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Abstract

Galaxy shapes have been observed to align with external tidal fields generated by the large-scale

structures of the Universe. While the main source for these tidal fields is provided by long-

wavelength density perturbations, tensor perturbations also contribute with a non-vanishing ampli-

tude at linear order. We show that parity-breaking gravitational waves produced during inflation

leave a distinctive imprint in the galaxy shape power spectrum which is not hampered by any

scalar-induced tidal field. We also show that a certain class of tensor non-Gaussianities produced

during inflation can leave a signature in the density-weighted galaxy shape power spectrum. We

estimate the possibility of observing such imprints in future galaxy surveys.
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1 Introduction

The statistical distribution of galaxy shapes in the sky provides a great deal of astrophysical and

cosmological information and has been used as a major observational probe in weak lensing studies

[1–6]. The image of gravitationally lensed galaxies is distorted near a foreground mass and the

statistical study of these distortions allows to map the distribution of matter in the Universe in an

unbiased way, therefore providing an important complementary probe to biased observations, such

as galaxy number counts. Over the last decades, it has been realized that a major systematic in

weak lensing measurements is introduced if galaxy shapes are intrinsically correlated [7]. Pioneering

work in trying to model these correlations was done in the early 2000s [8–12] and refined later on

[13–26]. The existence of such intrinsic correlations is supported by their observation on luminous

red galaxies at low redshift from the 2SLAQ and SDSS surveys [27–30] and by recent measurements

of the gravitational lensing-intrinsic alignment cross-correlation on BOSS survey data performed

by [31].

In the effort of modelling intrinsic alignments as a systematic effect, it has been realized that they

themselves contain valuable cosmological information. Indeed, the intrinsic shape of a galaxy cor-

relates with the large-scale structures of the Universe and therefore it traces the three-dimensional

distribution of the matter density field on large scales. Similarly to other probes, information on

how the matter density field is correlated over long distances is not only useful for cosmological

parameter inference, but also can provide constraints on early universe physics. There are two

primordial signatures that can leave an imprint in galaxy alignments in this way: first, inflationary

bispectra of the primordial curvature perturbation, also known as primordial non-Gaussianity, con-

tribute to the galaxy shape power spectrum in a similar way as for the “scale-dependent bias” in

the case of galaxy clustering searches (see [32] for a recent review). The primordial bispectra which

have been considered in the context of intrinsic aligments are the so-called local-type primordial

non-Gaussianity [17] and subsequently, more broadly, models with a sizeable anisotropic squeezed

limit from scalar and higher-spin fields [20, 21, 33]. Secondly, primordial gravitational waves source

intrinsic alignments at leading order. This was argued early on in [34, 35] and later elaborated in

a complete framework [14, 15, 36, 37].

While a number of observables at different cosmological stages are sensitive to signatures of

primordial non-Gaussianity (see [38] for a recent overview of probes), the prospect for observing

primordial gravitational waves in the future almost exclusively lies on CMB observations, such as

the Simons Observatory [39], LITEBird [40] and CMB Stage 4 [41]. Upcoming galaxy imaging

surveys, such as Euclid [42] and the Vera C. Rubin Observatory [43], will provide an unprecedented

dataset consisting of millions of galaxy shapes. It is therefore imperative to understand in detail

how to exploit this wealth of information as an alternative probe of primordial gravitational waves

using galaxy intrinsic alignments.

The way in which tensor modes affect intrinsic galaxy shapes can be understood by observing

that the leading locally observable effect of a long-wavelength perturbation kL, be it a tensor or a

scalar one, on a region of size much smaller than 1/kL is an effective tidal field [15], causing the

deformation of the galaxy shapes with respect to the rotational symmetry. In the case of tensors, the

tidal force is generated by an effective peculiar potential of the form ψF = −1/4(ḧij +2Hḣij)x
i
Fx

j
F ,

where hij are the transverse and traceless tensor perturbations around a Friedman, Lemäıtre,

3



Robertson and Walker (FLRW) metric and F indicates the Fermi Normal Coordinate (FNC) frame,

in which the metric is Minkowski along the central geodesic passing through the center of mass of

a given region of the Universe [44, 45]. The galaxy shape field is then assumed to linearly respond

to changes in the tidal field generated by these tensor perturbations, such that the galaxy shape

power spectrum, projected on the sky and properly decomposed in spherical harmonics, exhibits

non-zero E and B modes on large scales.

In this paper, we elaborate on the imprint of primordial gravitational waves on galaxy intrinsic

alignments by making three main points:

• B modes of the galaxy shape power spectrum are not only intrinsically sourced by tensor

perturbations, but also by scalar perturbations, through the curvature of the gravitational

potential. This fact is already known since [12], but up to now it has been only calculated in

the flat-sky approximation and therefore not valid on the largest scales. Because for primordial

gravitational waves the largest scales are crucial, we provide a full-sky calculation. We find

that the scalar-induced intrinsic alignments are typically larger by 2-3 orders of magnitude

at best, i.e. on the largest scales, than the ones sourced by primordial gravitational waves,

therefore providing a large contaminant to the primordial signature.

• Parity-violating physics taking place during inflation can induce chiral gravitational waves

which in turn source an E-B correlation in the galaxy shapes power spectrum. These parity-

breaking contributions are not generated by scalar perturbations and therefore any signature

of this E-B correlation in the data would be a smoking gun for parity breaking processes of

primordial origin.

• Inflationary bispectra involving primordial tensor perturbations also source intrinsic align-

ments. We estimate which of these non-Gaussianities have a sizable impact on the galaxy

shape power spectrum.

The calculation of the galaxy shape power spectra is performed by projecting the three-dimensional

galaxy shape field on the sky and decomposing the two-dimensional quantity with spherical har-

monics, using recently developed techniques [14, 15, 36]. We provide a full-sky computation of all

quantities and we develop an approximate approach to highly oscillatory integrals which allows for

fast computation of correlation functions of galaxy shapes at high ` and make our code public1.

The structure of the paper is as follows: we review past and recent progress on galaxy intrinsic

alignments in Section 2. We then explain in detail how to compute the effect of primordial tensor

perturbations on galaxy shapes in Section 3, arguing that primordial B modes are challenging to be

constrained using intrinsic alignments due to a contamination from scalar-induced alignments. We

make the point in Section 4 that parity breaking primordial gravitational waves are not affected by

this contamination and provide a pristine window into primordial processes using the EB correlation

of galaxy shapes on large scales. We finally argue that tensor non-Gaussianities can also source the

galaxy shape power spectrum and provide estimation of this signature for two promising models in

Section 5 and make final remarks in Section 6.

1https://gitlab.com/mbiagetti/tensor fossil
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2 Overview of galaxy intrinsic alignments

In this section, we review the general formalism required to compute correlations between intrinsic

galaxy shapes and large-scale tidal fields generated by the gravitational potential, mostly summa-

rizing known results from previous literature (see [46, 47] for a review). There will be a few novel

results in this section related to the fact that we do not take the flat-sky approximation, which

is commonly employed in these studies (see for instance [13]). There are a few cases where this

approximation should be dropped: one case is when looking at the imprint of local-type primordial

non-Gaussianity on intrinsic alignments and the other is when looking at the signature of primor-

dial gravitational waves, which is also the focus of this work. In both cases, the motivation for

dropping the flat sky approximation is that most of the interesting signature is indeed at the largest

scales, where the approximation breaks down. We will therefore present all our results, this section

included, in the full-sky regime.

Let us first of all define a three-dimensional field which describes galaxy shape perturbations

gij(x, τ) =
Iij(x, τ)− 1

3δ
K
ij tr[I`m]

tr[I`m]
, (2.1)

where Iij is the symmetric second-moment tensor describing the intrinsic emissivity of a galaxy2.

The formation of a galaxy must be determined by all sorts of physical processes taking place in the

finite sized region of matter from which it originates, through a period of time which likely spans

several decades of expansion. Assuming that gravity is the only force at play, we expect this process

to be determined by perturbations of the gravitational potential, or rather its second derivative,

∂i∂jΦ, since the equivalence principle states that the leading locally observable gravitational effect

is given by second derivatives of the metric tensor3. We therefore decompose ∂i∂jΦ into two parts:

its trace, i.e. matter over-density field δ, and the trace-free tidal tensor field

Kij =
1

4πGρ̄a2

[
∂i∂j −

1

3
δij∇2

]
Φ = Dijδ , (2.2)

where ρ̄ is the mean energy density in the Universe, a the scale factor and

Dij ≡
∂i∂j
∇2
− 1

3
δij . (2.3)

We should therefore expect that the galaxy shape field gij can be expanded as a spatially local4

2While Iij is the proper intrinsic galaxy shape field, and gij its perturbations, with a small abuse of terminology

we will call gij itself the galaxy shape field and galaxy shape power spectrum its two-point correlation function in

Fourier space. In literature, gij is also called the “shear” field, unifying terminologies with the weak lensing quantities.
3As we will show in the next section, tensor perturbations of the metric also affect galaxy shapes, but sub-

dominantly. We will therefore neglect them for now.
4While the expansion can be written as local in space, it is however non-local in time, as gij depends on the full

past history of Kij and δ. A more appropriate definition would be

gij(x, η) = F
[
Kij(xfl(η′)), δ(xfl(η′))

]
, (2.4)

where xfl(η′) is the fluid trajectory from initial to final time, being therefore η′ > η, and it shows explicitly that gij
at time η depends on the past history of the trajectory. As shown in [25], the dependence on the fluid trajectory

arises already at second order in the expansion Eq. (2.4). For the model we will consider later on, we neglect this

dependence, and we reserve a more complete treatment for future work.
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functional of δ and Kij ,

gij(x, η) = F
[
Kij(x, η), δ(x, η)

]
. (2.5)

Any deviation from the locality-in-space assumption enters as higher-order derivatives of ∂i∂jΦ, such

as ∇2δ and ∇2Kij , at the scale R∗, which is the size of the initial matter overdensity originating

the galaxy. In the context of galaxy clustering, this scale is usually associated to the typical size

of the halo hosting the galaxy, which is its Lagrangian radius. In this work, we are interested

in large-scale correlations among galaxy shapes, we therefore neglect higher-order corrections. In

order to make sure that perturbations smaller than R∗ do not affect the intrinsic alignments of

galaxies, we smooth the tidal field Kij with a multiplicative window function in Fourier space,

Kij,R(k) =

[
kikj
k2
− 1

3
δKij

]
WR(k)δ(k) , (2.6)

being WR(k) = e−k
2R2/2 a Gaussian filter and similarly for δ. In this work, we will assume a

Gaussian smoothing in Fourier space with R∗ = 1 Mpc/h, which would correspond to a halo of

about M ∼ O(1) × 1011M�. We will suppress the subscript R with the understanding that the

tidal field is always smoothed5.

