
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Pricing in a Competitive Stochastic Insurance Market

Mourdoukoutas, F.; Boonen, T.J.; Koo, B.; Pantelous, A.A.
DOI
10.1016/j.insmatheco.2021.01.003
Publication date
2021
Document Version
Final published version
Published in
Insurance: Mathematics & Economics
License
CC BY

Link to publication

Citation for published version (APA):
Mourdoukoutas, F., Boonen, T. J., Koo, B., & Pantelous, A. A. (2021). Pricing in a
Competitive Stochastic Insurance Market. Insurance: Mathematics & Economics, 97, 44-56.
https://doi.org/10.1016/j.insmatheco.2021.01.003

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1016/j.insmatheco.2021.01.003
https://dare.uva.nl/personal/pure/en/publications/pricing-in-a-competitive-stochastic-insurance-market(0690980e-3f64-4395-a463-947638824912).html
https://doi.org/10.1016/j.insmatheco.2021.01.003


Insurance: Mathematics and Economics 97 (2021) 44–56

a

C
b

i
m
p

a
b
i
g
m
r
c
o
a

1

t

h
0

Contents lists available at ScienceDirect

Insurance:Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Pricing in a competitive stochastic insurancemarket
Fotios Mourdoukoutas a, Tim J. Boonen b,∗, Bonsoo Koo a, Athanasios A. Pantelous a

Department of Econometrics and Business Statistics, Monash Business School, Monash University, 20 Chancellors walk, Wellington Road, Clayton
ampus, Victoria, Australia
Amsterdam School of Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received September 2020
Received in revised form December 2020
Accepted 11 January 2021
Available online 20 January 2021

JEL classification:
G22
C61
C72

Keywords:
Competitive markets
Non-cooperative game theory
Nash equilibrium
Convex and concave demand functions
Stochastic claims

a b s t r a c t

This paper studies a one-period stochastic game to determine the optimal premium strategies of non-
life insurers in a competitive market. Specifically, the optimal premium strategy is determined by the
Nash equilibrium of an n-player game, in which each player is assumed to maximise the expected
utility of terminal wealth. The terminal wealth is stochastic, since the number of policies and the
size of claims are considered to be random variables. The total loss of each insurer is described by
the collective risk model. The expected number of policies is affected by all the premiums in the
market and further investigated by two distinct demand functions. Both models have an exponential
functional form, that is characterised by market and price sensitivity parameters. The demand in the
first model is zero for premiums above a given threshold, whereas the second model does not include
such restriction. The pure strategy Nash equilibrium premiums are given as solutions to constrained
optimisation problems. For the first model we prove the existence and uniqueness of a pure strategy
Nash equilibrium, whereas for the second model we provide a formula when it exists. Two numerical
examples are provided to illustrate the applicability of our findings.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation

In the insurance literature, there is a continuous and strong
nterest in the modelling of insurance premiums in a competitive
arket. Insurers determine their premiums in response to the
remiums that are being offered by the competitor companies.
Standard actuarial approaches, particularly in non-life insur-

nce, are almost exclusively devoted on calculating the distri-
ution of the underlying risk, following the underlying trends
n distribution instead of formulating the underwriting strate-
ies (Emms et al., 2007). Such approaches ignore the actions
ade by the competitors which affect the movement of premium

ates and, eventually, the exposure of the company into the
orresponding market (Taylor, 1986). Due to the complex nature
f price competition, several modelling and pricing challenges
rise, and this is the motivation of our paper.

.2. Literature review

The present paper formulates a stochastic model in competi-
ive non-life insurance pricing. A standard approach is to let the

∗ Corresponding author.
E-mail address: t.j.boonen@uva.nl (T.J. Boonen).
ttps://doi.org/10.1016/j.insmatheco.2021.01.003
167-6687/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
premium exclusively depend on the distribution of the underly-
ing risk (see Kaas et al., 2008). However, in this approach one does
not assume that the insurance markets are competitive.

Taylor (1986) addresses the subjective nature of the insurance
underwriting in a deterministic discrete-time framework. He pro-
poses a demand function to capture how the number of policies
sold by the insurer is affected by the premium choices compared
to other competitors’ premiums. Under this demand function, an
insurer selects the optimal response to movements of premiums
in the market. In a subsequent work, Taylor (1987) shows that
significant changes in the optimal premiums may happen when
non-constant expense rates occur. Emms and Haberman (2005),
Emms et al. (2007), Emms (2007) extend the literature with a
stochastic continuous-time framework. They calculate the opti-
mal premium strategy, which maximises the expected terminal
wealth of an insurer, considering a demand law and applying
optimal control theory. Pantelous and Passalidou (2013, 2015)
embed the insurer’s reputation and a stochastic disturbance into
their stochastic discrete-time model and explicitly calculate the
optimal premiums of an insurer as solutions of a polynomial.
All the aforementioned models consist of single optimisation
problems, in which competitors’ premiums are unaffected by the
individual insurer’s premium strategy. In Table 1, we classify the
papers, where the break-even and market’s premiums are con-
sidered either as deterministic or stochastic, into static/dynamic
and deterministic/stochastic settings.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Single-optimisation papers’ segmentation regarding time frame and randomness.
Papers Discrete Continuous Deterministic Stochastic

Taylor (1986, 1987)
√ √

Emms and Haberman (2005)
√ √

Emms et al. (2007)
√ √

Emms (2007)
√ √

Pantelous and Passalidou (2013, 2015)
√ √
Table 2
Non-cooperative papers’ segmentation regarding time frame and randomness.
Papers Static Dynamic Deterministic Stochastic

Emms (2012)
√ √ √

Dutang et al. (2013)
√ √

Wu and Pantelous (2017)
√ √

Boonen et al. (2018)
√ √

Asmussen et al. (2019)
√ √

This paper
√ √
t

Non-cooperative game theory provides tools to embark from
ndividual optimisation procedures and aim to simultaneous op-
imisation solutions for all participants in the market. First coop-
rative game theoretical approaches in insurance can be found
n Borch (1962, 1974), Bühlmann (1980, 1984), and Lemaire
1984, 1991). The non-cooperative game models that have been
pplied to non-life insurance markets can be distinguished into
wo categories: (i) the Bertrand oligopoly in which insurers set
remiums and (ii) the Cournot oligopoly in which insurers choose
he volume of business. Emms (2012) studies the Nash equilibria
f an n-player non-cooperative differential game in which each
nsurer aims to maximise her expected utility of terminal wealth
nder a demand function. He proposes both a deterministic and a
tochastic differential game regarding whether or not the break-
ven premium was considered uncertain. Dutang et al. (2013) use
loss model for the claims and a lapse model to describe the
robabilistic behaviour of individuals as a function of insurers’
remiums. By solving a maximisation problem that consisted of a
uadratic equation and a solvency constraint function, they prove
he existence and uniqueness of the Nash equilibrium, as well
s the existence of the Stackelberg equilibrium of a one-period
on-cooperative game. Wu and Pantelous (2017) determine the
ptimal premium strategy by calculating and proving the ex-
stence of Nash equilibria in an n-player potential game with
on-linear aggregation. Instead of applying a demand function to
escribe the exposure of insurers, they aggregate all the paired
ompetitions in the market. Boonen et al. (2018) apply optimal
ontrol theory to determine the open-loop Nash equilibrium
remium strategies in an n-player differential game, by including
he solvency ratio in the demand function. Recently, Asmussen
t al. (2019) consider the customer’s problem with market fric-
ions and formulate stochastic differential game between two
nsurance companies that have a different size. Table 2 classifies
he papers with non-cooperative game theoretical orientation
nto static/dynamic and deterministic/stochastic settings.

.3. Our contribution

In actuarial practice, the resulting premium offered to insureds
sually diverges from the actuarial (net) premium, producing a
ositive (or sometimes negative) premium loading. Many fac-
ors may contribute to this deviation, such as the customers’
ffordability, insurers’ claims and expenses, past experience, and
arious market conditions.
As shown in Table 2, we propose a static and a stochastic

odel in this paper. In this sense, this paper is closest to Dutang
t al. (2013). Like Dutang et al. (2013), this paper proposes a
odel in which the terminal wealth of each insurer is char-

cterised by the collective risk model, which depends on the
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premiums in the market. We differ from Dutang et al. (2013)
in the following three ways. First, in our paper, the demand
function is related to how many policies are expected to be sold
in a reference period. We assume that the number of policies
is either Poisson-distributed, whose intensity is driven by the
competition in the market, or follows a Negative Binomial dis-
tribution. Second, we propose two distinct exponential demand
functions: the first one is concave, and considers that there is a
premium in the market under which no policy will be sold. The
second demand function, proposed by Taylor (1986), is convex
and does not assume an upper bound on the premium. Third,
we assume that the insurers are strictly risk-averse, and all of
them maximise exponential utility functions (see, Emms, 2012).
Under this setting, we calculate the best response strategies and
show the existence of Nash equilibria. Moreover, we consider
two numerical examples to illustrate the applicability of our
treatment.

This paper is set out as follows. In Section 2, we provide
the necessary notations and assumptions. Assuming a loss model
for the total claim amount, Poisson or Negative Binomial dis-
tributions for the number of policies, and insurers who are ex-
ponential utility maximisers, we obtain the lower bound for
the premium domain and the cost function of each insurer. In
Sections 3.1 and 3.2, we introduce two families of exposure func-
tions and find the candidate optimal premiums of each individual
insurer. In Section 3.3, two results for optimality are presented. In
Sections 4.1 and 4.2, we define two exponential exposure func-
tions, with different curvatures, which we use to derive optimal
premiums for each insurer. Section 5 provides a Nash equilibrium
premium strategy for each model. In the first one the existence
and uniqueness of a Nash equilibrium is shown, whereas in the
second one there is a structure when it exists. Section 6 presents a
numerical example for both models to illustrate our main results.
Section 7 concludes, and further suggestions of future research
are provided. The proofs are delegated to the Appendix.

