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a b s t r a c t

A key challenge in designing load balancing strategies is to achieve low delay in large-scale systems
while only using minimal communication overhead. Motivated by these issues, we introduce a novel
scheme in which the dispatcher becomes aware of idle servers without any explicit communication
from either side, using absence of messages at predefined time instants. The proposed scheme achieves
provably vanishing queueing delays while using strictly less than one message per job on average.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Well-designed load balancing strategies provide an effective
mechanism for improving delay performance and achieving ef-
ficient resource utilization in parallel-processing systems such
as cloud networks and data centers. Besides these typical per-
formance criteria, communication overhead and implementation
complexity have emerged as equally crucial concerns due to the
immense numbers of servers in large-scale deployments. Such
scalability challenges have fueled an urgent interest in load bal-
ancing algorithms that yield excellent delay performance while
only requiring low implementation overhead. Motivated by these
issues, we introduce and analyze a novel concept to achieve
asymptotically negligible queueing delay in a many-server regime
with a minimal amount of information exchange. Before further
explaining the concept, we first give an overview of relevant
literature and highlight the main developments.

We focus on a basic scenario of N parallel identical servers
and a single dispatcher where jobs arrive that must immediately
be forwarded to one of the servers. If the service requirements
are exponentially distributed, and the service discipline at each
server is oblivious to the actual service requirements (e.g. FIFO),
then the classical Join-the-Shortest-Queue (JSQ) policy has strong
stochastic optimality properties [3,13]. In order to execute the JSQ
policy, however, the dispatcher requires instantaneous knowl-
edge of the queue lengths at all the servers, which may involve a
substantial communication burden, and may not be scalable for
large numbers of servers.

∗ Correspondence to: P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
E-mail address: m.v.d.boor@tue.nl (M. van der Boor).

The latter issue has spurred a strong interest in so-called
JSQ(d) strategies, where the dispatcher assigns incoming jobs
to a server with the shortest queue among d servers selected
uniformly at random. This involves an exchange of 2d messages
per job (assuming d ≥ 2), and thus drastically reduces the
communication overhead compared to the full JSQ policy when
the number of servers is large. At the same time, even a value as
small as d = 2 yields significant performance improvements in
the many-server regime N → ∞ compared to a purely random
assignment scheme (d = 1) [8,12].

However, JSQ(d) strategies lack the ability of the conventional
JSQ policy to drive the queueing delay to zero as N → ∞ for any
finite value of d. In contrast, if d grew with N , making it possible
to drive queueing delay to zero [9], the communication over-
head would grow unboundedly. This is in fact inevitable, since
results in the seminal paper [5] show that it is fundamentally
impossible to achieve a vanishing queueing delay with a finite
communication overhead per job, unless memory is available at
the dispatcher to store state information.

The latter is exactly what is done in the so-called Join-the-
Idle-Queue (JIQ) scheme [2,7], where servers advertise their avail-
ability by sending a ‘token’ to the dispatcher whenever they
become idle, thus generating at most one message per job. The
dispatcher assigns incoming jobs to an idle server as long as
tokens are outstanding, or to a uniformly at random selected
server otherwise. Remarkably, the JIQ scheme has the ability of
the full JSQ policy to drive the queueing delay to zero as N → ∞,
even for generally distributed service requirements [4,11]. Scaling
results for the JIQ scheme in an asymptotic regime where the load
approaches one as the system grows large may be found in [6,10].

As mentioned above, the JIQ scheme uses at most one message
per job since a server only sends a token when it becomes idle
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upon a job completion. The vanishing queueing delay achieved
in the many-server limit indicates that actually almost any job
completion leaves the server idle, and means that the number
of messages per job in fact approaches one. Now observe that in
order for the waiting probability to vanish, the dispatcher must
have (near-)certainty that a server is idle when assigning a job to
that server. Thus, the dispatcher must have some kind of idleness
certificate. Unless one has access to the job sizes, as in [1], or
if the service requirements have bounded support, this suggests
that one message per job is not only asymptotically sufficient,
but also necessary in order for the queueing delay to vanish. See
also [5,14].

Our contributions. In the present paper we debunk the above-
mentioned notion and introduce a scheme that allows for vanish-
ing queueing delays and that uses strictly less than one message
per job on average. This scheme exploits the crucial insight that
an idle state need not be explicitly signaled by using a message,
but can also be implicitly inferred by the dispatcher when not
receiving a message from a server at a pre-arranged time instant.
This paradigm is somewhat similar in spirit to negative acknowl-
edgments in end-to-end transport protocols, but to the best of
our knowledge has not been adopted in a load balancing context
so far.

