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ABSTRACT

Electronic Health Record (EHR) coding is the task of assigning
one or more International Classification of Diseases (ICD) codes
to every EHR. Most previous work either ignores the hierarchical
nature of the ICD codes or only focuses on parent-child relations.
Moreover, existing EHR coding methods predict ICD codes from the
leaf level with the greatest ICD number and the most fine-grained
categories, which makes it difficult for models to make correct de-
cisions. In order to address these problems, we model EHR coding
as a path generation task. For this approach, we need to address
two main challenges: (1) How to model relations between EHR and
ICD codes, and relations between ICD codes? (2) How to evaluate
the quality of generated ICD paths in order to obtain a signal that
can be used to supervise the learning? We propose a coarse-to-
fine ICD path generation framework, named Reinforcement Path
Generation Network (RPGNet), that implements EHR coding with
a Path Generator (PG) and a Path Discriminator (PD). We address
challenge (1) by introducing a Path Message Passing (PMP) module
in the PG to encode three types of relation: between EHRs and
ICD codes, between parent-child ICD codes, and between sibling
ICD codes. To address challenge (2), we propose a PD component
that estimates the reward for each ICD code in a generated path.
RPGNet is trained with Reinforcement Learning (RL) in an adversar-
ial manner. Experiments on the MIMIC-IIT benchmark dataset show
that RPGNet significantly outperforms state-of-the-art methods in
terms of micro-averaged F1 and micro-averaged AUC.
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1 INTRODUCTION

An Electronic Health Record (EHR) contains a variety of clinical
patient information, such as medical history, vital signs, lab test
results and clinical notes [23]. EHR coding aims to assign multi-
ple International Classification of Diseases (ICD) codes to EHRs.
ICD codes can be used in search, data mining, billing, epidemiol-

level-O]  level-1 | level-2 | level-3 |level-4(leaflevel)|

Figure 1: A schematic diagram of the ICD-9 taxonomy.

ogy assessment, and quality control of health care providers [1, 5].
Fig. 1 shows an example of ICD codes organized in a hierarchical
tree structure; as the level increases, the granularity of the ICD
codes becomes finer; the ICD codes at level-4 (the leaf level) are
the most fine-grained. Automatic EHR coding is increasingly at-
tracting attention because manual coding is time-consuming and
error-prone [15].

Most existing methods for EHR coding treat the task as a multi-
label classification task on the leaf codes of the ICD taxonomy [19,
31, 40]. There are some downsides to this approach. First, the code
space is high-dimensional, with over 18,000 codes in ICD-9-CM,!
and the distribution of ICD codes is extremely unbalanced; most
of the codes are seldom used in EHRs. Second, most classification

Thttps://www.cde.gov/nchs/icd/icd9em.htm
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methods neglect relations between ICD codes, which is not con-
ducive to ICD prediction. For example, in Fig. 1 “003.21” (ICD code
of salmonella meningitis) and “003.22” (ICD code of salmonella
pneumonia) share common characteristics (i.e., they are all caused
by salmonella infections) and may be strongly related to each other.
Third, few publications [24, 39] consider such relations and only
focus on the relations between parent-child ICD codes.

To address the above issues, we propose to reformulate automatic
EHR coding as a path generation task along the ICD tree. This new
formulation generates ICD paths level by level. Intuitively, the
number of ICD codes at lower levels is generally smaller than the
number of leaf ICD codes; in other words, the candidate space of
ICD codes is reduced. The generated ICD codes at coarse-grained
levels (i.e., lower levels) can be used to facilitate the ICD generation
at more fine-grained levels (i.e., higher levels). Moreover, each ICD
code in a path can be seen as a prediction result for the EHR at
a particular level, so the path generation method can yield multi-
grained EHR coding.

However, there are two challenges to be addressed: (1) How to
model the relations between EHR and ICD codes, and between
ICD codes? There are at least three types of relation, i.e., relations
between EHRs and the ICD hierarchy, relations between parent and
child ICD codes, and relations between sibling ICD codes. (2) How
to evaluate the quality of the generated ICD paths in order to define
a supervision signal for learning? In many cases, the generated
path is partially correct (i.e., the path D —» @ — @ — @ and
the path D —» @ — ® — ® — @ in Fig. 1). For example, the
agent gets the correct path at level-1 and level-2, but makes wrong
decisions at level-3 because of finer ICD granularity at level-3,
which corresponds to the path D — @ — ® — @ in Fig. 1. In
addition, the classification granularity at each level is different, and
the rewards obtained at each level should probably also be different.
Defining rewards as a signal to learn from remains a challenge [10].

