
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The holographic landscape of symmetric product orbifolds

Belin, A.; Castro, A.; Keller, C.A.; Mühlmann, B.
DOI
10.1007/JHEP01(2020)111
Publication date
2020
Document Version
Final published version
Published in
Journal of High Energy Physics
License
CC BY

Link to publication

Citation for published version (APA):
Belin, A., Castro, A., Keller, C. A., & Mühlmann, B. (2020). The holographic landscape of
symmetric product orbifolds. Journal of High Energy Physics, 2020(1), [111].
https://doi.org/10.1007/JHEP01(2020)111

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1007/JHEP01(2020)111
https://dare.uva.nl/personal/pure/en/publications/the-holographic-landscape-of-symmetric-product-orbifolds(a196e7d5-7bab-4ed2-9d93-7773d19fd116).html
https://doi.org/10.1007/JHEP01(2020)111


J
H
E
P
0
1
(
2
0
2
0
)
1
1
1

Published for SISSA by Springer

Received: November 1, 2019

Accepted: January 2, 2020

Published: January 20, 2020

The holographic landscape of symmetric product

orbifolds

Alexandre Belin,a Alejandra Castro,b Christoph A. Kellerc and Beatrix Mühlmannb
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AdS3/CFT2 where the bulk is a semi-classical supergravity theory. In such cases, we give

exact expressions for the BPS degeneracies, which could be matched with the spectrum of

perturbative states in a dual supergravity description.
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1 Introduction

The AdS/CFT correspondence provides a non-perturbative, UV-complete definition of

quantum gravity in Anti-de Sitter space. In the realizations that are well understood,

it relates supergravity theories on backgrounds of the type AdSd+1×Mq to conformal field

theories living in d dimensions. The conformal field theories at play have striking features

such as a large number of degrees of freedom and strong coupling, which are often seen as

necessary conditions to make CFTs “holographic.” Given the space of all conformal field

theories, one would like to understand which CFTs possess the appropriate properties to

be described by semi-classical general relativity (or supergravity). This remains one of the

most important open questions in holography.
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In this work, we will address this question in the context of AdS3/CFT2. The advantage

of working in this low-dimensional setting is that its symmetries give us more control

while retaining most of the flavor of its higher dimensional counterparts. Some of the

universal aspects controlled by symmetries are the following. Two-dimensional conformal

field theories are constrained by the infinite-dimensional Virasoro algebra, which as shown

several decades ago by Brown and Henneaux [1], gives a universal relation between the

value of the central charge and the gravitational coupling

c =
3`AdS

2GN
. (1.1)

Semi-classical theories of gravity must therefore correspond to CFTs with a large value of

the central charge, i.e. CFTs with a large number of degrees of freedom. A CFT2 is also

constrained by modular invariance, which in particular implies that at large energies h the

asymptotic behavior of the density of states ρ(h) is completely fixed by symmetry. This

behavior is given by the Cardy formula [2], i.e.

ρ(h) ≈ e2π
√

c
3

2h , h = h̄� 1 , c fixed . (1.2)

Famously, this matches the entropy of the BTZ black hole [3]. While this provides a

consistency condition on AdS/CFT, it is somewhat of an expected one since it is guaranteed

by manifest symmetries on both sides of the duality. Moreover, the match is insensitive to

the CFT: (1.2) holds independently of the value of the central charge or other dynamical

features of the theory.

Moving away from asymptotically large energies h, the spectrum of a CFT2 is no longer

universal and provides a window into the dynamics of the theory. From the spectrum alone,

one can derive necessary conditions for a CFT to behave holographically by matching with

gravitational results. A first step was carried out in [4] by demanding that the CFT entropy

match that of the BTZ black hole not only at asymptotically large energies, but for any

black hole above the Hawking-Page phase transition. Demanding such a matching requires

the density of light states to be sufficiently sparse, namely it should satisfy the HKS bound

ρ(h) . e2πh , h <
c

12
. (1.3)

Similar ideas were later carried out for other types of observables in, e.g., [5–11].

While the HKS bound is necessary for a CFT to be holographic, it is not sufficient.

In particular, (1.3) allows for a Hagedorn growth of light states. This growth is typical of

a string theory in AdS, and would produce large deviations from general relativity at low

energies. In this paper, the precise form of the growth of light states ρ(h) will be the key

object of study. Light states are perturbative states dual to particles in the low-energy

bulk effective field theory. Their growth teaches us about the nature of the effective field

theory that lives in the bulk.1 We will mostly distinguish two scenarios.

1. Hagedorn growth: ρ(h) ∼ ecHh.

2. Supergravity-like growth : ρ(h) ∼ ecShα , α < 1.

1The spectrum of light particles also enters into the data necessary to compute correlation functions,

once we consider loops. This connection was exploited in [12] to read off the number of spacetime dimensions

from CFT correlators.
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The spectra described above should be viewed as an asymptotic growth for light states, by

which we mean

1� h� c . (1.4)

The two parameters cH and cS are left unspecified at this point. The idea behind the

supergravity-like growth is that a weakly interacting local quantum field theory living in

AdS3 ×MD−3 would have a spectrum that grows like

ρ(h) ∼ ecSh
D−1
D . (1.5)

The main goal of this paper is to construct examples that possess this type of growth.

While obtaining theories that exhibit Hagedorn growth (and hence are compatible with the

HKS bound) is easy, only a handful of CFTs are known to comply to a supergravity-like

spectrum. Here we will identify and quantify a large class of counting formulas that exhibit

the desired supergravity-like growth, and in particular we will give explicit expressions for

the density of states.

We note that all our supergravity-like examples will turn out to have α = 1/2. The

mathematical reason for this is explained in [13]. The physical reason is that we will be

computing and index for which certain states cancel out. This leads to a lower effective

dimension D. Why and how this happens in detail is not completely clear to us, but we

note that this is exactly what happens in the known examples with D = 6 such as the D1D5

CFT dual to supergravity on AdS3 × S3 [14]: Restricting to supergravity chiral primaries,

α reduces from 5/6 to 3/4, which is exactly the growth that appears in the so-called Hodge

elliptic genus [15]. To obtain the elliptic genus, which is the object that we investigate in

the present work, we then specialize the Hodge elliptic genus. This specialization leads to

cancellations between BPS states, which further reduces α to 1/2. It is not clear to us

how this mechanism works for our more general examples. We hope to understand this in

future work.

1.1 Symmetric product orbifolds: Hagedorn vs supergravity growth

Our objective should now be clear: we want to scan the space of CFT2 with a large central

charge and ask whether the low-lying spectrum is supergravity-like. Even though a CFT2

is highly constrained due to the infinite dimensional Virasoro symmetry, we unfortunately

lack a complete classification of all consistent theories. Still, we have certain regions of

theory-space that we can explore. One rich region is the space of CFTs that admit a

description in terms of a symmetric product orbifold. This class of theories is constructed

as follows: one considers a seed CFT C, takes N copies, and orbifolds by the symmetric

group that exchanges the copies

CN =
C⊗N

SN
. (1.6)

These theories are known to possess a good large N limit [16–18], and hence provide

an interesting space of CFTs, parametrized by the choice of seed theory C. They have

also played a prominent role in the realizations of AdS3/CFT2 that we know from string

theory [19, 20].