2. Preliminaries

Let N = {1, 2, . . . , n}, n ∈ N, be the finite set of insurers in
he market. Every insurer selects a certain premium pi per pol-
icy. Given the premium of the insurer and the premiums of all
other insurers in the market, the insurer underwrites a stochastic
number of insurance policies, which are realised at a fixed future
period in time. The key concept of our model is that premium
choices affect directly the intensity of the number of policies
which flow among insurers. Rather than finding the premium
strategy of one insurer, our objective is to calculate the premium
strategies followed by all insurers in the market in their attempt
to maximise the expected utility of terminal wealth.



F. Mourdoukoutas, T.J. Boonen, B. Koo et al. Insurance: Mathematics and Economics 97 (2021) 44–56

l

2

a

t

A
w
i

d
i
.

f
t
i

r
c
t
u
s

E

w

L
t
(

p

2.1. Basic notations

The definitions of key parameters that we use in this paper are
isted as follows:

w−

i Initial wealth of insurer i ∈ N ,
pi Premium value (per policy) charged by insurer i

for the period under consideration,
p−i Strategy profile of premiums charged by all

insurers except insurer i,
p̄−i Average premium charged by all insurers except

insurer i,
qi(pi, p−i) Exposure volume of insurer i for the period under

consideration. The exposure is treated as a
function of the strategy profile (pi, p−i) = {pj}nj=1,

q−

i Exposure volume of insurer i from the previous
period,

Ni Actual number of policies underwritten by
insurer i within the period under consideration,

λi Risk aversion parameter of insurer i,
h Risk aversion parameter of the most risk-averse

individual in the market,
b Market scale parameter,
ai Price sensitivity parameter of insurer i.

.2. Loss model

Let us now define the collective risk model adopted in our
nalysis. The total claim amount faced by insurer i, Si(Ni), for the

period under consideration, is defined as

Si(Ni) =

⎧⎪⎨⎪⎩
0, Ni = 0

Ni∑
j=1

Xij, Ni ≥ 1,

where Xij is a random variable which represents the claim amount
associated to claimant j, for insurer i, for the period under con-
sideration. Claims {Xij}

Ni
j=1 are non-negative random variables, and

Ni reflects the number of policies sold by insurer i, and this
is a random variable which follows either Poisson distribution
with parameter qi(pi, p−i), or Negative Binomial distribution with
parameters qi(pi, p−i) and k ∈ (0, 1). Thus, qi(pi, p−i) is related
to the expected number of insurance policies that are sold. This
parameter depends on all the premiums in the insurance market,
and will be specified later in Section 3. Moreover, elements of
the set {{Xij}

Ni
j=1}

n
i=1 are independent and identically distributed

(i.i.d.) random variables, as well independent from Ni. For conve-
nience, we denote the common distribution of {{Xij}

Ni
j=1}

n
i=1 with

X , i.e., Xij ∼ X , for all j = 1, 2, . . . ,Ni, i = 1, 2, . . . , n. Throughout
his paper, we make the following assumption.

ssumption 1. We deal with a non-negative random variable X
hose moment generating function in λi, MX (λi), is finite for all
= 1, . . . , n.

An implication of Assumption 1 in our analysis is that the
istribution of claims X does not have a heavy tail. Moreover, it
s equivalent to assume that MX (λ) < +∞, where λ = max{λ1,

. . , λn}.

2.3. Preferences of the insurers

Emms (2012) proposes a stochastic game that adopts a utility
unction with constant absolute risk aversion parameter which is
he same for all insurers. We expand his idea and assume that all
nsurers are exponential expected utility maximisers with their
46
own risk aversion parameter. Thus, we adopt the following utility
function

ui(x) =

{
−e−λix, λi > 0,
x, λi = 0. (1)

Throughout this paper, we assume that all insurers are risk-
averse, i.e., λi > 0 for all i ∈ N , and the case with λi = 0 is
only used to compare our results with the literature.

2.4. Lower bound on the premiums

Let each insurer i have a utility function of the form (1), with
isk aversion parameter λi > 0. Then, insurer i is willing to
harge a premium pi, in order to cover a potential loss X , only if
he expected utility of this action is greater than or equal to not
ndertake this risk. Hence, the premium pi charged by insurer i
hould satisfy the following individual rationality constraint,[
ui
(
w−

i + Nipi − Si(Ni)
)]

≥ ui
(
w−

i

)
, (2)

here w−

i is the initial capital of insurer i.

emma 2. For any distribution of Ni independent of Xij and such
hat Pr[Ni > 0] > 0, the premium charged by insurer i, pi, satisfies
2) if and only if

i ≥
1
λi

log (MX (λi)) , (3)

where λi is the risk aversion parameter of insurer i.

The indifference premium for insurer i is defined by

pLi =
1
λi

log (MX (λi)) , (4)

and via the following lemma, we present some main properties
of it.

Lemma 3 (Kaas et al., 2008). For the non-negative random variable
X, define the indifference premium pLi as a function of λi by p(λi). It
satisfies the following properties:

(1) It is an increasing function of λi.
(2) limλi→0+ p(λi) = E [X].
(3) Assume that X is a bounded non-negative random variable

with max {X} = c, i.e., Pr[X ≤ c] = 1 but for all ε > 0,
Pr[X > c − ε] > 0. Then it holds limλi→+∞ p(λi) = c.

2.5. Objective of the insurers

The objective of each insurer i ∈ N is to set a premium pi per
policy such that to maximise their expected utility of terminal
wealth. From this point up to Section 5, we focus only on max-
imisation procedure regarding one insurer, conditioning on other
insurers’ premiums, although we have assumed that all insurers’
premiums are unknown. In Section 5 we apply the notion of
a Nash equilibrium strategy profile, and how it is calculated
through simultaneous individual maximisation procedures. Re-
calling the necessary notation presented in Section 2.1, next we
state the wealth of insurer i. The wealth of insurer i, for the period
under investigation, is given by

wi(pi, p−i) = w−

i + piNi(qi(pi, p−i)) − Si(Ni(qi(pi, p−i))). (5)

Note that the number of policies that are underwritten is realised
after the prices are set, and the distribution of the insurance
claims does depend on this amount. It is well-known that for
exponential utilities, the initial wealth does not affect the risk
preferences. Since the premium profile (p , p ) is generally clear
i −i
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from the context, we simplify our notation by writing wi =

i(pi, p−i), Si = Si(Ni(qi(pi, p−i))), and qi = qi(pi, p−i).
Now, we observe that the random variable wi for the wealth

s a function of the random variables Ni and Si, whereas Si de-
ends on Ni. Thus, we invoke the law of iterated expectations to
alculate the expected utility of the wealth of insurer i.

roposition 4. Given that insurer i’s risk aversion parameter
s λi > 0 and Ni follows a Poisson distribution with parameter
i(pi, p−i), the expected utility of insurer i’s wealth is

[ui (wi)] = − exp
{
−λiw

−

i + qi(pi, p−i)
(
MX (λi)e−λipi − 1

)}
,

(6)

where MX (λi) is the moment generating function of X evaluated
at λi.

We continue considering the case where the actual number
of policies underwritten by insurer i, Ni, follows a Poisson distri-
bution with intensity qi(pi, p−i) ≥ 0. Each insurer i would set a
premium pi such that to maximise her expected utility of wealth.
We observe from (6) that E [ui (wi)] < 0, for all pi. This enables
us to convert the maximisation problem into a minimisation
procedure, due to the following equivalent characterisation

max
pi

{E [ui (wi)]} or min
pi

{−E [ui (wi)]}

or min
pi

{log(−E [ui (wi)])} .
(7)

Therefore, (6) and (7) lead us to the cost (objective) function
Ci : P → R, which is defined by

Ci(pi, p−i) = log(−E[ui(wi(pi, p−i))])

= −λiw
−

i + qi(pi, p−i)
(
MX (λi)e−λipi − 1

)
,

(8)

for all i = 1, 2, . . . , n, where P = P1 × P2 × · · · × Pn is the
set of all strategy profiles, pi ∈ Pi is a strategy of insurer i, and
p−i = (pj : j ̸= i) ∈ P−i is a strategy profile of all insurers apart
from i.

Remark 5. Let Ni follow a Negative Binomial distribution1 with
parameters qi(pi, p−i) and 0 < k < 1. Instead of (8), the cost
function is now equal to

Ci(pi, p−i) = −λiw
−

i + qi(pi, p−i) log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
.

