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a b s t r a c t 

Background and objectives: In standard practice, sleep is classified into distinct stages by human observers 

according to specific rules as for instance specified in the AASM manual. We here show proof of principle 

for a conceptualization of sleep stages as attractor states in a nonlinear dynamical system in order to 

develop new empirical criteria for sleep stages. 

Methods: EEG (single channel) of two healthy sleeping participants was used to demonstrate this con- 

ceptualization. Firstly, distinct EEG epochs were selected, both detected by a MLR classifier and through 

manual scoring. Secondly, change point analysis was used to identify abrupt changes in the EEG signal. 

Thirdly, these detected change points were evaluated on whether they were preceded by early warning 

signals. 

Results: Multiple change points were identified in the EEG signal, mostly in interplay with N2. The dy- 

namics before these changes revealed, for a part of the change points, indicators of generic early warning 

signals, characteristic of complex systems (e.g., ecosystems, climate, epileptic seizures, global finance sys- 

tems). 

Conclusions: The sketched new framework for studying critical transitions in sleep EEG might benefit the 

understanding of individual and pathological differences in the dynamics of sleep stage transitions. For- 

malising sleep as a nonlinear dynamical system can be useful for definitions of sleep quality, i.e. stability 

and accessibility of an equilibrium state, and disrupted sleep, i.e. constant shifting between instable sleep 

states. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Traditionally, sleep is classified into distinct stages, spanning

rom wakefulness to deep sleep [e.g. 1 ]. Sleep stages are typically

haracterised by patterns in brain activity as reflected in Electroen-

ephalography (EEG). According to the American Academy of Sleep

edicine (AASM), wake and sleep are divided into five stages:

akefulness (W); non-rapid eye movement (NREM) sleep of in-
∗ Corresponding author. 
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reasing depth sub-divided into N1, N2 and N3; and rapid eye

ovement (REM). 

The qualitative type of scoring of sleep stages has been criti-

ised because of the low interrater reliability [2] , the fixed time

uration of scoring epochs [ 3 , 4 ], and the lack of automated scor-

ng algorithms [ 3 , 5 ] as well as the absence of defining char-

cteristics of the stages [ 2 , 4 , 6 , 7 ]. Previous studies have investi-

ated the possibilities of automated scoring. Some automated scor-

ng algorithms were trained on the manually scored EEG stages

uch as support vector machines [8] ; decision trees [ 9 , 10 ]; neural

etworks [11–13] and weighted complex networks [14] . Alterna-

ively, other studies have tried to use algorithms that can operate
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Top left: The two-process model of Borbély [18] : The circadian clock (Process C) and sleep homoeostasis (Process S). Middle: 3D cusp model shown with the 

accompanying numbered catastrophe flags [36] : (1) sudden jump, (2) multi/ bi-modality and (3) inaccessibility between the modes. Top right: Different hystereses are 

displayed. The brown dashed lines represent the normal transitions between wake and sleep: when the sleep pressure is positive and exceeds a certain threshold, the 

system transitions into sleep, causing the sleep pressure to drop. Once the sleep pressure becomes negative and exceeds a certain threshold, the system transitions into 

the wake state. Note that the thresholds for falling asleep and waking up are at different points, indicating hysteresis. The yellow dashed lines represent more atypical 

transitions with excessive sleepiness when the threshold to fall asleep is low and difficulty maintaining sleep when the threshold to wake up is low. The purple dashed lines 

show no hysteresis, since the threshold is the same for both directions, and indicates constant shifting between the sleep wake states. (Flag 5) Increasing the splitting factor 

causes a progressively larger polarisation of the states, known as divergence. (Flag 6) Anomalous variance is an increase in behavioural variance in the neighbourhood of the 

bifurcation set (i.e. area where sudden jumps are possible). (Flag 7) If a person is perturbed (e.g. through noise) the sleep pattern would show large oscillations (divergence 

of linear response) that take a long time to fade away (i.e. critical slowing down; Flag 8). 
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l  
independent of the manually scored EEG stages, such as EEG

change-point segmentation in combination with cluster analysis

[15] and Hidden Markov Models [HMM; 16 ]. HMM have also been

applied for data-driven determination of fMRI resting state-defined

sleep stages [17] . 

