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SPLITTING TYCHONOFF CUBES INTO HOMEOMORPHIC AND
HOMOGENEOUS PARTS

A. V. ARHANGEL’SKII AND J. VAN MILL

Abstract. Let τ be an infinite cardinal. We prove that the Tychonoff cube Iτ can be
split into two homeomorphic and homogeneous parts. If τ is uncountable, such a partition
cannot consist of spaces homeomorphic to topological groups.

1. Introduction

It is known that the real line R can be partitioned into two homeomorphic and ho-
mogeneous parts, [11]. Although it is not mentioned in [11], this was an answer to a
question posed by the late Maarten Maurice. Since then, various similar results were ob-
tained. Shelah [15] and, independently, van Engelen [7], showed that R can be partitioned
into two homemorphic rigid parts. Here a space is called rigid if the identity is its only
homeomorphism. See also [8] and [14] for other results in the same spirit.

It was asked by the second author of the present paper whether the closed unit interval
I = [0, 1] can be partitioned into two homogeneous and homeomorphic parts. The aim
of this paper is to answer this question in the affirmative. It immediately leads to the
following result:

Theorem 1.1. Let τ be any infinite cardinal. Then the Tychonoff cube Iτ can be partitioned
into two homogeneous and homeomorphic parts.

We do not know whether a similar result holds for the finite dimensional cubes In, where
1 < n < ω. Theorem 1.1 suggests the question whether the homeomorphic parts can
actually be chosen to be (homeomorphic to) a topological group. For uncountable τ , the
answer is in the negative.

Theorem 1.2. Let τ be any uncountable cardinal. Then for every subspace A of Iτ which
is (homeomorphic to) a topological group, we have that Iτ \A and A are not homeomorphic.

2. The closed unit interval can be conveniently split

We begin by reviewing the construction from van Mill [11]. Let Q be the set of rational
numbers in R.

Lemma 2.1. [11, 2.3] If X ⊆ R is such that X = X + Q, then X is homogeneous.
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In [11, §3], a subset A ⊆ R was constructed having the following properties:

(1) A is dense in R, and so is B = R \ A,
(2) Q ⊆ A and A+ Q = A (hence B + Q = B),
(3) the map φ : R→ R defined by φ(x) = x+π sends A onto B.

Let D = π+Q. Then D is dense in B, and φ(Q) = D. If s, t ∈ D and s < t, then
[s, t]A = [s, t] ∩ A is called a clopen arc in A. Moreover, if p, q ∈ Q and p < q, then
[p, q]B = [p, q]∩B is called a clopen arc in B. Observe that clopen arcs in A respectively B
are clopen subsets of A respectively B. If C = [s, t]A is a clopen arc in A, then λ(C) = t−s
denotes its length. Observe that λ(C) ∈ Q. If C is a pairwise disjoint family of clopen
arcs in A, then λ(

⋃
C ) =

∑
C∈C λ(C). Similarly for B.

We use some ideas in van Mill [12].

Lemma 2.2. If C0 and C1 are clopen arcs in A such that λ(C0) = λ(C1), then C0 and C1

are homeomorphic. Similarly for B. Moreover, if C is a clopen arc in A and D is a clopen
arc in B such that λ(C) = λ(D), then C and D are homeomorphic.

Proof. Let C0 = [r0, t0]A and C1 = [r1, t1]A. Define f : C0 → C1 by f(t) = (t−r0) + r1.
Since r1−r0 ∈ Q and A + Q = A, it easily follows that f is a homeomorphism. Similarly
for B.

Assume that C = [r, t]A and D = [p1, q1]B. Let r = π + p0 and t = π + q0. Then φ−1

sends C homeomorphically onto the clopen arc [p0, q0]B of B. By the above, [p0, q0]B and
[p1, q1]B are homeomorphic, hence we are done. �

Lemma 2.3. Let C be a pairwise disjoint collection of clopen arcs in A such that ε =
λ(
⋃

C ) ∈ Q. Then
⋃

C is homeomorphic to the clopen arc [π, π+ ε]A. Similarly, let D be
a pairwise disjoint collection of clopen arcs in D such that δ = λ(

⋃
D) ∈ Q, then

⋃
D is

homeomorphic to the clopen arc [0, δ]B.

