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Abstract: We formulate the theory of nonlinear viscoelastic hydrodynamics of anisotropic

crystals in terms of dynamical Goldstone scalars of spontaneously broken translational sym-

metries, under the assumption of homogeneous lattices and absence of plastic deformations.

We reformulate classical elasticity effective field theory using surface calculus in which the

Goldstone scalars naturally define the position of higher-dimensional crystal cores, cover-

ing both elastic and smectic crystal phases. We systematically incorporate all dissipative

effects in viscoelastic hydrodynamics at first order in a long-wavelength expansion and

study the resulting rheology equations. In the process, we find the necessary conditions for

equilibrium states of viscoelastic materials. In the linear regime and for isotropic crystals,

the theory includes the description of Kelvin-Voigt materials. Furthermore, we provide an

entirely equivalent description of viscoelastic hydrodynamics as a novel theory of higher-

form superfluids in arbitrary dimensions where the Goldstone scalars of partially broken

generalised global symmetries play an essential role. An exact map between the two formu-

lations of viscoelastic hydrodynamics is given. Finally, we study holographic models dual

to both these formulations and map them one-to-one via a careful analysis of boundary

conditions. We propose a new simple holographic model of viscoelastic hydrodynamics by

adopting an alternative quantisation for the scalar fields.
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1 Introduction

When undergoing deformations, most observable materials are known to exhibit both elas-

tic and viscous responses. Due to the coupling between fluid and elastic behaviour, such

materials are said to be viscoelastic. Despite being a century old subject and an active re-

search field with multiple technological applications [1], the understanding of viscoelastic-

ity has been mostly based on phenomenological models that assume linear strain responses

such as the Kelvin-Voigt model, Maxwell model and the Zener model as well as on some

nonlinear generalisations thereof (see e.g. [2]). Several efforts have been made in order

to formulate viscoelasticity from general principles. In particular, the work of Eckart [3]

was the key towards the geometrisation of strain and the introduction of the notion of a

dynamical material reference state. More recently, works based on non-equilibrium ther-

modynamics have brought some of these aspects to covariant form in the non-relativistic

context [4, 5] and in the relativistic context [6–8] and recovered the stresses and rheology of

a few of the above mentioned viscoelastic models. However, while significant, these works

have not characterised the full interplay between fluid and elastic behaviour due to defin-

ing assumptions. The aim of this paper is to provide such a full characterisation, under

relaxable conditions, in the hydrodynamic regime.

According to Maxwell, the defining property of viscoelasticity is the capacity for con-

tinuous media to exhibit elasticity at short time scales and fluidity at long time scales

compared to the strain relaxation time [9, 10]. If the relaxation time is very large, fluid

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
6

and elastic behaviour can coexist in the hydrodynamic limit. This is the realm of (liq-

uid) crystal theory. We are thus interested in a long-wavelength long-distance effective

description of crystals. A crystal is characterised by a regularly ordered lattice of points

(atoms or molecules) discretely distributed over space. More generally, the lattice cores

that constitute the crystal can be higher dimensional, such as strings and surfaces, where

the atoms/molecules have no positional ordering within the cores and can move freely like

a “liquid”. These crystals are called liquid crystals. Crystals may be present in different

phases, such as elastic (solid) phase, smectic or nematic, among others (see e.g. [11, 12]).

In the non-relativistic context, the hydrodynamics of (liquid) crystals has been considered

in several works [11, 13, 14] but these treatments assume isotropy, no external currents and

do not explicitly derive the constitutive relations and stress/strain relations that couple the

fluid and elastic degrees of freedom. In this paper we focus on describing the elastic and

smectic phases within a modern framework of hydrodynamics, which includes effective field

theory [15], offshell adiabatic analysis [16, 17], and hydrostatic partition functions [18, 19].

Crystals in the elastic and smectic phases are states of matter with spontaneously bro-

ken translational symmetries. The corresponding scalar Goldstones φI with I = 1, 2, . . . , k

associated with the broken translation generators form the basis of classical elasticity ef-

fective field theory (see e.g. [20, 21]) and are the fundamental fields that enter the hy-

drodynamic description, as in [13, 14]. When k = d, the number of spatial dimensions,

the theory describes an elastic crystal with all its translation symmetries spontaneously

broken, while a generic k 6= d describes a smectic crystal with only a subset of translations

broken. We note here that the scalars φI determine the position of the crystal cores and,

in the absence of disclinations and dislocations, are surface forming. Thus their spacetime

gradients can be used to define an induced metric on the transverse space to the crystal

cores via a pullback map. This induced metric, when compared against the crystal intrin-

sic metric defining its reference state, is a measure of strain induced in the crystal that

takes non-zero values when the Goldstone scalars acquire a non-trivial expectation value.

We use these realisations to formulate a hydrodynamic description of anisotropic (liquid)

crystals with nonlinear strains of arbitrary strength under the assumptions of (i) absence

of dislocations and disclinations, (ii) lattice homogeneity (i.e. invariant under φI → φI +aI

with aI being a constant translation), and (iii) non-dynamical intrinsic crystal metric (i.e.

the crystal reference state does not change in time and thus we do not consider plastic

deformations). Within this formulation, we describe the structure of first order elastic

responses and transport properties of viscoelastic fluids in a long-wavelength expansion. In

the elastic phase of isotropic crystals and under the assumption of linear strain responses,

we uncover 5 extra transport coefficients that have not been considered in the literature.

Recently, it has been argued that viscoelastic hydrodynamics can be recast as a the-

ory of higher-form hydrodynamics making its global symmetries manifest and avoiding the

need to introduce microscopic dynamical fields [22]. This follows the recent line of research

where hydrodynamic systems with dynamical fields, such as magnetohydrodynamics with

dynamical gauge fields, are recast in terms of dual hydrodynamic systems with higher-

form symmetries [23–28]. Building up on this idea, here we provide a completely equiva-

lent description of viscoelastic hydrodynamics of anisotropic (liquid) crystals in arbitrary
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spacetime dimensions by identifying the correct degrees of freedom of higher-form hydrody-

namics. The resulting theory describes higher-form superfluidity in which the higher-form

symmetries are partially broken (as in the context of magnetohydrodynamics [26, 27]).

The usefulness of this formulation resides in the fact that the hydrodynamic description

can be recast entirely in terms of symmetry principles where the trivial conservation of the

higher-form current JI = ?dφI , with ? being the Hodge operator in d + 1 dimensions, is

a consequence of the absence of defects (e.g. disclinations or dislocations). We provide an

exact map between the two formulations.

The lack of control over viscoelastic theories and the absence of complete formulations

have prompt a series of works where holographic methods are employed to study putative

strongly coupled viscoelastic theories and probe regimes of elasticity and fluidity (e.g. [22,

29–36]). Two types of models have been considered in the literature: gravity coupled

to a set of scalar fields ΦI [30, 31, 33] (and with additional fields [31, 32]) and gravity

minimally coupled to a set of higher-form gauge fields BI [22]. The former is supposed

to describe the dynamics of viscoelastic materials with spontaneously broken translation

symmetries while the latter is supposed to describe viscoelastic theories with higher-form

currents (see also [37, 38]). However, the establishment of a precise map between the two

hydrodynamic formulations has prompt us to investigate whether such a map exists at the

level of holographic models. Indeed, a careful analysis of boundary conditions has led us

to propose a simple model of viscoelasticity consisting of a set of scalars ΦI minimally

coupled to gravity but with an alternative quantisation for the scalar fields and a double

trace deformation of the boundary theory. The model is thus the linear axion model

of [39] (see also e.g. [40–42]) used in the context of momentum relaxation [43, 44] but

which does not treat the fields ΦI as background fields (as in the setting of forced fluid

dynamics [45, 46]). Instead, the scalar fields are dynamical fields, as in a viscoelastic theory

where the Goldstone scalars have inherent dynamics.

Summarising, in this paper we make the following advancements and solve the following

problems/issues:

• We provide a complete formulation of nonlinear viscoelastic hydrodynamics of

anisotropic (liquid) crystals in terms of Goldstone scalars of spontaneously broken

symmetries up to first order in a long-wavelength expansion. We derive the Joseph-

son equations for the Goldstone modes, akin to that found in the context of superflu-

ids [47]. We provide a classification of the response and transport of linear isotropic

materials and recover Kelvin-Voigt materials as a special case.

• We formulate the same theory of nonlinear viscoelastic hydrodynamic in terms of a

higher-form superfluid by identifying the correct hydrodynamic degrees of freedom.

This formulation, based on generalised global symmetries, provides an organisation

principle and a first principle derivation of viscoelastic hydrodynamics that does not

involve additional microscopic dynamical fields.

• We provide holographic models for both these formulations in D = 4, 5 bulk spacetime

dimensions as well as a map between the two models corresponding to each of the
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formulations. We identify the boundary conditions and boundary action necessary

for obtaining holographic viscoelastic dynamics with the simple model of [39].

This paper is organised as follows. In section 2 we review the classical elasticity effective

field theory in terms of the Goldstones of broken translational symmetries. However, we

reformulate it in terms of surface calculus, which besides aiding in understanding the appro-

priate degrees of freedom of viscoelasticity, also leads to a precise covariant geometrization

of elastic strain. In section 3 we formulate viscoelastic hydrodynamics in terms of Goldstone

scalars up to first order in a derivative expansion. We obtain the Josephson conditions and

construct a hydrostatic effective action that characterises the equilibrium viscoelastic states

in the theory. We also study the rheology equations and comment on phenomenological

viscoelastic models. In section 4 we formulate the same theory as a novel theory of higher-

form superfluidity, generalising [25–27] to arbitrary d-dimensional higher-form currents. In

this section, we also provide a detailed map between the two formulations. Section 5 is

devoted to the construction of holographic models of viscoelastic dynamics and provides

appropriate holographic renormalisation procedures. It also contains a study of conformal

viscoelastic fluids. In section 6 we conclude with a summary of the results obtained in this

paper together with interesting future research directions. We also provide further details

on the geometry of crystals in appendix A, while in appendix B we give the details of

hydrostatic constitutive relations. Finally, in appendix C we provide precise comparisons

between our different formulations and earlier ones in the literature.

2 Broken translations and elasticity

Utilising elements from earlier formulations (e.g. [20, 21, 48]), where Goldstones of sponta-

neously broken translational symmetries play a key role, we introduce a classical effective

field theory for crystals exhibiting solid and smectic phases. As mentioned in the intro-

duction, crystals arrange themselves into a structured lattice of points, strings, or surfaces

(generically called lattice cores). In order to deal with this wide range of higher-dimensional

objects, we present a new reformulation of classical elasticity effective field theory in terms

of surface calculus, which proves to be useful in later sections for tackling the hydrodynamic

regime of liquid crystals. In particular, this formulation provides a simple and covariant

notion of strain and allows us to cover solid and smectic phases simultaneously. We begin

with zero temperature considerations, moving on to finite temperature effects towards the

end of this section.

2.1 Effective field theory of crystals

2.1.1 Crystal cores and strain

We consider (d + 1)-dimensional spacetimes where d is the number of spatial dimensions.

In the continuum limit, valid at long distances and low energies, the worldsheets of (d−k)-

dimensional crystal cores can be parametrised by a set of k spacetime dependent one-forms

eIµ(x) normal to the cores, with I = 1, 2, . . . k ≤ d. Point-like cores correspond to k = d,

string-like to k = d − 1, and so on. In general, these normal one-forms have an inherent
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spacetime dependent GL(k) ambiguity due to arbitrary normalisation: eIµ → M I
J e

J
µ with

M I
J ∈ GL(k). We keep this redundancy unfixed for now by allowing for a local GL(k)

symmetry in the effective theory.

Given that the background spacetime is equipped with a metric gµν (which can be set

to ηµν = diag(−1, 1, 1, . . .) for crystals in flat space), the physical distance between the

cores is determined using the crystal metric

ds2
crystal = hIJ(eIµdxµ)(eJνdxν) , (hIJ) = (hIJ)−1 , hIJ = gµνeIµe

J
ν . (2.1)

The metric hIJ is the transverse metric to the crystal cores, obtained by projecting the

spacetime metric along the normal one-forms. The indices I, J, . . . can be raised/lowered

using hIJ and hIJ . For later convenience, we also define a pair of spacetime projectors

transverse and along the crystal cores by pushing forward the crystal metric

hµν = hIJe
I
µe
J
ν , h̄µν = gµν − hµν , (2.2)

where h̄µν is the longitudinal projector and hµν the transverse projector. On the other hand,

the crystal also carries an intrinsic reference metric that captures the lattice structure of

the crystal and determines the “preferred” distance between the cores when no external

factors are at play. We define this reference metric as

ds2
reference = hIJ(eIµdxµ)(eJνdxν) , (2.3)

where hIJ is an arbitrary non-singular symmetric matrix. The difference between the two

metric tensors on the crystal defines the strain tensor

uIJ =
1

2
(hIJ − hIJ) , uµν = uIJe

I
µe
J
ν , (2.4)

which captures distortions of the crystal away from its reference configuration. Subjecting

a crystal to a strain, i.e. distorting the crystal, causes stress depending on the physical and

chemical properties of the material that constitute the crystal. Within an effective field

theory framework, we will attempt to characterise the most generic such responses, given

the symmetries of the crystal.

2.1.2 Crystal fields

It is a known result in differential geometry of surfaces that a generic set of one-forms

eIµ does not have to be surface forming, i.e. there might not exist a foliation of crystal

core worldsheets normal to all the eIµ. For this to be the case, one needs to invoke the

Frobenius theorem, ensuring that there must exist a set of spacetime one-forms aIνJ such

that ∂[µe
I
ν] = −aI[µJe

J
ν]. As a consequence, the variations of the one-forms eIµ are not

independent and we cannot use them or the strain tensor uIJ directly as fundamental

degrees of freedom in the effective theory of crystals. To get around this nuisance, we

assume that the normal one-forms can locally be spanned by a set of k closed one-forms,

i.e. eIµ(x) = ΛIJ(x)∂µφ
J(x), where ΛIJ(x) is an arbitrary invertible matrix and φI(x)

are possibly multi-valued smooth scalar fields. This choice corresponds to the crystal
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core worldsheets being level surfaces of the functions φI(x) and satisfies the Frobenius

condition as ∂[µe
I
ν] = −ΛIK∂[µ(Λ−1)KJ e

J
ν]. The fields φI(x), which we refer to as crystal

fields, describe the position of the crystal structure in the ambient spacetime. These crystal

fields can be physically understood as Goldstones of spontaneously broken translations. If

the crystal does not have any topological defects such as dislocations or disclinations, the

fields φI(x) can be taken to be single-valued and well-behaved (see e.g. [49]).

Recall that we had an arbitrary GL(k) renormalisation freedom in eIµ, which we can

now fix by setting ΛIJ(x) to the identity matrix. Consequently,

eIµ = ∂µφ
I , (2.5)

and the physical and reference metrics of the crystal can be expressed as

ds2
crystal = hIJdφIdφJ , ds2

reference = hIJdφIdφJ . (2.6)

We should note that as such, like in any field theory, there is an arbitrary redefinition

freedom in the choice of the fundamental crystal fields φI . This will be useful later.

2.1.3 Plasticity, homogeneity, and isotropy

Generically, the reference metric hIJ(x) of the crystal is a dynamical field and can evolve

independently with time. This physically describes “plastic materials” for which the applied

strain can permanently deform the internal structure of the crystal over time. In this work,

however, we will focus on “elastic materials”, wherein we assume that hIJ(x) = hIJ(φ(x)),

i.e. the reference metric is an intrinsic property of the crystalline structure and is not

dependent on a particular embedding of the crystal into the spacetime. The functional

form of hIJ(φ) is a property of the physical system under observation and needs to be

provided as input into the theory.

Furthermore, the crystals we wish to describe using this effective field theory are homo-

geneous in space at macroscopic scales. Therefore, there exists a choice of crystal fields φI

such that the reference metric hIJ is constant and the theory is invariant under a constant

shift φI → φI + aI . In fact, for homogeneous crystals, we can utilise the φI redefinition

freedom to set the reference metric to be the Kronecker delta, that is

hIJ = δIJ . (2.7)

This leaves just a global SO(k) rotation freedom among φI , i.e. φI → ΩI
J φ

J where ΩI
J is

a constant matrix valued in SO(k). As long as we properly contract the I, J, . . . indices, we

do not need to worry about this redundancy while constructing the effective field theory.

Finally, if we wish to describe a crystal that is isotropic at macroscopic scales (possibly

due to randomly oriented crystal domains), we can impose the aforementioned global SO(k)

freedom of φI as an invariance of the theory. Along with the constant shift invariance due to

homogeneity, this results in a Poincaré invariance on the field space. Practically, it means

that besides eIµ and Kext
I , the field space indices I, J, . . . in the theory can only enter via

the reference metric δIJ . If, instead, the crystal under consideration has long-range order,

– 6 –
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the parameters of the effective theory can be arbitrary rank tensors on the field space.1 We

provide further details on the geometry of crystals in appendix A. In the bulk of this work

we will assume the crystals being described to be “elastic” and “homogeneous”, while no

assumption is made regarding isotropy except in some explicit examples.

2.2 Elasticity at zero temperature

Previously we have introduced the geometric notions required to describe crystals but we

have not yet attributed dynamics to the crystal fields. Here we consider classical elasticity

field theory at zero temperature, for which the dynamics follows from an action principle

that is written in terms of the appropriate crystal fields (determined earlier to be φI).

2.2.1 Effective action

We posit that our theory of interest is described by an effective action with functional

form S[φI ; gµν ], where φI are the dynamical Goldstones of broken translations and gµν is

taken to be a background metric field. We focus on homogeneous crystals, for which the

action is invariant under a constant translation of the crystal fields φI(x) → φI(x) + aI

and all the dependence on φI appears via its derivatives eIµ = ∂µφ
I . The action can then

be parametrised as

S[φI ; gµν ] =

∫
dd+1x

√
−gL(eIµ, gµν , ∂µ) . (2.8)

We define the crystal momentum currents by varying the action with respect to eIµ = ∂µφ
I ,

that is

σµI = − 1√
−g

δS

δeIµ
. (2.9)

Given homogeneity, the equations of motion for φI simply imply the conservation of crystal

momentum currents

∇µσµI +Kext
I = 0 , (2.10)

where Kext
I is a background field, which can be understood as an external force sourcing the

crystal fields.2 The conservation eq. (2.10) is not protected by any fundamental symmetry

and will in general be violated by thermal corrections as we will see in the next section.

If we further assume that all the dependence on eIµ comes via hIJ or equivalently uIJ ,

the crystal currents can also be obtained by varying the action with respect to the strain

tensor3

σµI = σIJe
Jµ , σIJ =

1√
−g

δS

δuIJ
= −2hIKhJL√

−g
δS

δhKL
. (2.11)

1This structure only pertains to the geometric structure of the crystal itself. In general the

atoms/molecules occupying the lattice sites can also carry other preferred vectors like spin or dipole moment

which will need to be considered independently.
2In order to obtain Kext

I in (2.10) we have allowed for couplings to the external background field of the

form φIKext
I in (2.8).