(9)

3. Model and individual price optimisation

The actual number of policies that insurer i underwrites, Ni,
follows a Poisson distribution (or a Negative Binomial distribution
later in some remarks), whose expectations depend on qi(pi, p−i),
which we will specify in this section. We assume that the volume
of exposure qi(pi, p−i) is driven by the competition in the market
and affected directly by changes in premiums. We capture the
interaction among insurers in the market by defining for each
insurer i the exposure function as in Taylor (1986), who explained
that exposure in the current period should be proportional to
exposure in the previous period. Define

qi(pi, p−i) = f (pi, p̄−i) q−

i , (10)

where p̄−i =
1

n−1

∑
j̸=i pj

2 (e.g., Taylor, 1986, 1987), f is a twice

ontinuously differentiable function of pi ∈ Pi and p̄−i, and q−

i

1 Detailed calculations for the Negative Binomial are omitted as they are
imilar to those for the Poisson case.
2 However, in our mathematical formulation, p̄−i can be any continuous and
ifferentiable function.
47
> 0. Here, q−

i is the exposure volume of insurer i from the previ-
ous period, and f (pi, p̄−i) is the relative change of the expected
number of policies sold by insurer i. Moreover, the first partial
derivative of f with respect to pi is related to the price-elasticity
of demand, which is given by

e(pi) = −

∂qi(pi, p−i)
∂pi

qi(pi, p−i)
pi

= −
∂ f (pi, p̄−i)

∂pi

pi
f (pi, p̄−i)

. (11)

Hereafter we consider two distinctive classes regarding the com-
ponent, f (pi, p̄−i). In Section 3.1 we introduce the exposure func-
tion with market restriction, which contains an upper bound
denoted by pU and achieves the value zero when the premium
of insurer i is set equal to pU . Then, in Section 3.2 we introduce
the exposure function without market restriction, which does not
contain an upper bound, and is such that there is always a
positive insurance demand no matter how high the premium
is.

3.1. Optimisation problem of exposure function with market restric-
tion

Apart from insurers’ utility function, we also consider the
utility of an individual in the market. In this regard, we identify
one potential policyholder that is the most risk-averse one in the
market. This is defined via a parameter h, as in the following
assumption.

Assumption 6. The utility function uM is of the same type as in
(1), with risk aversion parameter denoted by h > 0. Moreover,
the moment generating function of X in h, MX (h), is finite.

If this agent with utility function uM is not willing to pay a
premium pi, then nobody in the market wants to buy a policy.
Thus, in order to find a policyholder in the market, the premium
pi is assumed to satisfy the following participation constraint:

E [uM (c − X)] ≤ uM (c − pi) , (12)

where c is the initial capital of the individual and the utility
function uM satisfies Assumption 6.

Via similar techniques as in Lemma 2, this yields the following
upper bound on the premiums:

pi ≤
1
h
log (MX (h)) := pU . (13)

The upper premium bound pU can be interpreted as the maxi-
mum premium that can be charged in order to find at least one
individual to buy the policy.

If pLi ≥ pU , insurer i has no incentive to offer any insurance
in the market. That is, her risk aversion parameter is so high that
her indifference premium is larger to the highest premium that
individuals are willing to pay, and so the insurer cannot generate
any profit. We assume that pLi < pU . From Lemma 3 and (13),
this yields λi < h. The feasible set of premiums of insurer i is
then defined by

Pi =
[
pLi , pU

]
, (14)

where pLi and pU are given by (4) and (13), respectively.
To distinguish the model in the present section from the model

in Section 3.2, we introduce separate notation for the model with
market restriction. Denote the relative change of the expected
number of policies f as f̃ and the volume of exposure q as q̃ .
i i
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We propose the following basic properties for f̃ :

∂ f̃ (pi, p̄−i)

∂pi
< 0 for all pi ∈

[
pLi , p

U) , p̄−i < pU , (15)

f̃ (pi, p̄−i) = 0 at pi = pU , for all p̄−i. (16)

In particular, for p̄−i < pU , it holds that f̃ (pi, p̄−i) ≥ 0 for all
pi ∈ Pi and f̃ (pi, p̄−i) > 0 for all pi ∈

[
pLi , p

U
)
.

Regarding (11), the property in (15) implies positive price-
elasticity of demand. Therefore, any increase in insurer i’s pre-
mium leads to a decrease in the volume of exposure (see, for
instance, Taylor, 1986; Emms et al., 2007; Pantelous and Passali-
dou, 2015). Moreover, we assume that q̃i(pi, p−i) is a non-negative
and decreasing function of pi on Pi, which achieves its lowest
value, i.e., zero, at the highest possible value of pi on Pi.

We next solve the individual optimisation problem, given by

min
pi∈Pi

Ci(pi, p−i), (17)

here p−i ∈ P−i.

emma 7. Given the premium profile p−i ∈ P−i such that p̄−i ̸= pU
nd let Ni follow a Poisson distribution with parameter q̃i(pi, p−i),
hen candidate optimal premiums of (17) for insurer i, p̃∗

i , are the
olutions to the equation

∂ q̃i(pi, p−i)
∂pi

(
MX (λi)e−λipi − 1

)
− λiq̃i(pi, p−i)MX (λi)e−λipi = 0,

(18)

nd belong to the interior of the premium domain Pi, i.e., p̃∗

i ∈(
pLi , p

U
)
.

3.2. Optimisation problem of exposure function without market re-
striction

We next introduce the exposure function without market restric-
tion. Here, we denote the relative change of the expected number
of policies f as f̂ and the volume of exposure qi as q̂i. We propose
he following basic properties for f̂ :

f̂ (pi, p̄−i) > 0 for all pi ≥ pLi , (19)

∂ f̂ (pi, p̄−i)

∂pi
< 0 for all pi ≥ pLi . (20)

pecifically, Taylor (1986) proposed the demand function as in
10), which satisfies properties (19)–(20). The difference with
he previous demand function is that the exposure volume of
nsurer i will be positive even for large values of her premium
i. Additionally, regarding (11), the property (20) implies positive

price-elasticity of demand.
In this setting, the set of all available premiums of insurer i is

qual to

i =
[
pLi , +∞

)
. (21)

n the remaining of the paper, it will be clear of the context which
et is used, and when necessary, we distinguish them. For Pi as
n (21), we next solve the individual optimisation problem given
y

min
pi∈Pi

Ci(pi, p−i), (22)

where p−i ∈ P−i.

Lemma 8. Given the premium profile p−i ∈ P−i and Ni follows
a Poisson distribution with parameter q̂ (p , p ), candidate optimal
i i −i N
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premiums to (22) for insurer i, p̂∗

i , are the solutions to the equation

∂ q̂i(pi, p−i)
∂pi

(
MX (λi)e−λipi − 1

)
− λiq̂i(pi, p−i)MX (λi)e−λipi = 0,

(23)

and satisfy p̂∗

i > pLi .

Remark 9. Let Ni follow a Negative Binomial distribution with
parameters qi(pi, p−i) and 0 < k < 1. Using similar arguments as
in Lemmas 7 and 8, candidate optimal premiums are the solutions
to

∂qi(pi, p−i)
∂pi

log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
−

λiqi(pi, p−i)
1 − (1 − k)MX (λi)e−λipi

= 0,
(24)

nd belong to the interior of the corresponding premium domain,
here qi = q̃i when the market restriction is present, or qi = q̂i
therwise. Moreover, the optimal premiums are denoted by p̃∗

i
nd p̂∗

i for the restricted and unrestricted models, respectively.

.3. Convexity analysis

Let us consider the case of Ni following a Poisson distribution
ith parameter qi(pi, p−i). Given that qi(pi, p−i) is twice continu-
usly, partially differentiable with respect to pi, in our attempt to
inimise the cost function Ci(pi, p−i) with respect to pi, we find

all the critical points of Ci by solving the first order condition,
and using the second order condition we establish the extremum
nature of them. In Sections 3.1 and 3.2, we showed that the
optimal solutions must be in the interior of Pi. Generally, by
Lemmas 7 and 8, we get that both of them are the solutions of an
equation of the form

∂qi(pi, p−i)
∂pi

(
MX (λi)e−λipi − 1

)
− λiqi(pi, p−i)MX (λi)e−λipi = 0,

(25)

where qi = q̃i when the market restriction is present, or qi = q̂i
therwise. Now, we investigate the convexity of the objective
unction Ci(pi, p−i) with respect to pi. Without any loss of general-
ity, we denote the candidate optimal solutions of (25) with psi and
whenever it is necessary we distinguish if psi ∈ (pLi , p

U ) or psi > pLi .
he following two results concern both exposure functions, so we
eep the general notation of qi.
From (8), the second partial derivative of Ci(pi, p−i) with re-

spect to pi, is equal to

∂2Ci(pi, p−i)
∂p2i

=
∂2qi(pi, p−i)

∂p2i

(
MX (λi)e−λipi − 1

)
− 2λi

∂qi(pi, p−i)
∂pi

MX (λi)e−λipi

+ λ2
i qi(pi, p−i)MX (λi)e−λipi . (26)

bserving that the factors MX (λi)e−λipi − 1 and ∂qi(pi, p−i)/∂pi in
26) are non-positive, whereas the rest of them are positive, we
tate two results for the convexity of the cost function Ci, based
n ∂2qi(pi, p−i)/∂p2i . The first one is global, over all the premium

domain of pi, whereas the second is local, at the solution psi of
(25).