Proof. We assume that C is infinite. The proof when C is finite is entirely similar. Assume
that

C = {[π+r0, π+t0]A, [π+r1, π+t1]A, . . . , [π+rn, π+tn]A, . . . }.
By Lemma 2.2,

[π+r0, π+t0]A ≈ [π, π+(t0 − r0)]A,
[π+r1, π+t1]A ≈ [π+(t0 − r0), π+(t0 − r0)+(t1 − r1)]A,

...

[π+rn, π+tn]A ≈ [π+
∑
j≤n−1

(tj − rj), π+
∑
j≤n

(tj − rj)]A,

...

Since all sets involved are clopen, the union of these homeomorphisms gives us that⋃
C ≈ [π, π +

∑
j<ω

(tj − rj)]A = [π, π + ε]A.
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The proof for B is entirely similar. �

Corollary 2.4. Let C and D be pairwise disjoint collections of clopen arcs in A respectively
B such that λ(

⋃
C ) = λ(

⋃
D) ∈ Q. Then

⋃
C and

⋃
D are homeomorphic.

Proof. Let γ = λ(
⋃

C ) = λ(
⋃

D). By Lemma 2.3,⋃
C ≈ [π, π + λ]A,

⋃
D ≈ [0, λ]B.

Hence we are done by Lemma 2.2. �

In the proof of the next result, we use the well-known result from Calculus, that for
every t ∈ I there is a subset A of N such that

∑
n∈A 2−n = t. For more on this topic, see

Ferdinands [9].

Lemma 2.5. Let q ∈ Q be such that 0 < q < 1. Then {0} ∪ [0, q]B (with the subspace
topology it inherits from R) is homeomorphic to the clopen arc [0, q]B.

Proof. Put q0 = q. For every n ≥ 1, put qn = 2−nq. Moreover, put t0 = q and for n ≥ 1,
tn = tn−1 − qn.

Let x ∈ B ∩ (2, 3). Pick r ∈ Q such that r < x < r + q. Let F ⊆ N be such that∑
n∈F qn = x− r. Observe that F has to be infinite since x is irrational. Put G = N \ F .

Then
∑

n∈G qn = r + q − x. It also follows that G is infinite.
Put r0 = r. There clearly is a sequence (rn)n≥1 of rational numbers in (r, x) such that

(rn)n ↗ x while moreover for every n ≥ 1 we have

rn − rn−1 = qµ(n),

where µ(n) is the n-the element of F (ordered as a subset of N). Put s0 = r + q. There
similarly is a sequence (sn)n≥1 of rational numbers in (x, r + q) such that (sn)n ↘ x while
moreover for every n ≥ 1 we have

sn−1 − sn = qν(n),

where ν(n) is the n-the element of G (ordered as a subset of N).
Let µ(n) ∈ A. By Lemma 2.2 we may pick a homeomorphism

gn : [tµ(n), tµ(n)−1]B → [rn−1, rn]B.

Similarly, if ν(n) ∈ B, we may pick a homeomorphism

hn : [tν(n), tν(n)−1]B → [sn, sn−1]B.

Since all sets involved are clopen, the function f : {0} ∪ [0, q]B → [r, r + q]B defined by

f(x) =


gn(x) (tµ(n) < x < tµ(n)−1),

hn(x) (tν(n) < x < tν(n)−1),

x (t = 0),

is a homeomorphism. Hence we are done by Lemma 2.2. �

The following can be proved with the same method.
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Lemma 2.6. Let q ∈ Q be such that 0 < q < 1. Then {1} ∪ [1−q, 1]B (with the subspace
topology it inherits from R) is homeomorphic to the clopen arc [0, q]B.

We now come to the main result in this section.

Theorem 2.7. The closed unit interval I = [0, 1] can be partitioned into two homogeneous
and homeomorphic sets.

