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Abstract

With the introduction of SNIP [40], it has been demonstrated that modern neural
networks can effectively be pruned before training. Yet, its sensitivity criterion
has since been criticized for not propagating training signal properly or even
disconnecting layers. As a remedy, GraSP [70] was introduced, compromising
on simplicity. However, in this work we show that by applying the sensitivity
criterion iteratively in smaller steps - still before training - we can improve its
performance without difficult implementation. As such, we introduce ‘SNIP-it’.
We then demonstrate how it can be applied for both structured and unstructured
pruning, before and/or during training, therewith achieving state-of-the-art sparsity-
performance trade-offs. That is, while already providing the computational benefits
of pruning in the training process from the start. Furthermore, we evaluate our
methods on robustness to overfitting, disconnection and adversarial attacks as well.

1 Introduction

In the last decade, deep learning has undergone a period of rapid development. Since AlexNet’s
revolution [35], advances have been noticeable on many fronts; for instance in generative image
modeling [33, 21] and translation [69]. Be that as it may, deep learning also has some practical
drawbacks. Amongst others, it is time-consuming, computationally expensive and data-hungry.

Literature has since suggested that modern neural networks are heavily overparametrised [12, 10, 3,
25], hypothesising that a great deal of the parameter-space that these networks are equipped with, is
actually redundant. As such, the field of model compression suggests networks can be pruned off their
redundant model components, with promises of reduced storage and computational effort. This can
be formalised in the following way; assume the existence of an uncompressed network f (x;θ), that
has a compressed counterpart f (x;θ ′). Then, the latter is produced by some compression-algorithm,
parametrised by hyperparameters and subjected to a sparsity constraint, such that:

f (x;θ
′) ≈ f (x;θ) ∀x

‖θ ′‖0 � ‖θ‖0

Its sparsity κ is then the fraction of zeroes in θ ′. Practically, this is often achieved by multiplying
the parameters with a mask M ∈ {0,1}|θ |. The pair of networks also share some set of desirable
properties, in which values of these properties are typically assumed to be more favourable, or at
least as good, for a successfully compressed network. These properties minimally constitute some
trade-off between a performance- and sparsity metric but can include many more. Modern pruning
techniques are quite successful at finding these sparse solutions and prune over 95% of the weights
in a network, whilst leaving raw performance intact [24, 43, 18, 15, 75]. They often operate, by the
‘train-prune-finetune’ pipeline [25, 43, 47], which proceeds as follows; (a) take a pre-trained network
and (b) prune some model-components, after which (c) some fine-tuning is performed [25, 43].
Although these remarkable sparsity rates may give the impression that the problem is already solved,
the following three reasons exhibit why they actually provide a skewed perspective:
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1. The ‘train-prune-finetune’ routine still requires training a dense network first. On the upside,
the weights are already close to their final value this way. However, pruning efforts have
no contribution to the training phase. Some methods fight this by pruning during training
[48, 18, 15, 75], which reduces the problem somewhat. Preferably, we would even prune
before training, so that we can exploit the sparse setting from the start. Unfortunately, this is
a harder problem to solve. Recently, [40, 70] started tackling this problem, yet nevertheless
only aimed at pruning individual weights, which brings us to the next point;

2. Pruning methods frequently only target individual weights - i.e. unstructured pruning, which
is more flexible and results in higher sparsity. However, down the line this leads to sparse
weight matrices which require formatting such as ‘Compressed Sparse Row’ (CSR) to be
efficiently stored [6, 60] and only speeds up computation with dedicated libraries [23, 47].
Fortunately, research concerning structured pruning exists as well - i.e. pruning entire rows,
columns or filters of a weight-tensor. Be that as it may, those methods are limited to pruning
during or after training in the literature, making the benefits available for inference only.

3. Evaluation of these compressed sub-networks is usually performed along the dimensions of
classifier-accuracy, computational cost and sparsity. However, this only validates a pruned
solution shallowly. One can imagine, more aspects get affected in the process. For example,
robustness to overfitting and adversarial attacks. Of course, some works do actually discuss
these themes [9, 61, 40, 2]. Even so, it is still uncommon to new methods in the literature.

In the recently proposed ‘Lottery Ticket Hypothesis’ [16], it is established that networks contain
sub-networks that are trainable in isolation, to the same performance as the parent-network - thereby,
demonstrating that it would be possible to compress networks early-on. Subsequently, in SNIP [40],
it was first endeavoured to actually prune at initialisation, demonstrating notable sparsity-rates using a
simple ‘sensitivity criterion’ - without resorting to difficult training schemes. Practically, they employ
the gradients obtained from a single batch to rank weights in their sensitivity criterion, cut-off at a
desired sparsity κ and then train without further disturbance. Their criterion was thereafter criticised,
due to unfaithful gradient propagation. To mitigate, orthogonal initialisation [39] and ‘GraSP’ [70]
were suggested. The latter replaces the gradient-magnitude product of SNIP with a hessian-gradient-
magnitude product for a better gradient approximation [70], yet compromises on simplicity. Our work
builds upon the aforementioned research, examining structured- and unstructured pruning, before and
during training. Our contributions are four-fold and can be summarised as follows:

1. We will introduce ‘SNIP-it’, a method that uses the same criterion as SNIP [40] but applies
its sensitivity statistics iteratively in smaller steps, showing that this greatly improves perfor-
mance and robustness in the high-sparsity regime, without compromising on simplicity.

2. Then, we will demonstrate how this can be applied to structured pruning as well, yielding a
method - ‘SNAP-it’ - that doesn’t require a pre-trained network or complex training schedule
to obtain a competitive structured pruning algorithm. As such, to the best of our knowledge,
we are introducing the first structured pruning method that operates before training.

3. Additionally, we will remark how the sensitivity signal is proportional to function elasticity
[65, 78] and discuss the ranking and pruning of weights and nodes in a combined fashion.

4. Finally, we will rigorously test and analyse our methods, on more than one dimension, and
argue why pruning iteratively before or during training is effective at maintaining robustness.