In this paper, we address the issues and challenges listed above by
proposing a coarse-to-fine ICD path generation framework, namely
Reinforcement Path Generation Network (RPGNet), for automatic
EHR coding. RPGNet is a coarse-to-fine path generation framework
because it generates ICD codes from lower levels to higher lev-
els in the ICD hierarchy. RPGNet solves the EHR coding task by
taking an EHR as input and returning a set of paths whose final
nodes are codes to be assigned to the record. RPGNet contains two
main components: a Path Generator (PG) and a Path Discrimina-
tor (PD). The PG consists of an EHR Encoder and a Path Message
Passing (PMP) module. Given an EHR, the EHR Encoder is used
to obtain latent EHR representations. We implement the EHR En-
coder with a multi-channel Convolutional Neural Network (CNN).
Then, the PMP module is introduced to model relations between
EHRs and ICD codes, and between ICD codes to obtain representa-
tions of the relations. Specifically, PMP addresses challenge (1) by
propagating information between an EHR and related ICD codes.
Finally, a hybrid policy network is exploited to generate ICD paths
for a given EHR based on the relation representations. To address
challenge (2) and train RPGNet, we design a PD to evaluate the
intermediate reward for each ICD code in a path. RPGNet is trained
with Reinforcement Learning (RL) in an adversarial learning fash-
ion [13]. Specifically, the PG is meant to generate paths that are
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indistinguishable from positive paths, while the PD is meant to
distinguish positive paths and generated paths.

We conduct extensive experiments on the MIMIC-III benchmark
dataset [17] to obtain empirical evidence for the effectiveness of
RPGNet. Our experimental results demonstrate that RPGNet signif-
icantly outperforms state-of-the-art methods by a large margin. We
also conduct a number of analyses to show how RPGNet performs
w.r.t. the two challenges listed above.

To sum up, the contributions of this work are as follows:

e We formulate automatic EHR coding as a path generation
task and propose a reinforcement path generation frame-
work, RPGNet, for coarse-to-fine EHR coding.

e We propose a Path Message Passing module that models the
relations between EHRs and ICD codes, and between ICD
codes by allowing information to spread between them.

e We devise a Path Discriminator with an adversarial reward
learning mechanism to evaluate the intermediate rewards
as supervision signals for learning RPGNet.

e We carry out extensive experiments on a benchmark dataset
to verify and analyze the effectiveness of RPGNet.

2 RELATED WORK
2.1 Automatic EHR coding

In recent years, the automatic EHR coding task has been studied in
a large number of publications, in information retrieval, machine
learning, and healthcare. Kavuluru et al. [19] treat the task as a multi-
label classification problem and develop a label ranking method
based on features selected from the EHR text. Shi et al. [31] use a
neural architecture with LSTM and attention mechanism, which
takes diagnosis descriptions as input to predict ICD codes. Wang
et al. [35] propose a model that can jointly capture word and label
embeddings and exploit the cosine similarity between them to
predict ICD codes. Sadoughi et al. [30] solve the task as a multi-
task classifier problem and exploit the description of ICD codes for
regularizing the attention for each individual classifier. Xu et al.
[40] investigate several separate machine learning models to handle
EHR data from different modalities, and then employ an ensemble
method to integrate all modality-specific models to predict ICD
codes. None of the above methods takes the hierarchical relations
between ICD codes into account, which is problematic because ICD
codes are organized in a hierarchical structure.

There have been some methods that attempt to encode the hi-
erarchical structure of ICD codes. Perotte et al. [27] utilize “flat”
and “hierarchical” SVMs based on tf-idf document features for EHR
coding; the former treats each code as an individual prediction,
while the latter exploits the ICD code ontology for hierarchical
classification. Mullenbach et al. [24] adopt a CNN-based model
with a per-label attention mechanism to assign ICD codes based
on free-text descriptions. In addition, they use a Graph Neural
Network (GNN) [42] to capture the parent-child relations between
ICD codes and obtain a representation of each ICD code. Similarly,
Xie et al. [39] leverage GNNs to encode the ICD hierarchy and
incorporate multi-scale feature attention for EHR coding.

The differences between the work listed above and our work
are at least two-fold. First, no previous work formulates automatic
EHR coding as a path generation task, which is a more appropriate
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Figure 2: Overview of RPGNet. RPGNet contains two major components: a path generator Gy and a path discriminator Dy. The
PMP in Gy represents path message passing module. The input of RPGNet is an EHR and the output consists of coarse-to-fine

ICD paths.

modeling choice considering how ICD codes are organized. Second,
although some previous work has proposed to model relations
between ICD codes, only parent-child relations have so far been
considered while relations between sibling codes have been ignored:
we model different kinds of relation in a unified framework.

2.2 Reinforcement learning for healthcare

To the best of our knowledge, there is no prior work that uses RL
work for automatic EHR coding, so we survey related work from
a broader healthcare perspective. Tang et al. [33] use RL to create
an effective and efficient symptom checker to predict diseases by
asking patient questions. Nemati et al. [25] leverage a combination
of Hidden Markov Models and deep Q-networks to predict optimal
heparin dosing for ICU patients. Besson et al. [4] focus on disease
diagnosis based on RL by minimizing the average number of medi-
cal tests. Kao et al. [18] use hierarchical reinforcement learning for
selecting symptoms to inquire and diagnose so as to improve diag-
nosis accuracy. Wang et al. [36] propose a graph convolutional RL
model for medicine combination prediction by learning correlative
and adverse interactions between medicines.

In this work, we study how to apply RL to automatic EHR coding
where we need to generate coarse-to-fine paths of ICD codes. And
unlike the work listed above, rather than setting rewards manually,
we exploit adversarial learning to estimate rewards automatically
by determining the authenticity of the paths.