Although automated scoring algorithms might combat the

problem of manual scoring and interrater reliability, both the man-

ually and automated detection approaches seem to lack a formal

definition of sleep stages. In this paper, we address whether it

would be possible to overcome this problem by conceptualising

sleep as a nonlinear dynamical system [18–27] . An important ad-

vantage of this conceptualisation is that it would provide an empir-

ically useful definition of sleep stages in terms of attractor states of

a nonlinear dynamical system. Attractors of a dynamical system are

stable equilibrium states towards which the system tends to con-

verge. Systems that have multiple stable equilibrium points rather

than one, can switch between the equilibria by perturbations that

tip the system over to a different ’neighbourhood’ of attraction. Ap-

plied to sleep, shifts between sleep stages can be dynamically con-

ceptualised as so-called critical transitions, in which the system is

triggered by a small force and suddenly shifts towards an alterna-

tive attractor state once a threshold (i.e., tipping point) is exceeded

[28] . Such critical transitions between stable states have been de-

scribed in many complex dynamical systems such as ecosystems

[ 28 , 29 ], financial markets [30] and depression [31] . 

In natural systems, especially those of which we have a lim-

ited mechanical understanding, it is difficult to recognise critical

transitions. Moreover, without detailed knowledge of the laws that

govern the system, critical transitions in dynamical systems are
ather unpredictable. In the cusp catastrophe theory, a special type

f nonlinear dynamical system, critical transitions are modelled as

udden shifts in a system due to gradual changes of two control

actors α and β [ 32 , 33 ]. This cusp model can be used to model

or example the transitions of falling asleep (W-S) and waking up

S-W; see Fig. 1 ) [ 25 , 34 , 35 ]. The two-process model of Borbély

18] can also be incorporated into the cusp model as control factors

figure top/bottom left) as follows: The circadian clock (Process

) is the internal day-night rhythm that rises, promoting wake-

ulness/arousal, and falls following a 24-hour cycle. The homeo-

tatic sleep propensity (Process S) increases with the duration of

ime spent awake and decreases during sleep. When sleep pres-

ure (Process S) is very high and the alerting effect of the circadian

lock (Process C) is low, the urge to sleep may become irresistible.

t this threshold of maximum urge, the tipping point is reached

nd a critical transition follows. Properties that indicate the pos-

ibility of critical transitions are so-called catastrophe flags [36] .

haracterising formal sleep transitions according to these criteria

equires that at least two distinct states are shown, such as ‘sleep’

nd ‘wake’ (multimodality; flag 2), where an intermediate state be-

ween sleep stages is rare (inaccessibility; flag 3) and where an

brupt switch between stages occurs when a certain threshold is

eached (sudden jump; flag 1). Another remarkable property is that

he point at which the system moves to another state depends on

he direction of change. An example of this so-called hysteresis ef-

ect (flag 4) is the transition in state of water by melting at 0 °C
nd freezing at −4 °C (in disturbance free conditions). 

Before a tipping point is reached, the system may show only

ittle change, making critical transitions difficult to anticipate.
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n  
nterestingly, there appear to be generic properties that occur in

 wide class of systems before a tipping point is reached such as

ritical slowing down (flag 8). Critical slowing down is the prop-

rty that as a system moves towards a tipping point, it takes longer

or the system to recover from small pertubations (i.e., the rate at

hich the system recovers to equilibrium after small perturbations

lows down to zero) [28] . Statistically, critical slowing down can

e detected by two phenomena when a system approaches a tip-

ing point: (1) increase in the variance (i.e. standard deviation) of

he system, and (2) elevated temporal autocorrelation (i.e. degree

f similarity of a signal with its own past) [ 29 , 37 , 38 ]. Together,

hese indicators form early warning signals of a critical transition

hat have been shown to successfully predict critical transitions

n complex systems [28] . For example, in EEG data of epileptic

atients, increased variance and elevated temporal autocorrelation

ave been shown to predict a seizure [39] . Likewise, imminent ex-

inction in animal populations was signalled by indicators of criti-

al slowing down. Although these early warning signals have been

bserved to a wide variety of systems, it has yet to be investigated

n the complex, multilayered system of the sleep cycle. 

Conceptualising sleep stages as attractor states of a complex dy-

amical system might offer a new theoretical framework to inves-

igate stages in sleep. Specifically, focusing on identifying transi-

ions rather than stages might offer some advantages over the cur-

ent sleep scoring analyses. 

