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We develop the geometric description of submanifolds in Newton-Cartan spacetime. This provides the
necessary starting point for a covariant spacetime formulation of Galilean-invariant hydrodynamics on curved
surfaces. We argue that this is the natural geometrical framework to study fluid membranes in thermal equilibrium
and their dynamics out of equilibrium. A simple model of fluid membranes that only depends on the surface
tension is presented and, extracting the resulting stresses, we show that perturbations away from equilibrium
yield the standard result for the dispersion of elastic waves. We also find a generalization of the Canham-Helfrich
bending energy for lipid vesicles that takes into account the requirements of thermal equilibrium.

DOI: 10.1103/PhysRevE.101.062803

I. INTRODUCTION

The dynamics of surfaces and interfaces plays a prominent
role in various instances of physical phenomena, ranging from
fluid membranes in biological systems [1,2], to the interplay
between liquid crystal geometry and hydrodynamics [3], to
surface or edge physics in condensed matter systems [4].
Fluid membranes comprising lipid bilayers are essential in the
physics of biological systems, and the characterization of their
geometric properties has been an active field of research for
decades, as well as being key in understanding experimental
outcomes (see, e.g., Refs. [5–9] for reviews). Hydrodynamics
on curved surfaces has also recently received considerable
attention, not only due to its relevance in embryonic processes
[10] or cell migration [11] where activity also plays a role,
but also due to its relevance in understanding topological
properties of wave dynamics such as Kelvin-Yanai waves
on the Earth’s equator [12], flocking on a sphere [13], or
turbulence in active nematics [14–16].

While the geometry and dynamics of surfaces in (pseudo)-
Riemannian geometry has been deeply studied in both physics
and mathematics, a systematic treatment using covariant and
geometrical structures has so far not been developed for
Galilean-invariant systems. In view of the relevance of such
systems in many branches of physics, and immediate applica-
tions in biophysical systems detailed below, the main goal of
this paper is to develop the theory of submanifolds in Newton-
Cartan spacetime. This can be considered as the Galilean
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analog of the (pseudo)-Riemannian case for which the ge-
ometry and its embeddings have local Euclidean (Poincaré)
symmetry as opposed to Galilean symmetries. The formalism
we develop allows for a covariant spacetime formulation of
Galilean-invariant hydrodynamics on curved surfaces.

As such it is thus the natural framework to study fluid
membranes in thermal equilibrium along with their dynamics
away from equilibrium. This includes in particular biophysi-
cal membranes such as lipid bilayers, which are membranes
composed of lipid molecules that enclose the cytoplasm. The
lipid molecules move as a fluid along the membrane surface,
which itself behaves elastically when bent. It is well known
that at mesoscopic scales, lipid bilayers can be approximated
by thin surfaces whose equilibrium configurations are ac-
curately described by geometrical degrees of freedom and
a small set of material coefficients that encode the more
microscopic biochemical details (see, e.g., Ref. [9]). The
shapes of lipid bilayers, such as discoids characterizing the
morphology of red blood cells, are found by extremizing
the Canham-Helfrich (CH) free energy [5,6], which depends
only on geometric properties. The stresses associated to such
bilayers have received considerable attention [9,17] as well as
deformations of the CH free energy away from equilibrium in
order to identify stable deformations [18].

However, despite the CH free energy being taken to repre-
sent a system in thermodynamic equilibrium [19] (as well as
its analog in nematic liquid crystals, the Frank energy [20]), it
disregards the basic lesson of equilibrium thermal field theory:
that temperature and mass chemical potential (conjugate to
particle number) also have a geometric interpretation. This
results in the CH free energy giving rise to inaccurate stresses
characterizing the membrane, explicit by the fact that they do
not describe the stresses intrinsic to a fluid, and neither do they
yield elastic wave dispersion relations when deforming away
from equilibrium. In this paper, we argue that the development
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of a spacetime covariant formulation of Galilean-invariant
hydrodynamics using Newton-Cartan geometry is a more
useful approach to understanding fluid dynamics on curved
surfaces and the physics of equilibrium fluid membranes.

Newton-Cartan (NC) geometry was pioneered by Cartan in
order to geometrize Newton’s theory of gravity [21,22].1 As
a nondynamical geometry its importance stems from the fact
that it is the natural background geometry that nonrelativistic
field theories couple to [25,26]2 and thus provides a geometric
and covariant formulation of many aspects of nonrelativistic
physics including broad classes of long-wavelength effective
theories such as hydrodynamics. In particular, in the past few
years NC geometry and variants have been applied to the
formulation of Galilean-invariant fluid dynamics [33,34], Lif-
shitz fluid dynamics [35,36] as well as hydrodynamics without
boost symmetry [37–40],3 which encapsulate the former as
cases with extra symmetries. Furthermore, in the context of
condensed matter systems, it was realized that NC geometry
is the natural setting for developing an effective theory of the
fractional quantum Hall effect [41–44]. This body of work,
together with previous work on Galilean superfluid droplets
[45] and connections between black holes and CH functionals
[46,47], suggests that NC geometry can also be useful in
describing hydrodynamics on curved surfaces.

The development of submanifold calculus in (pseudo-
)Riemannian or Euclidean geometry, written in multiple vol-
umes (e.g., Ref. [48]) and furthered in different contexts
[49–53], is an essential prerequisite for describing surfaces
and hence for formulating and extremizing the CH free en-
ergy. Therefore, the majority of the work presented in this
paper, in particular Secs. II and III and Appendix A, consists
of the development of submanifold calculus in Newton-Cartan
geometry, the identification of geometrical properties describ-
ing surfaces, and the formulation of appropriate geometric
functionals whose extrema are NC surfaces. Thus, the main
part of the work presented here is foundational. However, in
Sec. IV we apply this machinery to different fluid membrane
systems in order to show its usefulness and provide a gener-
alized CH model that takes into account the requirements of
thermodynamic equilibrium. The work developed here will be
the basis for a more detailed study of effective theories of fluid
membranes, which takes into account a larger set of responses
including viscosity, providing a more solid foundation for the
physics of fluid membranes [54].

1See also Ref. [23] for a modern perspective and earlier references,
and the recent work [24] for an action principle for Newtonian
gravity.

2In particular, the most general coupling requires a torsionful gen-
eralization of NC geometry, called torsional Newton-Cartan (TNC)
geometry which was first observed as the boundary geometry in
the context of Lifshitz holography [27–29]. TNC geometry also
appears as the ambient space-time for nonrelativistic strings; see,
e.g., Refs. [30–32].

3The boost-noninvariant hydrodynamics of these papers is formu-
lated in the regime where momentum is conserved, but may be
generalized to include further breaking of translation symmetry, in
which case it applies to flocking and active matter.

A. Organization of the paper

A more detailed outline of the paper, including a brief
summary of the main results is as follows.

In Sec. II, after reviewing the geometric structure of a
Newton-Cartan spacetime, we first define what a submanifold
structure is in such spacetimes. In particular, we develop the
necessary geometric tools to define an induced NC structure
on the submanifold. We highlight in particular how the objects
transform under local Galilean boosts, which is a key property
for nonrelativistic geometries. We then show, using the affine
connection that is known for NC structures, how to construct
a covariant derivative along the surface directions, and give an
expression for the corresponding surface torsion tensor. With
this in hand, we discuss the exterior curvature and show how
the (Riemannian) Weingarten identity gets modified in this
case.

Section III develops the variational calculus for NC sub-
manifolds, which is essential technology in order to find
equations of motion from effective actions. We consider first
general variations of the relevant quantities describing the em-
bedding. Subsequently we obtain expressions for embedding
map variations as well as Lagrangian variations, which are
diffeomorphisms in the ambient NC spactime that keep the
embedding maps fixed. From the corresponding variations of
the induced NC structures and the normal vectors we find in
particular how the extrinsic curvature transforms under such
variations. We subsequently use this technology to consider
the dynamics of submanifolds that arises from extremization
of an action. The resulting equations of motions for NC
submanifolds are thus obtained from the general response to
varying the induced NC metric structure on the manifold and
the extrinsic curvature. These split up in a set of intrinsic
equations, which are conservation equations of the world-
volume stress tensor and mass current accompanied by a set of
extrinsic equations. We also analyze the boundary terms that
appear as a result of varying the general action functional and
obtain the resulting boundary conditions.

Then in Sec. IV we apply the action formalism presented in
the previous section to describe equilibrium fluid membranes
and lipid vesicles as well as their fluctuations. We will show
that employing NC geometry for such surfaces is not only
natural but also provides a more complete description. First,
it introduces (absolute) time and therefore fluctuations of the
system can include temporal dynamics in a covariant form.
Moreover, the symmetries of the problem are made manifest
via the geometry of the submanifold and ambient spacetime.
Even more important is the aspect that NC geometry allows
to properly introduce thermal field theory of equilibrium fluid
membranes. To illustrate all this we first consider equilibrium
fluid branes, i.e., stationary fluid configurations on an arbi-
trary surface and the simplest example with a free energy
depending on surface tension only, for which we compute
the resulting stresses. We then show that perturbations away
from equilibrium yield the standard result for the dispersion
of elastic waves. We also briefly consider the case of a
droplet, by adding internal or external pressure to the previous
case. Then we revisit the celebrated Canham-Helfrich model,
which describes equilibrium configurations of biophysical
membranes. We show how this model can be described using
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Newton-Cartan geometry and generalize it by allowing its
(material) parameters to depend on temperature and chemical
potential. Finally, we review the classic lipid vesicles using
this framework.

We end in Sec. V with a brief discussion and description of
further avenues of investigation.

A number of appendices are included containing further
details. Since it is known that torsional NC spacetimes can
be obtained from Lorentzian spacetime using null reduction,
we show in Appendix A a complimentary perspective on NC
submanifolds, by null reducing submanifolds of Lorentzian
spacetimes. Appendix B describes different classes of NC
spacetimes, depending on properties of the torsion. In Ap-
pendix C we find the relation between the NC connections
of the ambient spacetime and the submanifold (described in
Sec. II B 5). Finally, in Appendix D we show how the Gauss–
Bonnet theorem reduces the number of independent terms in
an effective action for (2 + 1)-dimensional membranes that
appear as closed codimension one surfaces embedded in flat
(3 + 1)-dimensional Newton-Cartan geometry.

II. THE GEOMETRY OF NEWTON-CARTAN
SUBMANIFOLDS

This section is devoted to a proper geometrical treatment
of surfaces (or embedded submanifolds) in NC geometry with
the goal of subsequently applying it to the description of
membrane elasticity and fluidity in later sections. To that aim,
we begin by introducing the reader to the essential details
of NC geometry. The basic structures that define a given
NC geometry are then understood as background fields for
the dynamical surfaces or objects, in direct analogy with
embedding of surfaces in a (pseudo-)Riemannian geometry
with background metric gμν . This paves the way for defining
the geometric structures that characterize nonrelativistic sur-
faces.4 In Appendix A we provide an alternative method for
obtaining the theory of NC surfaces directly from the theory
of surfaces in Lorentzian geometry.

A. Newton-Cartan geometry

Let Md+1 be a (d + 1)-dimensional manifold endowed
with a Newton-Cartan structure, which consists of the fields
(τμ, hμν, mμ). Here the Greek indices denote spacetime in-
dices such that μ, ν, · · · = 0, . . . , d . The tensor hμν is sym-
metric with rank d and has signature (0, 1, 1, . . . ), while the
nowhere vanishing 1-form τμ is such that −τμτν + hμν has
full rank. The field mμ is the connection of an Abelian gauge
symmetry that from the point of view of a Galilean field
theory on a NC spacetime can be thought of as the symmetry
underlying particle number conservation. Since the latter is

4Intuition originating from the description of surfaces in (pseudo-)
Riemannian geometry suggests that geometric structures character-
izing surfaces in NC geometry would naively be constructed from
pullbacks of NC ambient spacetime fields. It will turn out that this is
only true for submanifolds of NC geometry provided we take the
pullbacks of quantities that are invariant under the local Galilean
boost transformations of the ambient NC geometry.

a compact Abelian symmetry we refer to mμ as the U (1)
gauge connection. It is useful to define an inverse NC structure
(vμ, hμν ), where vμ spans the kernel of hμν and τμ spans the
kernel of hμν . The 1-form τμ is sometimes called the clock
1-form, while the vector vμ is known as the Newton-Cartan
velocity. These structures satisfy the completeness relation
and normalization condition:

δμ
ν = −vμτν + hμρhρν, so that vμτμ = −1. (2.1)

It is occasionally useful to introduce vielbeins ea
μ, eμ

a with
a, b, · · · = 1, . . . , d (that is, spatial tangent space indices are
underlined lowercase Latin letters) such that

hμν = δabea
μeb

ν, hμν = δabeμ
a eν

b, (2.2)

which furthermore satisfy the orthogonality relations

vμea
μ = 0, τμeμ

a = 0, eμ
a eb

μ = δb
a. (2.3)

The Newton-Cartan structure on Md+1 in terms of the
fields (τμ, hμν, mμ) transforms under diffeomorphisms (coor-
dinate transformations), U (1) (mass) gauge transformations
(akin to gauge transformations in Maxwell theory), local
rotations and local Galilean boosts (also known as Milne
boosts) in the following way:

δτμ = £ξ τμ, δea
μ = £ξ ea

μ + λa
beb

μ + λaτμ,

δmμ = £ξ mμ + λaea
μ + ∂μσ, (2.4)

δvμ = £ξv
μ + λaeμ

a , δeμ
a = £ξ eμ

a + λa
beμ

b .

Here ξμ is the generator of diffeomorphisms, σ is the param-
eter of mass gauge transformations, and λa is the parameter
of local Galilean boosts. Finally, λa

b = −λb
a corresponds to

local so(d ) transformations. When describing physical sys-
tems in NC geometry by means of a Lagrangian or action
functional, one requires invariance under the gauge transfor-
mations (2.4). In the restricted setting of a flat NC back-
ground (i.e., a spacetime with absolute time whose constant
time slices are described by Euclidean geometry), which is
the most relevant case in the context of biophysical mem-
branes, invariance under (2.4) implies invariance under global
Galilean symmetries centrally extended to include mass con-
servation. The centrally extended Galilei group is known as
the Bargmann group. This implies that the geometry can be
viewed as originating from “gauging” the Bargmann algebra
as detailed in Ref. [23].

1. Galilean boost-invariant structures

One may readily check that given (2.4), the NC fields hμν

and hμν , which are constructed out of the vielbeins as in (2.2),
transform as

δhμν = £ξ hμν, δhμν = £ξ hμν + 2λ(μτν), (2.5)

where λμ = ea
μλa, immediately implying that λμvμ = 0. We

conclude from this that hμν∂μ∂ν is an invariant of the geom-
etry, a cometric, while hμνdxμdxν is not an invariant because
it transforms under the Galilean boosts. On the other hand
τμdxμ is invariant. This means that NC geometry has a
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degenerate metric structure given by τμτν and hμν and that
hμν should not be viewed as a metric.5

Notice that while hμν transforms under Galilean boosts
it does not transform under U (1) gauge transformations. It
is possible to define objects that have the opposite property,
namely, that they are Galilean boost invariant but not U (1)
invariant. We will often work with these fields, and so we
discuss their construction here. We can trade U (1) gauge
invariance for boost invariance by introducing the set of fields

h̄μν = hμν − 2τ(μmν), v̂μ = vμ − hμνmν, (2.6)

which transform as6

δh̄μν = £ξ h̄μν − 2τ(μ∂ν)σ, δv̂μ = £ξ v̂
μ − hμν∂νσ, (2.7)

and hence are manifestly Galilean boost invariant. Addition-
ally, it is also possible to construct a boost-invariant scalar,
which is the boost-invariant counterpart of the Newtonian
potential [56], namely,


̃ = −vμmμ + 1
2 hμνmμmν . (2.8)

The Newtonian potential itself is just the time component of
mμ. These quantities will be useful when discussing effective
actions for fluid membranes in later sections.