2 Related work

Magnitude pruning The concept of pruning connections is not new and started with Hessian-based
criterions; ‘Optimal Brain Damage’ [38] and ‘Optimal Brain Surgeon’ [26]. Yet, it really began to gain
traction in recent years, after [25] demonstrated high compression rates. Consequently, research was
performed into magnitude pruning, where they use the `1-norm as pruning criterion [25, 24, 43, 16].
Next, came the aforementioned Lottery Ticket Hypothesis, which demonstrated the existence of sparse
sub-networks inside the randomly initialised networks, that could be trained to the same performance
as the parent-network - coined ‘winning lottery tickets’ [16]. This theory sparked a body of research
examining the behaviour and obtainment of these winning tickets [18, 76, 54, 13, 15, 79, 17, 50], as
well as some criticism [47, 19].
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Bayesian approach Concurrently, using a Bayesian framework, some methods used uncertainty
approximation to determine the redundancy of model components [71, 66, 32, 67, 52, 48]. Related
to that, are methods employing a ‘sparsity inducing prior’, where using a distribution over model
components as extra regularisation term in the loss pushes the model to a sparser solution [8, 48, 46,
73]. Notable, are relaxed `0-regularisation [48] where they approximate a differentiable `0-norm and
use it as additional penalty and DeepHoyer [73], where they instead use the ratio between `2- and
`1-norm. Moreover, work was done into the usage of dropout as a means to pruning [32, 52, 20].

Pruning sparsely initialised networks In addition, there are methods which train sparsely ini-
tialised networks. One way, is to initialise with a sparse distribution and then train with the periodical
interchanging of which parameters are considered pruned and which are ‘grown back ’ [4, 14, 15].
Hence, they don’t train a final sparse setting from initialisation, which was later introduced in SNIP
[40] and quickly followed by works that improve it [39, 70, 27, 41]. The main criticism for SNIP has
been, that its criterion is not scale-invariant for certain layers, such that it substantially influences
the criterion’s signal or sometimes even disconnects layers [39]. Solutions to solve these problems
include using orthogonal initialisation [39], GraSP [70] and are also the focus of this work.

Structured pruning Likewise to unstructured pruning, the beginning of structured pruning was
derivative-based [55] and only really started gaining traction after the work of a magnitude based
criterion [43]. Subsequently, other research focused on reconstructing output feature-maps under the
strain of structured pruning, with the assumption that this implies maintaining performance [29, 49].
In other works, group-sparsity is used as sparsity inducing prior, with subsequent channel-pruning
[46, 72, 1, 36, 74]. Most notable of them, is Network-slimming [46], where they impose a `1-penalty
on scaling factors in batch-norm layers and thereby push neurons to deactivate during training. More
recently, in GateDecorators [75], this idea is combined with a sensitivity-based criterion, alike was
employed earlier in [53, 40, 55] and now also in this work. Moreover, some works perform single-shot
node pruning with pre-trained networks [44, 77, 42]. Finally, there have been multiple papers where
ADMM training is used, in which iteratively different layers get optimised in isolation [45, 44].

3 Methodology

Revisiting the sensitivity criterion We will adopt the sensitivity criterion that is applied in SNIP
[40], albeit practiced in a different fashion. It is worth mentioning that this criterion is not unique
to SNIP [55, 53, 75, 39]. As such, multiple derivations coexist. In [55, 40], authors commence by
defining auxiliary gates c over model parameters. They then initialise all c = 1 and don’t update them
anymore. At which point, the criterion sc(·) is defined as the derivative of the loss w.r.t. the gates:

sc(θi j) =
∂L(D | θ � c)

∂ci j

∣∣∣∣∣
c=1

They then rank the model components by said criterion and cut-off at the desired sparsity κ . Later
in [39], it is recognised how for the unstructured case, via the chain rule, we obtain the derivative-
magnitude product, rendering the auxiliary variables to be notational convention only:

∂L(θ � c)
∂c

=
∂L

∂ (θ � c)
� ∂ (θ � c)

∂c
=

∂L
∂θ
�θ (1)

On the other hand, in [53, 75, 70], it is concurrently shown how this is likewise found by a local
Taylor-expansion. Presently, we will further demonstrate how this is also proportional to the ‘function
elasticity’ of the loss w.r.t. the parameters. This is a term which constitutes a mathematical way to
express relative change in a function as a result of relative change in an input variable [65, 78]:

εy[x] =
∂y(x)

∂x
x

y(x)
(2)

We now proceed to combine Formulas 1 & 2 in this work, yielding the following proportionality:

∂L
∂θ
�θ ∝

∂L
∂θ
� θ

L
= εL[θ ] (3)
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Incidentally, since the loss L is the same for each model component θi j anyway, it would not matter
for the purpose of ranking them from most to least important. In SNIP [40], they instead divide by
the sum of saliencies, which produces the same ranking too. However, by rather dividing by the
loss, we gain some interpretability, as a weight is ‘very inelastic’ when εL[θi j]� 1, meaning the
loss will not change after pruning that weight. When inspecting the distribution of elasticities, we
always empirically observe that the majority of weights fall in this ‘very-inelastic’ category and only a
small percentage don’t (see Supplementary Material A). This confirms the aforementioned finding of
overparametrisation in literature [12, 10, 3, 25] and also explains the high sparsity rates that state-of-
the-art algorithms obtain. Moreover, we can now compare the sensitivity of weights and nodes on the
same footing, meaning we can rank them together in one pruning event from our algorithm - SNIP-it
- and prune regardless of structure-type. This then yields a very flexible pruning technique, which we
have explored but did not become the main focus of the paper due to limited applicational value (we
report some explorations in Supplementary Material B). Additionally, it suggests something about a
possible procedure of evaluating the importance of grouped model-components, as we can simply
introduce a gate variable over any set of them and then employ elasticity to evaluate importance.

Iterative pruning as remedy to disconnection In the works of [39] and [70], it is argued that the
pitfall of vanilla SNIP [40] is that it stops information flow. Here, a new solution to this problem is
suggested; iteratively applying the saliency criterion - with the corresponding method that is coined

‘SNIP-it’. The intuition goes as follows; certain medium-ranking model components, that are not that
important to the loss initially, will be more important after the initial pruning-event. Specifically,
we hypothesise the ranking may change, making specific model components more important in the
sub-network than they were in the parent-network - i.e. the parent-network does not effectively
dictate how information flows through the sub-network in isolation. By pruning more conservatively,
in multiple rounds, we grant the model components another chance, therefore making the process
more robust to the pruning algorithm and lowering the chance of disconnecting the network. Note
that we still use the criterion from Formula 3 and that it can be applied both before or during training.

