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INVOLUTIONS OF `2 AND s WITH UNIQUE FIXED POINTS

JAN VAN MILL AND JAMES WEST

Abstract. Let σ`2 and σR∞ be the linear involutions of `2 and R∞, respec-
tively, given by the formula x → −x. We prove that although `2 and R∞ are
homeomorphic [1], σ`2 is not topologically conjugate to σR∞ . We proceed to
examine the implications of this and give characterizations of the involutions
that are conjugate to σ`2 and to σR∞ . We show that the linear involution
x → −x of a separable, infinite-dimensional Fréchet space E is topologically
conjugate to σ`2 if and only if E contains an infinite-dimensional Banach space
and otherwise is linearly conjugate to σR∞ .

1. Introduction

In 1966, R.D. Anderson conjectured that all involutions of the Hilbert cubeQ =
Πn≥1[−1, 1]n with exactly one fixed-point are topologically conjugate to the linear
map x 7→ −x and suggested it to the second author as a thesis problem. This
has come to be known as The Anderson Conjecture, which we denote by AC(Q).
See [26], [4] and [25] for more information about the validity of the conjecture.
In [8] it is shown that the analogous conjecture for `2, AC(`2) implies AC(Q) and
asked whether AC(Q) implies AC(`2). In this paper, we first prove that AC(`2) is
false and then study those involutions of spaces E homeomorphic to `2 that have
unique fixed-points. This includes by the Anderson-Kadec Theorem ([5, Chapter
VI, §5] and [1]) all separable, infinite-dimensional, completely metrizable, locally
convex real vector spaces, which term we shorten to Fréchet spaces. (These
spaces, E, are characterized topologically as the complete, separable metric AR’s
such that any map f : N × Q → E may be approximated arbitrarily closely by
embeddings [24].) We use two standard models, `2, and the countable product
of lines, R∞, more conveniently represented topologically as s = Πn≥1(−1, 1)n. If
X is a vector space, s, or Q, we denote the involution x 7→ −x by σX . Note that
x 7→ x

1+|x| applied coordinatewise conjugates σR∞ to σs.

In Section 2, we state our results, and in Section 3 we specialize to the case
of linear involutions with a single fixed-point and show that AC(`2) is false.
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2 JAN VAN MILL AND JAMES WEST

In particular, we give two different proofs of the following, illustrating different
phenomena:

Theorem 1.1. σ`2 is not topologically conjugate to σs.

Thus, although `2 is homeomorphic to s and therefore supports involutions
conjugate to σs, the linear involutions σ`2 , and σs contain enough information
about the linear structure to be topologically distinct.

In Section 4, we give a topological characterization of those involutions on
spaces homeomorphic to Fréchet spaces that are topologically conjugate to σ`2
and show that the linear involution σX on a Fréchet space X is topologically
conjugate either to σ`2 or to σs:

Theorem 1.2. Let X be a separable, infinite-dimensional Fréchet space. If X
contains an infinite-dimensional normable linear subspace, then σX is topologi-
cally conjugate to σ`2; otherwise, σX is linearly conjugate to σR∞, hence topolog-
ically conjugate to σs.

Section 5 is devoted to technical results needed to establish our characterization
of the involutions that are conjugate to σs. In Section 6, we prove our main
characterization, Theorem 2.16, of σs and give in Theorem 2.18, a collection of
equivalent conditions.

We mostly use standard terminology, for undefined notions see [9], [5] and [21].
Unless otherwise specified, neighborhoods are open sets. The symbol “≈” will
mean “is homeomorphic to”, and “A(N)R” stands for “absolute (neighborhood)
retract for metric spaces”.

2. Involutions with unique fixed-points: statement of main results

Definition 2.1. An involution of a space is based-free provided that it has a
unique fixed-point.

Definition 2.2. A based-free involution of `2, s or Q is of type A, B, or C if it
is topologically conjugate to the linear involution σ`2 , σs, or σQ, respectively.

Definition 2.3. For a map φ : X → [0, 1], the variable products, X ×φ `2, and
X ×φ s, are defined as follows:

(1) X×φ `2 = {(x, y)|(φ(x) > 0) & (‖ y ‖< φ(x))}∪ (φ−1(0)×{0})} ⊆ X×`2,
(2) X×φs = {(x, y) ∈ X×s|(φ(x) > 0) & (y ∈ Πn≥1(−φ(x), φ(x))}∪(φ−1(0)×
{0}) ⊆ X × s, and

We shall use φ generically to denote a map to [0,1] with φ−1(0) a point, fre-
quently “∗”, that is determined by context.

Henceforth, we let α be a based-free involution of E, where E ≈ `2.

Definition 2.4. α is of compact type provided that there is a compact space
X̄ with a based-free involution β and fixed-point ∗ such that α is conjugate to
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β̂ = β ×φ id`2 : X̄ ×φ `2 → X̄ ×φ `2, where φ : X̄ → [0, 1] is a map with
φ−1(0) = {∗}.

Definition 2.5. α is isovariantly movable if there is a basis Vn of neighborhoods
of the fixed-point, ∗, with the property that for each n there is an m ≥ n such
that Vm deforms isovariantly into Vj for all j, with the deformation occurring
in Vn.

Note that by elementary covering space theory, the analogous property for the
orbit space E/α is equivalent, where we require that Vm \{∗} deform in Vn \{∗}.

We re-state Theorem 1.1.

Theorem 2.6 (Theorem 1.1). Involutions of type A and type B are not topolog-
ically conjugate.

Theorem 2.7. α is of type A if and only if the fixed-point ∗ has a basis V1 ⊇
V̄2 ⊃ V2 ⊇ V̄3 ⊇ · · · ⊇ Vn ⊇ V̄n+1 ⊇ . . . of invariant neighborhoods such that
for infinitely many n, Vn is contractible, and for infinitely many n, E \ V n is
contractible.

Corollary 2.8 (Characterization of involutions of type A). A based-free involu-
tion of a space E homeomorphic to `2 is of type A if and only if the fixed- point
has a basis of invariant open neighborhoods, Vn that have bicollared, contractible
boundaries.

(Here, a bicollar of a subset A of a space S is an open embedding c : A×(−1, 1)→
S with c(a, 0) = a for each a ∈ A.)

Wong [26] proved that a based-free involution on Q is of type C if and only of
the unique fixed-point has a neighborhood base of contractible, open, invariant
sets. Hence Theorem 2.7 and and Corollary 2.8 are analogs of Wong’s result. The
extra conditions about the contractibility of the sets E \ V n and the contractible
boundaries are essential, as is demonstrated by Theorem 1.1. Corollary 2.8 allows
us to show that the linear involution σX of a Fréchet space is either of type A or
of type B:

Theorem 2.9 (Theorem 1.2). Let X be a Fréchet space. If X contains an
infinite-dimensional normable linear subspace, then σX is topologically conjugate
to σ`2, otherwise, σX is linearly conjugate to σR∞, hence topologically conjugate
to σs.

Definition 2.10. Let T = TRP∞ =
⋃
n≥1RPn×[n,∞) be the telescope of RP∞,

and let Tn =
⋃
m≥nRPm×[m,∞). Define T̄ = T ∪ {∗}, where {Vn = int(Tn) ∪

{∗}}n is a basis for ∗, and let T ? = (T × [0,∞)) ∪ {?}, where {Wn = (T ×
(n,∞)) ∪ {?}}n is a basis for ?.

Remark 2.11. Both T̄ and T ? are AR’s by Lemma 5.2 because the point at ∞ is
a strong deformation retract.
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Corollary 2.12. α is an involution of type A if and only if its orbit space E/α
is homeomorphic to T ? ×φ `2.
Theorem 2.13. Involutions of type B are of compact type.

Theorem 2.14. Let α be of compact type. Then α is of type B if and only if its
orbit space E/α is an AR.

Corollary 2.15. The following are equivalent:

(1) The Anderson Conjecture for Q.
(2) α is of type B if and only if it is of compact type.

Theorem 2.16 (Characterization of involutions of type B). Let α be a based-free
involution of a space, E, homeomorphic to `2. Then α is of type B if and only if
it is of compact type and is isovariantly movable.

Theorem 2.17. If α is of compact type, then

(1) E/α is LCn for all n,
(2) πn(E/α) = 0 for all n,
(3) the singular homology groups Hn(E/α) = 0 for all n,
(4) E/α is an absolute extensor for finite-dimensional metric spaces.

Collecting these results and including an observation of R. Geoghegan and
H. Hastings (remarked independently to the second author in 1979 following the
publication of [25]), we have the following summary.