More specifically, we introduce the Join-the-Open-Queue
(JOQ) scheme, where servers send busy alerts to the dispatcher
at pre-arranged time instants as long as they have uncompleted
jobs. The status of a server is closed or open, depending on
whether or not the dispatcher received a busy alert from the
server at the most recent pre-arranged time instant, respectively,
implying that an open server is guaranteed to be idle. The dis-
patcher assigns incoming jobs to an open server whenever there
are any, or to a uniformly at random selected server otherwise.

For convenience, we focus on the case where the pre-arranged
time instants are set at fixed intervals of length T after an open
server receives a job from the dispatcher. In that case, the system
dynamics under the JOQ scheme evolve in a similar manner as
under the JIQ scheme with service requirements inflated to be
multiples of T . In particular, the waiting probability under the
JOQ scheme is upper bounded by that under the JIQ scheme with
the inflated service requirements. We then leverage the above-
mentioned results for the JIQ scheme to demonstrate that, for any
load below a certain threshold λ∗ < 1, vanishing queueing delay
is also achieved by the JOQ scheme for a suitable choice of T with
strictly less than one message per job. It turns out that there is
a range of values for T , depending on the arrival rate, for which
the message rate, probability of queueing and the mean delays
are small simultaneously. The number of messages per job in fact
even tends to zero when the load approaches zero. Moreover, we
show how a combination of the JIQ and JOQ schemes provides a
way to achieve a vanishing queueing delay with strictly less than
one message per job for any subcritical load.

The remainder of the paper is organized as follows. In Sec-
tion 2 we present a detailed model description and algorithm
specification, and we summarize the main contribution of the
paper. In Section 3 we analyze the JOQ scheme and state for what
parameter values it achieves a vanishing queueing delay and uses
less than one message per job on average. In Section 4 we intro-
duce the system design where jobs are distributed over servers
executing JOQ and servers using JIQ. In Section 5 we provide
numerical simulations and discuss various broader issues and
observations. Section 6 concludes and mentions several future
research avenues.

2. Model and algorithm

We consider a system that consists of N identical servers, each
with an infinite-buffer FIFO queue. Jobs arrive according to a Pois-
son process with rate λN (λ < 1) to a central dispatcher, and need
to be forwarded to one of the N servers immediately upon arrival.
The job sizes are independent and generally distributed with unit
mean. Moreover, we assume that the job sizes are not known to
the dispatcher and servers, and that both dispatcher and servers
can make use of unlimited memory to store information.

We now introduce the Join-the-Open-Queue (JOQ) algorithm,
and discuss its behavior and implementation. In the JOQ al-
gorithm, servers periodically communicate their status to the
dispatcher at predetermined times, also referred to as update
epochs. Normally, servers would send a message to the dispatcher
to advertise their idleness, but in the JOQ algorithm, servers send
messages to the dispatcher when they are not idle. If the dis-
patcher receives no message from a server at one of the server’s
update epochs, then its idleness implicitly becomes known to the
dispatcher, without requiring any explicit messaging. In particu-
lar, a server is said to be open when the dispatcher knows that it
is idle, and closed otherwise.

We now provide a more detailed description of the JOQ al-
gorithm, specifying how the dispatcher communicates with the
servers, and how dispatching decisions are made.

Communication with update epochs: When a server is open and
receives a job, it becomes closed and an update epoch for the server
is scheduled at T time units in the future. Moreover, each server
maintains a virtual queue with the same arrivals as its real queue,
but where a job of size x in its real queue has size T⌈x/T⌉ ≥ x in its
virtual one. At the next update epoch of a server, if its virtual queue
is not empty, then it sends a message to the dispatcher to advertise
its closedness, and a new update epoch for the server is scheduled
at T time units in the future. Otherwise, if its virtual queue is empty,
then no message is sent and the server becomes open.

Dispatching rule: If a job arrives and there are open servers, then
the job is sent to an open server chosen uniformly at random.
Otherwise, the job is sent to a server chosen uniformly at random.

Note that the JOQ algorithm is emulating the JIQ algorithm but
using open/closed servers instead of idle/busy servers. However,
while open servers are surely idle, closed servers are not nec-
essarily busy, so there might be idle servers when there are no
open servers. This discrepancy stems from the fact that there is a
delay between the time a server becomes idle, and the moment
the dispatcher becomes aware that the server is idle, due to the
use of predetermined update epochs.

A further discussion on design issues for the JOQ algorithm
can be found in Section 5, where we use simulation results to
put some of the choices into perspective.

3. Main results

In this section we present our main results regarding the sta-
bility, delay performance and message rate of the JOQ algorithm
introduced in the previous section. In particular, we will show
that:

(1) For the JOQ algorithm, when the arrival rate is below a
certain threshold, the steady-state queueing delay of a
typical job vanishes in the many-server limit.