Proof. Put E = (0, 1)∩A and F = [0, 1]B = (0, 1)∩B, respectively. Observe that E and F
are homogeneous being both open subsets of zero-dimensional homogeneous spaces. Also,
both E and F are the union of a pairwise disjoint family clopen arcs in A respectively B
and have the same rational ‘length’. Hence E ≈ F by Corollary 2.4.

Let us now consider the space F , and let 0 < q < 1/2 be rational. Then by Lem-
mas 2.5, 2.6 and 2.2 we have that {0} ∪ [0, q]B ≈ [0, q]B and {1} ∪ [1, 1−q]B ≈ [q, 2q]B.
Moreover, [q, 1−q]B is homeomorphic to [2q, 1]B, again by Lemma 2.2. Hence we conclude
that {0} ∪ F ∪ {1} is homeomorphic to F .

The partition {E,F ∪ {0, 1}} of I is consequently the one we are after. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Keller’s Theorem [10] (see also [13]), Iω is homogeneous. This
implies that Iτ ≈ I × Iτ is homogeneous for every infinite cardinal τ . Hence we are done
by Theorem 2.7. �

3. Topological groups

We show here that Theorem 1.1 for uncountable cardinals cannot be improved to the
case of a splitting into homeomorphic topological groups. For information on topological
groups, see Arhangel’skii and Tkachenko [4].

The following result is well-known, its proof is included for completeness sake.

Lemma 3.1. Let G be a topological group. If S is a Gδ-subset of G containing the neutral
element e of G, then there is a closed subgroup N of G such that

(1) N ⊆ S,
(2) N is a Gδ-subset of G.

Proof. Write S as
⋂
n<ω Un, where each Un is open in G. Recursively, pick open symmetric

neighborhoods Vn of e such that V 2
n+1 ⊆ Vn ⊆ Un, and let N =

⋂
n<ω Vn. �

Theorem 3.2. If G is a dense subset of Iτ , where τ is uncountable, such that Iτ \ G is
Lindelöf, then G is not a topological group.

Proof. Striving for a contradiction, assume that G is a topological group.
We may assume by homogeneity that the element of Iτ with constant coordinates 0 is

the neutral element e of G. Since Iτ \G is Lindelöf, there is a compact Gδ-subset S0 of Iτ
such that e ∈ S0 ⊆ G.

There is a countable subset A0 of τ such that

S1 = {x ∈ Iτ : (∀α ∈ A0)(xα = 0)} ⊆ S0.
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By Lemma 3.1, we may pick a closed subgroup N1 of G which is a Gδ-subset of G such
that N1 ⊆ S1. Clearly, N1 is a Gδ-subset of S1 and hence is a compact Gδ-subset of Iτ .
There is a countable subset A1 of τ such that A0 ⊆ A1 while moreover

S2 = {x ∈ Iτ : (∀α ∈ A1)(xα = 0)} ⊆ N1.

Continuing in this way, it is easy to construct by recursion countable subsets An of τ and
closed subgroups Nn of G such that for every n,

(1) An ⊆ An+1,
(2) Sn+1 = (∀α ∈ An+1)(xα = 0)} ⊆ Nn ⊆ Sn.

Put A =
⋃
n<ω An. Then since τ is uncountable,⋂

n<ω

Nn = {x ∈ Iτ : (∀α ∈ A)(xα = 0)} ≈ Iτ .

Hence Iτ is a topological group, which contradicts the Brouwer Fixed-Point Theorem. �

We are now in the position to present a proof of Theorem 1.2. We use a factorization
result of Arhangel’skii [1], the key feature of which is that it concerns continuous func-
tions on dense subspaces of products of separable metrizable spaces [4, Corollary 1.7.8
(see also Theorem 1.7.7)]. Arhangel’skii’s result is also stated and applied in his book [2,
Lemma 0.2.3]. It implies that every continuous realvalued function on a dense subset of a
Tychonoff cube depends on countably many coordinates. Therefore, if A is a dense pseudo-
compact subset of some Tychonoff cube Iτ , then Iτ is the Čech-Stone-compactification βA
of A. Indeed, for every continuous function f : A→ R there is by Corollary 1.7.8 in [4], a
countable subset L of τ and a continuous function g : πL(A)→ R, where πL : Iτ → IL is the
projection, such that g(πL(a)) = f(a) for all a ∈ A. However, since A is pseudocompact,
πL(A) = IL, which evidently implies that f can be extended over Iτ .