In the present study, we explored whether the theoretical

ramework of complex dynamical systems might provide a promis-

ng starting point to model the dynamics of sleep. To this end,

e first used automated and manual detection techniques to de-

ne distinct sleep stages as a reference, where both the visual and

utomated sleep staging coincided. Subsequently, we used change

oint analysis [ 40 , 41 ], a powerful tool to determine whether a sud-

en change has taken place, to find discontinuities in this sleep

EG data signal. We detected several change points in the EEG and

ome of these change points were preceded by early warning sig-

als enabling prediction of sudden sleep state changes. 

. Methods 

.1. Participants 

We illustrated the approach in the sleep EEG of two healthy

olunteers (females with age 45 and 69) who had participated in a

ublished study [42] . Participants were recruited through the Sleep

egistry [43] , and were screened by telephone first, followed by

ace-to-face interviews. The volunteers reported no sleep difficul-

ies in online questionnaires, which was confirmed during the face-

o-face interview. 

.2. Protocol 

The participants completed two consecutive nights of labo-

atory polysomnography (PSG). On recording days, people were

sked to refrain from alcohol and drugs, and limit themselves to

 maximum of two cups of caffeinated beverages, which were al-

owed only before noon. PSG was recorded with a 256-channel

TM HydroCel GSN EEG net and a Polygraphic Input Box (Electrical

eodesic Inc., Eugene, OR), connected to a Net Amps 300 ampli-

er (input impedance: 200 MOhm, A/D converter: 24 bits, sample

requency 10 0 0 Hz). The lights-out time was adapted to the indi-

idual habitual bedtime. The sleep EEG recordings of the two par-

icipants were scored by an expert according to the AASM criteria.

he inter-rater agreement rate for this data was κ = 0.88. Every

0 s epoch was classified as either W, N1, N2, N3 or REM. When

ore than one sleep stage occurred within an epoch, the whole

poch was scored according to the stage seen in the largest portion
f the epoch. For subsequent analyses, only the second night of

leep recordings was used, since the first night serves as a screen-

ng and adaptation night. Instead of using 3three EEG channels, 2

OG channels and EMG according to the standard rules of AASM,

e restricted the analysis to one EEG signal, namely the frontal Fz

ead referenced to the vertex channel (Cz) in order to reduce the

mount of data [ 8 , 44–46 ]. 

.3. Sleep EEG preprocessing 

In order to reduce the size of EEG recordings we used EEGLAB

47] to downsample the signal from 10 0 0 Hz to 100 Hz after band

ass filtering with a range of 0.1–40 Hz. The data were detrended

ith a Gaussian kernel smoothing function to cope with non-

tationarity and long trends in the data [48] . From the detrended,

ltered and downsampled data, the spectral bands 1–3 Hz (delta),

–7 Hz (theta), 8–13 Hz (alpha), 16–31 Hz (beta) were extracted

eparately using continuous wavelet transformation. Since changes

n the EEG activity are usually reflected in multiple spectral bands,

e computed three relative power ratios in the different spectral

ands to be used to detect EEG transitions: (1) β/ δ ratio, (2) α/ δ
atio and (3) ( α + β) /( θ + δ) ratio. These three ratios have been

hown to be features with low error classification rates for a single

EG channel [45] . 

.4. Data selection and analysis 

The analysis consisted of three parts: (1) selection of epochs (2)

ormal detection of change points in the EEG signal and (3) evalua-

ion whether detected change points were preceded by early warn-

ng signals. 

Before investigating whether there are sudden changes in the

EG signal we first selected pairs of epochs where both the manual

coring and an automated classifier agreed upon which stages the

articipant were in (step 1, Fig. 2 ). We used this selection of paired

pochs beforehand to minimise computer calculations and because

e assumed that epochs would show the most definitive features

f two different sleep stages in the EEG signal, thereby maximiz-

ng the potential to detect critical transitions between sleep stages.

 multinomial logistic regression (MLR) was used to classify sleep

nto stages automatically using the scored epochs as a reference

nd the three relative power ratios, averaged over 30 s, as pre-

ictors. We performed this analysis using the “glmnet” package

49] in R [50] . For developing the MLR classifier we used K-fold

ross-validation on the two participants and partitioned the data

nto 3 equally sized folds (segments). One fold is for validation and

he other k-1 folds are used to train the model (2/3 of the data),

hich is repeated k times. Using this trained model, new predic-

ions were made on the test data (1/3 of the data) and compared

ith the manually scored data to investigate the performance of

he classifier. The epoch before and after every stage transition that

as identified both by the expert as well as detected by the clas-

ification was selected for analysis. Note that we used all these se-

ected transitions to form one EEG signal for further analysis. As

 result, this signal contains the data from both participants and

ould result in a certain sleep stage occurring twice in a row (e.g.,

he occurrence of N2- N1 followed by N1-Wake would cause two

imes N1 in a row). 