– 3 –
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Unfortunately, it is well known that the light spectrum of symmetric product orbifold

theories is universal and exhibits Hagedorn growth [21]

ρ(h) ∼ e2πh . (1.7)

These theories should in fact be seen as free (discrete) gauge theories. From a holographic

standpoint, they are not dual to supergravity in AdS, but rather to string theories in

the tensionless limit [22, 23]. For example, they do not exhibit chaotic dynamics that is

characteristic of semi-classical gravity [24].

Nevertheless, there could be a connection between symmetric product orbifolds and

CFTs that exhibit the supergravity growth we are seeking here. For example, in the known

string theory constructions, the symmetric product orbifold is a weakly coupled description

of a D-brane configuration wrapping, for example, T4 or K3; see [25, 26] for a review. In

this context the seed CFT is the non-linear sigma model on T4 or K3, respectively. These

CFTs contain a marginal operator which can drive the theory into a strong coupling regime:

Under this deformation, most of the states acquire large anomalous dimensions, and the

Hagedorn growth (1.7) is reduced to the much-slower growth (1.5) with D = 6.

A test of this connection, i.e. that a marginal deformation relates a symmetric product

orbifold to a holographic CFT, can be established via two complementary approaches. A

first approach is to establish the existence of this marginal operator, and assess that it

reduces the growth in (1.7) to a desired lower growth of the form (1.5). Recent progress

has been made with this regard [27, 28]. This however remains extremely tedious even only

at second order in perturbation theory.

A second approach is to focus on observables that are protected under the marginal

deformation. In particular, the spectrum of BPS states in supersymmetric CFTs (with at

least N = (2, 2)) is insensitive to this class of deformations. By studying the symmetric

product orbifold description, we can therefore test if there is a strong coupling description

meeting our criteria (1.5). We will view this as a necessary condition: the BPS spectrum

will serve as a lamppost to detect gravitational features.

Our main result is a practical implementation of the second approach, given only

minimal data about the seed theory. The emphasis here will be to quantify the degeneracy

of light BPS states of a SCFT in the space of symmetric product orbifold theories. Our

analysis gives an exact expression for the degeneracy of states in the large central charge

limit, and allows us to compute the spectrum of light operators to any desired precision.

We will provide a classification of the seed theories C that divides them into two classes:

Hagedorn Landscape: Supersymmetric examples of symmetric product orbifold theories

whose light BPS states have Hagedorn growth as defined above. These instances

have less utility in a gravitational context since they will never admit a supergravity

growth via a marginal deformation, albeit there might be other interesting CFT or

string theory applications of them. This is the most typical situation within the space

of symmetric product orbifolds.

Supergravity Landscape: Supersymmetric examples of symmetric product orbifold theories

whose light BPS states have supergravity growth. These are promising examples in

– 4 –
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the sense that a CFT, supergravity or string theory description for the majority of

them is unknown to us. Although this category is rather restricted and sparse, we

provide a precise landscape of potentially sound instances of AdS3/CFT2 that is for

the most part unexplored.

This work is an improvement of the analysis of [29], where the first evidence for these

two different behaviors was noticed. This was achieved by studying the specialized z = 0

version of the NS elliptic genus. Forms whose specialized genus had supergravity growth

were called ‘very special’. Our analysis shows that the specialized genus is too coarse to

distinguish all cases. In particular we will provide an example of a form whose specialized

genus has supergravity growth, but whose elliptic genus has Hagedorn growth: specializa-

tion in this case leads to additional cancellations.

The paper is organized as follows. We start in section 2 by reviewing the properties

of the spectrum of two-dimensional CFTs. We then introduce the landscape of symmetric

product orbifolds and describe how their spectrum is obtained from the choice of the seed.

We also discuss the spectral flow transformation between Ramond and Neveu-Schwarz

sector. In section 3, we describe the growth of light states for a generic seed and show that

it exhibits Hagedorn growth. We then give the precise criterion to distinguish between

this case and the situation where the growth is drastically decreased. In section 4, we give

a complete classification of the CFTs that lead to a supergravity-like spectrum and give

explicit expressions for the light BPS spectrum. Some of these theories correspond to known

string theory constructions, while others are new potential realizations of AdS3/CFT2.

We finish in section 5 by a discussion of future directions. The detailed analysis of the

mathematical techniques to extract the light spectrum is given in a companion paper [13].

2 Symmetric product orbifolds

In this section, we will review symmetric product orbifolds and describe their universal

properties. The emphasis is on their partition functions, and for supersymmetric instances,

their elliptic genera.

2.1 Partition functions and elliptic genera in CFT2

To start, it is instructive to review properties of the density of states for a CFT2 with a

discrete spectrum. Let us consider a modular invariant partition function of a chiral CFT

with central charge c,

Z(τ) ≡ TrHq
L0− c

24 =
∑

n≥−c/24

d(n)qn , q ≡ e2πiτ . (2.1)

It is well known that the asymptotic density of states is given by the Cardy formula, i.e.

d(n) ∼ e2π
√
cn/6 for states with large n and fixed c. The behavior of the heavy states

(n � c) is thus completely determined. The behavior of light states however is not fixed.

More precisely, the spectrum of low lying primary states d(n) can be chosen freely for

n ∼ O(1), in fact roughly up to n < 0, without tampering with the Cardy formula. A

generalization to non-chiral CFTs is straightforward.

– 5 –
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Here we will be interested in supersymmetric CFT2, and we will focus mostly on

theories with at least N = (2, 2) supersymmetry. For such theories, one can define the

elliptic genus as [30–32]

χ(τ, z) ≡ TrR,R(−1)J0+J̄0qL0− c
24 yJ0 q̄L̄0− c

24 , y ≡ e2πiz , (2.2)

where z is a chemical potential for the U(1) current. Since it generalizes a partition function,

χ has particularly nice transformation properties under the modular group SL(2,Z). In

fact under modular transformations it behaves like a weak Jacobi form (wJf) of weight 0,

meaning it satisfies (A.2) as described in appendix A. If in addition all U(1) charges are

integer, it is also invariant under spectral flow, meaning it satisfies (A.3). This implies that

χ(τ, z) is actually a weak Jacobi form of weight 0 and index t = c/6. Charge integrality is

ensured for instance if the CFT has N = (4, 4) supersymmetry; or if it is the σ-model of

an even dimensional Calabi-Yau manifold, in which case locality of the holomorphic Ωd,0

form ensures this.

There are however many interesting CFTs for which the elliptic genus has fractional

U(1) charges. Typical examples are odd dimensional Calabi-Yau manifolds: the holomor-

phic Ωd,0 form still ensures that the U(1) charges are integral in the NS sector, but after

flowing to the Ramond sector they become half-integer. For CY 3-folds for instance the

elliptic genus is a multiple of φ0,3/2(τ, z) [33], which has half-integer y-exponents. Other

examples of N = (2, 2) with fractional charges are the T4-orbifolds described in [34], or

‘unorbifolded’ Gepner models [35], that is products of N = 2 minimal models. All these

elliptic genera do not transform as (A.3) anymore. We can however turn them into a wJf

by ‘unwrapping’: Suppose all charges have denominator k. Then we define

ϕ(τ, z) := χ(τ, kz) =
∑
n,l

c(n, l)qnyl (2.3)

which does have integer charges, and it is straightforward to check that it indeed defines

a wJf of index t = k2c/6. This unwrapping trick thus allows us to also analyze CFTs

with fractional charges using wJf. Conversely, given a wJf ϕ, its index t may not always

correspond to the central charge c/6: it could also describe a CFT of smaller central charge

with fractional U(1) charges, whose elliptic genus has been unwrapped.