Proof of Theorem 1.2. Assume the contrary. First observe that A is nowhere locally com-
pact. Indeed, if A would be somewhere locally compact, it would be locally compact at all
points by homogeneity and so its complement would be compact implying that A would
be compact; this is clearly impossible. This also gives us that A is dense. For if A would
not be dense, Iτ \ A would be somewhere locally compact, and so A would be somewhere
locally compact.

The Dichotomy Theorem from Arhangel’skii [3] implies that B = Iτ \A is pseudocompact
or Lindelöf. But it cannot be Lindelöf by Theorem 3.2. Hence B is pseudocompact and so
A is pseudocompact. Since A is dense in Iτ , it follows by the above that Iτ = βA.

We complete the proof now in two ways. The first proof is as follows. Since A is a pseu-
docompact topological group, βA is a topological group by the Comfort-Ross theorem [6].
But Iτ is not a topological group, for example because it has the Fixed-Point Property by
Brouwer’s Theorem.

The second proof is more direct and avoids the use of the complicated Comfort-Ross
Theorem. Indeed, we first claim that A does not contain any nonempty compact Gδ-
subset. For if it would contain such a compact Gδ-subset S, then S has a countable base of
open neighbourhoods in A, since the space A is pseudocompact. Since A is a topological
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group, it follows from this that A is paracompact [4, Corollary 4.3.21](see also page 314
there).

Since A is also pseudocompact, it consequently follows that A is compact, - a contradic-
tion.

Fix a homeomorphism f of A onto B. Clearly, f can be extended to a homeomorphism
h of Iτ onto Iτ . Since h(A) = B and h(B) = A, it follows that h has no fixed-points. This
is a contradiction with the Brouwer Fixed-Point Theorem. �

In the zero-dimensional case, the case of Cantor cubes instead of Tychonoff cubes, The-
orem 1.2 does not hold. Indeed, let κ be an infinite cardinal, and let p be a free ultrafilter
on κ. The set

A = {x ∈ {0, 1}τ : {α : xα = 1} ∈ p}

is a subgroup of {0, 1}τ of index 2. Hence A as well as its complement are homeomorphic
to topological groups.

We do not know whether every compact topological group can be split into two homeo-
morphic and homogeneous parts.
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Topology Appl. 225 (2017), 27–33.

[6] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups,
Pac. J. Math. 16 (1966), 483–496.

[7] F. van Engelen, A partition of R into two homeomorphic rigid parts, Top. Appl. 17 (1984), 275–285.
[8] F. van Engelen and J. van Mill, Decompositions of rigid spaces, Proc. Amer. Math. Soc. 89 (1983),

103–108.
[9] R. J. Ferdinands, Selective sums of an infinite series, Math. Mag. 88 (2015), 179–185.

[10] O. H. Keller, Die Homoiomorphie der kompakten konvexen Mengen in Hilbertschen Raum, Math.
Ann. 105 (1931), 748–758.

[11] J. van Mill, Homogeneous subsets of the real line, Compositio Math. 46 (1982), 3–13.
[12] J. van Mill, Sierpiński’s Technique and subsets of R, Top. Appl. 44 (1992), 241–261.
[13] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Publishing Co., Am-

sterdam, 2001.
[14] J. van Mill and E. Wattel, Partitioning spaces into homeomorphic rigid parts, Coll. Math. 50 (1985),

95–102.
[15] S. Shelah, Decomposing topological spaces into two rigid homeomorphic subspaces, Israel J. Math. 63

(1988), 183–211.



SPLITTING TYCHONOFF CUBES INTO HOMEOMORPHIC AND HOMOGENEOUS PARTS 7

MGU and MPGU, Moscow, Russia
Email address: arhangel.alex@gmail.com

KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, P.O.
Box 94248, 1090 GE Amsterdam, The Netherlands

Email address: j.vanMill@uva.nl
URL: http://staff.fnwi.uva.nl/j.vanmill/