2.3 Adversarial networks for healthcare

The idea of Generative Adversarial Networks (GANSs) has achieved
great success in many domains, especially in computer vision. The
training process is formalized as a game in which the generative
model is trained to generate outputs to fool the discriminator; the
discriminator judges the output of the generator and directs the gen-
erator to produce indistinguishable results. In healthcare, several

GAN-based models have been proposed to handle tabular data in
EHRs. RGAN and RCGAN [8] can generate real-valued time-series
data. Choi et al. [6] and Guan et al. [12] have proposed medGAN and
mtGAN, respectively, to generate realistic synthetic patient records.
Yu et al. [41] use GANSs in a semi-supervised learning setting to
improve the detection performance on rare diseases.

Unlike previous work, we make use of the idea of adversarial
learning in GAN and combine it with RL to explore ICD code paths
and estimate intermediate rewards for each code in a path. The dis-
criminator is used to determine the authenticity of a path explored
by our model; its results are considered as intermediate rewards for
each code in a path to guide the learning of our model.

3 METHOD

Given an EHR x in free text, i.e., x = [w1, wa, ..., wj,...], where
w; denotes a token, the task of EHR coding with ICD paths is to
generate several optimal ICD paths Y = [y',y%,...,¢/,...], where
yj = [c1,¢2,...,¢t,...] is the j-th ICD path and ¢; € C is the ¢-
th ICD code in the path, where C represents all candidate ICD
codes. Note that all paths start with the root code c¢; in the ICD tree
taxonomy. Without loss of generality, we omit the notation j in the
following sections. Next, we describe the proposed Reinforcement
Path Generation Network (RPGNet) in detail.

3.1 Overview

RPGNet consists of two components: a path generator Gy and a
path discriminator D¢, as shown in Figure 2.

The path generator Gy, parameterized by 0, generates ICD paths
given an EHR. Gy contains two modules: an EHR Encoder and a
Path Message Passing (PMP) module. The EHR Encoder is used to
obtain the representation of each EHR; the PMP module is used
to merge information from the EHR, the current ICD code, and
the candidate ICD codes. The information obtained from the PMP
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module determines the initial state s;. A hybrid policy network is
designed to generate ICD path y; till timestamp t along the ICD tree
taxonomy. The path y; is then integrated with the EHR information
to get a new state sy41 through the PMP module. This process is
repeated several times until the path reaches leaf ICD codes.

The path discriminator Dy, parameterized by ¢, is a binary clas-
sifier that takes an EHR x and an ICD path y; till timestamp ¢ as
inputs and outputs a probability r; indicating whether the current
path is a ground truth path or generated by Gy. Specifically, the
generated path y; till timestamp ¢ is first encoded into a vector
representation h; using an Long Short Term Memory (LSTM), and
concatenates with an EHR representation x. The concatenated rep-
resentation is then fed into a fully-connected layer with sigmoid
activation function to get r;, which indicates the probability of y;
being a part of a ground truth path. r; is considered as a reward to
guide the learning of the path generator Gy.

3.2 Markov Decision Process formulation

We model the above process as a Markov Decision Process (MDP) [3]
(S, A, T,R,y), where S is a continuous state space, A is the set
of all available actions, 7 is the state transition function, R is the
reward function of each (state, action) pair, and y is the discount
factor. Next, we introduce how we model S, A, 7, and R in detail.

e State S. The state S contains EHR information, current ICD
information, and children ICD information.

e Action A. A is organized in a hierarchical structure con-
sistent with the ICD taxonomy, where the action space is
different for different steps when generating an ICD path.
For example, if the agent reaches ICD code a;—1 whose level
is t —1, the candidate actions at timestamp ¢ are all ICD codes
at level ¢.

e Transition 7. 7 represents the transition function from
current state to the next state. In our case, the transition
function is deterministic, which means that the next state
St+1 is not stochastic and only depends on the current state
s; and action a;.

e Reward R. The reward r; € R indicates how good the
selected ICD code is at timestamp ¢ which is evaluated auto-
matically by the path discriminator D.

In order to encourage the path generator to generate correct ICD
paths that are indistinguishable from ground truth paths, we pro-
pose to maximize the expected rewards of the path generator using
the reinforce algorithm [37]:

J(0) = Ea~n(a|s,x;9) (Z R(st,x),a,)
t

=0 > mar |56 0R (s, 00,00

t ag;eA

ey

where J(0) is the expected total rewards for one episode; 7 (a; |
st, x;0) is the hybrid policy network of the path generator Gy,
which maps the state vector s; and EHR representation x to a sto-
chastic policy a;. a; is the generated ICD code based on the current
state s; and EHR representation x. R(s, 1) 4, indicates the reward
value the agent receives for executing a;, which is implemented
with the path discriminator Dy. We can update ¢ with the policy
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Figure 3: Path Message Passing (PMP) module. First, the mes-
sage is propagated between EHR x and ICD path R — A. Sec-
ond, the relation representation o; is spread to children (i.e.,
A1, Az and A3) to get the relation representation v; between
parent code A and each child A;. Third, the v; passes between
siblings (i.e., A1, A2 and A3) to get the final relation represen-
tation m;. Lastly, after passing through the two gates ¢ and
1-o0, the relation representation m; and EHR representation
x are added together as state s;.

gradient as follows:

VIO) =) > aar | se,x:0)Vglogn(ar | se,x:0).  (2)

t aeA

Next, we will show how to model 7(a; | s¢,x;0) and Ry, 1) 4, in
the path generator Gy and path discriminator Dy, respectively.