(2) For the JOQ algorithm, when the arrival rate is below a
certain threshold, the expected number of messages per job
is less than one for all N large enough, and tends to zero
when the arrival rate approaches zero.
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(3) For a mixture of the JOQ and JIQ algorithms, when λ <

1/2 (or λ < 1 and the job sizes have decreasing hazard
rate), the steady-state queueing delay of a typical job van-
ishes in the many-server limit and the expected number of
messages per job is less than one for all N large enough.

First, we formalize some important concepts. We say that a
dispatching algorithm has vanishing queueing delay if the queue
state process is stable for all N large enough, and if the probability
of having positive queueing delay and the expected queueing
delay both converge to zero, as N → ∞. Moreover, as a measure
of the communication overhead, we use the expected number of
messages per job. While for algorithms such as JSQ(d) and JIQ it is
straightforward to tie messages to jobs, for our JOQ algorithm this
is not as immediate. We consider a message to be tied to a job if
it is sent while the corresponding virtual job is in service in the
virtual queue. Then, we define the expected number of messages
per job as the steady-state expectation of this random integer, for
a typical job.

The following theorem states for what values of T the JOQ
algorithm has vanishing queueing delay, and provides an ex-
pression for the limit of the expected number of messages per
job.

Theorem 1. For every T such that λE[T⌈X/T⌉] < 1/2, the
following properties hold for the JOQ algorithm with that value of
T :

(i) it has vanishing queueing delay,
(ii) the expected number of messages per job converges to

E[⌊X/T⌋], as N → ∞.

When λ < 1/2, a value of T > 0 exists such that λE[T⌈X/T⌉]

< 1/2 regardless of the job size distribution, since λE[T⌈X/T⌉] →

E[X] as T ↓ 0.

Proof of Theorem 1.

(i) First note that the real queues are stochastically dominated
by the virtual queues, as arrivals happen simultaneously
to each real and corresponding virtual queue, and jobs
require strictly more service in the virtual queues. Thus,
it is enough to establish vanishing queueing delay in the
virtual queues.
We now focus on the virtual queues. Since all jobs in the
virtual queues have sizes multiple of T , a virtual queue can
only become empty at an update epoch. When the virtual
queue becomes empty, no message is sent, implicitly let-
ting the dispatcher know immediately that it is empty, as
it would have received a message otherwise. As a result,
the dispatcher is aware at all times which virtual queues
are empty (i.e., which servers are open) and which ones
are not. Combining this with the fact that the dispatching
decisions of the JOQ algorithm mimic the ones of the JIQ
algorithm but using open/closed status of servers instead
of idle/busy, we see that the virtual queues behave exactly
as the queues of a system running the JIQ algorithm with
job sizes distributed as T⌈X/T⌉. Since the expected size
of a job in the virtual queues is E[T⌈X/T⌉], their load
is λE[T⌈X/T⌉] < 1/2. Thus, Theorem 2 in [4] and the
PASTA property imply that the queue state process of the
virtual queues is stable for all N large enough, and that the
probability of a typical virtual job having positive queueing
delay vanishes as N → ∞. Combining this with Lemma 4
in [4], we conclude that the expected queueing delay of a
typical virtual job vanishes as well.

(ii) For the expected number of messages per job, we distin-
guish between jobs sent to open servers and jobs sent to
closed servers. If a job of size x arrives at time 0 to an
open server (which is always an idle server), then this job
will be in service during the interval of time [0, T⌈x/T⌉).
During this interval of time, messages are sent every T time
units (excluding 0), which results in ⌊x/T⌋ messages. On
the other hand, suppose that a job of size x is assigned
to a closed server (i.e., a server with a non-empty virtual
queue). Since the server was closed when the job was
assigned to it, the server will send a message to the dis-
patcher at the time that the virtual job started its service
in the virtual queue. After this, exactly one message is sent
every T time units while the virtual server is busy, similarly
to when jobs are sent to open servers. In total, this results
in 1 + ⌊x/T⌋ messages.
Denote by po(N) the steady-state probability that there is
at least one open server in the N-server system (which
is known to exist by Theorem 2 in [4]). Moreover, note
that the PASTA property implies that po(N) is also the
probability that a typical virtual job is sent to an open
server. It follows that the expected number of messages
per job is po(N)E[⌊X/T⌋]+[1−po(N)](1+E[⌊X/T⌋]). Since
Theorem 2 in [4] also implies that po(N) → 1 as N → ∞,
the expected number of messages per job converges to
E[⌊X/T⌋], as N → ∞. □

In light of Theorem 1, we would require λE[T⌈X/T⌉] < 1/2
and E[⌊X/T⌋] < 1 for vanishing queueing delay while using
less than one message per job in expectation. This notion is used
in the next corollary, which shows for what values of T this is
accomplished when λ < 1/4.

Corollary 1. Suppose that λ < 1/4. For all T such that 1 < T <

1/(2λ)−1, the JOQ algorithm has vanishing queueing delay, and the
expected number of messages per job is less than one, as N → ∞.