In practice, this materialises as dissecting the single pruning-event into a few pruning steps (s), that
will be performed in one sequence. Its details are discussed in Algorithm 1. As an easy rule of
thumb, we start with pruning half the network’s weights for the first event, since we observe that
generally more than half are nearly completely inelastic [Supplementary Material A]. Thereafter we
keep halving the remainder until the desired sparsity is reached with some ε-proximity - after which
we prune that final bit ε towards final sparsity κ f inal . These specifics of the steps are not essential for
the algorithm though. Accordingly, we do not experiment with different schedules. Instead we aim at
a method that does not introduce too much complexity - i.e. it is the concept of iterative pruning that
is important. That is not to say, the method cannot be improved by tuning this as well.

Algorithm 1 SNIP-it

1: procedure SNIP-IT( f , κfinal, τ , s ) . i.e. network f , sparsity κ , interval τ , steps s
2: θ0← choose what to prune from fweights ∪ fnodes . structured, unstructured or combined
3: for i ∈ [0,s] do . we default s = 5
4: train τ epochs . τ = 0 for before-training, τ > 0 for during training
5: κi← κfinal− (κfinal− 1

2 ) ·
1
2

i
. rule of thumb: 50% first, then half of the remainder each time after

6: θi← rank θ with εL[θi] and prune to κi . See Formulas 3 & 4
7: θ ′final← rank θ with εL[θs] and prune to κfinal

8: start training f (θ ′final)

Note, that just like SNIP, we use one batch for each gradient evaluation in εL[θ ]. Granted, with more
iterations, we will thus cumulatively see more data. Yet, this is hardly computationally expensive
and each batch just constitutes an independent unbiased estimator after all [5, 59]. In fact, in the
SNIP paper it is argued that if the algorithm is performed with a batch of sufficient size, then the
multiplication of that size with a constant d > 1, does not constitute any noticeable difference [40].
In all experiments we performed, algorithms are always provided with an accumulated batch of 2560
samples, which we deem large enough to minimise its influence sufficiently.

Structured pruning before training Additionally, SNIP-it is easily supplemented with a structural
equivalent. Generally, structured pruning methods substantially reduce computational time and feature
maps. Combined with the benefit of pruning before training, we unlock a potential to drastically
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reduce the total required compute. At the time of writing, to the best of our knowledge, no methods
endeavoured structured pruning before training yet. A such, it is introduced here. Where unstructured
SNIP-it uses weight-elasticity εL[θ ] as a criterion, we now employ node-elasticity. If h is the
activation function of a node, we thus straightforwardly produce εL[h]. However, since h(·) itself is
a function and not actually a model parameter, we adopt the same notational convention applied in
Skeletonization [55] and define auxiliary gates c j = 1 over each node’s input, thus substituting the
activations h(·) for each layer ` ∈ P (see Formula 4), subsequently leading to criterion sc(h(`)i ).

h(`)
(
Θ

(`) ·~x(`)+~b(`)
)

= h(`)
(
diag(~c(`)) · (Θ(`) ·~x(`)+~b(`))

) ∣∣∣∣∣
~c(`)=~1

εL[h
(`)
i ] ≈ sc(h(`)i ) =

∂L(D | {Θ(`)}P
`=1)

∂c(`)i

· 1
L

(4)

Thereafter, the same procedure as unstructured SNIP-it is followed. Additional measures are taken to
not prune away entire layers, as well as not pruning away the input and output nodes.

4 Experimental setup

Datasets and networks Experiments are evaluated with a number of different networks and
datasets. The datasets used are publicly available and consist of three common benchmarks; MNIST
[37], CIFAR10 [34] and an ImageNet-subset; ‘Imagenette’ [11, 30]. Networks that are used are
LeNet5 [37], MLP5 [L], Conv6 [16], ResNet18 [28], AlexNet [35] and VGG16 [63]. Implementation
and more network, data and augmentation specifics can be found in the Supplementary Material.

Initialisation As mentioned earlier, [39] showed the significance of initialisation in SNIP. Specif-
ically, it is argued that orthogonal initialisation - although needed to be scaled by the activation
function - is the best way to keep the magnitude of the signal comparable over different layers. For
this reason, we adopt this initialisation in our experiments - unless a baseline has its own preferred
initialisation. Note that this concerns initialisation before the network enters the pruning algorithm.

Baselines As baselines we use SNIP [40], GraSP [70], HoyerSquare [73] and global-IMP [16, 18]
for unstructured pruning, whereas `0-regularisation [48], Group-HS [73], EfficientConvNets [43] and
GateDecorators [75] for structured pruning. For all baselines hyperparameter tuning is performed -
see Supplementary Material F for the tuning details - and implementation is sourced from authors’
publications as much as possible, depending on availability and possibility of integration.

Optimisation For all experiments, the ADAM-optimiser [31] was used with a learning rate of
2 ·10−3. No additional learning rate schedules were employed to avoid over-complication. Further, a
weight decay of 5 ·10−5 was used in all experiments. The batch-size in all CIFAR-10 and MNIST
experiments was 512, whereas in Imagenette it is always 128. Finally, gradient clipping at a magnitude
of 10.0 was applied as well. All methods have been given similar epoch budget, with an exception
for `0-regularisation [48] and GateDecorators [75], which required twice that of the rest to converge.

Evaluation Evaluation is performed on sparsity, performance, connectivity and adversarial robust-
ness. Additionally, in the structured domain; time, memory footprint and FLOPS are taken into
account. The last is estimated with an implementation adopted from [47]. Furthermore, where appli-
cable a confidence bound is displayed, which is calculated by: 1.96 · σ√

n , where n is the sample-size
with a median value of 5, σ the standard deviation and 1.96 corresponds to a confidence interval of
95% - assuming the points are normally distributed. We evaluate in the structured and unstructured
setting, as well as before and during training. To clearly distinguish SNIP-it’s structured counterpart,
we will refer to it as ‘SNAP-it’ from here forward. For metric details, see Supplementary Material H.