First, to formally detect EEG change points within these se-

ected epochs we used an independent multiple change-point anal-

sis using the package “ecp” in R [CPA; 41 ]. In this analysis, change

oints are computed using a divisive hierarchical estimation algo-

ithm that sequantially detects distributional changes within multi-

ariate time-ordered observations, in our case the EEG signal (step

, Fig. 2 ). This method enables us to simultaneously identify the

umber and locations of change points. The CPA was restricted to
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Fig. 2. Steps in analysis to formalise critical transitions in sleep. NREM = non-rapid eye movement; SD = standard deviation; MLR = multinomial logistic regression; 

AR(1) = autocorrelation with lag 1. 

Fig. 3. The association between the sleep stages visually scored by an expert according to AASM throughout the night (hypnogram; black line) and the three selected relative 

power ratio features (red, green and blue line). 
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detect the most significant changes ( p < .005) in the multivariate

signal of the four wavelet coefficients of δ, θ , α, β spectral bands.

This multivariate signal was combined with the relative power ra-

tio that was the most important feature for classification according

to the MLR model. This feature was chosen by ranking the abso-

lute coefficients of each feature in the classification model using

the “caret” R package [51] . 

Second, we explored whether the identified change points are

preceded by early warning signals. We investigated increased vari-

ance and temporal autocorrelation (lag = 1) as two indirect indi-

cators of critical slowing down and early-warning signals [28] . The

variance and autocorrelation are estimated with the "earlywarn-

ings" R package [52] . These signals are computed 25 s before every

detected change point (step 3, Fig. 2 ). An indication of the direction
f these signals was estimated by the mean Kendall tau, a measure

f rank correlation. Increases in autocorrelation and variance could

ndicate a critical transition. 

. Results 

.1. Multinomial logistic regression (MLR) based classification 

Combining one night of PSG for the two participants resulted in

 total of 1881 epochs that were used for the classification study.

ig. 3 shows, for one participant, a hypnogram of the manually

cored sleep stages throughout the night along with the three rel-

tive EEG power ratio features. 
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Fig. 4. Multivariate change point analysis using the four spectral band wavelet coefficients (alpha, beta, theta, delta; upper four plots) along with the relative power ratio 

between these four bands (lower plot). The red lines show the significant change point locations that were found for the whole multivariate signal, but for visualisation 

purposes are plotted separately for the bands. 

Table 1 

The average performance of the multinomial logistic regression method in sleep stage classifica- 

tion on two healthy participants, as well as the average percentage of total sleep time (TST) the 

sleep stages were visually scored by experts along with the inter-rater agreement rate. 

Sleep stages Evaluation Metrics logistic regression Visual scoring 

Precision Recall F-1 score % of TST Inter-rater agreement rate 

N 1 0.194 0.424 0.267 3.7 0.43 

N 2 0.779 0.690 0.732 48.5 0.93 

N 3 0.808 0.809 0.808 22.3 0.97 

REM 0.648 0.690 0.668 25.5 0.95 

Wake 0.065 0.429 0.113 – 0.74 
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The correlation between the power features and the hypnogram

s for β/ δ ratio r = 0.72, p < .001; for α/ δ ratio, r = 0.62, p < .001,

nd for ( α + β)/( θ + δ) ratio r = 0.70, p < .001 which con-

rms that these features are suited to be used in the classification

lgorithm. According to he MLR model the ( α + β)/( θ + δ) ra-

io is the most important feature with an absolute coefficient of

= 4.42, followed by β/ δ ratio ( β = 2.13) and α/ δ ratio ( β = 0.86).