3An exception to this comes from a dependence on the transverse derivatives h̄µνe[Iλ∇νeJ]λ .
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Finally, we can obtain the energy-momentum tensor of the theory by varying the action

with respect to the background metric

Tµν =
2√
−g

δS

δgµν
. (2.12)

Given that the action as constructed is invariant under background diffeomorphisms, the

energy-momentum tensor is conserved, modulo background sources4

∇µTµν = −Kext
I eIν . (2.13)

2.2.2 Linear isotropic materials at zero temperature

As an illustrative example, we consider classical elasticity theory where all the dependence

of eIµ comes via the strain hIJ , and expand the Lagrangian in a small strain expansion. In

the case of homogeneous crystals, the strain is given by uIJ = 1
2(hIJ − δIJ) and the most

generic such effective action for an isotropic crystal at zero-derivative order and quadratic

in strain is given by5

L =
1

2
P log deth− 1

2
CIJKLuIJuKL +O(u3

IJ , ∂) . (2.14)

Here CIJKL is the elasticity tensor of the crystal

CIJKL = BhIJhKL + 2G

(
hK(IhJ)L − 1

k
hIJhKL

)
, (2.15)

and the coefficients B and G are the bulk modulus and shear modulus of the crystal

respectively, whereas P does not have a standard physical interpretation in the literature.

In eq. (2.15), we have chosen to express the coefficients using hIJ for convenience, but we

could equivalently have used δIJ . This choice leads to the same physical currents up to

linear order in strain. By varying the action with respect to hIJ , we can read out the

crystal momenta

σµI = P eµI −BuKK e
µ
I − 2G

(
uIJ −

1

k
hIJu

L
L

)
eJµ +O(u2, ∂) . (2.16)

On the other hand, the energy-momentum tensor is given by

Tµν = L gµν + σµI e
Iν

= P
(
hµν + uλλg

µν
)
− 2G

(
uµν − 1

k
hµνuλλ

)
−Buλλ h

µν +O(u2, ∂) . (2.17)

4At zero derivative order, where all the dependence on the metric in the Lagrangian comes via hIJ as

well, the energy momentum tensor reads Tµν = L gµν + σIJe
IµeJν . This leads to the well known definition

of stress tensor as the conjugate to strain T IJ = TµνeIµe
J
ν = LhIJ +∂L/∂uIJ (see for example section 6.3.3

of [11]).
5Note that 1

2
log det(hIJ) = 1

2
log det(δIJ + 2uIJ) = hIJuIJ +hI(KhL)JuIJuKL +O(u2). So, generically,

the P term here can also be replaced by the term linear in strain hIJuIJ by redefining B and G.
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The bulk modulus B and the shear modulus G couple to the trace and traceless parts of

strain, respectively, in the energy-momentum tensor. The coefficient P, on the other hand,

gives a constant pressure contribution along the field directions in the energy-momentum

tensor, modelling a repulsion between lattice points. Such crystals cannot be supported

without non-trivial boundary conditions on their surface. For most phenomenological ap-

plications, the lattice points are effectively neutral and the coefficient P can be dropped.

However, as we will see in section 5, this coefficient appears naturally in holographic models

of elasticity.

2.3 Heating up the crystals

So far we have focused on the effective field theory describing crystals at zero temperature.

However, for the phenomenological applications that we have in mind, we need to take into

account the effects of finite temperature. In this section we discuss crystals in thermody-

namic equilibrium using the Matsubara formalism of finite temperature field theory and

introduce the equilibrium effective action. Towards the end we motivate the hydrodynamic

formulation of crystals seen as small dynamical perturbations around thermodynamic equi-

librium, which we later elaborate in section 3.

2.3.1 Equilibrium effective action

The fundamental entity of interest at finite temperature is the thermal partition function

written in a given statistical ensemble. However, our understanding of a complete partition

function describing arbitrary non-equilibrium thermal processes in a quantum field theory

is still very limited. Nevertheless, if we focus on just equilibrium (time-independent states)

in the theory, the grand canonical partition function can be computed using the Matsubara

imaginary time formalism

Zeqb =

∫
DφI exp

(
−Seqb

)
. (2.18)

Here Seqb is the equilibrium effective action of the theory that is, naively, obtained by Wick

rotating the Lorentzian action S. It should be noted that defining the partition function

above requires us to pick a preferred time coordinate with respect to which the equilibrium

is defined and with respect to which the Wick rotation is to be performed. Consequently,

in an effective field theory approach, the equilibrium effective action Seqb can contain many

new terms dependent on the preferred timelike vector that have no analogue in the original

zero temperature effective action S. To make this precise, let us define Kµ = δµt /T0 to

be the preferred timelike vector, with T0 being the inverse radius of the Euclidean time

circle interpreted as the global temperature of the thermal state under consideration. The

requirement of equilibrium implies that the Lie derivative of the constituent fields gµν and

φI along Kµ is zero, leading to

δK gµν = 2∇(µKν) =
1

T0
∂tgµν = 0 , δK φI = KµeIµ =

1

T0
∂tφ

I = 0 . (2.19)
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The equilibrium effective action and the resulting thermal partition function for a

crystal can be schematically represented as

Seqb[φI ; gµν ] =

∫
Σ

dσµ (Nµ)eqb(Kµ, eIµ, gµν , ∂µ)

=
1

T0

∫
ddx
√
−gLeqb(Kµ, eIµ, gµν , ∂µ) ,

Zeqb[gµν ] =

∫
DφI exp

(
−Seqb[φI ; gµν ]

)
. (2.20)

The integral in the first line is performed over a constant-time Cauchy slice Σ with the

respective differential volume-element denoted by dσµ. The free-energy current (Nµ)eqb is

conserved

∇µ(Nµ)eqb = 0 , (2.21)

rendering the effective action independent of the choice of Cauchy slice. The finite temper-

ature action, for instance, can have dependence on the scalar K2 = KµKνgµν = gtt/T
2
0 ,

which has no analogue in the zero temperature effective action. This scalar is related to

the local observable temperature Teqb in the field theory (as opposed to the global thermo-

dynamic temperature T0) as

Teqb =
T0√
−gtt

=
1√
−K2

. (2.22)

Once the effective action is at hand, we can work out the finite temperature version of

the φI equations of motion (2.10) with the crystal momentum currents

(σµI )eqb = − 1√
−g

δSeqb

δeIµ
. (2.23)

We can also read out the energy-momentum tensor of the theory in thermal equilibrium

to be

(Tµν)eqb =
2√
−g

δSeqb

δgµν
, (2.24)

which satisfies the conservation equation (2.13) owing to the background diffeomorphism

invariance of the equilibrium effective action.

2.3.2 Linear isotropic materials at thermal equilibrium

Focusing on the model of linear elasticity from section 2.2.2, it is possible to heat it up to

finite temperature while keeping it in equilibrium. At zero-derivative order, the equilibrium

effective action has a form similar to eq. (2.14), except that here we also need to take into

account the dependence on Teqb. We find

Leqb = Pf(Teqb) +
1

2
P(Teqb) log deth− 1

2
CIJKL uIJuKL +O(u3

IJ) +O(∂) , (2.25)

where

CIJKL = B(Teqb)hIJhKL + 2G(Teqb)

(
hK(IhJ)L − 1

k
hIJhKL

)
. (2.26)
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Here Pf is interpreted as the thermodynamic pressure of the crystal, which is purely a finite

temperature effect. Note that at finite temperature, the elastic modulii B and G of the

crystal as well as the crystal pressure P are functions of the local temperature. Varying

the resulting effective action, we can read out

(σµI )eqb = P eµI −Buλλ e
µ
I − 2G

(
uIJ −

1

k
hIJu

λ
λ

)
eJµ +O(u2, ∂) ,

(Tµν)eqb = T 3
eqb

(
∂TeqbPf + ∂TeqbPuλλ

)
KµKν + Pf g

µν

+ P
(
hµν + uλλg

µν
)
− 2G

(
uµν − 1

k
hµνuλλ

)
−Buλλ h

µν +O(u2, ∂) , (2.27)

which enter (2.10) and (2.13) to give the φI equations of motion and energy-momentum

conservation in thermal equilibrium respectively. These can be directly compared to their

zero temperature counterparts in section 2.2.2. The crystal momentum currents remain

similar in form except for the temperature dependence of the coefficients, while the energy-

momentum tensor has a few novel terms. The first of these terms corresponds to the ther-

modynamic energy density while the second to the thermodynamic pressure, as promised.

2.3.3 Leaving equilibrium — hydrodynamics

Although generic non-equilibrium processes in a thermal field theory are not accessible

with the machinery at hand, we can leave equilibrium perturbatively using the framework

of hydrodynamics. The basic premise of hydrodynamics is that we can describe slight

departures from thermal equilibrium by replacing the isometry Kµ with a slowly varying

dynamical field βµ. The time-evolution of these fields is governed by the energy-momentum

conservation (2.13), which in the out of equilibrium context is not trivially satisfied as a

mathematical identity. It is customary to isolate the normalisation piece and re-express

βµ as

βµ =
uµ

T
such that uµuµ = −1 . (2.28)

Here uµ is the fluid velocity and T is the fluid temperature out of equilibrium. Note

that in equilibrium, obtained by setting βµ = Kµ, the temperature T reverts back to its

equilibrium value Teqb in eq. (2.22), while the fluid velocity uµ is just a unit vector along

δµt describing a fluid at rest.

Out of equilibrium, we no longer have the luxury to derive the φI equation of motion

or the conserved energy-momentum tensor using an effective action. Instead we assume

the existence of these as the starting point of hydrodynamics. To wit

KI +Kext
I = 0 , ∇µTµν = −Kext

I eIν . (2.29)

Note that we have replaced ∇µσµI from eq. (2.10) by an arbitrary operator KI out of

equilibrium, making contact with our previous comment that there is no fundamental

symmetry at play to enforce the φI equations of motion to take the form of a conservation

law. As such, KI and Tµν can be arbitrary operators made out of the constituent fields in

the theory. However, the existence of a partition function in thermal equilibrium implies
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that the theory must admit a free energy current Nµ which reduces to the conserved

free-energy current (Nµ)eqb in equilibrium (upon setting βµ = Kµ). Performing a time-

dependent deformation of the equilibrium effective action in eq. (2.20), it is not hard to

convince oneself that

∇µNµ =
1

2
TµνδBgµν +KIδBφ

I + ∆ , (2.30)

where ∆ is at least quadratic in δB. Here δB is defined similar to eq. (2.19) and denotes

Lie derivatives along βµ. This is commonly referred to as the adiabaticity equation and

determines the allowed terms in KI and Tµν in agreement with the equilibrium partition

function.

Generally, hydrodynamic systems are required to satisfy a slightly stronger constraint:

the second law of thermodynamics. It is possible to define an entropy current Sµ =

Nµ − Tµνβν , which upon using eq. (2.30) and eq. (2.29) satisfies

∇µSµ = ∆ . (2.31)

The second law requires that the divergence of the entropy current should be locally positive

semi-definite, forcing ∆ in eq. (2.30) to be a positive semi-definite quadratic form.

Having motivated hydrodynamics of crystals from the viewpoint of thermal field theo-

ries, in the next section we will reintroduce hydrodynamics as its own framework based on

the second law of thermodynamics. We will revisit the hydrodynamic elements discussed

here and work out the equations governing a crystal in the hydrodynamic regime up to

first order in derivatives in agreement with the second law.

3 Viscoelastic hydrodynamics

In this section we formulate viscoelastic hydrodynamics as a theory of viscous fluids with

broken translation invariance, analogous to [13, 14]. This is done by introducing the set of

crystal (scalar) fields, one for each spatial dimension along the crystal, as in the previous

section, which can be seen as Goldstones of broken momenta. Contrary to previously stud-

ied cases of forced fluid dynamics [45] and models of momentum relaxation [44] where the

scalar fields are background fields, these Goldstone fields are dynamical. Their dynamics

is governed by a Josephson-type condition similar to that encountered in the context of

superfluids. We formulate viscoelastic fluids with one-derivative corrections in arbitrary

dimensions and study carefully the case of isotropic crystals with linear responses in strain.

Attention is given to the resulting rheology equations and a linearised fluctuation analysis

is carried out, identifying dispersion relations for phonons and sound modes.

3.1 The setup

As discussed in detail in the previous section, a crystal can be characterised by a set of

normal one-forms eIµ, with I = 1, 2, . . . k. In the hydrodynamic regime, the dynamics of a

viscoelastic crystal is governed by the conservation of energy-momentum tensor

∇µTµν = −Kext
I eIν , (3.1a)
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along with the “no topological defect” constraint that requires the normal one-forms de-

scribing the crystal to be closed

∂[µe
I
ν] = 0 , (3.1b)

and the crystal evolution equations

KI +Kext
I = 0 . (3.1c)

The conservation of the energy-momentum tensor Tµν is being sourced by the external

sources Kext
I coupled to eIµ. It governs the time evolution of a set of hydrodynamic fields:

fluid velocity uµ (normalised such that uµuµ = −1) and fluid temperature T . The con-

straint in eq. (3.1b) can be identically solved by introducing a set of crystal fields φI such

that eIµ = ∂µφ
I . Physically, the crystal fields can be understood as Goldstones of broken

momentum generators.6 The dynamics of these crystal fields themselves is governed by

eq. (3.1c), where KI is an effective macroscopic operator composed of the field content of

the theory. A priori, we do not have any knowledge of the form of this operator. How-

ever, much like Tµν , within the hydrodynamic derivative expansion, constitutive relations

for KI can be fixed using the second law of thermodynamics [47]. Equation (3.1c) is the

finite temperature counterpart of eq. (2.10) but since effective actions for viscoelastic fluids

describing dissipative dynamics have not yet been constructed, there is no first principle

derivation of KI .
7

Hydrodynamics is an effective theory where the most generic constitutive relations

for Tµν and KI are obtained order-by-order in a derivative expansion in terms of the

constituent fields uµ, T , φI and background field gµν . These constitutive relations are

required to satisfy the second law of thermodynamics, which states that there must exist

an entropy current Sµ, whose divergence is positive semi-definite in an arbitrary φI -offshell

configuration. To wit

∇µSµ + βν
(
∇µTµν −KIe

Iν
)

= ∆ ≥ 0 , (3.2)

where βµ is an arbitrary multiplier that can be chosen to be uµ/T using the inherent

redefinition freedom in the hydrodynamic fields. A more helpful version of the second law

is obtained by defining a free energy current

Nµ
elastic = Sµ +

1

T
Tµνuν , (3.3)

which converts eq. (3.2) into the adiabaticity equation

∇µNµ
elastic =

1

2
TµνδBgµν +KIδBφ

I + ∆ , ∆ ≥ 0 , (3.4)

6A closely related formulation of viscoelastic fluids is found in [7], which models viscoelasticity as a sigma

model given by d+ 1 scalar fields, seen as coordinates on an internal worldsheet. We provide a discussion

of the similarities and distinctions between the two formulations in appendix C.1.
7A nice parallel can be made with the theory of magnetohydrodynamics where the crystal fields φI are

replaced by the photon Aµ and the normal one-forms eIµ by the field strength Fµν . The three equations

in (3.1) find their respective analogues in energy-momentum conservation ∇µTµν = −F νρJext
ρ , Bianchi

identity ∂[µFνρ] = 0, and Maxwell’s equations Jµ + Jµext = 0. See [26, 27] for more details.
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where we have denoted the Lie derivatives of gµν and φI along βµ as

δBgµν = 2∇(µβν) , δBφ
I = βµ∂µφ

I = βµeIµ . (3.5)

To obtain the hydrodynamic constitutive relations allowed by the second law of thermody-

namics, we need to find the most generic expressions for Tµν and KI , within a derivative

expansion, which satisfy eq. (3.4) for some Nµ
elastic and ∆. It is thus required to establish a

derivative counting scheme. Following usual hydrodynamic treatments, we consider uµ, T ,

and gµν to be O(1) in the derivative expansion. On the other hand, we treat the derivatives

of the scalars φI as O(1), formally pushing the scalars themselves to O(∂−1). We also treat

the sources Kext
I coupled to the scalars to be O(∂). This counting scheme is reminiscent

of the one employed in the context of superfluids, and guarantees that the crystal cores

composing the lattice, which are responsible for the elastic behaviour, appear at ideal order

in the constitutive relations. Thus, we will be describing viscoelastic fluids with arbitrary

strains, avoiding working in the restrictive regime of small strains as in [7].

Similar to the case of magnetohydrodynamics with dynamical gauge fields, not all

terms in the adiabaticity equation (3.4) appear at the same derivative order. In particular,

δBφ
I is O(1) while δBgµν is O(∂). This leads to order mixing in the constitutive relations,

that is, the same transport coefficients can appear across derivative orders, forcing the

analysis of the constitutive relations to consider multiple derivative orders simultaneously

— an expression of one of the fallbacks of hydrodynamic formulations with dynamical

fields. In section 4, we show that this problem can be avoided by working instead with

formulations in terms of higher-form symmetries.

3.2 Ideal viscoelastic fluids

Given the establishment of a derivative counting scheme, we can use the adiabaticity equa-

tion (3.4) in order to find the constitutive relations of a viscoelastic fluid at ideal order. It

is possible to infer that at leading order in derivatives, the adiabaticity equation has the

solution

KI = −TσIJδBφJ +O(∂) , T µν = Nµ
elastic = O(1) , ∆ = TσIJδBφ

IδBφ
J +O(∂) . (3.6)

The coefficient matrix σIJ can be arbitrary except that its eigenvalues are constrained to

be positive semi-definite.8 Noting that KI
ext = O(∂), the φI equation of motion (3.1c)

requires that

uµ∂µφ
I = O(∂) . (3.7)

This is the equivalent of the Josephson equation for superfluids and implies that the crystal

fields are stationary at ideal order in derivatives.9 In practice, this equation algebraically

8The symbol σ has been used to draw a parallel with the respective term in magnetohydrodynamics,

where higher-form fluids find another useful application [26, 27]. There, the non-hydrodynamic field is

the electromagnetic photon Aµ with the respective equation of motion given schematically as Jµ = . . . −
TσPµνδBAν + . . . = −Jµext.

9Note that, unlike superfluids, we do not have a chemical potential whose redefinition freedom could

be used to absorb the plausible derivative corrections in eq. (3.7). Technically, the fluid velocity itself
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determines the time-derivatives of the crystal fields. It is useful to define the independent

spatial derivatives of the crystal fields as

P Iµ = Pµν∂νφ
I , (3.8)

where Pµν = gµν + uµuν is the projector orthogonal to the fluid velocity. The spatial

derivatives (3.8) capture all the onshell independent information contained in φI .

In order to proceed further, we consider eq. (3.4) at one-derivative order, i.e. Nµ
elastic

and Tµν appear at ideal order in derivatives order while KI only appears at one-derivative

order. The most generic constitutive relations are characterised by a free-energy current

of the form

Nµ
elastic = P (T, hIJ ;hIJ)βµ +O(∂) , (3.9)

where the fluid pressure P (T, hIJ ;hIJ) is an arbitrary function of all the zero-derivative

scalar fields in the theory, namely, the temperature T and the crystal metric hIJ = gµνeIµe
J
ν .