2.1 Linear alignment model

In order to make progress, we need now to specify how gij responds to changes in long-wavelength

perturbations of Kij and δ, or in other words to specify the form of the functional in Eq. (2.5). The

most unassuming and complete way of implementing this would be to use an effective field theory

approach, as done in [25], including all allowed operators in the expansion. This method would

allow also to implement corrections from higher-order derivative terms and the non-locality in time

in a straightforward way. For the present analysis, we will instead focus on a specific model, which

assumes that gij responds (only) linearly to Kij

gij(x, τ) ' bKKij(x, τ) , (2.7)

where the parameter bK is the galaxy shape linear bias and it has the same interpretation as bias

parameters of the local number density of galaxies as the response of the galaxy shape to a change

in the local value of the tidal tensor Kij . The Linear Alignment (LA) model was introduced early

on by [8] and it is frequently used when dealing with populations of red galaxies. The idea behind

it is that the galaxy ellipticity is driven by that of the halo hosting it, and that for small enough

perturbations on large enough scales, the response would indeed be linear as in the case of linear

galaxy biasing [12] 6. Observations have so far shown good agreement with this model for Luminous

Red Galaxies (LRG) at redshift z ∼ 0.3 [13, 27, 29, 48, 49]. Different types of galaxies do not show

5While a more refined smoothing should be considered, our results would not change qualitatively and are easily

extended to more realistic scenarios. In particular, the choice of scale R does not affect significantly the results of this

analysis, but for one of the (subdominant) contributions to the galaxy shape power spectrum, which we will discuss

more in detail.
6It was also argued by [12] that spiral galaxies would respond to Ki`K

`
j , in what is called the tidal torque model,

hence breaking this assumption. Simulations also show that galaxy and star formation physics can erase almost

completely the initial alignment, therefore breaking the assumption that gravitational collapse is the only physics at

play (see [46] and references therein).
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a similar agreement [50, 51]. Even within this model, there are a few subtleties that need to be

clarified. For instance, a simplified scenario might be that the intrinsic alignment is imprinted at

some early redshift z = zP during matter domination and it stays frozen until the observation time

z = zO. This implies that the amplitude of the response should depend explicitly on zP , so that

bK ∝ D(zP )/D(zO), where D(z) is the linear growth factor. Unless the galaxy is very old, this

is usually a factor of order unity. For instance, in the case of the intrinsic alignment observed in

LRG galaxies at redshift zO = 0.3, assuming that the alignment was imprinted while the galaxy

was forming, i.e. around z = 2, we would have D(zP = 2)/D(zO = 0.3) ∼ 0.5. For the present

analysis, these factors would not change significantly our final results, therefore we will just assume

zP ≡ zO.

Density-weighting An important point to make is that the galaxy shape field should be gener-

ically weighted by the galaxy number density field, since the information on the shapes comes

necessarily from light emitted by an observable galaxy [13]. We therefore work with the weighted

field g̃ij = gij(1 + δg), where δg is the galaxy number density field contrast, which has its own

expansion in terms of δ and Kij

δg(x, τ) = bδδ(x, τ) + bδ2δ2(x, τ) + bK2K2(x, τ) + ... , (2.8)

where K2 is the square of Kij and the ellipses again indicate higher-order terms in δ. The criterion

for truncating the expansion is that we want to include all terms up to O(P 2
δ ), where Pδ is the

linear matter power spectrum. The density-weighted galaxy shape expansion therefore reads

g̃ij = bKKij + bδbKδKij + b2δbKδ
2Kij + bK2bKK

2Kij + ... , (2.9)

where we suppressed dependence on x and τ to avoid clutter. For similar reasons as argued for

the galaxy shape field, the galaxy density field should also be smoothed on some scale R′. A usual

choice is to use a top-hat smoothing in Fourier space, with R′ being again the Lagrangian radius

of the halo/galaxy. Here we choose, for the sake of simplicity, to just use the same smoothing

as for the galaxy shape field, WR(k) = e−k
2R2/2 at the same scale R∗ = R′. In the context of

halo clustering, bias parameters from the galaxy density field expansion might be predicted, for

instance, using excursion set approaches combined with peak statistics (see [52] for a review), but

bias parameters related to the tidal field Kij are known to be difficult to predict in these models

[53].

Projection in the sky. Until now, we have expressed the galaxy shape gij in terms of a 3D field

as the physical processes that can contribute to it are explicitly dependent on all three directions.

However, observations of galaxy shapes are made through 2D images from galaxy surveys, which

are the projection of gij on the sky. We therefore define the density-weighted intrinsic shape field

as7

γ̃ij(n̂) =

∫
dz

dN

dz
P`i Pmj g̃`m(χ(z)n̂, η(z)) , (2.10)

7In literature, the projection γ̃ has been defined with a superscript “IA” to distinguish the intrinsic alignments

from the gravitational lensing shear field, being the total projected shape field the sum of the two. Here we do not

consider contributions from lensing, hence there is no ambiguity of definitions.
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being Pij = δij − n̂in̂j the projection operator onto the sky8, dN/dz the redshift distribution of a

specific imaging survey, χ(z) the comoving distance out to redshift z and η(z) the conformal time.

In what follows, since we are mostly interested in order of magnitude estimations, we simplify our

calculations considering a single observed redshift dN/dz = δD(z − zO).

Harmonic decomposition. The projected field γ̃ij is a traceless 2-tensor on the sphere. It is

therefore natural to compute its angular correlations expressed in terms of multipole moments. In

order to do that, we need to apply spin-lowering and -raising operators on γ̃ij to convert it into

a scalar in the sky, γ̃. We give details on this procedure in Appendix A. The harmonic sphere

coefficients of γ̃ are given as

aγ̃`m =

√
(`− 2)!

(`+ 2)!

∫
dΩY ∗`m(n̂) γ̃(n̂,k) , (2.12)

where Ylm is the spherical harmonic function. The integral over the angle can be performed ana-

lytically following the identity [36]∫
dΩY ∗`m(n̂)(1− µ2)|r|/2 eirφeiµx = ir+`

√
4π(2`+ 1)

√
(`+ |r|)!
(`− |r|)!

j`(x)

x|r|
δmr , (2.13)

where j`(x) are the spherical Bessel functions of the first kind. As a result, the operators Q̂n(x)

act on the Bessel functions generating transfer functions

F
E|r|
` (x) ≡ Re

[
Q̂r(x)

] j`(x)

x|r|
(2.14)

F
B|r|
` (x) ≡ Im

[
Q̂r(x)

] j`(x)

x|r|
, (2.15)

being r = 0,±1,±2, which are functions of ` and x and can be found in Appendix A. We can now

express the coefficients alm in terms of E and B modes as

aElm =
1

2
(alm + a∗lm)

aBlm =
1

2i
(alm − a∗lm) , (2.16)

and consequently define the power spectra as

CXX
′

` =
1

2`+ 1

∑
m

∫
d3k

(2π)3

∫
d3k′

(2π)3
〈aX`maX

′∗
`m 〉 , (2.17)

where X = E,B. We provide the full expressions for the harmonic coefficients a`m for each term

of Eq. (A.3) in Appendix A.

8Written as it is, γ̃ is not a trace-free quantity. A proper definition would be

γ̃ij(n̂) =

∫
dz

dN

dz

(
P`i Pmj −

1

2
PijP`m

)
g̃`m(χ(z)n̂, η(z)) , (2.11)

where the trace is explicitly subtracted. It turns out that when decomposing into ±2 spin functions as done below

in Eq. (A.1), the second term in brackets gives zero because of the properties of the unit vectors m±.
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2.2 Galaxy shape power spectrum

We now have all the ingredients to compute the two-point correlation of intrinsic galaxy shapes at

large scales. Within the LA model that we consider, there are five terms in total that contribute

up to order O(P 2)9. For better intuition, we can momentarily drop indices and schematically write

down the galaxy shape power spectrum as

〈γ̃ γ̃〉 = b2K 〈KK〉+ 2 b2K bδ 〈K (K ∗ δ)〉+ b2Kb
2
δ〈(K ∗ δ) (K ∗ δ)〉+

+ 2 b2K bδ2 〈K (K ∗ (δ ∗ δ))〉+ 2 b2K bK2 〈K (K ∗ (K ∗K))〉+O(P 3
δ ) , (2.18)

where ∗ indicates convolution in Fourier space. Let us consider each of these terms separately.

The 〈KK〉 term. This is the leading order term coming from combining the tidal shear tensor

Kij with itself. At this order, no B-mode is sourced, therefore we have

C
EE,(KK)
` = b2K

∫
dk

2π
k2

(`− 2)!

(`+ 2)!
|FE0
` (x)|2 P 1L

δ (k) , (2.19)

C
BB,(KK)
` =0 , (2.20)

where here P 1L
δ (k) is matter power spectrum up to one-loop defined as

P 1L
δ (k) = Pδ(k) + P (22)(k) + P (13)(k) , (2.21)

being Pδ(k) the linear matter power spectrum and

P (22)(k) = 2

∫
q
Pδ(q)Pδ(|k− q|)F 2

2 (q,k− q) , (2.22)

P (13)(k) = 6Pδ(k)

∫
q
Pδ(q)F3(k,q,−q) , (2.23)

are the one-loop standard perturbation theory (PT) corrections to the linear matter power spec-

trum, where the superscript (n) indicates the order in PT, and

F2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1
k2

+
k2
k1

)
+

2

7

(
k1 · k2

k1k2

)2

(2.24)

and F3, whose expression is found in the comprehensive review [54], are the PT kernels. Each

linear matter power spectrum is smoothed as indicated in the previous paragraph. In previous

work [13, 18], the nonlinear matter power spectrum (e.g. using halofit) was used in order to extend

the validity of this contribution to smaller scales. Here we are interested only in the large scales,

therefore we stick to the one-loop result.

9These calculations have been performed in earlier analyses (see for instance [18]), but always in the flat sky

approximation. We have checked that our results coincide in that limit, although ours are valid also at the largest

scales, where the flat sky approximation breaks down.
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The 〈K(K ∗ δ)〉 term. Gravitational mode-coupling sources a non-zero bispectrum at one-loop

order in perturbation theory (PT). The matter density at second-order in PT reads

δ(2)(k) =

∫
q
F2(q,k− q)δ(1)(q)δ(1)(k− q) . (2.25)

Consequently, we get a contribution from three bispectra of the type

〈K(K ∗ δ)〉 = 〈K(2)(K(1) ∗ δ(1))〉+ 〈K(1)(K(2) ∗ δ(1))〉+ 〈K(1)(K(1) ∗ δ(2))〉 , (2.26)

where K(2) = Dijδ(2). Computing these terms in harmonic space we get

C
EE,(KKδ)
` = b2K bδ

∫
dk

2π
k2

(`− 2)!

(`+ 2)!
|FE0
` (x)|2

[
SF2(k) +R(k)P (k) +

29

105
σ2P (k)

]
(2.27)

C
BB,(KKδ)
` = 0 , (2.28)

where notice that in this case also there is no B-mode sourced. The functions Sn(k) and R(k) are

defined as

Sn(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµP (rk)P (k

√
1 + r2 − 2rµ)S̃n(r, µ) (2.29)

R(k) =
k3

(2π)2

∫ ∞
0

dr P (rk)R̃(r) , (2.30)

where we provide more details on the calculation, along with the kernels S̃n amd R̃ in Appendix

A. Similarly to what done in [18], in R(k) we have subtracted the k → 0 piece and added it back

to the third term, which renormalizes the linear shape bias as

b2K → b2K

(
1 +

58

105
σ2bδ

)
. (2.31)

The 〈(K ∗ δ)(K ∗ δ)〉 term. This term involves the correlation of the tidal shear field K with the

galaxy density field δg,

C
EE,(Kδ)2

` = b2K b
2
δ

∫
dk

2π
k2
[

(`− 2)!

(`+ 2)!
|FE0
` (x)|2S0(k) +

1

`2 + `− 2
|FE1
` (x)|2S1(k) + |FE2

` (x)|2S2(k)

]
(2.32)

C
BB,(Kδ)2

` = b2K b
2
δ

∫
dk

2π
k2
[

1

`2 + `− 2
|FB1
` (x)|2S1(k) + |FB2

` (x)|2S2(k)

]
. (2.33)

The functions S0, S1 and S2 involve the convolution of two power spectra,∫
q
P (q)P (|k− q|) , (2.34)

which allows for the transfer of power from E modes to B modes, as noted first in [12]. In the context

of galaxy clustering, analogous terms arise in the computation of the galaxy power spectrum and

are known to be very sensitive to the smoothing scale R (see [52, 55, 56] for more discussion).

Moreover, these integrals go to a constant as k → 0, therefore acting as a shot-noise term at large

scales. In our case, this implies an `-independent contribution to the C
X(δK)2

` power spectrum at

low `. In analogy with the Fourier space case, we subtract the ` = 2 contribution and therefore

show results from ` ≥ 3. The ` = 2 contribution would need to be then added to the total shot-noise

power spectrum, which we do not show here (but see Section 4 for a short discussion).
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Figure 1. Left panel: EE and BB density-weighted galaxy shape power spectrum at three different redshifts

as generated in the LA model by the tidal shear field Kij . Right Panel: all contributions to the EE density-

weighted galaxy shape power spectrum at redshift z = 1.