able 1 presents the performance of the classifier, with precision,

ecall and the F-1 score for each of the five sleep stages (Wake, N1,

2, N3, REM). In addition, Table 1 shows the frequency for which

he stage was scored manually along with the inter-rater agree-

ent rate between the scorers. Precision is the fraction of correct

redictions for a certain sleep stage, e.g. the percentage of epochs

cored as N1 that wer also predicted as N1 by the classifier. Recall

s the fraction of instances of a stage that were predicted correctly,

.g. the percentage of epochs classified as N1 that were also scored

s N1. F-1 is the harmonic mean of precision and recall. Following

able 1 , the low precision of N1 indicates that in only 19.4% of the

ases the model predicted N1 correct, indicating many false pos-

tives. The low recall in N1 shows many false negatives since in
nly 42.4% of the cases where sleep was scored as N1, it was pre-

icted as N1. The low precision and recall result in a low F-1 score

or N1. This is likely the result of low occurrence and inter-rater

greement rate of N1 in the visual scoring where the classifier is

rained on ( Table 1 ). The evaluation metrics per class show that the

lassifier is relatively good in predicting N2, N3 and REM but not

s good in predicting wake and N1. The overall classification accu-

acy was 0.71, indicating that overall, the prediction by the model

as in accordance with the visual scorer for 71% of the epochs. The

anual scorer and MLR agreed in 1339 epochs (of the 1881 epochs

n total), of which 26 epochs contained a transition between sleep

tages. 

.2. Multiple change point analysis (CPA) 

The CPA identified 11 change points, indicated by the red lines

n Fig. 4 in a total of 26 scored epochs (see the coloured blocks in

ig. 4 ). Almost all change points (10 out of 11) were located in the

2 epochs: Five transitions were in the transition away from N2,
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Fig. 5. Possible indications of critical slowing down: Autocorrelation (5 lower plots) 

and standard deviation (5 upper plots) trend 25 s prior to each change point found 

by CPA. Every transition is visualised separately and divided into transition types 

(e.g. N1 to N2). The lighter colours in every transition type represent the transi- 

tions occuring later at night. Kendall’s Tau was calculated for every trend. Signifi- 

cant Tau’s ( p < .005) are shown as triangles, non-significant Tau’s by circles. 
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and five transitions towards N2. The other identified change point

was between N3 and N1. 

3.3. Early warning signals 

To explore whether the identified change points are critical

transitions, we investigated for each change point whether early

warning signals preceded the tipping point. Fig. 5 shows the trends

of the standard deviation (SD) and autocorrelation (AR1) 25 s prior

to the detected change points of every transition ordered by the

transition type (e.g., N1 to N2). Lighter coloured lines represent

transitions that occurred the second half of the night. The Kendall

tau was calculated to investigate whether the trends were signifi-

cant, where a significant trend in either of the signals could indi-

cate critical slowing down. For example, in the panel N2-N1 (last

column, second and fourth row) the lines for both SD and AR1 vi-

sualise the three transitions from N2 to N1. As can be seen from

the figure, in two out of three transitions there was a significant

trend in the standard deviation, and in two out of three transi-

tions there was a significant trend in the autocorrelation. Overall,

the results show no visible universal trend, because the direction

of the trends differs between transitions. For example, there are in-

dications of decrease in SD (N3 to N1), increase in SD (N2 to REM

and N1 to N2), decrease in autocorrelation (N2 to N1) and increase

in autocorrelation (REM to N2). The trends also differ within the

same transition type. For example, in the transition N2 to N1 there

are signs of both increase and decrease in AR1. The most strong

indications of critical slowing down can be found from REM to N2,

displaying an increase in AR1 in both transitions. 
. Discussion 

In this study we explored the conceptualisation of sleep as a

onlinear dynamical system, in order to provide an empirically

seful definition of sleep stages and transitions. Using the empiri-

al criteria of a nonlinear dynamical system, we identified multiple

hange points in the EEG signal, representing distinct changes in

EG of healthy sleepers throughout the night. Moreover, we found

hat some of these change points are preceded by early warning

ignals, which indicates that there are critical transitions in sleep.

hese results suggest that a focus on transitions in EEG might re-

eal a new characterisation of the dynamics in sleep that could

emain undetected in classic sleep analysis. 

Interestingly, classic sleep analyses seem to differentiate be-

ween certain sleep stages that cannot be supported by the ap-

roach of change point analysis. Our findings show that most

scored transitions”, between fixed 30 s epochs, could not be de-

ected statistically with a distribution change, as only 11 out of

6 transitions were corroborated, mostly to or from N2. Kaplan

t al. [15] showed a similar approach using EEG change point seg-

entation and found significant correlations between N2 and delta

nd theta bands. These correlations reflect the appearance of K-

omplexes (brief negative high-voltage peaks) and sleep spindles

burst of brain activity) that characterise N2 sleep. Possibly, K-

omplexes and sleep spindles result in such distinct beta, theta and

elta bands, that make changes into or from N2 stage sleep more

asily detectable as critical transitions. 