Just like for the partition function, modular invariance gives a Cardy-type formula for

the asymptotic behavior of the spectrum of states in χ(τ, z). The role of the energy is now

effectively played by the discriminant

∆ = 4tn− l2 , (2.4)

where t is the index of the weak Jacobi form. Note that the discriminant is bounded from

below by −t2. We will call ∆min the discriminant of the state of minimal discriminant. If

the discriminant is large and positive, then the behavior is again given by

c(n, l) ∼ eπ
√
|∆min|
t2

∆
, for ∆� 1 . (2.5)

(See for instance appendix B of [36].) The role of light states is played by states with

negative discriminant ∆ < 0: so-called polar states. As in (2.1), their degeneracy does not

– 6 –
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affect the derivation of (2.5), and can be chosen (almost) completely freely. The only input

in the Cardy-type formula above is the discriminant of the most polar term, ∆min.

2.2 Partition function of symmetric product orbifolds

In holography, we are interested in families of CFTs with a good large c limit. This means

in particular that in the large c limit the CFTs should have a finite number of states at any

finite dimension h. The best known constructions of this type are symmetric orbifolds, who

are part of a larger set of CFTs known as permutation orbifolds [17, 18, 37]. Symmetric

orbifolds are constructed in the following way: we start with a seed CFT C of central charge

c and partition function Z(τ ; C), take their m-fold tensor product, and then orbifold by all

possible permutations of the m factors, that is by the entire symmetric group Sm:

Cm = C⊗m/Sm . (2.6)

It turns out that the generating function for the partition functions of the Cm has a very

simple form [38]:

Z(τ, ρ) =
∑
m

Z(τ ; Cm) pm =
∏

m>0,n∈Z

1

(1− pmqn)d(mn)
=
∑
m,n

dm(n)pmqn , p ≡ e2πiρ ,

(2.7)

where d(n) are the degeneracies appearing in Z(τ ; C). What can we say about the growth

of coefficients dm(n) of the m-th symmetric orbifold? Obviously, for n asymptotically large,

that is for n � m, we will find the universal Cardy behavior (1.2). Rather surprisingly

however, we also find universal behavior for states with n < 0. More precisely, regardless

of the seed theory we choose, such states have Hagedorn growth [21],

dm(n) ∼ e2π(n+mc/24) , −mc

24
� n� 0 . (2.8)

The idea of the limit here is that we send m to infinity while keeping n + mc/24 fixed.

The Hagedorn growth in (2.8) comes from the twisted states: dm(n) is primarily the sum

of contributions of twisted sectors of different length, and its maximal term is already

of the form e2π(n+mc/24). All other terms are positive, so that the total sum gives the

behavior (2.8). The landscape of symmetric orbifold theories thus seems somewhat disap-

pointing: while they all satisfy the HKS sparseness bound (1.3), the asymptotic behavior

of their light states is universally determined, and never corresponds to a holographic dual

with a supergravity-like spectrum of perturbative states.

This story becomes much more interesting when we turn to elliptic genera and their

symmetric orbifolds. As before, we can write down a very similar looking formula for the

generating function [38]:

Z(τ, z, ρ) =
∑
m≥0

ϕ(τ, z; Cm)ptm =
∏

m>0,n,l∈Z

1

(1− ptmqnyl)c(mn,l)
=
∑
m,n,l

d(m,n, l) ptmqnyl .

(2.9)

Characterizing the growth behavior of the Fourier coefficients d(m,n, l) will be the main

object of this work. Note that d(m,n, l) is completely fixed by the choice of the coefficients

– 7 –
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c(n, l), namely by the choice of a seed theory. Our goal will be to determine, or at least

estimate, the coefficients d(m,n, l) given some basic information on the seed.

For heavy states, ∆ = 4tmn− l2 � 1, we obtain the universal Cardy behavior (2.5), as

expected. Unlike in the bosonic case discussed above, the behaviour for polar states with

∆ < 0 can vary drastically! Naively repeating the argument around (2.8), we again find that

the maximal twisted sector contributes e2πn. However, as we are working with an index,

there can now be cancellations between terms. Indeed it turns out that for certain examples

these cancellations are powerful enough to reduce the Hagedorn growth to a much slower

supergravity-like growth. This in fact plays a crucial role in matching the BPS spectrum

of CFT light states to gravitational perturbations for the D1-D5 system [39, 40].

Our goal is to investigate under which circumstances such cancellations happen, and

supergravity growth occurs. In order to describe perturbative states, it will be more useful

to spectral flow to the NS sector since vacuum AdS is the NS vacuum and perturbative

states are those close to the NS vacuum. We therefore describe the spectral flow transfor-

mation in the following subsection.

2.3 NS sector elliptic genus

Since we are ultimately interested in matching our light states to perturbative states, we

want to convert (2.9) to the NS sector. In principle this is a straightforward application of

spectral flow. The crucial point however is that to use (2.9), ϕ has to be a wJf. If we want

to analyze a CFT with fractional charges, ϕ will therefore be an unwrapping of the actual

elliptic genus as discussed in section 2.1, which affects the physical interpretation of what

it means to spectrally flow.

Keeping this unwrapping feature in mind, we will identify the NS sector as follows.

Let us denote by ϕ the wJf of weight 0 index t related to the seed of the symmetric product

orbifold. If the most polar term in ϕ is

q0y−b , (2.10)

we will identify, via spectral flow, this term as the NS vacuum. In general, if the NS vacuum

contributes to the NS elliptic genus, it implies that the most polar term is necessarily of

the form (2.10).2 The desired transformation is

χNS (τ, k z; C) = e2πiτ b
2

4t e
2πit

(
b2

4t2
τ+ b

t
z
)
ϕ

(
τ, z +

b

2t
τ

)
, (2.11)

where the left hand side is the NS sector elliptic genus unwrapped k times. This trans-

formation can be viewed in the following way: it is the combination of a spectral flow

transformation by a fractional amount b/2t, and an overall shift —the first exponential

term in (2.11)— that sets the vacuum energy to zero. With this transformation, we guar-

antee that the NS vacuum is given by the term q0y0, which will be convenient to take the

2For the rest of the paper, we will assume that the NS vacuum gives a non-zero contribution to the elliptic

genus. In the discussion section, we comment on some aspects of the cases where we relax this assumption.
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large c limit. Note that this fixes bk = t and the original Ramond sector elliptic genus has

the usual relation to the NS sector, i.e.

χNS (τ, z) = q
c
24 qt̂/2yt̂χ

(
τ, z +

τ

2

)
, (2.12)

with c = 6t̂ the central charge of the seed, and t̂ = tk−2 the index of the elliptic genus

before unwrapping.

How do we implement such a transformation at the level of the generating func-

tion (2.9)? We simply perform the transformation

tρ→ tρ+
b2

2t
τ + bz , z → z +

b

2t
τ . (2.13)

The generating function becomes

ZNS =
∏
m>0,
n,l∈Z

1

(1− ptmqn+ b
2t
l+ b2

2t
myl+bm)c(nm,l)

=
∏

m>0,h≥0,
lNS∈Z

1

(1− ptmqhylNS)c̃(m,h,lNS)
, (2.14)

where c(n, l) are the coefficients in ϕ, and we have defined

h = n+
b

2t
l +

b2

2t
m ,

lNS = l + bm , (2.15)

c̃ (m,h, lNS) = c

(
m

(
h− b

2t
lNS

)
, lNS − bm

)
.