5 Results & analyses

Structured pruning before training We first evaluate SNAP-it in the domain with the most
potential: structured pruning before training. We have assessed its during-training domain also, yet
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(a) AlexNet (b) VGG16

Figure 1: Structured sparsity-performance trade-off for CIFAR10 with confidence bound.

Table 1: Structured results on Imagenette, showing optimal sparsity performance trade-off, as well as
training-time, training-FLOPS and RAM-footprint for SNAP-it - compared to baselines. Points are
picked using the highest harmonic mean between sparsity and accuracy.

VGG16
Method Accuracy Sparsity FLOPS Time Storage

Weight Node Inference Train Inference Train Disk RAM

Baseline 87%
Prunes after training

Effic.ConvN. 80% ± 2.5 92% 88% 49× 1 × 10× 1 × 6e1× 1 ×
GateDecorators 83% ± 1.8 96% 93% 47× 1 × 5 × 1 × 1e2× 10×

Group-HS 84% ± 2.1 82% 68% 3 × 1 × 2 × 1 × 1e1× 1 ×
Prunes during training

L0 28% ± 6.2 55% 58% 2 × 1 × 1 × 1 × 1e0× 1 ×
Prunes before training

Random 82% ± 0.4 93% 90% 76× 76× 9 × 7 × 1e2× 7 ×
SNAP-it (ours) 85% ± 1.4 97% 93% 15× 15× 5 × 4 × 1e3× 20×

AlexNet
Baseline 86%

Prunes after training
Effic.ConvN. 78% ± 1.9 92% 90% 61× 1 × 13× 1 × 4e1× 1 ×

GateDecorators 84% ± 2.5 93% 90% 14× 1 × 5 × 1 × 2e1× 4 ×
Group-HS 84% ± 1.1 85% 78% 2 × 1 × 2 × 1 × 8e0× 1 ×

Prunes during training
L0 31% ± 3.9 54% 58% 2 × 1 × 1 × 1 × 6e0× 1 ×

Prunes before training
Random 83% ± 0.8 90% 88% 45× 45× 10× 6 × 2e1× 4 ×

SNAP-it (ours) 85% ± 0.9 98% 96% 16× 16× 6 × 5 × 8e2× 16×

found it operates on-par with before training, so focused on the latter. It is illustrated in Figure 1, that
SNAP-it outperforms baselines in terms of sparsity and performance, even though it prunes before
training. Interestingly, Random forms a strong baseline. We speculate this is due to the nature of
optimisation, where pruning before training gives the network enough chance to adapt, which again
indicates how these networks are overparametrised. Additionally, we find that `0-regularisation [48]
performs notably poor. To elaborate, we empirically observe that it performs better for the specific
hyperparameter settings and architectures that were reported in their paper - as is portrayed in Figure
11 in Supplementary Material K.2. However, the method doesn’t easily extend to new settings, even
with the considerable tuning we performed, which we find defeats the purpose of an easy pruning
method to begin with. Next, we witness that for any λ , Group-HS [73] is subject to high variance in
both performance and sparsity, and collapses occasionally, which decreases its mean in Figure 1.

Moreover, we test SNAP-it on the Imagenette dataset, which is native to larger pictures. Results are
found in Table 1. Again, we observe that SNAP-it reaches the best sparsity-performance trade-off and
random forms a strong baseline. Granted, EfficientConvNets [43] and GateDecorators [75] still reach
the best inference-FLOPS and inference-time reduction. However, when looking at training-FLOPS
and training-time, SNAP-it has a significant advantage. Which, depending on the frequency a network
needs to be retrained in practice, can make an extraordinary impact on the computational effort.

Equally promising, is the RAM-footprint reduction, which is also found in Table 1 as median
reduction during training. However, when one is pruning before training, as SNAP-it does, we
obtain this benefit immediately. Therefore, we can drastically lower the amount of feature maps
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(a) LeNet5 (b) MLP5 (c) ResNet18

Figure 2: Unstructured sparsity-performance trade-off for CIFAR10 with confidence bound.

Table 2: Unstructured sparsity-performance trade-offs, showing SNIP-it (during training) outperforms
baselines. Points are picked using the highest harmonic mean (HM) between sparsity and accuracy.

CIFAR10
LeNet5 MLP5 Conv6 ResNet18

Accuracy Sparsity HM Accuracy Sparsity HM Accuracy Sparsity HM Accuracy Sparsity HM

Baseline 73% 60% 87% 78%
Prunes after training

HoyerSquare 66% ± 1.4 82% 73 52% ± 0.3 92% 66 82% ± 0.6 89% 85 77% ± 0.5 97% 86
Prunes during training

IMP-global 63% ± 1.3 90% 74 57% ± 0.2 96% 72 84% ± 0.8 92% 88 75% ± 0.9 97% 85
SNIP-it (ours) 70% ± 0.7 92% 80 59% ± 0.4 96% 73 85% ± 0.4 97% 91 78% ± 0.3 98% 87

Prunes before training
GraSP 69% ± 0.8 87% 77 58% ± 0.6 90% 71 82% ± 0.5 96% 88 74% ± 0.7 98% 84

Random 64% ± 0.9 87% 74 57% ± 0.2 94% 71 82% ± 0.4 92% 87 70% ± 0.2 92% 80
SNIP 67% ± 1.2 90% 77 59% ± 0.3 87% 71 81% ± 0.9 94% 87 75% ± 1.0 97% 85

SNIP-it (ours) 68% ± 1.1 87% 76 59% ± 0.2 90% 71 83% ± 0.5 94% 88 75% ± 0.5 97% 85
Imagenette

LeNet5 MLP5 Conv6 ResNet18
Accuracy Sparsity HM Accuracy Sparsity HM Accuracy Sparsity HM Accuracy Sparsity HM

Baseline 83% 53% 87% 80%
Prunes after training

HoyerSquare 83% ± 1.8 92% 87 53% ± 0.9 90% 67 83% ± 1.2 97% 89 80% ± 0.7 95% 87
Prunes during training