Theorem 2.18. Let α be a based-free involution of E of compact type, where E
is homeomorphic to `2. Then E/α is an absolute extensor for finite-dimensional
metric spaces and the following are equivalent:

(1) α is of type B;
(2) E/α is homeomorphic to T̄ ×φ `2;
(3) α is isovariantly movable;
(4) E/α is an AR;
(5) E/α is homotopy equivalent to a CW-complex;
(6) E/α is contractible.

We let I and J both denote [0, 1]. Moreover, Sn for n ≥ 0 denotes the n-sphere.

3. Two proofs of Theorem 1.1

We first collect in the following Lemma several well-known results that we need
to refer to.

Lemma 3.1. The following are absolute retracts:

`2, s, `2 \ {0}, s \ {0}, Q,Bε(`
2), Sε(`

2), and Cε(`
2).

(Here, the last three are the closed ball in `2 of radius ε > 0, the sphere in `2

of radius ε > 0, and the complement in `2 of the open ball of radius ε > 0,
respectively.) All except Q are homeomorphic.



INVOLUTIONS 5

Proof. Both `2 and s are AR’s by [11] and homeomorphic by [1]. Moreover,
Bε is homeomorphic to `2 by [5, Chapter VI, §2]. Also, `2 \ {pt} and `2 are
homeomorphic by [18]. Thus, Cε ≈ Bε \ {0} ≈ `2. Now, `2 \ {0} ≈ Sε × (−1.1)
and Sε × (−1, 1) ≈ Sε, e.g., by (x, t) → (te1 +

√
1− t2f(x)), where e1 is the

standard first basis vector of `2 and f(Σaiei) = Σaiei+1 is the shift. Lastly, Q is
a product of AR’s. �

First Disproof of AC(`2). By Lemma 3.1, `2 \{0} and s\{0} are contractible, so
their orbit spaces are homotopy equivalent to RP∞. Again by Lemma 3.1, the
Cε’s are contractible. Therefore the Cε/σ`2 ’s are homotopy equivalent to RP∞

and include into (`2 \ {0})/σ`2 by homotopy equivalences. In s, 0 has a basis of
invariant open sets Vn = Πn

i=1(− 1
n
, 1
n
)i × Πi>nRi, and s \ Vn is homeomorphic to

(Sn−1 × [1,∞)) × Πi>nRi, so (s \ Vn)/σs is homotopy equivalent to RPn−1 and
does not include into (s \ {0})/σs as a homotopy equivalence. Therefore, there
is no homeomorphism h of `2/σ`2 onto s/σs carrying 0 to 0, since the inclusion
h(Cε/σ`2) → (s \ {0})/σs would factor through (s \ Vn)/σs for sufficiently large
n. As RP∞ has non vanishing homology in infinitely many dimensions and RP n

does not, there is no equivariant homeomorphism from `2 to s. �

For every n ≥ 1, let σn be the antipodal map of Sn. Let Y be
∑

n S
n, the

topological sum (i.e., discrete union) of the Sn, and let σ : Y → Y be defined by
σ|Sn = σn, for every n ≥ 1.

Lemma 3.2 (van Douwen [10, §3]). If aY is a compactification of Y such that σ
can be extended to a continuous f : aY → aY , then there exists y ∈ aY \ Y such
that f(y) = y.

Proof. For the convenience of the reader, we repeat van Douwen’s proof. Assume
that f has no fixed point. Then there is a finite closed cover F of aY such
that f(F ) ∩ F = ∅ for each F ∈ F . Pick m so large that |F | − 2 < m. Then
G = {F ∩ Sm|F ∈ F} is a closed cover of Sm no element of which contains an
antipodal pair. This implies by the Lusternik-Schirelmann Theorem, [12, Chapter
16, Corollary 6.2(3)]), that m+2 ≤ |G | ≤ |F |, which is a contradiction. Hence f
has a fixed-point y which obviously belongs to aY \ Y . �

Corollary 3.3. In Lemma 3.2, we may replace Y by Y ∗ = Y ∪ {∗}, where ∗ is
an isolated point and σ(∗) = ∗.

Proof. There is a finite closed cover F of aY ∗ such that precisely one member
F of F contains ∗ and such that F ∩ Y = ∅. The rest of the argument is the
same. �

The second proof, from a different, and revealing, perspective, is this:

Second Disproof of AC(`2). For each n ≥ 1, define in : Sn → `2 by

in(x) = (nx1, . . . , nxn+1, 0, 0, · · · ).
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Observe that in is an embedding, and that σn agrees with the map σ`2 on in(Sn).
Moreover, for each x ∈ Sn we have ‖in(x)‖ = n. Hence {in(Sn)|n ≥ 1} is a
discrete collection of n-spheres in `2, embedded in such a way that each σn agrees
with the map σ`2 . This induces an equivariant embedding of Y ∗ in `2. Hence
by Corollary 3.3, any equivariant compactification of `2 has a fixed point in its
remainder. However, Q is an equivariant compactification of s having no fixed
point of σQ in its remainder. This obviously does the job. �

4. Involutions of type A

Proof of Theorem 2.7. By Lemma 3.1, only the “if” direction needs proof.
Since the Vi’s are a basis for ∗ and the spheres of radius ε in `2 are contractible
by Lemma 3.1, we may select Vi’s so that

(1) V1 = E,
(2) V n+1 ⊆ Vn,
(3) V2n+1 is contractible, for n ≥ 0,
(4) E \ V 2n is contractible, for n ≥ 1.
(5) for each n there is a not necessarily invariant neighborhood On of ∗ con-

taining V̄2n and with Ōn ⊆ V2n−1 that is contractible with boundary ∂On

a contractible, bicollared `2-submanifold of E.

For m < n, let A(m,n) = V2m+1 ∩ (E \ V 2n). By property (5), ∂On is con-
tractible, hence an AR, so V2m+1 retracts to V2m+1 \ On and E \ V2n retracts
to Ōn \ V2n. These latter two sets are therefore contractible, so by [15, Corol-
lary 0.20], there is a strong deformation retraction of A(m,n) to ∂On. Hence,
A(m,n) is contractible and A(m,n)/α is homotopy equivalent to RP∞. We wish
to find a bicollared submanifold of A(m,n)/α that is also homotopy equivalent
to RP∞ and separates the boundary of V2n/α from the boundary of V2m−1 in
E/α. We do this first by finding a separating submanifold and then improving
it by handle exchanges until it is homotopy equivalent to RP∞. Note that ∂On

is a closed set in E that separates the boundaries of V2n+1 and V2n. So, ∂On/α
separates ∂V2m+1/α from ∂V2n/α, but is not necessarily a submanifold. Choose
a triangulation h : K × `2 → E \ {0}/α of E \ {0}/α where K is a locally com-
pact simplicial complex with the property that no simplex meeting the closure of
κ(h−1(∂On)/α) intersects the closure of κ(h−1(V̄2n/α)) or of κ(h−1(E\V2m+1/α)),
where κ denotes projection to K, [16].

We identify A(m,n) with K× `2. Let S be the union of all simplices of K that
meet the closure of κ(V2n/α). Choose a (closed) regular neighborhood N of S.
Then ∂N is bicollared in K, so L = ∂N × `2 is an `2-submanifold [24] of A(m,n)
that is connected, bicollared, and separates ∂V2n from V2m+1 in E \ {0}/α. Let
M = (N × `2) ∩ A(n− 1, n) and P = A(n− 1, n) \ intM .

[Now we can trade handles in an analogous way to the way we will do in in the
proof of (2) of Lemma 5.4. Here, however, there are three differences compared
to what we will be dealing with in Lemma 5.4. The first is that we already
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have that L is connected and that π1(L) maps onto π1(A(m,n)/α). (Otherwise,

L̃ = ∂̃N × `2 would be disconnected, which would force E to contain an essential
loop.) The second is that we have to trade handles in an induction on dimension
to eliminate all higher homotopy groups. The third is that in Lemma 5.4 we
will be working in the compact case, but here the manifolds are nowhere locally
compact, so the homotopy groups may not be finitely generated. On the other
hand, the `2-manifolds are homotopy equivalent to locally compact simplicial
complexes, so the homotopy groups will be countable. The fact that `2 ≈ `2×S,
where S is the intersection with the closed unit ball of `2 of the axes of the
standard basis [22] allows us plenty of room to perform these exchanges.]