Since in the seed q0y−b is the most polar term, we can quickly check that the product

in (2.14) is indeed only over non-negative values of h: Indeed, due to the polarity constraint,

c(m(h− b
2t lNS), lNS − bm) is only non-zero if

h ≥ (lNS)2

4tm
+

b2

4tm
(m2 − 1) ≥ 0 . (2.16)

The factor in the product formula with h = 0, lNS = 0 and m = 1 corresponds to the

vacuum of the seed theory, and reads

1

(1− pt)c(0,−b)
. (2.17)

This is the only term with h = 0 in the product. As we will see below, we will be interested

in the behavior of (2.14) at p = 1; (2.17) is then the pole in the generating function at

that value.

Our aim is to quantify the behavior of light states in ZNS in the large central charge

limit. Because the vacuum of the seed can be degenerate, i.e. we could have c(0,−b) > 1,

the degeneracy of the vacuum state of the m-th copy scales with m: This makes the limit
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m→∞ of the elliptic genus singular. To regulate this divergence, the procedure to extract

the m → ∞ limit is to strip off (2.17), and to set p = 1 in the remaining expression [39].

Strictly speaking we are thus computing the quantity

χNS,∞ ≡ lim
m→∞

χNS(τ, kz; Cm)

mc(0,−b)−1
= lim

p→1
(1− pt)c(0,−b)ZNS

=
∏

h≥0,lNS∈Z
(h,lNS) 6=(0,0)

1

(1− qhylNS)fNS(h,lNS)
≡
∑
h,lNS

dNS
∞ (h, lNS)qhylNS , (2.18)

where we defined

fNS(h, lNS) =
∞∑
m=1

c̃(m,h, lNS) . (2.19)

This object extracts the spectrum of BPS states with fixed h and lNS in the large central

charge limit, i.e. m→∞. This is the quantity that is best suited to be compared with the

perturbative spectrum of a putative dual supergravity theory. We will see that there are two

outcomes that emerge from the analysis: the coefficients fNS(h, lNS) are either constants,

or they exhibit exponential growth. This means the coefficients dNS
∞ (h, lNS) exhibit either

supergravity-like growth (1.5) with D = 2, or Hagedorn growth.

3 Hagedorn landscape

In this section, we will describe the possible outcomes for the coefficients fNS(h, lNS). We

start by giving a general estimate for the growth assuming no cancellations occur and show

that we recover the Hagedorn behavior reminiscent of the bosonic partition function. We

then give a precise criterion on whether cancellations occur or not, following the work we

present in [13]. This separates the wJf into two classes: forms with a Hagedorn growth

and forms with a supergravity growth. We conclude this section by giving some details on

the regime of validity of the Hagedorn growth in the (h, lNS)-plane.

3.1 The growth of the coefficients f̃(n, l): no cancellations

We will now discuss the growth of the coefficients fNS(h, lNS). To this end let us introduce

f̃(n, l) =

∞∑
m=1

c(nm, l − bm) , (3.1)

so that

fNS (h, lNS) = f̃

(
h− b

2t
lNS, lNS

)
, (3.2)

as for practical reasons it is more convenient to work with the f̃(n, l). Note that n must

be a non-negative integer which dictates the allowed values of h. As we mentioned in

section 2.3, assuming that the NS vacuum contributes to the elliptic genus implies that the
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most polar term of the wJf ϕ is of the form3

q0y−b . (3.3)

Let us first give a quick argument for the growth of the coefficients that we generically

expect. Consider (3.1), and simply estimate the largest term in this sum. Assuming that

there are no cancellations, the total sum will have a growth behavior similar to its maximal

term. For large discriminant, modular invariance gives the following asymptotic behavior

of the seed coefficients

c(n, l) ∼ expπ
√

4tn− l2 b
t
, (3.4)

which follows from (2.5). The maximal term in (3.1) occurs for m = (2tn+bl)/b2 and gives

∼ expπ
√

4n2 + 4nlb/t . (3.5)

This implies that

fNS(h, lNS) ∼ exp 2π

√
h2 − b2

4t2
lNS

2 . (3.6)

Again, assuming that nothing drastic happens when multiplying out the product (2.18),

we expect the same behavior also for the coefficients

dNS
∞ (h, lNS) ∼ exp 2π

√
h2 − b2

4t2
lNS

2 . (3.7)

For uncharged states with lNS = 0 we thus recover Hagedorn growth with slope 2π. This

is exactly what we expected from the bosonic analysis: if there are no cancellations, the

growth of the elliptic genus should match the growth of the partition function [21, 41].

This superficial analysis however misses a very important aspect: Cancellations in fact

can occur, and they can lead to a drastically slower growth, as we will now discuss.

3.2 Growth of the coefficients f̃(n, l): A closer look

Let us now investigate the growth behavior of the sum (3.1) more carefully. In the accom-

panying paper [13], we extract the growth behavior following a detailed analysis that takes

into account all possible cancellations. It turns out that one can quickly and efficiently cap-

ture the nature of the growth, and in particular separate Hagedorn from supergravity-like

growth. The outcome of the analysis is the following: First define

f(n, l) =
∑
m∈Z

c(nm, l − bm) , (3.8)

so that

f̃(n, l) = f(n, l)− c(0, l)− δn,0
∑
m>0

c(0, l + bm) . (3.9)

3It is worthwhile to mention that for low values of the index, all wJf have this property. However, at

high enough index, there exist some finely tuned wJf that are not of this form. We return to this question

in the discussion section.
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Clearly the behavior of f̃ and f only differs by very few polar terms, so that we can analyze

f instead.

The analysis of [13] shows that the growth properties of the f(n, l) can be extracted

from a set of specialized versions of the seed wJf given by ϕ(τ, (rτ + s)/b) with r, s =

0, 1, . . . , b. These specialized forms still have nice modular transformations, albeit under

a congruence subgroup of SL(2,Z). Their asymptotic behaviour therefore solely depends

on whether there is a negative power of q appearing in the specialized wJf or not. If there

is, the f(n, l) exhibit Hagedorn growth. If there is not, they are constants. To determine

whether the growth is Hagedorn or not, one simply needs to scan over all the ϕ(τ, (rτ+s)/b)

and check if we can find a term q−α with α > 0.

The concrete prescription is the following: for a term qny−l of the seed form ϕ, define

α = max
j=0,...,b−1

(
− t

b2
j

(
j − bl

t

)
− n

)
. (3.10)

If α > 0, this term leads to Hagedorn growth

f(n, l) ∼ exp 2π
√

4α(tn2/b2 + nl/b) , (3.11)

and consequently

fNS(h, lNS) ∼ exp 2π

√
4tα

b2

√
h2 − b2

4t2
lNS ≡ exp ν

√
h2 − b2

4t2
lNS . (3.12)

Note that if the polarity of the term is positive, then we automatically have α < 0, which

means that a non-polar term cannot produce Hagedorn growth. It is therefore only nec-

essary to test (3.10) for the polar terms of the seed, of which there are a finite number at

any fixed index. Only if all polar terms lead to α ≤ 0 will we have supergravity growth.