In particular we have allowed for an independent dependence on each component of hIJ .

Additionally, hIJ labels the reference state of the material but has no inherent dynamics

so hereafter we omit it for simplicity. Introducing (3.9) in the adiabaticity equation (3.4)

and noting that ∇µ(Pβµ) = δBP + 1
2Pg

µνδBgµν along with

δBT =
T

2
uµuνδBgµν , δBh

IJ = −eIµeJνδBgµν + 2e(Iµ∇µδBφJ) , (3.10)

we find the ideal viscoelastic fluid constitutive relations

Tµν = (ε+ P )uµuν + Pgµν − rIJeIµeJν +O(∂) ,

KI = −TσIJδBφJ −∇µ
(
rIJe

Jµ
)

+O(∂) ,

Nµ
elastic =

1

T
Puµ − rIJeIµδBφJ +O(∂) , (3.11)

with ∆ remaining the same as eq. (3.6). In writing (3.11), we have defined the thermody-

namic relations

dP = sdT +
1

2
rIJdhIJ , ε+ P = sT . (3.12)

Thus, we can identify P as the thermodynamic pressure, ε as the energy density, s as the

entropy density, and rIJ as the thermodynamic stress that models elastic responses. The

φI equation of motion now becomes

uµ∂µφ
I = (σ−1)IJ

[
Kext
J −∇µ

(
rJKe

Kµ
)]

+O(∂) . (3.13)

The constitutive relations (3.11) are quite general at this point but we will specialise to the

case of an isotropic viscoelastic fluid later in section 3.4 leading to more familiar expressions.

serves as a chemical potential along spontaneously broken translations. To see this, one can expand the

Goldstones along a reference position as φI = δIi x
i + δφI and note that eq. (3.7) becomes u0∂0δφ

I =

−δIi ui − ui∂iδφI +O(∂). One can in principle absorb the derivative corrections into the redefinitions of ui,

but such redefinitions will be incompatible with the manifest Lorentz covariance of the theory.
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It is worth noticing that the same transport coefficient P (T, hIJ) that is introduced at zero-

derivative order in Nµ
elastic, appears at zero-derivative order in Tµν but at one-derivative

order in KI (via thermodynamic relations). However, as we will see in the next subsection,

both Tµν and KI get further corrections at one-derivative order. Hence, the constitutive

relations for KI mix different derivative orders. This is the manifestation of order-mixing

that we alluded to above.

For later use, it is helpful to explicitly write the energy-momentum conservation equa-

tions eq. (3.1a), given the constitutive relations (3.11). In particular, we find

T∇µ(suµ) = (σ−1)IJ
[
Kext
I −∇µ

(
rIJe

Jµ
)] [

Kext
J −∇µ

(
rJKe

Kµ
)]

+O(∂2) ,

sT PKν
(

1

T
∂νT + uµ∇µuν

)
+
[
Kext
I −∇µ

(
rIJe

Iµ
)]
PKνeIν = O(∂2) , (3.14)

or equivalently

δB(Ts) +
Ts

2
gµνδBgµν = TσIJδBφ

IδBφ
J +O(∂2) ,

PKν
(
sTuµδBgµν + σIJe

I
νδBφ

J
)

= O(∂2) . (3.15)

Formally, these equations can be used to eliminate uµδBgµν at one-derivative order in

favour of P IµP JνδBgµν and δBφ
I .

3.3 One derivative corrections

The philosophy implemented for ideal viscoelastic fluids can also be extended to include

one-derivative corrections to the constitutive relations. For simplicity, we focus on the

elastic phase of crystals (as opposed to liquid crystals) for which k = d. The derivative

corrections can naturally be classified into hydrostatic and non-hydrostatic constitutive

relations: those that do not vanish when promoting βµ = uµ/T to an isometry and those

that do vanish, respectively (see [47]).

In order to characterise the hydrostatic sector, we need all the one-derivative hydro-

static scalars that will make up the respective hydrostatic free-energy current. For this

purpose, we list all the hydrostatic one-derivative structures

Pµν∂νT , 2PµρP νσ∂[ρuσ] , P ρ(µP ν)σ∇ρeIσ . (3.16)

The presence of the vectors uµ and eIµ in the theory completely breaks the Poincaré

invariance, so we can convert all of these into independent scalars10

1

T
eIµ∂µT , 2TeIµeJν∂[µuν] , eIµ∂µh

JK . (3.17)

When k 6= d, this is no longer true and the counting of independent scalars needs to be more

carefully implemented. Supplementing with arbitrary transport coefficients f1
I , f

2
[IJ ], f

3
I(JK)

10Note that 2e(IρeJ)σ∇ρeKσ = 2e(Iρ∇ρhJ)K − eKσ∇σhIJ .
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as functions of T and hIJ , we construct the hydrostatic free energy density at first order

in derivatives as

N = P + f1
I

1

T
eIµ∂µT + 2Tf2

[IJ ]e
IµeJν∂[µuν] + f3

I(JK)e
Iµ∂µh

JK +O(∂2) , (3.18)

with Nµ
elastic,hs = N βµ. Noting that ∇µ(Nβµ) = δBN + 1

2N g
µνδBgµν and using the

adiabaticity equation (3.4), we can read off the respective modified hydrostatic constitutive

relations (see appendix B for details). The free energy density is defined up to total

derivative terms. Hence, is possible to use the total derivative term ∇µeIµ to eliminate the

trace part of f3
I(JK) ∼ f3T

I hJK and take f3
I(JK) to be traceless in the JK indices without

loss of generality.

In the non-hydrostatic sector, the constitutive relations are the most generic expres-

sions that involve δBgµν and δBφ
I . At one-derivative order, the contribution to the re-

spective free energy density happens to be zero, while the actual constitutive relations are(
T nhs
IJ

Knhs
I

)
= −T

(
ηIJKL χIJK
χ′IKL σIK

)(
1
2P

KµPLνδBgµν
δBφ

K

)
. (3.19)

We have defined Tµνnhs = P IµP JνT nhs
IJ and have used the first order conservation equa-

tions (3.15) to eliminate uµδBgµν as well as to set the Landau frame condition Tµνnhsuν = 0.

The associated quadratic form is given as

T∆ =

(
1
2P

IµP JνδBgµν
δBφ

I

)T(
ηIJKL

1
2(χIJK + χ′IJK)

1
2(χIKL + χ′IKL) σIK

)(
1
2P

KµPLνδBgµν
δBφ

K

)
.

(3.20)

The second law (3.4) requires that all the eigenvalues of the coefficient matrix are non-

negative.

To summarise, the constitutive relations of a viscoelastic fluid, including the most

generic one derivative corrections, are given by

Tµν = (ε+ P )uµuν + Pgµν − rIJeIµeJν + Tµνf1 + Tµνf2 + Tµνf3

− P IµP JνηIJKLPKρPLσ∇(ρuσ) − P IµP JνχIJKuρ∂ρφK +O(∂2) , (3.21)

where the contributions Tµνfi are given in appendix B.3. The φI equations of motion

modify to

uµ∂µφ
I = (σ−1)IJ

[
Kext
J −∇µ

(
rJKe

Kµ
)
− χ′JKLPKµPLν∇(µuν)

]
+O(∂2) , (3.22)

which is now correct up to two derivative terms. These constitutive relations describe the

dynamics of a viscoelastic fluid fully non-linearly in strain. In the next subsection we focus

on the linear regime.

3.4 Linear isotropic materials

For concreteness, we study the constitutive relations of an isotropic viscoelastic fluid. In

this case, all the I, J, . . . indices appear due to the crystal metric hIJ and the reference

metric hIJ . For simplicity, we work linearly in strain uIJ = 1
2(hIJ − hIJ), though the

formalism introduced previously is sufficient to handle any possible non-linearities.
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3.4.1 Constitutive relations

Firstly, we note that we cannot construct an odd-rank tensor or an antisymmetric 2-tensor

(in field space) using just hIJ and hIJ . Therefore we are forced to set

f1
I = f2

[IJ ] = f3
I(JK) = χIJK = χ′IJK = 0 , (3.23)

and hence the hydrostatic sector (3.18) at one-derivative order is rendered trivial. The

ideal order pressure P can be expanded up to quadratic terms in strain as

P (T, hIJ) = Pf(T ) +
1

2
P(T ) log deth− 1

2
CIJKLuIJuKL +O(u3) , (3.24)

where

CIJKL = B(T )hIJhKL + 2G(T )

(
hK(IhJ)L − 1

k
hIJhKL

)
. (3.25)

This should be contrasted with the zero-temperature Lagrangian density in eq. (2.14). We

have expanded the pressure up to quadratic terms because their derivatives can generically

contribute to the constitutive relations with terms linear in strain via thermodynamics

(see (3.12)). Thus

P = Pf + Puλλ +O(u2) , ε = sT − Pf −Puλλ +O(u2) , s = ∂TPf + ∂TPuλλ +O(u2) ,

rIJ = −PhIJ + Buλλ hIJ + 2G

(
uIJ −

1

k
hIJu

λ
λ

)
+O(u2) . (3.26)

In the non-hydrostatic sector, we can expand the coefficients ηIJKL and σIJ linearly in

strain and obtain

ηIJKL = 2
(
η + ηu1 u

λ
λ

)(
hIKhJL −

1

k
hIJhKL

)
+
(
ζ + ζu1 u

λ
λ

)
hIJhKL

+ 2ηu2

(
hIKuJL −

1

k
hIJuKL −

1

k
uIJhKL +

1

k2
uλλhIJhKL

)
+ 2ζu2

(
hIJu〈KL〉 + u〈IJ〉hKL

)
+ 2ζ̄u

(
hIJu〈KL〉 − u〈IJ〉hKL

)
+O(u2) ,

σIJ =
(
σ + σu1 u

λ
λ

)
hIJ + σu2 uIJ +O(u2) , (3.27)

together with the associated quadratic form

T∆ =
1

2


σµν

uλλσµν

u〈µ|σσν〉
σ


T

η 1
2η
u
1

1
2η
u
2

1
2η
u
1 . . . . . .

1
2η
u
2 . . . . . .




σµν

uλλσ
µν

u〈µσσ
ν〉σ

+


Θ

uλλΘ

uµνσ
µν


T

ζ 1
2ζ
u
1 ζu2

1
2ζ
u
1 . . . . . .

ζu2 . . . . . .




Θ

uλλΘ

uµνσ
µν



+


hµνu

ν

uλλhµνu
ν

uµνu
ν




σ 1
2σ

u
1

1
2σ

u
2

1
2σ

u
1 . . . . . .

1
2σ

u
2 . . . . . .




hµνuν

uλλhµνu
ν

uµνuν

+O(u2) . (3.28)

The ellipsis denote terms quadratic or higher order in strain. For positive semi-definiteness,

the leading order transport coefficients η(T ), ζ(T ), and σ(T ) must be all non-negative, while
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the remaining ones are unconstrained. It should be noted that the transport coefficient

ζ̄u does not cause any dissipation, and is an example of non-dissipative non-hydrostatic

transport in hydrodynamics.11 In the end, the complete set of constitutive relations for an

isotropic viscoelastic fluid up to first order in derivatives and linear in strain is given by

Tµν = T∂TPf u
µuν + Pf g

µν − η σµν − ζ ΘPµν

+ T∂TPuλλ u
µuν + P

(
hµν + uλλ g

µν
)
− 2G

(
uµν − 1

k
hµνuλλ

)
−Buλλ h

µν

− ηu1 uλλσµν − ηu2
(
u(µ

σσ
ν)σ − 1

d
Pµνuρσσ

ρσ

)
− 2

(
ζu2 − ζ̄u

)
u〈µν〉Θ

−
(
ζu1 u

λ
λΘ +

(
ζu2 + ζ̄u

)
uρσσ

ρσ
)
Pµν +O(u2) , (3.29)

where we have defined the expansion and shear of the fluid according to

Θ = ∇µuµ , σµν = 2PµρP νσ
(
∇(ρuσ) −

1

d
PρσΘ

)
, (3.30)

and used eq. (2.7). Using eq. (3.22), the φI equation of motion takes the form

uµ∂µφ
I =

1

σ
hIJ

[
Kext
J +∇µ

(
P eµJ −Buλλ e

µ
J − 2G

(
uJK −

1

k
hJKu

λ
λ

)
eKµ

)]
− 1

σ2

(
σu1 u

λ
λh

IJ + σu2 u
IJ
) [
Kext
J +∇µ

(
P eµJ

)]
+O(u2) . (3.31)

The first line in eq. (3.29) contains the usual constitutive relations of an isotropic fluid,

with η(T ) being the shear viscosity and ζ(T ) being the bulk viscosity. The terms in the

second line correspond to lattice pressure P(T ), shear modulus G(T ), and bulk modulus

B(T ), decoupled from the fluid except for the temperature dependence of the coefficients,

which are present at zero temperature as well (see section 2.2). When P = 0, then the

second line describes the well-known stresses of Hookean materials. The terms in the third

and fourth lines denote one-derivative corrections that are linear in strain and correspond

to the true coupling between fluid and elastic degrees of freedom. Such terms have not

been explicitly considered in traditional treatments [11, 13, 14] neither in recent ones [4–7]

and represent types of sliding frictional elements in rheology analyses.12

3.4.2 Rheology and phenomenological models

Rheology is the study of stress/strain relations in flowing viscoelastic matter and is tradi-

tionally based on phenomenological models composed of mechanical building blocks de-

signed for the purpose of describing observed properties of matter. The dynamics of

viscoelastic materials studied in this paper is governed by energy-momentum conserva-

tion (3.1a) and the Goldstone equations (3.1c). In order to recast the equations in a more

11We have not investigated constraints arising from Onsager’s relations but it is expected that the non-

dissipative non-hydrostatic coefficient ζ̄u is required to vanish.
12Some of these terms appear in the work of [8] but in the context of the specific conformal limit taken

in [8].
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Figure 1. Material diagrams for the bulk stresses sector of (a) Kelvin-Voigt model and (b)

Bingham-Kelvin model. As all elements are connected in parallel (spring, dashpot and sliding

frictional element) the total stress is given by the sum of each of the individual contributions.

suitable form for comparison with rheology studies, it is useful to consider the implications

of the Josephson condition (3.31), namely

£βuµν =
1

T

(
1

2
σµν +

Θ

d
Pµν

)
+O(∂2) , £βhµν = O(∂2) , (3.32)

where £β denotes the Lie derivative along βµ. These are the rheology equations. The first

equation in (3.32) expresses the relation between the time-evolution of strains and viscous

stresses while the second is a consequence of one of the basic assumptions in this work,

namely, that the reference crystal metric is non-dynamical (i.e. absence of plastic deforma-

tions). This corresponds to the elastic limit in the language of [7] (see also appendix C.1).

Given the rheology equations (3.32), one can compare the constitutive relations found

here with existent viscoelastic models. First of all, it should be noted that the last two

lines in (3.29) describe several couplings between fluid and elastic degrees of freedom and

a proper account of them in material models has not been considered in generality. Doing

so requires introducing many new mechanical building blocks of the sliding frictional type.

For simplicity, we consider the case in which P = ηu1 = ηu2 = ζu1 = ζu2 = ζ̄u = 0 which leads

to the energy-momentum tensor

Tµν = ε uµuν + P Pµν − η σµν − ζ ΘPµν − 2G

(
uµν − 1

d
hµνuλλ

)
−Buλλ h

µν . (3.33)

This form of the stress tensor, together with (3.32), is known as the Kelvin-Voigt model

and usually represented as in figure 1(a), where we have focused on the bulk stresses sector

(i.e. we have depicted the effect of bulk viscosity and bulk elastic modulus) and ignored

the ideal fluid part.

Another model that illustrates the use of coupling terms between elastic and fluid

degrees of freedom is the Bingham-Kelvin model for which P = ηu1 = ηu2 = ζu2 = ζ̄u = 0

and the energy-momentum tensor becomes

Tµν = ε uµuν + P Pµν − ζ ΘPµν −Buλλ h
µν − ζu1 uλλΘPµν , (3.34)
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where we have ignored the shear contribution to the stresses. The last term in (3.34) is

the term responsible for the frictional slide element (black box) depicted in figure 1(b).

The entire possibility of linear responses (3.29) allows for more intricate and rich ma-

terial diagrams. The full nonlinear theory of section 3.3 also allows for nonlinear responses

to strain and hence for the description of non-Newtonian fluids. However, it is not capable

of describing Maxwell-type models or Zener models as these violate the second condition

in (3.32). Such models allow for plastic deformations and require that we consider a dy-

namical reference crystal metric hIJ as in [7]. We intend to pursue this generalisation in

the future.

3.5 Linearised fluctuations

In this section we study linearised fluctuations of equilibrium states of isotropic crystals.

We consider crystals coupled to a flat background gµν = ηµν and vanishing external sources

KI
ext = 0, with static equilibrium configurations given by

uµ = δµt , T = T0 , φI = xI . (3.35)

Note that in equilibrium we have hIJ = δIJ , corresponding to a crystal subjected to no

strain. In general the system also admits solutions of the type φI = αxI corresponding to

a uniform strain. Such configurations are allowed for a space filling crystal, but will need

to be supplied with appropriate boundary conditions if the crystal was finite in extent.

Since such configurations can be obtained by a trivial rescaling of φI ’s, we do not consider

them here.