Let {gi}i>0 be generators of the kernel G of the homomorphism of π1(L) to
π1(P ) induced by the inclusion of L into P . Choose a discrete set of embeddings
g′i of S1 freely representing the gi’s (i.e., freely homotopic to representatives of
the gi’s) in L × {1} ⊂ L × I, and select a discrete collection of embeddings
fi : D2 → P × {1} extending gi such that f−1i (L) = S1. For each i, choose an
embedding ĝi : S1×`2×[−1, 1]×I→ L×I onto a closed neighborhood of the image
of g′i in L×I such that ĝi(s, 0, 0, 0) = g′i(s) and ĝi(S

1×`2×[−1, 1]×{0}) = ĝ′i(S
1×

`2×[−1, 1]×[0, 1]∩L×{1}. Extend ĝ′i to an embedding f ′i : D2×[−1, 1]×I→ P×I
with (f ′i)

−1(P × {1}) = D2 × `2 × [−1, 1] × {0} and (f ′i)
−1(L) = ĝ−1i (L × I).

Choose the ĝi’s and the f ′i ’s so that their images form a discrete collection of
subsets of A(n − 1, n)/α. Now transfer the sets f ′i(D

2 × `2 × (−1, 1) × [0, 1))
from P × I to M × I, obtaining P ′ and M ′. The boundary L′ between P ′ and
M ′ is (L× I \

⋃
i ĝ
′
i(S

1 × (−1, 1)× [0, 1))) ∪ (
⋃
i f
′
i(D

2 × `2 × {−1, 1} × I ∪D2 ×
`2 × [−1, 1] × {1}). Now there are strong deformation retractions of L × I onto
L× I \

⋃
i ĝi(S

1 × `2 × (−1, 1)× [0, 1)) and P × I onto P ′, and G is the kernel of
the homomorphism π1(L × I) → π1(L × I \

⋃
i ĝi(S

1 × `2 × (−1, 1) × [0, 1))) →
π1(L

′). Moreover, this homomorphism is surjective. Hence, π1(L
′) ∼= π1(L)/G

and π1(L
′) → π1(P

′) is injective. Performing the analogous procedure on L′

and M ′ to eliminate the kernel of π1(L
′) → π1(M

′), we obtain M1, L1, and
P1. Then π1(L1) injects into π1(M1) and π1(P1). Consider the homomorphism
π1(M1) → π1(A(n − 1, n)/α ∼= Z/2Z. If g is in the kernel, then g is represented
by an embedded loop ω ⊆M1 that bounds an embedded disc in A(n−1, n). This
disc may be assumed to intersect L1 in a finite collection of circles. An innermost
(in the disc) such circle bounds a disc in either M1 or P1. As the inclusions of L1

into M1 and P1 induce injections on π1, this circle bounds a disc in L1 which can
be pushed into the interior of P1 or M1, reducing the number of the circles, so
an induction yields an embedded disc in M1 bounding ω. Hence, the inclusions
of M1 and of P1 into A(n − 1, n)/α induce injections on π1. It follows that the
fundamental groups of L1,M1, and P1 are all Z/2Z.

We now observe that if we denote the pre-images of M1, L1, and P1 under the
orbit map p : E → E/α, by M̃1, etc., the restrictions of q are covering projections
and thus map π2(M̃1) isomorphically to π2(M1), etc. Since π1(L̃1), π1(M̃1), and
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π1(P̃1) are all trivial, the Hurewicz Isomorphism Theorem says that they are
isomorphic to the homology groups H2(L̃1), H2(M̃1), and H2(P̃1), respectively.
Applying the Mayer-Vietoris Theorem in A(n−1, n) = M̃1∪ P̃1, we obtain a long
exact sequence in singular homology with integer coefficients

· · · → H3(A(n− 1, n))→ H2(L̃1)→ H2(M̃1)⊕H2(P̃1)→ H1(A(n− 1, n))→ . . .

As A(n− 1, n) is contractible, its homology vanishes, and we find that H2(L̃1) ∼=
H2(M̃1) ⊕ H2(P̃1), so π2(L1) ∼= π2(M1) ⊕ π2(P1). We are now in a position to
apply a construction analogous to the one we used for the fundamental group to
replace L1,M1, and P1 by L2,M2, and P2 where we have eliminated the kernels
of the inclusion homomorphisms π2(L1) → π2(P1) and π2(L1) → π2(M1) while
preserving their fundamental groups. Since the kernel of the first homomorphism
is the summand of π2(L1) isomorphic to π2(M1) and that of the second is the
summand isomorphic to π2(P1), π2(L2) = 0. Thus, we have also arranged that
π2(M2) = π2(P2) = 0. The general step in the induction proceeds exactly in

this manner, and the final result is the desired submanifold L̂n that separates
A(n − 1, n)/α into two `2 manifolds, M̂n and P̂N , each homotopy equivalent to
RP∞.

We now consider A(n − 1, n + 1)/α. Denote the closure of the component

of A(n − 1, n + 1)/α \ (L̂n ∪ L̂n+1) containing M̂n+1 by Yn. By [15, Corollary

0.20] , there are strong deformation retractions of M̂n+1 to L̂n+1 and of P̂n to

L̂n, so A(n − 1, n + 1)/α retracts to Yn, which is therefore homotopy equivalent

to RP∞ and has boundary components the Z-sets L̂n and Ln+1. In `2 let Wn

denote the annulus B 1
n
\ intB 1

n+1
. Then Wn is homotopy equivalent to S 1

n
, which

is contractible by Lemma 3.1. Thus Wn/σ`2 and S 1
n
/σ`2 are homeomorphic to Yn

and L̂n. Choose homeomorphisms ζn : Yn → Wn/σ`2 . Using Z-Set Unknotting in
`2-manifolds (see [2] and [3]), we may adjust the ζn’s so that

(1) ζn(L̂n) = Sn/σ`2 ,

(2) ζn(L̂n+1) = Sn+1/σ`2 , and
(3) ζn+1|L̂n+1

= ζn|Ln+1 .

For n ≥ 1, the ζn’s combine to give a homeomorphism ζ : E \ {0}/α \ intP̂1 →
B \ {0}/σ`2 , where B is the closed unit ball of `2. Let ζ0 : P̂0 → A`2 \ intB/σ`2
which extends ζ1|L̂0

. This extends ζ to a homeomorphism of E \ {0}/α onto

`2 \ {0}/σ`2 which further extends to a homeomorphism of E/α to `2/σ`2 . Now

ζ lifts to a homeomorphism ζ̃ : E → `2 which conjugates α to σ`2 . �

Proof of Corollary 2.8. By the van Kampen Theorem, the fundamental groups
of V̄n and E \Vn are trivial, and the Mayer-Vietoris Theorem shows that the sin-
gular homology groups of V n and E \ Vn are zero. Observe that V̄n and E \ Vn
are ANR’s (actually, `2-manifolds), being the union of two relatively open ANR’s,
hence they are homotopy equivalent to CW-complexes [17]. By a theorem of
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Whitehead [15, Chapter IV, Corollary 4.33], they are contractible. Since ∂Vn is
a Z-set in V n and in E \ Vn, Vn and E \ V n are contractible. By Theorem 3.7, α
is of Type A.

�

The following lemma is close to results in Bessaga, Pe lczyński and Rolewicz [6,
Theorems 8 and 9]. We are indebted to Witek Marciszewski for providing this
reference.

Lemma 4.1. Let X be a separable, infinite-dimensional Fréchet space. If X
contains no infinite-dimensional normable linear subspace, then X is linearly
homeomorphic to R∞.

Proof. Let U1 ⊇ U2 ⊇ . . . be a basis at 0 of open, symmetric, convex sets. Set
X0 = X, and for each n, let Xn = {x ∈ Un|tx ∈ Un for all t > 0}. Then Xn

is a closed linear subspace and Xn ⊇ Xn+1. Denote by pn the quotient map
X → X/Xn. Then pn(x) = pm(y) for all n only if x = y. Now, X/Xn is finite
dimensional because if A ⊆ X/Xn is linearly independent and pn(ba) = a for
each a ∈ A, then B = {b(a)|a ∈ A} is linearly independent and its linear span
intersects Un in a bounded, convex, relatively open set, which is consequently
normable. Let p̄n be the restriction of pn to Xn−1 for n > 0, and set En =
p̄n(Xn−1). Choose linear cross-sections gn : En → Xn−1 of the p̄n’s. Set fn =
id − gn ◦ p̄n : Xn−1 → Xn−1. Then fn(Xn−1) ⊆ Xn. For x ∈ X, let x1 = f1(x)
and, inductively, xn = fn(xn−1).

Let E = Π∞i=1Ei, and define T : X → E by

T (x) = (p1(x), p̄2(x1), . . . , p̄n(xn−1), . . . ).