3.3 Path generator Gy

We model 7(a; | s¢, x; 0) with a hybrid policy network that consists
of two policies, a local policy 7; and a global policy 74:

m(ar | st x;:0) = Am(ar | s¢:0p) + (1= Nmg(ar | x;:04).  (3)

Here, A is a trade-off factor to balance the two policies. The local
policy 7; decides the next ICD code from child ICD codes of the last
action a;—1 based on state s; to extend the path, while the global
policy 4 decides the ICD code from all the ICD codes at the ¢-th
level of the ICD taxonomy (not only the child codes of a;—1). The
intuition behind the global policy is that the local policy only selects
the next ICD code from child ICD codes of the previous ICD code,
which easily causes error accumulation, i.e., if the agent makes a
wrong decision at lower levels, all subsequent decisions are wrong.
The global policy alleviates the error accumulation by allowing the
agent to decide the next ICD code from all ¢-th level child codes so
as to correct its decisions.

The global policy uses a fully-connected layer to directly map
the EHR representation x to the probability distribution over ICD
codes at the corresponding level. Another fully-connected layer is
used by the local policy to map the state s; to the probability distri-
bution over child ICD codes of the last action. The two probability
distributions are weighted together to obtain the final probability

distribution over all candidate ICD codes:
w(ar | st x;0) = Aa(Wi(st) +by) + (1 = V)a(Wy(x) +by), (4)

where W; and Wy are weight matrices; by and bg are bias terms; and
o is the sigmoid activation function.
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3.3.1  Path Message Passing. Inspired by [21, 32], we propose a PMP
module to encode the state s; by taking into account the relation
between an EHR and the hierarchical ICD structure, parent-child
relations, and sibling relations of ICD codes, as shown in Figure 3.
Formally, s; is defined as:

st =m; O T (x,Wr) +x 0 (1-T(x,W7)). (5)

where Wr is the weight matrix; T is a gate that is used to control the
information transforming from the EHR representation x and my,
respectively; m; represents the relation representation obtained
by three steps of message passing: EHR-to-path message passing,
parent-to-child message passing, and sibling-to-sibling message
passing, as shown in Figure 3. Next, we introduce the modeling of
these three steps one by one.

Step 1: EHR-to-path message passing. This step is used to integrate
the EHR representation and ICD path representation. The relation
representation between an EHR and an ICD path is denoted as oy,
which can be obtained as follows:

oy = tanh(Wo (uy)), (6)

where W, is the weight matrix and u; is obtained through various
transformations of EHR representation x and path representation
¢;. Here, u; is computed as follows:

U =x0c;rD(x0ct)D(x+c)d(x—ct)d(cr—x), (7)

where @ indicates vector concatenation, ® indicates the element-
wise product, and ¢; is the representation of selected ICD code at
timestamp ¢ (i.e., the representation of a;).

Step 2: Parent-to-child message passing. This step is used to cap-
ture the relation between parent and child ICD codes of ICD code
a;. After obtaining relation representation o; between an EHR and
an ICD path, we propagate this relation representation from parent
code to all its child codes to generate relation representation v;:

v =0 O ¢y, (8)

where © indicates the element-wise product operation, and c{ is
the vector representation of each child ICD.

Step 3: Sibling-to-sibling message passing. This step is used to
capture the relation between sibling ICD codes by spreading in-
formation between sibling ICD codes. Specifically, we achieve this
by passing information between sibling ICD codes using intra-
attention (also called self-attention [34]) neural message passing,
which enables ICD codes to attend over their sibling ICD codes
differently. This allows for the network to learn different degrees
of importance for different sibling ICD codes. Sibling-to-sibling
message passing is formulated as follows:

m; = o+ Z Mattn(01,0}), ©)]
JENy,

where Mgt sn is the attention function; Ny, indicates all the sibling

ICD codes of v¢, and u{ represents the j-th sibling ICD of code v;.
Mgt n is used to pass the message from the j-th sibling ICD code_:
to the current ICD code v; using the learned attention weights atj :

Matin(v1,0]) = et o). (10)

SIGIR ’20, July 25-30, 2020, Virtual Event, China

The attention weights a{ for a pair of sibling codes (vy, v{ ) can be
calculated using the attention function a(-):

Jj

¢

_—, (11)
SkeN (o) exp(el)

j j €
a; = softmax;(e;) =

where ef represents the importance of the j-th sibling code for the
current code before normalization; the e{ are normalized across
all sibling nodes of the current ICD code using a softmax function
(Eq. 11) to get a[j. For the attention function a(-), we use a dot

product with linear transformations Wy on code v; and W, on u{ :

ei = a(vt,v{) (12)

a(or,0]) = (Wgor) T (Waoy). (13)