2. Covariant differentiation and affine connection

NC geometry provides a way of formulating nonrelativis-
tic physics in curved backgrounds and substrates which has
recently become an active research direction in soft matter
[12–16]. Additionally, even in the traditional case of lipid
membranes sitting in Euclidean space, it is useful to have
explicit coordinate independence as it can simplify many
problems of interest. Therefore, it is important to introduce a
covariant derivative adapted to curved backgrounds. However,
in contrast to (pseudo-)Riemannian geometry without torsion,
there is no unique metric-compatible connection in Newton-
Cartan geometry. Rather, the analog of metric compatibility in
NC geometry is

∇μτν = 0, ∇μhνρ = 0, (2.9)

where ∇ is the covariant derivative with respect to the affine
connection �ρ

μν . It is possible to choose the affine connection

5We can fix diffeomorphisms such that τi = 0 where we split
the spacetime coordinates xμ = (t, xi ). In this restricted gauge the
metric on slices of constant time t is given by hi jdxidx j which is
invariant under the diffeomorphisms that do not affect time. In this
sense the constant time slices are described by standard Riemannian
geometry. However, when we include time into the formalism we
have to abandon the notion of a metric and instead work with the
NC triplet (τμ, hμν, mμ). In this setting, in order to evaluate areas
or volumes of given surfaces one can use the integration measure
e = √−det(−τμτν + hμν ), which is both Galilean boost and U (1)
invariant.

6Note that this is possible because the U (1) connection mμ also
transforms under Galilean boosts. In this sense it is different from the
Maxwell potential. The difference comes from the fact that the mass
generator forms a central extension of the Galilei algebra whereas the
charge U (1) generator of Maxwell’s theory forms a direct sum with
in that case the Poincaré algebra. See Refs. [23,55]) for more details.

as [57,58]7

�ρ
μν = −v̂ρ∂μτν + 1

2 hρσ (∂μh̄νσ + ∂ν h̄μσ − ∂σ h̄μν ). (2.10)

Given the connection �, covariant differentiation acts on
an arbitrary vector X μ in a similar manner as in (pseudo)-
Riemannian geometry:

∇μX ν = ∂μX ν + �ν
μρX ρ. (2.11)

Notably, and in contradistinction to the Levi-Civita con-
nection of (pseudo)-Riemannian geometry, the connection
�λ

μν is generally torsionful. This is due to the condition
∇μτν = 0. In particular, the affine connection has an antisym-
metric part given by

2�λ
[μν] = −2v̂λ∂[μτν] = −v̂λτμν, (2.12)

where we defined the torsion 2-form

τμν = 2∂[μτν]. (2.13)

For all physical systems studied in this paper, the torsion
vanishes. However, when performing variational calculus (of
the NC fields) it is required to keep variations of τμ arbitrary.8

As written in (2.10) in terms of boost-invariant quanti-
ties, the affine connection does not transform under Galilean
boosts. However, under the U (1) gauge transformations (2.7),
it transforms as

δσ�ρ
μν = 1

2 hρλ(τμν∂λσ + τλν∂μσ + τλμ∂νσ ). (2.14)

In the absence of torsion, τμν = 0, the connection is invariant
under such transformations.

3. Absolute time and flat space

Depending on the conditions imposed on the clock 1-form
τμ, there are different classes of NC geometries [28,58]. We
refer the curious reader to Appendix B, which contains a clas-
sification of the different classes NC geometries, while in this
section we focus on the most relevant case for the purposes of
this work. If τμ is exact, that is, τμ = ∂μT for some scalar T ,
the torsion (2.13) vanishes and we are dealing with Newtonian
absolute time. This is the simplest kind of Newton-Cartan
geometry and the relevant one for the applications we consider
in this work, namely, lipid vesicles or fluid membranes. For
example, for membrane geometries, which for each instant
in time are embedded in three-dimensional Euclidean space,
the ambient NC spacetime in Cartesian coordinates can be
parametrized as

τμ = δ0
μ, hμν = δi

μδi
ν, vμ = −δ

μ
0 , hμν = δ

μ
i δν

i ,

mμ = 0. (2.15)

7As shown in Refs. [57,58], the most general affine connection sat-
isfying (2.9) takes the form �̄ρ

μν = �ρ
μν + W ρ

μν where W ρ
μν is the pseu-

docontortion tensor, obeying τρW ρ
μν = 0 and W ν

μλhλρ + W ρ

μλhνλ = 0.
The choice (2.10) corresponds to W ρ

μν = 0. This choice is also the
natural choice from the perspective of the Noether procedure [55].

8The condition that τμ be unconstrained is not necessary when we
perform variations of embedding scalars in a fixed ambient space
geometry.
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In the context of nonrelativistic physics in spatially curved
backgrounds, the clock 1-form will still have the form τμ =
δ0
μ but the tensor hμν can be nontrivial in the sense that it

is not gauge equivalent to flat space. Thus for all practical
applications, the first term in the affine connection (2.10)
vanishes and the connection is purely spatial. However, while
for physically relevant spacetimes we will always require that
τμ must be of the form τμ = ∂μT , when we are dealing with
τμ as a background source in some action functional for matter
fields, we need to require that it is unconstrained in order to
be able to vary it freely.

B. Submanifolds in Newton-Cartan geometry

In this section we formulate the theory of nonrelativistic
NC timelike9 surfaces (or submanifolds) embedded in arbi-
trary NC geometries. Following the literature that deals with
the relativistic counterpart [53], we focus on the description
of a single surface placed in an ambient NC spacetime and
not on a foliation of such surfaces. In practice, this means that
all geometric quantities, such as tangent and normal vectors,
describing the surface are only well defined on the surface and
not away from it. In this section we introduce the necessary
geometrical structures for dealing with a single surface in a
NC spacetime.

1. Embedding map, tangent, and normal vectors

A (p + 1)-dimensional Newton-Cartan submanifold �p+1

of a (d + 1)-dimensional Newton-Cartan manifold Md+1 is
specified by the embedding map

X μ : � → M, μ = 0, . . . , d, (2.16)

which maps the coordinates σ a on �p+1 to X μ(σ a) on M
(lowercase Latin letters, a, b, . . . = 0, . . . , p, denote submani-
fold spacetime indices). Concretely, the embedding map spec-
ifies the location of the surface as xμ = X μ(σ a) where xμ are
coordinates in M. The manifold M into which the embedding
scalars map is usually referred to as the target spacetime. The
manifold described by the spacetime coordinates xμ is the
ambient spacetime. For simplicity, we will refer to both as
ambient spacetime.

Given the embedding map, the tangent vectors to the
surface are explicitly defined via uμ

a = ∂aX μ. In turn, the nor-
mal 1-forms nI

μdxμ (where I runs over the d − p transverse
directions) are implicitly defined via the relations

nI
μuμ

a = 0, hμνnI
μnJ

ν = δIJ , I = 1, . . . , d − p. (2.17)

This normalization implies that in the normal directions we
can use δIJ and δIJ to raise and lower transverse indices,
meaning that we can write YIY I = Y IY I for some arbitrary
vector Y I . However, Eq. (2.17) does not fix the normal
1-forms uniquely. In fact, the 1-forms nI

μ transform under
local SO(d − p) rotations such that

nI
μ → MI

JnJ
μ, (2.18)

9The submanifolds we consider are timelike in the sense that
the normal vectors are required to be spacelike [see (2.24)]. The
submanifolds will inherit a NC structure of their own.

where MI
J is an element of SO(d − p). The transformation

(2.18) leaves (2.17) invariant and hence expresses the freedom
of choosing the normal 1-forms.10

We can furthermore introduce “inverse objects” ua
μ and nμ

I
to the tangent vectors and normal 1-forms via the complete-
ness relation

δμ
ν = uμ

a ua
ν + nI

νnμ
I , (2.19)

which in turn satisfy the relations

ua
μnμ

I = 0, uμ
a ub

μ = δb
a, nμ

I nJ
μ = δJ

I . (2.20)

The tangent vectors, normal 1-forms and their inverses can be
used to project any tensor tangentially or orthogonally to the
surface. For instance, we may project some tensor X μ

νρ
λ and

denote the result as

X a
I b

J = ua
μnν

I uρ

b nJ
λX μ

νρ
λ. (2.21)

It is also useful to define the tangential spacetime projector

Pμ
ν = uμ

a ua
ν = δμ

ν − nμ
I nI

ν, (2.22)

which can be shown to be idempotent and of rank p + 1. The
object (2.22) can be used to project arbitrary tensors onto
tangential directions along the surface and satisfies Pμ

ν nI
μ = 0.

2. Timelike submanifolds and boost invariance

Our goal is formulate a theory of nonrelativistic submani-
folds �p+1 characterized by a Newton-Cartan structure that is
inherited from the NC structure of the ambient spacetime. We
introduce the submanifold clock 1-form as the pullback of the
clock 1-form of the ambient spacetime such that

τa = uμ
a τμ. (2.23)

As mentioned earlier, we focus on timelike submanifolds, by
which we mean that the normal vectors nμ

I satisfy

τI = nμ
I τμ = 0, (2.24)

and so τa is nowhere vanishing on �p+1 (see Fig. 1 for an
illustration of this condition). Then, taking

nμI = hμνnI
ν, (2.25)

we make (2.24) manifest. We note that these considerations
imply that

hIJ = hμνnI
μnJ

ν = δIJ , (2.26)

haI = hμνua
μnI

ν = ua
μnμI = 0, (2.27)

hIJ = hμνnμ
I nν

J = hμνhνρnμ
I nρJ = (

δρ
μ + vρτμ

)
nμ

I nρJ = δIJ ,

(2.28)

haI = hμνuμ
a nν

I = hμνuμ
a hνρnρI = vIτa, (2.29)

where vI = nIμvμ, which we will denote as the normal
velocity.

10More formally, since the orientation of the normal 1-forms can
be chosen freely as inward or outward pointing, MI

J is a matrix in
O(d − p).
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FIG. 1. Graphical depiction of the embedding of timelike
Newton-Cartan submanifolds. The vertical direction represents the
time t , and the spatial directions are in the plane orthogonal to the t
axis. The spatial hypersurfaces of constant time are denoted by their
corresponding value of t . Note in particular that the condition (2.24)
implies that the submanifold does not “bend” away from the time
direction in the ambient spacetime.

The description of submanifolds in NC geometry must
be invariant under Galilean boosts, as these just express a
choice of frame. This implies that the defining structure of
NC submanifolds, namely, (2.17) and (2.20), must be invariant
under local Galilean boost transformations. We start by noting
that the embedding map does not transform under boosts, that
is

δGX μ = 0 ⇒ δGuμ
a = 0, (2.30)

and hence the tangent vectors to the surface are boost invari-
ant.11 Specializing to timelike submanifolds, using (2.25), the
variations of (2.17) and (2.20), together with (2.30), require

uμ
a δGnI

μ = −nI
μδGuμ

a , nμJδGnI
μ = 0 ⇒ δGnI

μ = 0,

ua
μhμνδGnμI = −nμ

I δGua
μ, (2.31)

uμ
a δGub

μ = −ub
μδGuμ

a ⇒ δGua
μ = 0,

while δGnμ
I = 0 follows trivially from (2.25). Thus, Eq. (2.30)

ensures that the defining structure of timelike NC submani-
folds is boost invariant.12

11Note that the embedding map specifies the location of the sur-
face such that xμ = X μ(σ a). The spacetime coordinates xμ do not
transform under local Galilean boosts and hence neither does the
embedding map X μ(σ ).

12In particular, (2.31) implies that δGvI = nI
μδGvμ = nI

μhμνλν =
λI . This is consistent with (2.31) since nI

μ = nI
∗∗∗ae∗∗∗a

μ − vIτμ, so
that nI

∗∗∗a = eμ
∗∗∗anI

μ. Given that δGeμ
∗∗∗a = δGτμ = 0 and δGe∗∗∗a

μ =
λ∗∗∗aτμ, we find that δGnI

μ = nI
∗∗∗aλ

∗∗∗aτμ − λIτμ and since λμ =
nI

μλI + ua
μλa, we get nI

∗∗∗aλ
∗∗∗a = nI

∗∗∗ae∗∗∗aμλμ = λI , thus confirm-
ing (2.31).

3. Induced Newton-Cartan structures

Besides the defining conditions (2.17) and (2.20), NC
submanifolds have other inherent geometric structures, such
as induced tensors, that can be introduced via appropriate
contractions of ambient tensors with any of the objects ua

μ and
uμ

a . We wish to identify the induced NC structures on the sub-
manifold that have the same properties as the NC structures of
the ambient spacetime. For instance, these induced structures
should transform as in (2.4) and (2.5) but now involving only
tangential directions to the submanifold.

The basic building blocks are the clock 1-form τa in
Eq. (2.23) and the normal velocity vI in Eq. (2.29) along with
the pullbacks of the remaining ambient space fields

hab = uμ
a uν

bhμν, va = ua
μvμ, hab = ua

μub
νhμν,

ma = uμ
a mμ. (2.32)

It is possible to see that these structures mimic many of
the properties of the ambient NC structure. For instance,
we have τahab = 0 and vaτa = −1 by virtue of (2.24) and
τμhμν = 0 as well as vμτμ = −1. Additionally, they give rise
to the completeness relation hachcb = δa

b + vaτb, which in turn
implies the relation hμνua

μ = habuν
b . However, using (2.29), we

find that

vahab = ua
μvμuρ

a uσ
b hρσ = −vI hIb = −vIvIτb, (2.33)

which is nonzero, contrary to the corresponding ambient NC
result vμhμν = 0. Hence, the individual structures in (2.32) do
not form a NC geometry on the submanifold. Using (2.33) we
instead define

ȟab = hab − vIvIτaτb, (2.34)

which leads to a completeness relation and satisfies the re-
quired orthogonality condition, that is

hacȟcb = δa
b + τbv

a, vaȟab = 0. (2.35)

For ȟab to be considered a NC structure on the submanifold,
one must also ensure that it transforms under Galilean boosts
as its ambient space counterpart hμν [cf. (2.5)]. Using (2.4),
(2.5), (2.31), and13 vaλa = −vIλI , it can be shown that

δGva = habλ̌b, δG(vahab) = −2τbλ
IvI , δGhab = 2τ(aλb),

δGȟab = 2τ(aλb) − 2τaτbv
IλI = 2τ(aλb) + 2τaτbv

cλc

= 2τ(aλ̌b), (2.36)

where we have defined

λ̌a = λa + vcλcτa = ȟabhbcλc, (2.37)

which satisfies vaλ̌a = 0, analogously to the ambient or-
thogonality condition vμλμ = 0. Thus ȟab transforms under
submanifold Galilean boosts in the same manner as hμν

transforms under ambient Galilean boosts.
NC submanifolds admit boost-invariant structures similar

to the ambient structures (2.6) and (2.8). Given that the set of
tangent and normal vectors is boost invariant [see Eq. (2.31)],

13This follows from the statement that vμλμ = 0.
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two of these structures are obtained by contractions of the
corresponding ambient quantities, namely,

h̄ab = uμ
a uν

bh̄μν = ȟab − 2τ(am̌b), v̂a = ua
μv̂μ = va − habm̌b,

(2.38)

where we have defined the submanifold U (1) connection

m̌a = ma − 1
2vIvIτa, (2.39)

which transforms under boosts as δGm̌a = λ̌a, analogous to
the boost transformation of the ambient connection mμ. Given
that in the ambient space we have the identity v̂ν h̄νμ = 2
̃τμ

where 
̃ is defined in (2.8) we require an analog condition of
the form v̂ah̄ab = 2
̌τb for some scalar 
̌. Explicit manipula-
tion shows that

v̂ah̄ab = ua
μv̂μuν

auρ

b h̄νρ = v̂ν h̄νρuρ

b − nI
μhνσ nI

σ v̂μuρ

b h̄νρ

= 2(
̃ − 1/2v̂I v̂I )τb, (2.40)

which leads us to identify


̌ = 
̃ − 1
2 v̂I v̂I = −vam̌a + 1

2 habm̌am̌b, (2.41)

thus taking the same form as its ambient counterpart (2.8) but
now in terms of m̌a.