The 〈K(K ∗ (δ ∗ δ)〉 and the 〈K(K ∗ (K ∗K)〉 terms. These terms also renormalize the linear

bias. We therefore add them to Eq. (2.31) and get the following renormalization

b2K → b2K

[
1 + σ2

(
58

105
bδ − 2bδ2 +

28

15
bK2

)]
, (2.35)

with more details on the calculation in Appendix A.

In Figure 1 we show the total galaxy shape power spectrum in the LA model at three different

redshifts z = 0.5, 1, 2 and a comparison of all the terms at redshift z = 1. For these figures, we have

simply chosen bK = bδ = 1 and all the power spectra are multiplied by the linear growth factor

D2(z). A more detailed discussion about bias parameters is in order: according to what found in

LRG observations, bK = −C1ΩmD(z = 0)/D(zO), where C1 = 0.12 and the growth factor needs

to be normalized to be (1 + z)D(z) = 1 during matter domination [13]. As for the linear bias,

this was measured for the same dataset to be of order bδ ' 2. While for the linear bias we just

choose bδ = 1 at all redshifts, it is generically higher at higher redshifts. We have employed a flat

ΛCDM cosmology with h = 0.7, Ωm = 0.3 and σ8 = 0.85 and the linear matter power spectrum

is computed using the CLASS code [57]. We are only showing large scales up to ` = 100, which

roughly corresponds to k ∼ 0.03 h/Mpc at redshift z = 2, but we have developed a freely-available

code10 for the fast computation of these power spectra at high-`, showing its accuracy at low ` in

Figure 6. We give more details about these methods in Appendix A and E.

10https://gitlab.com/mbiagetti/tensor fossil
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3 Primordial gravitational waves and intrinsic alignments

In the previous section, we assumed that galaxy shapes respond linearly to changes in the local

tidal shear field, Kij . It has been pointed out early on [34, 35] that Kij is not the only source of

the external tidal field correlating galaxy shapes at large scales: tensor perturbations in the metric

contribute as well. The inflationary scenario indeed predicts the generation of such propagating

tensor modes, known as primordial gravitational waves. Recent efforts [14, 15, 36] have elaborated

on how to consistently compute what is the imprint of primordially generated tensor perturbations

in the late universe and specifically their impact in the local distribution of matter. In this section,

we summarize these findings and show how galaxy shapes respond to primordial gravitational waves.

3.1 Tensor perturbations from inflation

Let us start by defining transverse and traceless tensor perturbations hij around a flat FLRW

metric

ds2 = a2(η)
[
−dη2 + (δij + hij)dx

idxj
]
, (3.1)

where a(η) is the scale factor in conformal time η. These are generically sourced by an inflationary

scenario [58]. Scalar perturbations are also present and sourced during inflation, but we neglect

them for the time being. The tensor field hij can be decomposed into Fourier modes of two

polarization states

hij(k) =
∑

s=R/L

εsij(k̂)hs(k) , (3.2)

where, for the purpose of what follows, we choose to use chiral polarizations states defined through

εRij = ε+ij + iε×ij , (3.3)

εLij = ε+ij − iε×ij , (3.4)

hR/L =
h+ ∓ ih×

2
, (3.5)

where ε
+/×
ij and h+/× define the usual two linear independent polarizations of primordial gravita-

tional waves.

The total primordial power spectrum of gravitational waves is then defined through

〈hij(k, η)hij(k′, η′)〉 = (2π)3δD(k + k′)Ph(k, η, η′) . (3.6)

Notice that we can also define the amplitude of the single chiral mode as

〈hR/L(k, η)hR/L(k′, η′)〉 = (2π)3δD(k + k′)PR/L(k, η, η′) . (3.7)

In models of inflation where primordial gravitational waves are unpolarized (PR = PL), we get

PR/L(k, η, η′) =
Ph(k, η, η′)

8
, (3.8)

where we have used Eq. (3.6) and the fact that by definition hR/L = εijL/R hij/4.
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In order to study the impact of these tensor modes at later time, we need to define a transfer

function

hij(0, η) = Th(η)h
(0)
ij (0) , (3.9)

where we have used the notation hij(x, η = 0) ≡ h
(0)
ij (x), η = 0 denoting the time at the end of

inflation. In matter domination, it takes the simple form

Th(η) = 3
j1(kLη)

kLη
, (3.10)

valid for a single Fourier mode kL. In what follows, we use the full numerical transfer function for a

LCDM universe, i.e. including radiation and Λ domination phases, following [15]. The total tensor

power spectrum at the end of inflation is parametrized as

Ph(0, k) = Ph(k) =
2π2

k3
rAs , (3.11)

where r is the tensor-to-scalar ratio, As is the amplitude of scalar perturbations and we approximate

the spectral index of tensor modes, nT = d lnPh/d ln k ≈ 0, as it affects only negligibly our results.

We will consider r = 0.1 as a reference value in all our calculations.

3.2 Primordial gravitational waves in the galaxy shape power spectrum

The calculation of the imprint of tensor modes on intrinsic galaxy shapes is based on the essential

fact that, generically, the leading locally observable effect of a long-wavelength perturbation kL, of

any kind, on a region of size much smaller than 1/kL is an effective tidal field. For scalar pertur-

bations, this is what generates the well-known F2 kernel on the matter density field in standard

perturbation theory [15]. For tensor modes specifically, and in the context of galaxy shapes, it

helps to use the Fermi normal coordinate (FNC) frame [44, 45]. In this frame, the metric gFµν is

Minkowski along the central geodesic passing through the center of mass of a given region of the

Universe, with the relevant corrections of order x2F . It is possible to show that results obtained in

these coordinates have a clear physical interpretation as corresponding to what a local freely falling

observer moving along the central geodesic would measure (see e.g. [36]). Using this framework,

tensor perturbations source the following external tidal field at time η

tij = −a
−2

2

[
T ′′h (η) + aHT ′h(η)

]
h
(0)
ij , (3.12)

where the prime means derivative with respect to the conformal time and Th(η) is the transfer

function of tensor perturbations from inflation as introduced in (3.9). The dependence of the tidal

field on time derivatives of the transfer function Th implies that it vanishes on superhorizon scales,

as one would expect, and only tensor perturbations that at a given time are experiencing the horizon

re-entry contributes to the tidal field, scaling as k2 for k → 0. Now that we have the contribution

of tensor modes to the local tidal field, we need to make assumptions on how the galaxy shape field

responds to a change in this tidal field.
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The instantaneous response. One basic approach is to extend the linear alignment model to

tensor modes and assume that the response to a change in tij is “instantenous”, and therefore the

projected, density-weighted galaxy shape field can be written as

γ̃ij(n̂, zO) = P`i Pmj
[
bK Kij(n̂, zO)(1 + bδ δ(n̂, zO)) + bt tij(n̂, zO)(1 + bδ δ(n̂, zO))

]
, (3.13)

where we have dropped the δ2 and K2 from the galaxy bias expansion, Eq. (2.8), as we have

seen from the previous Section 2 that at this order they only renormalize bias parameters. It is

important to notice here that, because the time evolution of the transfer function Th depends on

the long-wavelength mode kL (cf. Eq. (3.10)), the amplitude of the response of γ̃ij to changes in

the primordial tensor perturbation h
(0)
ij depends itself on k. In other words, we cannot factorize

the time component in Fourier space in corresponding growth factors for the evolution of tensor

perturbations, as it is usually done for scalar perturbations.

The fossil effect. Another approach was considered by [59], where they calculated the effect of

such a tidal tensor on the second order density field δ to be

δ
(2)
t (x, η) = h

(0)
ij (x)

[
α(kL, η)

∂i∂j

∇2
+ β(kL, η)xi ∂i

]
δ(1)s (x, η) , (3.14)

where δ
(N)
X indicates the matter density field at order N for X = s, t scalar and tensor perturbations,

respectively and α and β are given, assuming matter domination, by

α(kL, η) =
2

5
+ 18

cos(kLη)

(kLη)4
+ 6

sin(kLη)

(kLη)3

[
1− 3

(kLη)2

]
, (3.15)

β(kL, η) =
1

2
+

3

2

cos(kLη)

(kLη)2
+

3

2

sin(kLη)

(kLη)3
. (3.16)

These functions reflect the fact that the tidal field sourced by tensor perturbations depends on

a time integration over the past history of the tensor mode, rather then on the “instantaneous”

value of tij . For more details on the derivation of α and β, we refer to the original calculation

[15]. If we take seriously the fossil effect of tensor modes on small-scale matter perturbations, we

should believe that galaxy shapes respond similarly to these perturbations. Indeed, the calculation

in FNC frame of the effect of long-wavelength perturbation kL on small-scale density perturbations

is equivalent, at least in procedure, for scalar and tensor perturbations. Consequently, in [15] it is

argued that the way in which galaxy shapes are affected by tensor perturbations should be matched

to the corresponding response calculated in the case of scalar perturbations, therefore obtaining

γtij(x, η) = bh α(kL, η)P`i Pmj h
(0)
`m(x) . (3.17)

If we apply this ansatz, the full expansion in the projected density weighted galaxy shape field is

γ̃ij(n̂, zO) = P`i Pmj
[
bK Kij(n̂, zO)(1 + bδ δ(n̂, zO)) + bh α(kL, zO)h

(0)
ij (n̂, zO)(1 + bδ δ(n̂, zO))

]
.

(3.18)

We employ this second prescription for our computations, calculating the numerical expression for

α(kL, zO) including radiation and Λ, i.e. without assuming matter domination, as shown in [15].
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Having the response of γ̃ij to primordial tensor modes, we can go on with a similar procedure as for

the previous section by applying spin-lowering operators to get that the leading order contribution

to the galaxy shape field from tensors in Fourier space is

γ̃(n̂,k) ⊃ 1

4
bh α(k)

∑
p=−1,1

h
(0)
2p (k)Q2p(x) eixµ (1− µ2) ei2pφ , (3.19)

where we will drop the dependence on redshift in α from now on and Q±2(x) are defined in Appendix

A, and h
(0)
±2(k) = hR/L(k). We now have all the ingredients to write all the contributions from tensor

modes to the galaxy shape power spectrum. At order O(P 2
X), where X = δ, h, and respecting the

LA model, we have two terms.

The 〈hh〉 term. At linear order on Ph we find

C
EE,(hh)
` =

b2h
16

∫
dk

2π
k2 α2(k)Ph(k)|FE2

` (x)|2 (3.20)

C
BB,(hh)
` =

b2h
16

∫
dk

2π
k2 α2(k)Ph(k)|FB2

` (x)|2 , (3.21)

where we used P±2(k) = Ph(k)/8 and FX2(k) are the same as the ones used for the scalar-induced

correlations in the previous Section 2.

The 〈hδhδ〉 term. Similarly to the case ofKij , this term involves the convolution of the primordial

tensor field h with the galaxy density field δg,∫
q
Ph(q)Pδ(|k− q|) , (3.22)

and similarly to before for k → 0 a shot-noise contribution arises. The correlators for this term

read

C
EE,(δh)2

` = b2h b
2
δ

∫
dk

2π
k2
[

(`− 2)!

(`+ 2)!
|FE0
` (x)|2T0(k) +

1

`2 + `− 2
|FE1
` (x)|2T1(k) + |FE2

` (x)|2T2(k)

]
(3.23)

C
BB,(δh)2

` = b2K b
2
δ

∫
dk

2π
k2
[

1

`2 + `− 2
|FB1
` (x)|2T1(k) + |FB2

` (x)|2T2(k)

]
, (3.24)

where

Tn(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµα2(rk)Ph(rk)Pδ(k

√
1 + r2 − 2rµ)T̃n(r, µ) , (3.25)

and we define the kernels T̃n in Appendix A. We have verified, even before subtraction of the

shot-noise, that this term gives a negligible contribution to the total power spectrum, we therefore

neglect it.