3.5.1 Modes

Let us consider small perturbation of the equilibrium state parametrised by

uµ = δµt + δuµ with δut = 0 , T = T0 + δT , φI = xI + δφI . (3.36)

Plugging in a plane wave ansatz and solving the equations of motion (3.15) linearly in the

perturbations, we can find the solutions

δuI =

(
1 +

(ω2 + k2)P− k2
(
B + 2d−1

d G + P′2/s′
)

iωσ

)
kIA‖e

i(kIx
I−ωt)

+

(
1 +

ω2P− k2G

iωσ

)
AI⊥ei(kIx

I−ωt) ,

δφI =
i

ω

(
1 +

k2

iωσ

TsP′

s′

)
kIA‖e

i(kIx
I−ωt) +

i

ω
AI⊥ei(kIx

I−ωt) ,

δT =
k2

ω

(
s+ P′

s′
+

(ω2 + k2)P−
(
B + 2d−1

d G
)
k2

iωσs′/s

)
A‖e

i(kIx
I−ωt) . (3.37)

We have suppressed the arguments of various transport coefficients but they are understood

to be evaluated on the equilibrium configuration. In addition, we have omitted the effect
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of viscosities but we consider it explicitly below. Primes denote a derivative with respect

to temperature. We have also used the isotropy of the system to decompose

∂P

∂hIJ

∣∣∣∣
h=α2δ

= −1

2
P(T ) δIJ ,

∂P

∂hIJ∂hKL

∣∣∣∣
h=α2δ

=
1

2
(P(T )−G(T )) δI(LδK)J −

1

4

(
B(T )− 2

d
G(T )

)
δIJδKL ,

σIJ
∣∣
h=α2δ = σ(T ) δIJ , (3.38)

using the same transport coefficients introduced in section 3.4.13 The symbols A‖ and

AI⊥ (with AI⊥kI = 0) denote arbitrary amplitudes corresponding to “longitudinal” and

“transverse” modes respectively. The respective dispersion relations, in small momentum

and frequency regime, are given by

A‖ : ω

(
ω2Ts− k2

(
(s+ P′)2

s′
+ ω

Ts

iσ

P′2

s′

))
+ iω2k2

(
ζ + 2

d− 1

d
η

)
+

(
ω +

Ts

iσ

(
ω2 − s

Ts′
k2
))(

(ω2 + k2)P− k2

(
B + 2

d− 1

d
G

))
= 0 ,

A⊥ : ω2sT +

(
1 +

ωTs

iσ

)(
ω2P− k2G

)
+ iωk2η = 0 . (3.39)

Solving these equations, we find that in the longitudinal sector we have the usual sound

mode along with a new diffusion mode characteristic of a lattice14

ω(k) = ±v‖k − i
Γ‖

2
k2 +O(k3) , ω(k) = −iD‖k2 +O(k3) , (3.40)

where

v2
‖ =

(s+P′)2/s′−P+B+2d−1
d G

Ts+P
, Γ‖ =

T 2s2v2
‖

σ(Ts+P)

(
1− s+P′

Ts′v2
‖

)2

+
ζ+2d−1

d η

Ts+P
,

D‖ =
s2

σs′
−P+B+2d−1

d G

(Ts+P)v2
‖

. (3.41)

On the other hand, in the transverse sector we have another sound mode

ω(k) = ±v⊥k − i
Γ⊥
2
k2 +O(k3) , (3.42)

where

v2
⊥ =

G

Ts+ P
, Γ⊥ =

T 2s2G

σ(Ts+ P)2
+

η

Ts+ P
. (3.43)

13If we were to work around an equilibrium state with φI = αxI , we would get the same expressions, except

that these coefficients will be defined around the new equilibrium state and will not have an interpretation

in terms of linear transport coefficients.
14This diffusion mode was identified in [50] and in holographic setups in [35, 36, 51].
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We see that the transverse sound mode is controlled by the shear modulus G. On the

other hand, the new diffusive mode is controlled by the transport coefficient σ and η. In

the absence of the lattice pressure P, these expressions simplify

v2
‖ =

s

Ts′
+
B+2d−1

d G

Ts
, Γ‖ =

1

σTs

(
B+2

d−1

d
G

)2

+
ζ+2d−1

d η

Ts
, D‖ =

s

σTs′
B+2d−1

d G

v2
‖

,

v2
⊥ =

G

Ts
, Γ⊥ =

G

σ
+
η

Ts
, (3.44)

which might be more familiar to some readers.

For linear stability of the system, the imaginary part of ω(k) must be non-negative.

This leads to the constraints v2
‖, v

2
⊥,Γ‖,Γ⊥, D‖ > 0. In terms of coefficients, assuming that

Ts+ P > 0 and the second law constraints η, ζ, σ ≥ 0, we land on the parameter space

(s+ P′)2

s′
−P + B + 2

d− 1

d
G > 0 , G > 0 ,

−P + B + 2d−1
d G

s′
> 0 . (3.45)

On the other hand, for causality, we require v2
‖, v

2
⊥ < 1. This leads to

(s+ P′)2

s′
−P + B + 2

d− 1

d
G < Ts+ P , G < Ts+ P . (3.46)

This gives the allowed range of parameters for a sensible evolution of the dynamical equa-

tions.

3.5.2 Linear response functions and Kubo formulas

We can extend the analysis above to read out the linear response functions of the theory

by switching on plane wave background fluctuations. Let us start by setting σ → ∞ and

η, ζ → 0 turning off the dissipative corrections for simplicity. Let us take a perturbation of

the background sources

gµν = ηµν + δgµν , Kext
I = δKext

I . (3.47)

We can read out the solution of the equations of motion 3.15 by a straightforward compu-

tation

δT =
s+ P′

s′
(
ω2 − v2

‖k
2
) ((2k2v2

⊥k
JK − ω2δJK

) 1

2
δgJK − ωkJδgtJ −

1

2
k2δgtt −

ikJδKext
J

Ts+ P

)
,

δuI =
ωkI

ω2 − v2
‖k

2

(
v2
⊥k

JKδgJK −
ωkJ

k2
δgtJ −

1

2
δgtt − v2

‖
1

2
δJKδgJK −

ikJ/k2δKext
J

Ts+ P

)

− ω δ
IJ − kIkJ/k2

ω2 − v2
⊥k

2

(
v2
⊥k

KδgJK + ωδgtJ +
iδKext

J

Ts+ P

)
,

δφI =
ikI

ω2 − v2
‖k

2

(
v2
⊥k

JKδgJK −
ωkJ

k2
δgtJ −

1

2
δgtt − v2

‖
1

2
δJKδgJK −

ikJ/k2δKext
J

Ts+ P

)

− iδ
IJ − kIkJ/k2

ω2 − v2
⊥k

2

(
v2
⊥k

KδgJK + ωδgtJ +
iδKext

J

Ts+ P

)
. (3.48)
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The two point retarded Green’s functions are defined as

Gµν,ρσTT,R = −2
δ(
√
−g Tµν)

δgρσ

∣∣∣∣
δg=0,δK=0

, GI,Jφφ,R =
δφI

δKext
J

∣∣∣∣
δg=0,δK=0

,

GI,µνφT,R = −2
δφI

δgµν

∣∣∣∣
δg=0,δK=0

=
δ(
√
−g Tµν)

δKext
I

∣∣∣∣
δg=0,δK=0

. (3.49)

Without loss of generality, we can choose the momentum to be in kI = δIx and denote the

remaining spatial indices by a, b, . . . . Defining

∆‖ =
ω2 − v2

‖k
2

Ts+ P
, ∆⊥ =

ω2 − v2
⊥k

2

Ts+ P
, (3.50)

we read out the respective two point functions; in the longitudinal sector we have

Gtt,ttTT,R =
k2

∆‖
−〈T tt〉 , Gtt,txTT,R =

ωk

∆‖
, Gtt,xxTT,R =

v2‖k
2

∆‖
+〈T xx〉 , Gtx,txTT,R =

v2‖k
2

∆‖
+〈T tt〉 ,

Gtx,xxTT,R =
ωkv2‖
∆‖

, Gxx,xxTT,R =
v2‖ω

2

∆‖
+〈T xx〉 ,

Gx,xxφT,R =
−ik

(Ts+P)∆‖
, Gx,txφT,R =

−iω
(Ts+P)∆‖

, Gx,txφT,R =
−iω2/k

(Ts+P)∆‖
+
i

k
,

Gx,xφT,R =
−1

(Ts+P)2∆‖
. (3.51)

Similarly, in the transverse sector

Gtt,abTT,R =
k2
(
v2
‖ − 2v2

⊥

)
∆‖

δab + 〈T ab〉 , Gta,tbTT,R =

(
v2
⊥k

2

∆⊥
+ 〈T tt〉

)
δab ,

Gab,cdTT,R =

k2
(
v2
‖ − 2v2

⊥

)2

∆‖
+

(s+ P′)2

s′
+ B−P

 δabδcd

+ (P + P)
(

2δc(aδb)d − δabδcd
)

+ 2G

(
δc(aδb)d − 1

d
δabδcd

)
,

Ga,tbφT,R =
−iω

(Ts+ P)∆⊥
δab , Ga,bφφ,R =

−1

(Ts+ P)2∆⊥
δab . (3.52)

Finally, we have non-zero contributions in the cross sector

Gtx,abTT,R =
ωk
(
v2
‖ − 2v2

⊥

)
∆‖

δab , Gta,xbTT,R =
ωkv2

⊥
∆⊥

δab ,

Gxx,abTT,R =
ω2
(
v2
‖ − 2v2

⊥

)
∆‖

δab − 〈T ab〉 , Gxa,xbTT,R =
ω2v2

⊥
∆⊥

δab + 〈T ab〉 ,

Gx,abφT,R =
ik
(

2G
Ts+P − v

2
‖

)
(Ts+ P)∆‖

δab . Ga,xbφT,R =
i

k
+

−iω2/k

(Ts+ P)∆⊥
. (3.53)
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Note that all the correlators with odd number of transverse indices vanish due to isotropy

Gtt,taTT,R = Gtx,taTT,R = Gtt,xaTT,R = Gtx,xaTT,R = Gxx,xaTT,R = Gxx,taTT,R = Gta,bcTT,R = Gxa,bcTT,R = 0 ,

Gx,taφT,R = Gx,xaφT,R = Ga,ttφT,R = Ga,txφT,R = Ga,xxφT,R = Ga,bcφT,R = 0 , Gx,aφφ,R = 0 . (3.54)

Upon turning on the dissipative transport coefficients, the two-point functions become

much more involved. However, we report the respective Kubo formulas

ζ + 2
d− 1

d
η = − lim

ω→0
lim
k→0

ω3

k4
ImGRT ttT tt , η = − lim

ω→0
lim
k→0

ω

k2
ImGRT txT tx ,

T 2s2

σ(Ts+ P)2
= lim

ω→0
lim
k→0

ω ImGRφxφx . (3.55)

These can be used to read out the transport coefficients in terms of linear responses func-

tions.15

This finishes our quite detailed discussion of viscoelastic fluids. We have written down

the most generic constitutive relations determining the dynamics of a viscoelastic fluid up

to first order in the derivative expansion. In particular, we specialised to linear isotropic

materials and obtained the respective constitutive relations, modes, and linear response

functions. In the next section we present an equivalent formulation of viscoelasticity in

terms of a fluid with partially broken higher-form symmetries.

4 Viscoelastic fluids as higher-form superfluids

In this section we present a formulation of hydrodynamics with partially broken generalised

global symmetries and show their relation to the theory of viscoelastic fluids formulated

in the previous section. Generalised global symmetries are an extension of ordinary global

symmetries with one-form (vector) conserved currents and point-like conserved charges to

higher-form conserved currents and higher dimensional conserved charges such as strings

and branes [52]. It has been observed that when a fluid with a one-form symmetry16 has its

symmetry partially broken along the direction of the fluid flow, it implements a symmetry-

based reformulation of magnetohydrodynamics [24, 26, 27, 53]. In this section, we extend

this partial symmetry breaking to hydrodynamics with multiple higher-form symmetries

and show that the resultant theory is a dual description of viscoelastic fluids with trans-

lation broken symmetries in arbitrary dimensions. In d spatial dimensions, one requires

d number of partially broken (d − 1)-form symmetries in order to describe viscoelasticity.

The case of d = 2 involving two one-form symmetries was considered in [22], albeit in a

very restrictive case and ignoring the issues that require partial symmetry breaking. The

15We would like to note that these Kubo formulas are different from the ones being used in [35] due

to the presence of lattice pressure. The authors find a discrepancy between their numerical results from

holography and those predicted by hydrodynamics. It seems quite plausible that this mismatch will be

resolved upon taking into account the lattice pressure in the constitutive relations and Kubo formulas.
16A conserved (k + 1)-rank current Jµ1...µk+1 is said to be associated with a k-form symmetry. Conse-

quently, the ordinary global symmetries are zero-form in this language.

– 25 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
6

understanding of partial symmetry breaking is essential for consistency of higher-form hy-

drodynamics with thermal equilibrium partition functions, as has been previously observed

in [25, 26].

4.1 A dual formulation

In viscoelastic fluids with translation broken symmetries, all the dependence on the crystal

field φI comes via its derivatives eIµ. As we have argued in section 3, the φI equations

of motion can be used to eliminate uµeIµ in favour of P Iµ = PµνeIν and other constituent

fields in the theory. Thus, it should be possible to reformulate the physics of viscoelastic

fluids purely in terms of P Iµ and the hydrodynamic fields uµ and T , without referring to

the microscopic fields φI .

To make this precise, we formally define a set of d-form currents associated with the

viscoelastic fluid by Hodge-dualising the derivatives of φI as

JIµ1...µd [uµ, T, P Iµ; gµν ,K
ext
I ] = εµµ1...µd∂µφ

I = εµµ1...µd
(
P Iµ − TuµδBφI

)
. (4.1)

It is understood here that the φI equations of motion have been taken onshell to eliminate

δBφ
I in terms of the remaining fields and background sources. Due to the symmetry of

partial derivatives, these currents are conserved by construction

∇µ1JIµ1...µd = 0 . (4.2)

A priori, these conservation equations have d(d + 1)/2 independent components for every

value of I but only d of these contain a time-derivative and hence govern dynamical evolu-

tion, while the remaining d(d− 1)/2 components are constraints on an initial Cauchy slice.

Conspicuously, these are the exact number of dynamical equations required to evolve the

d physical components in P Iµ for every value of I (note that uµP
Iµ = 0).

The conservation equation (4.2) implies that there is a set of d topological conserved

charges QI of the form

QI [Σ1] =

∫
Σ1

?JI , (4.3)

where Σ1 is a given one-dimensional surface and ? is the Hodge operator in d+1 dimensional

spacetime. The charges QI [Σ1] count the number of lattice hyperplanes that intersect the

one-dimensional surface Σ1.

The current (4.1) couples to the field strength of a higher-form gauge field. More

precisely, we can replace the external currents Kext
I by the field strength such that

Kext
I = − 1

(d+ 1)!
εµ1...µd+1HIµ1...µd+1

. (4.4)

Since HIµ1...µd+1
is a full-rank form, locally it can be re-expressed as an exact form

HIµ1...µd+1
= (d+ 1)∂[µ1bIµ2...µd+1] , (4.5)

where bIµ1...µd is a d-form gauge field defined up to a (d− 1)-form gauge transformation

bIµ1...µd → bIµ1...µd + d ∂[µ1ΛIµ2...µd] . (4.6)
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Using this definition, the energy-momentum conservation equation (3.1a) takes the form

∇µTµν = Kext
I ∇νφI =

1

d!
Hνµ1...µd
I JIµ1...µd . (4.7)

In essence, we have reformulated viscoelastic fluids in terms of a fluid with multiple (d−1)-

form global symmetries. The background d-form gauge fields bIµ1...µd couple to the d-form

currents JIµ1...µd . The constitutive relations of viscoelastic fluids can be equivalently re-

expressed as

Tµν [uµ, T, P Iµ; gµν , bIµ1...µd ] , Jµ1...µdI [uµ, T, P Iµ; gµν , bIµ1...µd ] . (4.8)

The dynamics of the hydrodynamic fields uµ and T , and P Iµ is governed by energy-

momentum conservation (4.7) and d-form conservation equations (4.2).17

4.2 Formalities of higher-form hydrodynamics

4.2.1 Ordinary higher-form hydrodynamics

Having motivated a dual formulation of viscelastic fluids in terms of higher-form symme-

tries, we consider higher-form hydrodynamics in its own right, following [25, 26]. Consider

a fluid living in (d+ 1)-dimensions that carries a conserved energy-momentum tensor Tµν

and a k number of conserved d-form currents JIµ1...µd where I = 1, 2, . . . , k. When coupled

to a background metric gµν and background d-form gauge fields bIµ1...µd , the associated

conservation equations are given as

∇µTµν =
1

d!
Hνµ1...µd
I JIµ1...µd , ∇µ1JIµ1...µd = 0 . (4.9)

In a generic number of dimensions, the conservation equations lead to (d+1+kd) dynamical

equations and kd(d − 1)/2 constraints. From this counting procedure, it can be checked

that eqs. (4.9) can provide dynamics for a set of symmetry parameters

B =
(
βµ , ΛβIµ1...µd−1

)
. (4.10)

Under an infinitesimal symmetry transformation parametrised by X = (χµ,ΛχIµ1...µd−1
),

they transform according to

δX βµ = £χβ
µ , δX ΛβIµ1...µd−1

= £χΛβIµ1...µd−1
−£βΛχIµ1...µd−1

, (4.11)

where £χ denotes the Lie derivative with respect to χµ. Let us repackage these fields

into the fluid velocity uµ, temperature T , and (d − 1)-form chemical potentials µIµ1...µd−1

according to
uµ

T
= βµ ,

µIµ1...µd−1

T
= ΛβIµ1...µd−1

+ βνbIνµ1...µd−1
, (4.12)

17Note that, by the definition of the d-form currents, we have the following relation

uµ1J
Iµ1...µd = εµµ1...µdP Iµuµ1 ,

which can be understood as a frame choice from the higher-form hydrodynamic perspective. In general,

we can choose a different set of fields in the hydrodynamic description which are aligned with PµI in this

particular frame, but can be arbitrarily redefined otherwise.
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such that uµuµ = −1. Interestingly, while the fields uµ and T are gauge invariant, µIµ1...µd−1

transform akin to (d− 1)-form gauge fields

µIµ1...µd−1
→ µIµ1...µd−1

− (d− 1)T∂µ1
(
βνΛIνµ1...µd−1

)
. (4.13)

Hence, they have the required kd physical degrees of freedom, which, along with uµ and

T , match the number of dynamical components of the conservation equations.

Similar to our discussion in section 3.1, higher-form fluids need to obey a version of

the second law of thermodynamics. In the current context, this statement translates into

the existence of an entropy current Sµ that satisfies

∇µSµ +
uν
T

(
∇µTµν −

1

d!
Hνµ1...µd
I JIµ1...µd

)
− 1

(d− 1)!

µIµ1...µd−1

T

(
∇µJIµµ1...µd−1

)
= ∆ ≥ 0 .

(4.14)

Compared to eq. (3.2), here we have also taken into account the higher-form conservation

equation and the respective multiplier has been chosen to be µIµ1...µd−1
/T using the in-

herent redefinition freedom in the higher-form chemical potential. It is straightforward to

formulate a higher-form analogue of the adiabaticity equation to ease the derivative of the

constitutive relations. Defining the free energy current

Nµ = Sµ +
1

T
Tµνuν −

1

(d− 1)!

1

T
JIµµ1...µd−1µIµ1...µd−1

, (4.15)

the adiabaticity equation for higher-form fluids reads

∇µNµ =
1

2
TµνδBgµν +

1

d!
JIµ1...µdδBbIµ1...µd + ∆ , ∆ ≥ 0 . (4.16)

We have identified the variations of the various background fields according to

δBgµν = 2∇(µβν) , δBbIµ1...µd = −d ∂[µ1

(
1

T
µIµ2...µd]

)
+ βνHIνµ1...µd . (4.17)

To obtain the constitutive relations of a higher-form fluid, it is required to find the most

generic expressions for Tµν and JIµ1...µd in terms of the dynamical fields uµ, T , and

µIµ1...µd−1
, as well as background fields gµν and bIµ1...µd , arranged in a derivative expansion,

that satisfy eq. (4.16) for some Nµ and ∆.