In summary, we define the induced Newton-Cartan struc-
ture on the submanifold �p+1 to consist of the fields
(τa, ȟab, m̌a) and (va, hab) along with the boost-invariant com-
binations v̂a, h̄ab, and 
̌, satisfying the relations

δa
b = hacȟcb − τbv

a, τahab = 0, vaȟab = 0, (2.42)

as well as

v̂ah̄ab = 2
̌τb. (2.43)

These are related to the ambient Newton-Cartan structures in
the following way:

τa = uμ
a τμ, ȟab = uμ

a uν
bhμν − vIvIτaτb = hab − vIvIτaτb,

(2.44)

m̌a = uμ
a mμ − 1

2vIvIτa = ma − 1
2vIvIτa, va = ua

μvμ,

hab = ua
μub

νhμν, (2.45)

v̂a = va − habm̌b = ua
μv̂μ, h̄ab = ȟab − 2τ(am̌b)

= uμ
a uν

bh̄μν, (2.46)


̌ = −vam̌a + 1
2 habm̌am̌b = 
̃ − 1

2 v̂I v̂I . (2.47)

These structures transform according to

δτa = £ζ τa, δȟab = £ζ ȟab + 2λ̌(aτb),

δm̌a = £ζ m̌a + λ̌a + ∂aσ, (2.48)

δva = £ζv
a + habλ̌b, δhab = £ζ hab, (2.49)

δv̂a = £ζ v̂
a − hab∂bσ, δh̄ab = £ζ h̄ab − 2τ(a∂b)σ,

δ
̌ = £ζ 
̌ − v̂a∂aσ , (2.50)

under submanifold diffeomorphisms ζ a, Galilean boosts λ̌a

(satisfying vaλ̌a = 0), and U (1) gauge transformations σ .

4. The role of the transverse velocity vI

In order to elucidate the role of vI , we consider for con-
creteness a codimension one submanifold � moving with
(constant) linear velocity v

μ
� = (0, 0, 0, v) in the z direction

of a four-dimensional flat ambient Newton-Cartan spacetime,
which was introduced in (2.15) and where i runs only over
spatial directions. Defining � via the embedding equation

F (x, y, z − vt ) = 0, (2.51)

we can write the normal 1-form as

n = NdF = N∂xF + N∂yF + N∂uFdz − v∂uFdt, (2.52)

where we have defined u = z − vt and where N is fixed by the
normalization condition (2.17). This means that

vμnμ = −n0 = vN∂uF, v
μ
�nμ = vnz = vN∂uF, (2.53)

leading us to conclude that vμnμ = v
μ
�nμ. Thus, the normal

projection of the NC velocity is the same as the normal
projection of the linear velocity vector v

μ
� of the submanifold

�.
To illustrate this in the simplest possible setting, we con-

sider an infinitely extended moving flat membrane embedded
in (3 + 1)-dimensional flat NC space, described by

u = z − vt = 0, (2.54)

leading to the normal 1-form

nμ = −vδ0
μ + δ3

μ ⇒ vμnμ = v. (2.55)

Therefore, for a flat brane, where the normal vector is the
same everywhere, we see that the normal projection of the
NC velocity vector is just the magnitude of the linear velocity
of the plane.

5. Covariant derivatives, extrinsic curvature, and external rotation

Since we are dealing with the description of a single
surface, and not of a foliation, covariant differentiation of
submanifold structures only has meaning along tangential
directions to the surface. Analogously to Lorentzian surfaces
(see, e.g., Ref. [53]), we define a covariant derivative along
surface directions that is compatible both with the surface
Newton-Cartan structure, Daτb = 0 = Dahbc, and the ambient
Newton-Cartan structure, Daτμ = 0 = Dahμν , that acts on an
arbitrary mixed tensor T bμ as

DaT bμ = ∂aT bμ + γ b
acT cμ + uρ

a �
μ
ρλT bλ, (2.56)

where we have introduced the surface affine connection ac-
cording to

γ c
ab = −v̂c∂aτb + 1

2 hcd (∂ah̄bd + ∂bh̄ad − ∂d h̄ab), (2.57)

in analogy with the the spacetime affine connection (2.10).
Note in particular that Da does not act on transverse indices.
The relation between γ c

ab and �
μ
ρλ is obtained in Appendix C

and is shown to be

γ c
ab = �c

ab + uc
μ∂auμ

b = uc
μuν

a∇νuμ

b , (2.58)

where the corresponding surface torsion tensor is

2γ c
[ab] = −v̂cτab = −v̂cuμ

a uν
bτμν, (2.59)
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and where the last equality follows from the fact that exterior
derivatives commute with pullbacks.14

It is also convenient to introduce a covariant derivative Da

that acts on all indices, i.e., μ, a, I [53], and whose action
on the normal 1-forms and tangent vectors allows for the
Weingarten decomposition15

DanI
σ = ∂anI

σ − �λ
μσ uμ

a nI
λ − ωa

I
JnJ

σ = −ub
σ Kab

I + 1
2 ub

σ v̂Iτab,

Dauμ

b = Dauμ

b = nμ
I Kab

I − 1
2 nμ

I v̂Iτab, (2.60)

where we have defined the extrinsic curvature to the subman-
ifold according to

Kab
I = nI

μDauμ

b + 1
2 v̂Iτab = nI

μ

(
∂auμ

b + uν
auρ

b �
μ
(νρ)

)
= −uμ

a uν
b∇(

μ
nI

ν

). (2.61)

The extrinsic curvature tensor, when defined in this manner, is
symmetric and invariant under Galilean boosts but transforms
under U (1) gauge transformations according to

δσ Kab
I = 1

2τIa∂bσ + 1
2τIb∂aσ, (2.62)

where we used (2.14). In (2.60) we also introduced the exter-
nal rotation tensor, which can be interpreted as a SO(d − p)
connection, defined as

ωa
I
J = nμ

J DanI
μ, (2.63)

which is antisymmetric in I, J indices and transforms under
U (1) gauge transformations as

δσωa
I
J = − 1

2 (τaJ∂
Iσ + τ I

J∂aσ + τ I
a∂Jσ ). (2.64)

If the submanifold is codimension one, the external rotation
vanishes by definition.

Both the extrinsic curvature tensor and the external rotation
tensor introduced here are direct analogues of their Lorentzian
counterparts [53]. To see that ωa

I
J transforms as a connection

we examine what happens if we perform a local SO(d − p)
rotation of the normal vectors as in (2.18). If we focus on
an infinitesimal rotation MI

J = δI
J + λI

J where λI
J = −λJ

I ,
the extrinsic curvature tensor and external rotation tensor
transform as

δλKab
I = λI

JKab
J , δλωa

I
J = ∂aλ

I
J + λI

Kωa
K

J + λJ
Kωa

I
K .

(2.65)

In addition, under a change of sign of the normal vectors
nμ

I → −nμ
I , the extrinsic curvature changes sign.

6. Integrability conditions

Certain combinations of geometric structures of Lorentzian
submanifolds are related to specific contractions of the Rie-
mann tensor of the ambient space. These are known as inte-
grability conditions. In this section we derive the analogous
conditions in the context of NC submanifolds, which are

14Alternatively, this conclusion can be reached via the relation
∂auμ

b = ∂a∂bX μ = ∂b∂aX μ = ∂buμ
a .

15The action of Da on some vector T I takes the form DaT I =
DaT I − ωa

I
J T J .

known as the Codazzi-Mainardi, Gauss-Codazzi, and Ricci-
Voss equations. In order to do so, we note that in the presence
of torsion, the Ricci identity takes the form

[∇μ,∇ν]Xσ = Rμνσ
ρXρ − 2�

ρ
[μν]∇ρXσ , (2.66)

where the Riemann tensor Rμνσ
ρ of the ambient space is given

by

Rμνσ
ρ = −∂μ�ρ

νσ + ∂ν�
ρ
μσ − �

ρ
μλ�

λ
νσ + �

ρ
νλ�

λ
μσ . (2.67)

The integrability conditions to be derived below take a nice
form if we work with an object that is closely related to the
extrinsic curvature, namely,

K̃ab
I = nI

μDauμ

b = Kab
I − 1

2 v̂Iτab, (2.68)

which has a nonvanishing antisymmetric part 2K̃[ab]
J =

−v̂Jτab.
We begin by deriving the Codazzi-Mainardi equation (see,

e.g., Refs. [48,53]) by considering the quantity DaK̃bc
I −

DbK̃ac
I . We find

DaK̃bc
I = K̃ab

I nρ
I

(∇ρuμ
c

)
nI

μ − ωb
I
J K̃ac

J − uμ
c uρ

a uσ
b ∇ρ∇σ nI

μ,

(2.69)

where we used (2.63). From here, using (2.66) and the covari-
ant derivative Da introduced in (2.60) we derive the Codazzi-
Mainardi equation

DaK̃bc
I − DbK̃ac

I = −Rabc
I + v̂dτabK̃dc

I . (2.70)

In order to derive the Gauss-Codazzi equation, we let
ωc be any submanifold 1-form that is the pullback of ωμ

whose normal components vanish, i.e., ωμ = uc
μωc. The Ricci

identity for the submanifold reads

[Da, Db]ωc = Rabc
dωd + v̂dτabDdωc, (2.71)

where Rabc
d is the Riemann tensor of the submanifold and

takes the same form as (2.67) but with the connection �ρ
νσ

replaced by γ c
ab of (2.57). Using ua

μDbuμ
c = 0 [which follows

from (2.58)] and nμ
I Dbud

μ = hdeK̃beI , explicit manipulation
leads to

Rabc
dωd + v̂dτabDdωc = hed K̃ac

I K̃beIωd − hed K̃bc
I K̃aeIωd

+ Rabc
dωd + τab

(−v̂I nρ
I uμ

c ∇ρωμ

+ v̂νuμ
c ∇νωμ

)
, (2.72)

where we used (2.66). In this expression, the terms propor-
tional to τab on both sides cancel and since it must be true for
any one form ωc, the Gauss-Codazzi equation becomes

Rabc
d = K̃ac

I K̃b
d

I − K̃bc
I K̃a

d
I + Rabc

d , (2.73)

where K̃b
d

I = hdcK̃bcI .
Although we will not use it in this paper, we will briefly

discuss the Ricci–Voss equation for completeness. This equa-
tion becomes useful for surfaces of codimension higher than
one, where we can define the outer curvature in terms of the
external rotation tensor (2.63) as

�I
Jab = 2∂[aωb]

I
J − 2ω[a|I Kω|b]

K
J . (2.74)
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In terms of this tensor, the Ricci-Voss equation for Newton-
Cartan geometry can be shown to read

�I
Jab = RabJ

I − 2hcd K̃[a|cI K̃|b]dJ . (2.75)

This completes the description of the geometric structures of
NC submanifolds.

III. VARIATIONS AND DYNAMICS
OF NEWTON-CARTAN SUBMANIFOLDS

In the previous section we defined timelike NC subman-
ifolds and their characteristic geometric properties. In this
section, closely following the Lorentzian case [53], we de-
velop the variational calculus for NC submanifolds for the
geometric structures of interest. These results are necessary
to later introduce geometric action functionals capable of
describing different types of soft matter systems, including the
case of bending energies for lipid vesicles.

A. Variations of Newton-Cartan objects on the submanifold

In the following, we consider two types of variations,
namely, embedding map variations, which are displacements
of the submanifold, and Lagrangian variations which con-
sist of the class of diffeomorphisms that displace the am-
bient space but keep the embedding map fixed (see, e.g.,
Refs. [49,50] and also Refs. [46,53]). As in the Lorentzian
case [53], the sum of these two types of variations yield
the transformation properties of the submanifold structures
under full ambient space diffeomorphisms. When considering
action functionals that give dynamics to submanifolds, they
are equivalent, up to normal rotations.16

1. Embedding map variations

Before specializing to any of the two types of variations,
it is useful to consider general variations of the normal vec-
tors. In particular, we decompose the variation of the normal
vectors as

δnI
μ = ua

μuν
aδnI

ν + nJ
μnν

JδnI
ν

= −ua
μnI

νδuν
a + 1

2 nμJ
(
nνJδnI

ν + nνIδnJ
ν

)
+ λI

JnJ
μ, (3.1)

where

λI
J = 1

2

(
nν

JδnI
ν − nνIδnJν

)
, (3.2)

is a local so(d − p) transformation of the normal vectors.
By varying the second relation in (2.17), we find the relation
nνJδnI

ν + nνIδnJ
ν = −nI

μnJ
νδhμν and hence

δnI
μ = −ua

μnI
νδuν

a − 1
2 nμJnI

νnJ
ρδhνρ + λI

JnJ
μ. (3.3)

By varying the completeness relation (2.19) one may express
variations of δhνρ in terms of variations of τν and hνρ such
that δhμν = 2v(μhν)λδτλ − hμρhνσ δhρσ . This leads to

δnI
μ = −v(I nJ )νnμJδτν + 1

2 nρJnμJnνIδhρν − nI
νua

μδuν
a

+ λI
JnJ

μ, (3.4)

16In the context of continuum mechanics, these two viewpoints are
known as the Lagrangian and Eulerian descriptions.

which describes arbitrary infinitesimal variations of the nor-
mal vectors.