To connect this to the discussion in section 3.1, let us first consider the most polar

term y−bq0. In principle, α is maximized for j = b2/2t, for which α = b2/4t and we get

Hagedorn growth with slope

ν = 2π . (3.13)

We see that this is exactly the growth under the non-cancellation assumption that lead

to (3.6). The reason why we sometimes have slower growth is that this optimal value of j

cannot be attained: namely it can only be attained if

b2

2t
∈ Z . (3.14)

If this condition is not satisfied, then we obtain a slower Hagedorn growth or even super-

gravity growth.

We can now classify the wJf according to the outcome of evaluating (3.10). We will

see that the forms leading to supergravity growth are relatively rare, in that at any fixed

index, they form only a small subspace of all wJf. It will therefore be easier to give the

complete classification by specifying the forms that do have supergravity growth, which

will be the object of section 4. Before that however, we give some more details on when

Hagedorn growth is expected as well as the regime of validity of the Hagedorn growth in

the (h, lNS)-plane.
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3.3 Forms that lead to Hagedorn growth

Let us give some more details about the circumstances under which we necessarily have

light states that exhibit Hagedorn growth. Consider the most polar term of the wJf

q0y−b . (3.15)

From (3.10), we see that if there is a j = 1, . . . , b− 1 such that

j − b2

t
< 0 , (3.16)

then we necessarily have α > 0. Clearly this is the case if and only if

b2 > t . (3.17)

We are therefore guaranteed to get Hagedorn growth from the most polar term alone if

b >
√
t. This means that there are no supergravity-type forms with b >

√
t. For b ≤

√
t,

this particular term does not give Hagedorn growth. We therefore have already found a

necessary condition for wJfs to have supergravity growth. It is however not sufficient, since

other (less polar) terms could still lead to Hagedorn growth. We will analyze this in detail

in section 4.

In table 1 we summarize the classification of all forms with Hagedorn growth up to

index t = 4. Note that the slope of the Hagedorn growth is indeed not always 2π due

to (3.14) not being satisfied. Comparing these results with the bosonic partition func-

tions, it means some cancellations have occurred, but not enough to completely kill the

Hagedorn behaviour.

The physical consequence of a Hagedorn growth is that it leads to a pole in the free

energy at the Hagedorn temperature TH . Interpreting the Hagedorn growth as coming

from stringy modes in AdS3, we arrive at the following identity

TH ≡
1

4π`s
=

1

ν`AdS
. (3.18)

Therefore, the slope ν is measuring the string scale in AdS units. Note that the slope

is upper bounded by the no-cancellation scenario (3.13), which matches with the bosonic

partition function (2.8). This gives

ν

4π
=

`s
`AdS

≤ 1

2
. (3.19)

For the examples we find that have ν < 2π, it is tempting to associate the non-maximal

growth to the presence of an exactly marginal operator that can change the ratio of the

string and AdS scales and displaces it from its maximal value. However, unlike the super-

gravity case, our analysis indicates that there is lower bound for `s, such that the string

length cannot be made parametrically small. It would be interesting to understand this

phenomenon better and we hope to return to this question in future work.

Finally let us connect our results to the analysis of [29], and in particular to their

definition of ‘very special wJf’. The example t = 3, b = 2 in table 1 is very special
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t b j ν

2 2 1 2π

3 2 1 2π
√

3/4

3 3 1,2 2π
√

8/9

4 3 1 2π
√

80/81

4 4 2 2π

Table 1. Hagedorn slope for various examples up to t = 4. j is the integer that maximizes α.

under that terminology. This means that the coefficients of the specialized elliptic genus,

defined as

χsp(τ) := χNS
∞ (τ, z = 0) , (3.20)

exhibit supergravity-like growth. Comparing with our results in table 1, we see here that

the full NS elliptic genus has Hagedorn growth with slope 2π
√

3/4. This means that

specializing the elliptic genus to z = 0 has introduced many additional cancellations and

drastically changed its behaviour. This shows that one has to be particularly careful

in drawing conclusions from the specialized elliptic genus, since it can introduce further

cancellations and therefore be misleading.

3.4 Hagedorn growth in the (h, lNS)-plane

Let us now briefly discuss the growth of the dNS
∞ (h, lNS) in the Hagedorn case in more detail.

We have concluded that if we find α > 0, the fNS have Hagedorn growth (3.12). We then

expect the dNS
∞ (h, lNS) to grow similarly,

dNS
∞ (h, lNS) ∼ exp ν

√
h2 − b2

4t2
lNS

2 . (3.21)

This expression is valid provided we are in the regime

h2 − b2

4t2
lNS

2 � 1 . (3.22)

In particular, for fixed lNS and large h, we recover the usual Hagedorn growth of bosonic

partition functions. We would now like to discuss slightly different regimes. We will

summarize our findings in figure 1.

First, note from (3.2) that fNS(h, lNS) = 0 if h < blNS/2t, which gives a type of unitarity

bound. If h saturates that bound, that is

h =
b

2t
lNS , (3.23)

then fNS( b2t lNS, lNS) = f̃(0, lNS). From (3.1) we then see that f̃(0, lNS) = 0 for negative

lNS. For positive lNS there are at most two non-vanishing terms in the sum. This implies

that the f̃(0, lNS) are essentially constant, which leads to the growth

dNS
∞

(
b

2t
lNS, lNS

)
∼ e
√
lNS . (3.24)
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It follows that in figure 1, the dNS
∞ (h, lNS) vanish below the lower right line, and on the line

they have Cardy growth.

Next, consider states which are close to this unitarity bound, namely

lNS =
2th

b
− δl . (3.25)

To get dNS
∞ (h, lNS), we need to analyze in which ways we can get a state of that particular

weight and charge. To get a state with h and lNS = 2ht/b− δl, we start out with the state

(h− bδl/2t,−2ht/b+ δl), and then multiply with the contribution of several states of total

weight bδl/2t and charge 0. Using (3.21) we get for the multiplicity of such states

∼ exp ν

√
δl2b2

4t2
= exp 2π

√
α

t
δl . (3.26)

This means we get Hagedorn growth in δl. This is valid as long as δl is sufficiently large,

but not too large either. More precisely, as soon as δl = 2ht/b, that is as soon as lNS = 0,

this argument breaks down, since the state with which we start would have negative weight.

We have indicated this growth by teal arrows in figure 1.

At this point, this growth will break down. For δl > 0 fixed and large and growing h,

we can still trust (3.21) so we find

dNS
∞ (h, 2th/b− δl) ∼ exp ν

√
bδl

t
h , (3.27)

which again is sub-exponential. We find that it matches onto (3.26) at lNS = 0.

Finally consider terms fNS(h, lNS) with negative lNS. Here there is a similar unitarity

bound, which however is more difficult to work out in practice. When evaluating the term

c(nm, l− bm) in (3.1), the condition that its discriminant be bigger or equal to the highest

polarity is

h ≥ (m2 − 1)b2 + lNS
2

4mt
. (3.28)

If lNS <
√

2b, then this bound is minimized for m = 1, giving

h ≥ lNS
2

4t
. (3.29)

For lNS ≥
√

2b, the bound is minimized for m =
√
lNS

2 − b2/b, and again gives (3.29). To

get the bound for the dNS
∞ , we want the smallest ratio for h/|lNS|, which is achieved for

lNS = ±1, and given by h ≥ 1/4t. Note however that because h = n+ blNS/2t, this implies

that h satisfies at least h ≥ 1/2t. In total we thus get the bound for the dNS
∞

h ≥ − lNS

2t
. (3.30)

Note in fact that if b = t, that is if we perform the usual spectral flow, then h is half-integer,

so the argument above reduces to the usual unitarity bound h ≥ −lNS/2. We summarize

the various growth directions in figure 1.
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lNS

h

Figure 1. The orange solid arrows and the magenta line on the unitarity bound indicate directions

of Cardy-like growth (3.27). The torquise dotted arrows Hagedorn growth (3.26), which is only

valid for lNS > 0.