IMP-global 70% ± 1.7 98% 82 54% ± 0.7 97% 69 77% ± 3.0 97% 86 77% ± 1.4 98% 86
SNIP-it (ours) 83% ± 2.0 98% 89 56% ± 1.1 99% 72 87% ± 1.1 99% 93 82% ± 0.8 99% 90

Prunes before training
GraSP 81% ± 0.8 98% 89 57% ± 0.9 94% 71 87% ± 1.0 98% 92 79% ± 0.9 99% 88

Random 78% ± 0.7 90% 84 54% ± 0.5 96% 69 85% ± 0.8 96% 90 79% ± 0.7 96% 87
SNIP 82% ± 1.1 98% 89 58% ± 1.0 97% 73 87% ± 1.1 98% 92 79% ± 1.0 98% 87

SNIP-it (ours) 81% ± 1.5 97% 88 58% ± 0.9 96% 72 86% ± 0.7 98% 92 80% ± 0.8 98% 88

we store, whereas the baselines require keeping all nodes with their corresponding feature maps in
memory during training. Therefore, we gain the opportunity to proportionally increase the batch-size,
which in turn allows us to increase the learning rate [22]. This observation is also reflected in Figure
8 in Supplementary Material C, where we see the trade-off between accuracy after training and
RAM-footprint at the start of training. Note however, that RAM and time measurements can be
influenced by processes playing at test-machines and should therefore be taken with some reservation.

Unstructured SNIP-it In addition, we evaluate SNIP-it in the unstructured domain, both before-
and during-training. For this, we use τ = 0 and τ = 4 respectively (see Algorithm 1), where the
latter was based on the hyperparameter tuning that was done for IMP [18], which we re-used to
make SNIP-it apply the same schedule - see Supplementary Material F for details. In Table 2, results
for various network-dataset combinations are displayed, with accuracy and sparsity as percentages.
Adjacently, is the harmonic mean between the two (HM), which we designate as a proxy for the
trade-off between them - just like the F1-score for information retrieval. Furthermore, sparsity-
accuracy curves are shown in Figure 2. What follows from both, is that SNIP-it (during training) is
significantly Pareto-optimal compared to all baselines on almost all setups. Moreover, SNIP-it (before
training) significantly surpasses SNIP [40] and performs at least as good as GraSP [70], now and
again outperforming it. Interestingly, in the case of an MLP5 random performs better than expected,
which emphasizes the importance to test against a random baseline on different types of networks.
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SNIP [40] GraSP [70] SNIP-it (before) IMP-global [18] HoyerSquare [73] SNIP-it (during)

Figure 3: Saliency maps [62] (left) w.r.t. inputs (right), in MLP5 trained on MNIST at κ = 0.99.

Figure 4: Histogram of remaining weights in MLP5 trained on MNIST at κ = 0.99.

Exploration on robustness If we zoom in on resulting architectures, findings correspond to our
hypothesis, which said the ranking changes with each pruning event - introduced in Section 3. We
display some saliency maps [62] with their respective inputs in Figure 3. Note that for the case of
HoyerSquare [73] we had to interpolate to 99% sparsity from the closest point, due to its sparsity
being harder to control. We observe that SNIP [40] overfits on only a few pixels, compared to GraSP
[70] and SNIP-it (before training). Even better, are the saliency maps of HoyerSquare and SNIP-it
(during training), which hardly indicate any overfitting. These findings are again reflected in Figure
4, where we see that the different pruning methods favor different layers’ weights as best candidates
for pruning. As mentioned before, a common criticism against SNIP is its bias towards earlier layers
[39, 70], which manifests itself again here. HoyerSquare [73] on the other hand, shows a bias towards
pruning the output layer. If we assume the outermost two layers are the most important to maintain,
we would expect to see a downward parabola-like shape in this figure, as that would prune heavier in
the layers in the middle. This is the case for SNIP-it, in contrast to for instance; SNIP [40]. Thus,
in accordance with our hypothesis, by applying the sensitivity criterion in iterations, weights in the
earlier layers seem to be more important to intermediate pruning events, rather than SNIP’s one-shot
pruning of the full percentage, indicating the ranking changes between these intermediate events.

Consequently, we would also expect the methods that better conserve the input layer, to be more
robust to adversarial attacks, since they don’t over-fit on a few pixels [51]. Therefore, we subject the
same setup to `2-CarliniWagner attacks [7] - using open-source library Foolbox [57]. Experiments
have shown that these attacks, given unlimited `2-distance between the adversarial and real picture,
approach a perfect success-rate [7, 58]. Therefore, we evaluate our setup at capped maximum
distances. We discover that, for the low-distance regime where the `2-norm ≤ 1, the pruning methods
which maintain input layer are indeed more robust in the face of these attacks. This is displayed on
the left of Figure 5b. However, when we get to higher distances this does not hold. Generally, SNIP-it
significantly improves in adversarial robustness from SNIP [40], yet performs on-par with some other
baselines in the high sparsity regime (Figure 5a) and also in the low `2-distance regime (Figure 5b).

(a) Success prob. vs. sparsity at `2-distance ≤ 0.5. (b) Success prob. vs. max `2-distance at κ = 0.99.

Figure 5: Robustness to `2-CarliniWagner attacks [7] as probability of success, for MLP5 on MNIST.
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6 Conclusion

In this work we demonstrated that applying the sensitivity criterion iteratively in a simple fashion
creates a more robust and better performing algorithm in the high-sparsity regime, without adding sup-
plemental complexity. With this, we achieved state-of-the-art sparsity-performance trade-offs. Within
the unstructured domain, we further showed that our approach significantly improves overfitting
and connectivity problems that were native to vanilla SNIP [40]. Moreover, we introduced a novel
structured method, which operates before training and achieves significant speedups that can also be
exploited for the training process itself. Furthermore, we related structured and unstructured pruning
using the sensitivity criterion, showing we can now compare them on an equal footing. However, the
latter we leave for future work to research.
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Supplementary Material

A Elasticity histograms

When examining the distribution of the elasticity signal that all parameters in a network receive, it is
empirically observed that virtually all weights are in the inelastic category; a great deal of them are
nearly completely inelastic, some are at most a little elastic and only very few approach unit-elasticity
or higher εL[θi j]≥ 100. Examples of these elasticities are displayed in log-scale in Figure 6. This is a
pattern that is empirically found to re-emerge in every single network-dataset combination that has
been evaluated in this research.

