattice. Thus, even if one identifies a superextremal

black hole, it could be that the lightest superextremal string state is still rather heavy.

However, k seems to be weakly bounded above by the central charge of the worldsheet

CFT, which is finite in string theory [50]. Thus there does not seem to be a parametric

problem.

For the black holes we considered, the microscopics are particularly simple. A natu-

ral generalization to consider is four-charge black holes, whose microscopics involve KK-

monopoles and NS5 branes [51]. This would more directly connect our results to the works

considering higher-derivative corrections to large extremal black holes, such as [9], because

the extremal four-charge black holes have a finite classical horizon area.

The connection between corrections to entropy and charge-to-mass ratio observed

in [10, 11] arises naturally for our two-charge black holes, as a consequence of their BTZ

near-horizon geometry. For large black holes, this is a consequence of the leading corrections

to both the black hole entropy and charge-to-mass ratio being given by the shift of the hori-
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zon radius. For black holes with a near-horizon BTZ geometry, this behaviour persists to

all orders in α′ because both quantities are essentially determined by the Brown-Henneaux

central charge. As we briefly outlined in section 5, it would be interesting to connect this

behaviour to monotonicity theorems along renormalization group flows, which could be

used to derive the positivity of corrections to black hole entropy and charge-to-mass ratio

for black holes with a near-horizon BTZ geometry.

Finally, another interesting direction of future work would be to not only consider

higher-derivative corrections, but also loop corrections, which in string theory scale with

gs. For the two-charge black holes we considered these effects are negligible since gs � 1,

but for sufficiently large (e.g. four-charge) black holes the running of the coefficients of

the higher-derivative terms will start to dominate over the higher-derivative operators

themselves. In this limit, the running only depends on the massless spectrum of the theory

and increases the charge-to-mass ratio of nonsupersymmetric extremal black holes [52],

vanishing only for BPS-saturated black holes in N = 2 supergravity [53]. Because the loop

corrections are determined by the massless spectrum, they are independent of the UV and

are well-known to give rise to universal logarithmic corrections to the black hole entropy. It

would be of interest to see if there exists a relation between loop corrections to the charge-

to-mass ratio and the entropy of extremal black holes, as is the case for higher-derivative

corrections. We hope to come back to some of these questions in future work.
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[34] P.A. Cano, P.F. Ramı́rez and A. Ruipérez, The small black hole illusion, arXiv:1808.10449

[INSPIRE].

[35] P.A. Cano et al., Beyond the near-horizon limit: stringy corrections to heterotic black holes,

JHEP 02 (2019) 192 [arXiv:1808.03651] [INSPIRE].

[36] K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy

formula for nonextremal black holes, Nucl. Phys. B 517 (1998) 179 [hep-th/9711138]

[INSPIRE].

[37] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008)

117 [arXiv:0804.0552] [INSPIRE].

[38] A. Castro, J.L. Davis, P. Kraus and F. Larsen, String theory effects on five-dimensional black

hole physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].

[39] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic

symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986)

207 [INSPIRE].

[40] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022

[hep-th/0508218] [INSPIRE].

[41] P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives,

JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].

[42] H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys.

Lett. B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].

– 16 –

https://arxiv.org/abs/1901.08065
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.08065
https://doi.org/10.1007/JHEP08(2016)041
https://arxiv.org/abs/1603.09745
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09745
https://doi.org/10.1103/PhysRevD.55.6189
https://arxiv.org/abs/hep-th/9612146
https://inspirehep.net/search?p=find+EPRINT+hep-th/9612146
https://doi.org/10.1016/0550-3213(90)90174-C
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,138%22
https://arxiv.org/abs/hep-th/9309145
https://inspirehep.net/search?p=find+EPRINT+hep-th/9309145
https://doi.org/10.1142/S0217732395002234
https://doi.org/10.1142/S0217732395002234
https://arxiv.org/abs/hep-th/9504147
https://inspirehep.net/search?p=find+EPRINT+hep-th/9504147
https://doi.org/10.1103/PhysRevD.57.2557
https://doi.org/10.1103/PhysRevD.57.2557
https://arxiv.org/abs/hep-th/9707170
https://inspirehep.net/search?p=find+EPRINT+hep-th/9707170
https://doi.org/10.1007/s10714-008-0626-4
https://doi.org/10.1007/s10714-008-0626-4
https://arxiv.org/abs/0708.1270
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.1270
https://doi.org/10.1103/PhysRevLett.94.241301
https://arxiv.org/abs/hep-th/0409148
https://inspirehep.net/search?p=find+EPRINT+hep-th/0409148
https://doi.org/10.1088/1126-6708/2005/07/073
https://arxiv.org/abs/hep-th/0505122
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505122
https://arxiv.org/abs/1808.10449
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.10449
https://doi.org/10.1007/JHEP02(2019)192
https://arxiv.org/abs/1808.03651
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.03651
https://doi.org/10.1016/S0550-3213(98)00023-6
https://arxiv.org/abs/hep-th/9711138
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711138
https://doi.org/10.1016/j.physrep.2008.08.001
https://doi.org/10.1016/j.physrep.2008.08.001
https://arxiv.org/abs/0804.0552
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0552
https://doi.org/10.1142/S0217751X08039724
https://arxiv.org/abs/0801.1863
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1863
https://doi.org/10.1007/BF01211590
https://doi.org/10.1007/BF01211590
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,104,207%22
https://doi.org/10.1088/1126-6708/2006/01/022
https://arxiv.org/abs/hep-th/0508218
https://inspirehep.net/search?p=find+EPRINT+hep-th/0508218
https://doi.org/10.1088/1126-6708/2005/09/034
https://arxiv.org/abs/hep-th/0506176
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506176
https://doi.org/10.1016/S0370-2693(99)01405-7
https://doi.org/10.1016/S0370-2693(99)01405-7
https://arxiv.org/abs/gr-qc/9909061
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9909061