We now specialise to infinitesimal variations of the embed-
ding map which we denote by

δX μ(σ ) = −ξμ(σ ), (3.5)

where ξμ(σ ) is understood as being an infinitesimal first order
variation. Under this variation, the ambient tensor structures
evaluated at the surface [i.e., τμ(X ), h̄μν (X )] vary as

δX τμ(X ) = −ξν∂ντμ, δX h̄μν (X ) = −ξρ∂ρ h̄μν, (3.6)

which follows from δX τμ(X ) = τμ(X − ξ ) − τμ(X ) =
−ξν∂ντμ + O(ξ 2). In turn, the tangent vectors transform
as

δX uμ
a = ∂aδX μ = −∂aξ

μ, (3.7)

while variations of the induced metric structures take the form

δX τa = −uμ
a £ξ τμ, δX h̄ab = −uμ

a uν
b£ξ h̄μν. (3.8)

In other words, for these structures, performing embedding
map variations is equivalent to performing a diffeomorphism
in the space of embedding maps that keep uμ

a fixed, i.e., they
are diffeomorphisms that are independent of σ a. Using (3.4),
we can write the variation of the normal vector as

δX nI
μ = −nμJn(I

ρ nJ )ν∇νξ
ρ − nμJ v̂

(I nJ )ντνρξ
ρ

+ nI
ρ∂μξρ + λ̃IJnμJ , (3.9)

where the third term ensures that the orthogonality relation
uμ

a nI
μ = 0 is obeyed after the variation while the last term is a

local transverse rotation of the form λ̃IJ = λIJ + n[J
ρ nI]ν∂νξ

ρ .
For the purposes of this work, as mentioned in Sec. II A 3,

we will be focusing on ambient NC geometries with absolute
time, i.e., zero torsion. This extra assumption greatly sim-
plifies many expressions after variation. We stress, however,
that it is in general not possible to assume zero torsion before
variation, as variation and setting torsion to zero do not always
commute.17

However, specifically in the case of embedding map or
Lagrangian variations, the variation of τμν is guaranteed to
vanish when the torsion itself vanishes. This means that
we can set torsion to zero in the Lagrangian if all we are
interested in are the equations of motion for X μ. For example,
δX τμν (X ) = −ξρ∂ρτμν , which vanishes when dτ = 0. Under
the assumption of vanishing torsion, variations of the extrinsic
curvature (2.61) take the form

δX Kab
I = (

δX nI
μ

)
∂auμ

b − nI
μ∂a∂bξ

μ + (
δX nI

μ

)
uρ

a �
μ

ρλuλ
b

− nI
μ(∂aξ

ρ )�μ
ρλuλ

b − nI
μuρ

a ξκ∂κ

(
�

μ
ρλ

)
uλ

b

− nI
μuρ

a �
μ

ρλ∂bξ
λ

= −nI
μDaDbξ

μ+ξρRρab
I+n[I

ρ nJ]ν�ρ
νσ ξσ KabJ , (3.10)

17For instance, when considering equations of motion for surfaces
via extremization of a Lagrangian as in the next section, a term of
the form X μντμν in the Lagrangian can give a nonzero contribution
to the equation of motion of τ as neither X μν nor δτμν need to vanish
on ambient spaces with zero torsion.
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where we have used (3.9) as well as δX �
μ

ρλ(X ) = −ξκ∂κ�
μ

ρλ.
The last term in (3.10) denotes a local so(d − p) transfor-
mation, and we have explicitly ignored further rotations by
setting λIJ = 0 in (3.4). It is also straightforward to consider
variations of the external rotation tensor (2.63), but since we
do not explicitly consider this structure in the dynamics of
submanifolds, we will not dwell on this.

2. Lagrangian variations

In the previous section we have described how to perform
variations of the embedding map. In this section we focus on
a particular class of diffeomorphisms xμ → xμ − ξμ that act
only on fields with support in the entire ambient spacetime,
that is, they only act on the NC triplet (τμ(x), hμν (x), mμ(x)).
In general, diffeomorphisms also displace the embedding map
according to δξ X μ = −ξμ where δξ denotes an infinitesimal
diffeomorphism variation. However, here we consider the
case of Lagrangian variations for which δξ X μ = 0 (see, e.g.,
Refs. [46,49,50,53]). In turn, this implies that the tangent
vectors do not vary:18

δξ uμ
a = 0. (3.11)

In the remainder of this section, we will explicitly work
out Lagrangian variations of submanifold structures and com-
pare them with embedding map variations, thereby extracting
the transformation properties under full ambient diffeomor-
phisms. In particular, using (3.11) and the fact that δξ τμ =
£ξ τμ and δξ h̄μν = £ξ h̄μν we find

δξ τa = uμ
a £ξ τμ, δξ h̄ab = uμ

a uν
b£ξ h̄μν. (3.12)

Comparing this with (3.8), it follows that for pullbacks of
Newton-Cartan objects we have the relations

(δξ + δX )τa = (δξ + δX )h̄ab = 0, (3.13)

and thus these objects transform as scalars under ambient
diffeomorphisms. For later purposes, we rewrite these results
as

δξ τa = τρDaξ
ρ, (3.14)

δξ h̄ab = h̄ρbDaξ
ρ + h̄ρaDbξ

ρ − 2τaτbξ
σ ∂σ 
̃

− 2ξσ τσ τ(a∂b)
̃ − 2τ(aK̄b)σ ξσ , (3.15)

18If we were working with foliations of surfaces instead of a
single surface, we could define a set of vector fields uμ

a (x) where
x is any point in the ambient spacetime. We could then require
that the Lie brackets between these vector fields vanish so that
their integral curves can be thought of as locally describing a set
of curvilinear coordinates for the submanifold. In other words,
the restriction of these vector fields to the submanifold obeys the
condition that the uμ

a are tangent vectors, i.e., uμ
a (x)|x=X = ∂aX μ.

When we perform ambient diffeomorphisms within the context of
a foliation, we must ensure that this condition is respected. This
means that [ξρ (x)∂ρuμ

a (x) − uρ
a (x)∂ρξ

μ(x)]|x=X = £ξ uμ
a = δξ uμ

a = 0.
Lagrangian diffeomorphisms are thus generated by ξμ(x) such that
(3.11) is obeyed. See, e.g., Ref. [52].

where we have used the relation (valid in the absence of
torsion)

∇σ h̄μν = −2τμτν∂σ 
̃ − 2τσ τ(μ∂ν)
̃ − 2τ(μK̄ν)σ , (3.16)

as well as v̂λh̄λμ = 2τμ
̃ and where K̄μν = −£v̂ h̄μν/2.
Considering the normal 1-forms, using (3.4) we find that

δξ nI
μ = −v(I nJ )νnμJτρ∇νξ

ρ + nλJnμJnνI hρ(λ∇ν)ξ
ρ

= nμJn(I
ρ nJ )ν∇νξ

ρ, (3.17)

where we have used (3.16) as well as the identity nλ
I hρλ =

hρI = τρvI + nρI and assumed vanishing torsion. Comparing
this to the embedding map variation (3.9), we find that

(δξ + δX )nI
μ = λ̃I

JnJ
μ + nI

ρ∂μξρ, (3.18)

where λ̃IJ = −n[I
ρ nJ]ν∂νξ

ρ is a local so(d − p) transformation
and we have set λIJ = 0 in (3.4). This implies that, up to a
SO(d − p) rotation, the normal 1-forms nI

μ transform as 1-
forms under ambient diffeomorphisms. This is the expected
result (and analogous to the Lorentzian case [53]) as the 1-
forms carry a spacetime index μ. Repeating this procedure
for the extrinsic curvature, we find that

δξ Kab
I = Kab

μδξ nI
μ + nI

μuρ
a uλ

bδξ�
μ

ρλ. (3.19)

Since �
μ
ρλ is an affine connection, it transforms in the follow-

ing way under diffeomorphisms

δξ�
μ
λν = ξρ∂ρ�

μ
λν− �

ρ
λν∂ρξ

μ+ �μ
ρν∂λξ

ρ + �
μ
λρ∂νξ

ρ + ∂λ∂νξ
μ

= ∇λ∇νξ
μ − ξρRρλν

μ, (3.20)

where in the second equality we assumed vanishing torsion.
This implies that

δξ Kab
I = nI

μDaDbξ
μ − 1

2 nI
μKab

σ∇σ ξμ + 1
2 KabJnJ

ρnIν∇νξ
ρ

− nI
μuλ

auν
bξ

ρRρλν
μ

= nI
μDaDbξ

μ − ξρRρab
I − KabJn[I

ρ nJ]ν∇νξ
ρ. (3.21)

Comparing this to (3.10), we obtain

(δX + δξ )Kab
I = λ̃IJKabJ , (3.22)

which, as in the Lorentzian case [53], states that the extrinsic
curvature transforms as a scalar under ambient diffeomor-
phisms up to a transverse rotation.

B. Action principle and equations of motion

Equipped with the variational technology of the previous
section, we consider the dynamics of submanifolds that arise
via the extremization of an action. In the context of soft
matter systems this action can be interpreted as a free energy
functional that depends on geometrical degrees of freedom.
Examples of such systems are fluid membranes and lipid visi-
cles, described by Canham-Helfrich-type free energies. The
equations of motion that arise from extremization naturally
split into tangential energy and mass-momentum conservation
equations in addition to the shape equation (which describes
the mechanical balance of forces in the normal directions), as
well as constraints (Ward identities) arising from SO(d − p)
rotational invariance and boundary conditions.
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1. Equations of motion and rotational invariance

Following Ref. [53], we consider an action S on a (p + 1)-
dimensional NC submanifold that is a functional of the metric
data τa, h̄ab (this set contains all the fields τa, hab, ma and is
an equivalent choice of NC objects) as well as the extrinsic
curvature, that is S = S[τa, h̄ab, Kab

I ]. The variation of this
action takes the general form

δS =
∫

�

d p+1σe
(
T aδτa + 1

2T
abδh̄ab + Dab

IδKab
I
)
. (3.23)

Here e is the integration measure given by e =√−det (−τaτb + hab) and invariant under local Galilean
boosts and U (1) gauge transformations. The response T a is
the energy current,19 while the response T ab is the Cauchy
stress-mass tensor [59]. Finally, Dab

I is the bending moment,
encoding elastic responses, and typically takes the form of
an elasticity tensor contracted with the extrinsic curvature
(strain) [46,53]. Both T ab and Dab

I are symmetric as they

inherit the symmetry properties of h̄ab and Kab
I . The temporal

projection of the Cauchy stress-mass tensor, τbT ab, is the
mass current.

We require the action (3.23) to be invariant under U (1)
gauge transformations for which δσ h̄ab = −2τ(a∂b)σ and in-
variant under SO(d − p) rotations for which the extrinsic
curvature transforms according to (2.65). Ignoring boundary
terms, to be dealt with in Sec. III B 2, this leads to mass
conservation and a constraint on the bending moment, respec-
tively:

Db
(
T abτa

) = 0,Dab[I Kab
J] = 0. (3.24)

In particular, the latter condition takes exactly the same form
as in the Lorentzian context [46,53] and can also be obtained
by performing a Lagrangian variation of (3.23) as we shall see.
In order to obtain the equations of motion arising from (3.23),
we can perform a Lagrangian variation as originally consid-
ered in Refs. [49,50] and developed further in Ref. [53].20

Under a Lagrangian variation, using Sec. III A 2, the action
(3.23) varies according to

δξ S =
∫

�

d p+1σ eξρ
[ − τρDaT a − Da(h̄ρbT ab) − T ab{τaτb∂ρ
̃ + τρτa∂b
̃ + τaK̄bρ} + DaDb

(
Dab

I n
I
ρ

) − Dab
I Rρab

I
]

+
∫

�

d p+1σ eDa
[
T aτρξ

ρ + T abh̄ρbξ
ρ + Dab

I n
I
ρDbξ

ρ − Db
(
Dab

I n
I
ρ

)
ξρ

] +
∫

�

d p+1σ eDab
I KabJn[I

ρ nJ]σ∇σ ξρ. (3.25)

In this equation, the second integral gives rise to a boundary
term which we consider in Sec. (III B 2). The last integral van-
ishes due to the requirement of rotational invariance (3.24).
However, even if (3.24) was not imposed, given that the last
term involves a normal derivative of ξμ, it cannot be inte-
grated out and hence must vanish independently giving again
rise to the second condition in (3.24), as in the Lorentzian
case [53].

The first integral in (3.25) must vanish for an arbitrary
vector field ξμ and hence it gives rise to the equation of motion

−τρDaT a − h̄ρbDaT ab − T abh̄ρσ Kab
σ + 2τρT abτa∂b
̃

+τρK̄abT ab + DaDb
(
Dab

I n
I
ρ

) − Dab
I Rρab

I = 0, (3.26)

where we have used (3.16). In Appendix A we provide the
relation (A28) between K̄ab, which is the pullback of K̄μν ,
and K̄�

ab = −£�
v̂ h̄ab/2 which is the actual surface-equivalent

of K̄μν . Here £�
v̂ denotes the surface Lie derivative along

v̂a. Using this relation, as well as (2.41), which relates the
Newtonian potential on the submanifold 
̌ to its ambient
spacetime counterpart 
̃, the equation of motion (3.26) can

19As mentioned throughout this paper, we have focused on the case
of vanishing torsion τμν = 0, meaning that τa = ∂aT , where T is
some scalar. Therefore, varying τa is actually varying T in (3.23),
which in turn implies that we are not able to extract T a from the
action but only its divergence. This is sufficient for the purposes of
this work.

20Alternatively, we may perform embedding map variations.

be written as

τρDaT a + h̄ρbDaT ab + T abh̄ρσ Kab
σ − 2τρT abτa∂b
̌

−τρK̄�
abT ab − τρ v̂

I Kab
IT ab − DaDb

(
Dab

I n
I
ρ

)
+Dab

I Rρab
I = 0. (3.27)

The equation of motion (3.27) can be projected tangentially
or orthogonally to �, yielding two independent equations.
The tangential projection, known as the intrinsic equation of
motion, is given by

τc
[
Da(T a − 2
̌T abτb) − T abK̄�

ab

] + h̄bcDaT ab

+ 2Da
(
Kbc

IDab
I
) − Dab

I DcKab
I = 0, (3.28)

where we have used the Codazzi-Mainardi equation (2.70),
assuming vanishing torsion, in order to eliminate contrac-
tions with the Riemann tensor. Equation (3.28) can be fur-
ther projected along hcd and v̂c, which again yields two
independent equations. These projections can be simplified
by defining T ad

m = T ad + 2Db(a
I hd )cKbc

I and T a
m = T a −

2v̂cKbc
IDab

I . In particular, the spatial projection using hcd

gives rise to mass and momentum conservation

DaT ad
m + 2Da

(
Db[a

I h
d]cKbc

I
) − hcdDab

I DcKab
I = 0, (3.29)

where we have used invariance under U (1) gauge transfor-
mations [the first condition in (3.24)]. In turn, the projection
along v̂c leads to energy conservation

DaT a
m − T ab

m K̄�
ab − 2T ab

m τb∂a
̌ + Dab
I v̂

cDcKab
I = 0, (3.30)

where we have used the identity Dav̂
c = −hcd (K̄�

ad + τa∂d
̌)
as well as the first condition in (3.24).
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The intrinsic equations (3.29) and (3.30) result from dif-
feomorphism invariance along the tangential directions ξ a =
ua

μξμ or, equivalently, from tangential reparametrization in-
variance δX μ = uμ

a δX a. Since the action only depends on
the NC objects τa, h̄ab, and Kab

I , the intrinsic equations are
nothing but Bianchi identities that result from the diffeo-
morphism invariance of the action and hence are identically
satisfied.

Finally, the transverse projection of (3.27) is usually re-
ferred to as the shape equation, and it is given by

T abKab
I = DaDbDabI − Dab

JKac
I Kbd

Jhcd − Dab
JRIab

J ,

(3.31)

where we have used the covariant derivative Da introduced
in (2.60). Equation (3.31) is valid in the absence of torsion
and takes the exact same form as its Lorentzian counterpart
[46,53], and it is a nontrivial dynamical equation that deter-
mines the set of embedding functions nI

μX μ. This equation,
which is one of the main results of the paper, appears exten-
sively in the context of lipid vesicles (see, e.g., Ref. [9]) but
without time components.