3.3.2  EHR encoder. This module applies a multi-channel CNN [20]

to encode each EHR to a vector representation x. Let w; be the d-

dimensional token vector corresponding to the i-th token in the
EHR. An EHR of length n is represented as:

Win=w1 Ow2 - Swy, (14)

where @ is the concatenation operator. A convolution operation
involves a filter Wy € R*, which is applied to a window of [ words
to produce a new feature. For example, a feature z; is generated
from a window of words w;.;,;_ by

zZji = relu(Wf ®Wjjr—1 + b), (15)
where @ indicates the convolution operation, b € R¥ is a bias

term and relu is a non-linear function. This filter is applied to each
possible window in the EHR to produce a feature map z:

Z2=219228 - ®Zy_py1- (16)

Then we apply a max-over-time pooling operation [7] over the
feature map and take the maximum value as the feature z corre-
sponding to this particular filter:

Z = max(z). (17)

This module uses multiple filters (with varying window sizes) to

obtain multiple features. These feature are concatenated together

as a vector representation x of an EHR as follows:
x:z}EBzAZGB---EBzAk, (18)

where Z). represents the k-th feature map obtained by the k-th filter.

3.4 Path discriminator Dy

We design the path discriminator module Dy to get the reward r; for
each code in the generated path y; until timestamp t. Specifically,
we model r; as the discrimination probability as follows:

rr = R(st,x),a, = pp(yr, x) = ac(Wr(ht @ x)), (19)
where @ denotes the concatenation operation, and W is the weight
matrix; h; is the representation of the current generated path y;,
which is obtained by recurrently applying an LSTM to the ICD code
pathyr = (c1,¢2, ..y Cpy - .- 1)

hy = LSTM(hy_1, cg), (20)

where hj._; is the hidden vector at timestamp k — 1; ¢, is the k-th
ICD code representation.
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To learn the path discriminator D¢, we adapt an adversarial
training schema, where we consider the paths generated from the
path generator Gy as negative samples and the ground truth paths
as positive samples. The objective of path discriminator Dy can be
formulated as minimizing the following cross-entropy function:

Ip==- Y logpp(ynx)— . log(l-pp(y,x), @)
(yr.x) €Q* (yr.x)€Q

where Q% and O~ denote positive and negative samples, respec-
tively; pp (y:, x) represents the probability of sample (y;, x) belong-
ing to a positive sample.

The update of path discriminator Dy is identical to the com-
mon binary classification problem, which can be optimized by any
gradient-based algorithm.

3.5 Adversarial reinforcement learning

The alternating training process of the path generator Gy and the
path discriminator Dy is shown in Algorithm 1. After randomly
initializing Gg and Dy, we use ground truth paths to pre-train Gg
(line 1-2). The training times for Gy and Dy in each epoch are M
and N respectively (line 4 and line 12). For training Gy, we generate
a single path y for each EHR x in the batch EHRs (line 6). Then we
calculate the reward for each ICD code in the generated path y (line
7). We use batch EHRs and generated paths to update the generator
Gy with policy gradient (line 9). To make the exploration of Gy
more effective, we train Gy on batch EHRs and ground truth paths
(line 10). For training Dy, we generate a single path y for each EHR
x in the batch EHRs (line 14) and also sample a ground truth path
for this EHR (line 15). Then, we train the path discriminator Dy
with generated paths and ground truth paths (line 17).

Algorithm 1: Adversarial reinforcement learning algo-
rithm for training RPGNet.

1 Initialize Gy, D¢ with random weights 0, ¢;

2 Pre-train Gy on dataset D with teacher forcing using the
ground truth paths;

3 for epoch = 1: EPOCHS do

4 for each j=1,2,...,M do

5 for each EHR x in batch EHRs do

6 Sample a path for EHR x from Gy, y ~ Gg;

7 Compute rewards for each code in y with Eq. 19;
8 end

9 Update generator Gy via policy gradient with Eq. 2;
10 Train Gy on batch EHRs and ground truth paths

with teacher forcing;

11 end

12 for each j=1,2,...,N do

13 for each EHR x in batch EHRs do

14 Sample a path for EHR x from Gg;

15 Sample a ground truth path for EHR x from D;
16 end

17 Train path discriminator Dy with Eq. 21;

18 end

19 end
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4 EXPERIMENTAL SETUP

We seek to answer the following research questions: (RQ1) What
is the performance of RPGNet on the EHR coding task? Does it
outperform state-of-the-art methods? (RQ2) How does RPGNet
perform at different ICD levels of the ICD taxonomy? (RQ3) Where
do the improvements of RPGNet come from? What are the effects
of different components? (RQ4) How does the trade-off coefficient
(A) between the local and global policy influence the performance?