(a) LeNet5 (b) VGG16

Figure 6: Elasticities of loss function w.r.t. the network-weights at initialisation for different datasets.
Elasticities are sorted like a Lorentz-curve (yet don’t sum up to 1). Note that elasticities are displayed
in log-scale.

B Exploring combined structured and unstructured pruning

We explore a combined structured and unstructured approach. This would materialise as actually
taking the union of both weights and nodes in Algorithm 1 on line 2 and subsequently evaluating and
pruning them on an equal footing, with the elasticity framework we introduced. We will refer to this
here as ‘CNIP-it’.

(a) Weight-sparsity (b) Node-sparsity

Figure 7: Weight-sparsity (left) and node-sparsity (right), versus performance of CNIP-it on VGG16
(CIFAR10) compared to our own method SNAP-it.

We observe that CNIP-it reaches very high weight-sparsity levels without much loss in accuracy.
However, the node sparsity is rather low. See Figure 7 for an illustration of this finding; CNIP-it has
higher weight-sparsity than SNAP-it in Figure 7a, yet notable lower node-sparsity in Figure 7b. This
is not at all unexpected as we presume most nodes are more important to the final loss than most
individual weights. This finding may be desirable for some practical applications but it does not lead
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to the same speedups as SNAP-it does or to the same weight-sparsity as SNIP-it does. Consequently,
it is harder to compare to baselines, since combining the two structure-types was, to the best of our
knowledge, not explicitly mentioned in literature. Therefore we concluded the limited applicational
value was a ground to not make CNIP-it the main focus of the paper.

C Memory footprint prior to training

When one prunes structurally before training one gains memory and computational benefits from
the start. This is reflected in Figure 8, where we unsurprisingly identify that the two methods that
perform structured pruning before training, can substantially reduce their RAM-footprint before
training, whereas the others still have the full network in memory at that point. As mentioned in the
paper, this allows us to jointly increase the batch-size and learning rate in return [22].

Figure 8: Trade-off between RAM-footprint at the start of training and final performance for VGG16
on CIFAR10, with trend-line, showing the benefits on RAM for structured pruning before training.

D Schematic illustration SNIP-it
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Figure 9: Schematic illustration of SNIP-it, as discussed in Algorithm 1.

E Documenting abandoned approaches

In order to prevent future research repeating work we already found to be ineffective, we will provide
information on said findings. First of all, we pursued using GraSP’s [70] criterion as a criterion for
SNIP-it. This failed because when applied iteratively it tried to reactivate already pruned weights in
a far greater proportion than it pruned the remaining weights. On the other hand, when the pruned
weights were omitted from consideration, it resulted in disconnection. Moreover, we tried applying
GraSP to a structured setting and found that, although it works, it doesn’t yield favourable results.
Additionally, we undertook experiments with SNAP-it (during training), but found it performed
on-par with SNAP-it (before training), so we omitted the former as it delays the availability of the
benefits of structured pruning to inference time, in contrast to the latter. Finally, we attempted to
automatically estimate the optimal sparsity rate κ f inal without tuning this parameter, so that it doesn’t
have to be set by a user and still have close to no drop in performance. For this we utilised a sorted
histogram of the elasticity signal (see Figure 6). Although this was somewhat accurate, we couldn’t
find an exact enough point and had too many exceptions to justify discussing it in the paper. However,
we encourage future research to examine this further.
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F Hyperparameter tuning

All baselines were subject to considerable hyperparameter tuning. In its regard we will provide details
in this section. All hyperparameters not discussed here are all kept on the recommended values from
their native papers. For all tuning experiments we used a random held-out validation set, consisting
of 20% of the training set. We don’t perform tuning on non-pruning parameters that concern aspects
like network or optimisation - e.g. learning rate or LeakyReLU-slope - but instead set these by hand.

• Firstly, IMP [18] has three tuneable parameters: the interval between pruning events τ , the
rate of pruning κi and the rewind-epoch ek. For the rate of pruning κi we employed the
same rule of thumb as SNIP-it (Algorithm 1) to keep comparison as fair as possible. For
the rewind-epoch ek we used the suggested range of the paper: between 0.1% and 7% of
convergence [18], which for us was an epoch in range [0,6] and was tuned by grid-search.
We found the optimum to be either epochs 5 or 6, with 6 being more frequent. Hence we
settled on 6 and froze it for all experiments. The interval τ was jointly tuned by grid-search
also. The original paper [16] claimed that rewinding should occur early in training, as
’winning tickets’ can be found early in training. That, together with the desire to have the
final sparsity as early as possible to allow for fine-tuning, led us to aim tuning for a lower
value. We tuned in the range [1,10] and found that it was optimal at 4 or 6. Hence, 4 was the
lowest value where results were stable, which is the value we then also applied to SNIP-it (τ
in Algorithm 1) to keep things equal as much as possible.

• Secondly, the baselines of `0-regularisation [48] and HoyerSquare [73] are both based on a
regularisation parameter λ which usually requires tuning for the best sparsity-performance
trade-off, instead of setting the preset sparsity rate κ like other methods - e.g. GraSP [70]
or SNIP-it. However, we’re actually exploring a range of sparsities for our experiments.
Practically, we used 10 logarithmic intervals in the range [10−6,5], which generated the
data we worked with for these methods. So this is technically not tuning but part of the
experiment.

• Thirdly, we manually tuned the threshold for HoyerSquare and Group-HS [73] with 7
logarithmic steps in the range [10−5,10−2] and finally settled on 10−3. Even though the
original paper recommended 10−4, we found this worked better.

• Finally, for all methods that prune after training we train for 70 epochs, prune and thereafter
perform fine-tuning for another 10 epochs. This was tuned by hand. Methods that are not in
this category are trained for the same number of total epochs (80), except `0-regularisation
[48] and GateDecorators [75], which required twice that to converge. Again tuned by hand.