We show the EE and BB galaxy shape power spectrum as sourced by tensor (Eq. (3.20)) and

scalar (Eq. (2.32)) perturbations in Figure 2, where we choose all bias parameters to be unity, bK =
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Figure 2. EE (left) and BB (right) density-weighted galaxy shape power spectrum at two different redshifts

as generated in the LA model by the tidal shear field Kij and by the tensor tidal field tij using the prescription

of Eq. (3.17).

bδ = bh = 1.11 Although different in shape, the contribution from tensor modes is subdominant

with respect to the one induced by Kij even in the case of the BB power spectrum, which is

induced by Kij at order O(P 2
δ ). For this reason, we are not showing higher order terms involving

O(Pδ ×Ph), which are negligibly small. We would also like to stress that we are comparing strictly

intrisic correlations in galaxy shapes. More correlations among shapes arise when considering also

the lensing contributions, as shown e.g. in [36]. Figure 2 shows that even before accounting for

lensing contaminations to the primordial signature, there are intrinsic ones that are expected to be

larger in amplitude, though different in shape.

4 Chiral Gravitational Waves and intrinsic alignments

In Section 2, we have shown that B modes arise at order P 2 in the density-weighted galaxy shape

power spectrum as a consequence of the convolution of the tidal shear field Kij with the galaxy

density field δg. It is important to specify that this is not a specific feature of our approximation of

considering the LA model and computing density-weighted galaxy shape statistics: the convolution

would appear generically in an EFT expansion, as already shown in [25]. These scalar-induced B

modes in the galaxy shape power spectrum are a contaminant to the primordial signature coming

from tensors, as shown in Figure 2. This finding motivates a search of a setup where the primordial

signature is the only, or at least dominant, source. In this section, we consider parity-breaking

11 While this is not a realistic scenario, there is no reason at this stage to expect that bK is much greater than bh
and anyway their ratio would be ultimately only constrained by data. As for bδ, changes of order unity are expected,

but would not affect qualitatively our results.
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primordial gravitational waves as a source of intrinsic alignments of galaxy shapes. We will show

that E-B intrinsic correlations are generated by these parity-breaking models.

Chirality from inflation. Gravitational waves produced in an inflationary context are predicted

to be unpolarized by the standard slow-roll models of inflation (see e.g. the review [60]), where

parity is a symmetry of the theory. However, we currently lack strong observational constraints

on the level of chirality of primordial tensor modes. In fact, we have just forecasts about testing

chirality of primordial gravitational waves with CMB data (see e.g. [61, 62]) and interferometers

(see e.g. [63–65]).

Chirality in the context of gravitational waves can be defined at linear level as the relative

difference between the R and L-handed primordial tensor power spectra

χ(k) =
PR(k)− PL(k)

PR(k) + PL(k)
, (4.1)

being

PR/L(k) = 〈hR/L(k)h∗R/L(k)〉 . (4.2)

We expand on model building efforts for various predictions of χ 6= 0 in Appendix B, but our results

are generic as long as the inflationary model produces chirality of the type of Eq. (4.1)12.

4.1 Chiral gravitational waves in the galaxy shape power spectrum

First, let us notice that correlations of Kij , or of any other combination of Kij and δ producing only

matter density power spectra Pδ can not give a parity-breaking contribution to the galaxy shape

power spectrum, just because by definition δ(x) evolving in a FLRW Universe is a real scalar field

and thus invariant under parity13. We therefore do not expect to see a finite correlation between

E and B modes in the galaxy shape power spectrum, unless a primordial process, such as the one

presented above, violates parity at the level of tensor perturbations14. Given the parity-breaking

12While a maximum chirality χ = 1 is generically hard to achieve for inflationary models where the tensor per-

turbations are not sourced by a spectator field, it has been shown for instance in [66] and references therein that

primordial gauge fields, such as an axion-SU(2) gauge field, can enhance the parity breaking during inflation, raising

χ to unity.
13We can see this concretely by observing how the harmonic coefficients a`m and the derivative functions Qn

transform under parity[36]. For n̂→ −n̂ we have

aE`m → (−1)`aE`−m , (4.3)

aB`m → −(−1)`aB`−m , (4.4)

(4.5)

so that

〈aE`maB`m〉 → −〈aE`−maB`−m〉 . (4.6)

At this point, assuming the parity symmetry we get

CEB` =
∑
m

〈aE`maB`m〉
n̂→−n̂

= −
∑
m

〈aE`−maB`−m〉 = −CEB` = 0 . (4.7)

14Observations of SDSS galaxies at low redshift seem to hint at a potential parity violation of the observed spin

of spiral galaxies [67–70]. However, the strength of the violation and the low-redshift and small scales at which it is

observed suggests that it is not of primordial origin.
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primordial tensor power spectrum from Eq. (4.2), we can compute the cross-correlation of E and

B modes. The only difference with respect to the EE and BB power spectra sourced by primordial

gravitational waves is that the EB correlation depends on the difference PR − PL = χPh/8. We

therefore find

CEB` = χ
b2h
16

∫
dk

2π
k2 α2(k)Ph(k)FE2

` (x)FB2
` (x) , (4.8)

where we now neglect the term proportional to Ph × Pδ as we have already determined that it is

small. We show a comparison of the BB and EB power spectra sourced by tensor perturbations

only in Figure 3, where as before we choose bh = 1. Since we take the maximal amount of chirality

for these plots, χ = 1, the difference in shape and amplitude is entirely given by the different

combinations of transfer functions FE2
` and FB2

` . In order to determine whether these signatures

are, at least in principle, observable, we can argue that they should be at least of the same order, or

higher, as the shot-noise usually computed for imaging surveys measuring the intrinsic ellipticity of

galaxies, the so-called “shape noise” (see for instance [71]). Indeed, until now, we have worked on

large-scales, ignoring the fact that stochasticity is produced by small-scale perturbations and affects

the formation of galaxies, and therefore their intrinsic ellipticity. These stochastic contributions

can be systematically accounted for order by order in effective descriptions in a similar way as

done for the galaxy bias, as explained in [25]. In imaging surveys, the leading, scale independent,

contribution to the galaxy shape power spectrum is usually expressed as

σ2γ =
σ2e
n̄
, (4.9)

where, for a given fraction of sky considered, σe is the RMS (Root Mean Square) intrinsic ellipticity

of galaxies, and n̄ is the number of source galaxies per steradian. In the approximation in which the

measured signal is dominated by this shot-noise, and neglecting systematics from the instrument

itself, the 1σ uncertainty on the measured signal is

∆C
E/B
`,measured '

√
2

(2`+ 1)fsky
σ2γ . (4.10)

For our estimations, we consider an LSST-like survey with σ2e = 0.26, fsky = 0.36 and n̄ = 31

galaxies/arcmin2 and median redshift z = 0.93 [71]. Since we do not account for the redshift

distribution dN/dz of the survey, we just compute power spectra at z = 1 which is close to the

median redshift. We therefore use this setup just as an approximate threshold of observability of

our signatures, determining that the signature is 1− 2 order of magnitudes below the threshold15.

An important question to raise is whether we still have the shape-noise signal for the EB power

spectra. Following the argument above, one might think that, without any parity breaking processes

arising during galaxy formation, there should not be any stochasticity in the EB correlation, thus

causing the shape noise signal of the EB channel to be vanishing. This, in principle, reduces the

unavoidable uncertainty (4.10) with respect to the EE and BB channels.

15These prospects might be improved upon cross-correlating the galaxy shape field with the CMB polarization field,

as studied for the case of EE and BB correlations in [37]. Their work show, however, that the CMB auto-correlation

contains most of the constraining information and we do not expect to find significantly different results for the EB

correlation.
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Figure 3. Left Panel: BB and EB galaxy shape power spectra at redshift z = 2, where the parity-breaking

is that of Eq. (4.1) with maximum chirality, χ = 1. Right Panel: Comparison of EB power spectra at three

different redshifts for the same model. Dashed lines indicate negative values.

5 Tensor non-Gaussianities and intrinsic alignments

Primordial tensor non-Gaussianities have been object of several studies and provide an interest-

ing window to interactions taking place during inflation at very high energies [60, 72–91]. The

galaxy shape field bispectrum 〈g g g〉 or cross-correlations of shape and density such as 〈g g δ〉
and 〈g δ δ〉 contain the direct information on tensor non-Gaussianities 〈hhh〉 and the respective

cross-correlations with the scalar perturbation 〈hh ζ〉 and 〈h ζ ζ〉 through the modelling of how

gij responds to tensor perturbations we explained in Section 3. While we defer investigation of

the galaxy shape bispectrum to future work, in this section we show that the galaxy shape power

spectrum is itself sensitive to tensor non-Gaussianities of the type 〈hh ζ〉 and 〈h ζ ζ〉 due to the

density-weighting of the galaxy shape field. We calculate their imprint on intrinsic alignments for

two models where these correlations have enhanced amplitude during inflation.

5.1 Tensor non-Gaussianity from inflation

In Section 3, we wrote down the expansion of the projected density-weighted galaxy shape field, Eq.

(3.18), in the LA model. Similarly to Eq. (2.18), we can momentarily drop indices and schematically

write down all the possible terms sourced by tensors contributing to the power spectrum as

〈γ̃ γ̃〉 ⊃ b2h α2 〈hh〉+ 2 bK bh α 〈K h 〉+ 2 bK bh α bδ
[
〈(K ∗ δ)h〉+ 〈K (h ∗ δ)〉

]
+ 2 b2h α bδ 〈h (h ∗ δ)〉+ 2 bK bh α

2 b2δ〈(K ∗ δ) (h ∗ δ)〉+ b2h α
2 b2δ 〈(h ∗ δ) (h ∗ δ)〉 , (5.1)

where the first term is the leading contribution which we already discussed in Sections 3 and 4.

The second term, 〈K h〉, is non-zero only in particular anisotropic primordial setups where the
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scalar-tensor cross correlator 〈ζh〉 is sourced. Example of models predicting it are e.g. [92–94].

However, in these models, an enhanced amplitude of 〈ζh〉 is associated with large anisotropies

in the scalar cross-correlator 〈ζζ〉 and in primordial non-Gaussianities, and observations on the

statistically anisotropic modulations of the CMB (see e.g. [95]) have put tight constraints on these

anisotropies. The third and fourth term in (5.1) are sourced by primordial non-Gaussian correlators

of the type 〈hh ζ〉 and 〈h ζ ζ〉, while the last two terms are sourced by inflationary trispectra. The

last term is also sourced by the product of the tensor and scalar power spectrum.

Parity-Breaking Tensor non-Gaussianities. In Section 3 we argued that EE and BB primor-

dial power spectra are subdominant with respect to their counterparts sourced by scalar pertur-

bations through Kij . In the same spirit of looking for a distinctive parity breaking signature in

the power spectrum, we look at parity-breaking bispectra. In this case, we specialize to a model

generating parity breaking signatures via the Chern-Simons modified gravity term (B.5), which

was developed in [81]. Within this model, parity breaking is generated in the power spectrum

in the form of Eq. (4.1), where in this case χ is a function of the Chern-Simons mass, and in

the bispectrum statistics, providing a source for the parity breaking term 〈hh δ〉. In Ref. [81],

the exact shape function of the parity-breaking contribution to the primordial tensor-tensor-scalar

bispectrum statistics was computed to be

〈hR/L(~k1)hR/L(~k2)ζ(~k3)〉 = (2π)3δ(3)
(
~k1 + ~k2 + ~k3

)
B
R/L
hhζ (k1, k2, k3) , (5.2)

〈hR/L(~k1)hL/R(~k2)ζ(~k3)〉 = 0 , (5.3)

where

B
R/L
hhζ (k1, k2, k3) = ∓25π4

768
A2
s

(
r2Π

) (k1 + k2)

k21k
2
2k

3
3

cos θ(1− cos θ)2

2
, (5.4)

where

cos θ =
k23 − k22 − k21

2k1k2
(5.5)

is the cosine of the angle between the momenta ~k1 and ~k2 forming a triangle configuration with ~k3
and Π is a dimensionless parameter defined as

Π =
96π

25
H2∂

2f(φ)

∂2φ
, (5.6)

being f(φ) the coupling function in Eq. (B.5) and ∂2f(φ)/∂2φ its second order derivative. A

priori, the quantity ∂2f(φ)/∂φ2 can be scale dependent, but in this work we will assume it to

be scale independent for simplicity. In order to maintain perturbativiy of the theory generating

these interactions (see Appendix C for more details), the amplitude of this non-Gaussianity is

theoretically bounded as

Π .