Note that such a value of T always exists, since 1 < 1/(2λ)−1
when λ < 1/4.

Proof of Corollary 1. Corollary 1 follows from Theorem 1 since
λE[T⌈X/T⌉] ≤ λ(T +E[X]) = λ(T +1) < λ(1/(2λ)−1+1) = 1/2
and E[⌊X/T⌋] ≤ E[X]/T = 1/T < 1. □

The JOQ algorithm has additional desirable properties, for
example that the expected number of messages per job in the
many-server limit can be driven to zero as λ ↓ 0. To accomplish
this, the value of T = T (λ) needs to be adjusted appropriately
given the load λ.

Corollary 2. When the value of T in the JOQ algorithm is chosen
depending on λ such that T (λ) < 1/(2λ) − 1 and T (λ) → ∞ as
λ ↓ 0, the JOQ algorithm has vanishing queueing delay, and the
expected number of messages per job in the many-server limit tends
to zero as λ ↓ 0.

Note that the convergence of the expected number of mes-
sages per job to zero refers to first taking the limit as N → ∞,
and then the limit as λ ↓ 0.

Proof. Note that Corollary 1 guarantees a vanishing queueing
delay since T (λ) < 1/(2λ)− 1 for any λ, so also more specifically
for the limit when λ ↓ 0. Moreover, Theorem 1 states that
the expected number of messages per job in the many-server
limit converges to E[⌊X/T⌋], with E[⌊X/T (λ)⌋] ≤ E[X]/T (λ) =

1/T (λ) ↓ 0 as λ ↓ 0. □
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Another desirable property of the JOQ algorithm is that, al-
though Corollary 1 requires λ < 1/4 in order to guarantee a
vanishing queueing delay with less than one message per job in
expectation, this can be achieved for higher values of λ for some
job size distributions. In particular, for job size distributions with
decreasing hazard rate, we have the following.

Corollary 3. Suppose that the job sizes X have a decreasing hazard
rate and that P(X > 1/(4λ)) < 1/2. Then, the JOQ algorithm with
T = 1/(4λ) has vanishing queueing delay, and the expected number
of messages per job is less than one in the many-server limit.

Proof of Corollary 3. When X has a well-defined and decreasing
hazard rate, its density function f (t) is decreasing since f (t +

u) < f (t) 1−F (t+u)
1−F (t) < f (t). This implies that the distribution

function F (t) is concave and 1 − F (t) is convex, which gives
1−F ((k+1)T )

1−F (kT ) ≤
1−F (kT )

1−F ((k−1)T ) . Successively applying this inequality
gives 1−F ((k+1)T )

1−F (kT ) ≤ 1 − F (T ) for any integer k. This leads to the
inequality

P(X > kT ) = 1 − F (kT ) =

k−1∏
i=0

1 − F ((i + 1)T )
1 − F (iT )

≤ (1 − F (T ))k = (P(X > T ))k .

(1)

Using this inequality, it follows that

E[T⌈X/T⌉] = T
∞∑
k=0

P(X > kT ) ≤ T
∞∑
k=0

(P(X > T ))k

=
T

1 − P(X > T )
<

1
2λ

,

(2)

where in the last inequality we used that T = 1/(4λ) and that
P(X > 1/(4λ)) < 1/2. This allows us to use Theorem 1 showing
that the queueing delay vanishes. Furthermore, the expected
number of messages per job is

E[⌊X/T⌋] =

∞∑
k=1

P(X > kT ) ≤

∞∑
k=1

(P(X > T ))k

=
P(X > T )

1 − P(X > T )
< 1,

(3)

where in the last inequality we once again used that T = 1/(4λ)
and that P(X > 1/(4λ)) < 1/2. This concludes the proof. □

For the special case of exponential job sizes, a vanishing
queueing delay and less than one message per job in expectation
can be obtained when λ < 1/ln(16) ≈ 0.36. This is shown in the
following result.

Corollary 4. Suppose that the job size X is exponentially distributed
and that λ < 1/ln(16). Then, there exists some T such that the
JOQ algorithm with that value of T has vanishing queueing delay,
and the expected number of messages per job is less than one in the
many-server limit.

Proof of Corollary 4. First note that, for exponential job sizes,
(1) holds with equality. Thus, Theorem 1 implies that a vanishing
queueing delay and less than one message per job in expectation
in the many-server limit is obtained as long as E[T⌈X/T⌉] =

T
1−P(X>T ) =

T
1−e−T < 1

2λ and E[⌊X/T⌋] =
P(X>T )

1−P(X>T ) =
e−T

1−e−T < 1.
It can be checked that there exists a T > 0 such that these two
inequalities are satisfied as long as λ < 1/ln(16). □

Remark 1. When the job size distribution is exponential, it is
optimal to take the update epochs equidistant, see Appendix A.