Theorem 10. Let p−i ∈ P−i, psi be a solution which satisfies (25) and
follow a Poisson distribution with parameter q (p , p ). Then, ps
i i i −i i
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is a global minimum for the cost function Ci(pi, p−i), if for all pi ∈ Pi
it holds

∂2qi(pi, p−i)
∂p2i

≤ 0. (27)

Theorem 11. Let p−i ∈ P−i, psi be a solution which satisfies (25)
and Ni follow a Poisson distribution with parameter qi(pi, p−i). Then,
psi is a local minimum for the cost function Ci(pi, p−i), if

∂2qi(pi, p−i)
∂p2i

⏐⏐⏐⏐
pi=psi

<

(
MX (λi)e−λipsi + 1

MX (λi)e−λipsi

)(
∂qi(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=psi

)2 (
qi(psi , p−i)

)−1
,

(28)

and
∂qi(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=psi

< 0. (29)

emark 12. When the insurer i is risk-neutral, i.e., λi = 0, then
he result in Theorem 11 is equivalent to the condition g ′′(pk) <

g ′(pk)]2 of Theorem 5.3.1. in Taylor (1986) (see also Section 3 in
Emms, 2012), where qk = f (pk, p̄k)qk−1 and g(pk) = log(f (pk, p̄k)).
Then,

g ′(pk) =
1
qk

∂qk
∂pk

,

g ′′(pk) = −
1
q2k

(
∂qk
∂pk

)2

+
1
qk

∂2qk
∂p2k

.

ow, the inequality g ′′(pk) < [g ′(pk)]2 can be rewritten in terms
f the exposure volume qk as

∂2qk
∂p2k

< 2
(

∂qk
∂pk

)2

(qk)−1 .

Remark 13. If Ni ∼ NB(qi(pi, p−i), k), 0 < k < 1, the second
partial derivative of the cost function with respect to pi is equal
to

∂2Ci(pi, p−i)
∂p2i

=
∂2qi(pi, p−i)

∂p2i
log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
− 2λi

∂qi(pi, p−i)
∂pi

[
1 − (1 − k)MX (λi)e−λipi

]−1

+ λ2
i qi(pi, p−i)

(1 − k)MX (λi)e−λipi[
1 − (1 − k)MX (λi)e−λipi

]2 . (30)

Thus, for this case, Theorem 10 provides the same condition for
global optimality of premiums that solve the first order condition.

Using the first and second order conditions for optimality of
the cost function, and denoting by psi the solutions to the first or-
der condition, we obtain the corresponding result to Theorem 11,
which is to replace (28) with

∂2qi(pi, p−i)
∂p2i

⏐⏐⏐⏐
pi=psi

< A

(
∂qi(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=psi

)2 (
qi(psi , p−i)

)−1
, (31)

where

A = 2 − (1 − k)MX (λi)e−λipsi log

(
kMX (λi)e−λipsi

1 − (1 − k)MX (λi)e−λipsi

)
.
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4. Exponential exposure function

The exposure function qi(pi, p−i) describes how the expected
number of policies will be sold by insurer i while competing with
other insurers. Section 3 provides in general the properties that
the exposure functions have to satisfy in our modelling. In this
section we define two specific forms of exponential exposure
function qi(pi, p−i), and we prove that the minimisation problems
n Sections 3.1 and 3.2 have solutions for both exposure functions.

.1. Exponential exposure function with market restriction

We introduce a specific exposure function that satisfies the
onditions in (15)–(16). The exponential exposure function with
arket restriction of insurer i is defined by

˜ i(pi, p−i) = b
[
1 − exp

{
−ai

pU − pi
pU − p̄−i

}]
q−

i (32)

for pi ∈ Pi and p̄−i < pU . Here, b > 1 is a market scale parameter,
which represents the available potentials of the market. Larger
values of b indicate greater amount of individuals looking to
be insured. Moreover, ai > 0 is a price sensitivity parameter,
and larger values of it are associated to insurers who possess
greater market power. Our interpretation of (32) is that changes
in small values of premiums have greater impact on q̃i(pi, p−i)
than changes in larger premium values. Therefore, the rate of
decrease of q̃i with respect to pi is assumed a decreasing function
of pi.

The first and second partial derivatives of q̃i(pi, p−i) with re-
spect to pi are

∂ q̃i(pi, p−i)
∂pi

= −b
ai

pU − p̄−i
exp

{
−ai

pU − pi
pU − p̄−i

}
q−

i < 0,

for all pi ∈ Pi,
(33)

and

∂2q̃i(pi, p−i)
∂p2i

= −b
(

ai
pU − p̄−i

)2

exp
{
−ai

pU − pi
pU − p̄−i

}
q−

i < 0,

for all pi ∈ Pi.

(34)

Proposition 14. Given the exponential exposure function in (32),
the average premium p̄−i < pU and Ni follows a Poisson distribution
with parameter q̃i(pi, p−i), there is unique optimal solution, p̃∗

i , of
the minimisation problem (17), which is given by

ai
pU − p̄−i

exp
{
−ai

pU − pi
pU − p̄−i

} (
MX (λi)e−λipi − 1

)
+ λi

[
1 − exp

{
−ai

pU − pi
pU − p̄−i

}]
MX (λi)e−λipi = 0, (35)

and satisfies p̃∗

i ∈
(
pLi , p

U
)
.

Remark 15. When Ni ∼ NB(q̃i(pi, p−i), k), 0 < k < 1, sub-
stituting (32) and (33) into (24), the unique optimal premium
p̃∗

i ∈
(
pLi , p

U
)
is the solution to

ai
pU − p̄−i

exp
{
−ai

pU − pi
pU − p̄−i

}
log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
+ λi

[
1 − exp

{
−ai

pU − pi
pU − p̄−i

}] [
1 − (1 − k)MX (λi)e−λipi

]−1

0. (36)
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4.2. Exponential exposure function without market restriction

In this section, we study a well-known exponential func-
ional form, which is introduced by Taylor (1986). The exponential
xposure function without market restriction is defined as

ˆ i(pi, p−i) = exp
{
−ai

pi − p̄−i

p̄−i

}
q−

i , (37)

here pi ∈ Pi and p̄−i > 0.
We observe that q̂i(pi, p−i) > 0, for all pi ≥ pLi , and the first

nd second partial derivatives with respect to pi are equal to

∂ q̂i(pi, p−i)
∂pi

= −
ai
p̄−i

q̂i(pi, p−i), (38)

∂2q̂i(pi, p−i)
∂p2i

= (
ai
p̄−i

)2q̂i(pi, p−i). (39)

roposition 16. Given the exposure function in (37), the premium
rofile p−i ∈ P−i and Ni follows a Poisson distribution with param-
ter q̂i(pi, p−i), there is unique optimal solution, p̂∗

i , of the minimi-
ation problem (22), which is given by

p̂∗

i = −
1
λi

log
[

ai
(ai + λip̄−i)MX (λi)

]
, (40)

nd satisfies p̂∗

i > pLi .

emark 17. Expression (39) implies that q̂i(pi, p−i) is a convex
unction in pi, and the parameter ai is related to the price-
lasticity of demand (Malueg, 1994). Indeed, regarding (11), the
rice-elasticity of demand is equal to

(pi) = −
∂ q̂i(pi, p−i)

∂pi

pi
q̂i(pi, p−i)

= ai
pi
p̄−i

.

e observe that the price-elasticity of demand is an increasing
unction of ai, and as Taylor (1986) indicated, a decrease in price-
lasticity is associated to an increase in optimal premiums. This
an be proved by showing that the first derivative of (40) with
espect to ai is negative. Indeed, it derives in a straightforward
anner that

∂ p̂∗

i

∂ai
=

∂

∂ai

[
−

1
λi

log
(

ai
(ai + λip̄−i)MX (λi)

)]
= −

p̄−i

ai(ai + λip̄−i)
< 0, for all ai > 0.

emark 18. When Ni ∼ NB(q̂i(pi, p−i), k), 0 < k < 1, substi-
uting (37) and (38) into (24), optimal premiums p̂∗

i > pLi are the
olutions to
ai
p̄−i

log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
+ λi

[
1 − (1 − k)MX (λi)e−λipi

]−1
= 0.

(41)

Moreover, substituting (38) and (39) into (31), we verify that (31)
is satisfied.

5. Nash equilibrium premiums

In the previous sections, we have presented our analysis for
a single optimisation problem. However, we are interested in
finding the best choice of premiums for all insurers in the market
who do not cooperate and act selfishly. To do so, we next study
the Nash equilibrium. In a Nash equilibrium, no insurer has an
incentive to unilaterally deviate from the premium strategy. The
formal definition is provided as follows.
50
Definition 19. A strategy profile p∗
=
(
p∗

1, p
∗

2, . . . , p
∗
n

)
∈ P is a

pure strategy Nash equilibrium if for all i ∈ N , the premium p∗

i
solves the minimisation problem

min
pi∈Pi

Ci(pi, p∗

−i). (42)

Now, the next results state the existence of a pure strategy Nash
equilibrium in the case of both exposure functions, and how it is
calculated.

Theorem 20. Let Ni follow a Poisson distribution with parameter
q̃i(pi, p−i). There exists unique pure strategy Nash equilibrium p̃∗ in
the case of the exponential exposure function with market restriction
(32), in which for all i = 1, 2, . . . , n, p̃∗

i solves

ai
pU − ¯̃p∗

−i

exp

{
−ai

pU − pi
pU − ¯̃p∗

−i

}(
MX (λi)e−λipi − 1

)
+ λi

[
1 − exp

{
−ai

pU − pi
pU − ¯̃p∗

−i

}]
MX (λi)e−λipi = 0, (43)

and p̃∗

i ∈
(
pLi , p

U
)
.

Remark 21. Let Ni ∼ NB(q̃i(pi, p−i), k), 0 < k < 1. Similar to
Theorem 20, there exists unique pure strategy Nash equilibrium
p̃∗ in the case of the exponential exposure function with market
restriction (32), in which for all i = 1, 2, . . . , n, p̃∗

i ∈
(
pLi , p

U
)

solves

ai
pU − ¯̃p∗

−i

exp

{
−ai

pU − pi
pU − ¯̃p∗

−i

}
log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)

λi

[
1 − exp

{
−ai

pU − pi
pU − ¯̃p∗

−i

}] [
1 − (1 − k)MX (λi)e−λipi

]−1

0. (44)

roposition 22. Let Ni follow a Poisson distribution with parameter
q̂i(pi, p−i). A pure strategy Nash equilibrium p̂∗ in the case of the
exponential exposure function without market restriction (37) is
obtained by solving for all i = 1, 2, . . . , n

pi = −
1
λi

log

⎡⎣ ai(
ai + λi

¯̂p∗

−i

)
MX (λi)

⎤⎦ , (45)

here p̂∗

i > pLi .