(
0.1

r

)
× 106 . (5.7)

Moreover, the expression of the bispectrum (5.4) has to be corrected in the so-called squeezed limit

where the momentum of the scalar perturbation ζ is much smaller than the momenta of the two

gravitons (i.e. k3 � k1 ' k2). In fact, it is well known from the literature (see e.g. [96–109])

that in the squeezed limit the leading order value of the primordial bispectra can be reabsorbed
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leaving only small physical contributions of order (kL/kS)2 (see Appendix D for an estimate of this

correction for our model).

Squeezed Tensor non-Gaussianities. Similarly to the case of primordial non-Gaussianity

sourced by scalar perturbations, consistency relations constrain the amplitude of tensor non-

Gaussianity in the squeezed limit to be small [72, 102]. The breaking of the consistency relations

for scalar non-Gaussianities is usually related to multi-field models of inflation, the most popu-

lar example being local-type primordial non-Gaussianity [110]. For tensor non-Gaussianities, it is

somewhat harder to break the relative consistency relations, as they are violated only when adia-

baticity is broken by light tensor perturbations [107]. Therefore, multiple scalar fields do not help

[111] and the Higuchi bound forbids the existence of light spin-2 fields in De Sitter (DS) [112]. One

way to violate the consistency relations is hence to break the DS isometries [87] and therefore allow

for light particles with spin during inflation. Another way is through partially massless higher-

spin particles [85, 88, 113, 114]. Assuming that one of these scenarios take place, the form of the

squeezed tensor-scalar-scalar bispectrum is

Bhζζ(k1, k2, k3)
∣∣∣
k1�k2,k3

= fhNL

(
k1
k2

) 3
2
−ν

Ph(k1)Pζ(k2) , (5.8)

where ν =
√

9/4− (m/H)2, being m the mass of the particle exchanged in the process and H the

Hubble radius during inflation. Being k1/k2 � 1, the maximum amplitude is reached for massless

particles, for which ν → 3/2 and the ratio of the long mode over the short one vanishes.

5.2 Tensor non-Gaussianities in the galaxy shape power spectrum

Following a similar procedure as in the previous sections, we can now compute the contribution to

the density-weighted galaxy shape power spectrum of the two tensor non-Gaussianities discussed

in the previous paragraph.

The 〈h (h ∗ δ)〉 term. Using Eq. (5.4) as a source to the fourth term in Eq. (5.1), we get the

parity-breaking component

C
EB,(hhδ)
` =

√
2 r fRNL b

2
h bδ

∫
dk

2π
k2α(k)Ph(k)FE2

` (x)FB2
` (x)B1(k) , (5.9)

where here r is the tensor to scalar ratio, not to be confused with the integration variable in the

kernel

B1(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµα(rk)Pζ(k

√
1 + r2 − 2rµ)M(k

√
1 + r2 − 2rµ)B̃1(r, µ) , (5.10)

being

B̃1(r, µ) = 2(1 + r)µ (1− µ2)2 . (5.11)

We have also reparameterized the amplitude of the primordial tensor bispectrum

fRNL ≡
25

24576
Π (5.12)
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Figure 4. Left Panel: The contribution from the primordial parity-breaking bispectrum of Eq. (5.4) (green

solid) with the largest amplitude allowed by theoretical bounds, fRNL = 103, is compared to the power

spectrum one (gray solid) and to the 1σ uncertainty of a LSST-like survey (black dotted line) at redshift

z = 2 . Right Panel: Contribution from the primordial parity-breaking bispectrum of Eq. (5.4) for three

different redshifts and fRNL = 103.

as done in [81]. In the previous paragraph and in the Appendix D we have discussed that the

squeezed limit of Eq. (5.4) should scale as (kL/kS)2 after reabsorbing unphysical contributions.

In our kernel, Eq. (5.10), the squeezed limit corresponds to r → 1 and µ → −1, which clearly

gives a negligible contribution to the integrand. We have checked numerically that this is indeed

the case. We therefore do not correct the squeezed limit as it does not affect our results. Figure

4 illustrates the contribution of the parity-breaking primordial bispectrum of Eq. (5.4) compared

to the tensor power spectrum (left panel) and for different redshifts (right panel), where we again

choose bδ = bh = 1. Following our discussion, detailed in Appendix C, we are using the maximum

amplitude allowed for consistency of the theory, fRNL = 103. The results clearly show that it would

be challenging to reach the necessary sensitivity to distinguish this contribution.

The 〈h(K ∗ δ)〉 term. Using Eq. (5.8) as a source to the third term in Eq. (5.1), where we

maximize the amplitude by assuming ν = 3/2, we get the B-mode component16

C
BB,(hKδ)
` = fhNL bh bK bδ

∫
dk

2π
k2α(k)Ph(k) |FB2

` (x)|2 B2(k) , (5.13)

where

B2(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµ Pζ(rk)M(rk)M(k

√
1 + r2 − 2rµ)B̃2(r, µ)WH

( q
k
,Rsqueezed

)
,

(5.14)

16An E-mode is also sourced by this non-Gaussianity, but we do not show it here as the scalar-induced E-mode

galaxy shape power spectrum is quite large, cfr. Figure 1.
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Figure 5. Left Panel: The contributions from the primordial bispectrum of Eq. (5.8) with fhNL = 1 (green

dashed), from the tensor power spectrum (green dotted-dashed) and their sum (green solid) compared with

the scalar-induced BB power spectrum (gray solid) at redshift z = 2. Right Panel: Contribution from the

primordial bispectrum of Eq. (5.8) with fhNL = 1 to the galaxy shape power spectrum for different values of

Rsqueezed at redshift z = 2.

being

B̃2(r, µ) =
1

4
r2 (1− µ2) . (5.15)

and

WH(x,R) = 1− e−(x/R)4 (5.16)

is introduced in order to ensure that we stay in the regime of validity of Eq. (5.8) by suppressing the

integrand when the ratio of the short mode q over the long mode k is smaller than Rsqueezed � 1.

In Figure 5, we show the contribution of the squeezed bispectrum to the total BB galaxy shape

power spectrum at redshift z = 2 for Rsqueezed = 100 (left panel) and all the bias parameters are

set to unity bK = bδ = bh = 1 for similar reasons as argued above. We also verify the dependence

on Rsqueezed ∈ [10, 100] of our results (right panel). Because we do not have the full shape, but only

the squeezed limit of Eq. (5.8), these results should be taken more as a rough order of magnitude

estimation, rather than a precise prediction. Nevertheless, on the largest scales, i.e. for ` . 20

where the tensor-scalar-scalar bispectrum dominates the power spectrum, we expect the squeezed

limit to hold.

6 Conclusions

In this paper, we have employed recently developed methods to get an insight into the physics of

galaxy intrinsic alignments, focusing on the observational imprints from the early Universe. Our

analysis pointed out three main aspects in this direction: first, we have calculated the contribution
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on E and B modes of the galaxy shape power spectrum sourced by the convolution of the shear field

Kij with the matter density δ at large scales. This contribution is inevitable since the information

on the shapes comes from the light emitted by an observable galaxy, thus weighted by the galaxy

number density field. We found that the B-mode signal is generically stronger in amplitude, al-

though different in shape, than the one sourced by gravitational waves of primordial origin (Fig. 2).

This result suggests that searching for the imprint of primordial gravitational waves in B modes of

the galaxy shape power spectrum is even more challenging than what stated in previous literature.

Thus, realizing that such contamination would be absent if primordial gravitational waves broke

parity, we have computed the EB galaxy shape power spectrum for a generic inflationary model

predicting chirality in the primordial tensor power spectrum as in the form of Eq. (4.1). We found

that, although the expected signal is small (Fig. 3), if detected it would represent a clear signature

of parity breaking setups in the primordial Universe. In fact, we argue that the so-called shape

noise signal, being invariant under parity transformations, should be vanishing for EB correlations.

Third, we point out that, similarly to what already studied for galaxy clustering statistics, the

galaxy shape power spectrum is sensitive to primordial non-Gaussianities, in this case sourced by

cross-correlations of tensors and scalar primordial perturbations. We computed the signature in the

EB galaxy shape power spectrum from a parity-breaking tensor-tensor-scalar primordial bispectrum

sourced by the gravitational Chern-Simons term during inflation. Even in our simplified setup, we

find that observing such signatures with an idealized LSST-like survey would be challenging (Fig.

4). Furthermore, we estimated the signature in the B modes galaxy shape power spectrum from

squeezed tensor-scalar-scalar primordial bispectra that break consistency relations during inflation.

We found that, on the largest scales, the expected signal overcomes the signature given by the

power spectrum of primordial gravitational waves (Fig. 5).

Our study should be improved on a number of aspects: first of all, for a complete treatment,

the EFT approach of [25] would be a powerful tool for computing all possible contributions to

the galaxy shape power spectrum. Even though we believe that our simplified scenario captures

the essential qualitative features of the setup we studied, this should be checked. Second of all,

we have estimated observability of our signatures with a rough, order of magnitude, evaluation

of the expected stochastic noise. This should be complemented by more up-to-date models (see

e.g. [71]) and by an estimation of the instrument systematics. In our specific case, it would be

important to ascertain systematic uncertainties on E-B correlations. Finally, in our study of scalar-

tensor primordial non-Gaussianities we have only considered imprints on the galaxy shape power

spectrum, while the subsequent study of the galaxy shapes bispectra might provide a promising

observational channel for more mixed scalar-tensor primordial non-Gaussianities and the full tensor

bispectrum. We leave these studies for future research.
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A Details on the calculations of the galaxy shape power spectrum

In this Section we specify further details on computations we present in Sections 2 and 3. While

most of the formalism was developed in [14, 36], we optimize computations to be fast and accurate

both at large scales and small scales.

A.1 More on the projection in the sky and useful relations

As outlined in the main text, we can decompose γ̃ij into spin ±2 functions as [14]

±2γ̃ = γ̃1 ± iγ̃2 . (A.1)

This is analogous to the decomposition in Stokes parameters Q± iU that is commonly used in the

CMB linear polarization. Indeed, in analogy with the CMB case we will use multiple moments of

E and B modes for the shear, which are invariant under a rotation of the frame and are eigenstates

of parity. Let us therefore define on the sphere the unit vectors of the circularly polarized basis,

i.e. m± ≡ (eθ ∓ i eφ)/
√

2. In this case the ±2γ̃ components of the shear are given by definition as

±2γ̃ ≡mi
∓m

j
∓γ̃ij (A.2)

and represent spin-2 quantities in the sky. We can consider the contribution from a single plane

wave to ±2γ̃ to find, in our LA model,

±2γ̃(n̂,k) = bK
(m∓ · k)2

k2
δ(k, zO) eik·n̂χ(zO) + bδ bK

∫
q

(m∓ · q)2

q2
δ(q, zO) δ(k− q, zO) eik·n̂χ(zO)

+ bK b2

∫
q1,q2

(m∓ · q1)
2

q21
δ(q1, zO) δ(q2, zO) δ(k− q1 − q2, zO) eik·n̂χ(zO)

+ bK bK2

∫
q1,q2

(m∓ · (k− q1 − q2))
2

|k− q1 − q2|2
(

(q1 · q2)
2

q21q
2
2

− 1

3

)
× δ(q1, zO) δ(q2, zO) δ(k− q1 − q2, zO) eik·n̂χ(zO) , (A.3)

where
∫
q ≡

∫
d3q/(2π)3 and notice that we are now explicitly indicating the dependence on the

observed redshift zO. In order to compute observable correlations of such quantities, we can apply

spin-lowering or -raising operators [14] to convert ±2γ̃ into a scalar in the sky