Remark 2. In [4] the authors show that the JIQ algorithm with
general job size distribution has vanishing queueing delay as long
as λ < 1/2. If it also has vanishing queueing delay whenever
λ < 1, which is conjectured, then Theorem 1 would hold for all
λ < 1 and for all T such that λE[T⌈X/T⌉] < 1. This decreases the
communication overhead since T can be chosen larger. Moreover,
such a stronger result would also improve the conditions stated
in Corollaries 1 and 3. For example, Corollary 1 would hold for all
λ < 1/2 and for all T such that 1 < T < 1/λ − 1.

4. Hybrid system using the JOQ and JIQ algorithms

In this section we introduce a system design that uses a
mixture of the JOQ and JIQ algorithms in order to show that a
vanishing queueing delay and less than one message per job in
expectation can be achieved for any load < 1/2 (or for any load
< 1 when the job sizes have a decreasing hazard rate).

4.1. System design

In particular, we propose the following system design.

Hybrid JOQ/JIQ: The N-server system is divided into two subsystems,
one with a fixed fraction f of the servers running the JOQ algorithm
with some value of T (JOQ-subsystem), and one with a fixed fraction
1 − f of the servers running the JIQ algorithm (JIQ-subsystem)
(numbers may be rounded to obtain integers). When a job arrives,
it is routed to the JOQ-subsystem with probability p, and to the
JIQ-subsystem with probability 1 − p.

Denote by ρ the maximum load for which the JIQ-subsystem
is guaranteed to achieve a vanishing queueing delay, which is
either 1 if the job size distribution has decreasing hazard rate
(case 1; [11]), or 1/2 otherwise (case 2; [4]).

Theorem 2. Suppose that either X has decreasing hazard rate and
λ < 1 (case 1), or that λ < 1/2 (case 2). Then the hybrid JOQ/JIQ
system design has a vanishing queueing delay, and its expected
number of messages per job is less than one in the many-server limit,
when f , p, and T are chosen such that p > 0, (a) λ(1−p)/(1−f ) < ρ,
(b) λp/f < 1/4 and (c) 1 < T < f /(2λp) − 1. Such values for f , p
and T always exist.

Proof of Theorem 2. Note that both subsystems can be analyzed
separately, as the Poisson arrivals are split randomly. First, since
the relative arrival rate to the JIQ-subsystem equals λ(1−p)/(1−

f ), which is assumed to be strictly less than ρ by Equation (a),
the JIQ-subsystem has a vanishing queueing delay. Furthermore,
the JIQ-subsystem uses at most one message per job for all N by
construction.

We now turn to the JOQ-subsystem. Since the relative arrival
rate to this subsystem equals λ̄ = λp/f , which is assumed to be
less than 1/4 by Equation (b), and since Equation (c) is assumed to
hold, Corollary 1 (applied with λ̄) implies that the JOQ-subsystem
has a vanishing queueing delay, and that it uses strictly less than
one message per job in expectation in the many-server limit.
Combining this with the assumption that p > 0, and the fact that
the JIQ-subsystem also achieves a vanishing queueing delay with
at most one message per job, we conclude that the whole system
achieves a vanishing queueing delay, and that it uses strictly less
than one message per job in expectation, in the many-server
limit.

Finally, it remains to be checked that there exist parameters
f , p, and T that fulfill the requirements. Indeed, if we choose
f = 1 − λ for case 1 and f = 1 − 2λ for case 2, thus fulfilling
(a), then for every λ < 1 or for every λ < 1/2, we can pick
p > 0 small enough so that (b) is satisfied. Moreover, since the
upper bound for T in (c) is larger than 1 for all p small enough
and becomes arbitrarily large for small p > 0, condition (c) can
also be satisfied for all λ < 1 or λ < 1/2. □
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4.2. Choosing the system parameters

Since the parameters f , p, and T to implement the Hybrid
JOQ/JIQ algorithm are not uniquely determined by the parameters
of the system, a natural choice for them is one that minimizes
the expected number of messages per job. Although this quantity
is unknown for any finite N , we can use its limiting values as
N → ∞ as a proxy. In particular, the parameters that minimize
this limit are given by the solution to the following optimization
problem.

inf
p,f ,T

1 − p + pE [⌊X/T⌋]

s.t. λpTE[⌈X/T⌉] < f /2, λ(1 − p) < ρ(1 − f ),
0 ≤ f ≤ 1, 0 ≤ p ≤ 1, T ≥ 0,

(4)

where ρ = 1 if X has decreasing hazard rate, and ρ = 1/2
otherwise. Unfortunately, in general there are no solutions for
this problem due to the strict inequalities. Moreover, since these
strict inequalities correspond to stability conditions for the JIQ-
subsystem and for the virtual queues in the JOQ-subsystem, a
relaxation with non-strict inequalities is not appropriate. Thus, a
way to obtain numerical values for the parameters is to introduce
some small slack ϵ in the constraints with strict inequalities, so
that they become

λpTE[⌈X/T⌉] ≤ f /2 − ϵ and λ(1 − p) ≤ ρ(1 − f ) − ϵ.