4 Supergravity landscape

In this section, we describe the wJf that lead to a supergravity growth. In principle our

methods give a complete classification of all such forms for a given index. For concreteness,

we give the dimension of the space of such forms up to t = 18 in table 2. We also

give explicit expressions of the forms up to t = 9 in appendix B. We will then review

how the known string theory constructions leading to supergravity theories in AdS fall

into this class. Such forms we call ‘good’. Correspondingly, we call ‘promising’ all forms

that lead to supergravity growth, but for which we do not know a corresponding string

theory construction.

4.1 Polar terms and weak Jacobi forms

Let us now systematically search for wJf which lead to supergravity growth. We demand

that the most polar term be of the form q0y−b, but we allow for other terms of the same

polarity. From section 3 we know that necessarily b ≤
√
t, since otherwise we will auto-

matically have Hagedorn growth.

In what follows it will be crucial to keep track of the dimension of the space of wJf

and their polar terms. Following [42], denote by

j(t) := dim J0,t (4.1)

the dimension of the space of wJf of weight 0 and index t, and by

P (t) :=
t∑

k=1

⌈
k2

4t

⌉
(4.2)

the number of polar terms in the standard region 0 ≤ k ≤ t. The central point is then that

for t > 4 there are more polar terms than wJf,

P (t) > j(t) t > 4 . (4.3)
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t b dim

1 1 1

2 1 1

3 1 1

4 1 1

4 2 2

5 1 0

5 2 1

6 1 1

6 2 2

7 1 0

7 2 1

t b dim

8 1 0

8 2 2

9 1 0

9 2 1

9 3 3

10 1 0

10 2 1

10 3 2

11 1 0

11 2 0

11 3 1

t b dim

12 1 0

12 2 2

12 3 3

13 1 0

13 2 0

13 3 1

14 1 0

14 2 0

14 3 1

15 1 0

15 2 1

15 3 2

t b dim

16 1 0

16 2 1

16 3 2

16 4 4

17 1 0

17 2 0

17 3 0

17 4 2

18 1 0

18 2 0

18 3 3

18 4 3

Table 2. Dimension of space of promising forms. When the dimension is zero, it means that a wJf

of index t and most polar term y−b does not exist.

This means that for a choice of polar coefficients, generically there will not be a corre-

sponding wJf. This restricts our ability to construct promising forms.

By using an explicit basis of J0,t, we ran a systematic search over all forms up to

t = 18 using (3.10) to enforce that there are no terms in the wJf that lead to Hagedorn

growth, thus identifying all supergravity growth forms. In table 2 we give the dimension of

the space of such forms for given t and b; dim=0 means that there are no such promising

forms, i.e. that a wJf of index t with most polar term y−b does not exist. For index up to

t = 9, we give explicit expressions for the space of promising forms in appendix B.

For t = 1, 2, 3, 4, 6 we find the forms that were already found in [43]: The seeds are wJf

of minimal polarity (b = 1). For t = 4 there is in addition the unwrapped form φ0,1(τ, 2z),

where φ0,1 is defined in (A.7). Note that special linear combinations of the two promising

forms at index four lead to the dihedral orbifolds we will discuss in section 4.3.2. For t = 5

the situation becomes more intricate due to the constraints explained above: There is no

form for t = 5 whose only polar term is y−1.4 However, for t = 5, b = 2 we find a genuinely

new form which has polar terms y−2 and y−1 and whose supergravity coefficients we will

provide in the following subsection.

More generally we see that promising forms are relatively rare: the space of all wJf

grows like

j(t) ' t2

12
, (4.4)

and the number of promising wJf grows very slowly. However, experimentally we find that

there is always at least one promising form for every t, b = b
√
tc.

4In the process of implementing our search, we noticed that there are no wJfs of minimal polarity (b = 1)

for 7 ≤ t ≤ 18, which is reflected in table 2. This makes the five examples in [43] look like the exception

to a rule.
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4.2 Explicit expressions for f(n, l)

In all cases where the growth is supergravity-like, the outcome is that the f̃(n, l) are

bounded and essentially constant. In fact for these cases we can give simple closed form

expressions for them. To do this, we first remind the definition

f̃(n, l) = f(n, l)− c(0, l)− δn,0
∑
m>0

c(0, l + bm) . (4.5)

The f(n, l) can be computed as described in [13]. For promising forms, it turns out that

they vanish unless

n = 0 or tn+ bl = 0 , (4.6)

and that they only depend on nb := n mod b and on lb := 2(n− nb)t/b + l mod b. Note

that we automatically have nbt/b ∈ Z. The f(n, l) thus take at most b2 different values. In

total we have

f(n, l) =


∑

m̂∈bZ−l−nbt/b
c(−nbm̂/b− n2

bt/b
2, m̂) : tn+ bl = 0 or n = 0

0 : else
. (4.7)

From this it follows that the generating function for the d(n, l) is essentially a ratio of θ-type

functions, which is why the dNS
∞ (h, lNS) indeed have supergravity growth. In particular, it

means we always find a growth5

ρ(h) ∼ eh1/2
, (4.8)

namely a growth of the type (1.5) with D = 2.

As an example for the spectrum of a new promising form, we give the expression

for χNS
∞ for t = 5 and b = 2. χNS

∞ is the 1/5 spectral flow of the exponential lift of the

index 5 form

φ
(2)
0,5(τ, z) =

1

846

(
1

12
φ5

0,1 +
1

3
φ2

0,1φ
3
−2,1E6 +

1

6
φ0,1φ

4
−2,1E

2
4 +

1

6
φ5
−2,1E4E6 +

1

4
φ3

0,1φ
2
−2,1E4

)
= y−2 + 6y−1 + 10 + 6y + y2 +O(q) , (4.9)

where the superscript indicates b in 2. We find

χNS
∞ (τ,

5

2
z) = (4.10)∏

n≥1

(1− qn)10(1− qn−2/5y−2)(1− qn−1/5y−1)6(1− qn+1/5y)6(1− qn+2/5y2)

(1− y2q2/5)11(1− y2n+2q(2n+2)/5)12(1− y2n−1q(2n−1)/5)6(1− y2n+1q(2n+1)/5)6

× 1(
1− q(2n−1)y−5(2n−1)

)12(
1− q2ny−10n

)12 .

5It is worth mentioning that since we are computing the elliptic genus which counts the difference

between bosonic and fermionic operators, we cannot directly deduce the dimension of the internal manifold

from our analysis, since there can be further cancellations. This is already apparent in [39, 40] where D = 6

and the growth is exph1/2; in [44], one has D = 5 and the growth is exp h2/3.
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4.3 Known examples

In this final subsection, we briefly embed known realizations of AdS3/CFT2, where a sig-

nificant portion of the gravitational theory and the CFT are known, into our classification.