Remark 23. Let Ni ∼ NB(q̂i(pi, p−i), k), 0 < k < 1. A pure
strategy Nash equilibrium p̂∗ in the case of the exponential ex-
posure function without market restriction (37) is obtained by
solving for all i = 1, 2, . . . , n

ai
¯̂p∗

−i

log
(

kMX (λi)e−λipi

1 − (1 − k)MX (λi)e−λipi

)
+ λi

[
1 − (1 − k)MX (λi)e−λipi

]−1
= 0,

(46)

nd p̂∗

i > pLi .

emark 24. In Theorem 20 and Proposition 22, it is found that
oth equilibria are affected by insurers’ risk aversion parameters,
he claims distribution and the sensitivity parameter of the de-
and functions. On the other hand, the initial wealth does not
ffect insurers’ premium strategies.
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Table 3
Model parameters used in Section 6.
Parameters Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5

q−

i 1000 2000 3000 2000 500
w−

i 10000 10000 10000 10000 10000
λi 0.003 0.004 0.006 0.005 0.001
ai 1.6 1.7 1.8 1.7 1.5

b = 1.2
m = 100
h = 0.007

6. Numerical application

In this section, we present a hypothetical insurance market
o illustrate our theoretical results. We assume that there are
ive insurers in the market competing with each other and we
all them Insurer i, for i = 1, 2, . . . , 5. Claims X follow an
xponential distribution with mean m = 100, and hence the
oment generating function is given by

X (t) =
1

1 − mt
, t <

1
m

, (47)

and the number of policies, Ni, follows a Poisson distribution
with intensity qi(pi, p−i). In the following two subsections, we
investigate separately the Nash equilibrium of our two models, as
well as we perform a sensitivity analysis of the underlying model
parameters.

6.1. Model with market restriction

Firstly, we adopt the exposure function (32), with risk aversion
parameter h. Based on Assumptions 1 and 6, the insurers’ risk
aversion parameters λi, i = 1, 2, . . . , 5, and h should be less than
(1/m) = 0.01, and it holds that λi < h, i = 1, 2, . . . , 5. The mar-
ket power is illustrated by the shape parameter ai. In our scenario,
Insurer 3 possesses a leading position in the market, Insurers 2
and 4 share the same portion of the market, whereas Insurer 5 is
considered the ‘‘weakest’’ player in the market. The set of all the
necessary model parameters is summarised in Table 3. Since the
insurers use exponential utilities, it is well-known that the value
of w−

i does not affect the risk attitude of the insurer, and thus it
does not affect the insurance prices in equilibrium.

The upper bound for all insurers’ premiums is given by (13)
and equals pU = 172.00, whereas the insurers’ indifference
premiums is given by (4) and depicted in Table 4. Note that
pLi > m = 100, i = 1, 2, . . . , 5, i.e., the indifference premium
is larger than the net premium, producing positive loading for all
insurers.

According to Theorem 20, a unique pure strategy Nash equi-
librium p̃∗

= (p̃∗

1, . . . , p̃
∗

5) exists, and is obtained by solving
simultaneously, for all i = 1, 2, . . . , 5, Eq. (43). The equilibrium
premiums are illustrated in Table 4. We verify that for each
insurer i = 1, 2, . . . , 5 the condition p̃∗

i ∈
(
pLi , p

U
)
is satisfied.

Table 5 depicts the exposure volume at Nash equilibrium.
Since Insurer 3 possesses the largest proportion of the market,

she is more vulnerable to uncertain risks, and hence her risk aver-
sion parameter is the largest one. For this reason, the resulting

Nash equilibrium premium for Insurer 3 is the highest one in

51
Table 5
Exposure volume at Nash equilibrium.
Exposure volume Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5

q̃∗

i 1025.75 1996.70 2281.58 1851.96 526.87
q−

i 1000 2000 3000 2000 500

Table 6
Nash equilibrium premiums and exposure volumes for three values of the risk
aversion parameter h. The second column presents the upper premium bound
pU .
Parameter h pU p̃∗

1 p̃∗

2 p̃∗

3 p̃∗

4 p̃∗

5

h = 0.007 172.00 158.29 159.70 164.75 161.44 156.63
h = 0.008 201.18 177.95 179.63 184.51 181.36 176.02
h = 0.009 255.84 214.07 215.91 220.71 217.45 212.38

q̃∗

1 q̃∗

2 q̃∗

3 q̃∗

4 q̃∗

5

h = 0.007 1025.75 1996.70 2281.58 1851.96 526.87
h = 0.008 998.99 1973.16 2654.98 1893.67 506.32
h = 0.009 981.53 1966.01 2833.35 1929.22 488.18

the market, which leads to significant reduction in her exposure
volume for the period under consideration. On the other hand,
the Nash equilibrium premiums of Insurers 1 and 5 are lower
than the others, in order to gain more share of the market in the
upcoming period. Finally, Insurer 4’s Nash equilibrium premium
is larger than Insurer 2’s, since she has higher risk aversion,
resulting to larger reduction in her exposure volume.

Now, maintaining all other the parameters in Table 3, we
increase only the risk aversion parameter h. The upper premium
bound is depicted in Table 6 for each value of h. Moreover, this
table also shows the pure strategy Nash equilibrium and the
corresponding exposure volumes.

As the risk aversion parameter h increases, insureds are willing
to pay more for their insurance coverage, which yields the upper
premium bound to increase as well. Therefore, all insurers take
advantage of this opportunity and increase their premiums in or-
der to produce larger profits. Moreover, we observe that insurers
follow the same reasoning in their premium strategy as in the
case of h = 0.007, i.e weaker insurers set lower premiums to
gain market power, whereas larger insurers charge relatively high
premiums. For the exposure volumes when h = 0.008 or 0.009,
it holds that only weaker insurers’ exposure decreases, in con-
trast to Insurers 3 and 4, whose exposure volume increases (see
Table 6). On the other hand, the losses of exposure for Insurers
1, 2 and 5 are still lower than the losses for Insurers 3 and
4. This may be due to the fact that insureds are capable of
paying more money for their insurance, so they trust insurers
with greater market power, which is usually accompanied by bet-
ter reputation, as mentioned in Pantelous and Passalidou (2013,
2015).

Next, maintaining all the parameters as in Table 3, we vary
only the mean m of the exponentially distributed claims X . The
upper premium bound and the indifference premiums are shown
in Table 7. The corresponding Nash equilibrium and exposure
volumes appear in Table 8. When the size of the underlying risk
increases, the lower and upper premium bounds increase, too.
The corresponding Nash equilibrium premiums increase as well,
but following the same pattern as in the case of m = 100 and
leading to a similar structure for the exposure volume. However,
Table 4
Nash equilibrium premiums.
Premium Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5

Upper bound: pU 172.00 172.00 172.00 172.00 172.00
Nash equilibrium: p̃∗

i 158.29 159.70 164.75 161.44 156.63
Indifference premium: pLi 118.89 127.71 152.72 138.63 105.36
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Table 7
Indifference premiums and upper bound pU for three values of the mean m.
Expected claim pU pL1 pL2 pL3 pL4 pL5
m = 90 142.04 104.90 111.57 129.42 119.57 94.31
m = 100 172.00 118.89 127.71 152.72 138.63 105.36
m = 120 261.80 148.76 163.48 212.16 183.26 127.83

Table 8
Nash equilibrium premiums and exposure volumes for three values of the mean
m.
Expected claim p̃∗

1 p̃∗

2 p̃∗

3 p̃∗

4 p̃∗

5

m = 90 132.66 133.69 137.27 134.95 131.39
m = 100 158.29 159.70 164.75 161.44 156.63
m = 120 230.45 233.02 243.24 236.29 227.86

q̃∗

1 q̃∗

2 q̃∗

3 q̃∗

4 q̃∗

5

m = 90 1028.69 1995.48 2232.14 1839.38 530.74
m = 100 1025.75 1996.70 2281.58 1851.96 526.87
m = 120 1016.73 1999.01 2422.41 1885.67 514.99

Table 9
Nash equilibrium premiums and exposure volumes for two values of the risk
aversion parameter λ3 . Moreover, the second column presents the indifference
remium of Insurer 3.
Parameter pL3 p̃∗

1 p̃∗

2 p̃∗

3 p̃∗

4 p̃∗

5

λ3 = 0.006 152.72 158.29 159.70 164.75 161.44 156.63
λ3 = 0.005 138.63 157.53 159.07 161.20 160.99 155.70

q̃∗

1 q̃∗

2 q̃∗

3 q̃∗

4 q̃∗

5

λ3 = 0.006 1025.75 1996.70 2281.58 1851.96 526.87
λ3 = 0.005 1004.46 1949.01 2731.28 1792.63 517.75

the increase of exposure volumes of the smaller Insurers 1 and 5
decreases for larger values of m, whereas the exposure volumes
f the larger Insurers 2, 3 and 4 increase. This may indicate that
ndividuals feel more secure with insurers who possess large
arket power when the underlying risk increases.
Next, we maintain all the parameters as in Table 3 and de-

rease only the risk aversion parameter of Insurer 3. The in-
ifference premium of Insurer 3 is given in Table 9, for λ3 =

.005, 0.006. The corresponding Nash equilibrium premiums and
xposure volumes are presented in Table 9. According to
emma 3, smaller values of the risk aversion parameter yield
maller values for the indifference premium, as verified in
able 9. Moreover, we observe a general reduction in the Nash
quilibrium premiums for all insurers, with the highest decrease
n Insurer 3’s premium. Since the premium of the largest Insurer 3
s nowmore appealing than before, her exposure volume presents
n increase, whereas all the other insurers’ exposure volumes
ecrease.
Finally, maintaining all the parameters as in Table 3, we de-

rease the market shape parameter of Insurer 3, a3, and present
he corresponding Nash equilibrium premiums and exposure vol-
mes in Table 10. We observe that the optimal premium for
nsurer 3 increases with respect to a3. Moreover, an increase in In-
urer 3’s optimal premium yields an increase in the premiums of
he other insurers in the Nash equilibrium. However, the relative
remium strategies are not affected, since the weaker Insurers 1
nd 5 still charge lower premiums than the stronger Insurers 2,
and 4.