Furthermore, our simulations (Section 5) support the conjecture
that the JIQ algorithm is stable for all subcritical arrival rates,
regardless of the job size distributions. In that case, the first two
constraints (i.e., the stability constraints) in the problem given by
(4) would need to be

λpTE[⌈X/T⌉] < f and λ(1 − p) < (1 − f ). (5)

For exponential job sizes, it can be shown that the infimum
of the problem given by (4) is attained when the parameters are
selected as{
(i) T such that 1 − e−T

= 2λT , p = 1, f = 1,
(ii) T s.t. 2eT − 4T = 3, p =

(1−λ)(eT−1)
λ(1−eT+2TeT )

, f = 1 − λ(1 − p),

(6)

when (i) λ ≤ λ∗ or (ii) λ > λ∗, where λ∗ solves (1−λ)(eT−1)
λ(1−eT+2TeT )

= 1
when 2eT − 4T = 3. These parameters cause equality in some of
the equations where a strict inequality is needed. The derivation
of (6) is presented in Appendix B. The solution value is shown in
Fig. 1, as a function of λ. In this figure, we distinguish the cases
where JIQ is stable and has vanishing queueing delay for a general
job size distribution when λ < 1/2 (see (6)), and where this also
holds true for all λ < 1 (which is widely believed but remains to
be proven). See Appendix B for further details on this case.

5. Numerical simulations and discussions

In this section, we performed stochastic simulations of a sys-
tem with 1000 servers, first with exponential job sizes and later
with other job size distributions.

5.1. The choice of T

We investigate the performance of the JOQ algorithm. We
therefore plot the probability of queueing as a function of T , for
λ = 0.3, in Fig. 2. The thin blue dashed line represents the num-
ber of messages JIQ uses, and the thin red dashed line represents
the probability of queueing for the random dispatching policy.

Fig. 1. Numerical computation: the average number of messages per job as a
function of the arrival rate.

Fig. 2. Probability of queueing and average number of messages per job as a
function of T (λ = 0.3).

In this figure, it is clear that the probability of queueing and
the message rate are both extremely low when T is chosen to be
somewhere between 2 and 3. As expected, when T gets smaller
we observe that the average number of messages per job grows,
while the probability of queueing is almost zero. This reflects
the fact that, as the time between update epochs decreases, the
average number of messages increases and the dispatcher has
enough open servers to send almost every incoming job to one
of them.

Recall that in Section 4.2 we described a method to determine
the optimal value of T , as part of the solution of the optimization
problem given in (4). In particular, for λ = 0.3 this would lead
to T ≈ 1.51. However, in Fig. 2, one clearly observes that larger
values of T would give rise to a smaller number of messages,
while still yielding essentially zero queueing delay. If we assume
that the JIQ algorithm is always stable for any load ρ < 1, and use
the constraints given in (5), then the optimal value of T would be
approximately 3.20. This matches with the phase transition in the
performance observed at this value of T , where the probability of
queueing quickly increases up to the arrival rate λ, and where
the average number of messages per job rapidly increases to a
local maximum. These sharp increases in both the probability of
queueing and the average number of messages per job reflect
that when T is chosen to be too large, the virtual queues become
unstable and all servers remain closed. In that case, the dispatcher
is forced to send jobs to servers chosen uniformly at random, and
servers send messages non-stop every T time units.

More extensive results for λ = 0.5 follow in the next subsec-
tion. Similar observations hold for other values of λ as well, and
hence we omitted these figures. Note that for these larger values
of λ, the exact choice of T becomes more important. The fact that
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Fig. 3. Probability of queueing and average number of messages per job as a
function of T (λ = 0.5). The dashed lines represent the performance of the
system without virtual queues.

Fig. 4. Mean delay and average number of messages per job as a function of T
(λ = 0.5). The dashed lines represent the performance of the system without
virtual queues.

the JOQ algorithm still achieves less than one message per job
when λ = 0.5 is remarkable.

5.2. Virtual queues or not

The JOQ algorithm is tractable because we rely on the equiv-
alence with the JIQ algorithm. This is the reason why we use
virtual queues instead of the real queues in order to decide for
the servers when to stop sending messages.

We compare the JOQ algorithm with the variant without vir-
tual queues, where at an update epoch the server would send a
message that it is busy, exactly when it is actually busy. Results
are shown in Figs. 3 and 4, in which the dashed lines represent the
results for the JOQ algorithm without virtual queues. As can be
seen from these figures, there seems to be no difference for small
values of T . This is because the virtual queues are stable in both
cases, as their load is less than one. However, when T is close to
the crossover point, the difference between having virtual queues
or not becomes apparent. The virtual queues become overloaded
and no open servers become available anymore, while there are
still idle and thus open servers when no virtual queues are used.
We do note however that even in the system with no virtual
queues, queueing does not seem to vanish if T is chosen larger
than its optimal value.