2. Boundary conditions

In the previous section we considered the equations of
motion arising from (3.23) on �. In this section we consider
the possibility of such submanifolds having a boundary. In
such cases, the second integral in (3.25) is nontrivial and gives
rise to a nontrivial boundary term that must vanish, namely,∫

∂�

d py e∂ηa
[(
T aτρ + T abh̄ρb − DbDab

ρ − Dab
I DbnI

ρ

)
ξρ

+ Dab
I Dbξ

I
] = 0, (3.32)

where ηa is a normal covector to the boundary while e∂ is
the integration measure on ∂� (parameterized by y). With the
help of the boundary completeness relation �c

b = δc
b − ηbη

c

where ηc = hcdηd , the boundary term can be rewritten as∫
∂�

d py e∂ηaηbDab
Iη

c∂cξ
I

+
∫

∂�

d py e∂ηa
{[
T aτρ + T abh̄ρb − Db

(
Dab

I n
I
ρ

)
− Dab

I DbnI
ρ

]
ξρ + �c

bDab
I∂cξ

I
} = 0. (3.33)

As in the case of the bulk equations of motion on �,
normal derivatives to the boundary of the form ηc∂cξ

I cannot
be integrated out. Hence the above equation splits into two
independent conditions:

ηaηbDab
I

∣∣
∂�

= 0, (3.34){
ηa

[
T aτρ + T abh̄ρb − Db

(
Dab

I n
I
ρ

) − Dab
I DbnI

ρ

]
−nI

ρ�
d
c Dd

(
ηaDab

I�
c
b

)}∣∣
∂�

= 0. (3.35)

The first boundary condition in (3.34) is a consequence of
SO(d − p) invariance of the action and can also be derived by
keeping track of boundary terms when using (2.65) in (3.23).
The second of these conditions can be projected tangentially

and transversely to �, yielding, respectively,

ηa
[
T aτc + T abh̄bc + 2Dab

I Kbc
I
]∣∣
∂�

= 0,[
Dab

J�
c
bDcηa − 2Db(ηaDab

J )
]∣∣
∂�

= 0, (3.36)

where we have used the first boundary condition (3.34) as
well as ηaτbT ab|∂� = 0, which is a consequence of the U (1)
invariance of (3.23). These boundary conditions can be further
projected along hcd and v̂c, leading to[

ηaT ad
m + 2ηaDb[a

I h
d]cKbc

I
]∣∣

∂�
= 0, ηaT a

m

∣∣
∂�

= 0, (3.37)

where T ad
m and T a

m were introduced in (3.29) and (3.30),
respectively. This completes the analysis of the equations of
motion and its boundary conditions. In the specific examples
below, however, we will not consider the presence of bound-
aries.

IV. APPLICATIONS TO SOFT MATTER SYSTEMS

In this section we apply the action formalism in order to
describe equilibrium fluid membranes and lipid vesicles as
well as their fluctuations. These systems are such that their
deformations, at mesoscopic scales, are described by purely
geometric degrees of freedom (see, e.g., Ref. [9]) and few
material or transport coefficients, such as the bending modulus
κ . The development of Newton-Cartan geometry for surfaces
in the previous sections brings several advantages to the
description of these systems. First, it introduces absolute time
and therefore fluctuations of the system can include temporal
dynamics in a covariant form. Second, the symmetries of the
problem are manifested via the geometry of the submanifold
or ambient spacetime.21

More importantly, however, is perhaps the fact that NC
geometry allows to properly introduce thermal field theory
of equilibrium fluid membranes. Material coefficients such as
κ are functions of the temperature T (see, e.g., Ref. [19])
but also of the mass density μ. However, the fact that T
and μ can be given a geometric interpretation, via the hy-
drostatic partition function approach, in which case they are
associated with the existence of a background isometry (or
timelike Killing vector field), is disregarded in all models of
lipid vesicles. However this approach is required in order to
understand the correct equations that describe fluctuations.
We begin with a simple fluid membrane with only surface
tension in order to elucidate these fundamental aspects and
end with a generalization of the Canham-Helfrich model.

A. Fluid membranes

In this section we consider equilibrium fluid membranes,
by which we mean stationary fluid configurations that live

21This point is reminiscent of the strategy adopted by Son et al.
in Refs. [41,42,60] where the authors take advantage of the fact
that Newton-Cartan geometry is the natural geometric arena for the
effective description of the fractional quantum Hall effect. In this
way, by coupling a suitable field theory to Newton-Cartan geometry,
information about correlation functions involving mass, energy and
momentum currents can be extracted via geometric considerations.
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on some arbitrary surface.22 As mentioned above, equilibrium
requires the existence of an ambient timelike Killing vector
field kμ such that the fluid configuration is time independent.
In general, since we wish to describe fluids that are rotating
or boosted along some directions, equilibrium requires the
existence of a set of symmetry parameters K = (kμ, λK

μ,�K )
such that the transformation on the NC triplet [cf. Eqs. (2.4)
and (2.5)] vanishes,

£kτμ = 0, £kh̄μν = 2τ(μ£kmν) + 2τ(μ∂ν)�
K ,

£kmμ + λK
μ + ∂μ�K = 0, (4.1)

and whose pullback ka = ua
μkμ is also a submanifold Killing

vector field satisfying the relations

£kτa = 0, £kh̄ab = 2τ(a£km̌b) + 2τ(a∂b)�
K ,

£km̌a + λ̌K
a + ∂a�

K = 0. (4.2)

These relations make sure that the space in which the fluid
lives does not depend on time.

The simplest example of kμ in flat NC space (2.15) is the
case of a static Killing vector where kμ = δ

μ
t .23 Since the

fluid is in equilibrium, it is straightforward to construct an
Euclidean free energy24 from the action S by Wick rotation
t → it , compactification of t with period 1/T0 and integration
over the time circle, where T0 is the constant global temper-
ature. This means that the Euclidean free energy F is given
by

F[τa, h̄ab, Kab
I ] = T0St→it . (4.3)

Given the transformations (4.1) and (4.2), the free en-
ergy can depend on two scalars, the local temperature T
and chemical potential μ (associated with particle number
conservation), defined in terms of the symmetry parameters
as

T = T0

kaτa
,

μ

T
= �K

T0
+ 1

2T
h̄abuaub, ub = kb

kaτa
, (4.4)

where uμ is the fluid velocity.25 We will now look at different
cases.

22We follow previous constructions of relativistic [46,61–63] and
nonrelativistic fluids [33,34].

23Specific surfaces where the fluid lives, besides a timelike isom-
etry, may have additional translational or rotational isometries. In
such situations the Killing vector kμ can have components along
those spatial directions. The chemical potential μ introduced in (4.4)
captures the spatial norm of the Killing vector, which is associated
with the presence of linear or angular momenta.

24This is also referred to as hydrostatic partition function −i lnZ =
T0F [61,62].

25The free energy considered here only depends on geometric
quantities such as T and μ, where the Killing vector Kμ and the
gauge parameter �K solve (4.2). It is possible to promote the free
energy to an effective action that does not require time independence
by treating S as also being dependent on a arbitrary vector βμ and
gauge parameter � (see Ref. [64]).

1. Surface tension

The simplest example of a fluid membrane is one in which
the action depends only on the surface tension χ (T, μ). Such
an action describes, for instance, soap films. Thus the free
energy (4.3) takes the form

F =
∫

�s

d pσesχ (T, μ), (4.5)

where �s and es denote the spatial part of � and the volume
form e, respectively, due to integration over the time direction.
We can now use (3.23) to extract the currents at fixed symme-
try parameters. It is useful to explicitly evaluate the variations

δT = −Tuaδτa, δμ = �K

T0
δT + 1

2
uaubδh̄ab + ū2 δT

T
, (4.6)

where we have defined ū2 = h̄abuaub. This allows us to derive
the variation of the surface tension as

δχ=sδT + nδμ = −
(

T s + nμ + n

2
ū2

)
uaδτa + n

2
uaubh̄ab,

(4.7)

where we have defined the surface entropy density and surface
particle number density (mass density) as

s =
(

∂χ

∂T

)
μ

, n =
(

∂χ

∂μ

)
T

. (4.8)

From (4.7) we also directly extract the Gibbs-Duhem relation
dχ = sdT + ndμ. Using (4.7) we also determine the currents

T a = −χ v̂a −
(
ε + χ + n

2
ū2

)
ua, T ab = χhab + nuaub,

(4.9)

where we have defined the internal energy ε via the Eu-
ler relation ε + χ = T s + nμ. This defines the constitutive
relations of a Galilean fluid living on a submanifold in an
ambient NC spacetime. Using the stress-mass tensor in (4.9),
the nontrivial shape equation (3.31) in the absence of bending
moment becomes

T abKI
ab = 0 ⇒ χKI + nuaubKI

ab = 0. (4.10)

Physically relevant fluid membranes are codimension one
and so we can omit the transverse index I . The shape equation
(4.10) expresses the balance of forces between the surface ten-
sion χK (normal stress) and the normal acceleration nuaubKab

of the fluid.26 If we would consider a surface tension with no
dependence on the temperature and chemical potential, then
n = 0 and the shape equation reduces to the equation of a min-
imal surface. To complete the thermodynamic interpretation
of (4.5), we note that varying the free energy with respect to
the global temperature T0 gives rise to the global entropy

S = ∂F
∂T0

=
∫

�s

d pσes
s

kaτa
=

∫
�s

d pσes suata, (4.11)

26Using the definition of extrinsic curvature (2.61), we can rewrite
uaubKI

ab = nI
μuν∇νuμ. Hence the second term in (4.10) is in fact the

normal component of the acceleration of the fluid uν∇νuμ where
uμ = uμ

a ua. If the fluid is rotating along the surface, this term gives
rise to centrifugal acceleration.
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where we have defined the timelike vector ta = τa/(kbτb), and
where sua is the entropy current.

2. Surface fluctuations: Elastic waves

The shape equation (4.10) describes equilibrium config-
urations of fluid membranes in the absence of any bending
moment. We consider a fluid at rest in the simplest scenario
of a surface with two spatial dimensions embedded in a
NC spacetime with 3 spatial dimensions such that τa = δt

a
where a = t, 1, 2. The fluid thus has a velocity ua = (1, 0, 0).
Such a trivial time embedding, τa = δt

a, is typically the most
physically relevant setting for soft matter applications. In this
context, we have that uaubKab = 0 since Ktb = 0 trivially.
Thus, the second term in (4.10) does not contribute in equi-
librium, and it is acceptable to simply ignore the fact that
the surface tension depends on the temperature and chemical
potential. However, if one is interested in fluctuations away
from equilibrium, the second term in (4.10) cannot be ignored.
Here we consider the simplest case where the surface is flat
and hence also trivially embedded in space such that

hab = δi
aδ

i
b, ma = 0, nμ = δ3

μ. (4.12)

This is an equilibrium configuration that trivially solves (4.10)
since Kab = 0.

We now consider a small fluctuation of the embedding map
along the normal direction X 3 = X ⊥. Using (3.10) we find

δXT abKab + T abδX Kab = (χhab + nuaub)∂a∂bξ
⊥ = 0,

(4.13)

where we have used that Kab = 0 to eliminate the first term
and converted Da → ∂a as we are dealing with a flat surface
in a flat ambient space. Equation (4.13) is a wave equa-
tion, and considering wavelike solutions of the form ξ⊥ ∼
e−iωt+i(k1σ1+k2σ2 ) one finds the linear dispersion relation

ω = ±
√−χ

n
k, (4.14)

where ω is the frequency, k1, k2 are wave numbers, and k2 =
k2

1 + k2
2 .27 This is the classical answer for the oscillations of

uniform elastic sheets (see, e.g., Ref. [65]).
This result shows the importance of considering NC ge-

ometry in the theory of fluid membranes, since omitting the
dependence of the surface tension on the temperature and
chemical potential would not have allowed for the derivation
of (4.14). We note that the result (4.14) is valid for any
type of elastic membrane with mass density and does not
require any “flow” on the membrane, in particular the initial
equilibrium configuration was static ua = (1, 0, 0).28 In a
future publication, we will consider a more general analysis
of fluctuations of fluid membranes which will also include the
Canham-Helfrich model [54].

27Note that in order to match conventions with the classical litera-
ture one should redefine χ → −χ .

28If one was describing an elastic material, the surface tension
would also be dependent on the Goldstone modes of broken trans-
lations and hence on intrinsic elastic moduli.

3. Droplets

Here we briefly consider the case of a droplet (or soap
bubble) in which the fluid membrane encloses some volume
with uniform internal pressure Pint separating it from an
exterior medium with uniform external pressure Pext. In order
to describe these situations we augment the action with the
bulk pieces

Sbulk =
∫

int(�)
dd+1x ebPint +

∫
ext(�)

dd+1x ebPext, (4.15)

where eb is the bulk measure and int(�) is the interior of the
closed surface �,29 whereas ext(�) is the exterior region of
the bulk outside the surface. The variation of the density eb

with respect to a bulk (or ambient spacetime) diffeomorphism
reads

δξ eb = ∂μ(ebξ
μ), (4.16)

which, using Stokes theorem, implies that the variation takes
the form

δξ Sbulk = −�p
∫

�

ddσ nμξμ, (4.17)

where �p = Pext − Pint is the constant pressure difference
across the surface �.30 In a biophysical context, where the
pressure difference is attributable to two different chemical
solutions separated by a semipermeable membrane, this pres-
sure is the osmotic pressure [66].

From (4.17), we deduce that Sbulk does not contribute to the
intrinsic equations of motion, while it adds the constant term
−�p to the shape equation (4.10) such that

T abKab = χK + nuaubKab = −�p. (4.18)

This is a generalization of the Young-Laplace equation, which
includes the possibility of the fluid having nontrivial acceler-
ation, and was first derived in Ref. [45] in the context of null
reduction.

B. The Canham-Helfrich model revisited

In this section we consider a more elaborate case of fluid
membranes, namely, that of the Canham-Helfrich model [1,2].
This model describes equilibrium configurations of biophysi-
cal membranes (see, e.g., Ref. [6]) comprised of a phospolipid
bilayer [67], and captures several shapes of biophysical in-
terest [6], namely, the sphere (corresponding to spherical
vesicles such as liposomes), the torus (toroidal vesicles) and
the biconcave discoid (the red blood cell or erythrocyte). This
model includes, besides the presence of a surface tension χ ,
also the bending modulus κ that incorporates the bending
energy of the membrane. We show how to describe this
model within Newton-Cartan geometry and generalize it by
allowing the material parameters to be functions of T, μ. We
also review the family of classical lipid vesicles (spherical,

29By a closed surface we mean a NC submanifold whose constant
time slices are closed.

30In order to describe gases or fluids in the interior or exterior, one
should consider the dependence of internal or external pressures on
bulk temperature and chemical potential as in Ref. [45].
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toroidal, discoid) within this framework. We leave a more
detailed analysis of this model and its generalizations to a
future publication [54].

1. Generalized Canham-Helfrich model

The Canham-Helfrich model contains quadratic terms in
the extrinsic curvature and a set of material coefficients. It
describes lipid vesicles in thermal equilibrium. As in the
previous section, a proper description of such systems requires
taking into account the dependence of the material coefficients
on the temperature and chemical potential. As a starting point
we take the more general free energy

FCH =
∫

�s

d pσes[a0(T, μ) + a1(T, μ)K + a2(T, μ)K2

+ a3(T, μ)K · K], (4.19)

where {a0, a1, a2, a3} is a set of material coefficients char-
acterizing the phenomenological specifics of the biophysical
system under scrutiny. In the expression above, we have
defined K · K = hachbcKabKcd .