.2. Model without market restriction

Now, we adopt the exposure function (37). Based on Assump-
ion 1, insurers’ risk aversion parameters λi, i = 1, 2, . . . , 5
re less than (1/m) = 0.01. It is assumed that less market

ower implies a greater price sensitivity parameter ai, as indi-
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able 10
ash equilibrium premiums and exposure volumes for two values of the market
hape parameter a3 .
Market shape parameter p̃∗

1 p̃∗

2 p̃∗

3 p̃∗

4 p̃∗

5

a3 = 1.8 158.29 159.70 164.75 161.44 156.63
a3 = 1.6 158.24 159.66 164.53 161.41 156.57

q̃∗

1 q̃∗

2 q̃∗

3 q̃∗

4 q̃∗

5

a3 = 1.8 1025.75 1996.70 2281.58 1851.96 526.87
a3 = 1.6 1024.34 1993.53 2161.57 1847.97 526.27

cated in Lerner (1934), Wu and Pantelous (2017), and Boonen
et al. (2018). In particular, let a1 = 2.7, a2 = 2.6, a3 = 2.5, a4 =

2.6, and a5 = 2.8. All other model parameters coincide with the
parameters in Table 3. For all cases that we study in this section,
the pure strategy Nash equilibrium exists and is unique.

The indifference premiums for every insurer are the same as
in Section 6.1, (see Table 4). The pure strategy Nash equilibrium
p̂∗

= (p̂∗

1, . . . , p̂
∗

5) is obtained by solving simultaneously for all i =

1, 2, . . . , 5 Eq. (45) and illustrated in Table 11. We observe that
for each insurer i = 1, 2, . . . , 5 the condition p̂∗

i > pLi is satisfied.
Table 12 depicts the exposure volumes at Nash equilibrium.

As in Section 6.1, Insurer 3 possesses the largest proportion
of the market which makes her more vulnerable to uncertain
risks, and hence her risk aversion parameter is the largest one. For
this reason, the resulting Nash equilibrium premium for Insurer
3 is the highest one in the market, which leads to significant
reduction in her exposure volume for the period under consid-
eration. On the other hand, the Nash equilibrium premiums of
Insurers 1 and 5 are lower than the others in order to gain more
share of the market in the upcoming period. Finally, Insurer 4’s
Nash equilibrium premium is larger than the Nash equilibrium
premium of Insurer 2, since Insurer 4 has higher risk aversion,
resulting to reduction in her exposure volume.

Next, while keeping all other the parameters the same as
above, we now vary the mean m of the exponentially distributed
claims X . The indifference premiums coincide with the ones in
Table 7. The corresponding Nash equilibrium and exposure vol-
umes are shown in Table 13. When the size of the underlying
risk increases, the indifference premiums increase too. The corre-
sponding Nash equilibria increase as well, but following the same
reasoning as in the initial case of m = 100 and leading to an
equivalent structure for the exposure volume. Under this model,
we observe that insurers 3 and 4, with greater market power, face
a reduction in their exposure volume, whilst the rest of them face
an increase in their exposure volume. For larger values of m, this
may happen because policyholders lapse from insurers 3 and 4
because they are charging high premiums, and buy policies from
the other insurers that charge relatively lower premiums.

While keeping all other the parameters the same as above, we
decrease only the risk aversion parameter of Insurer 3 (the largest
insurer). The indifference premium of Insurer 3 coincides with
the ones in Table 9, for each value of λ3. The corresponding Nash
equilibrium and exposure volumes are presented in Table 14. Ac-
cording to Lemma 3, smaller values of the risk aversion parameter
yield smaller values for the indifference premium. Moreover, we
observe a general reduction in the Nash equilibrium premiums
for all insurers, with the highest decrease in the premium of
Insurer 3. Since the premium of Insurer 3 is now more appealing
than before, the exposure volume of Insurer 3 increases, whereas
the exposure volumes of all other insurers decrease.

Finally, while keeping all the other parameters the same as
above, we decrease the price sensitivity parameter of Insurer 3,
a3, and present the corresponding Nash equilibrium and exposure
volumes in Table 15. Regarding Remark 17, the parameter a3 is
related to the price-elasticity of demand which is an increasing
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Table 11
Nash equilibrium premiums.
Premium Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5

Nash equilibrium: p̂∗

i 184.48 192.89 214.82 201.34 173.81
Indifference premium: pLi 118.89 127.71 152.72 138.63 105.36
Table 12
Exposure volume at the Nash equilibrium.
Exposure volume Insurer 1 Insurer 2 Insurer 3 Insurer 4 Insurer 5

q̂∗

i 1167.62 2019.58 2104.31 1749.9 707.23
q−

i 1000 2000 3000 2000 500

Table 13
Nash equilibrium premiums and exposure volumes for three values of the mean
m.
Expected claim p̂∗

1 p̂∗

2 p̂∗

3 p̂∗

4 p̂∗

5

m = 90 162.94 169.51 185.19 175.56 154.36
m = 100 184.48 192.89 214.82 201.34 173.81
m = 120 231.01 244.42 287.41 260.34 215.25

q̂∗

1 q̂∗

2 q̂∗

3 q̂∗

4 q̂∗

5

m = 90 1138.44 2000.2 2231.52 1779.18 678.95
m = 100 1167.62 2019.58 2104.31 1749.9 707.23
m = 120 1250.45 2087.25 1779.89 1690.33 779.29

Table 14
Nash equilibrium premiums and exposure volumes for two values of the risk
aversion parameter λ3 .
Parameter p̂∗

1 p̂∗

2 p̂∗

3 p̂∗

4 p̂∗

5

λ3 = 0.006 184.48 192.89 214.82 201.34 173.81
λ3 = 0.005 183.23 191.67 202.14 200.18 172.45

q̂∗

1 q̂∗

2 q̂∗

3 q̂∗

4 q̂∗

5

λ3 = 0.006 1167.62 2019.58 2104.31 1749.9 707.23
λ3 = 0.005 1125.32 1941.45 2446.05 1674.45 685.04

Table 15
Nash equilibrium premiums and exposure volumes for two values of the price
sensitivity parameter a3 .
Price sensitivity p̂∗

1 p̂∗

2 p̂∗

3 p̂∗

4 p̂∗

5

a3 = 2.5 184.48 192.89 214.82 201.34 173.81
a3 = 2 185.75 194.12 227.70 202.51 175.19

q̂∗

1 q̂∗

2 q̂∗

3 q̂∗

4 q̂∗

5

a3 = 2.5 1167.62 2019.58 2104.31 1749.9 707.23
a3 = 2 1210.4 2098.78 2001.87 1826.67 729.55

function of a3. As mentioned in Taylor (1986), any decrease in
a3, i.e., in the price elasticity, causes an increase in the optimal
premiums, because the loss of the number of policies due to
high premiums is relatively small. This phenomenon is clearly
illustrated by Table 15.

7. Conclusion

In this paper, we derive the optimal premium strategy for
non-life insurance products in a competitive market. The optimal
premiums are determined by the Nash equilibrium of an n-player,
ne-stage game, in which each player is assumed to maximise the
xpected utility of terminal wealth. For this purpose, a stochastic
odel is applied to investigate how the randomness of both the
umber of policies and the size of claims impact the pricing
rocess. The competition among insurers is modelled via two
xponential demand functions with different curvatures, and the
arket power of each insurer is affected by price and market
ensitivity parameters. The first model is restricted from above
53
and below, whereas the second model only from below. The pure
strategy Nash equilibrium premiums are given as solutions to
constrained optimisation problems. We prove that no insurer has
an incentive to set premiums equal to the boundaries of the
strategy domain. The lower premium bound is the indifference
premium of the insurer, whereas the upper bound leads to no
insurance buyers. For the first model we prove the existence and
uniqueness of a pure strategy Nash equilibrium, whereas for the
second we provide a structure when it exists. A hypothetical
insurance market with five insurers is constructed to illustrate
our findings and analyse the effect of our model parameters in
the Nash equilibrium premium profile.

For future work, we are interested in expanding our stochastic
model into a dynamic framework and apply dynamic games to
investigate how competition may result in premium cycles. Fur-
ther, we wish to derive mixed strategy Nash equilibria, in which
insurers are allowed to randomise their premium strategy.