γ̃(n̂,k) = ð̄2 +2γ̃(n̂,k) =

(
− ∂

∂µ
− m

1− µ2
)2 [

(1− µ2) +2γ̃(n̂,k)
]
, (A.4)

where µ is the cosine of the angle between k and n̂ and m = −2,−1, 0,+1,+2 depending on how

the specific operator in the expansion of Eq. (2.9) transforms. As an example, for the operator Kij

we get

γ̃(n̂,k) ⊃ −1

2
bK

(
∂

∂µ

)2 [
δ(k, zO) (1− µ2)2 eixµ

]
=

1

2
bK δ(k, zO)Q0(x) eixµ , (A.5)
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where we defined x = k χ(zO) and the derivative operator

Q0(x) =
[
4 + 12∂2x + 8x∂x + 8x∂3x + x2 + 2x2∂2x + x2∂4x

]
. (A.6)

More in general, as shown in [36], we can always turn derivatives with respect to µ into powers of

ix and powers of µ into derivatives with respect to ix. We then obtain the generic formula

ð̄2 +2γ̃(n̂,k) = Q̂i(x)(1− µ2)|r|/2eirφeixµa(k) , (A.7)

where now a(k) is a scalar field and we define the derivative operators

Q̂0(x) = 4 + x2 + 8x ∂x + 12 ∂2x + 2x2∂2x + 8x∂3x + x2∂4x (A.8)

Q̂−1(x) = ix2∂3x − x2∂2x + 8ix∂2x + ix2∂x − 4x∂x + 12i∂x − x2 + 4ix (A.9)

Q̂1(x) = ix2∂3x + x2∂2x + 8ix∂2x + ix2∂x + 4x∂x + 12i∂x + x2 + 4ix (A.10)

Q̂−2(x) = −x2∂2x − 2ix2∂x − 8x∂x + x2 − 8ix− 12 (A.11)

Q̂2(x) = −x2∂2x + 2ix2∂x − 8x∂x + x2 + 8ix− 12 , (A.12)

which respect the following properties

Q̂n(x) = (−1)nQ̂∗−n(x) (A.13)

Q̂∗n(x) = Qn(−x) . (A.14)

When writing down harmonic coefficients, we use the relation Eq. (2.13) to integrate over the angle

analytically, obtaining as a result spherical bessel functions j` as a function of x = kχ. The action

of the derivatives operator Q̂(x) on these spherical Bessel functions gives

Q0(x) j`(x) =
(`− 1)`(`+ 1)(`+ 2)j`(x)

x2

Q−1(x)
j`(x)

x
= −(−2 + `+ `2)

j`(x)

x
+ i (−2 + `+ `2)

[
(1 + `)

j`(x)

x2
− j`+1(x)

x

]
Q1(x)

j`(x)

x
= (−2 + `+ `2)

j`(x)

x
+ i (−2 + `+ `2)

[
(1 + `)

j`(x)

x2
− j`+1(x)

x

]
Q−2(x)

j`(x)

x2
=

2xj`+1(x)−
(
`2 + 3`− 2x2 + 2

)
j`(x)

x2
+ i

2xj`+1(x)− 2(`+ 2)j`(x)

x

Q2(x)
j`(x)

x2
=

2xj`+1(x)−
(
`2 + 3`− 2x2 + 2

)
j`(x)

x2
− i 2xj`+1(x)− 2(`+ 2)j`(x)

x
, (A.15)

from which we define the appropriate transfer functions for E and B modes,

F
E|r|
` (x) ≡ Re

[
Q̂r(x)

] j`(x)

x|r|
(A.16)

F
B|r|
` (x) ≡ Im

[
Q̂r(x)

] j`(x)

x|r|
, (A.17)

where r = 0,±1,±2.
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A.2 Scalar-induced contributions

In Section 2 we compute all the contributions up to order O(P 2
δ ) in the context of the LA model

using the density-weighting galaxy shape field, γ̃. For completeness, we report here the expansion

in terms of ±2γ̃ components

±2γ̃(n̂,k) = bK
(m∓ · k)2

k2
δ(k, zO) eik·n̂χ(zO) + bδ bK

∫
q

(m∓ · q)2

q2
δ(q, zO) δ(k− q, zO) eik·n̂χ(zO)

+ bK b2

∫
q1,q2

(m∓ · q1)
2

q21
δ(q1, zO) δ(q2, zO) δ(k− q1 − q2, zO) eik·n̂χ(zO)

+ bK bK2

∫
q1,q2

(m∓ · (k− q1 − q2))
2

|k− q1 − q2|2
(

(q1 · q2)
2

q21q
2
2

− 1

3

)
× δ(q1, zO) δ(q2, zO) δ(k− q1 − q2, zO) eik·n̂χ(zO) , (A.18)

from which, using Eq. (A.4), (2.12) and (2.13) we can get the harmonic coefficients,

aK`m(k, n̂) = −1

2
bK
√

4π(2`+ 1) i`

√
(`− 2)!

(`+ 2)!
δ(k, η)Q0(x) j`(x) , (A.19)

for the linear term and

aδK`m (k, n̂) = − 1

2
bK bδ

√
4π(2`+ 1) i`

√
(`− 2)!

(`+ 2)!

∫
q
δ(q, η)δ(k− q, η)[

1

2
δm0Q0(x) j`(x) (3 cos2(θq)− 1)

+

√
(`+ 1)!

(`− 1)!
i (δm+1Q+1(x)− δm−1Q−1(x))

j`(x)

x
sin(θq) cos(θq)

−1

4

√
(`+ 2)!

(`− 2)!
(δm+2Q+2(x) + δm−2Q−2(x))

j`(x)

x2
sin2(θq)

]
, (A.20)

for the second term, where θq is the angle of q with respect to the z−axis. Using a similar procedure,

we can compute the remaining two terms to be

aδ
2K
`m (k, n̂) = − 1

2
bK bδ2

√
4π(2`+ 1) i`

√
(`− 2)!

(`+ 2)!

∫
q1,q2

δ(q1, η)δ(q2, η)δ(k− q1 − q2, η)[
1

4
Q0(x)δm0 j`(x) (3 cos(2θq1) + 1)

+

√
(`+ 1)!

(`− 1)!
i (δm+1Q+1(x)− δm−1Q−1(x))

j`(x)

x
sin(θq1) cos(θq1)

−1

4

√
(`+ 2)!

(`− 2)!
(δm+2Q+2(x)− δm−2Q−2(x))

j`(x)

x2
sin2(θq1)

]
. (A.21)
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and

aK
2K

`m (k, n̂) = − 1

4
bK bK2

√
4π(2`+ 1) i`

√
(`− 2)!

(`+ 2)!

∫
q1,q2

δ(q1, η)δ(q2, η)δ(k− q1 − q2, η)

[Q0(x)δm0 j`(x) A(q1,q2, k)√
(`+ 1)!

(`− 1)!
i (δm+1Q+1(x)− δm−1Q−1(x))

j`(x)

x
B(q1,q2, k)

−
√

(`+ 2)!

(`− 2)!
(δm+2Q+2(x)− δm−2Q−2(x))

j`(x)

x2
C(q1,q2, k)

]
, (A.22)

where

A(q1,q2, k) =
1

8

(
4k2 + q21 + q22 − 8kq1 cos[θq1 ] + 3q21 cos[2θq1 ]− 8q2k cos[θq2 ] + 3q22 cos[2θq2 ]

+ 4q1q2 cos[θq1 − θq2 ] + 4q1q2 cos[θq1 + θq2 ]− 4q1q2 cos[φq1 − φq2 ] sin[θq1 ] sin[θq2 ]
)

×
(
k2 + q21 + q22 − 2kq2 cos[θq2 ]− 2q1 cos[θq1 ](k − q2 cos[θq2 ])

+ 2q1q2 cos[φq1 − φq2 ] sin[θq1 ] sin[θq2 ]
)−1

, (A.23)

B(q1,q2, k) =
1

2

(
k − q1 cos[θq1 ]− q2 cos[θq2 ]

)(
eiφq1 q1 sin[θq1 ] + eiφq2 q2 sin[θq2 ]

)
×
(
k2 + q21 + q22 − 2q1 cos[θq1 ](k + q2 cos[θq2 ])

− 2q2(k cos[θq2 ] + q1 cos[φq1 − φq2 ] sin[θq1 ] sin[θq2 ])
)−1

(A.24)

and

C(q1,q2, k) =
1

8
e−2i(φq1+φq2 )

(
eiφq2 q1 sin[θq1 ] + eiφq1 q2 sin[θq2 ]

)2
×
(
k2 + q21 + q22 − 2q1 cos[θq1 ](k + q2 cos[θq2 ])

− 2q2(k cos[θq2 ] + q1 cos[φq1 − φq2 ] sin[θq1 ] sin[θq2 ])
)−1

. (A.25)

We can now decompose into E and B modes using Eq. (2.16) and compute the C`’s. We separate

the integration over d3q from that over d3k by defining kernel functions

Sn(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµP (rk)P (k

√
1 + r2 − 2rµ, η)S̃n(r, µ) (A.26)

R(k) =
k3

(2π)2

∫ ∞
0

dr P (rk)R̃(r) , (A.27)
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where

S̃F2(r, µ) =
r(3µ2 − 1)(7µ+ 3r − 10rµ2)

28(1 + r2 − 2rµ)
, (A.28)

S̃0(r, x) =
r2

4
(3µ2 − 1)

(
3µ2 − 2 +

3(rµ− 1)2

1 + r2 − 2rµ

)
, (A.29)

S̃1(r, µ) = 2 r2
µ (1− µ2)(2rµ2 − r − µ)

1 + r2 − 2rµ
, (A.30)

S̃2(r, µ) =
r2

8

(1− µ2)2(1 + 2r2 − 2rµ)

1 + r2 − 2rµ
. (A.31)

When dealing instead with the integration over k, the transfer functions F
X|r|
` introduce highly

oscillatory terms, which can slow down integration. A schematic form of some of these integrals is

I(`, η) =

∫ ∞
0

dk k2w(k) |j`(kη)|2 , (A.32)

for some weight w(k). Using known mathematical approximations [115], we explain how to compute

these integrals efficiently in Appendix E.

A.3 Tensor-induced contributions

In Section 3 we compute the contributions from tensor perturbations to the density-weighted galaxy

shape power spectrum. The expansion in terms of ±2γ̃ components reads

±2γ̃(n̂,k) ⊃ bh α(k, zO)mi
∓m

j
∓h

(0)
ij (k, zO) eik·n̂χ(zO)

+ bh α(k, zO) bδ

∫
q
mi
∓m

j
∓h

(0)
ij (q, zO) δ(k− q, zO) eik·n̂χ(zO) , (A.33)

from which, using Eqs. (A.4), (2.12) and (2.13) we can get the harmonic coefficients,

ah`m(k, n̂) = −1

4
bh α(k)

√
4π(2`+ 1) i` [δm+2h+2(k)Q+2(x) + δm−2h−2(k)Q−2(x)]

j`(x)

x2
, (A.34)

for the linear term and

aδh`m(k, n̂) =
1

2
√

2
bhbδ

√
4π(2`+ 1) i`

√
(`− 2)!

(`+ 2)!

∫
q
α(q) δ(k− q, η)[

3

2
δm0Q0(x) j`(x) [h+2(q) + h−2(q)] sin2(θq)

−
√

(`+ 1)!

(`− 1)!
i δm+1Q+1(x)

j`(x)

x
sin(θq)

∑
p=+1,−1

(cos(θq) + p)h2p(q)

−
√

(`+ 1)!

(`− 1)!
i δm−1Q−1(x)

j`(x)

x
sin(θq)

∑
p=+1,−1

(cos(θq)− p)h2p(q)

+
1

4

√
(`+ 2)!

(`− 2)!
δm+2Q+2(x)

j`(x)

x2

∑
p=+1,−1

(cos θq + p)2 h2p(q)

+
1

4

√
(`+ 2)!