The current study is, to our knowledge, the first to investigate

arly warning signals in sleep. Early warning signals are, however,

 known phenomenon in other complex systems, ranging from cli-

ate change [29] to relapse to depression [31] . Our findings of el-

vated autocorrelation before abrupt shifts in EEG show the same

eneric properties as in these other complex systems, where el-

vated autocorrelation is defined as a robust indicator of critical

lowing down [53] . Another less robust indicator is increased vari-

nce, which we find in some of the transitions (i.e., N2 to REM

nd N1 to N2) but also decreased variance (i.e., N2 to N1 as well

s from N3 to N1) [53] . Probably, sleep research may profit from

echnical developments in other fields concerning the detection of

hese generic properties of transitions in other complex systems. 

A few limitations deserve mention. Firstly, this is an exploratory

tudy on only two cases. The suggested approach needs to be ap-

lied to data of a larger and more diverse (healthy and sleep-

isordered, young and elderly) group of people. Secondly, in iden-

ifying possible change points, we focused on the sleep stage tran-

itions that were agreed upon by the manual scoring and by the

utomated classifier. While this approach may have resulted in se-

ecting the most characteristic transitions and reduced the compu-

ational load, we probably failed to detect some change points, es-

ecially for stages where the agreement was low. For example, we

ound no critical transitions between N1 and wake, possibly be-

ause of the rare occurrence and low inter-rater agreement rate in

isual scoring for N1. This low agreement rate has been reported

n other studies, and is probably due to the short duration of the

1 stage [11] . A next step would be to locate the changes in the

EG without this initial selection, since it potentially limited the

umber of transitions found in this study. 

In general, more work is needed to investigate how robust the

arly warning signals in complex dynamical systems are, in partic-

lar with regard to the occurrence of false positives or false neg-

tives [28] . False positives occur when an early warning signal is

ot the result of approaching a critical transition, but rather oc-

urs due to chance or a confounding trend. On the contrary, false

egatives indicate situations when a critical transition did occur

ut no early warning signal was detected. Specifically for this study

e detrended the signal as a strategy to circumvent false positives
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54] , and more research is needed to ensure early warning signals

an be measured reliable. 

Overall, this new approach of detecting sleep state transitions

hows promising implications for future research in sleep. Our

nalysis of change points showed that there are few, but clear dis-

ontinuities in EEG that shape the architecture of sleep. The signals

f different EEG channels during sleep are highly correlated and

herefore only one EEG channel (frontal Fz channel) was examined

n this study, similar to previous studies [ 8 , 44–46 ]. Next to EEG

hannels different sources might be investigated and combined to

et a more detailed understanding of particular changes. For ex-

mple, distinguishing between NREM and REM sleep benefits from

MG and EOG channels [55–57] . Also, cardiac activity measured

rom ECG or pulse [ 55 , 58 ], has been found of value to predict short

eriods of wakefulness; and finally, respiratory bands can be used

o measure breathing patterns during sleep [ 20 , 56 ]. An advantage

f these signals is that they could allow large scale population as-

essment by measuring them wirelessly without a costly EEG. In

ddition, a new line of research is the implementation of home-

ased sleep monitoring systems using Internet of things (IoT) plat-

orms [ 56 , 59 , 60 ], which offers the opportunity to process and anal-

se information real-time from different sensors. For future re-

earch it would be interesting to investigate our proposed frame-

ork with early warning signals in such big data monitoring sys-

em, circumventing the more traditional and costly polysomnogra-

hy [61–63] . Secondly, these systems make it feasible to apply it

o sleep disorders such as bruxism, OSAS and insomnia. 

The conceptualisation of sleep as a complex dynamical system

nd the focus on transitions could provide new avenues to inves-

igate healthy and disrupted sleep. Importantly, this conceptuali-

ation lays out objective definitions of sleep quality and disrupted

leep. Sleep quality relates to the stability and accessibility of an

quilibrium state. From this perspective, the fragmented sleep that

s characteristic of insomnia might be modelled as constantly shift-

ng between instable sleep states. The concept of hysteresis (a de-

ay in the transition of falling asleep and waking up) may help

o understand insomnia-related disorders. Exploring these possi-

ilites by investigating the occurrence and characteristics of abrupt

hanges could lead to a better understanding of individual and

athological differences in sleep quality. 
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