Appendix. Proofs

Proof of Lemma 2. From (1) and (2) we obtain the following
inequality

E
[
ui
(
w−

i + Nipi − Si(Ni)
)]

= E
[
E
[
ui
(
w−

i + Nipi − Si(Ni)
)
|Ni
]]

= E
[
E
[

−e−λi

(
w−

i +
∑Ni

j=1(pi−Xij)
)⏐⏐⏐⏐Ni

]]

= −e−λiw
−

i E

⎡⎣E

⎡⎣ Ni∏
j=1

e−λipieλiX

⏐⏐⏐⏐⏐⏐Ni

⎤⎦⎤⎦
= −e−λiw

−

i E

⎡⎣ Ni∏
j=1

e−λipiE
[
eλiX

]⎤⎦ = −e−λiw
−

i E[(e−λipiMX (λi))Ni ].

From this and (2), we get

E[(e−λipiMX (λi))Ni ] ≤ 1. (48)

This inequality reads as E[cNi ] ≤ 1 for some c ≥ 0, and since
Pr[Ni > 0] > 0 this implies c ≤ 1. Hence, (48) leads to
e−λipiMX (λi) ≤ 1. From this, we readily derive (3), which con-
cludes the proof. ■

Proof of Proposition 4. Applying (5) to (1) and taking expecta-
tions, we obtain

E [ui (wi)] = E
[
−e−λiwi

]
= −e−λiw

−

i E
[
e−λi(piNi−Si)

]
. (49)

Considering that Ni follows a Poisson distribution with parame-
ter qi(pi, p−i) and applying the law of iterated expectations, the
second factor on the right-hand side of (49) can be written as

E
[
e−λi(piNi−Si)

]
= E

[
E
[
e−λi(piNi−Si) | Ni

] ]
=

+∞∑
m=0

e−λipimE
[
eλi(Xi1+Xi2+···+Xim)] Pr [Ni = m] .

Since Xi1, Xi2, . . . , Xim are independent and identically distributed
as X , and the moment generating function of X is finite, we
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E
[
e−λi(piNi−Si)

]
=

+∞∑
m=0

[
MX (λi)e−λipi

]m Pr [Ni = m]

= PNi

(
MX (λi)e−λipi

)
. (50)

The probability generating function of Ni is defined by PNi (t) =

E
[
tNi
]
, and it always converges at least for |t| ≤ 1. From (48), we

have that the argument of the probability generating function in
(50) is positive and less than or equal to 1, and hence we obtain

E
[
e−λi(piNi−Si)

]
= exp

{
qi(pi, p−i)

(
MX (λi)e−λipi − 1

)}
. (51)

ubstituting (51) to (49), we obtain Eq. (6). ■

roof of Lemma 7. Given the premium profile p−i charged by all
nsurers except insurer i, the premium pi charged by insurer i is
the solution to the constrained minimisation problem

min
pi∈Pi

{
−λiw

−

i + q̃i(pi, p−i)
(
MX (λi)e−λipi − 1

)}
, (52)

subject to

− q̃i(pi, p−i) ≤ 0, (53)

X (λi)e−λipi − 1 ≤ 0. (54)

his is a minimisation problem with inequality constraints and
e solve it using the Karash–Kuhn–Tucker (KKT) conditions,
hich are necessary conditions for optimality. The KKT station-
rity condition is
∂ q̃i(pi, p−i)

∂pi

(
MX (λi)e−λipi − 1

)
− λiq̃i(pi, p−i)MX (λi)e−λipi

µ
∂ q̃i(pi, p−i)

∂pi
− νλiMX (λi)e−λipi = 0, (55)

nd the complementary slackness conditions are

µq̃i(pi, p−i) = 0, ν(MX (λi)e−λipi − 1) = 0, (56)
≥ 0, ν ≥ 0. (57)

Any premium pi which satisfies the KKT conditions (55)–(57) is
only a candidate optimal solution. There exist four cases we have
to investigate:

Case −q̃i(pi, p−i) MX (λi)e−λipi − 1
I = 0 = 0
II = 0 < 0
III < 0 = 0
IV < 0 < 0

Case I. Equation q̃i(pi, p−i) = 0, and requirements (15) and (16)
yield pi = pU . From equation MX (λi)e−λipi − 1 = 0 and Lemma 2,
we obtain pi = pLi . Now, we should show that there exist non-
negative multipliers µ and ν which satisfy the KKT stationarity
condition (55). From (55), we have that

− µ
∂ q̃i(pi, p−i)

∂pi
− νλi = 0. (58)

rom (15), and the fact that λi is positive, we can find non-
egative multipliers µ and ν to satisfy Eq. (58). So, it must hold
hat p̃∗

i = pLi and p̃∗

i = pU is a candidate optimal solution to
inimisation problem (52)–(54). Thus, the premium strategy set
f insurer i is the point set Pi = {p̃∗

i }. This is in contradiction
o λi < h. Insurer i is not going to generate profits by charging
˜∗

i = pLi or p̃∗

i = pU .
ase II. From (56)–(57), we obtain ν = 0. Since q̃i(pi, p−i) = 0, we
ave pi = pU . Eq. (55) yields(
MX (λi)e−λipU − 1 − µ

) ∂ q̃i(pi, p−i)
⏐⏐⏐⏐ = 0. (59)
∂pi pi=pU

54
There are two sub-cases:

(i) If
∂ q̃i(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=pU

< 0, we obtain µ = MX (λi)e−λipU − 1 <

0, which is in contradiction with (57).

(ii) If
∂ q̃i(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=pU

= 0, then (59) holds for any nonnegative

µ, and a candidate optimal solution is given by p̃∗

i = pU ,
where pLi < pU .

ow, we observe that q̃i(pU , p−i) = 0, and from (8) we obtain
i(pU , p−i) = −λiw

−

i . However, for any pi ∈
(
pLi , p

U
)
, we have

q̃i(pi, p−i) > 0, and MX (λi)e−λipi − 1 < 0. Therefore, from (8), and
for any pi ∈

(
pLi , p

U
)
, we find

Ci(pi, p−i) = −λiw
−

i + q̃i(pi, p−i)
(
MX (λi)e−λipi − 1

)
< −λiw

−

i = Ci(pU , p−i).

Thus, p̃∗

i = pU is not a local solution to minimisation problem
(52)–(54).
Case III. From (56)–(57), we obtain µ = 0. Equation MX (λi)e−λipi −

1 = 0 yields pi = pLi . Eq. (55) implies −λiq̃i(pLi , p−i) − νλi = 0.
From this, λi > 0 and (15)–(16), we get ν = −q̃i(pLi , p−i) < 0,
which is a contradiction to (57).
Case IV. From (56)–(57), we obtain µ = ν = 0, and substituting
them into Eq. (55), we obtain (18).
Therefore, solutions p̃∗

i to (18) are only candidate optimal so-
lutions, and belong to the interior of the premium domain Pi,
i.e. p̃∗

i ∈
(
pLi , p

U
)
.

In conclusion of the proof, only Case IV provides candidate
optimal solutions, p̃∗

i , which are given by Eq. (18), and belong to
the open interval

(
pLi , p

U
)
. ■

Proof of Lemma 8. Given the premium profile p−i charged by all
insurers except insurer i, the premium pi charged by insurer i is
the solution to the constrained minimisation problem

min
pi∈Pi

{
−λiw

−

i + q̂i(pi, p−i)
(
MX (λi)e−λipi − 1

)}
, (60)

subject to

MX (λi)e−λipi − 1 ≤ 0. (61)

This is a minimisation problem with inequality constraint and we
solve it using the KKT conditions. The KKT stationarity condition
is
∂ q̂i(pi, p−i)

∂pi

(
MX (λi)e−λipi − 1

)
− λiq̂i(pi, p−i)MX (λi)e−λipi

− νλiMX (λi)e−λipi = 0,
(62)

and the complementary slackness conditions are

ν(MX (λi)e−λipi − 1) = 0, ν ≥ 0. (63)

Any premium pi which satisfies the KKT conditions (62)–(63) is
only a candidate optimal solution.

Case I. If MX (λi)e−λipi −1 = 0, then it follows from (4) that pi = pLi .
From the KKT stationarity condition (62) and the fact that λi > 0,
we obtain

−λiq̂i(pLi , p−i) − νλi = 0,

which implies

ν = −q̂i(pLi , p−i) < 0,

where the inequality is due to (19). This is in contradiction with

(63).
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Case II. If MX (λi)e−λipi − 1 < 0, then it follows from (63) that
ν = 0, and substituting it into the KKT stationarity condition (62),
we obtain the candidate optimal solutions, p̂∗

i , by (23) and p̂∗

i >
L
i . ■

roof of Theorem 10. Given inequality (27), we obtain from (26)
hat for all pi in the corresponding premium domain

∂2Ci(pi, p−i)
∂p2i

≥ 0.

Therefore, Ci(pi, p−i) is a convex function in pi. Now, (27) implies
hat qi(pi, p−i) is concave in pi, and hence −qi(pi, p−i) is convex
in pi. Moreover, MX (λi)e−λipi − 1 is convex in pi, too. Thus, the
constraints (53) and (54) of the minimisation problem (52), and
(61) of the minimisation problem (60), are convex functions of pi.
Since the cost function Ci(pi, p−i), and the constraints are convex
in pi, the KKT conditions (55)–(57) and (62)–(63) are not only
necessary, but also sufficient for global optimality. Therefore, any
solution psi to Eq. (25) is a global minimum. ■

Proof of Theorem 11. The second partial derivative of Ci(pi, p−i)
with respect to pi, given by (26), can be rewritten as

∂2Ci(pi, p−i)
∂p2i

=
∂2qi(pi, p−i)

∂p2i

(
MX (λi)e−λipi − 1

)
− λi

∂qi(pi, p−i)
∂pi

MX (λi)e−λipi

− λi

[
∂qi(pi, p−i)

∂pi
MX (λi)e−λipi

− λiqi(pi, p−i)MX (λi)e−λipi

]
. (64)

Given (29), Eq. (25) evaluated at psi yields

MX (λi)e−λipsi − 1 =

(
∂qi(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=psi

)−1

λiqi(psi , p−i)MX (λi)e−λipsi ,

(65)

and we also derive from (25) that[
∂qi(pi, p−i)

∂pi
MX (λi)e−λipi − λiqi(pi, p−i)MX (λi)e−λipi

]⏐⏐⏐⏐
pi=psi

=
∂qi(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=psi

.