Then T is continuous because Xn → 0. The inverse of T is the function S : E →
X given by

S(y1, y2, . . . ) = Σ∞i=1gi(yi).

To see that S is well-defined and continuous, let κn : E → E by κn(y1, . . . ) =
(y1, y2, . . . , yn, 0, 0, . . . ) and set Sn = S◦κn : E → X. If j > n, gj(Ej) ⊆ Xn ⊆ Un,
so S − Sn : E → Xn−1 ⊆ Un−1. Therefore, the Sn’s converge uniformly to S.

Now let Tn : X → E by x 7→ (p1(x), p2(x1), . . . , pn(x), 0, 0, . . . ). Then Sn◦Tn =
S◦κn◦T and converges to S◦T . On the other hand, Sn◦Tn(x) = Σn

i=1gi◦pi(xi) =
Σn
i=1(xi−1 − xi) = x0 − x1 + x1 − x2 + · · ·+ xn−1 − xn = x− xn and converges to

x. Thus, S ◦ T = id : X → X and T is a bijective linear homeomorphism onto
E, which is isomorphic to R∞. �

Proof of Theorem 1.2. Suppose thatX contains an infinite-dimensional normable
linear subspace. Its closure is a Banach space, E. Let f : X → X/E be the
quotient map. Then X/E is a Fréchet space, and by [20] there is a continuous
cross-section g : X/E → X for f , so h(x, y) = 1

2
(g(x)−g(−x))+y defines an equi-

variant homeomorphism of X/E ×E onto X, where the involution on X/E ×E
is (x, y) → (−x,−y). By [5, Chapter 1, Section 6], X/E may be regarded as
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a closed linear subspace of a product Πi≥1Yi of Banach spaces, so 0 has a basis
(in X/E) of sets of the form U = X/E ∩ (V × Πi>nYi), where V ⊆ Π1≤i≤nYi is
open, symmetric, and convex. Denote the boundary of U in X/E by ∂U . Again
applying [20], we see that U is homeomorphic to p(U) × ker(p), where p is the
projection of X/E into Π1≤i≤nYi and ker(p) is the kernel of p. Now p(U) is an
open, convex, symmetric neighborhood of 0 in the Banach space p(X/E), and its
boundary (in p(X/E)), ∂p(U), is bicollared in p(X/E). As ∂U = ∂p(U)×ker(p),
it is bicollared in X/E.

If W is a convex, symmetric, open neighborhood of the identity in E, then its
boundary is bicollared in E. It follows that ∂(U ×W ) is bicollared in U ×W .

[This is as follows. Let c1 : ∂(U) × (−1, 1) → C1 ⊆ X/E and c2 : ∂(W ) ×
(−1, 1) → C2 ⊆ E be bicollaring homeomorphisms with c1(∂(U)× (−1, 0)) ⊆ U
and c2(∂(W )× (−1, 0)) ⊆ W , then C1×C2 is a neighborhood of ∂(U)× ∂(W ) in
p(X/E)×W . Set L = ((−1, 0]×{0})∪ ({0}× (−1, 0]) ⊆ (−1, 1)× (−1, 1). Then
(−1, 1)× (−1, 1) is a bicollar of L in (−1, 1)× (−1, 1), and κ : (∂(U)× ∂(W ))×
((−1, 1)× (−1, 1))→ X/E ×E by ((x, y), (s, t))→ c1(x, s)× c2(y, t) is a bicollar
of (c1(∂(U)× (−1, 0])× ∂(W ))∪ (∂(U)× c2(∂(W )× (−1, 0])) in X/E×E. Since
c1 × id : (∂U × (−1, 1)) ×W → X/E × E and id × c2 : U × (∂W × (−1, 1) →
W/E × E are bicollars of ∂U ×W and U × ∂W , ∂(U ×W ) is locally bicollared
in X/E × E. Because locally collared sets are collared by Brown’s Collaring
Theorem [7], ∂(U ×W ), ∂(U ×W ) is collared on both sides in X/E × E.]

We have now established that X has a basis at 0 of invariant, contractible, open
sets with bicollared boundaries. It remains to demonstrate that their boundaries
are contractible.

Consider U ×W as above. We have ∂(U ×W ) = (∂(U)×W ) ∪ (U × ∂(W )).
By [5, Chapter 3, Proposition 5.1], there is a homeomorphism λ : W → W \ {0}
that is the identity on ∂(W ). Because E is a Banach space, radial projection
gives a deformation retraction r(x, t) = x(1 − t + t

‖x‖) of W \ {0} to ∂(W ),

and r̄(x, t) = λ−1(r(λ(x), t)) is a deformation retraction of W onto ∂(W ). Then
F : ∂(W ) × I → ∂(W ) by (x, t) → r̄((1 − t)x, 1) is a contraction of ∂(W ) to a
point, say x0, of ∂(W ).

First applying r̄ and then F produces a homotopy of ∂(U ×W ) into U ×{x0}.
Since U is contractible, this shows that ∂(U ×W ) is contractible. By Corollary
2.8, the involution σX is topologically conjugate to σ`2 .

If X contains no infinite-dimensional normable linear subspace, then X is lin-
early isomorphic to R∞ by the preceeding lemma. A linear isomorphism will
conjugate σX to σR∞ , which is conjugate to σs. �

5. Based-free involutions of compact type: lemmas and
propositions

If Y is a space with an involution, γ, we denote by p the orbit map Y → Y/γ
and by φ a map from Y/γ to [0, 1] with φ−1(0) = Fix(γ), the fixed-point set of γ.
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If A ⊆ Y/γ we use Ã to denote p−1(A). The meaning should be clear from
context.

Lemma 5.2 below is well-known [19, Theorem 2.3], [13], where its proof is
based on the familiar partial realization characterization of ANR’s. We shall use
it several times. We give a direct argument for the benefit of the reader. We need
the following lemma that we think is folklore and of which we present a proof
for the sake of completeness. We are indebted to Elżbieta and Roman Pol for
providing the proof.

If (X, d) is a metric space, then for ε > 0 and x ∈ X we put Nε(x) = {y ∈
X|d(x, y) < ε}.

Lemma 5.1. Let X and Y be metric spaces and let f : X → Y be continuous. As-
sume moreover that ε : X → (0, 1] is continuous. Then there is a continuous func-
tion δ : X → (0, 1] such that for every x ∈ X we have f(Nδ(x)(x)) ⊆ Nε(x)(f(x)).

Proof. Let G = {(x, y) ∈ X × X|d(f(x), f(y)) < ε(x)}. Then G is open and
contains the diagonal. Therefore, for each x ∈ X there is an s > 0 such that
N(x, s)×N(x, s) is contained in G. Let ϕ(x) be the supremum of all such numbers
s. We claim that ϕ is lower semicontinuous. Indeed, if ϕ(x) > λ, pick s > λ+ r
for some r > 0 such that N(x, s)×N(x, s) is contained in G. If y is in N(x, r),
then N(y, s−r) is contained in N(x, s), hence N(y, s−r)×N(y, s−r) is contained
in G and so ϕ(y) ≥ s − r > λ. Now if δ : X → (0, 1] is a continuous function
strictly between 0 and ϕ, [14, 1.7.15(d)], for every x ∈ X, N(x, δ(x))×N(x, δ(x))
is contained in G, hence f(Nδ(x)(x)) ⊆ Nε(x)(f(x)). �

Lemma 5.2. Let Y be a metric space and suppose that the closed subset A ⊆ Y
is a strong deformation retract of Y . If A is an AR and Y \ A is an ANR, then
Y is an AR.