4.2.2 Partial symmetry breaking

When a higher-form symmetry is partially broken in its ground state, the hydrodynamic

description should include the associated Goldstone modes ϕIµ1...µd−2
with uµ1ϕIµ1...µd−2

=

0, that transform according to18

δX ϕIµ1...µd−2
= £χϕIµ1...µd−2

− βµΛIµµ1...µd−2
. (4.18)

18If the (d − 1)-form symmetries were completely broken, we would instead introduce the (d − 1)-form

Goldstone fields φIµ1...µd−1 that shift under a background gauge transformation according to

δX φIµ1...µd−1 = £χφIµ1...µd−1 − ΛIµ1...µd−1 .

The (d− 2)-form Goldstones of partial symmetry breaking are essentially the components of the full Gold-

stones along the direction of the fluid flow, that is ϕIµ1...µd−2 = βµφIµµ1...µd−2 .
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This allows us to define a gauge-invariant version of the (d− 1)-form chemical potentials

ζIµ1...µd−1
= (d− 1)T∂[µ1ϕIµ2...µd−1] − µIµ1...µd−1

. (4.19)

The Goldstone fields are reminiscent of the crystal fields φI from section 3.1 and are

accompanied by their own equations of motion, which can be schematically represented as

KIµ1...µd−2 = 0 . (4.20)

As in the previous formulation, the operator KIµ1...µd−2 is not predetermined without the

knowledge of the microscopics but we can fix its form up to certain transport coefficients

by imposing the second law of thermodynamics. In this context, this translates into the

requirement that the fluid must admit an entropy current Sµ whose divergence must be

positive-semi-definite in any arbitrary ϕI -offshell configuration. Fixing the Lagrange mul-

tipliers associated with the respective conservation equations to be βµ and ζIµ1...µd−1
, the

statement of the second can be written as

∇µSµ +
uν
T

(
∇µTµν −

1

d!
Hνµ1...µd
I JIµ1...µd

)
− 1

(d− 1)!

ζIµ1...µd−1

T

(
∇µJIµµ1...µd−1 − (d− 1)βµ1KIµ2...µd−1

)
= ∆ ≥ 0 , (4.21)

which is different than the corresponding statement in the symmetry unbroken phase given

in (4.14). Defining the free energy current

Nµ = Sµ +
1

T
Tµνuν −

1

(d− 1)!

1

T
JIµµ1...µd−1ζIµ1...µd−1

, (4.22)

the associated adiabaticity equation becomes

∇µNµ =
1

2
TµνδBgµν+

1

d!
JIµ1...µdδBbIµ1...µd +

1

(d− 2)!
KIµ1...µd−2δBϕIµ1...µd−2

+∆ , (4.23)

with ∆ ≥ 0 and where

δBϕIµ1...µd−2
=

1

T 2
uµζIµµ1...µd−2

. (4.24)

Similar to section 3.1, we can use the leading order adiabaticity equation (4.23) to

obtain the leading order version of the ϕIµ1...µd−2
equation of motion, namely

δBϕIµ1...µd−2
= O(∂) =⇒ uµ1ζIµ1...µd−1

= O(∂) . (4.25)

We can use some of the inherent redefinition freedom in µIµ1...µd−1
to convert this into an

exact all order statement. Consequently, it is possible to take ϕIµ1...µd−2
formally on-shell

setting δBϕIµ1...µd−2
= 0, following which, the adiabaticity equation (4.23) turns into its

“symmetry-unbroken” version (4.16). The constitutive relations of a higher-form fluid with

partially broken symmetry are given by the most generic expressions for Tµν and JIµ1...µd in

terms of the dynamical fields uµ, T , and ζIµ1...µd−1
(with uµuµ = −1 and uµ1ζIµ1...µd−1

= 0),

and background fields gµν and bIµ1...µd , arranged in a derivative expansion, that satisfy

eq. (4.16) for some Nµ and ∆.
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While ζIµ1...µd−1
is fundamentally more transparent, for most of the explicit computa-

tions, it will be helpful to work with a Hodge-dualised version

ψµI =
1

(d− 1)!
εµµ1...µduµ1ζIµ2...µd , ζIµ1...µd−1

= εµνµ1...µd−1
ψµI u

ν , (4.26)

where we note that uµψ
µ
I = 0. This representation makes it clear that ψµI , and hence

ζIµ1...µd−1
, have the same degrees of freedom as P Iµ and can be used as a fundamental

hydrodynamic field for viscoelastic fluids instead. The relation between the two is typically

non-trivial and needs to be obtained order-by-order in the derivative expansion.

Compared to eq. (3.4), the adiabaticity equation (4.16) in the dual formulation does

not exhibit order mixing, as both δBgµν and δBbIµ1...µd are O(∂). This allows for a more

transparent analysis of the constitutive relations, as we shall see in the next section. An-

other benefit of working in the dual formulation is that we directly obtain the constitu-

tive relations for (the Hodge dual of) the physically observable crystal momenta, rather

than for the equations of motion of the crystal fields. This can considerably simplify the

computation of the respective correlation functions and Kubo formulae, as in the case of

magnetohydrodynamics [25].

4.3 Revisiting ideal viscoelastic fluids

The constitutive relations of an ideal viscoelastic fluid in higher-form language are charac-

terised by an ideal order free energy current

Nµ = p(T, γIJ)βµ +O(∂) . (4.27)

Here p(T, γIJ) is an arbitrary function of all the available ideal order scalars in the theory,

namely the temperature T and matrix

γIJ =
1

(d− 1)!
ζIµ1...µd−1

ζIν1...νd−1
gµ1ν1 . . . gµd−1νd−1 = ψµI ψ

ν
Jgµν . (4.28)

Introducing this into eq. (4.16) and noting that19

δBγIJ = − 2

(d− 1)!
uµ1ζµ2...µd(I δBbJ)µ1...µd +

(
ψµI ψ

ν
J − γIJgµν

)
δBgµν , (4.29)

we obtain the ideal viscoelastic fluid constitutive relations20

Tµν = (ε+ p)uµuν + pgµν − qIJ

(d− 2)!
ζµI µ2...µd−1

ζ
νµ2...µd−1

J +O(∂) ,

JIµ1...µd = −d qIJu[µ1ζ
µ2...µd]
J +O(∂) . (4.30)

Here we have defined

dp = sdT +
1

2
qIJdγIJ , ε+ p = sT + qIJγIJ . (4.31)

19Note that ζI
µ
µ2...µd−1ζ

νµ2...µd−1

J = (d− 2)!(γIJP
µν − ψνIψµJ ).

20In [25], we have given a formulation of higher-form hydrodynamics with a single conserved current. In

appendix C.3 we provide the comparison between the ideal order higher-form hydrodynamics of this section

with that of [25].
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These are the most generic constitutive relations of an ideal viscoelastic fluid in higher-

form language. As promised earlier, there is no order-mixing across derivative orders in this

formulation. It is useful to explicitly work out the equations of motion for ideal viscoelastic

fluids, which result in

∇µ(suµ) = 0 ,(
sTP νµ + qIJψνJψ

µ
I

)
uλδBgµλ +

1

d!
qIJψνJε

µµ1...µduµδBbIµ1...µd = 0 ,

∇[µ

(
qIJψJν]

)
= 0 . (4.32)

In order to find the relation between the two formalisms, we need to perform the iden-

tification according to eq. (4.1), which results in the following map between formulations

eIµ = qIJψJµ +O(∂) =⇒ hIJ = qIKqJLγKL +O(∂) . (4.33)

Additionally, introducing this into the energy-momentum tensor, we find

p = P − rIJhIJ +O(∂) ,

qIJ = −qIKqJKrKL =⇒ qIJ = −(r−1)IJ , (4.34)

while temperature, entropy density and energy density agree in both formulations.

4.4 One derivative corrections

Following the same arguments as the previous subsection, we consider the hydrostatic free

energy density in the dual picture

N = p+ f̃ I1
1

T
ψµI ∂µT + 2T f̃

[IJ ]
2 ψµI ψ

ν
J∂[µuν] + f̃

I(JK)
3 ψIµ∂µγJK . (4.35)

The hydrostatic constitutive relations can be obtained using the variations given above and

refer the reader to appendix B for details. In turn, in the non-hydrostatic sector, we can

expand

Tµνnhs = ψµI ψ
ν
JT IJ , JIµ1...µdnhs = εµµ1...µduµJ I . (4.36)

The most general non-hydrostatic constitutive relations are correspondingly(
T IJ

J I

)
= −T

(
η̃IJKL χ̃IJK

χ̃′IKL σ̃IK

)(
1
2ψ

µ
Kψ

ν
LδBgµν

1
d!ε

µµ1...µduµδBbKµ1...µd

)
. (4.37)

The transport coefficient matrices have necessary symmetry properties. The positivity

constraint requires that the symmetric part of the 5 × 5 transport coefficient matrix is

positive semi-definite.

In order to provide the map of transport coefficients at first order between the two

formulations, we first use the identification in eq. (4.1) in order to obtain

P Iµ =
1

(d− 1)!
εµµ1...µdu

µ1uνJ
Iνµ2...µd , uµ∂µφ

I = − 1

d!
εµµ1...µdu

µJIµ1...µd . (4.38)
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This provides a definition of PµI and δBφ
I in the conventional formulation in terms of the

dual formulation variables

P Iµ =

[
qIJ+

2

T

∂f̃K1
∂γIJ

ψλK∂λT+4T
∂f̃

[KL]
2

∂γIJ
ψρKψ

σ
L∂[ρuσ]+2

∂f̃
L(MK)
3

∂γIJ
ψλL∂λγMK−2∇ρ

(
f̃
K(IJ)
3 ψρK

)]
ψµJ

+f̃ I1
1

T
Pµν∂νT+4T f̃

[IJ]
2 PµνψρJ∂[νuρ]+f̃

I(JK)
3 Pµν∂νγJK ,

δBφ
I = χ̃′IKL

1

2
ψµKψ

ν
LδBgµν+σ̃IK

1

d!
εµµ1...µduµδBbKµ1...µd . (4.39)

We wish to begin the comparison with the free energy currents in the two formulations.

Using eq. (4.15), we know that

Nµ = Nµ
elastic +

uµ

T
ψIνPIν − ψIµδBφI . (4.40)

Using the map (4.39) and the results from appendix B, we infer the map between the

hydrostatic transport coefficients

p(T, γIJ) = P (T, qIKqJLγKL) + qIJγIJ ,

f̃ I1 = f1
Jq

JI + 2TqIMqJNγNL
∂qKL

∂T
f3
M(JK) ,

f̃
[IJ ]
2 = f2

[MN ]q
MIqNJ ,

f̃
I(JK)
3 = f3

N(LM)q
INqJLqKM + 2qIMqANγNL

∂qBL

∂γJK
f3
M(AB) . (4.41)

To obtain the map in the non-hydrostatic sector, we need to compare the energy-momentum

tensors and δBφ
I in the two formulations. In hindsight, we allow for a relative field re-

definition of the fluid velocity between the two formulations, i.e uµelastic = uµ + δuµ with

uµδu
µ = 0. The ϕI -equation of motion (3.22), upon using the said field redefinition,

implies that

σIJδBφ
J +

1

T
σIJe

J
λδu

λ =
1

T

(
Kext
J −∇µ

(
rJKe

Kµ
)
− χ′JKLPKµPLν∇(µuν)

)
=

(
1

d!
ελµ1...µduλδBbIµ1...µd −

1

2
χ′IMNq

MKqNLψµKψ
ν
KδBgµν

)
.

(4.42)

On the other hand, using the results from appendix B, it is straight-forward, albeit cum-

bersome, to obtain that

Tµνelastic,hs = Tµνhs + 2Tu(µ
(
sδuν) − ψν)

I δBφ
I
)
. (4.43)

Given that all the non-hydrostatic corrections are in the Landau frame, we must choose the

velocity field-redefinition to be δuµ = ψµI δBφ
I/s, mapping the hydrostatic sectors of the two

formulations to each other. Comparing δBφ
J from eq. (4.42) to eq. (4.39) and comparing

the non-hydrostatic energy-momentum tensors in the two formulations, we obtain the map

η̃IJKL = qIAqJBqKCqLD
(
ηABCD − χABRσ̃RSχ′SCD

)
,

χ̃IJK = qIAqJBχABC σ̃
CK ,
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χ̃′IJK = −σ̃ILχ′LMNq
JMqKN ,

(σ̃−1)IJ = σIJ +
σIK
Ts

qKLγLJ . (4.44)

This completes the formulation of viscoelastic hydrodynamics in terms of generalised

global symmetries and shows that it can exactly accommodate viscoelastic hydrodynamics

with broken translation invariance. In the next section we look at particular realisations

of both these formulations in the context of holography.

5 Conformal viscoelastic fluids and holography

In this section we provide, and study the properties of, holographic models in D = 4, 5 bulk

dimensions (i.e. d = 2, 3 spatial dimensional fluids). The models we consider in general

break conformal symmetry due to double trace deformations but conformal symmetry can

be recovered in a specific case. Thus, in the beginning of this section we consider conformal

fluids. In connection with viscoelastic holography, we consider two classes of models that

have been considered in the literature. The first class of models has translation broken

symmetries involving a set of (D − 2) scalar fields ΦI minimally coupled to gravity. The

second class is formulated in the context of generalised global symmetries and involve

a set of (D − 2) gauge fields BIa1...aD−2
minimally coupled to gravity [22]. The latter

class describes particular equilibrium states of the higher-form hydrodynamics described in

section 4, which we explicitly show by generalising the work of [22] to D = 5. Given that in

this case the dual fluid is governed by conservation equations alone (i.e. no dynamical fields),

which has been one of the motivations in the holographic digressions of [22, 54, 55], we

consider it first. Later, generalising aspects of [56], we “dualise” the model with higher-form

symmetries and obtain the class of viscoelastic models with translation broken symmetries,

which consist of the model of [39] but with an alternative quantisation of the scalar fields

and a double trace deformation of the boundary theory. We show that this process results

in the dual fluid given in section 3.

5.1 Conformal viscoelastic fluids

A viscoelastic fluid is said to be conformal if it is invariant under the conformal rescaling of

the background metric gµν → Ω2gµν for some arbitrary function Ω(x). In practice, it implies

that the energy-momentum tensor of the theory is traceless (modulo conformal anomalies)

and the constitutive relations are only constructed out of the conformal covariants.

5.1.1 Constitutive relations

Focusing on the non-anomalous case, setting the trace of the energy-momentum ten-

sor (3.21) to zero, we get certain constraints on the respective transport coefficients, namely

ε = dP − rIJhIJ , f1
I = f3

I(JK) = 0 , (d− 3)f2
[IJ ] − T

∂f2
[IJ ]

∂T
− 2hKL

∂f2
[IJ ]

∂hKL
= 0 ,

hIJηIJKL = hIJχIJK = 0 . (5.1a)
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Furthermore, requiring Tµν and KI to only involve conformal covariants requires

ηIJKLh
KL = χ′IKLh

KL = 0 . (5.1b)

The first equation in eq. (5.1a) determines the energy density in conformal fluids as ex-

pected. At the one-derivative hydrostatic order, we see that we are only left with f2
[IJ ] which

is the only conformal covariant term in the free-energy current. In the non-hydrostatic

sector, we essentially just eliminate the conformal-non-invariant ∇µuµ term from the con-

stitutive relations. Consequently we get

Tµνconformal = (ε+ P )uµuν + Pgµν − rIJeIµeJν + T
〈µν〉
f2

− P I〈µP Jν〉ηIJKLPK〈ρPLσ〉∇ρuσ − P I〈µP Jν〉χIJKuρ∂ρφK +O(∂2) , (5.2)

and

uµ∂µφ
I
∣∣
conformal

= (σ−1)IJ
[
Kext
J −∇µ

(
rJKe

Kµ
)
− χ′JKLPK〈µPLν〉∇µuν

]
+O(∂2) . (5.3)

We will now focus on a special case of these constitutive relations.

5.1.2 Linear conformal isotropic materials

For conformal viscoelastic fluids truncated to linear order in strain, we need to additionally

impose the constraints (5.1) on top of the constitutive relations eq. (3.29), leading to

T∂TPf = (d+ 1)Pf + dP , T∂TP = (d+ 1)P− dB , ζ = ζu1 = ζu2 = ζ̄u = 0 . (5.4)

This gives the following constitutive relations of a linear conformal viscoelastic fluid

Tµν = (d+ 1)Pf u
µuν + Pf g

µν − η σµν

+ T∂TPuλλ

(
uµuν +

1

d
hµν
)

+ P

(
d uµuν + hµν + uλλ

(
gµν − d+ 1

d
hµν
))

− 2G

(
uµν − 1

k
hµνuλλ

)
− ηu1 uλλσµν − ηu2

(
u(µ

σσ
ν)σ − 1

d
Pµνuρσσ

ρσ

)
+O(u2) ,

(5.5)

while the φI equation of motion is still given by eq. (3.31). In the special case that the

internal pressure of the lattice P = 0, we infer that the bulk modulus B = 0 and these

constitutive relations, along with the φI equations of motion (3.31), simplify to

Tµνconformal = (d+1)Pf u
µuν+Pf g

µν−η σµν

−2G

(
uµν−1

k
hµνuλλ

)
−ηu1 uλλσµν−ηu2

(
u(µσσ

ν)σ−1

d
Pµνuρσσ

ρσ

)
+O(u2) ,

uµ∂µφ
I
∣∣
conformal

=
1

σ
hIJ

[
Kext
J −∇µ

(
2G

(
uJK−

1

k
hJKu

λ
λ

)
eKµ

)]
− 1

σ2

(
σu1 u

λ
λh

IJ+σu2 u
IJ
)
Kext
J +O(u2) . (5.6)
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The first line of the energy-momentum tensor represents the constitutive relations for an

ordinary uncharged conformal fluid. The second line has the expected shear modulus term

along with the variants of shear viscosities ηu1 , ηu2 representing the coupling of the conformal

fluid to the strain of the crystal.

We would like to note that the constitutive relations (5.5) are, in principle, different

from the ones obtained in [8]. The strain uµν defined in eq. (2.4) transforms inhomoge-

neously under a conformal transformation, i.e. uµν → Ω2uµν + 1
2

(
Ω2 − 1

)
hµν , because

conformal rescaling only acts on the physical distances and not on the reference distances

between the crystal cores. It follows that the transport coefficients P(T ), G(T ), and ηu1,2(T )

appearing in eq. (5.5) do not have a homogeneous conformal scaling. This is in contrast

to [8], which chooses the conformal transformations to scale the reference metric as well, i.e.

hIJ → Ω2hIJ , leading to a homogeneous scaling of the strain tensor uµν → Ω2uµν . In turn,

the coefficients P(T ), G(T ), and ηu1,2(T ) will all scale homogeneously. With this alternative

choice, however, invariance of the partition function under conformal transformations does

not agree with a traceless energy-momentum tensor. To wit,

− δΩ lnZ =
1

2
Ω2gµν〈Tµν〉 − Ω2hIJ(δ lnZ/δhIJ) = 0 =⇒ gµν〈Tµν〉 6= 0 , (5.7)

up to anomalies. Furthermore, we find that the conformal viscoelastic fluids obtained from

holographic models below lead to inhomogenously scaling transport coefficients, thus the

scaling proposed in [8] describing the case in which the reference metric also transforms

under conformal transformations, does not describe the conformal fluids that appear in

holographic models.