G Implementation

All work was implemented in Python [68], using automatic differentiation library PyTorch [56]. Code
is freely available at https://github.com/StijnVerdenius/SNIP-it

H Metrics

This section is dedicated to how the specifics metrics are calculated with the aim of reproducibility.
They consist of two metrics that are directly measurable and two that are estimations. Said metrics
are always only reported in the paper as a reduction w.r.t. the unpruned baseline and are calculated as
follows:

• FLOPS are a proxy for computational effort. We have not directly measured these from
the machines but instead estimated them. In literature multiple estimation methods coexist.
We used the estimation technique from the implementation of [47], yet slightly altered for
integration in our implementation.

• Time is a metric that can be measured directly. However, its measurements can depend on
the host machine’s capabilities, external processes running on the same machine, temperature
and/or other unknown factors. We measured inference time on the GPU with PyTorch’s
CUDA time measurement tool [56] and training time as the total time of a run in milliseconds.
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• RAM-footprint is how much memory the process takes up on the GPU. This effectively
dictates the maximum combined model-size and batch-size that can be run at the same
time. However, its measurements can depend on external processes as well. Furthermore,
the epoch that measuring takes place can play a role. Hence, we document both point-
measurements and median values over longer periods of time. We measured RAM on the
GPU directly with PyTorch’s CUDA memory measurement tool [56].

• Disk storage was estimated as the possible size when storing by CSR-format [6, 60]. Here, a
sparse matrix is stored in three vectors: one with all nonzero entries and two with its indices.
By considering only the nonzero entries and storing said indices in a lower precision we
obtain compression. When we estimated the disk size we used a ratio of 16:1 for precision
of the nonzero floats and the indices respectively. This is somewhat on the high-end, for
more conservative estimations one could consider the ratios 8:1 or 4:1 as well.

I Infrastructure

All experiments were run on a distributed scheduling system with an array of different computers
with different GPUs. The GPUs available to this system were GeForce RTX 2080 Ti, TITAN X,
GeForce GTX 1080 Ti and Tesla V100-DGXS-16GB. Furthermore, the operating system for all was
Ubuntu 18.04. All run-configurations were equally likely to end up at each machine. We are aware
that this may cause higher variance in raw time measurement and therefore assert those are taken
with reservation. However, we empirically observed it depended disproportionately more so on the
network architecture and dataset used. Overall, experiments’ run-times were observed to be between
roughly a few minutes and five hours - depending on its setup.

J Datasets

Three different datasets were adopted to demonstrate the effectiveness of the methods described. A
short description will follow of the dataset and how it was handled.

• MNIST [37] is employed as a baseline dataset for pruning algorithms, for exploratory parts
of the research. It contains 60k training images of hand-written digits as well as 10k test
images, all of 10 different classes. Images are of input dimensions 1×28×28. The images
were normalised, yet no additional data augmentation was performed.

• CIFAR10 [34] is a classic dataset for pruning algorithms and was chosen as a default
dataset to evaluate the algorithms on. It contains 50k images of different object-classes,
as well as 10k test images. Images are of input dimensions 3×32×32. The images were
normalised. Moreover, data augmentation was applied to the training set, in the form of
random horizontal flips with a probability of 20%.

• Imagenette [30] is a subset of images from the Imagenet challenge [11], freely available
online [30]. It was chosen to additionally evaluate on a more realistic benchmark with larger
pictures and less available data. It contains 10 classes with 13k training images and 500
test images. Images are preprocessed to have 3 valid channels and its shortest size resized
to 320 and aspect ratio maintained. Thereafter, we scale them down to 3×128×128 for
computational reasons. The images were normalised. Moreover, training data augmentation
was applied, again in the form of random horizontal flips with a probability of 20%.

K Supplementary results

Here we will report and display results that did not make it in the main paper due to spatial constraints.
Sections are organised by the dataset or metric that was used to obtained the results that are displayed.

K.1 MNIST
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Figure 10: Unstructured sparsity-performance trade-off with confidence bound (MLP5). This figure
reports points corresponding to Figures 3, 4 & 5 in the main paper.

Table 3: Unstructured sparsity-performance trade-off. Points are picked using the highest harmonic
mean (HM) between sparsity and accuracy. This table reports points corresponding to Figures 3, 4 &
5 in the main paper.

MNIST
MLP5

Accuracy Sparsity HM

Baseline 98%
Prunes after training

HoyerSquare 96% ± 0.3 94% 95
Prunes during training

IMP-global 97% ± 0.2 98% 97
SNIP-it (ours) 97% ± 0.1 98% 97

Prunes before training
GraSP 96% ± 0.2 97% 96

Random 96% ± 0.2 96% 96
SNIP 96% ± 0.3 96% 96

SNIP-it (ours) 95% ± 0.2 97% 96

K.2 CIFAR10

Figure 11: Structured sparsity-performance trade-off with confidence bound (LeNet5), showing
`0-regularisation [48] works well with recommended setup from their paper, unlike is observed in
other setup-instances.

Figure 12: Unstructured sparsity-performance trade-off with confidence bound (Conv6). This figure
reports points corresponding to Table 2 in the main paper.
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Table 4: Structured results on CIFAR10. Points are picked using the highest harmonic mean between
sparsity and accuracy. This table reports points corresponding to Figure 1 in the main paper.

VGG16
Method Accuracy Sparsity FLOPS Time Storage

Weight Node Inference Train Inference Train Disk RAM

Baseline 87%
Prunes after training

Effic.ConvN. 82 %± 0.3 94% 75% 15× 1 × 3 × 1 × 6e+02 × 1 ×
GateDecorators 83 %± 1.0 99% 88% 30× 1 × 5 × 1 × 3e+04 × 2 ×

Group-HS 85 %± 0.3 96% 82% 3 × 1 × 3 × 1 × 2e+03 × 1 ×
Prunes during training

L0 57 %± 4.2 86% 70% 2 × 1 × 1 × 1 × 9e+01 × 2 ×
Prunes before training

Random 83 %± 0.4 94% 75% 15× 15× 6 × 2 × 6e+02 × 21×
SNAP-it (ours) 85 %± 0.6 99% 93% 11× 11× 5 × 2 × 6e+04 × 156×