Proof. Let E = Y \A, and let G : Y × I→ Y be a strong deformation retraction
of Y to A. Suppose that B is a closed subspace of a metric space Z and that
f : B → Y is continuous. Let BA and BE be f−1(A) and f−1(E), respectively,
and let f̄ : U → Y be an extension of f |BE to an open set U of Z \ BA. By
Lemma 5.1 there extsts a continuous φ : BE → (0, 1] such that for every b ∈ BE,
f̄(Nφ(b)(b)) ⊆ Nd(b,BA)(f(b)) and φ(b) < d(b, Z \U). Set V = U ∩

⋃
{Nφ(b)(b) | b ∈

BE} and let W be an open subset of Z \ BA containing BE and with closure
(in Z \ BA) contained in V . Let ψ : Z \ BA → I be a Urysohn function with
ψ(Z \ (B ∪W )) = 1 and ψ(BE) = 0. Then the function h defined on the closure
in Z \ BA of W by h(z) = G(f̄(z), ψ(z)) extends over the closure of BE by f to
give a continuous extension h of f to W . Now h|∂W∪BA : ∂W ∪ BA → A and so
extends over Z \W to a map h̄ that extends h to Z. �

Lemma 5.3. Let α be an involution of E of compact type. Let β be a based-free
involution of a compact space X̄ with fixed point ∗ such that α is conjugate to
β̂ = β ×φ◦p id : X̄ ×φ◦p `2 → X̄ ×φ◦p `2 and set X = X̄ \ {∗}. Then
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(1) {∗} is a Z-set in X̄,
(2) X̄ is an AR,
(3) X is an AR,
(4) X/β is a locally compact, one-ended, ANR homotopy equivalent to RP∞,
(5) X/β × Q is homeomorphic to K × Q for some locally finite, 1-ended

simplicial complex K homotopy equivalent to RP∞,
(6) X̄/β ×φ Q is homeomorphic with K̄ ×φ Q,

(7) α is conjugate to γ̂ = γ ×φ id : (K̃ ×φ `2)∪ {∗} → (K̃ ×φ `2)∪ {∗}, where

γ is the covering transformation of the universal cover K̃ of K.

Proof. As X̄ is a retract of X̄×φ◦p`2, it is an AR because X̄×φ◦p`2 is homeomorphic
to `2, which is an AR by Lemma 3.1. Similarly, `2 ≈ `2 \ {0}, so it, too is an AR,
as is X̄ ×φ◦p `2 \ {∗}. Hence, so is its retract X. The orbit map X → X/β is
a two-fold covering projection with contractible AR total space. Its orbit space
is therefore a locally compact, 1-ended ANR and homotopy equivalent to RP∞.
Therefore, X/β × Q is a Hilbert cube manifold by Edwards’ Theorem [9, 44.1].
By Chapman’s Triangulation Theorem [9, Theorem 37.2], there is a locally finite
simplicial complex K such that X/β × Q is homeomorphic to K × Q. This
homeomorphism extends to the one-point compactifications of K×Q and X×Q,
which are homeomorphic to K̄ ×φ Q and X̄/β ×φ Q, respectively. Thus, there
is a homeomorphism f : X̄/β ×φ Q → K̄ ×φ Q with f(∗) = ∗. Then f |(X/β×φQ)

lifts to an equivariant homeomorphism g from (X ×φ◦p Q) to (K̃ ×φ◦p Q), which

extends to a homeomorphism ḡ : X̄ ×φ◦pQ→ (K̃ ∪{∗})×φ◦pQ whose restriction

to X̄ ×φ◦p s ≈ X̄ ×φ◦p `2 conjugates β̂ to γ̂. (Here, we are using our convention
about p.) �

Therefore, we may assume that X = K̃. We pass back and forth between the
symbols for notational convenience. If Y is any of the locally compact spaces
without the fixed point under consideration, e.g., X,X/β,K, K̃,X ×φ◦p Q, etc.,
we use the convention that the end e of Y is the collection of open sets V in Y
which have compact complements. A neighborhood of e is a set containing one of
these V ’s.

Lemma 5.4. The complex K above may be chosen so that there is a basic se-
quence Kn of closed neighborhoods of the end, e, of K satisfying the following:

(1) Kn ⊆ intKn−1 and
⋂
Kn = ∅,

(2) each Kn is a connected subcomplex of K,
(3) the inclusions induce isomorphisms π1(Kn) ∼= π1(∂Kn) ∼= π1(K) ∼= Z2,
(4) K̃n contracts in K̃n−1 and K̃n ∪ {∗} contracts in K̃n−1 ∪ {∗}.

Proof. Let K be as in Lemma 5.3, and let {Kn}n be a sequence of subcomplexes
with K \ intKn compact such that Kn ⊆ intKn−1 and

⋂
nKn = ∅. Then {Kn}n

is a basis for the end e of K. We show how to modify the choice of the Kn’s to
satisfy the lemma. Fix an equivariant homeomorphism f : `2 → (K̃∪{∗})×φ◦p `2
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and denote by Bε the open ball in `2 centered at 0 of radius ε. By passing to a
subsequence of the Kn’s, we may assume that for each n, there is an ε(n) > 0
such that

K̃n ×φ◦p `2 ⊆ f(Bε(n)) ⊆ f(Bε(n)) ∪ γ̂(f(Bε(n))) ⊆ (K̃n−1 ∪ {∗})×φ◦p `2.

Then (K̃n∪{∗})×φ◦p `2 contracts in f(Bε(n)) and K̃n×φ◦p `2 contracts in f(Bε(n)\
{0}), as the latter is contractible (cf. proof of (1) in the foregoing lemma). Thus
the sequence

K̃n ∪ {∗} → (K̃n ∪ {∗})× {0} ⊆ (K̃n ∪ {∗})×φ◦p `2 ⊆ f(Bε(n))→ K̃n−1 ∪ {∗},

where the last map is projection in the variable product, shows that K̃n ∪ {∗}
contracts in K̃n−1 ∪ {∗} and K̃n contracts in K̃n−1.

By adding to Kn a finite number of edges in Kn−1, we may require that Kn

be connected. This also ensures that K̃n is connected. Passing to a subsequence
restores condition (3). We may further adjust Kn so that its boundary ∂Kn

in Kn−1 is connected by (a) selecting paths ωi of edges in Kn connecting the
components of ∂Kn, (b) ”borrowing an interval fromQ” and replacing K by K×I,
and (c) replacing Kn by (Kn× I)\

⋃
i int(Ni), where Ni is a regular neighborhood

of ωi×{1} in Kn× I. Since Kn× I deformation retracts to (Kn× I) \
⋃
i int(Ni),

this preserves the connectedness of Kn. We may next adjust the Kn’s so that
∂K̃n is connected. This may be arranged by adding to ∂Kn a loop λ in Kn that
generates π1(K) in the same way that we added paths connecting its components
in the preceding adjustment.

If for n, the inclusion of ∂Kn into K induces an isomorphism on fundamental
groups, then by van Kampen’s Theorem the fundamental groups of K,Kn, ∂Kn,
and K \ intKn are all Z/2Z and the inclusions induce isomorphisms.

To prove that we can adjust the Kn’s so that the inclusion θ of ∂Kn into K
indeed induces an isomorphism on fundamental groups, we note that we have
already arranged that θ∗ is surjective. Now denote p−1(∂Kn) by L. As L → K
equals L → ∂Kn → K, p∗(π1(L)) ⊆ ker θ∗. Since p∗(π1(L)) is a subgroup of
index 2 in π1(∂Kn) and θ∗ 6= 0, p∗(π1(L)) = ker θ∗. It is also finitely generated
because L is a finite complex.

We now proceed with a handle exchange argument analogous to the one we
used above to connect ∂Kn. It is clear that we may replace K by K× I6. Choose
piecewise linear maps ωi : S1 → ∂Kn × I6 generating p∗(π1(L)) and piecewise
linear maps λi : D2 → K × I6 extending the ωi’s. Because K̃n × I6 contracts in
K̃n−1 × I6, we may require that λi(D

2) ⊆ intKn−1 × I6 and also the following:

(1) the images of the ωi’s are embedded piecewise linearly and disjointly in
∂Kn × S5,

(2) the images of the λi’s are embedded piecewise linearly and disjointly in
intKn−1 × S5,
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(3) the images λi|intD2 are in general position in K × S5 with respect to
∂Kn × S5.

From (3) we get that λ−1i (∂Kn × S5) is a finite union of disjoint simple closed
curves Cj in D2. A Cs is termed an innermost Cj provided that the disc Ds it
bounds in D2 contains no other Cj. In this case, λi(Ds) is contained in Kn × I6
or in (intKn−1 \ intKn)× I6.

We proceed to eliminate Cs by altering Kn×I6. Assume that λi(Ds) ⊆ Kn×S5.
Let N be a small regular neighborhood of λi(Ds) in Kn × I6. Note that the
boundary of N in Kn × I6 is homeomorphic to N ∩ (Kn × S5) and that there
is a homeomorphism of Kn × I6 onto (Kn × I6) \ intN that carries ∂Kn × I6
to (∂Kn × I6) \ intN . (Here, intN refers to the interior of N in Kn × I6.) Let
Mn = (Kn × I6) \ intN . Now, ∂Mn = (∂N ∪ (∂Kn × I6)) \ (intN ∩ (∂Kn × I6)).
Thus λ−1i (∂Mn) = λ−1i (Kn × I6) \ Cs. If λi(Ds) ⊆ K \ intKn, the process is
analogous.