5.1.3 Modes

Specialising to the conformal case, we can revisit the modes of linear fluctuations obtained

in section 3.5. Using eq. (5.4) we find that the speed of longitudinal/transverse sound and

diffusive constant are determined to be

v2
‖ =

1

d
+2

d−1

d

G

Ts+P
, Γ‖ =

T 2s2

σ(Ts+P)2

4 (d−1)2

d G2

Ts+P+2(d−1)G
+

2d−1
d η

Ts+P
,

D‖ =
s2T

σd(s+P′)

P−TP′+2(d−1)G

Ts+P+2(d−1)G
,

v2
⊥ =

G

Ts+P
, Γ⊥ =

G

σ

T 2s2

(Ts+P)2
+

η

Ts+P
. (5.8)

Most of these expressions are not particularly illuminating, except that the transverse and

longitudinal sound modes satisfy the simple identity

v2
‖ =

1

d
+ 2

d− 1

d
v2
⊥ , (5.9)

while the diffusion coefficients satisfy

D‖

Γ‖ − 2d−1
d Γ⊥

= −1 +
TP′ −P

T (s+ P′)

1
d + 2d−1

d v2
⊥

2d−1
d v2
⊥

. (5.10)
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The relation (5.9) is well known for conformal lattices, as obtained in [31], however we

have generalised it to finite temperature and included the presence of lattice pressure. On

the other hand, the relation (5.10) is novel, also holding for conformal lattices and was not

identified in [31]. In the special case that P = 0, we simplify these to

v2
‖ =

1

d
+ 2

d− 1

d

G

Ts
, Γ‖ =

1

σ

4 (d−1)2

d G2

Ts+ 2(d− 1)G
+

2d−1
d η

Ts
, D‖ =

sT

σd

2(d− 1)G

Ts+ 2(d− 1)G
,

v2
⊥ =

G

Ts
, Γ⊥ =

G

σ
+

η

Ts
. (5.11)

However, we find that the holographic models that we consider below generically lead to a

non-zero P coefficient.21

5.2 Models with higher-form symmetries

This section deals with models whose bulk gravity metric describes fluids with higher-form

symmetries living on the AdS boundary. In D = 4, this model was considered in [22] and

here we generalise it to include D = 5 as well. It should be noted that this model does not

encompass the full description of higher-form fluids as discussed in section 4 but only the

hydrodynamics of fluids whose equilibrium states have ϕI = constant.22

5.2.1 The model

Denoting the bulk metric by Gab where a, b, . . . are spacetime indices in the bulk, the bulk

action takes the form (with `AdS = 1)

Sbulk =
M2
p

2

∫ √
−G dxD

(
R+ (D − 1)(D − 2)− 1

2(D − 1)!
δIJH̃a1...aD−1

I H̃Ja1...aD−1

)
,

(5.12)

where H̃I = dBI and BIa1...aD−2
are the (D − 2)-form gauge fields. The bulk action must

also be supplemented by an appropriate boundary action at some cutoff surface r = Λc
where r is the holographic direction and Λc →∞ the boundary. The boundary action has

the form

Sbdy = M2
p

∫
r=Λc

√
−γ dxD−1

(
K − (D − 2) +

1

4κ(Λc)(D − 2)!
δIJHµ1...µD−2

I HJµ1...µD−2

)
,

(5.13)

where HIµ1...µD−2
= naH̃Iaµ1...µD−2

, K = GabDanb is mean extrinsic curvature of the cutoff

surface, Da the bulk covariant derivative compatible with Gab, n
a is a unit normalised

outward-pointing normal vector to the surface, and µ, ν, . . . label indices along the surface.23

In (5.13), we have introduced the induced metric on the cutoff surface γµν , in turn related

to the boundary metric gµν by a conformal factor gµν = limΛc→∞ γµνΛ−2
c . Additionally,

21We believe that the mismatch between holographic and hydrodynamical approaches reported in [35] is

due to the fact that the authors of [35] have not taken into account the presence of lattice pressure.
22The complete model should involve at least an extra set of scalar fields whose equations of motion

admit the solution ϕI = constant, in which case reduces to the model studied here.
23In (5.13) we have assumed that the boundary metric is flat. It is straightforward to add the usual

boundary terms that render the on-shell action finite for non-flat boundary metrics [57].
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κ(Λc) is a function of the cutoff and in particular ΛD−3/κ(Λ) is a coupling constant of

double trace deformations of the boundary field theory, which can be fixed by demanding

the sources to be physical (i.e. independent of Λc) as we shall now explain.

5.2.2 Holographic renormalisation with higher-form symmetries

The procedure employed here follows closely that of [22, 54, 55]. We focus on asymptotically

AdS solutions which have metric of the form

ds2 =
1

r2f(r)
dr2 + r2

(
−f(r)dt2 + δIJdxIdxJ

)
, f(r →∞)→ 1 . (5.14)

The equations of motion for the set of gauge fields take the form Da1H̃
a1...aD−2

I = 0, leading

to the near boundary behaviour of the gauge fields

BIµ1...µD−2
=

rD−3

D − 3
JIµ1...µD−2

(x) + B̂Iµ1...µD−2
(x) +O(1/r) , (5.15)

for D = 4, 5 and where xµ are boundary coordinates. Performing a variation of the total

on-shell action with respect to the BI fields, one obtains

δBS = −
∫
r=Λc

√
−γ dxD−1 1

(D − 2)!
JIµ1...µD−2δbIµ1...µD−2

, (5.16)

where the boundary current JIµ1...µD−2 and the boundary gauge field source bIµ1...µD−2
are,

respectively, given by

JIµ1...µD−2 = M2
p δ

IJ lim
Λc→∞

Λ−(D−3)
c naH̃

aµ1...µD−2

J ,

bIµ1...µD−2
=

1

2

(
B̂Iµ1...µD−2

+ ΛD−3
c

(
1

D − 3
− 1

κ(Λc)

)
JIµ1...µD−2

)
.

(5.17)

We have chosen the pre-factor in JIµ1...µD−2 in such a way as to have a unit pre-factor

in (5.16). The requirement that the source is independent of the cutoff Λc, that is

dbIµ1...µD−2
/dΛc = 0 implies that

ΛD−3
c

κ(Λc)
=

ΛD−3
c

D − 3
−MD−3 , (5.18)

agreeing with [22] for D = 4. This condition not only renders the source physical but also

guarantees that the on-shell action is finite. The constant M is the renormalisation group

scale, which can only be fixed by experiments. Given the well-posed formulation of the

variational problem for this class of models, it is possible to extract the on-shell boundary

stress tensor, which takes the form

Tµν = M2
p lim

Λc→∞
ΛD+1
c

[
Kγµν −Kµν − (D − 2)γµν

+
1

8(D − 3)!
δIJ
(
Hµµ2...µD−2

I HJνµ2...µD−2 −
1

2(D − 2)
γµνHµ1...µD−2

I HJµ1...µD−2

)]
.

(5.19)

– 37 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
6

Following the same footsteps as in [22], it is straightforward to show that the following

Ward identities are satisfied

∇µTµν =
1

(D − 2)!
H
νµ1...µD−2

I JIµ1...µD−2
, ∇µ1JIµ1...µD−2 = 0 , (5.20)

in agreement with the hydrodynamic expectations of section 4. The Ward identities (5.20)

also follow directly from the on-shell action, given that the sources bI inherit the gauge

and diffeomorphism transformation properties of the bulk fields BI . We will now look at

specific examples of thermal states that describe equilibrium viscoelastic fluids.

5.2.3 Thermal state in D = 4

This case was studied in [22] and here we simply review it. The bulk black hole geometry

has metric function f(r) and field strengths given by24

f(r) = 1− m2

r2
−
(

1− m2

r2
h

)
r3
h

r3
, H1,txr = H2,tyr = −

√
2m, (5.21)

where r = rh denotes the location of the black hole horizon and m parametrises the dipole

charge. The goal is to identify the dual thermodynamics as those corresponding to a fluid

with partially broken higher-form symmetries as in section 4. To that aim, we note that

according to (4.27), the free energy density of the fluid is equal to (minus) the pressure.

In turn, the free energy density of the black brane geometry (5.21) can be obtained by

evaluating the Euclidean on-shell action. The total action ST is the sum of the bulk (5.12)

and surface (5.13) contributions. Thus the pressure is given by (upon setting M2
p = 2)

p = −TSET = r3
h

[
1 +

(
2M
rh
− 3

)
m2

r2
h

]
, (5.22)

where SET is the Wick rotated version of ST after integration over the time circle with

period 1/T0 set to 1. The temperature and entropy of the black hole are easily computed

while the components of the stress tensor and current are evaluated using (5.19) and (5.17)

yielding

T =
rh
4π

(
3− m2

r2
h

)
, s = 4πr2

h ,

T tt = 2r3
h

[
1 +

(
M
rh
− 1

)
m2

r2
h

]
, T xx = T yy = r3

h

(
1− m2

r2
h

)
, J1,tx = J2,ty =

√
2m,

(5.23)

where we have set Mp = 1 for simplicity. We wish to match these results with the consti-

tutive relations and thermodynamics of a viscoelastic fluid in d = 2. From (4.30), we can

read out the quantities appearing in energy-momentum and charge currents

uµ = δµt , ζµI = −
√

2m (M− rh) δµI ,

ε = 2r3
h

[
1 +

(
M
rh
− 1

)
m2

r2
h

]
, qIJ =

δIJ

M− rh
. (5.24)

24We have rescaled m→
√

2m compared to [22].
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Note that the boundary metric is gµν = ηµν . With these identifications, the black

brane geometry (5.21) describes a dual viscoelastic fluid obeying the thermodynamic rela-

tions (4.31). The one-form ζIµ can be thought of as a chemical potential associated with

the background sources bIµν , in particular ζIµ = btµ. This fixes B̂Itµ = 2
√

2mrhδIµ using

eq. (5.17). It is worth mentioning that the renormalisation group scale M is not a ther-

modynamic quantity but simply a constant that parametrises a family of solutions. The

pressure and energy density are only functions of T and γIJ = ζµI ζJµ = 2m2(M− rh)2δIJ .

5.2.4 Thermal state in D = 5

In D = 5, the metric (5.14) solves the bulk Einstein equations given the following metric

function and field strengths

f(r) = 1− m2

r2
−
(

1− m2

r2
h

)
r4
h

r4
, H1,tyzr = H2,tzxr = H3,txyr = −2mr . (5.25)

Using the renormalisation procedure of (5.18) we evaluate the on-shell Euclidean action in

order to find the pressure and extract the temperature and entropy from the black brane

geometry

p = r4
h

(
1− 5m2

r2
h

+
6m2M2

r4
h

+
9

4

m4

r4
h

)
, T =

rh
π

(
1− m2

2r2
h

)
, s = 4πr3

0 . (5.26)

The boundary stress tensor (5.44) and charge currents (5.17) have the following non-

vanishing components

T tt = 3

(
r4
h+m2

(
2M2−r2

h

)
+
m4

4

)
, T xx = T yy = T zz = r4

h−m2
(
2M2+r2

h

)
+
m4

4
,

J1,tyz = J2,tzx = J3,txy = 2m. (5.27)

We wish to interpret the stress tensor and currents as a higher-form fluid with three global

currents. From (4.30), we get

uµ = δµt , ζIµν = −1

2
m
(
m2 + 4M2 − 2r2

h

)
εtµνI ,

ε = 3

(
r4
h +m2

(
2M2 − r2

h

)
+
m4

4

)
, qIJ =

4δIJ

m2 + 4M2 − 2r2
h

. (5.28)

These quantities satisfy the expected thermodynamic relations (4.31). Demanding the

interpretation of ζIµν as a chemical potential associated with bIµνρ, we get that B̂Itµν =

m
(
2r2
h −m2

)
εtµνI . These thermodynamic properties provide a non-trivial example of a

fluid with generalised global symmetries.

5.3 Models with translational broken symmetries

5.3.1 The model

In this section we propose a model of viscoelasticity based on that of [39] usually studied in

the context of momentum dissipation. The model takes the form of gravity in AdS space
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minimally coupled to a set of (D− 2) scalar fields. In units where the AdS radius is set to

`AdS = 1, the bulk action takes the form [39]

Sbulk =
M2
p

2

∫ √
−G dxD

(
R+ (D − 1)(D − 2)− 2m2X

)
, X =

1

2
δIJGab∂aΦI∂bΦJ ,

(5.29)

where m is a free parameter. Varying the bulk action with respect to the metric and scalar

field yields the equations of motion

Rab −
R

2
Gab −

(D − 1)(D − 2)

2
Gab −

1

M2
p

TMab = 0 , (5.30)

∇a∇aΦI = 0 , T abM = M2
p m

2 δIJ
(
∂aΦI∂

bΦJ −
1

2
Gab∂cΦI∂

cΦJ

)
. (5.31)

For the total action to be well-defined for asymptotically AdS solutions one needs to per-

form holographic renormalisation as to determine the boundary action under appropriate

boundary conditions. Works that study momentum dissipation treat the massless scalar

fields ΦI as sources in the boundary field theory. Assuming a flat boundary metric, this

choice leads to the boundary action

S = Sbulk + Sbdy , Sbdy = M2
p

∫
r=Λc

√
−γ dxD−1

(
K − (D − 2) +

m2

(D − 3)
X̄

)
, (5.32)

where X̄ given by (5.29) but where the contraction is performed with γµν . Variation of

the total action with respect to ΦI , upon using the bulk equations (5.31) leads to the

boundary term

δΦS =

∫
r=rh

√
−γ dxD−1OIδΦI , (5.33)

for some scalar operator OI . It is clear from here that if the boundary action (5.32)

is considered then the set of ΦI are taken as sources in the boundary theory. In the

hydrodynamic limit, this is the setting of forced fluid dynamics [45] and of momentum

relaxation [44] in which case the scalar fields ΦI are background sources to which the fluid

couples to but not dynamical fields as in viscoelasticity.25 In order to use the holographic

model (5.29) for describing viscoelastic materials, another type of boundary conditions is

necessary.

5.3.2 Dualising the holographic model

It is well known that in D = 3, the dynamics of a Υ(1) gauge field Aµ is equivalent to the

dynamics of a scalar field Φ since dA ∼ ?dΦ. It is also known that a massless scalar field

in D = 3 AdS admits two possible quantisations corresponding to different dimensions of

the boundary theory operator (∆ = 1±1) [58]. This was exploited in [56] to show that the

correct boundary conditions that describe the dynamics of the gauge field Aµ are not those

that fix the scalar Φ to be the source but instead those that fix its conjugate momentum.

This corresponds to the quantisation with ∆ = 0. In this section we generalise the analysis

25As we will see below, the relation between ΦI and φI is given by φI =
√

2m δIJΦJ .
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of [56] to higher-form fields in order to dualise the model of section 5.2. The difference

between the cases considered here and that of [56] is that the dualisation takes a theory

with mixed boundary conditions (in the sense of [59]) and maps to another theory with

mixed boundary conditions.

Naturally, in D bulk dimensions, the dynamics of the bulk gauge field BIµ1...µD−2
is

equivalent to the dynamics of a scalar field ΦI since dBI ∼ ?dΦI . This can be seen directly

at the level of the path integral. Consider the action for the BI field as in (5.12) but

integrate over the field strength H̃I = dBI instead of over B. In such case, one needs to

enforce the Bianchi identity dH̃I = 0 by introducing a Lagrange multiplier ΦI such that

Zblk =

∫
DH̃I DΦI exp

(
−SB +

M2
p

(D − 1)!

∫
W

√
−G dxD δIJ ΦI ε

a1...aD∂a1H̃Ja2...aD

)
,

(5.34)

where SB = M2
p H̃

2/4(D − 1)!. The quadratic action in H̃I can be integrated out by

imposing the equations of motion for H̃I , namely

εa1...aD∂a1ΦI = −1

2
H̃a2...aD
I , (5.35)

such that the path integral becomes

Zblk =

∫
DΦI exp

(
−M2

p

∫
W

√
−G dxD δIJ∂aΦI∂

aΦJ

)
, (5.36)

which is that of a massless scalar field in D dimensions. Having established the duality at

the level of the bulk path integrals, one may include the boundary action. Focusing just

on the boundary term in (5.13) involving the BI field one readily finds that

Zbdy =

∫
DΦI exp

(
− 1

2(D − 2)!

∫
r=Λc

√
−γ dxD−1 JIµ1...µD−2bIµ1...µD−2

)
, (5.37)

where Jµ1...µD−2 is a conserved current and hence can be expressed in terms of a scalar

operator Jµ1...µD−2 = εµ1...µD−2µD−1∂µD−1O. Inserting this into (5.37) and integrating by

parts yields

Zbdy =

∫
DΦI exp

(
1

2(D − 2)!

∫
r=Λc

√
−γ dxD−1 εµ1...µD−1∇µ1bIµ2...µD−1

OI
)
. (5.38)

Thus the operator OI couples to the source εµ1...µD−1∇µ1bIµ2...µD−1
, which is proportional

to the field strength HI = dbI . Using (5.17) one derives

lim
Λc→∞

εµ1...µD−1

(D − 1)!
HIµ1...µD−1

= lim
Λc→∞

εµ1...µD−1

2(D − 1)!

(
H̃Iµ1...µD−1

− 1

κ(Λc)
∇µ1(naH̃Iaµ2...µD−1

)

)
= lim

Λc→∞

[
na∂aΦI +

1

κ(Λc)
∇µ∇µΦI

]
.

(5.39)

Hence, in order to describe viscoelastic fluids, the sources in the model (5.29) must be

taken to be the conjugate momenta to the scalars ΦI , and naturally involve some coupling

constant ΛD−3
c /κ(Λc).
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These realisations lead us to consider the following boundary action

Sbdy = M2
p

∫
r=Λc

√
−γ dxD−1

(
K − (D − 2) + m2 δIJΦIn

a∂aΦJ +
m2

κ(Λc)
X̄

)
, (5.40)

for some function κ(Λc) of the cutoff surface r = Λc. Under a variation of the total action

S with respect to ΦI we obtain

δΦS =

∫
r=Λc

OIδΠI , (5.41)

where

OI =
√

2m δIJΦJ , ΠI =
m√
2
M2
p lim

Λc→∞

√
−γ
(
na∂aΦI +

1

κ(Λc)
∇µ∇µΦI

)
. (5.42)

We observe that with this specification of boundary action, the sources are the conjugate

momentum ΠI , as in (5.39), and the currents are proportional to the scalar fields ΦI . As

in the case of holographic renormalisation for higher-form fields, we demand the sources

ΠI to be independent of the cutoff. The near boundary expansion of the fields ΦI is [60]

ΦI = Φ
(0)
I (x) +

∇µ∇µΦ
(0)
I (x)

2(D − 3)r2
+O

(
1

r4

)
, (5.43)

for some function Φ
(0)
I (x) of the boundary coordinates. Eq. (5.43) is consistent with (5.39)

and again implies (5.18) for some renormalisation group scale M, rendering the onshell

action finite. This choice of boundary conditions corresponds to dimension ∆ = 0 of the

operators OI [58].