(`− 2)!
δm−2Q−2(x)

j`(x)

x2

∑
p=+1,−1

(cos θq − p)2 h2p(q)

 , (A.35)
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for the second term. We can now decompose into E and B modes using Eq. (2.16) and compute the

C`’s. As for the scalar-induced terms, we can make the numerical computation faster, by separating

the integration over d3q from that over d3k by defining kernel functions

Tn(k) =
k3

(2π)2

∫ ∞
0

dr

∫ 1

−1
dµα2(rk)Ph(rk)Pδ(k

√
1 + r2 − 2rµ)T̃n(r, µ) , (A.36)

where

T̃0(r, µ) =
3

16
r2 (1− µ2) , (A.37)

T̃1(r, µ) =
1

4
r2 (1− µ4) , (A.38)

T̃2(r, µ) =
1

16
r2 (1 + 6µ2 + µ4) . (A.39)

We use similar techniques as the previous section to deal with the numerical integration.

B Overview of parity breaking models

A first way of writing down models that break parity during inflation typically relies on effective

field theories of inflation (see e.g. [116–118]), where new parity violating operators in the action

of the theory are considered without adding new field content. In particular, it is possible to show

that the only two independent parity breaking operators that we can build with the lowest number

of derivatives are [117]

εijk ∂iḣjl ḣlk , εijk ∂i∂mhjl ∂mhlk . (B.1)

During inflation we can couple these operators with generic functions of the inflaton field fi(φ) and

get the effective parity breaking action

S�P =

∫
d4x a3

[
f1(φ0)

Λ

1

a
εijk ∂iḣjl ḣlk −

f2(φ0)

Λ

1

a3
εijk ∂i∂mhjl ∂mhlk

]
, (B.2)

where f1/2(φ0) are generic dimensionless coupling functions with the inflaton field and the scale

factors are given by the fact that we are in a (quasi)-de Sitter background space. Moreover, we

must include an UV cut-off scale Λ in the denominator of each term, which signals the scale at

which the effective field theory is broken. In the context of inflation, this scale is supposed to be

bigger than the characteristic energy scale of inflation, i.e. Λ > H. In fact, we are interested to

study only those scales that go outside the Hubble horizon during inflation.

It is possible to show that the additional terms in the quadratic action (B.2) induce an opposite

correction to the power spectrum of primordial gravitational waves with opposite helicities. In the

super-horizon limit, this correction does not depend on f1, but only on f2, and reads [117]

∆PR/L(k∗) = ±π
4
f2(φ

∗
0)
H∗
Λ
Ph(k∗) , (B.3)

where the star means that the parameters are evaluated at the time of horizon crossing of the

wave-number k∗, and Ph(k∗) is the total tensor power spectrum as given in Eq. (3.11).
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Thus, at linear level and at the lowest order in the derivatives all the effective field theory models

of inflation introducing parity breaking signatures are expected to provide the following value of χ

at a given scale k∗:

χ(k∗) =
π

2
f2(φ

∗
0)
H∗
Λ
, (B.4)

which in principle may be degenerate among the different models. However, due to the condition

Λ > H during inflation, the final amount of chirality produced within these effective models is

expected to be far from the unity, i.e. |χ| � 1.

In literature, in the context of effective field theory of inflation, the first parity breaking models

proposed have been slow-roll models in presence of the 4-dimensional Chern-Simons modified gravity

term. This theory consists in a parity-breaking modification of Einstein gravity in which the so-

called Chern-Simons gravitational term coupled to the inflaton field is added in the action of the

slow-roll inflationary models. This term can be written in terms of the Riemann tensor as

SRR̃ =

∫
d4x

[
f(φ) εµνρσRµν

κλRρσκλ

]
, (B.5)

where f(φ) is a generic function of the scalar inflaton field φ only, and εµνρσ is the total antisym-

metric Levi-Civita pseudo-tensor. Effects of this kind of gravity on primordial gravitational waves

have been studied for the first time in [119], while more recent works include [81, 120–130]. Notice

that, despite the fact that 4-dimensional Chern-Simons term is a 4-derivatives term, it is a total

derivative term, thus 1 derivative can be integrated by parts and act on the coupling function f(φ).

This fact allows to reconcile with the form (B.2) at quadratic level in tensor modes.

Another parity breaking model which shows the same pattern as (B.2) is slow-roll inflation in

presence of the 3-dimensional Chern-Simons term, which is included in the context of quantum

Horava-Lifschitz gravity [131, 132].

Recently, in [133], other scalar-tensor parity breaking operators which lead to the same pattern

as (B.2) have been considered (see e.g. [134]). These operators are built by contracting the Riemann

tensor with covariant derivatives of the inflaton field.

A second approach to obtain parity breaking signatures during inflation consists in adding in

the theory gauge bosons coupled to a pseudo-scalar axion-like field through a Chern-Simons like

operator. In particular, the toy model action of these theories reads

SChromo =

∫
d4x

[
−1

4
F aµνF

µν
a +

λφ

4f
F aµνF̃

µν
a

]
, (B.6)

where λ and f are respectively dimensionless and dimensionful constants, φ denotes the inflaton

field which is a pseudo-scalar (axion), Fµνa is the field strength of a certain vector gauge field Aaµ
with the index a transforming under the Lie group G algebra, i.e. Fµνa = ∂µA

a
ν−∂νAaµ−gfabcAbνAcν

(fabc denote the structure constants of the algebra), and F̃µνa is its dual.

The case of G = U(1) is known as pseudo-scalar inflation and it was the first parity breaking

scenario based on action (B.6) (see e.g. [135–139]). However, observational data regarding the

statistics of scalar perturbations put severe restrictions on the model [79]. The production of

chirality is compatible with data only for certain specific wavenumbers of GW.

Thus, alternative scenarios have been considered, as for instance the chromo-natural inflation

(CNI) scenario where the Lie group of the gauge field is G = SU(2) (see e.g. [140–146]) and
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scenarios where the Chern-Simons term in (B.6) is coupled to an external scalar field χ 6= φ (see

e.g. [66, 147–149]), allowing to relax some issues of the pseudo-scalar scenario.

All the models characterized by this second approach rely on a mechanism of amplification of

only one of the two chiral modes of gravitational waves due to the appearing of a source term

experiencing a tachionic growth during inflation. Differently by models based on action (B.2), in

this class of models we can get PR � PL (or vice-verse), thus |χ| ' 1.

C Bound on the amplitude of tensor-tensor-scalar chiral bispectrum

A theoretical constraint on the value of Π (Eq. (5.6)) occurs when we look to the radiative stability

of the Chern-Simons modified gravity theory. The bispectrum (5.4) comes from the following

tensor-tensor-scalar interaction vertex (in Fourier space) [81]

Lhhδφint = −λs
∫
d3K

δ3(~k + ~p+ ~q)

(2π)6

[
a

(
φ̇
∂2f(φ)

∂2φ

)
p (~p · ~q) hsij(~p)h

s, ij(~q)δφ(~k)

]
, (C.1)

where
∫
d3K =

∫
d3k d3p d3q and hsij(~p) = hs(~p) ε

s
ij(~p), where εsij(~p) is the polarization tensor and

hs(~p) is the graviton mode function. The Latin indices contractions are made with δij and the

primes ′ indicate derivatives with respect to conformal time. The coefficient λs takes +1(−1) for

R (L) polarization modes and the sum over the polarization index s = R,L is understood for

simplicity of notation.

Following the same reasoning of [150], we switch to the following canonically normalized gravitons

in de Sitter space

hsc(
~k) =

(
M2
Pl

2

)1/2

hs(~k) , (C.2)

and we rewrite in terms of canonically normalized fields the interaction Lagrangian (C.1). We

obtain

Lhhδφint =− λs
∫
d3K

δ3(~k + ~p+ ~q)

(2π)6
a

2

M2
Pl

(
φ̇
∂2f(φ)

∂2φ

)
p (~p · ~q) hsc(~p)hsc(~q)δφc(~k) εsij(~p)ε

ij
s (~q)

=− λs
∫
d3K

δ3(~k + ~p+ ~q)

(2π)6
a

1

Λ2
S

p (~p · ~q) hsc(~p)hsc(~q)δφc(~k) εsij(~p)ε
ij
s (~q) , (C.3)

where we defined

Λ2
S =

M2
Pl

2

(
φ̇
∂2f(φ)

∂2φ

)−1
. (C.4)

To avoid a strong coupling regime on super-horizon scales (which would spoil the perturbativity of

the theory), we must impose

H2 < Λ2
S , (C.5)

which gives the following constraint on the strength of the second order derivative of the coupling

function f(φ):

H2∂
2f(φ)

∂2φ
<
MPl

H

1

2
√

2ε
' 2√

2

(
0.1

r

)
× 105 . (C.6)
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Thus, recalling the definition of Π, Eq. (5.6), we get the theoretical constraint

Π .

(
0.1

r

)
× 106 . (C.7)

From Eq. (C.7), it would seem that, by decreasing r, one would get less stringent bounds on

Π. In reality, one should keep in mind that the bispectrum of Eq. (5.4) is proportional to r2

coming from the 2 tensor power spectra, attenuating the power of the bispectrum in the r → 0

limit independently by the value of Π (which is determined by the strength of the second order

derivative of the coupling function f(φ)).

D Squeezed limit of the tensor-tensor-scalar chiral bispectrum

In this Appendix we comment on the the physical squeezed limit of our bispectrum (5.4), which

corresponds to the limit in which the momentum of the scalar perturbation ζ is much smaller than

the momenta of the two gravitons. In fact, it is well known from the literature (see [96, 99–109])

that primordial bispectra usually contain unphysical contributions in the squeezed limit. Physically,

in this limit we are taking the cross-correlation in the space between two fields evaluated at close

points x1 and x2, and a third field evaluated at a point x3 that is far away to the infinite. It

is possible to show that the physical signal of this cross-correlation is the one computed in the

so-called Conformal Fermi Coordinate (CFC) frame centered in the point x0 which stays in the

middle of x1 and x2 (see e.g. [102]). This local frame is constructed by imposing that the metric

becomes unperturbed FRW along the time-like geodesic passing through x0 (the so-called central

geodesic), with corrections that go as the spatial distance from the central geodesic squared and

involve second order derivatives of metric perturbations, as we would expect by the virtue of the

equivalence principle.

Considering the bispectrum B
R/L
hhζ (k1, k2, k3) (Eq. (5.4)), it is possible to show that in the

squeezed limit where k3 = kL � k1 ' k2 ' kS the leading order effects of the long-wavelength

perturbation kL on the short modes can be removed by transforming to the CFC local frame,

leaving only contributions starting from the order (kL/kS)2. In particular, in co-moving gauge our

physical squeezed bispectum up to order (kL/kS)2 reads (see e.g. [102])

B
R/L
hhζ (kS , kS , kL)squeezed,ph =

[
d log(k3SP

R/L
h (kS))

d log kS
Pζ(kL)P

R/L
h (kS)

+B
R/L
hhζ (k1, k2, k3)

~k1=~kS− 1
2
~kL, ~k2=−~kS− 1

2
~kL, ~k3=~kL

squeezed

]
+O

(
kL
kS

)2

, (D.1)

where B
R/L
hhζ (k1, k2, k3)squeezed denotes the bispectrum in global coordinates, and all the power spec-

tra are computed at the time of the horizon crossing of the short momenta kS . In particular,

P
R/L
h (k) is the R/L-handed tensor power spectrum of the form Eq. (4.2) and Pζ(k) is the scalar

power spectrum

Pζ(k) =
2π2

k3
As , (D.2)
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where we neglected for simplicity the scalar tilt, taking ns − 1 ≈ 0.