(66)

ubstituting (65) and (66) into (64), we obtain

∂2Ci(pi, p−i)
∂p2i

⏐⏐⏐⏐
pi=psi[

∂2qi(pi, p−i)
∂p2i

(
∂qi(pi, p−i)

∂pi

)−1

λiqi(pi, p−i)MX (λi)e−λipi

− λi
∂qi(pi, p−i)

∂pi

(
MX (λi)e−λipi + 1

) ]⏐⏐⏐⏐
pi=psi

. (67)

n order for psi to be a local minimum for Ci, the second partial
erivative of Ci with respect to pi, evaluated at psi , has to be
ositive, i.e.

∂2Ci(pi, p−i)
∂p2i

⏐⏐⏐⏐
pi=psi

> 0. (68)

or interior solutions psi , we have that q̃i(psi , p−i) and q̂i(psi , p−i)
re positive, and thus it is allowed to invert q (ps, p ). Now,
i i −i s
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∂qi(pi, p−i)
∂pi

⏐⏐⏐⏐
pi=psi

< 0 together with (67) and (68) lead to inequal-

ity (28). ■

Proof of Proposition 14. According to Lemma 7, the candidate
optimal premiums, p̃∗

i , in the case of the exponential exposure
function with market restriction, are given by Eq. (18) and sat-
isfy p̃∗

i ∈ (pLi , p
U ). Substituting the exposure function (32) and

its partial derivative (33) into (18), we obtain Eq. (35). Since
q̃i(pi, p−i) ≥ 0, pi ∈ Pi, and inequalities (33) and (34) are strictly
on Pi, we obtain from (26) that

∂2Ci(pi, p−i)
∂p2i

> 0 for all pi ∈ Pi.

Therefore, Ci(pi, p−i) is a strictly convex function in pi. Now,
34) implies that −q̃i(pi, p−i) is strictly convex in pi. Moreover,
X (λi)e−λipi − 1 is convex in pi too. Thus, the constraints (53)
nd (54) of the minimisation problem (52) are convex functions
f pi. Since the constraints are convex in pi, and the objective

function Ci(pi, p−i) is strictly convex in pi, the optimal solution
p̃∗

i to Eq. (35) is a unique global minimum. ■

Proof of Proposition 16. According to Lemma 8, the candidate
optimal premiums, p̂∗

i , in the case of the exponential exposure
function without market restriction, are given by (23) and satisfy
p̂∗

i > pLi . Substituting (37) and (38) into (23) we obtain

−
ai
p̄−i

(
MX (λi)e−λipi − 1

)
− λiMX (λi)e−λipi = 0, (69)

hich has unique solution p̂∗

i given in (40).
Now, from (4) and (8) we observe that the value of the cost
function at pi = pLi equals Ci(pLi , p−i) = −λiw

−

i . Since q̂i(pi, p−i) is
ositive and (MX (λi)e−λipi − 1) is negative for all pi > pLi , it holds

i(pi, p−i) = −λiw
−

i + q̂i(pi, p−i)
(
MX (λi)e−λipi − 1

)
< −λiw

−

i = Ci(pLi , p−i).

Therefore, the lower bound pLi is not optimal solution to minimi-
sation problems (60)–(61), and p̂∗

i > pLi .
Now it remains to prove that the solution of (23), given by (40),
is indeed a global minimum point for the cost function Ci(pi, p−i).
From Theorem 11, substituting (38) and (39) into (28), we verify
that (28) is satisfied. Indeed, since (38) satisfies condition (29),
we obtain

∂2q̂i(pi, p−i)
∂p2i

⏐⏐⏐⏐
pi=p̂∗

i

<

(
MX (λi)e−λi p̂∗

i + 1

MX (λi)e−λi p̂∗
i

)(
∂ q̂i(pi, p−i)

∂pi

⏐⏐⏐⏐
pi=p̂∗

i

)2

×
(
q̂i(p̂∗

i , p−i)
)−1

,

(
ai
p̄−i

)2q̂i(p̂∗

i , p−i) <

(
MX (λi)e−λi p̂∗

i + 1

MX (λi)e−λi p̂∗
i

)(
ai
p̄−i

)2

×
(
q̂i(p̂∗

i , p−i)
)2 (q̂i(p̂∗

i , p−i)
)−1

,

1 <

(
MX (λi)e−λi p̂∗

i + 1

MX (λi)e−λi p̂∗
i

)
,

hich always holds. Therefore, Theorem 11 yields that the solu-
ion p̂∗

i of (69) is a local minimum of Ci(pi, p−i). Moreover, it is
unique global minimum, since (69) has unique solution p̂∗

i , given
by (40). ■

Proof of Theorem 20. We observe that the set of all strategy
profiles, P = P1×P2×· · ·×Pn is convex, non-empty and compact
et, since P =

[
pL, pU

]
, i = 1, 2, . . . , n. Moreover, in the proof of
i i
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T

e

f
t

Proposition 14, we show that if we substitute (32)–(34) into (26),
we obtain

∂2Ci(pi, p−i)
∂p2i

= −b
(

ai
pU − p̄−i

)2

exp
{
−ai

pU − pi
pU − p̄−i

}
q−

i

×
(
MX (λi)e−λipi − 1

)
+ 2λib

ai
pU − p̄−i

exp
{
−ai

pU − pi
pU − p̄−i

}
q−

i

× MX (λi)e−λipi

+ λ2
i b
[
1 − exp

{
−ai

pU − pi
pU − p̄−i

}]
q−

i MX (λi)e−λipi

> 0 for all (pi, p−i) ∈ P .

herefore, the cost function Ci(pi, p−i) is strictly convex and con-
tinuously differentiable with respect to pi for all (pi, p−i) ∈ P and
very insurer i ∈ N . Thus, from Corollary 5.1 in Friesz (2010), a

Nash equilibrium exists. We next prove uniqueness in a similar
way as Dutang et al. (2013). Theorem 2 in Rosen (1965) states
that the Nash equilibrium is unique if, for all x, y ∈ P ,

n∑
i=1

ri
∂Ci(pi, p−i)

∂pi

⏐⏐⏐⏐
p=y

(xi−yi)+
n∑

i=1

ri
∂Ci(pi, p−i)

∂pi

⏐⏐⏐⏐
p=x

(yi−xi) < 0,

(70)

or some r ∈ Rn, with ri > 0, for all i = 1, 2, . . . , n. Considering
hat Ci(pi, p−i) is strictly convex in pi, we obtain

∂Ci(pi, p−i)
∂pi

⏐⏐⏐⏐
p=y

(xi − yi) < Ci(x) − Ci(y), (71)

and
∂Ci(pi, p−i)

∂pi

⏐⏐⏐⏐
p=x

(yi − xi) < Ci(y) − Ci(x). (72)

Thus, from (71) and (72), we get

∂Ci(pi, p−i)
∂pi

⏐⏐⏐⏐
p=y

(xi − yi) +
∂Ci(pi, p−i)

∂pi

⏐⏐⏐⏐
p=x

(yi − xi) < 0. (73)

Setting ri = 1, i = 1, 2, . . . , n, and summing (73) for all i =

1, 2, . . . , n, we obtain (70), verifying the uniqueness of the Nash
equilibrium. ■

Proof of Proposition 22. From (37), we observe that pi → +∞

yields q̂i(pi, p−i) → 0. Therefore, the strategy set of each insurer
should be a compact set.

Regarding (26), Ci(pi, p−i) is continuously differentiable with
respect to pi for all p = (pi, p−i) ∈ P and every i ∈ N . Using
Corollary 5.1 in Friesz (2010) for existence of Nash equilibrium,
we can determine under which conditions Ci(pi, p−i) is convex in
pi. Substituting (38) and (39) into (26), we obtain

∂2Ci(pi, p−i)
∂p2i

= (
ai
p̄−i

)2q̂i(pi, p−i)
(
MX (λi)e−λipi − 1

)
+ 2λi

ai
p̄−i

q̂i(pi, p−i)MX (λi)e−λipi

+ λ2
i q̂i(pi, p−i)MX (λi)e−λipi

=

[
(
ai
p̄−i

)2 + 2λi
ai
p̄−i

+ λ2
i

]
q̂i(pi, p−i)MX (λi)e−λipi
56
− (
ai
p̄−i

)2q̂i(pi, p−i)

=

(
ai
p̄−i

+ λi

)2

q̂i(pi, p−i)MX (λi)e−λipi

− (
ai
p̄−i

)2q̂i(pi, p−i).

In order for Ci(pi, p−i) to be convex in pi, it needs to hold that

pi < −
1
λi

log

[(
ai

ai + λip̄−i

)2 1
MX (λi)

]
. (74)

From (45) it follows that the equilibrium premium p̂∗

i always
satisfies (74). ■
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