Given the total action we can obtain the Ward identities. Varying the onshell action

with respect to γµν yields the boundary stress tensor

M−2
p Tµν = lim

Λc→∞
ΛD+1
c

[
Kγµν −Kµν − (D − 2)γµν +

m2

κ(Λc)

(
γµνX̄ − δIJ∂µΦI∂

νΦJ

)]
.

(5.44)

Acting with the covariant derivative on the boundary stress tensor, using the Codazzi-

Mainardi equation naRaµ = −∇µK +∇νKν
µ (see e.g. [61]) and the bulk equations (5.31),

one obtains the Ward identity

∇µTµν = −ΠI∂
νOI . (5.45)

Comparing this with (3.1a) we identify Kext
I = ΠI and OI = φI . Thus fixing the boundary

value of the source ΠI provides dynamics for the Goldstone scalars φI and has the interpre-

tation of applying external forces to the crystal lattice. We will now study thermal states

within the model (5.29) with boundary action (5.40).

5.3.3 Thermal state in D = 4

The bulk metric in D = 4 was considered in [37] but the thermodynamic properties have

not been properly evaluated. The metric takes the form (5.14) but with metric function

and scalar fields

f(r) = 1− m2

r2
−
(

1− m2

r2
0

)
r3

0

r3
, Φ1 = x , Φ2 = y , (5.46)
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where r = r0 is the location of the horizon. We now wish to determine the thermodynamics

of this black brane and the holographic stress tensor and scalar currents for later interpre-

tation in terms of a viscoelastic fluid. Noting that the free energy of the viscoelastic fluid

is (minus) the pressure P as in (3.9), we obtain the pressure from the onshell action while

the entropy and temperature are extracted from the black brane

P = r3
0

(
1 +

m2

r2
0

− 2m2M
r3

0

)
, T =

r0

4π

(
3− m2

r2
0

)
, s = 4πr2

0 , (5.47)

where we have set Mp = 1. In order to obtain the stress tensor we use (5.44) and for the

scalar operators we use (5.41), finding

T tt = 2r3
0

(
1− m2

r2
0

+
m2M
r3

0

)
, T xx = T yy = r3

0

(
1− m2

r2
0

)
,

φ1 =
√

2mx , φ2 =
√

2my , (5.48)

while the sources in this case vanish, i.e. ΠI = 0.26 We now identify the thermodynamic

properties of the viscoelastic fluid by comparison with (3.11). We find

uµ = δµt , hIJ = 2m2δIJ ,

ε = 2r3
0

(
1− m2

r2
0

+
m2M
r3

0

)
, rIJ = (r0 −M) δIJ . (5.49)

These quantities satisfy the thermodynamic relations (3.12). Introducing these quantities in

the map (4.34), we obtain exactly the same thermodynamic properties as in section 5.2.3

provided we identify rh = r0 and m = m. In the case M = 0, these thermodynamic

quantities describe a conformal fluid as in section 5.1.2.

We would like to note that the strain of the viscoelastic fluid is given by

uIJ =
1

2
(hIJ − δIJ) =

1

2

(
1

2m2
− 1

)
δIJ . (5.50)

Therefore m, in some sense, controls the strength of the elastic strain and hence holography

can provide models of viscoelasticity with arbitrary strains.27 Let us focus on the linear

regime to make contact with section 5.1.2. Expanding

r0(T, hIJ) =
1

6

(
4πT +

√
3 δIJhIJ + 16π2T 2

)
=

1

6

(
4πT +

√
6 + 16π2T 2

)
− 1

2
√

6 + 16π2T 2
uIJh

IJ +O(u2) , (5.51)

26The trace of the energy-momentum tensor is non-vanishing except if M = 0, in which case the theory

is conformal.
27In previous considerations of viscoelastic holography (see e.g. [35]), the bulk field ΦI has been related

to the crystal displacement field δφI = φI − xI at the boundary and not with φI itself. Unlike our model,

where the strainless limit is given by m = 1/
√

2, this alternative choice places the strainless limit at m = 0.

Realising that the theory in the bulk becomes an ordinary charged black brane at m = 0 that is known

to be dual to a pure fluid at the boundary and not an unstrained crystal, we do not make this choice.

Furthermore, it is unclear if this choice can be implemented at a non-linear level in strain. A similar choice

has been made in the higher-form setup of [55], but the authors there approached it as fluctuations around

a state without “dynamical defects” (no crystal cores), distinct from a crystal phase where such defects are

obviously present.
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and noting eq. (3.26), we can read out the lattice pressure and bulk modulus

P =M− 1

6

(
4πT +

√
6 + 16π2T 2

)
, P−B =

1

2
√

6 + 16π2T 2
. (5.52)

The fluid pressure Pf can be read out trivially from P by setting strain to zero. We cannot

comment on the shear modulus G because we are working in a state with diagonal strain.

We find that the coefficients P and B do not scale homogeneously under conformal trans-

formations. This is in accordance with the comments made on inhomogeneous conformal

scaling of strain in section 5.1.2.

Since the thermodynamic properties derived in (5.47) describe an equilibrium state

with vanishing elastic shear tensor, it is not possible to extract from it the shear modulus.

Thus, we do not have a complete knowledge of the transverse phonon and the longitudinal

sound dispersion relations. However, [22] showed that for small m the dispersion relations

under the assumption of vanishing shear modulus agree with numerical results.28 According

to the analysis of [22], it is expected that a Gregory-Laflamme like instability [62] is present

for specific values of the parameters, including when M = 0. However, a more in-depth

analysis is necessary in order to make definite statements.

5.3.4 Thermal state in D = 5

Bulk metrics dual to viscoelastic fluids in D = 5 have not been studied in depth but they

straightforwardly generalise their lower dimensional counterpart. The bulk metric function

and scalar fields that solve (5.31) are given by

f(r) = 1− m2

r2
−
(

1− m2

r2
0

)
r4

0

r4
, Φ1 =

√
2x , Φ2 =

√
2y , Φ3 =

√
2z . (5.53)

The onshell action (i.e. pressure), the temperature and entropy are given by

P = r4
0

(
1 +

m2

r2
0

− 3

4

m4

r4
0

− 6
m2M2

r4
0

)
, T =

r0

2π

(
2− m2

r2
0

)
, s = 4πr3

0 , (5.54)

while the boundary stress tensor takes the form

T tt =
3

4
r4

0

((
2−m2

r2
0

)2

+8
m2M2

r4
0

)
, T xx = T yy = T zz = r4

0

(
1−m2

r2
0

+
m4

4r4
0

−2
m2M2

r4
0

)
,

φ1 = 2x , φ2 = 2y , φ3 = 2z . (5.55)

Comparing with the constitutive relations (3.12), we identify

uµ = δµt , hIJ = 4m2δIJ ,

ε =
3

4
r4

0

[(
2− m2

r2
0

)2

+ 8
m2M2

r4
0

]
, rIJ =

δIJ
2

(
r2

0 −
m2

2
− 2M2

)
. (5.56)

28We believe that the discrepancy between hydrodynamic and numerical results identified in [22] is due

to the fact that [22] assumed a vanishing shear modulus in their hydrodynamic calculations.
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Again, these quantities satisfy the thermodynamic relations (3.11) and using the map (4.34)

they lead to the constitutive relations and thermodynamic relations of section 5.2.4 pro-

vided rh = r0 and m = m.

Similar to D = 4, we can perform a small strain expansion. We find that

P =M2 − πT

8

(
2πT +

√
2 + 4π2T 2

)
,

2

3
P−B =

πT

12
√

2 + 4π2T 2
, (5.57)

and corresponds to a conformal fluid when M = 0. Once again, the transport coefficients

appearing here are not homogeneous under conformal scalings.

6 Outlook

In this paper we introduced two novel formulations of relativistic viscoelastic hydrodynam-

ics capable of dealing with elastic and smectic crystals phases. The first formulation of

section 3 follows traditional treatments [11, 13, 14] where the elastic degrees of freedom

are described by the dynamics of Goldstones of translational broken symmetries. However,

it generalises earlier literature by considering the effect of external currents, anisotropy,

and nonlinearities. When applied to the case of linear isotropic materials we uncovered

6 new transport coefficients (5 dissipative and 1 non-dissipative) in section 3.4 that char-

acterise the coupling between elastic and fluid degrees of freedom, constituting sliding

frictional forces in viscoelastic material diagrams. The second formulation of section 4 uses

the framework of generalised global symmetries in order to recast traditional viscoelastic

treatments as higher-form superfluidity. This provides a fully symmetry-based approach

to viscoelastic hydrodynamics and we show how the two formulations map one-to-one.

In section 5 we studied holographic models to both these formulations and proposed

a new and simple model for viscoelasticity, consisting of the model of [39] with an alter-

native quantisation for the scalar fields and a double trace deformation. We also classified

conformal linear isotropic viscoelastic materials in section 5.1 and shown that they cor-

rectly reproduce holographic results when there is no double trace deformation. We also

identified new holographic transport coefficients, which have not been considered in earlier

holographic works [22, 29–36]. Namely, by expanding the equation of state in a small strain

expansion, we notice that there is a linear term in strain in the free energy, which is the

lattice pressure and usually ignored in classical elasticity treatments (see section 5.3).

The work presented here naturally opens up the possibility for various extensions and

generalisations which we now describe.

Non-homogeneity and dynamical reference metric: the hydrodynamic formula-

tions considered here assumed homogeneity of the crystal lattice and a non-dynamical

reference metric. As such, it was shown that phenomenological viscoelastic models

such as the Kelvin-Voigt and Bingham-Voigt models are special cases of the gen-

eral constitutive relations obtained here. However, other existent models such as the

Maxwell model are not captured within this approach. In order to do so, it is re-
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quired to consider dynamical reference metrics, allowing for the possibility of plastic

deformations. This has been implemented in [7] but only for linear strains.29

Disclinations and dislocations: we have assumed that the fields φI are surface forming,

that is, the Bianchi-type condition in (3.1a) is satisfied. This implies that no defects

(e.g. disclinations or dislocations) are present. It would be interesting to understand

viscoelastic hydrodynamics in the presence of defects. In terms of generalised global

symmetries this implies that the higher-form currents JIµ1...µd−1 are not conserved,

which makes it harder to understand from this dual point of view. However, it may be

the case that in some cases, the violation of current conservation can be understood

as an anomaly in quantum field theories with generalised global symmetries.

Other crystal phases: this paper was mostly concerned with elastic (solid) crystal

phases, although some of the results are valid for smectic-A phases. However, liquid

crystals can exhibit many other types of phases such as other smectic, nematic, and

hexatic phases. The hydrodynamics of these phases have been consider in traditional

treatments [11, 13, 14, 67], though without a careful analysis of the constitutive re-

lations. It would be interesting to revisit these works using modern hydrodynamics

and to develop equivalent models in terms of higher-form symmetries.

Charged lattices, charge density waves, and holography: charged Wigner crystals

and charge density waves are charged generalisations of elastic and nematic phases of

neutral crystals. It would be interesting to consider such extensions as it can aid in the

understanding of recent holographic studies [50, 68, 69]. It is natural to consider the

works [29, 32, 33, 37, 38] and charged generalisations [50, 68, 69] within the framework

of generalised global symmetries. We would also like to understand whether section 3

is sufficient for modelling the viscoelastic fluids encountered in [29–36]).

Finite relaxation time: as mentioned in the introduction to this work, Maxwell’s origi-

nal idea of viscoelasticity consisted of materials that exhibited elasticity at short time

scales and fluidity at long time scales. In this paper we focused on situations in which

elasticity and fluidity coexist at long time scales and long wavelengths by assuming

the strain relaxation times to be very large. It would be interesting to consider the

case of arbitrary finite relaxation times as in [7] in such a way that deviations away

from the hydrodynamic regime are under control. In these situations, the framework

of quasi-hydrodynamics will most likely be useful, as in [70].

Fluid/gravity of viscoelastic fluids: we explored holographic models to viscoelastic

hydrodynamics in section 5 but only at ideal order in a long wavelength expan-

sion. It is clear from the analysis of section 5 that the holographic models describe

constitutive relations nonlinear in strain. As it is non-trivial to categorise all possi-

ble materials nonlinearly in strain, it would be interesting to continue the expansion

one order higher and to uncover viscoelastic transport coefficients that are present in

29One can also study non-homogeneous models by introducing a potential for the scalar crystal fields. In

the context of holography, this is the premise of “massive Goldstone” models studied in, for example, [63–66].
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gravity, ultimately obtaining a possible phenomenological model of viscoelasticity. In

this context, it will be possible to uncover the conformal fluid structure of section 5

for small strains.

Shear elastic modulus and instabilities: in section 3.5, we have performed a thorough

analysis of the dispersion relations of viscoelastic fluids, identified a longitudinal

sound, transverse sound and a diffusive mode as well as generalised the relation

between longitudinal and sound modes in a conformal solid [31] to the case of finite

temperature and in the presence of lattice pressure. In order to apply these results

to the holographic models of section 5, it is necessary to obtain the shear elastic

modulus. This transport coefficient does not follow from the equation of state in

equilibrium since the equilibrium state that we have considered has vanishing elastic

shear tensor. The Kubo formulae of section 3.5 can be used in the holographic models

studied here to obtain the shear modulus. Nevertheless, the results of [22] suggest

the existence of an instability for certain values of parameters in the model of [39]

with alternative boundary conditions. It would be interesting to obtain the shear

modulus precisely and study instabilities in these models more thoroughly.

Finally, the work presented here shows that formulating hydrodynamics in terms of

generalised global symmetries can be extremely useful, not only because it allows to rewrite

hydrodynamic theories with dynamical fields just based on symmetries (and their spon-

taneous breaking), but also because it allows for a cleaner understanding of potential

holographic models and their boundary conditions. It should be noted that, as in the

case of magnetohydrodynamics, viscoelasticity when written in the language of generalised

global symmetries has global symmetries partially spontaneously broken (along the fluid

flows). In the context of condensed matter systems, broken global symmetries are only

natural [71]. At this point, we are not aware of a physical hydrodynamic system with

unbroken generalised global symmetries at the boundary as described in [27]. This fact has

repercussions to several other constructions studied in [70], where the Goldstone modes

of spontaneous broken global symmetries have not been taken into account. We wish to

study these constructions more carefully in the near future.

Acknowledgments

We would like to thank M. Baggioli, M. Fukuma, L. Giomi, R.S. Green, P. Kovtun,

N. Poovuttikul and Y. Sakatani for various helpful discussions and comments on earlier

drafts of this work. JA is partly supported by the Netherlands Organization for Scientific

Research (NWO). AJ is supported by the NSERC Discovery Grant program of Canada.

A Geometry of crystals

In this appendix we give further details on the geometry of crystals. In order to characterise

the crystals’ response and symmetries, it is useful to introduce auxiliary structures and

give further details on how to describe the crystals’ geometry. Given the objects described
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above, it is natural to formulate the geometry of the worldsheets of (d − k)-dimensional

crystal cores in terms of the geometry of surface folitations (see e.g. [61, 72, 73]). The

indices I, J,K, . . . are indices on the crystal-space (transverse to the crystal cores) and can

be raised/lowered using hIJ and hIJ . In order to be able to define derivatives of tensor

structures that live on the crystal-space, we introduce a connection the acts on the crystal

indices as30

CIµJ = −eλJ∇µeIλ = −eλJ∂µeIλ + eλJΓσµλe
I
σ , (A.1)

where ∇µ denotes the spacetime covariant derivative compatible with gµν and associated

with the Christoffel connection Γλµν . Additionally, we introduce the covariant derivative

Dµ, associated with Γλµν and CIµJ and compatible with both gµν and hIJ . The covariant

derivative Dµ transforms as a tensor under GL(k) transformations of the normal one-forms.

With this definition at hand, it is easy to check that

hλνDµe
I
ν = hλνDµe

ν
I = Dµh

IJ = DµhIJ = 0 . (A.2)

The projection of the structures Dµe
I
λ,Dµe

λ
I along the crystal directions vanishes as in (A.2)

but in general

Dµe
I
ν = h̄ν

λ∇µeIλ . (A.3)

Finally, the curvature associated with the connection CIµJ is not independent and is related

to projections of the spacetime Riemann curvature tensor Rµν
ρ
σ, that is

2∂[µC
I
ν]J + 2CI[µKC

K
ν]J = Rµν

ρ
σe
I
ρe
σ
J − 2hJKDµe

[I
λ Dνe

K]λ , (A.4)

which is a generalised Ricci-Voss equation (see e.g. [74]).

The crystal metric hIJ and the reference metric hIJ contain all the information about

the internal geometry of the crystal and, in particular, about the deformations of the

crystalline structure. The one-forms eIµ, however, contain additional information about

the shape and orientation of the crystal as embedded into the spacetime. If the spacetime

does not have broken rotational invariance except for the existence of the crystal itself, this

extra information can only be accessed via derivatives.31 Given the structures introduced

above, we see that all the information about the derivatives of eIµ is stored in Dµe
I
ν and

CIµJ . In turn, the derivatives of hIJ are all captured by

C(IJ)
µ = −1

2
∇µhIJ . (A.5)

Hence, Dµe
I
ν and C

[IJ ]
µ can be seen as containing the additional information about the

crystal embedding. C
[IJ ]
µ captures the differential of the local SO(k) orientation of the

crystal with respect to the reference coordinate system, while Dµe
I
ν captures the shape of

the crystal cores via the tangential extrinsic curvature tensor KI
µν = h̄µ

λDλe
I
ν and that of

the crystal via the normal extrinsic curvature tensor LIJν = −eJλ∇λeIν . It is well known

30In the language of surfaces, (A.1) is usually referred to as the spin connection.
31This will no longer be the case when additional degrees of freedom are introduced in the theory, such

as the hydrodynamic fluid velocity and temperature as we discuss in the next section.
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that a generic set of one-forms eIµ does not have to be surface forming, i.e. there might not

exist a foliation of crystal core worldsheets normal to all the eIµ. For this to be the case, one

needs to invoke the Frobenius theorem, ensuring that there must exist a set of spacetime

one-forms aIνJ such that ∇[µe
I
ν] = −aI[µJe

J
ν]. This is equivalent to the condition that the

extrinsic curvature tensor is symmetric KI
µν = KI

νµ. Introducing the normal one-forms as

in section 2, i.e. eIµ(x) = ΛIJ(x)∂µφ
J(x) leads to the relations

CIµ[Je
µ
K] = 0 , CIµJ h̄

µ
ν = eλJDλe

I
ν , h̄µ[ρh̄σ]νDµe

I
ν = 0 . (A.6)

B Details of hydrostatic constitutive relations

B.1 Conventional formulation

The hydrostatic free energy density in the conventional formulation is given by eq. (3.18).