4.3.1 Symmetric products of K3

The elliptic genus of the sigma model with target space K3 [31, 32] is given by the follow-

ing wJf

χK3(τ, z) = 2φ0,1(τ, z)

= 2y−1 + 20 + 2y + 2(10y−2 − 64y−1 + 108− 64y + 10y2)q + . . . . (4.11)

In the context of our criteria in section 3.1, the summation in (2.19) reduces to a sum over

Kronecker deltas, and hence does not grow as a function of (n, l). This is the key feature for

a supergravity-like growth. More concretely, in the limit N →∞, the elliptic genus (2.18)

reads [25]

χNS
∞ (τ, z) =

∞∏
n=1

(1− qn)20(1− qn−
1
2 y−1)2(1− qn−

1
2 y)2

(1− q
n
2 yn)24(1− q

n
2 y−n)24

. (4.12)

This expression can be matched by a computation of the 6D N = 2 supergravity spectrum

on AdS3 × S3 [39], which played an important role in the establishment of the duality

between string theory on AdS3×S3×K3 and the symmetric product theory of K3. Further

details of this example can be found in [43]. Generalizations of this constructions to CHL

models are discussed in [45–47], which correspond to orbifolds acting only on K3.

4.3.2 Orbifolds of T4

More recently, a new class of dualities was constructed in [34]. The dualities relate string

theory on AdS3 × (S3 × T4)/G to the symmetric orbifold theory (T4/G)⊗N/SN . G is

a dihedral group and the CFT possesses N = (2, 2) supersymmetry. The dihedral group

orbifold is such that the charges are not integer-quantized, but rather half-integer quantized.

For this reason, the elliptic genus χ(τ, z) is not a true wJf: it is related to one by a simple

unwrapping as discussed in section 2.3. We have

χγ(τ, 2z) = φγ0,4(τ, z) = φ0,1(τ, 2z) + γφ0,4(τ, z)

= y−2 + γy−1 + 10 + γ + y2 + γy +O(q) . (4.13)

Here φγ0,4(τ, z) is a wJf of index t = 4. The value of γ depends on the particular dihedral

group at hand as well as the choice of discrete torsion and the set of allowed values reads

γ = {−8,−5,−2, 0, 2, 5, 8} . (4.14)

Inspecting table 2, we see that these forms are particular elements of the space of t = 4

b = 2 promising forms. One can check that they satisfy the supergravity growth criteria,
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namely α < 0 for all polar terms. Supergravity growth was indeed found in [34] where the

elliptic genus χNS,∞ is given by

χNS,∞(τ, 2z) =
∏
n>0

[
(1− qn)10(1− qn−

1
2 y−2)(1− qn−

1
2 y2)

(1− q
n
2 y2n)12(1− q

n
2 y−2n)12

]

×

[
(1− qn)(1− qn−

3
4 y)(1− qn−

1
4 y−1)

(1− q
n
2 y2n)(1− q

n
2
− 1

4 y2n−1)2(1− q
n
2 y−2n)(−1)n mod 2

]γ
. (4.15)

This function was matched by a supergravity calculation in [34] which establishes strong

evidence for this new class of holographic dualities.

5 Discussion

In this paper, we considered the landscape of two-dimensional SCFTs that are given by

symmetric product orbifolds. We studied the elliptic genera of such theories and extracted

the growth behavior of the light states. Using a mathematical method described in detail

in a companion paper [13], we were able to give the complete classification for the growth

of the light states, based on very minimal and concrete data of the seed elliptic genus.

The outcome was that there are only two possible types of growth: either the light states

exhibit Hagedorn growth or they exhibit supergravity growth of the form (1.5) with D = 2.

We now discuss some open questions, in particular how one could uncover new realizations

of AdS3/CFT2 from the results presented here.

5.1 Building new realizations of AdS3/CFT2

In section 4, we provided a simple diagnostic to find wJfs whose symmetric product orbifold

leads to supergravity growth for the low energy states. We will now give some possible

hints towards building the actual CFTs that could correspond to these new promising

forms. The first natural step is to consider generalizations of the dihedral orbifolds studied

in [34]. The quotients they analyzed are in principle not the most general orbifolds of

T4 that one can consider. It is thus quite natural to look for higher order symmetry

groups of T4 and orbifold by them, leading to quotients of the form T4/Zk. The charges

would be fractional and given in units of 1/k, necessitating an unwrapping to obtain a

wJf. Therefore, the index of the wJf would be t = k2 with b = k. Comparing with the

entries in table 2, we indeed find supergravity growth for t = 9, b = 3 and t = 16, b = 4

which sounds very promising. On the gravity side, one would be looking for backgrounds

of the form AdS3 × (S3 × T4)/Zk. The question is simply to check if one can combine the

quotient on the sphere and the one on the torus in such a way to preserve supersymmetry.

It would be very interesting to check this explicitly and we hope to return to this question

in the future.

More generally, one can also consider other CFTs leading to N = 2 supersymmetry

with fractional charge. One interesting route is to consider products of supersymmetric

minimal models. We expect certain combinations to lead to promising wJfs, after a suitable
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unwrapping. It would be very interesting to see if most promising forms can be recovered

this way or not. We leave this question for future work.

From a supergravity perspective, there have been several interesting developments

that could connect with our approach. In particular it is worth considering, for example,

solutions in type IIB supergravity [48, 49], the recent F-theory constructions in [50, 51], and

the backgrounds of massive IIA developed in [52–56]. In addition, the authors in [57, 58]

study the perturbative supergravity spectrum and quantum effects on the central charge:

both of these could be compared with our results if there is a suitable match.

5.2 Elliptic genus without a NS vacuum

In the bulk of this paper, we have assumed that the NS elliptic genus receives a non-zero

contribution from the (possibly degenerate) vacuum. One may ask what happens if we

relax this assumption. In such a scenario the seed has a NS elliptic genus given by

χNS = qhminylmin , (5.1)

for some hmin > 0 and lmin that we leave unspecified. Once we take the symmetric product,

the gap between the (vanishing) vacuum and the first excited state increases, and for the

m-th orbifold it is mhmin. This means that there are no light states per se, as all non-

vanishing states have a dimension that scales with m. Nevertheless, one could perform an

additional shift and consider the growth of states close to this lightest non-vanishing state.

Interestingly, once one flows to the Ramond sector this is connected to studying more

general types of wJf, in particular it can happen that the most polar term is not of the

form q0y−b, but rather has some positive power of q. It would be interesting to understand

the growth for such a choice of wJf. Unfortunately, we are currently unable to extract

the growth of states for such forms using the technology of [13] but one should be able to

generalize our method to include these types of forms.
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A Weak Jacobi forms

A weak Jacobi form ϕk,m(τ, z) [59] is a holomorphic function on H × C → C that has a

Fourier expansion

ϕk,m(τ, z) =
∑
n≥0,l

c(n, l)qnyl , q = e2πiτ , y = e2πiz , (A.1)

and satisfies the transformation properties

ϕk,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

(
2πimcz2

cτ + d

)
ϕk,m(τ, z) , ∀

(
a b

c d

)
∈ SL(2,Z) ,

(A.2)

and

ϕk,m (τ, z + λτ + µ) = exp
(
−2πim(λ2τ + 2λz + µ)

)
ϕk,m(τ, z) , λ, µ ∈ Z . (A.3)

Here k is the weight and m is the index of ϕk,m(τ, z). We define the discriminant of a term

as ∆ := 4nm− l2. The coefficients c(n, l) then only depend on ∆ and l (mod 2m), and in

fact only on ∆ if m is prime. Moreover one can show that we have c(n, l) = 0 if ∆ < −m2,

leading to a Fourier expansion

ϕk,m(τ, z) =
∑
n≥0,l

4mn−l2≥−m2

c(n, l)qnyl . (A.4)

The ring of even weight weak Jacobi forms is freely generated by the forms

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)qn , (A.5)

E6(τ) = 1− 504

∞∑
n=1

σ5(n)qn , (A.6)

φ0,1(τ, z) = 4

(
θ2(τ, z)2

θ2(τ, 0)2
+
θ3(τ, z)2

θ3(τ, 0)2
+
θ4(τ, z)2

θ4(τ, 0)2

)
, (A.7)

φ−2,1(τ, z) = −θ1(τ, z)2

η(τ)6
. (A.8)

B Weak Jacobi forms with supergravity growth

Below we list the promising wJf of table 2 up to index t = 9. Here the superscript on the

Jacobi forms indicates b in 2.