It is well known that the last term in (4.19) can usually
be ignored due to the Gauss-Codazzi equation (2.73) in flat
ambient space, as it can be related to the Gaussian curvature of
the membrane and hence integrated out for two-dimensional
surfaces (see Appendix D for details). However, this is pos-
sible only if a3 is treated as a constant. Since a proper
geometric and thermodynamic treatment requires promoting
a3 to a nontrivial function of T, μ this implies that new
nontrivial contributions to the equations of motion will appear.
Additionally, based solely on effective field theory reasoning,
it is possible to augment (4.19) with further terms involving
the fluid velocity (see [46] for the relativistic case). We will
leave a thorough analysis of this for the future [54]. Here we
focus on extracting the stresses on the membrane using (3.23).

We find the energy current

T a =−(
a0 + a1K + a2K2 + a3K · K

)
v̂a

− (
L0 + L1K + L2K2 + L3K · K

)
ua , (4.20)

where we have defined the thermodynamic parameters

Li = T si + niμ + ni

2
ū2, si =

(
∂ai

∂T

)
μ

, ni =
(

∂ai

∂μ

)
T

.

(4.21)

Similarly, we extract the Cauchy stress-mass tensor

T ab = hab
(
a0 + a1K + a2K2 + a3K · K

)
−2hachbd Kcd (a1 + 2a2K ) − 4a3h f d hcahebKcd Ke f

+(
n0 + n1K + n2K2 + n3K · K

)
uaub. (4.22)

As this model contains terms involving the extrinsic curvature,
it has a bending moment of the form

Dab = a1hab + Yabcd Kcd , Yabcd = 2a2habhcd + 2a3ha(chd )b,

(4.23)

where Yabcd is the Young modulus of the membrane and has
the usual symmetries of a classical elasticity tensor.31 Equa-
tions (4.22) and (4.23) demonstrate that if a3 is a nontrivial
function of T, μ, then it will contribute nontrivially to the
shape equation (3.31).

Let us be a bit more precise about the role of a3. First,
we redefine the coefficient a2 as a2 = ã2 − a3 so that a3

now multiplies the integrand of the Gauss-Bonnet term, the
Gaussian curvature. All terms proportional to a3 in the shape
equation can be shown to cancel identically using a set of
identities such as the Codazzi-Mainardi and Gauss-Codazzi
equations [i.e., (2.70) and (2.73) suitably adapted to the case
of a codimension one submanifold] as well as the identity
(D6) which expresses the fact that the Einstein tensor of the
Riemannian geometry on constant time slices vanishes in two
dimensions. This means that a3 will contribute only to the
shape equation through its derivatives that we denoted by s3

and n3. There are only two such terms, n3K · KuaubKab and
(hachbd Kcd − habK )DaDba3. In particular the latter is interest-
ing since it will make a contribution to the shape equation even
in the case of a static fluid.

We now show how the model (4.19) recovers the standard
Canham-Helfrich model.

2. The standard Canham-Helfrich model

We focus on three-dimensional flat spacetime (2.15) and
surfaces with two spatial dimensions. We also assume that
the functions {a0, a1, a2, a3} are constant. In this case, as
explained above and detailed in Appendix D, we can set a3 =
0. Additionally, we require the free energy (4.19) to be invari-
ant under a change of the inwards and outwards orientation
of normal vectors, that is, invariant under nμ → −nμ. This
leads to

FCH =
∫

�s

d2σ es[χ + κ (K + c0)2], (4.24)

where we have redefined the coefficients such that

a0 = χ + κc2
0, a1 = 2κc0, a2 = κ, (4.25)

and where c0 changes sign under nμ → −nμ. This is the
direct analog of the Canham-Helfrich model of lipid bilayer
membranes [2]. The constant c0 is the spontaneous curvature,
which reflects a preference to adopt a specific curvature due
to, e.g., different aqueous environments or lipid densities on
the two sides of the bilayer [69]. The parameter χ is the
surface tension and the parameter κ is the bending modulus
[6]. In this case, si = ni = 0 and the shape equation (3.31)
upon using (4.22) and (4.23) becomes

−a0K − a1K2 − a2K3 + a1K · K + 2a2K (K · K )

+ 2a2habDaDbK − �p = 0, (4.26)

where we have added the contribution from constant interior
andexterior pressures as in Sec. IV A 3. We will now review
particular solutions to this model.

31This was first introduced in an effective theory for relativistic
fluids in Ref. [46]. The Young modulus tensor also appears when
considering finite size effects in the dynamics of black branes [68].
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(a) Sphere (b) Torus (c) Biconcave discoid

FIG. 2. The three axisymmetric biophysical solutions to the Canham-Helfrich model and how they arise as surfaces of revolution. The
coordinate ρ measures the perpendicular distance to the z axis (blue), and ψ is the angle between the tangent of the contour and the ρ axis.

3. Biophysical solutions: Axisymmetric vesicles

Here we discuss three well-known axisymmetric solutions
of the Canham-Helfrich model [6] (the spherical vesicle,
the toroidal vesicle, and the red blood cell) and how they
are described within this approach. These surfaces arise as
surfaces of revolution and therefore a particularly convenient
way of parametrizing these is to consider a “cross-sectional
contour” described by the perpendicular distance ρ to the
symmetry axis (which we will take to be the z axis) and the
angle ψ , which is the angle between the tangent of the contour
and the ρ axis (see Fig. 2 for a graphical depiction). This
gives us the relation tan ψ (ρ) = dz

dρ
. The entire surface is then

obtained by rotating this contour such that

X μ =

⎛
⎜⎝

t
ρ cos φ

ρ sin φ

z0 + ∫ ρ

0 dρ̃ tan ψ (ρ̃ )

⎞
⎟⎠, (4.27)

which in turn gives rise to

K = − sin ψ (ρ)

ρ
− cos ψ (ρ)ψ ′(ρ),

K · K = sin2 ψ (ρ)

ρ2
+ cos2 ψ (ρ)[ψ ′(ρ)]2. (4.28)

Spherical vesicle:. A sphere of radius R [see Fig. 2(a)] is
described by

sin ψ (ρ) = ρ

R
, (4.29)

which gives rise to the equation

0 = �pR2 + 4c0κ + 2c2
0Rκ + 2Rλ. (4.30)

As was also pointed out in Ref. [6], this has two solutions
when viewed as an equation for the radius, provided that
�p < 0 and −4c0κ�p + (κc2

0 + χ )2 > 0. The first condition
reflects the fact that the internal pressure must be greater than
the external pressure to stabilize the structure.

Torus:. The torus can also be obtained as a surface of
revolution [Fig. 2(b)]. This is achieved via

sin ψ (ρ) = 1

r
ρ + R

r
, (4.31)

where R is the major axis and r the minor axis. From this, we
get the shape equation

0 = (−κR3 + 2κr2R) + ρ2
[
r2R

( − κc0
2 − χ

) − 4αc0rR
]

+ρ3
[ − 2r2

(
κc0

2 + χ
) + 4κc0r + �pr3

]
. (4.32)

Each coefficient of {ρ0, ρ2, ρ3} must vanish independently,
giving us three equations

R =
√

2r, χ = κc0(4 − c0r)

r
, �p = 4κc0

r2
. (4.33)

The first of these predicts a universal ratio between the major
and minor axes. Theoretically predicted in Ref. [70], this ratio
was observed experimentally in Ref. [71] with high precision.

Biconcave discoid:. The biconcave discoid [Fig. 2(c)] is
the shape of the red blood cell. This axisymmetric vesicle is
described by

sin ψ (ρ) = aρ(log ρ + b), (4.34)

where a, b are parameters that are related to the characteristics
of the discoid.32 The resulting equation of motion is

0 =[
κa3 − 2κa2b − 4κab2 + 4κabc0 − a

(
κc2

0 + χ
) + 4κb2c0 − 2b

(
κc2

0 + χ
) + �p

]
+ log ρ

[ − 2κa3 − 8κa2b + 4κa2c0 + 8κabc0 − 2a
(
κc2

0 + χ
)] + log2 ρ(−4a3κ + 4a2κc0), (4.35)

32For example, the radius of the discoid, i.e., the maximum value of
ρ = ρR, is implicitly given by 1 = aρR(log ρR + b), since ψ (ρR ) =
π/2 (see also Ref. [66]).

which again gives three equations. These equations yield

a = c0, χ = �p = 0. (4.36)

Thus, we recover the result that the biconcave shape of the red
blood cell relies on isotonicity, i.e., that the pressures on each
side of the membrane are equal [66] (see also Ref. [72]).
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V. DISCUSSION AND OUTLOOK

The majority of the work presented here was of a foun-
dational nature. In order to describe the physical properties
of fluid membranes in thermodynamic equilibrium, we devel-
oped the submanifold calculus for Newton-Cartan geometry.
This parallels how the submanifold calculus of (pseudo-)
Riemannian or Euclidean geometry is a prerequisite for for-
mulating and varying the standard Canham-Helfrich bending
energy. We identified the geometric structures characterizing
timelike submanifolds in NC geometry33 and obtained the
associated integrability conditions. Deriving expressions for
the infinitesimal variations and transformation properties of
the basic objects allowed us to formulate a generic extremiza-
tion problem for broad classes of NC surfaces, including fluid
membranes whose equilibrium configurations only depend on
geometric properties.34

In Sec. IV we applied this toolbox that we developed to
the description of fluid membranes in thermodynamic equi-
librium. The unique aspect of these applications is that the
dependence on temperature and chemical potential of material
coefficients, such as surface tension and bending modulus,
is critical for the emergence of wave excitations. This relied
on the fact that temperature and chemical potential have a
geometric interpretation related to the existence of a timelike
isometry in the ambient spacetime. Standard examples of
free energies such as the Canham-Helfrich bending energy
are straightforwardly generalized by taking into account the
geometric interpretation of thermodynamic variables. The re-
sulting free energies are still purely geometric but the derived
stresses on the membrane are different than standard results
found in the literature. In particular, the Gaussian bending
modulus can play a role in the shape of lipid vesicles since
the Gaussian curvature cannot be integrated out when material
coefficients are not constant. The resulting stresses produce
elastic waves when perturbing away from equilibrium thus
providing the correct dynamics of fluid membranes.

This paves the way for tackling several open questions,
which we plan to address in a future publication [54]:

(1) The fact that the Gaussian curvature cannot be inte-
grated out in thermal equilibrium suggests that the family
of closed lipid vesicles reviewed in Sec. IV B 3 should be
revisited and the effects of the Gaussian bending modulus
should be considered [i.e., a3 in (4.19)], including the effects
on deviations away from equilibrium.

(2) The lipid vesicle solutions in Sec. IV B 3 are static
solutions, in which ua = (1, 0, 0). However, in principle such

33The case of spacelike submanifolds is also interesting to pursue
as it can be useful for understanding entanglement entropy in nonrel-
ativistic field theories [73].

34It would be interesting to understand the connection between this
work and other recently considered constructions involving extended
objects embedded in Newton-Cartan spacetime (or related geome-
tries), such as nonrelativistic strings [30–32,74], nonrelativistic D-
branes [75], and Newton-Cartan p-branes [76]. It would also be
interesting to connect this work to Ref. [77], where the boundary
description of quantum Hall states involves a notion of Newton-
Cartan submanifolds.

solutions can sustain rotation along the direction φ. The
question is thus: is it possible to obtain lipid vesicles with
stationary flows?

(3) From an effective field theory point of view, the
Canham-Helfrich bending energy (4.19) does not contain all
possible responses that take into account thermal equilibrium.
For instance a term quadratic in the extrinsic curvature of
the form uaubhcd KbcKad involving the fluid velocity can be
added to (4.19) (similarly to its relativistic counterpart [46]).
However, there are further couplings that involve derivatives
of ua such as the square of the fluid acceleration (uaDaub)2 or
the square of the vorticity. Some of these terms are related
to the Gaussian curvature and thus, by the Gauss-Codazzi
equation (2.73), to combinations of squares of the extrinsic
curvature. Therefore, from an effective theory point of view,
they cannot be ignored a priori.

(4) We have shown in Sec. IV A 2 that taking into account
the geometric definitions of temperature and mass chemical
potential in equilibrium gives rise to the correct dispersion
relation for an elastic membrane when perturbing away from
equilibrium. It would now be interesting to consider per-
turbations away from equilibrium solutions of the Canham-
Helfrich model (4.19) using the stresses (4.20)–(4.23). This
would shed light on the stability of lipid vesicles.

(5) The construction of effective actions or free energies
in the manner described in this work is appropriate to de-
scribe equilibrium configurations. However, including differ-
ent types of dissipation [78], either due to viscous flows or
diffusion of embedded proteins is of interest [8]. In order
to include dissipation from an effective action point of view
one could consider the more elaborate Schwinger-Keldysh
framework [79–81] and adapt it to nonrelativistic systems.
Alternatively, one may construct the effective theory in a long-
wavelength hydrodynamic expansion by classifying potential
terms appearing in the currents T a and T ab and obtaining
constitutive relations (see, e.g., Refs. [82,83]). We plan on
addressing this in the near future.

(6) We focused on extrinsic curvature terms in effective
actions (3.23), but it would also be interesting to consider the
effect of the external rotation tensor (2.63). In the (pseudo-)
Riemannian or Euclidean setting, this corresponds to spin-
ning point particles/membranes [46,53,84,85] and are directly
related to the Frenet curvature and Euler elastica (see, e.g.,
Refs. [86–88] for a recent discussion).

(7) In Secs. II and III we formulated the description of
a single surface in Newton-Cartan geometry for which the
scalars X μ can be seen as Goldstone modes of spontaneous
broken translations at the location of the surface. It would be
interesting to extend this further to the case of a foliation of
surfaces, in which case the scalars X μ form a lattice and can
be used to describe viscoelasticity as in Ref. [89].

In this work we considered Newton-Cartan geometry but
there are many other types of non-Lorentzian geometries
depending on the space-time symmetry group, which can be,
e.g., Lifshitz, Schrödinger, or Aristotelian, which have direct
applications for the hydrodynamics of strongly correlated
electron systems as well as for the hydrodynamics of flocking
behavior and active matter [37–39,90]. In these contexts, it
is required to develop the mathematical description of sub-
manifolds within these different types of ambient spacetimes.
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The description of surfaces within these geometries will be of
interest for surface or edge physics in hard condensed matter.
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APPENDIX A: NULL REDUCTION OF RIEMANNIAN
SURFACES AND PERFECT FLUIDS

In this Appendix we provide a completely different ap-
proach to formulating the theory of surfaces and fluid mem-
branes in Newton-Cartan geometry. This approach consists
in starting from relativistic surfaces and fluid membranes
and performing a null reduction so as to obtain results in
NC geometry. The purpose of this technical Appendix is to
provide a nontrivial check of the main results in the core of
this paper.

1. Submanifolds from null reduction

It is well known that any Newton-Cartan geometry can
be obtained as the null reduction of a Lorentzian manifold
in one dimension higher equipped with a null killing vector
[28,36,91]. Therefore, if we choose a timelike submanifold
in a Lorentzian geometry such that the null Killing vector
is tangent to the submanifold, its null reduction provides us
with a Newton-Cartan submanifold embedded in a Newton-
Cartan ambient spacetime. We illustrate this in the commuting
diagram below:

(̂Σp+2, γ̂)
ûµ̂

â ( ̂Md+2, ĝ)

null red. null red.

(Σp+1, {τ |Σ, ȟ, m̌})
uµ

a

(Md+1, {τ, h, m})
(A1)

In Sec. II B we described how to go from the NC
manifold (Md+1, {τ, h, m}) to the NC submanifold
(�p+1, {τ |�, ȟ, m̌}), while passing from the Lorentzian
manifold (M̂d+2, ĝ) to the Newton-Cartan manifold
(Md+1, {τ, h, m}) is achieved by null reduction.