Let us vary each of the one-derivative terms independently. We find

1√
−g

δB

(√
−g f

1
I

T
eIµ∂µT

)
−∇µ

(
f1I

1

T
eIµδBT

)
=

1

T
eIµ∂µT

1√
−g

δB
(√
−g f1I

)
+

[
−∇ρ

(
f1I e

Iρ
)
uµuν−2f1I

1

T
eI(µ∇ν)T

]
1

2
δBgµν+O(∂2) ,

1√
−g

δB

(√
−g 2f2[IJ]e

IµeJν∂[µ(Tuν])
)
−∇µ

(
f2[IJ]2Te

IµeJνδBuν

)
= 2TeIµeJν∂[µuν]

1√
−g

δB

(√
−g f2[IJ]

)
+
[
−8f2[IJ]e

Jρ∇[λ(Tuρ])g
λ(µeIν)−2∇ρ

(
f2[IJ]2e

IρeJλ
)
Tu(µP

ν)
λ

] 1

2
δBgµν+O(∂2)

1√
−g

δB

(√
−gf3I(JK)e

Iµ∂µh
JK
)
−∇µ

(
f3I(JK)e

IµδBh
JK
)

= eIµ∂µh
JK 1√

−g
δB

(√
−gf3I(JK)

)
+
[
−2f3I(JK)e

I(µ∇ν)hJK+2∇λ
(
f3I(JK)e

Iλ
)
eJµeKν

] 1

2
δBgµν+O(∂2) . (B.1)

The first terms in the respective expressions can be expanded using the identity

S
1√
−g

δB
(√
−g X(T, hIJ)

)
= S

[
Xgµν + T

∂X

∂T
uµuν − 2

∂X

∂hIJ
eIµeJν

]
1

2
δBgµν

−∇µ
(
S
∂X

∂hIJ
2eJµ

)
δBφ

I +∇µ
(
S
∂X

∂hIJ
2e(IµδBφ

J)

)
.

(B.2)

The last line can be ignored to first order in the derivative expansion. Consequently, we

obtain the constitutive relations for the energy-momentum tensor

Tµνf1 =
1

T
eIλ∂λT

[
f1
I g

µν + T
∂f1

I

∂T
uµuν − 2

∂f1
I

∂hJK
eJµeKν

]
−∇ρ

(
f1
I e
Iρ
)
uµuν − 2f1

I

1

T
eI(µ∇ν)T +O(∂2),
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Tµνf2 = 2TeIρeJσ∂[ρuσ]

[
f2

[IJ ]g
µν + T

∂f2
[IJ ]

∂T
uµuν − 2

∂f2
[IJ ]

∂hKL
eKµeLν

]

− 8f2
[IJ ]e

Jρ∇[λ(Tuρ])g
λ(µeIν) − 2∇ρ

(
f2

[IJ ]2e
IρeJλ

)
Tu(µP

ν)
λ ,

Tµνf3 = eIλ∂λh
JK

[
f3
I(JK)g

µν + T
∂f3

I(JK)

∂T
uµuν − 2

∂f3
I(JK)

∂hIJ
eLµeMν

]

− 2f3
I(JK)e

I(µ∇ν)hJK + 2∇λ
(
f3
I(JK)e

Iλ
)
eJµeKν . (B.3)

The one derivative terms in eq. (3.18) only affect the φI equation of motion at two-derivative

order and can be ignored for our purposes.

B.2 Dual formulation

In the dual formulation, the variations of the ideal order fields are given by

δBT =
T

2
uµuνδBgµν ,

δBγIJ = − 2

(d− 1)!
uµ1ζµ2...µd(I δBbJ)µ1...µd +

(
ψµI ψ

ν
J − γIJgµν

)
δBgµν ,

δBψ
λ
I = − 1

(d− 1)!
uµ1ελνµ2...µduνδBbIµ1...µd +

(
2uλψ

(µ
I u

ν) − ψλI gµν
) 1

2
δBgµν ,

δB(Tuλ) = Tu(µP ν)
λδBgµν . (B.4)

In turn, the variations of the first order hydrostatic scalars take the form

1√
−g

δB

(
√
−g f̃

I
1

T
ψµI ∂µT

)
−∇µ

(
f̃ I1

1

T
ψµI δBT

)

=
1

T
ψλI ∂λT

1√
−g

δB

(√
−g f̃ I1

)
+

[
f̃ I1
T
∂λT

(
2uλψ

(µ
I u

ν)−ψλI gµν
)
−∇λ

(
f̃ I1ψ

λ
I

)
uµuν

]
1

2
δBgµν

+

[
−d f̃ I1

1

T
∂λTu

[µ1ελν|µ2...µd]uν

]
1

d!
δBbIµ1...µd

,

1√
−g

δB

(√
−g 2T f̃

[IJ]
2 ψµI ψ

ν
J∂[µuν]

)
−∇µ

(
2f̃

[IJ]
2 ψµI ψ

σ
JδB(Tuσ)

)

= 2TψρIψ
σ
J∂[ρuσ]

1√
−g

δB

(√
−g f̃ [IJ]2

)

+
[
−2∇ρ

(
2f̃

[IJ]
2 ψρIψ

σ
J

)
Tu(µP ν)σ−4f̃

[IJ]
2 ψJρ∂[ρ(Tuλ])

(
2uλψ

(µ
I u

ν)−ψλI gµν
)] 1

2
δBgµν

+
[
4df̃

[IJ]
2 ψρJ∂[ρ(Tuλ])u

[µ1ελν|µ2...µd]uν

] 1

d!
δBbIµ1...µd

,
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1√
−g

δB

(√
−g f̃ I(JK)

3 ψµI ∂µγJK

)
−∇µ

(
f̃
I(JK)
3 ψµI δBγJK

)

=ψλI ∂λγJK
1√
−g

δB

(√
−g f̃ I(JK)

3

)

+
[
f̃
I(JK)
3 ∂λγJK

(
2uλψ

(µ
I u

ν)−ψλI gµν
)
−2∇λ

(
f̃
I(JK)
3 ψλI

)
(ψµJψ

ν
K−γJKgµν)

] 1

2
δBgµν

+d u[µ1ελν|µ2...µd]uν

[
−f̃ I(JK)

3 ∂λγJK+2∇ρ
(
f̃
K(IJ)
3 ψρK

)
ψJλ

] 1

d!
δBbIµ1...µd

. (B.5)

It is useful to consider the variation of an arbitrary function of T and γIJ is given by

1√
−g

δB
(√
−gX(T, γIJ)

)
=

(
T
∂X

∂T
uµuν +

(
X − 2

∂X

∂γIJ
γIJ

)
gµν + 2

∂X

∂γIJ
ψµI ψ

ν
J

)
1

2
δBgµν

+

[
−2d

∂X

∂γIJ
u[µ1εµν|µ2...µd]ψJµuν

]
1

d!
δBbIµ1...µd . (B.6)

We now record the contributions to the energy-momentum tensor, higher-form currents

and free energy current that arise from each of the scalars in the hydrostatic effective

action (4.35). In particular, we have

Tµν
f̃1

=
1

T
ψλI ∂λT

[
T
∂f̃ I1
∂T

uµuν−2
∂f̃ I1
∂γKL

γKLg
µν+2

∂f̃ I1
∂γKL

ψµKψ
ν
L

]

+
2f̃ I1
T
uλ∂λTψ

(µ
I u

ν)−∇λ
(
f̃ I1ψ

λ
I

)
uµuν ,

JIµ1...µd

f̃1
= −d u[µ1εµν|µ2...µd]uν

[
1

T
2
∂f̃K1
∂γIJ

ψJµψ
λ
K∂λT+f̃ I1

1

T
∂µT

]
,

Nµ

f̃1
=

2f̃ I1
T 2

u[µψ
ν]
I ∂νT ,

Tµν
f̃2

= 2TψρIψ
σ
J∂[ρuσ]

[
T
∂f̃

[IJ]
2

∂T
uµuν−

(
f̃
[IJ]
2 +2

∂f̃
[IJ]
2

∂γKL
γKL

)
gµν+2

∂f̃
[IJ]
2

∂γKL
ψµKψ

ν
L

]

−2∇ρ
(

2f̃
[IJ]
2 ψρIψ

σ
J

)
Tu(µP ν)σ−8f̃

[IJ]
2 ψρJu

σ∂[ρ(Tuσ])ψ
(µ
I u

ν),

JIµ1...µd

f̃2
= −d u[µ1εµν|µ2...µd]uν

[
4T

∂f̃
[KL]
2

∂γIJ
ψJµψ

ρ
Kψ

σ
L∂[ρuσ]−4T f̃

[IJ]
2 ψρJ∂[ρuµ]

]
,

Nµ

f̃2
=

6f̃
[IJ]
2

T
u[µψρIψ

σ]
J ∇ρ(Tuσ) ,

Tµν
f̃3

= ψλI ∂λγJK

[
T
∂f̃

I(JK)
3

∂T
uµuν−2

∂f̃
I(JK)
3

∂γLM
γLMg

µν+2
∂f̃

I(JK)
3

∂γLM
ψµLψ

ν
M

]

+2f̃
I(JK)
3 uλ∂λγJKψ

(µ
I u

ν)−2∇λ
(
f̃
I(JK)
3 ψλI

)
(ψµJψ

ν
K−γJKgµν) ,
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JIµ1...µd

f̃3
= −d u[µ1εµν|µ2...µd]uν

[
2
∂f̃

L(JK)
3

∂γIM
ψMµψ

λ
L∂λγJK+f̃

I(JK)
3 ∂µγJK−2∇ρ

(
f̃
K(IJ)
3 ψρK

)
ψJµ

]
,

Nµ

f̃3
= 2f̃

I(JK)
3 u[µψ

ν]
I ∂νγJK . (B.7)

C Comparison with previous works

C.1 Comparison with Fukuma-Sakatani formulation

In this section we compare our work with that of [7]. The work of [7] differs from ours in

several ways: it assumes small (linear) strains; isotropy of the material; absence of external

forces; introduces an extra scalar field related to breaking of time translations; it considers

the possibility of a dynamical reference metric; and introduces a finite strain relaxation

time. By contrast, the work presented here works fully non-linear in strain; incorporates

external forces; includes anisotropy; assumes a non-dynamical reference metric; does not

break time translations; and considers very large relaxation times. Within this regime, it

is capable of capturing many viscoelastic effects which [7] cannot.

As a result of not breaking time translations, the strain tensor in the work presented

here is purely spatial. The (d + 1)-dimensional spacetime strain tensor uµν is defined via

the pullback of the d dimensional crystal strain tensor

uµν = eIµe
J
νuIJ , (C.1)

which implies that there exists a timelike vector vµ such that vµuµν = 0. Physically,

the vector vµ can be understood as a reference frame in which the stress tensor is purely

spatial. In equilibrium, this frame is the same as the fluid frame of reference. We see

that the formulation of viscoelastic fluids given in this paper necessitates the strain tensors

to admit such a reference frame.32 In the notation of [7] we identify EFS
µν = uµν where

the upperscript FS denotes quantities defined in [7]. We can split the strain tensor into

components according to

εµνFS = PµρP νσEFS
ρσ = P IµP JνuIJ , tr εFS = PµνEFS

µν = hIJuIJ + T 2uIJδBφ
IδBφ

J ,

εµFS = −2PµρuνEFS
ρν = −2TP IµuIJδBφ

J , θFS = uµuνEFS
µν = T 2uIJδBφ

IδBφ
J . (C.2)

The extrinsic curvature defined in [7] is given as

KFS
µν =

1

2
£uPµν = ∇(µuν) + uαu(µ∇αuν) =

T

2
Pµ

ρPν
σδBgρσ . (C.3)

We first examine the φI equations of motion. In section 3 we deduced that

δBφ
I = O(∂) , (C.4)

32Although this property of the strain tensor seems to stand on firm physical grounds, this constraint

has not been imposed in the generic definition in [7]. It appears that the formulation presented here can

be relaxed by including yet another scalar field φ0, whose derivative is timelike. This could potentially be

understood as the time-translation symmetry also being spontaneously broken. The physical implications

of this are unclear to us.
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and hence, in the formulation presented in this paper, εµFS is pushed to O(∂) and θFS to

O(∂2) and are both algebraically determined. On the other hand, noting that

δBuµν =
1

2
hρµh

σ
ν δBgρσ +

(
2δλ(µe

J
ν)uIJ − h

λ
(µe

J
ν)hIJ

)
∇λδBφI =

1

T
KFS
µν +O(∂2) , (C.5)

we also have

δBε
FS
µν =

1

T
KFS
µν +O(∂2) =⇒ K̄FS

µν = −£u

(
εFS
µν −

1

2
Pµν

)
= O(∂2) . (C.6)

This is the elastic limit of the rheology equations given in equation (3.3) of [7].33

We are now ready to compare the constitutive relations in [7] to the ones presented

in the core of this paper. Noting that θ = O(∂2), up to one-derivative order and linear in

strain, the energy-momentum tensor (2.41) of [7] can be expressed as

Tµν = (εf + Pf)u
µuν + Pf g

µν +

(
B− 2

d
G

)
uλλh

ρσ + 2Guρσ

+ 2Tu(µP Iν)

[(
B− 2

d
G

)
uλλhIJ + 2GuIJ

]
δBφ

J

−
[
2ηPµρP νσ +

(
ζ − 2η

d

)
PµνP ρσ

]
T

2
δBgρσ +O(∂2) +O(u2) , (C.7)

where we have identified various transport coefficients as

Fluid pressure: Pf(T ) = PFS(T ) , Fluid energy density: εf(T ) = eFS(T ) = TP ′
FS(T )−PFS(T ) ,

Shear viscosity: η =
ηFS3

T
, Bulk viscosity: ζ =

ζFS6

T
,

Shear modulus: G = −(GFS−ηFS2 ) , Bulk modulus: B = −(KFS−ζFS4 ) . (C.8)

To match these with (3.29), we perform a hydrodynamic frame transformation of the fluid

velocity such that

uµ → uµ + P IµδuI , , δuI = − T

eFS + PFS

[(
B− 2

d
G

)
uλλhIJ + 2GuIJ

]
δBφ

J , (C.9)

which also induces a shift in δBφ
I such that

δBφ
I → δBφ

I +
1

T
P IµP

JµδuJ . (C.10)

Up to linear order in uµν and up to first order in derivatives, this gives

Tµν = (εf + Pf)u
µuν + Pf g

µν +

[(
B− 2

d
G

)
uλλh

ρσ + 2Guρσ
]

−
[
2ηPµρP νσ +

(
ζ − 2η

d

)
PµνP ρσ

]
T

2
δBgρσ +O(∂2) +O(u2) . (C.11)

33This also agrees with the general rheology equations (2.50)–(2.52) of [7] when the relaxation times are

taken to be very large, that is, τs, τσ, τ± →∞.
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These directly match the constitutive relations presented in the core of this paper if we

identify

P (T, hIJ) = Pf(T ) +
1

2
CIJKLuIJuKL ,

f1
I = f2

[IJ ] = f3
I(JK) = 0 ,

ηIJKL = 2η hIKhJL +

(
ζ − 2η

d

)
hIJhKL , χIJK = 0 , (C.12)

where the elastic modulus CIJKL is given in eq. (2.15).

C.2 Comparison with Grozdanov-Poovuttikul formulation

The authors of [22] considered the case d = 2 in the language of generalised global symme-

tries. The work of [22] only investigated ideal order dynamics for very specific equilibrium

states. In this work we have provided a different interpretation of the fundamental hy-

drodynamic degrees of freedom. In particular, the formulation of [22] did not consider

the existence of the Goldstones ϕI of partial spontaneous breaking of 1-form symmetry,

rendering it incapable to characterise all equilibrium states by means of an equilibrium

partition function or effective action.

In d = 2 space dimensions, the conservation equations (4.9) decompose into 7 dy-

namical equations and 2 constraints. For each one-form symmetry I, one can reformulate

hydrodynamics as a string fluid with a partially broken symmetry [26]. In this case, there

is a set of 7 hydrodynamic variables

uµ , T , ζIµ , (C.13)

with ζIµu
µ = 0. In terms of the one-form chemical potentials µIµ and scalar Goldstone

ϕI [26], the one-forms ζIµ can be written as

ζIµ = T∂µϕ
I − µIµ . (C.14)

When comparing with [22] we deduce that ζIµ = $IhIµ with no sum over I, where hIµ
are unit normalised vectors and $I are chemical potentials introduced in [22].34 The

scalar Goldstones ϕI are a consequence of partially broken one-form symmetries and are

distinct from the translation breaking Goldstones φI used in section 3. The one-form

chemical potential µIµ is a gauge field with 4 independent degrees of freedom which is the

same number of degrees of freedom contained in ζIµ. Under a gauge transformation µIµ →
µIµ − T∂µ(uµΛIµ/T ). The Goldstones ϕI , on the other hand, are completely determined by

ζIµu
µ = 0 leading to

uµ∂µϕ
I =

1

T
uµµIµ . (C.15)

In d = 2, this gives the same number of degrees of freedom as in [22], except that there the

authors have set q12 = 0. In order to recover the exact constitutive relations of [22] we set

34We have redefined µI as introduced in [22] such that µI → $I .

– 54 –



J
H
E
P
0
1
(
2
0
2
0
)
1
2
6

q12 = 0 and define

q11 =
ρ1

$1
, q22 =

ρ2

$2
, ζµ1 = −$1h

µ
1 , ζµ2 = −$2h

µ
2 , (C.16)

from which it follows that γ11 = $2
1, γ22 = $2

2 and γ12 = $1$2h1 · h2. Note however that

∂p/∂γ12 = 0 in [22].

C.3 Comparison with higher-form hydrodynamics

In this section, we compare our construction of viscoelastic fluids in terms of higher-form

symmetries given in section 4 to the higher-form hydrodynamics formulated in [25]. The

work of [25] only involves a single higher-form symmetry as opposed to the multiple copies

generically required in viscoelastic hydrodynamics. Therefore, a precise comparison is only

possible for k = 1.

Let us take a special case of our discussion in section 4 with only one higher-form

symmetry. This corresponds to a smectic phase, as opposed to elastic, where the lattice

order is only present in one spatial direction. We can define (d − 1)- and d-dimensional

volume forms

Vold−1 = − 1
√
γ11(d− 1)!

ζ1µ1...µd−1
dxµ1 ∧ . . . ∧ dxµd−1 , Vold = u ∧Vold−1 . (C.17)

We can also define a projector

Πµν =
1

γ11(d− 2!)
ζ1
µ
µ2...µd−1

ζ
νµ2...µd−1

1 . (C.18)

In terms of these, the ideal order constitutive relations (4.30) reduce to

Tµν = (ε+ p)uµuν + pgµν − q11γ11Πµν +O(∂) ,

J1 = q11√γ11 Vold +O(∂) . (C.19)

This can be compared directly to section 2 of [25] with Q = q11√γ11 and µ =
√
γ11. In prin-

ciple, we can extend this comparison to include one-derivative corrections as well. However

for technical simplicity, in this work we have only focused on one-derivative corrections for

elastic fluids (k = d), so such a comparison is beyond the scope of the current analysis.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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