An induction on the Cj’s eliminating innermost ones at each step taking care
to choose the N ’s sufficiently close to the images of the Ds’s as not to interfere
with each other terminates with the elimination of the generator [ωi]. Repeating
the process for each [ωi] eliminates the kernel of the inclusion homomorphism θ∗.
The result, M , of the successive alterations of Kn × I6 is a subset of the original
Kn−1×I6 and for some m > n, we have Km×I6 ⊆M . This observation allows us
to perform the construction inductively on the Kn’s by passing to an appropriate
subsequence at each step. �

Corollary 5.5. For each n > 1 and i ≥ 2, the inclusion homomorphism πi(Kn)→
πi(Kn−1) is zero.

Proof. Let ω : Si → Kn represent an element of πi(Kn). As Si is simply con-
nected, ω lifts to a map ω̃ : Si → K̃n, which is null-homotopic in K̃n−1. Such a
homotopy will project under p to a null-homotopy of ω. �

As K is homotopy equivalent to RP∞, which is an Eilenberg-MacLane space
of type K(Z2, 1), two maps ζ, η : L→ K of a space L homotopy equivalent to a
CW-complex are homotopic if and only if they induce the same homomorphism
on π1(L) [15, §1B.9].

It will be convenient to let K0 denote K. In the following lemmas, we assume
that simplicial complexes, if not locally compact, are endowed with the weak
topology.

Lemma 5.6. If L is a simplicial complex of dimension at most m, then any two
maps ζ, η : L→ Kn that induce the same homomorphism on π1(L) are homotopic
in Kl, where l = max{n−m, 0}. If ζ|L1 = η|L1 for some subcomplex L1 of L, then
the homotopy may be taken to be stationary on L1.

Proof. Because ζ∗ = η∗ : π1(L)→ Kn they are equal in K. As K is an Eilenberg-
MacLane space of type (Z/2Z, 1), πi(K) = 0 for i > 1 and there is a homotopy
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F : L× I → K with f0 = ζ and f1 = η that is stationary on L1. We proceed to
deform F into Kn−dimL. Define G on

(L× I× {0}) ∪ (L1 × I× J) ∪ (L× {0, 1} × J)→ K

by G(x, s, t) = F (x, s). For each vertex v ∈ L \ L1, choose a path ω : I → Kn

from ζ(v) to η(v) such that ω ∪ F |{v}×I defines a null-homotopic loop in K. Set
G(v, s, 1) = ω(s) and extend over {v}× I×J by a null-homotopy in K. Now, for
each edge e1 = 〈vi, vj〉 of L, G exhibits a null-homotopy in K of its restriction
to (e1 × {0, 1} × {1}) ∪ ({vi, vj} × I× {1}), so by Lemma 5.4(2) there is a null-
homotopy in Kn. Define G on e1 × I× {1} using such a null-homotopy. Extend
G over e1 × I× J using the fact that πi(K) = 0 for i ≥ 2.

Assume inductively that j ≥ 1 and G is defined on

(L× I× {0}) ∪ (L× {0, 1} × J) ∪
(
(Lj ∪ L1)× I× J

)
and that G(Lj × I× {1}) ⊆ Kn−j+1. Let e = ej+1 be a (j+1)-simplex in L \ L1.
By 5.5 we may extend G over e× I× {1} with values in Kn−j. Then we extend
over e× I× J in K, completing the induction. �

Lemma 5.7. Let α be an involution of compact type. Assume the notation of
Lemmas 5.3 and 5.4. If f : Sm → K̄n = Kn ∪ {∗} is a map, then f extends to a
map f̄ : Dm+1 → K̄l , where l = max{n−m, 0}.

Proof. This is again an application of Lemma 5.4. Let L be a triangulation of
Sm \ f−1(∗). We construct by induction on skeleta a map G : L × [0,∞) → K
with G(x, 0) = f(x) and for each i-simplex ei of L, G(ei × [l,∞)) ⊆ Kn(ei)+l−i,
where l ≥ 0 and n(ei) = max{s|f(ei) ⊆ Ks}. For each vertex, v define G on
{v} × [0,∞) inductively so that G({v} × [l,∞)) ⊆ Kn({v})+l. For each 1-simplex
e1 = 〈v0, v1〉, let G : e1 × {l} → Kn(e1)+l be a path from G(v0, l) to G(v1, l) such
that the loop defined on (e1 × {l− 1, l}) ∪ ({v0, v1} × [l− 1, l]) is null-homotopic
in Kn(e1)+l−1 and extend G over e1 × [l − 1, l] by such a homotopy. Now extend
over the 2-skeleton as follows. Let e2 be a 2-simplex of L. For each l, G is
defined on ∂(e2 × {l}) and is null-homotopic in Kn(e2)+l, so we can extend G
over e2 × {l} by such a homotopy. Now G : ∂(e2 × [l, l + 1]) → Kn(e2)+l, and
extends over e2 × [l, l + 1] with values in Kn(e2)+l−1. Now for each 3-simplex e3,
G(∂e3 × {l}) ⊆ Kn(e3)+l and so G extends to take e3 × {l} into Kn(e3)+l−1. This
defines G : ∂(e3 × [l, l + 1])→ Kn(e3)+l−1, so it extends to map e3 × [l, l + 1] into
Kn(e3)+l−2. Inductively, assume that G is defined on (L×{0})∪(Lj× [0,∞)) with
G(ej×{l}) ⊆ Kn(ej)+l−j+2 and G(ej×[l, l+1]) ⊆ Kn(ej)+l−j+1. Then G extends to
carry ej+1×{l} into Kn(ej+1)+l−j+1 and ej+1×[l, l+1] into Kn(ej+1)+l−j, completing

the induction. Define f̄(x) = ∗ if x = ty for y ∈ f−1(∗) and G( x
‖x‖ ,

1
‖x‖ − 1) if

f( x
‖x‖) 6= ∗. �
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Proposition 5.8. With the above notation, if f : L→ K̄ is a map of a simplicial
complex to K̄, then there is a homotopy F : L × I → K̄ from f to the constant
map f1(L) = ∗ such that

(1) if em is an m-simplex of L and f(em) ⊆ Kn(em), then F (em × I) ⊆
Kn(em)−m, and

(2) F is stationary on f−1(∗).

Proof. Define F on (L×{0})∪ (f−1(∗)× I)∪ (L×{1}) by F (x, s) = f(x) if s < 1
and F (x, 1) = ∗. Now let L1 triangulate f−1(K) and extend F over L1× [0, 1) by
induction on the skeleta of L1 using the construction of the proof of Lemma 5.6
and a homeomorphism of [0,1) onto [0,∞). �

The technique used in the proof of the following result, may be known to shape
theorists. We include the details for the benefit of the reader.

Proposition 5.9. If α is movable, then there is a proper homotopy F : K×I→ K
such that

(1) f0 = id,
(2) for each n, f1(Kn) ⊆ Kn+1, and
(3) for each n F

(
(Kn \ int(Kn+1))× I

)
⊆ Kn−3.

Proof. By choosing a subsequence of the Kn’s, we may assume from the mov-
ability hypothesis that for each n, there is a (not necessarily proper) homo-

topy G(n) : Kn × I → Kn−1 such that g
(n)
0 : Kn → Kn−1 is inclusion and

g
(n)
1 (Kn) ⊆ Kn+1. Therefore, by concatenating the G’s (as is done in mul-

tiplying in the fundamental group), we obtain for each m > n a homotopy
H(n,m) = G(n) ∗G(n+1) ∗ · · · ∗G(m) : Kn × I→ Kn−1 that deforms Kn into Km+1

in Kn−1. Set l(n) = n + 1 + dim(K \ int(Kn+2)). Let Γn : ∂Kn × ∂(I × I) → K
be given by

(1) Γn(x, s, 0) = x,
(2) Γn(x, 0, t) = H(n−1,l(n−1))(x, t),
(3) Γn(x, 1, t) = H(n,l(n))(x, t),

(4) Γn(x, s, 1) = Θn(x, s), where Θn is a homotopy from h
(n−1,l(n−1))
1 |∂Kn to

h
(n,l(n))
1 |∂Kn provided by Lemma 5.6.

Note that as h
(n−1,l(n−1))
1 (∂Kn) ⊆ Kl(n−1) and h

(n,l(n))
1 (∂Kn) ⊆ Kl(n),

Θn(∂Kn × I) ⊆ Km,

where m ≥ l(n− 1)−dim(∂Kn) ≥ n− 1 + 1 + dim(K \ int(Kn+1))−dim(∂Kn) ≥
n+ dim(∂Kn) + 1− dim(∂Kn) = n+ 1.