AlexNet
Baseline 83%

Prunes after training
Effic.ConvN. 78 %± 0.6 94% 75% 14× 1 × 3 × 1 × 6e+02 × 1 ×

GateDecorators 80 %± 0.9 99% 90% 25× 1 × 6 × 1 × 6e+04 × 205×
Group-HS 80 %± 1.7 95% 87% 2 × 1 × 2 × 1 × 1e+03 × 1 ×

Prunes during training
L0 72 %± 1.2 88% 67% 2 × 1 × 1 × 1 × 1e+02 × 2 ×

Prunes before training
Random 79 %± 0.2 98% 88% 50× 50× 8 × 2 × 1e+04 × 109×

SNAP-it (ours) 83 %± 0.6 99% 90% 9 × 9 × 5 × 2 × 2e+04 × 121×

K.3 Imagenette

Figure 13: Structured sparsity-performance trade-off with confidence bound (LeNet5).
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(a) LeNet5 (b) MLP5

(c) ResNet18 (d) Conv6

Figure 14: Unstructured sparsity-performance trade-off with confidence bound. This figure reports
points corresponding to Table 2 in the main paper.

(a) AlexNet (b) VGG16

Figure 15: Structured sparsity-performance trade-off with confidence bound. This figure reports
points corresponding to Table 1 in the main paper.

K.4 FLOPS

(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

Figure 16: Estimations of total cumulative FLOPS of the training process for a set number of epochs
for multiple network-dataset combinations w.r.t. unpruned baseline. GateDecorators [75] and
`0-regularisation [48] required a higher number of epochs and naturally have a higher total because
of it.
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(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

Figure 17: Estimation of inference FLOPS after training for multiple network-dataset combinations
w.r.t. unpruned baseline.

K.5 Disk

(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

(e) Conv6-CIFAR10 (f) Conv6-Imagenette (g) LeNet5-CIFAR10 (h) LeNet5-Imagenette

(i) MLP5-CIFAR10 (j) MLP5-Imagenette (k) ResNet18-CIFAR10 (l) ResNet18-Imagenette

Figure 18: Estimations of Disk storage for multiple network-dataset combinations as reduction in
CSR-format [6, 60] w.r.t. unpruned baseline.

K.6 Time
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(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

Figure 19: Measurements of total run-time for a set number of epochs for multiple network-dataset
combinations w.r.t. unpruned baseline. GateDecorators [75] and `0-regularisation [48] required a
higher number of epochs and naturally have higher measurements because of it.

(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

Figure 20: Measurements of inference time after training for multiple network-dataset combinations
w.r.t. unpruned baseline.

K.7 RAM-footprint

(a) AlexNet-CIFAR10 (b) AlexNet-Imagnette (c) VGG16-CIFAR10 (d) VGG16-Imagnette

Figure 21: Median measurements of RAM-footprint during training. Note that for GateDecorators
[75], since it still trains rather long after the pre-train phase, sometimes a sparser measurement
ended up being the median and sometimes one from the the pre-train phase, causing two separate
patterns to emerge.

L Network architectures

Here different network architecture details are documented. I will denote the input dimensions and K
the number of classes. We alter most networks to use the LeakyReLU activation function with a
slope of 5%, dropout [64] with a probability of 30%, batch normalisation and pooling layers.

• MLP5 1

Linear(in features=I, out features=512, bias=True)
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)

1Own creation
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LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=512, out features=512, bias=True)
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=512, out features=512, bias=True)
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=512, out features=512, bias=True)
BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=512, out features=K, bias=True)

• LeNet5
Conv2d(I, 6, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
BatchNorm2d(6, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(6, 16, kernel size=(5, 5), stride=(1, 1))
BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(16, 120, kernel size=(5, 5), stride=(1, 1))
BatchNorm2d(120, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
AdaptiveAvgPool2d(output size=(3, 3))
Dropout(p=0.3, inplace=False)
Linear(in features=1080, out features=84, bias=True)
BatchNorm1d(84, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=84, out features=K, bias=True)

• Conv6
Conv2d(I, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
AdaptiveAvgPool2d(output size=(3, 3))
Dropout(p=0.3, inplace=False)
Linear(in features=2304, out features=256, bias=True)
BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=256, out features=256, bias=True)
BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
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LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=256, out features=K, bias=True)

• ResNet18
Conv2d(I, 64, kernel size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=False)
BasicBlock(in featurs=64, out features=64, downsampling=False)
BasicBlock(in featurs=64, out features=64, downsampling=False)
BasicBlock(in featurs=64, out features=128, downsampling=True)
BasicBlock(in featurs=128, out features=128, downsampling=False)
BasicBlock(in featurs=128, out features=256, downsampling=True)
BasicBlock(in featurs=256, out features=256, downsampling=False)
BasicBlock(in featurs=256, out features=512, downsampling=True)
BasicBlock(in featurs=512, out features=512, downsampling=False)
AdaptiveAvgPool2d(output size=(2, 2))
Sequential(
Dropout(p=0.3, inplace=False)
Linear(in features=2048, out features=256, bias=True)
BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=256, out features=K, bias=True)

• VGG16
Conv2d(I, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(64, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
MaxPool2d(kernel size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
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BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Conv2d(512, 1024, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
AdaptiveAvgPool2d(output size=(2, 2))
Dropout(p=0.3, inplace=False)
Linear(in features=4096, out features=4096, bias=True)
BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Dropout(p=0.3, inplace=False)
Linear(in features=4096, out features=4096, bias=True)
BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05, inplace=True)
Dropout(p=0.3, inplace=False)
Linear(in features=4096, out features=K, bias=True)

• AlexNet
Conv2d(I, 64, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=3, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(64, 192, kernel size=(5, 5), stride=(1, 1), padding=(2, 2))
BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
MaxPool2d(kernel size=3, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Conv2d(384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Conv2d(256, 512, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))
BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
AdaptiveAvgPool2d(output size=(2, 2))
Dropout(p=0.3, inplace=False)
Linear(in features=2048, out features=4096, bias=True)
BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=4096, out features=4096, bias=True)
BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
LeakyReLU(negative slope=0.05)
Dropout(p=0.3, inplace=False)
Linear(in features=4096, out features=K, bias=True)
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