On super-horizon scales, we can rewrite the first term on the r.h.s. of Eq. (D.1) in terms of the

derivative with respect to the cosmological time as

d log(k3SP
R/L
h (kS))

d log kS
Pζ(kL)P

R/L
h (kS) = Pζ(kL)

(
3P

R/L
h (k(t)) +

1

H

d

dt
P
R/L
h (k(t))

) ∣∣∣
t=tS

, (D.3)

where we used the fact that

d log(k3SP
R/L
h (kS)) = 3(d log kS) +

dP
R/L
h (k(tS))

P
R/L
h (k(tS))

, (D.4)

and that each short mode kS can be related to the time tS of horizon crossing by the relation

kS = k(tS) = a(tS)H(tS) . (D.5)

In fact, since during quasi-de Sitter inflation a ∼ eHt, then we have (apart for slow-roll corrections)

d log kS = HdtS . (D.6)

Computing the time derivative term in Eq. (D.3), and taking only the contribution coming from

the Chern-Simons modified gravity (the one which depends on the coupling function f(φ)), we find

Pζ(kL)
1

H

d

dtS
P

(R/L)
h (kS) = ∓π

8
r H2f ′′(φ)Pζ(kL)Ph(kS) = ∓ 25

768
rΠPζ(kL)Ph(kS) , (D.7)

where in the last step we have used the definition of Π, Eq. (5.6).

On the other hand, the mathematical squeezed limit value of bispectrum (5.4) reads

B
R/L
hhζ (kS , kS , kL)|squeezed = ± 25

768
rΠPζ(kL)Ph(kS)

[
1−

(
kL
kS

)2
]

+O
(
kL
kS

)3

. (D.8)

Thus, as we would expect the first term on the r.h.s. of Eq. (D.1) exactly cancels out the leading

order value of (D.8), leaving

B
R/L
hhζ (kS , kS , kL)|squeezed,ph = ∓ 25

768
rΠ

(
kL
kS

)2

Pζ(kL)Ph(kS) +O
(
kL
kS

)3

, (D.9)

which can be rewritten using Eqs. (3.11) and (D.2) as

B
R/L
hhζ (kS , kS , kL)|squeezed,ph = ∓25π4

192
A2
s (r2Π)

(
kL
kS

)2 ( 1

k3Lk
3
S

)
+O

(
kL
kS

)3

. (D.10)

However, Eq. (D.10) does not give the exact physical bispectrum up to and including the order

(kL/kS)2. In fact, in Eq. (D.1) we neglected those terms of order (kL/kS)2 coming from the

transformation of the bispectrum from global to local coordinates. In general, these additional

terms provide a renormalization of the O(kL/kS)2 term in Eq. (D.10) (see [108] for a computation

of these terms in the case of the scalar bispectrum in standard gravity). In our case, we are not very

sensitive to the exact expression of the physical bispectrum in the squeezed limit, as we verified that

the contribution to the integral of Eq. (5.13) coming from the squeezed configurations is negligible

due to the ∝ (kL/kS)2 behaviour.
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Figure 6. Upper panel: Contribution from tensor perturbations to the EE galaxy shape power spectrum at

redshift z = 2 for the exact (gray solid) and approximate (green solid) calculations. Bottom panel: Relative

difference between exact and approximated results.

E High-` approximation of integrals involving Spherical Bessel functions

In this work we deal with integrals of products of spherical Bessel functions j`(x) and j`+1(x)

coming from the F
X|r|
` transfer functions (see e.g. Eqs. (3.23) and (3.24)). However, all these

integrals can be expressed in terms of products of a spherical Bessel function j`(x) of a given order

` and its derivative using the following recursive relation

j′`(x) = −j`+1(x) +

(
`

x

)
j`(x) . (E.1)

Thus, in this Appendix we provide formulae to approximate integrals involving products of spherical

Bessel functions and their derivatives evaluated at high multipoles, adapting results from [115].

These approximate formulae can be considered as a generalization of the flat-sky approximation

to the transfer functions F
X|r|
` . This is motivated by the fact that spherical Bessel functions have

an highly oscillatory behaviour which makes their numerical integration very inefficient. As an

example, we have computed the contribution from tensor perturbations on the EE galaxy shape

power spectrum, Eq. (3.20), using the exact and approximated formulae, with results shown in

Figure 6. The running time on a laptop with 2 CPU cores is respectively ∼ 1 minute and ∼ 5

seconds and the approximation proves to be accurate to below 5% for l & 5. We need to consider
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the following integrals:

I1(`, η) =

∫ ∞
0

dk k2w(k) |j`(kη)|2

I2(`, η) =

∫ ∞
0

dk k2w(k) |j′`(kη)|2

I3(`, η) =

∫ ∞
0

dk k2w(k) j`(kη) j′`(kη) , (E.2)

where w(k) is a generic kernel function. In the high-` limit, integrals (E.2) can be approximated

by

I1(`, η)|`→∞ '
(`+ 1/2)

4η3

∫ ∞
0

dy√
y
w

(
(`+ 1/2)

η

√
1 + y

)
I2(`, η)|`→∞ '

(`+ 1/2)

4η3

∫ ∞
0

dy

√
y

1 + y
w

(
(`+ 1/2)

η

√
1 + y

)
I3(`, η)|`→∞ '−

1

4η3

∫ ∞
0

dy√
y
√

1 + y
w

(
(`+ 1/2)

η

√
1 + y

)
− (`+ 1/2)

8η4

∫ ∞
0

dy√
y
w′
(

(`+ 1/2)

η

√
1 + y

)
. (E.3)

In the following, we will provide the derivation of these formulae.

E.1 High-` approximation of
∫∞
0 dk k2w(k) |j`(kη)|2

We rewrite the integral under consideration

I1(`, η) =

∫ ∞
0

dk k2w(k) |j`(kη)|2 . (E.4)

The first step consists in the change of the integration variable in Eq. (E.4), defining the new

variable x through k = x(`+ 1/2)/η. Integral (E.4) becomes

I1(`, η) =
(`+ 1/2)3

η3

∫ ∞
0

dxx2w

(
(`+ 1/2)

η
x

)
|j` ((`+ 1/2)x) |2 . (E.5)

Now we consider the following Nicholson approximation of the spherical Bessel function which is

valid for positive x arguments and high-` index (see e.g. [151])

j`((`+ 1/2)x) ' √π
(
ξ(x)

1− x2
)1/4 Ai((`+ 1/2)2/3ξ(x))

(`+ 1/2)5/6x1/2
, (E.6)

where Ai(z) is the Airy function and

ξ(x) =

−
(
3
2

)2/3 (√
x2 − 1− arctan

√
x2 − 1

)2/3
, if x ≥ 1 ,(

3
2

)2/3 (
arctanh

√
1− x2 −

√
1− x2

)2/3
, if x ≤ 1 .

(E.7)

Doing the modulus square of Eq. (E.6), we obtain

|j`((`+ 1/2)x)|2 ' π |ξ(x)|1/2
|x2 − 1|1/2

Ai2((`+ 1/2)2/3ξ(x))

(`+ 1/2)5/3x
. (E.8)
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Moreover, we can expand the Airy function squared in (E.8) using the following integral represen-

tation (see e.g. [152])

Ai2(z) =
1

2π3/2

∫ ∞
0

dt√
t

cos

(
1

12
t3 + zt+

π

4

)
, (E.9)

valid for a real variable z. Since ` is large in the approximated Eq. (E.8), then the argument z of

the Airy function squared Ai2(z) is large. In this limit the t3 term in the cosine of Eq. (E.9) can

be dropped by the virtue of the Riemann-Lebesgue lemma, and we remain with

Ai2(z) ' 1

2π3/2

∫ ∞
0

dt√
t

cos
(
zt+

π

4

)
=

1

2π

1

(−z)1/2 θ(−z) , (E.10)

where θ(z) denotes the Heaviside step function.

Under this approximation, because of the appearing of the Heaviside function we have that

|j`((` + 1/2)x)|2 vanishes in the interval 0 < x < 1, where ξ(x) is positive (see Eq. (E.7)). For

x ≥ 1, substituting Eq. (E.10) into (E.8), we get

|j`((`+ 1/2)x)|2 ' 1

2(`+ 1/2)2
1

x
√
x2 − 1

. (E.11)

Thus, substituting Eq. (E.11) into (E.5), we obtain

I1(`, η) ' (`+ 1/2)

2η3

∫ ∞
1

dx
x√

x2 − 1
w

(
(`+ 1/2)

η
x

)
. (E.12)

Finally, we introduce another change of variable, defining x =
√

1 + y. So, integral (E.12) becomes

I1(`, η)|`→∞ '
(`+ 1/2)

4η3

∫ ∞
0

dy√
y
w

(
(`+ 1/2)

η

√
1 + y

)
. (E.13)

E.2 High-` approximation of
∫∞
0 dk k2w(k) |j′`(kη)|2

The integral we want to approximate is

I2(`, η) =

∫ ∞
0

dk k2w(k) |j′`(kη)|2 . (E.14)

As we have done before, we switch to the variable x defined through k = x(`+ 1/2)/η, obtaining

I2(`, η) =
(`+ 1/2)3

η3

∫ ∞
0

dxx2w

(
(`+ 1/2)

η
x

)
|j′` ((`+ 1/2)x) |2 . (E.15)

Now, in order to find the high ` value of j′`(z), we need to differentiate Eq. (E.6). Thus, using the

fact that by definition

ξ′(x) = −1

x

(
ξ(x)

1− x2
)−1/2

, (E.16)

we find

j′`((`+ 1/2)x) ' −√π
(
ξ(x)

1− x2
)−1/4 Ai′((`+ 1/2)2/3ξ(x))

(`+ 1/2)7/6x3/2
. (E.17)
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In particular, we are interested to the modulus square of (E.17), i.e.

|j′`((`+ 1/2)x)|2 ' π
(
ξ(x)

x2 − 1

)−1/2 (Ai′((`+ 1/2)2/3ξ(x)))2

(`+ 1/2)7/3x3
. (E.18)

Using the Airy’s equation Ai′′(z) = zAi(z) (see e.g. [152]), we can express the derivative of the

Airy function squared as

(Ai′(z))2 = −zAi2(z) +
1

2

d2

dz2
Ai2(z) , (E.19)

which in turn, using the large z approximation of Ai2(z) (E.10), gives

(Ai′(z))2 ' 1

2π
(−z)1/2θ(−z) . (E.20)

As before, we have that |j′`((`+ 1/2)x)|2 vanishes in the interval 0 < x < 1 where ξ(x) is positive.

For x ≥ 1, substituting Eq. (E.20) into (E.18), we get

|j′`((`+ 1/2)x)|2 ' 1

2(`+ 1/2)2

√
x2 − 1

x3
. (E.21)

Thus, substituting Eq. (E.21) into (E.15), we obtain

I2(`, η) ' (`+ 1/2)

2η3

∫ ∞
1

dx

√
x2 − 1

x
w

(
(`+ 1/2)

η
x

)
. (E.22)

Finally, we introduce again the change of variable x =
√

1 + y, and we get

I2(`, η)|`→∞ '
(`+ 1/2)

4η3

∫ ∞
0

dy

√
y

1 + y
w

(
(`+ 1/2)

η

√
1 + y

)
. (E.23)

E.3 High-` approximation of
∫∞
0 dk k2w(k) j`(kη) j′`(kη)

The last integral we want to approximate in the high-` limit is the following

I3(`, η) =

∫ ∞
0

dk k2w(k) j`(kη) j′`(kη) . (E.24)

We can rewrite this integral in terms of the derivative with respect to η as

I3(`, η) =
1

2

d

dη

∫ ∞
0

dk k2 w̃(k) j`(kη) j`(kη) =
1

2

d

dη
Ĩ1(`, η) , (E.25)

where we redefined the kernel function as w̃(k) = w(k)/k, and Ĩ1(`, η) is integral (E.4) with w(k)

replaced by w̃(k). Now, it is enough to insert the approximated integral (E.13) into (E.25) to get

I3(`, η)|`→∞ '−
1

4η3

∫ ∞
0

dy√
y
√

1 + y
w

(
(`+ 1/2)

η

√
1 + y

)
(E.26)

− (`+ 1/2)

8η4

∫ ∞
0

dy√
y
w′
(

(`+ 1/2)

η

√
1 + y

)
. (E.27)
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