φ
(1)
0,1(τ,z) =αφ0,1 =α

(
y−1+10+y

)
+O(q) ,

φ
(1)
0,2(τ,z) =α

(
φ20,1−φ2−2,1E4

)
= 24α

(
y−1+4+y

)
+O(q) ,

φ
(1)
0,3(τ,z) =α

(
φ30,1−3φ2−2,1φ0,1E4+2φ3−2,1E6

)
= 432α

(
y−1+2+y

)
+O(q) ,

φ
(1)
0,4(τ,z) =α

(
φ40,1−6φ2−2,1φ

2
0,1E4+8φ3−2,1φ0,1E6−3φ4−2,1E

2
4

)
= 6912α

(
y−1+1+y

)
+O(q) ,
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φ
(2)
0,4(τ,z) =αφ40,1+βφ3−2,1φ0,1E6−(2α+β/2)φ2−2,1φ

2
0,1E4+(α−β/2)φ4−2,1E

2
4

= 72
(
(8α−β)y−2+4(16α+β)y−1+6(24α−β)+· · ·

)
+O(q) ,

φ
(2)
0,5(τ,z) =α

(
φ50,1+3φ4−2,1φ0,1E

2
4 +2φ3−2,1φ

2
0,1E6−4φ2−2,1φ

3
0,1E4−2φ5−2,1E4E6

)
= 10368α

(
y−2+6y−1+10+

(
y−1↔ y

))
+O(q) ,

φ
(1)
0,6(τ,z) =α

(
φ60,1+24φ5−2,1φ0,1E4E6−45φ4−2,1φ

2
0,1E

2
4 +40φ3−2,1φ

3
0,1E6−15φ2−2,1φ

4
0,1E4

−32φ6−2,1E
2
6 +27φ6−2,1E

3
4

)
= 1492992α

(
y−1+y

)
+O(q) ,

φ
(2)
0,6(τ,z) =α

(
φ60,1−36φ5−2,1φ0,1E4E6+45φ42,1φ

2
0,1E

2
4−20φ3−2,1φ

3
0,1E6+28φ6−2,1E

2
6−18φ6−2,1E

3
4

)
+β
(

6φ42,1φ
2
0,1E

2
4−4φ5−2,1φ0,1E4E6−4φ3−2,1φ

3
0,1E6+φ2−2,1φ

4
0,1E4+4φ6−2,1E

2
6−3φ6−2,1E

3
4

)
= 20736

(
(15α+β)y−2+4(3α−β)y−1+6(15α+β)+

(
y−1↔ y

))
+O(q) ,

φ
(2)
0,7(τ,z) =α

(
φ70,1+16φ6−2,1φ0,1E

2
6 +9φ6−2,1φ0,1E

3
4−36φ−2,1φ

2
0,1E4E6+15φ4−2,1φ

3
0,1E

2
4

+10φ3−2,1φ
4
0,4E6−9φ2−2,1φ

5
0,1E4−6φ7−2,1E

2
4E6

)
= 2985984α

(
y−2+3y−1+4+

(
y−1↔ y

))
+O(q) ,

φ
(2)
0,8(τ,z) =α

(
φ20,8−1440φ7−2,1φ0,1E

2
4E6+352φ6−2,1φ

2
0,1E

2
6−336φ5−2,1φ

3
0,1E4E6

+210φ4−2,1φ
4
0,1E

2
4−56φ3−2,1φ

5
0,1E6−72φ6−2,1φ

2
0,1E

3
4 +117φ8−2,1E

4
4−96φ8−2,1E4E

2
6

)
+β
(
φ2−2,1φ

6
0,1E4−20φ7−2,1φ0,1E

2
4E6+24φ6−2,1φ

2
0,1E

2
6−20φ5−2,1φ

3
0,1E4E6+15φ4−2,1φ

4
0,1E

2
4

−6φ3−2,1φ
5
0,1E6−9φ6−2,1φ

2
0,1E

3
4 +9φ8−2,1E

4
4−8φ8−2,1E4E

2
6

)
= 2985984

(
(28α+β)y−2−4(4α+β)y−1+6(20α+β)+

(
y−1↔ y

))
+O(q)

φ
(2)
0,9(τ,z) =α

(
φ90,1+144φ8−2,1φ0,1E4E

2
6−82φ8−2,1φ0,1E

4
4−23328φ7−2,1φ

2
0,1E

2
4E6 (B.1)

+162φ6−2,1φ
3
0,1E

3
4 +48φ6−2,1φ

3
0,1E

2
6−126φ5−2,1φ

4
0,1E4E6−18φ2−2,1φ

6
0,1E4

+42φ3−2,1φ
6
0,1E6+54φ9−2,1E

3
4E6−64φ9−2,1E

3
6

)
= 644972544α

(
y−2+2y−1+2+

(
y−1↔ y

))
+O(q) ,

φ
(3)
0,9(τ,z) =α

(
φ90,1−459φ8−2,1φ0,1E

4
4 +144φ8−2,1φ0,1E4E

2
6 +103680φ7−2,1φ

2
0,1E

2
4E6−624φ6−2,1φ

3
0,1E

2
6

−216φ6−2,1φ
3
0,1E

3
4 +504φ5−2,1φ

4
0,1E4E6−123φ4−2,1φ

5
0,1E

2
4 +216φ9−2,1E

3
4E6−80φ9−2,1E

3
6

)
+β
(
φ2−2,1φ

6
0,1E4−63φ8−2,1φ0,1E

4
4 +28φ8−2,1φ0,1E4E

2
6 +12096φ7−2,1φ

2
0,1E

2
4E6

−84φ6−2,1φ
3
0,1E

2
6−21φ6−2,1φ

3
0,1E

3
4 +70φ5−2,1φ

4
0,1E4E6−21φ4−2,1φ

5
0,1E

2
4 +30φ9−2,1E

3
4E6

−12φ9−2,1E
3
6

)
+γ
(
φ3−2,1φ

6
0,1E6+12φ8−2,1φ0,1E4E

2
6 +2160φ7−2,1φ

2
0,1E

2
4E6

−20φ6−2,1φ
3
0,1E

2
6 +15φ5−2,1φ

4
0,1E4E6−18φ8−2,1φ0,1E

4
4−6φ4−2,1φ

5
0,1E

2
4 +9φ9−2,1E

3
4E6

−4φ9−2,1E
3
6

)
= 248832

(
(84α+7β+γ)y−3−6(12α+5β+γ)y−2+3(276α+19β+5γ)y−1

+4(12α−17β−5γ)+
(
y−1↔ y

))
+O(q) ,
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