5.3. Non-exponential job size distributions

We chose the update epochs to be equidistant in time for the
sake of simplicity of implementation and analysis. While irregular
update intervals may reduce the message rate in general, for

Fig. 5. Probability of queueing and average number of messages per job as a
function of T (λ = 0.5), when the job size distribution has decreasing hazard
rate (Gamma(2, 2)).

Fig. 6. Probability of queueing and average number of messages per job as a
function of T (λ = 0.5), when the job size distribution has increasing hazard
rate (Gamma(1/2, 1/2)).

exponentially distributed job sizes, equidistant update epochs in
fact minimize the expected number of messages per job, as will
be described further and proven in Appendix A.

For non-exponential job sizes, the behavior of the mean delay
and probability of queueing is quite different, as can be observed
in Figs. 5 and 6. When the hazard rate is decreasing, larger values
of T are acceptable for vanishing delays, which could be explained
by observing that (2) is an upper bound for the relative load when
the job size distribution has decreasing hazard rate, because of
(1). The mean delay turns out to be smaller in this case as well.
On the other hand, when the job size distribution has increasing
hazard rate, the mean delay increases and is non-zero already for
smaller values of T . The expected number of messages per job
also seems to be larger.

6. Conclusion

The JOQ algorithm greatly reduces the number of messages
exchanged in order to make the probability of queueing and the
expected queueing delay vanish, compared to existing algorithms
in the literature. In particular, to the best of our knowledge, this
is the first algorithm that achieves vanishing queueing delay with
less than one message per job in expectation, without advance
knowledge of job sizes. Moreover, by mixing JOQ with JIQ, we
showed that vanishing queueing delay can be achieved for all
systems where JIQ has vanishing queueing delay, but with strictly
fewer messages per job on average, compared to JIQ. In fact, for
all λ < 1/2 or any λ < 1 if the job size distribution has decreasing
hazard rate, we use strictly less than one message per job in
expectation while achieving a vanishing queueing delay.
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It would be worth further investigating how message loss
may impact the performance of the JOQ scheme. We believe our
scheme does not require any strict timings and can be extended
so that it receives messages during specific time windows, instead
of at predetermined time epochs. Whenever a message is lost, the
dispatcher would only send one message to a potentially busy
server. This is better than if a message would get lost in the JIQ
scheme, after which one of servers would be eliminated as option
to dispatch to.

An open question is whether the system design ‘hybrid
JOQ/JIQ’ in Section 4 minimizes the expected number of messages
per job in the limit, for exponentially distributed job sizes. That
is, does there exist a system design that also has a vanishing
queueing delay, but uses even fewer messages per job in the
limit?

A further challenging problem would be to investigate what
the optimal scheme looks like for generally distributed job sizes.
It seems that a combination of implicit and explicit messaging is
necessary.
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Appendix A. Optimality of equidistant updates for exponential
jobs

Let us relax the assumption that, under the JOQ algorithm, the
time between update epochs is always the same T . For i ≥ 1, let si
be the time between the (i−1)-th and the ith update epochs, with
the convention that the 0-th update epoch is at time 0. Assuming
that the probability of queueing converges to 0 as N → ∞, the
expected number of messages per job converges to

∞∑
i=1

P

⎛⎝X >

i∑
j=1

sj

⎞⎠ .

Moreover, the expected size of the blown up jobs is

∞∑
i=0

si+1P

⎛⎝X >

i∑
j=1

sj

⎞⎠ .

Assuming that the load of the system is at most ρ, the messaging
sequence s∗ that minimizes the limit of the expected number of
messages per job is the one that solves the following problem.

inf
s≥0

∞∑
i=1

P

⎛⎝X >

i∑
j=1

sj

⎞⎠
s.t. λ

∞∑
i=0

si+1P

⎛⎝X >

i∑
j=1

sj

⎞⎠ ≤ ρ.

(7)

Note that, as long as λ < ρ, this problem is always feasible. For
the special case of exponentially distributed job sizes, we have
the following.

Theorem 3. Suppose that the job sizes are exponentially dis-
tributed. If s∗ attains the infimum in (7), then there exists some
T > 0 such that s∗k = T , for all k ≥ 1.

Proof. We first obtain a sequence of implicit equations for s∗.