Extend Γn to ∂Kn × ∂(I× I)× [0, 1] by setting

Γn(x, s, t, u) = H((n−2,l(n−2))(Γn(x, s, t), u).

Then Γn(∂Kn×∂(I× I)× [0, 1]) ⊆ Kn−3 and Γn(∂Kn×∂(I× I)×{1}) ⊆ Kl(n−2).
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Let εn : ∂Kn × [0, 1] → ∂Kn ×
(
([0, 1

2
] × {0, 1}) ∪ ({0} × [0, 1])

)
× {1} and

δn : ∂Kn×[0, 1]→ ∂Kn×
(
([1

2
, 1]×{0, 1})∪({1}×[0, 1])

)
×{1} be homeomorphisms

with εn = δn on ∂Kn × {0, 1}. Lemma 5.6 provides a homotopy Λn from Γn ◦ δn
to Γn ◦ εn that is stationary on ∂Kn × {0, 1} and takes values in Kv, where
v = l(n− 2)−dim(∂Kn)− 1 ≥ l(n− 2)−dim(K \ int(Kn)) = n− 1. Now Λn can
be regarded as an extension of Γn over ∂Kn×I×I×{1}. Using a homeomorphism
of (∂(I × I) × I) ∪ (I × I) × {1} onto I × I that is projection on ∂(I × I) × {0}
allows us to regard Λn as a map of ∂Kn× I× I into Kn−3 carrying ∂Kn× I×{1}
into Kn+1 such that Λn(x, s, 0) = x.

Set ∆ = {(s, t) ∈ [−1
2
, 1
2
] × [0, 1]| − t

2
≤ s ≤ t

2
}, and let ν : I × I → ∆n be

defined by (s, t) 7→ ( t
2
(2s− 1), t). Now define µn : ∂Kn×∆→ K by µn(x, s, t) =

Λn(x, ν−1(s, t)).
We use µn to interpolate between

H(n−1,l(n−1))|Kn−1\int(Kn) and H(n,l(n))|Kn\int(Kn+1).

Let Nn be the neighborhood of ∂Kn that is the union of all simplices of K that
contain a point of ∂Kn. Each such simplex, σ is the join of σ∩∂Kn and its face τσ
determined by the vertices that are not in ∂Kn, and each point of int(Nn)\∂Kn is
uniquely representable as (1−s)y(x)+sz(x), where y(x) ∈ σ∩∂Kn and z(x) ∈ τσ.
If necessary, subdivide K so that each Nn ∩Nn+1 = ∅.

Set An = {(x, t)|x = (1 − s)y(x) + sz(x), 0 ≤ s ≤ t} ⊆ (Kn−1 \ Kn+1) × I,
Bn = {(x, t) ∈ An|s ≤ t

2
}, and Ln = ((Kn\ int(Kn+1))×I)\(int(Bn)∪ int(Bn+1)).

Now let ζn : An → An be given by

(x, t) = ((1− s)y(x) + sz(x), t)
ζn7−→ ((1− s′)y(x) + s′z(x), t)

where s′ = max{2(s− t
2
), 0}. Define ηn : (Kn \ intKn+1)× I→ (Kn \ intKn+1)× I

by

ηn(x, t) =


ζn(x, t), if (x, t) ∈ (Kn × I) ∩ An
ζn+1(x, t), if (x, t) ∈ (Kn × I) ∩ An+1

(x, t), if (x, t) ∈ (Kn × I) \ (An ∪ An+1).

For (x, t) ∈ Bn, where x = (1 − s)y(x) + sz(x), put s̄ = s if x ∈ int(Kn), and
s̄ = −s if x ∈ int(Kn−1). Define F : K × I→ K by

F (x, t) =

{
H(n,l(n)) ◦ ηn(x, t), if (x, t) ∈ Ln
µn(y(x), s̄, t), if (x, t) ∈ Bn.

Now F (Kn × {1}) ⊆ Kn+1 for each n. If F (x, t) ∈ Kn, then x ∈ K \Kn+4, so F
is proper. �

Corollary 5.10. There is a proper map H : K × [0,∞)→ K such that

(1) h0 = id,
(2) H(Kn × [0,∞)) ⊆ Kn−3, and
(3) for each m and n, H(Km × [n,∞)) ⊆ Km+n.
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Proof. Using the homotopy F of Proposition 5.9, let F n(x, t) = ft◦ft◦. . . ft(x) be
the n-fold composition. Now define H(x, t) = fs ◦ fu1 (x), where u is the greatest
integer less than or equal to t and s = t− u. �

Corollary 5.11. X̄/β contracts to ∗ by a homotopy µ satisfying

(1) µ is stationary on ∗, and
(2) µ−1(∗) = ({∗} × I) ∪ (X̄/β × {1}).

Proof. Corollary 5.10 gives the result for K̄ by extension to the one-point com-
pactification. The function G : K̄ ×φ Q × I → K̄ ×φ Q defined by ((x, y), t) →
(x, (1 − t)y) is a strong deformation retraction of K̄ ×φ Q to K̄ × {0}. Let ι :
X̄/β → X̄/β×φQ and κ : X̄/β×φQ→ X̄/β be the inclusion and projection, re-
spectively. By Lemma 5.3(6), there is a homeomorphism f : X̄/β×φQ→ K̄×φQ.
Necessarily f(∗) = ∗ because it is the only point with non simply connected com-
plement. Then κ◦f−1 ◦ (G∗F )◦f ◦ ι contracts X̄/β to ∗ as desired, where G∗F
is the concatenation of homotopies. �

Corollary 5.12. X̄/β is an AR.

Proof. This is by Corollary 5.11 and Lemma 5.2. �

Remark 5.13. Corollary 5.12 follows from Theorem 4.6 of [13] together with our
Theorem 2.17, which depends on Lemma 5.3, Lemma 5.4, and Proposition 5.9.
The reader familiar with Shape Theory will immediately recognize that Lemmas
5.3 and 5.4 imply the pro-homotopy hypotheses of [13] and can dispense with our
5.5, 5.6, and 5.7. The presentation given here is more direct.

Corollary 5.14. The homotopy µ of Corollary 5.11 lifts to an equivariant strong
deformation retraction, µ̃, of X̄ to ∗ with the property that µ̃−1(∗) = ({∗}× I)∪
(X̄ × {1}).

6. Based-free Involutions of compact type: proofs

We defined the notion of a variable product of a space X with s respectively `2

in §2. For the arguments in this section we need variable products of a different
type. They are variable products where the second factor is Q. Indeed, if X is a
space and r : X → I is a map, then

X ×r Q =
⋃{
{x} ×

∞∏
n=1

[−r(x), r(x)]n|x ∈ X
}
⊆ X ×Q

is called a variable product. A basic fact is the following result: if Q ×r Q is a
variable product, then Q×r Q ≈ Q, [9, 14.1].

Observe that the difference between these variable products and the ones that
we discussed in §3, is that we use closed instead of open intervals. From the
context it will be clear what type of variable products we are dealing with.
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6.1. Proof of Theorems 2.13, 2.14, and Corollary 2.15. In the next proof,
we use the notion of a skeletoid. In [21, §6.5], this notion is defined and developed
in the context of Hilbert cubes. However, it extends easily to arbitrary Hilbert
cube manifolds. To be explicit, we state the simplest of these extended versions.

Definition 6.1. Let M be a Hilbert cube manifold. A subset A ⊆ M is a
skeletoid for M provided that

(1) A =
⋃∞
n=1An, where An ⊆ An+1 and each An is a compact Z-set in M ,

(2) If K ⊆ U ⊆M is a compact Z-set lying in an open set of M , n ∈ N, and
ε > 0, there is an m ≥ n and a homeomorphism h : M →M such that
(a) h(K) ⊆ Am,
(b) h|An = id,
(c) d(h, id) < ε, and
(d) h|M\U = id.

Remark 6.2. The property of being a skeletoid is clearly preserved by homeomor-
phisms. Using the Estimated Homeomorphism Extension Theorem for Hilbert
cube Manifolds [9, Lemma 19.1], we may require in (2) above only that h :
K ∪ An → Am be a Z-embedding and drop condition (d).

Then via a straightforward induction on charts, Theorem 6.5.2 of [21] becomes

Proposition 6.3. If A and B are skeletoids in M and ε : M → (0, 1) is con-
tinuous, then there is a homeomorphism h : M → M such that h(A) = B and
d(h(x), x) < ε(x).