In this Appendix, we will traverse the other route: our goal
is to go from (M̂d+2, ĝ) to (�p+1, {τ |�, ȟ, m̌}) via (�̂p+2, γ̂ ).
The procedure to go from (M̂d+2, ĝ) to (�̂p+2, γ̂ ) is nothing
but the theory of submanifolds in Lorentzian geometry and is
well known (see, e.g., Refs. [46,53]). We coordinatise M̂d+2

with xμ̂ = (u, xμ) and �̂p+2 with σ̂ â = (w, σ a). The metric on
M̂d+2 can, by assumption, be written in null reduction form

ds2
M̂d+2

= ĝμ̂ν̂dxμ̂dxν̂ = 2τμdxμ(du − mνdxν ) + hμνdxμdxν .

(A2)

This line element is invariant under the Newton-Cartan gauge
transformations (2.4) and conversely all gauge invariance
of this line element are of the form (2.4). The invariance
under the U (1) transformation with parameter σ (xμ) requires
that we vary the higher-dimensional coordinate u as δu = σ .
From the higher-dimensional perspective this corresponds to
a diffeomorphism that leaves the xμ unaffected but that shifts
u by some function of xμ.

The Lorentzian submanifold is defined via a set of embed-
ding maps X̂ μ̂(σ â) in the usual way. We define the projector

P̂μ̂
ν̂ = ûμ̂

â ûâ
ν̂ = δ

μ̂
ν̂ − n̂I

ρ̂ n̂J
ν̂ δIJ ĝρ̂μ̂, (A3)

where n̂I
ρ̂ are the normal 1-forms to �̂p+2 and where ûμ̂

â =
∂âX̂ μ̂. We require that the null direction is shared between
M̂d+2 and �̂p+2, which can be expressed as the requirements

ûu
w = 1, ûu

a = 0, (A4)

where the null direction on the submanifold is described by
w. Further, we want to impose a null reduction analog of
the timelike requirement (2.24). To this end, we introduce a
vector U μ̂ = ( ∂

∂u )
μ̂ = δμ̂

u so that Uμ̂ = (0, τμ). Requiring that
the null Killing vector field is tangential to the submanifold
n̂I

u = U μ̂n̂I
μ̂ = Uμ̂n̂μ̂I = 0 for all I implies the desired relation

τμnμ
I = 0 where we have identified n̂μ

I = nμ
I . This further im-

plies that nμI = ĝμν̂ n̂I
ν̂ = hμνnI

ν in agreement with the timelike
constraint. This also implies that P̂μ

ν = Pμ
ν , as well as the

normalization ĝμ̂ν̂ n̂I
μ̂n̂J

ν̂ = hμνnI
μnJ

ν = δIJ . Further, the above
considerations lead us to conclude that

n̂uI = ĝuμ̂n̂I
μ̂ = −v̂μnI

μ = −v̂I . (A5)

The metric on �̂p+2 can also be written in null reduction
form

ds2
�̂p+2

= γ̂âb̂dxâdxb̂ = 2τadxa(dw − mbdxb) + habdxadxb

= 2τadxa(dw − m̌bdxb) + ȟabdxadxb,

(A6)

where we recall the definitions of ȟab and m̌a in (2.34) and
(2.39), respectively. As manifested in the equations above, the
null reduction form of the metric is Galilean boost invariant
and does not distinguish between checked and unchecked
metric data. In turn, the Lorentzian metric γ̂ on �̂p+2 is the
pullback of the metric ĝ on M̂d+2, that is

γ̂âb̂ = ûμ̂
â ûν̂

b̂
ĝμ̂ν̂ , (A7)

which implies that

τa = γ̂aw = ûμ̂
a ûν̂

wĝμ̂ν̂ = ûμ
a ûu

wĝμu + ûμ
a ûν

wĝμν

= ûμ
a τμ + ûμ

a ûν
wh̄μν. (A8)
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Thus, taking

ûμ
w = 0, (A9)

and identifying ûμ
a = uμ

a we get the desired relation between
the two clock 1-forms, namely, τa = uμ

a τμ. Next, we consider

h̄ab = γ̂ab = ûμ̂
a ûν̂

bĝμ̂ν̂ = ûμ
a ûν

bĝμν + ûμ
a ûu

bĝμu + ûu
aûν

bĝuν

= uμ
a uν

bh̄μν, (A10)

where we have used (A4), which again agrees with the results
of Sec. II B. The relation ûμ̂

wûw
μ̂ = ûw

u = 1 where we used
(A9), fixes ûw

u = 1. To determine ûw
μ we bring into play

the orthogonality requirement ûw
μ̂ n̂μ̂I = ĝμ̂ν̂ ûw

μ̂ n̂I
ν̂ = 0, which

translates into the relation

v̂μnI
μ = ûw

μnμI , (A11)

where we have used that ûw
u = 1 and nμ

I = δIJhμνnJ
ν . This is

possible only if

ûw
μ = v̂I nI

μ. (A12)

The null reduction of the ambient inverse metric is

ĝuu = 2
̃, ĝuμ = −v̂μ, ĝμν = hμν, (A13)

while the relation between ĝ−1 and γ̂ −1 is given by γ̂ âb̂ =
ûâ

μ̂ûb̂
ν̂ ĝμ̂ν̂ . In turn, the relation γ̂ ab = hab requires that ûa

u = 0.
Using this, we can write

γ̂ wa = ûw
μ̂ ûa

ν̂ ĝμ̂ν̂ = v̂I nI
μûa

νhμν + ûa
ν ĝuν, (A14)

where we have used (A12), which leads us to identify ûa
μ = ua

μ

and, by the orthogonality relation (2.25), leads to v̂a = ua
μv̂μ

as desired. The relation (A12) furthermore implies that

γ̂ ww = ûw
μ̂ ûw

ν̂ ĝμ̂ν̂ = 2
̃ − v̂I v̂I = 
̌. (A15)

In summary, the Lorentzian objects arrange themselves
under submanifold null reduction according to

ûμ̂
â

null red.−→ ûμ
a = uμ

a , ûu
w = 1, ûμ

w = 0, ûu
a = 0, (A16)

ûâ
μ̂

null red.−→ ûa
μ = ua

μ, ûw
u = 1, ûw

μ = v̂I nI
μ, ûa

u = 0, (A17)

n̂I
μ̂

null red.−→ n̂I
μ = nI

μ, n̂I
u = 0, (A18)

n̂μ̂
I

null red.−→ n̂μ
I = nμ

I , n̂u
I = −v̂I . (A19)

The metric on �̂p+2 is

ds2
�̂p+2

= 2τadxa(dw − m̌bdxb) + ȟabdxadxb, (A20)

while the components of the inverse metric on �̂p+2 are

γ̂ ww = 2
̌ = 2
̃ − v̂I v̂I , γ̂ wa = −v̂a, γ̂ ab = hab.

(A21)

a. Null reduction of the connection the extrinsic curvature

We now consider the null reduction of the Lorentzian con-
nection. The nonzero components of the higher-dimensional

Christoffel symbols are

�̂ρ
μν = �̄

ρ
(μν) = �̄ρ

μν + 1
2 v̂ρτμν, (A22)

�̂u
μν = −K̄μν − 2τ(μ∂ν)
̃, (A23)

�̂ρ
uμ = 1

2 hρσ τμσ , (A24)

�̂u
uμ = 1

2 aμ, (A25)

where

K̄μν = −1

2
£v̂ h̄μν, aμ = £v̂τμ = v̂ρτρμ. (A26)

The NC extrinsic curvature K̄μν should not be confused with
the submanifold extrinsic curvature Kab

I . The pullback of the
ambient TNC extrinsic curvature, K̄ab = uμ

a uν
bK̄μν , is related

to the TNC extrinsic curvature on the submanifold �p+1,

K̄�
ab = −1

2
£�

v̂ h̄ab, (A27)

where £�
v̂ denotes the Lie derivative along v̂a on �p+1, in the

following way:

K̄ab = K̄�
ab − τ(a∂b)(v̂

I v̂I ) + v̂I Kab
I . (A28)

This can be shown by starting with K̄ab = uμ
a uν

bK̄μν and using
v̂ρ = v̂cuρ

c + v̂I nρ
I in (A26). The identity

£nI h̄μν = 2∇(μnI
ν) + 2τ(μ∂ν)v̂

I (A29)

together with Eq. (2.61) can then be used to derive (A28).
The higher-dimensional extrinsic curvature K̂âb̂

I is de-
termined in terms of the higher-dimensional analog of the
surface covariant derivative of (2.56), which we will call D̂â.
It acts on a mixed tensor T̂ b̂μ̂ according to

D̂âT̂ b̂μ̂ = ∂âT̂ b̂μ̂ + γ̂ b̂
âĉT̂ ĉμ̂ + ûν̂

â�̂
μ̂

ν̂λ̂
T̂ b̂λ̂, (A30)

where γ̂ b̂
âĉ is the Levi-Civita connection of γ̂ , while �̂

μ̂

ν̂λ̂
is the

Levi-Civita connection of ĝ. The higher-dimensional extrinsic
curvature is

K̂âb̂
I = n̂I

μ̂D̂âûμ̂

b̂
= n̂I

μ̂

(
∂âûμ̂

b̂
+ ûν̂

â�̂
μ̂

ν̂λ̂
ûλ̂

b̂

)
, (A31)

which using (A16) and (A18) means that

K̂ab
I = nI

μDauμ

b + 1
2 v̂Iτab = Kab

I , (A32)

where we have recognized the extrinsic curvature of (2.61).
This is invariant under both gauge transformations and
Galilean boosts. The other nonzero components of the higher-
dimensional extrinsic curvature are K̂wb

I = − 1
2τIb.

Below Eq. (A2), we have shown that the U (1) gauge
transformation is a specific diffeomorphism in the higher-
dimensional description. This is a useful way to find out how
various objects transform under the σ gauge transformation.
This also applies to tensors defined on the submanifold �p+1,
since they descend from the Lorentzian manifold �̂p+2. A
diffeomorphism of a generic tensor Xâ

b̂ is given by

δXâ
b̂ = ξ̂ ĉ∂ĉXâ

b̂ + Xĉ
b̂∂âξ̂

ĉ − Xâ
ĉ∂ĉξ̂

b̂. (A33)

In order to find the U (1) transformation, we need to choose
a diffeomorphism for which ξ̂ â = −σδâ

w. Since all objects
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are independent of u we find that a 1-form Xa in this case
transforms as

δXa = −Xw∂aσ, (A34)

while a vector X b is U (1) invariant. Applying this to the
extrinsic curvature K̂ab

I we find

δσ K̂ab
I = −K̂aw

I∂bσ − K̂wb
I∂aσ. (A35)

Using that K̂wb
I = − 1

2τIb we recover the transformation rule
(2.62).

b. Variations from null reduction

Here we obtain some of the results of Sec. III A using null
reduction. We begin with the variations of the normal 1-forms.
In the relativistic case, the normal 1-forms can be shown to
transform as [53]

δn̂I
μ̂ = 1

2 n̂ν̂
J n̂J

μ̂n̂ρ̂Iδĝν̂ρ̂ − n̂I
ν̂ ûâ

μ̂δûν̂
â + 1

2 n̂μ̂J
(
n̂ν̂Jδn̂I

ν̂ − n̂ν̂Iδn̂J
ν̂

)
.

(A36)

Restricting to μ̂ = μ, the last term simply reduces to λI
JnJ

μ.
This follows from demanding that n̂I

u = 0 is preserved under
transformations, implying that δn̂I

u = 0. Ignoring rotations of
the normal 1-forms, we get

δnI
μ = − 1

2 v̂ρnJ
ρnμJnνIδτν − 1

2 nνJnμJ v̂
ρnI

ρδτν

+ 1
2 nρJnμJnνIδh̄ρν − nI

νua
μδuν

a, (A37)

where we have used that n̂uI = −v̂μnI
μ. Using the definitions

of v̂ and h̄, we find that the variation can be written as

δnI
μ = −v(I nJ )νnμJδτν + 1

2 nρJnμJnνIδhρν − nI
νua

μδuν
a,

(A38)

in agreement with the result (3.4) [up to a local so(d − p)
transformation that we ignored].

With this at hand, we rederive (3.10) using the method of
null reduction. The relativistic result reads [53]

δX̂ K̂âb̂
I = −n̂I

μ̂D̂âD̂b̂ξ̂
μ̂ + n̂I

μ̂ξ̂ λ̂ûν̂
â ûρ̂

b̂
R̂λ̂ν̂ρ̂

μ̂ + λ̂I
J K̂âb̂

J , (A39)

where

λ̂IJ = n̂μ̂[I n̂J]ν̂ ξ̂ ρ̂∂ν̂ ĝμρ̂ = n̂[I
ρ̂ n̂J]ν̂ �̂

ρ̂
ν̂σ̂ ξ̂ σ̂ . (A40)

We keep the null direction fixed, so that

ξ̂ μ̂ = −δX̂ μ̂, ξ̂ u = 0. (A41)

We are interested in (â, b̂) = (a, b) and since n̂I
u = 0 = ûu

a,
(A39) reduces to

δX K̂ab
I = −nI

μD̂aD̂bξ
μ + nI

μξλuν
auσ

b R̂λνσ
μ + λ̂I

J K̂ab
J ,

(A42)

where ξ̂ μ = ξμ so that δX̂ μ = δX μ. In the absence of torsion,
the null reduction of the Riemann tensor gives

R̂λνσ
μ = −∂λ�̂

μ
νσ + ∂ν�̂

μ

λσ − �̂
μ

λρ̂�̂
ρ̂
νσ + �̂

μ
νρ̂ �̂

ρ̂

λσ = Rλνσ
μ.

(A43)

Since in the absence of torsion D̂wξμ = 0 and D̂bξ
μ = Dbξ

μ,
we find that

D̂aD̂bξ
μ = DaDbξ

μ, (A44)

while the null reduction of (A40) gives λ̂IJ = n[I
ρ nJ]ν�ρ

νσ ξσ

and so we obtain (3.10), as expected.

c. Note on the reduction of the Lorentzian action

The variational principle for NC surfaces in Sec. III B 1 can
be obtained from null reduction of the relativistic variational
principle [46]:

δS =
∫

�

d p+1σ
√

−γ̂

(
1

2
T̂ âb̂δγ̂âb̂ + D̂âb̂

IδK̂âb̂
I

)
. (A45)

The null reduction formulas of the previous section, for in-
stance, (A42), imply that the null reduction of (A45) will
include a dependence on variations of K̂wa

I = − 1
2τIb. Such

torsion dependent terms were not included in (3.23). The
reason, as mentioned throughout the paper is that we have
assumed to be working without torsion, that is, τμν = 0 at the
expense of only being able to extract the divergence of the
energy current instead of the energy current itself.

2. Perfect fluid from null reduction

In this section, we consider the null reduction of the
equilibrium partition function of a relativistic space-filling
perfect fluid, that is a fluid that is not living on a surface.
The case in which the fluid is confined to the surface (i.e., a
fluid membrane) considered in Sec. IV A is a straightforward
modification of this analysis. The result provides us with the
hydrostatic partition function of a Galilean-invariant perfect
fluid.