4.1 Dataset

We conduct experiments on a real-world dataset: the MIMIC-III
dataset,? which is a large, freely-available database comprising de-
identified health-related data associated with over forty thousand
patients between 2001 and 2012. This is the only benchmark dataset
that is commonly used on this task and publicly available [17, 39].
As with previous studies [e.g., 24, 28, 29], we focus on discharge
summaries in EHR, which summarize the information about a stay
into a single document. We clean discharge summaries by remov-
ing noisy information, such as doctors’ information and hospital
information. There are two experimental settings for comparison:
(1) Top-50 label setting: We only predict the 50 most frequent
ICD codes, and filter each dataset down to the instances that
have at least one of the top 50 most frequent codes; and
(2) Full-label setting: We keep all diagnosis ICD codes appearing
in discharge summaries.
We randomly divide the MIMIC-III dataset into training, validation
and test sets with 4:1:1 ratios for the above two different settings.

Table 1: Statistics of the MIMIC-III dataset.

Statistics Top-50 labels Full-label
# discharge summaries 49,354 52,722
# total ICD codes 122 9,219
#ICD codes in level-1 23 155
# ICD codes in level-2 38 1,098
# ICD codes in level-3 47 4,475
# ICD codes in level-4 50 6,918
# avg ICD codes per EHR in level-1 4.05 8.56
# avg ICD codes per EHR in level-2 4.55 10.78
# avg ICD codes per EHR in level-3 4.30 11.13
# avg ICD codes per EHR in level-4 1.69 5.36

Table 1 shows the statistics of two dataset settings, respectively.
From the statistics we can see that: (1) In the MIMIC-III dataset, the
number of ICD codes at different levels varies greatly. Generally,
the number of ICD codes at coarse-grained levels is much smaller
than that at fine-grained levels. This is why we believe that using
the ICD hierarchy structure to explore ICD paths from lower levels
to higher levels can effectively reduce the candidate ICD space,
and the difficulty of model learning. (2) The average number of
ICD codes per EHR is quite small compared to the total number of
ICD codes in the hierarchical structure. This is why we think it is
critical to integrate the relations of ICD codes between different
levels and same levels to reduce the influence of non-relevant ICD
information when predicting multiple ICD codes for each EHR.

2The dataset used in this paper is available at https://mimic.physionet.org/
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4.2 Baselines

In order to demonstrate the effectiveness of RPGNet, we compare
it with several methods, including state-of-the-art models for EHR
coding and a hierarchical text classification method:

e Flat SVMs [27]. This method uses 10,000 tf-idf unigram
features to train multiple binary SVMs for EHR coding.

e Multi-layer Percepetion (MLP). We learn a multi-label
classification model with a three-layer perceptron to predict
the probability of each ICD code.

e BI-GRU [43]. This method uses a bidirectional gated recur-
rent unit to encode EHR and then performs binary classifi-
cation on each ICD code based on the EHR representation.

e HA-GRU [2]. HA-GRU uses a hierarchical attention Bidi-
rectional Gate Recurrent Unit (BI-GRU) to encode EHR by
identifying the most relevant sentences in EHR w.r.t. each
ICD code.

e CAML and DR-CAML [24]. CAML exploits Text-CNN [20]
to obtain a representation of each EHR and then uses label-
dependent attention to learn the most informative repre-
sentation for each ICD code, based on which it does binary
classification. DR-CAML enhances CAML by adding an ICD
description regularization term to the final classification
weights.

o MSATT-KG [39]. MSATT-KG leverages a densely connected
convolutional neural network to produce variable n-gram
features for clinical notes and incorporates multi-scale fea-
ture attention to adaptively select multi-scale features. The
multi-scale features are used to perform multi-label clas-
sification over all the ICD codes. It also leverages graph
convolutional neural networks to capture the hierarchical
structure of the ICD taxonomy.

e HARNN [16]. This method was initially proposed for multi-
label text classification. It also takes the hierarchical struc-
ture of the taxonomy into account by integrating text with
the hierarchical category structure through an hierarchical
attention-based recurrent layer. We apply HARNN to this
task because the ICD taxonomy has a similar hierarchical
structure.

4.3 Evaluation metrics

We report a variety of metrics that are commonly used by previ-
ous studies on this task [24, 28, 39], including micro-averaged and
macro-averaged metrics. Micro-averaged metrics are calculated by
treating each sample as a separate prediction, while macro-averaged
metrics are calculated by averaging metrics computed per-label.
The macro-averaged metrics pay more attention to rare label pre-
diction. Specifically, we use Precision, Recall, F1 and Area Under
Curve (AUC) as evaluation metrics [11, 14]. F1 score is the harmonic
mean of Precision and Recall, and AUC summarizes performances
under different thresholds. We also use the Jaccard Similarity Co-
efficient [26] to measure the overlap between two sets, which are
prediction results by EHR coding methods and ground truth ICD
codes. It is defined as Jaccard = # >rYn Yi|/|Y; U Y;|, where m
indicates the number of instances of the dataset, Y; is the prediction
result by different EHR coding methods, and Y; is the ground truth
ICD set.
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4.4 Implementation details