Proof of Theorem 2.13. Note that s/σs and Q/σQ are AR’s (e.g., by Lem-
mas 3.1 and 5.2). Let Y = Q ×φ◦p s, where φ and p are as usual with p : Q →
Q/σQ. Clearly, Y is homeomorphic to Q × s/({0} × s). As {0} is a Z-set in Q,
{0} × s is a Z-set in Q × s, so Q × s/({0} × s) is homeomorphic to s, see, for
example, [5, Corollary 2.2 in Chapter VI], and so is Y . Therefore τ = σQ ×φ◦p id
is an involution of compact type. We show that τ is conjugate to σs.

ByQ-manifold stability [21], there is a homeomorphism f : (Q/σQ×φQ)\{0} →
Q/σQ \ {0}. Let f̄ : Q/σQ ×φ Q→ Q/σQ be the extension of f . Let

A = {(a, b) ∈ (Q/σQ)×φ Q|(a 6= 0) & [(∃n)(bn ∈ {−r(a), r(a)})]},
and let B = (Q \ s)/σQ. Then A is a skeletoid in (Q/σQ ×φ Q) \ {0} and
B is a skeletoid in Q/σQ \ {0}. Hence f(A) is a skeletoid for Q/σQ \ {0}, so
there is a homeomorphism g : Q/σQ \ {0} → Q/σQ \ {0} carrying f(A) onto
B. It extends to Q/σQ. Letting ḡ be the extension of g to Q/σQ, we have that
ḡ ◦ f̄(Q/σQ×φ s) = s/σs. If h : Q×φ◦pQ→ Q is an equivariant homeomorphism
covering ḡ ◦ f̄ , then h|Y conjugates τ to σs, so σs, is of compact type and so are
all involutions of Type B. �

Proof of Theorem 2.14. Without loss of generality, we may assume that E =
s. If α is of Type B, then α is conjugate to σs, so s/α ≈ s/σs, which is an AR,
e.g., by Lemma 5.2.
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If s/α is an AR, then because α is of Compact Type, there is a based-free
involution β : X̄ → X̄ on a compact space and an equivariant homeomorphism
f : s → X̄ ×φ◦p s conjugating α to β̂ = β ×φ◦p ids : X̄ ×φ◦p s → X̄ ×φ◦p s. Let

β̌ = β ×φ◦p idQ : X̄ ×φ◦p Q → X̄ ×φ◦p Q. By Lemma 5.3, X̄ ×φ◦p Q is an AR
that is the one-point compactification of the Hilbert cube manifold X̄ ×φ◦p Q by
the addition of the Z-set {∗}. By Toruńczyk’s Characterization of the Hilbert
cube [23], X̄×φ◦pQ is a Hilbert cube. By Lemma 5.2, the orbit space, X̄×φ◦pQ/β̌,

of β̌ is an AR, so by [25] there is a homeomorphism g : X̄×φ◦pQ→ Q conjugating

β̌ to σQ. Since β̌ extends β̂, and σQ extends σs, g ◦ f conjugates α to σs showing
that α is of Type B. �

Proof of Corollary 2.15. If α is a counter example to (2), then by Theo-
rem 2.13, it must be of compact type but not of Type B. By Theorem 2.14,
E/α is not an AR. Since α is of Compact Type, the discussion in the previous
paragraph shows that β̌ is a counter example to the Anderson Conjecture for Q.

On the other hand, if β is a counter-example to the Anderson Conjecture for Q,
then by [25], Q/β is not an AR. As in the proof of 2.14 we see that Q×φ◦p s is the
result of adding the Z-set {(0, 0)} to the Hilbert manifold Q\{0}×φ◦ps ⊆ Q×φ◦ps
to obtain an AR (again by 5.2), which is therefore homeomorphic to s [24]. Hence,
α = β ×φ◦p id : Q×φ◦p `2 → Q×φ◦p `2 is a counter example to (2). �

6.2. Proof of Theorems 2.16 and 2.17. We continue to use the terminology
established in the previous subsection.

Proof of Theorem 2.16. It follows from the definition that if α is of type B
then it is movable, and from Theorem 2.13 that it is of compact type. Conversely,
the proof of Theorem 2.14 establishes that if α is of compact type then X̄ ×φ◦pQ
is a Hilbert cube and that α is of type B if β̌ is of type C. By [25] this is true
if and only if the orbit space (X̄ ×φ◦p Q)/β̌ is an AR. This is true if and only if

X̄/β, which is a retract of (X̄ ×φ◦p Q)/β̌, is an AR (using Lemma 5.2). If α is
movable, then X̄/β is an AR by Corollary 5.12. �

Proof of Theorem 2.17. We have homeomorphisms E/α ≈ X̄/β×φ`2 ≈ K̄×φ
`2, where K is as in 5.3. It suffices to prove the results for K̄. That K̄ is LCn

for all n is Lemma 5.7. That K̄ is path connected and πn(K̄) = 0 for n > 0
follows from Proposition 5.8. That the singular homology groups of K̄ vanish is
Proposition 5.8 and the fact that each element of Hn(K̄) may be represented by
a map of a finite simplicial complex into K̄ ([15, pages 108-9]). That K̄ is an
absolute extensor for finite dimensional metric spaces now follows from (1)-(3)
and [17, Chapter V]. �

6.3. Proof of Theorem 2.18.
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Lemma 6.4. If F : X̄/β × I → X̄/β is any homotopy, then F is homotopic to
a homotopy that is stationary on ∗ by a homotopy G : X̄/β × I× J → X̄/β that
is stationary on X̄/β × {s ∈ I|F (∗, s) = ∗}.

Proof. We use the notation of Lemma 5.3. Let F̂ : X̄/β×I→ X̄/β×I be defined

by F̂ (x, t) = (F (x, t), t). Let A = (a, b) ⊆ I be one of the maximal open intervals
on which F (∗, s) 6= ∗. Let N ⊆ X̄/β× [a, b] be a closed neighborhood of {∗}×A
in X̄/β × [a, b] satisfying

(1) N ∩ (X̄/β × {a, b}) = {(∗, a), (∗, b)},
(2) F̂ (N ∩ X̄/β × (a, b) ⊆ X/β × (a, b),
(3) N is simply connected.

(By Lemma 5.4, N may be chosen to be of the form
⋃
i≥1 K̄n(i) × [ai, bi], where

the ai’s decrease to a, the bi’s increase to b, and the n(i)’s increase to∞.) Let m

be the largest integer such that F̂ (N) ⊆ K̄m × [a, b]. Set N ′ = N ∩ X̄/β. Then

F̂ |N ′ lifts to a map θ : N ′ → K̃m × (a, b).
Since by Lemma 5.4, K̃m∪{∗} contracts to ∗ in K̃m−1∪{∗}, there is a homotopy

Θ : N × J → (K̃m−1 ∪ {∗})× [a, b] from θ to θ1 that is stationary on ∂N , where
θ1(N∩(X̄/β×{s})) = (∗, s) for each s ∈ [a, b]. Then p◦Θ extends to a homotopy
that is stationary off N × J and deforms F to a homotopy that carries (∗, s) to
∗ for s ∈ [a, b]. Performing this construction for each of the intervals A produces
the desired deformation of F to a homotopy that is stationary on ∗. �

Proof of Theorem 2.18. The initial conclusion is Theorem 2.17(4). We have
that (1) implies (2) by Theorem 2.14, that (2) implies (3) is immediate, and that
(3) implies (4) is Corollary 5.12. That (4) implies (6), and (6) implies (5) may be
found in [17]. That (4) is equivalent to (1) is Theorem 2.16. Therefore, it remains
to show that (5) implies (4). We use the notation established in Lemmas 5.3 and
5.4.

Assume that E/α = X̄/β ×φ s and that X̄/β is homotopy equivalent to some
CW-complex L. Let f : X̄/β → L and g : L → X̄/β be homotopy inverses.
By Theorem 2.17, all homotopy groups of X̄/β vanish, so the same is true of L,
which is therefore contractible by Whitehead’s Theorem (see [17, Chapter V]).
Therefore, we may assume that g is constant. Since X̄/β is path-connected, we
may assume that g(L) = ∗, so there is a homotopy F : X̄/β× I→ X̄/β from the
constant map ∗ to the identity. By Lemma 6.4, we may choose F to be stationary
on ∗. Then F is a deformation retraction of X̄/β to ∗. By Lemma 5.2 X̄/β is an
AR. �
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Proc. Amer. Math. Soc. 25 (1970), 283–289.

[4] I. Berstein and J. E. West, Based free compact Lie group actions on Hilbert cubes, , Proc.
Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 373–391.
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