J
H
E
P
0
8
(
2
0
1
9
)
0
2
2

[43] E. Halyo, B. Kol, A. Rajaraman and L. Susskind, Counting Schwarzschild and charged black

holes, Phys. Lett. B 401 (1997) 15 [hep-th/9609075] [INSPIRE].

[44] A. Dabholkar, Microstates of nonsupersymmetric black holes, Phys. Lett. B 402 (1997) 53

[hep-th/9702050] [INSPIRE].

[45] A. Dabholkar, G. Mandal and P. Ramadevi, Nonrenormalization of mass of some

nonsupersymmetric string states, Nucl. Phys. B 520 (1998) 117 [hep-th/9705239] [INSPIRE].

[46] A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field

theory, JETP Lett. 43 (1986) 730 [INSPIRE].

[47] M. Montero, A holographic derivation of the weak gravity conjecture, JHEP 03 (2019) 157

[arXiv:1812.03978] [INSPIRE].

[48] G. Shiu, P. Soler and W. Cottrell, Weak gravity conjecture and extremal black holes, Sci.

China Phys. Mech. Astron. 62 (2019) 110412 [arXiv:1611.06270] [INSPIRE].

[49] A. Giveon, D. Gorbonos and M. Stern, Fundamental strings and higher derivative corrections

to d-dimensional black holes, JHEP 02 (2010) 012 [arXiv:0909.5264] [INSPIRE].

[50] M. Montero and G. Shiu, work in progress.

[51] D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds,

Nucl. Phys. B 550 (1999) 183 [hep-th/9812027] [INSPIRE].

[52] N. Arkani-Hamed, Positive geometry of effective field theory, talk given at CERN Winter

School on Supergravity, Strings and Gauge Theory, February 4–8, CERN, Geneva,

Switzerland (2019).

[53] B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings:

full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

– 17 –

https://doi.org/10.1016/S0370-2693(97)00357-2
https://arxiv.org/abs/hep-th/9609075
https://inspirehep.net/search?p=find+EPRINT+hep-th/9609075
https://doi.org/10.1016/S0370-2693(97)00439-5
https://arxiv.org/abs/hep-th/9702050
https://inspirehep.net/search?p=find+EPRINT+hep-th/9702050
https://doi.org/10.1016/S0550-3213(98)00160-6
https://arxiv.org/abs/hep-th/9705239
https://inspirehep.net/search?p=find+EPRINT+hep-th/9705239
https://inspirehep.net/search?p=find+J+%22JETPLett.,43,730%22
https://doi.org/10.1007/JHEP03(2019)157
https://arxiv.org/abs/1812.03978
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.03978
https://doi.org/10.1007/s11433-019-9406-2
https://doi.org/10.1007/s11433-019-9406-2
https://arxiv.org/abs/1611.06270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.06270
https://doi.org/10.1007/JHEP02(2010)012
https://arxiv.org/abs/0909.5264
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.5264
https://doi.org/10.1016/S0550-3213(99)00144-3
https://arxiv.org/abs/hep-th/9812027
https://inspirehep.net/search?p=find+EPRINT+hep-th/9812027
https://doi.org/10.1007/JHEP01(2011)007
https://arxiv.org/abs/1010.2150
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.2150

	Introduction
	Higher-derivative corrections to extremal black holes
	Modular invariance and perturbative string states
	Black holes as strings
	Two-charge black holes
	Higher-derivative corrections, entropy and charge-to-mass ratio

	Connection to positivity of entropy corrections
	Discussion