The local policy and global policy both use 300 hidden units for
the fully connected layers (Eq. 3). In the EHR encoder module, the
w; (Eq. 14) is a 100-dimensional vector that is randomly initialized.
We use 3 convolutional layers, and the filter sizes are all set to 100.
The kernel size of each layer is set to 3, 4, 5 respectively. After the
last convolutional layer, we apply dropout with a drop ratio of 0.5
(Eq. 18). In the PMP module, the hidden size of the transform gate
T is set to 300 (Eq. 5). The embedding size of each ICD code is set
to 100 (Eq. 7 and Eq. 8). The hidden sizes in the transformations Wy
and W, are set to 300 and 500, respectively (Eq. 13). During training,
the number of epochs is limited to 200. The number of training
iterations M and N for path generator Gy and path discriminator
Dy at each epoch are both set to 1 (Algorithm 1). We initialize
model parameters randomly and use a batch size of 32. The Adam
optimizer [38] is used to optimize all parameters. The learning
rate @ = 0.0001 and the momentum parameters are set to default
B1 = 0.9 and B2 = 0.999. We implement RPGNet in PyTorch and
train it on a GeForce GTX TitanX GPU.

5 RESULT AND ANALYSIS
5.1 Overall performance (RQ1)

To answer RQ1, we report the evaluation metrics for both the top-50
label setting and the full-label setting in Table 2 and 3, respectively.
We first analyze the results on the top-50 label setting, which is
mostly adopted in the literature [24, 28, 31]. From Table 2, we have
the following observations:

First, RPGNet achieves the best performance on most of the
evaluation metrics. This indicates that RPGNet is able to effectively
perform EHR coding by exploiting the hierarchical ICD structure.
The micro Recall value gets the most significant improvement, i.e.,
14.5% over the best baseline HA-GRU. The reason is that RPGNet
explores ICD paths through adversarial reinforcement learning,
which helps to discover rare ICD paths, which in turn increases
coverage of ICD codes.

Second, CAML, DR-CAML, and MSATT-KG all have higher Pre-
cision values and lower Recall values compared to RPGNet. CAML
achieves the best micro Precision with even 18.45% higher than
RPGNet. However, its micro and macro Recall values are much
lower (20.63% and 14.76% lower) compared to RPGNet. Lower Re-
call values of CAML, DR-CAML and MSATT-KG indicate that they
miss a lot of correct ICD codes, which is a more severe problem
because a higher coverage of correct ICD codes, especially the rare
ones, is more important in practice. In addition, the F1 values and
AUC values of RPGNet are better than those of CAML, DR-CAML,
and MSATT-KG.

Third, generally RNN-based models (i.e., BI-GRU, HA-GRU, and
HARNN) have worse performance compared to the other ones.
This is because an EHR is a long sequence, which easily gives
rise to vanishing gradient problems with RNN-based models [22].
This also suggests that sequence information for words is not as
important as it is in natural language models [39]. For EHR coding,
the keywords and phrases are more important and this type of
information can already be better captured by CNN-based models.
Especially, HARNN performs the worst with a macro F1 value of
2.13% and a micro F1 value of 15.84%. Although HARNN considers
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Table 2: Results (%) on the MIMIC-III dataset for the top-50 label setting. Bold face indicates the best result in terms of the cor-
responding metric. Significant improvements over the best baseline results are marked with * (t-test, p < 0.01). The results for
some baselines do not match the results published by MSATT-KG[39] as (1) we use different data preprocessing and different
data scale, and (2) we use a different split of training, validation and test sets.

Precision Recall F1 AUC
Method Jaccard micro macro micro macro micro macro micro macro
Flat SVMs 9.21 36.77 13.66 11.64 4.75 17.68 593 5479 51.18
MLP 17.01 36.86 16.95 21.20 12.09  26.86 12.70  58.75  53.96
BI-GRU 16.05 28.93 239  25.03 8.02 26.76 3.54 5938 50.01
HA-GRU 6.55 7.29 3.94 4231 54.00 12.44 7.20 43.56  50.00
CAML 30.43 59.65 51.03 36.18 29.75 45.04 3471 66.84 63.47
DR-CAML 31.82 59.09 4894 3793 2890 46.21 3249  67.63 6290
MSATT-KG 31.35 57.68 51.19 37.92 30.10 45.76 35.01 67.54  63.41
HARNN 11.35 39.70 4.31 9.89 2.03 15.84 2.13 54.72  52.40
RPGNet 33.34"  41.20 3359 56.81 44.51 48.35 35.40° 75.14° 70.50"

Table 3: Results (%) on the MIMIC-III dataset for the full-
label setting. Bold face indicates the best result in terms
of the corresponding metric. Significant improvements over
the best baseline results are marked with * (t-test, p < 0.01).

F1 AUC
Method Jaccard micro macro micro macro
Flat SVMs 2.71 4.43 0.08 51.16 50.04
MLP 10.81 18.19 0.11 56.58 51.19
BI-GRU 8.51 14.02 0.02 54.70 50.00
HA-GRU 0.18 0.35 0.17 50.86  50.00
CAML 13.69 21.87 1.63 56.67 50.97
DR-CAML 13.34 21.55 1.11 56.56  50.69
MSATT-KG 5.73 9.28 1.55 57.72 51.02
HARNN 0.10 1.07 0.09 50.00 50.01
RPGNet 14.68* 22.83 1.20 59.08* 54.53*

the hierarchical structure of the ICD taxonomy, it only considers
on the relations of all codes in the same level. The parent-child and
sibling relations between ICD codes are not considered.