Lemma A.1. Suppose that P(X > x) is convex and differentiable,
with f (x) = −

d
dxP(X > x) > 0, for all x ≥ 0. Then, there exists a

constant C > 0 such that

C =

∑
∞

i=k s
∗

i+1f
(∑i

j=1 s
∗

j

)
− P

(
X >

∑k−1
j=1 s∗j

)
∑

∞

i=k f
(∑i

j=1 s
∗

j

) (8)

for all k ≥ 1, and

C = s∗k+1 −

P
(∑k−1

j=1 s∗j < X ≤
∑k

j=1 s
∗

j

)
f
(∑k

j=1 s
∗

j

) , (9)

for all k ≥ 2.

Proof. Since P(X > x) is convex, (7) is an infinite-dimensional
convex optimization problem in s. Now consider the Lagrangian

L(s, y) =

∞∑
i=1

P

⎛⎝X >

i∑
j=1

sj

⎞⎠
− y

⎡⎣λ

∞∑
i=0

si+1P

⎛⎝X >

i∑
j=1

sj

⎞⎠ − ρ

⎤⎦ .

Let
(
s∗, y∗

)
be an optimal solution. For every k ≥ 1, since s∗k = 0

cannot be optimal, we must have

∂L(s∗, y∗)
∂s∗k

= −

∞∑
i=k

f

⎛⎝ i∑
j=1

s∗j

⎞⎠
− y∗λ

⎡⎣−

∞∑
i=k

s∗i+1f

⎛⎝ i∑
j=1

s∗j

⎞⎠ + P

⎛⎝X >

k−1∑
j=1

s∗j

⎞⎠⎤⎦
=0.

Since f (x) > 0 for all x ≥ 0, we have y∗ > 0. Thus, rearranging
terms we obtain Eq. (8) with C = 1/(y∗λ) > 0. Moreover, using
that
∂L(s∗, y∗)

∂s∗k
−

∂L(s∗, y∗)
∂s∗k−1

= 0

for all k ≥ 2, and rearranging terms, we obtain Eq. (9). □

Combining (9) with the fact that the jobs are exponentially
distributed, we obtain

s∗k+1 = C + 1 − es
∗
k ,

for all k ≥ 2. Combining this with the fact that s∗k ≥ 0 for all
k ≥ 1, it can be checked that we must have s∗k = T for all k ≥ 2,
where T is the unique solution of

T = C + 1 − eT .

On the other hand, combining (8) for the case k = 2, with
the fact that the job sizes are exponentially distributed and that
s∗k = T for all k ≥ 2, we obtain

T = C +
(
1 − eT

)
eT−s∗1 .

Thus, we have s∗1 = T . □

Appendix B. Solution of the minimization problem

The minimization problem (4) when job sizes are exponen-
tially distributed looks as follows.

inf
p,f ,T

1 − p + p
e−T

1 − e−T

s.t. λpT/(1 − e−T ) < f /2, λ(1 − p) < 1 − f ,
0 ≤ f ≤ 1, 0 ≤ p ≤ 1, T ≥ 0.

(10)
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Note that the objective function is decreasing in T , so T should
be as large as possible. The first condition then shows that, in
order to choose T large, p should be minimized, after which
the second condition gives that f should be chosen as close as
possible to but less than 1 − (1 − p)λ. This transforms the first
inequality into

T/(1 − e−T ) <
1 − (1 − p)λ

2λp
, (11)

where the right-hand side is decreasing in p. As we want to
maximize T , we seek equality which gives

p(λ, T ) =
(1 − λ)(eT − 1)

λ(1 − eT + 2TeT )
, (12)

where we note that this value may exceed 1, in which case we
preserve the equality as much as possible and set p(λ, T ) = 1.
Suppose p(λ, T ) < 1, in that case we choose T such that 2eT −

4T = 3 in order to minimize the objective function (this follows
from differentiating the objective function and equating it to zero,
after substituting (12)). However, with this value of T , p(λ, T ) may
be larger than one. Denote this critical value of λ by λ∗, so λ∗ is
defined as the smallest value of λ∗ for which p(λ, T ) is strictly
smaller than one, when T is chosen such that 2eT − 4T = 3.
When λ is smaller than this λ∗, we choose p = 1 after which
the objective function is minimized by putting T such that (11) is
met with equality which is the case when 1 − e−T

= 2λT .

B.1. JIQ Stable for λ < 1

If the stability result proved in [4] applies even when λ <

1, then (11), which corresponds to the first constraint in (10),
becomes λpT/(1 − e−T ) < f . The optimal parameters for this
problem are⎧⎪⎨⎪⎩
(i) T such that 1 − e−T

= λT , p = 1, f = 1,
(ii) T such that eT − 2T = 1, p =

(1−λ)(eT−1)
λ(1−eT+TeT )

,

f = 1 − λ(1 − p)

when (i) λ ≤ λ∗ or (ii) λ > λ∗, where λ∗ solves 1−eT+λTeT

(1−eT+TeT )λ
= 0

when eT − 2T = 1.
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