We begin with the null reduction of the unit normalized
relativistic fluid velocity ûμ̂, which obeys ĝμ̂ν̂ ûμ̂ûν̂ = −1. We
define the nonrelativistic fluid velocity uμ as follows [36]:

uμ = ûμ

ûu
, (A46)

where ûu = ĝuμ̂ûμ̂ = τμûμ. This implies that τμuμ = 1 which
is the standard normalization of the contravariant velocity of
a nonrelativistic fluid. The relativistic condition

ĝμ̂ν̂ ûμ̂ûν̂ = h̄μν ûμûν + 2τμûμûu = −1, (A47)

can be used to solve for ûu, leading to

ûu = − 1

2ûu
− 1

2
ûuh̄μνuμuν . (A48)

We still need to find a lower-dimensional interpretation of
ûu. This can be achieved as follows. Let T̂ μ̂

ν̂ be the energy-
momentum tensor of the higher-dimensional relativistic the-
ory. For a perfect fluid this is T̂ μ̂

ν̂ = (Ê + P̂)ûμ̂ûν̂ + P̂δ
μ̂
ν̂ .

The mass current of the null reduced theory is given by T̂ μ
u

(see, e.g., Ref. [36]). In the lower-dimensional theory, this is
equal to nuμ, where n is the mass density. Comparing the two
expressions yields

û2
u = n

Ê + P̂
. (A49)
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We will later find expressions for Ê and P̂ in terms of the
nonrelativistic energy and pressure.

In the hydrostatic partition function approach for a rela-
tivistic fluid, one identifies the intensive fluid variables such as
temperature and velocity with a timelike Killing vector of an
otherwise arbitrary Lorentzian curved background geometry.
By varying the metric while keeping the Killing vector fixed,
one extracts the fluid energy-momentum tensor. This approach
has been applied to nonrelativistic fluids on a NC background
in Refs. [33,92] and here we will show how this follows
from null reduction. In the higher-dimensional Lorentzian
geometry, we assume the existence of a Killing vector k̂μ̂ such
that

k̂μ̂ = β̂ûμ̂, (A50)

where β̂ is the relativistic (inverse) temperature, and ûμ̂ the
relativistic fluid velocity. Just like in the Lorentzian setting,
we will introduce a Newton-Cartan Killing vector kμ that
is proportional to the nonrelativistic fluid velocity uμ and
that is timelike, where τμkμ relates to the nonrelativistic
temperature. Hence we write

kμ = βuμ, (A51)

where β = τμkμ is the nonrelativistic (inverse) temperature.
The null reduction of k̂μ̂ is just k̂μ̂ = (k̂u, kμ) = β(μ̂, uμ),
where we write k̂u = βμ̂ with μ̂ a parameter to be determined.
This means that

βuμ = β̂ûμ. (A52)

Now, since k̂μ̂ is a Killing vector, we have that

£k̂ĝμ̂ν̂ = 0, (A53)

which, after null reduction, turns into the statements

£kτμ = 0, £kh̄μν = −2τ(μ∂ν)k̂
u. (A54)

In a NC geometry a Killing vector is defined by setting to
zero the transformations in (2.4) [and thus also implying that
the variations in (2.7) give zero]. Here k̂u is thus a specific
U (1) gauge transformation parameter that is associated with
the existence of a Killing vector.

The relativistic hydrostatic partition function at ideal order
in derivatives is an integral of the pressure which depends on
the intensive variables, i.e., scalar quantities built from the
Killing vector. One of these is the norm of k̂μ̂ which relates
to the relativistic temperature. However, in the case of null
reduction we actually have, besides k̂μ̂, another Killing vector
which is U μ̂ = ( ∂

∂u )
μ̂

. Since U μ̂ is null, we can form only one
other scalar,

ĝμ̂ν̂U μ̂k̂ν̂ = τμkμ = β, (A55)

which is the nonrelativistic (inverse) temperature. The other
scalar is of course

−β̂2 = ĝμ̂ν̂ k̂μ̂k̂ν̂ = β2(2μ̂ + h̄μνuμuν ). (A56)

This determines the proportionality between the relativistic
and nonrelativistic temperatures. We define

μ = μ̂ + 1
2 h̄μνuμuν . (A57)

We will see below that μ is a chemical potential related to the
mass conservation, which is a consequence of the null Killing

vector and we note that its definition implies μ < 0. In the
grand canonical ensemble for a system at rest, the partition
function is of the form Z = Tr e−βH+βμN , where H is the
Hamiltonian and N the conserved mass of the system.

a. Null reduction of the hydrostatic partition function

At the end of Sec. A 1 a, we discussed the role of the
U (1) transformation from the null reduction point of view,
and we showed that such a transformation corresponds to a
diffeomorphism generated by ξ̂ μ̂ = −σδμ̂

u . Applying this to
our Killing vector k̂μ̂, we learn that under δξ̂ k̂μ̂ = £ξ̂ k̂μ̂, the

NC Killing vector kμ is left inert and that k̂u transforms as

δσ k̂u = kμ∂μσ. (A58)

Since τμ is also invariant it follows that β also does not
transform. Hence, using k̂u = βμ̂ and kμ = βuμ, we can write

δσ μ̂ = uμ∂μσ. (A59)

It then follows that μ defined in Eq. (A57) is U (1) invariant,
making μ together with β the two parameters on which
the lower dimensional pressure in the hydrostatic partition
function should depend.

In a d + 1-dimensional theory, the hydrostatic partition
function is given by

S =
∫

dd+1xeP(T, μ), (A60)

where P is the fluid pressure. Next, we vary S keeping the
Killing vector fixed, i.e., δkμ = 0 = δk̂u. The variation of the
temperature is then given by

δT = δ(τμkμ)−1 = −(τνkν )−2kμδτμ = −Tuμδτμ, (A61)

while the variation of the chemical potential reads

δμ = δμ̂ + 1

2
uμuνδh̄μν + h̄μνuνδuμ

= μ̂
δT

T
+ 1

2
uμuνδh̄μν

+ ū2 δT

T
. (A62)

This allows us to compute

δP =
(

∂P

∂T

)
μ

δT +
(

∂P

∂μ

)
T

δμ = sδT + nδμ (A63)

= −
(

sT + nμ + 1

2
nū2

)
uμδτμ + 1

2
nuμuνδh̄μν, (A64)

where s is the entropy density and n the mass density. Thus,
combining our findings, we obtain

δS =
∫

dd+1xe

(
T μδτμ + 1

2
T μνδh̄μν

)

=
∫

dd+1xe

[
1

2
(Phμν + nuμuν )δh̄μν − Pv̂μδτμ

−
(

sT + nμ + 1

2
nū2

)
uμδτμ

]
, (A65)
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TABLE I. The three classes of Newton-Cartan geometries and
their properties.

Geometry Constraint on τ Causality Torsion

TNC None Acausal Yes
TTNC τ ∧ dτ = 0 Surfaces of absolute simultaneity Yes
NC dτ = 0 Absolute time No

leading us to identify the energy current and the Cauchy
stress-mass tensor as

T μ = −Pv̂μ −
(

sT + nμ + 1

2
nū2

)
uμ

= −Pv̂μ −
(
E + P + 1

2
nū2

)
uμ, (A66)

T μν = Phμν + nuμuν, (A67)

where we defined E , the internal energy, via the relation E +
P = sT + nμ. This matches the results of Ref. [36], where
these equations were obtained by directly null reducing the
expression for the relativistic energy-momentum tensor.

The relation between the relativistic and nonrelativistic
currents can be found from

1

2

√
−ĝT̂ μ̂ν̂δĝμ̂ν̂ = e

(
T μδτμ + 1

2
T μνδh̄μν

)
. (A68)

Hence the energy current is given by T μ = T̂ uμ. For a perfect
fluid, this is T μ = (Ê + P̂)ûμûu − P̂v̂μ. Comparing this with
(A66) implies that we have the identification P̂ = P, as well
as

E + P + 1
2 nū2 = −(Ê + P̂)ûuûu = 1

2 (Ê + P̂) + 1
2 nū2, (A69)

where ū2 = h̄μνuμuν and where we used (A46), (A48), and
(A49). Hence we conclude that, since P̂ = P, we have Ê =
2E + P. Finally, we note that Eq. (A49) can be obtained
from comparing T̂ μν = T μν . Replacing P in (A60) by χ and
confining the fluid to a surface leads to (4.5) upon Wick
rotation.

APPENDIX B: CLASSES OF NEWTON-CARTAN
GEOMETRIES

As mentioned in Sec. II A 3, while it is not necessary
to work with torsion for relevant systems, it is nevertheless
formally necessary to introduce it in order to obtain the
correct variational calculus [see discussion around (2.13)].
Thus it is instructive to briefly mention other types of Newton-
Cartan geometry for which different conditions on τμ are
considered. In the most general version of NC geometry, “tor-
sional Newton-Cartan geometry” (TNC geometry [27–29]),
the clock 1-form is completely unconstrained. A more moder-
ate version, referred to as “twistless torsional Newton-Cartan
geometry” (TTNC geometry), requires that the clock 1-form
be hypersurface-orthogonal (i.e., it satisfies the Frobenius in-
tegrability condition τ ∧ dτ = 0). We summarize these differ-
ent notions in Table I. In fact, these conditions are intimately
linked with torsion. In particular if τ is closed (dτ = 0), there
is no torsion, but if τ is hypersurface-orthogonal (τ ∧ dτ = 0)
the twist vanishes, ω2 = hμρhνσωμνωρσ = 0, where the twist
tensor is given by ωμν = hρσ hσμhλκhκντρλ. Finally, if the
clock 1-form is completely unconstrained, so is the torsion.

When there is no constraint on τμ, it was shown in Ref. [44]
that the spacetime becomes acausal in the sense that given a
point P there exists a neighborhood of P such that all points
in the neighborhood are separated from P by curves that
are spacelike, i.e., their tangent vectors are orthogonal to τμ.
When τμ is hypersurface orthogonal, the spacetime admits a
foliation in terms of constant time slices. At different points
on such a hypersurface clocks may tick at a slower or faster
rate as time evolves, although all observers on such a constant
time slices agree that they are simultaneous with each other.
When there is no torsion (and τ is exact) the rate at which time
evolves is the same for all points on the constant time slices
and we are dealing with absolute time. In this case the interval
between two events P and Q connected by a curve γ joining
P and Q, i.e.,

∫
γ

τ , is independent of the choice of γ .

APPENDIX C: CONNECTIONS ON THE SUBMANIFOLD

The purpose of this Appendix is to find the relation be-
tween the NC connections of the ambient spacetime and the
submanifold as described in Sec. II B 5.

Consider first the projection of the submanifold covariant
derivative acting on a vector V ν ,

uμ
a ub

ν∇μV ν = uμ
a ub

ν

(
∂μV ν + �ν

μρV ρ
) = ∂a

(
ub

νV ν
) − V ν∂aub

ν + uμ
a ub

ν�
ν
μρV ρ

= ∂aV
b − V σ

(
uν

c uc
σ + nν

I nI
σ

)
∂aub

ν + uμ
a ub

ν�
ν
μρ

(
uρ

c uc
σ + nρ

I nI
σ

)
V σ

= ∂aV
b + �b

acV
c − V cuν

c∂aub
ν − VI h

bcK̃ac
I , (C1)

where we defined

�b
ca = uμ

a ub
νuρ

c �ν
ρμ. (C2)

Now, if the vector is a pushforward of a submanifold vector as in V μ = uμ
a V a, the last term in the expression above vanishes,

which leads us to define

γ b
ac = �b

ac − uμ
c ∂aub

μ. (C3)
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The connection on the submanifold is also given by (2.57), which we can write using the ambient structures as

−v̂c∂aτb = −uc
μuν

auρ

b v̂μ∂ντρ − v̂cuν
aτρ∂νuρ

b , (C4)

hcd∂ah̄bd =uc
μud

ν uρ
a uλ

buσ
d ∂ρ h̄λσ + hcd h̄bλ∂auλ

d + hcλh̄λσ ∂auσ
b . (C5)

Substituting these back into (2.57), we find that

γ c
ab − �c

ab = −v̂cτρ∂auρ

b + 1
2 hcd h̄bλ∂auλ

d + 1
2 hcλh̄λσ ∂auσ

b + 1
2 hcd h̄aλ∂buλ

d + 1
2 hcλh̄λσ ∂buσ

a − 1
2 hcd h̄aλ∂d uλ

b − 1
2 hcd h̄λb∂d uλ

a

= uc
σ ∂auσ

b , (C6)

obtaining the result (2.58).

APPENDIX D: GAUSS-BONNET AND
(2 + 1)-DIMENSIONAL MEMBRANES

For a closed co-dimension one surface embedded in flat
(3 + 1)-dimensional Newton-Cartan geometry, the Gauss-
Codazzi equation (2.73) relates K2 and K · K according to

K2 − K · K = R, (D1)

where R is the spatial Ricci scalar R = habRacb
c. This is the

Ricci scalar of a two-dimensional spatial metric on constant
time slices of �. This can be seen from the perspective of
gauging the Bargmann algebra (see, e.g., Refs. [23,55,56]) as
we will briefly review.

In this section we will denote surface tangent space indices
as ā, b̄, . . . = 1, 2. It is well known that (2 + 1)-dimensional
Newton-Cartan geometry arises as a gauging of barg(2, 1),
which is generated by (H, Pā, Gā, Jāb̄, N ) with the following
nonvanishing brackets:

[H, Gā] = Pā, [Jāb̄, Gc̄] = 2δc̄[āGb̄], [Jāb̄, Pc̄] = 2δc̄[āPb̄],

[Jāb̄, Jc̄d̄ ] = 4δ[ā[d̄ Jc̄]b̄], [Pā, Gb̄] = Nδāb̄. (D2)

The gauging procedure then proceeds as follows. We intro-
duce a Lie algebra valued connection

Aa = Hτa + Pāeā
a + Nma + Gāωμ

ā + 1
2 Jāb̄ωa

āb̄, (D3)

with an associated curvature two-form F = dA + A ∧ A
whose Lie algebra expansion is given by

Fab = HRab(H ) + PāR̄ab
ā(P) + NR̄ab(N )

+ GāR̄ab
ā(G) + 1

2 Jāb̄R̄ab
āb̄(J ). (D4)

In Ref. [58] it is shown that the Riemann tensor is related to
the curvatures appearing in the gauging procedure as follows:

Rabd
c = ec

āτdR̄ab
ā(G) − edāec

b̄R̄ab
āb̄(J ). (D5)

The curvature of the spatial rotations R̄ab
āb̄(J ) is the curvature

2-form of the constant time slices which for (twistless tor-
sional) NC geometry is Riemannian. In (2 + 1)-dimensional
Newton-Cartan geometry, therefore, the spatial Ricci scalar
R only depends on the curvature two-form R̄ab

āb̄(J ) and we
have the usual identities from two-dimensional Riemannian
geometry for the spatial projections of Rabd

c. For example,
the vanishing of the two-dimensional Einstein tensor would
read

hachbeRabc
d − 1

2Rhde = 0. (D6)

In the case of torsionless NC geometry the (2+1)-
dimensional integration measure e is just the integration mea-
sure on the constant time slices (since the time direction has a
trivial measure when we are dealing with absolute time). The
Gauss-Bonnet theorem then tells us that∫

�

d3σeR = 4π

∫
dσ 0χ (�s), (D7)

where χ (�s) is the Euler characteristic of the constant time
slices �s. Hence, the Gauss-Codazzi equation (D1) gives us a
relation between the coefficients a2, a3 of (4.19), allowing us
to set either a2 or a3 equal to zero (but only when both a2 and
a3 are constant). In (4.24), we have chosen to set a3 to zero.
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