We also show the coding results for the full-label setting, in
Table 3. RPGNet performs better than other baselines on most of
metrics in this setting, which shows the merits of RPGNet on a
large ICD space. As the ICD space gets larger, it is getting more
difficult to predict the correct ICD codes. RPGNet alleviates this by
narrowing down the space along the ICD taxonomy, i.e., predicting
ICD codes from the corresponding levels one at a time. As a result,
it gets better results than other models. Besides, we find that for
all models, the metrics that drop the most are the macro-averaged
metrics, such as the macro F1 of CAML drops from 34.71% to 1.63%
and macro F1 of RPGNet drops from 35.40% to 1.20%. This is because
the imbalanced distribution of ICD codes becomes severe in the
full-label setting. Some ICD codes only occur 1 or 2 times, which is
not enough for learning, even for RPGNet.

5.2 Performance at different ICD levels (RQ2)

It is important to evaluate performance at different levels because in
some cases, a different granularity of EHR coding may be required.
Since RPGNet can generate ICD paths for each EHR and each ICD
code in a path can be seen as a prediction result for the EHR at a
particular level, we conduct an experiment under the top-50 label
setting to compare the performance at different levels of the ICD
taxonomy. The results are shown in Fig. 4.

For the results, we can see that the performance of RPGNet
decreases as the level goes deeper generally, e.g., the micro-average
F1 gradually decreases from 61.55% to 48.35% from level 1 to level
4. This is to be expected because the number of ICD categories
increases as the level goes deeper, as shown in Table 1, which, in
turn, increases the difficulty of prediction. But note that the decrease
in performance is acceptable for RPGNet. For example, when the
level increases from 1 to 2, the micro Precision of RPGNet decreases
from 63.42% to 50.49%, while when hierarchical level increases from
3 to 4, the micro Precision drops by just 3.31%. Once again, this
is because RPGNet considers the relations between EHRs and the
hierarchical structure of the ICD taxonomy. There are also some
exceptions. For example, the micro Recall, micro AUC of RPGNet
at level-4 are higher than those at level-3. We think the reason is
that the ICD codes at lower levels facilitate the generation at higher
levels in RPGNet. At the same time, the global policy in the hybrid
policy network can correct the decisions at higher levels.

These results show that RPGNet is effective for EHR coding by
considering the relations between ICD codes and using a hybrid
policy network to make decisions.

5.3 Ablation study (RQ3)

We conduct an ablation study to analyze the effects of different
modules in RPGNet, as shown in Table 4. These are the variants
of RPGNet that we consider: (1) No ARL denotes RPGNet without
adversarial reinforcement learning. We remove the adversarial re-
inforcement learning process and just use teacher forcing with
ground truth paths to train our model. (2) No PMP denotes RPGNet
without the PMP module. (3) No ICD-MP denotes RPGNet without
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Figure 4: Performance at different levels of hierarchical ICD.
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Table 4: Ablation study for the top-50 label setting. Bold face
indicates the best result in terms of corresponding metric.

F1 AUC
Method Jaccard micro macro micro macro
RPGNet 33.34 48.35 3540 75.14 70.50
No ARL 30.25 44.70 31.59 72.05 68.38
No PMP 32.16 46.98 33.98 73.30 69.50

No ICD-MP 32.79 47.53  34.89 73.67 68.72
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Figure 5: Performance with different values of A.

the parent-to-child message passing and sibling-to-sibling message
passing in PMP. From the results, we obtain the following insights:

First, the performance of RPGNet decreases dramatically after
removing adversarial reinforcement learning (i.e., No ARL). Specifi-
cally, the micro F1 and macro F1 drop by 3.65% and 3.81% respec-
tively. The result shows that adversarial reinforcement learning
for RPGNet plays a crucial role. This is because adversarial rein-
forcement learning helps RPGNet to generate ICD paths closer to
the ground truth paths through feedback from the path discrimina-
tor. In addition, RPGNet samples ICD paths based on a stochastic
strategy, which helps to explore new rare paths [9].

Second, the performance of RPGNet decreases significantly after
removing all three stages of message passing (i.e., No PMP) or parent-
to-child message passing and sibling-to-sibling message passing
(i.e., No ICD-MP). Specifically, the micro F1 and macro F1 drop
by 1.37% and 1.42% respectively with No PMP. This indicates that
relations between EHRs and ICD paths, and between ICD codes
play an important role in the path generation process. The micro
F1 and macro F1 drops by 0.82% and 0.51% respectively with No
ICD-MP. This verifies the importance of relations between ICD
codes.
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5.4 The impact of A (RQ4)

The trade-off parameter A is used to balance the local and global
policies in Eq. 3. When A is smaller, RPGNet tends to prioritize the
global policy during learning. Conversely, when A is larger, RPGNet
relies more on its local policy. We conduct an experiment by setting
different A values from {0,0.1,0.2,...,1.0} to see the effects of A.
The results are shown in Fig. 5.

First, as A increases, most metrics except micro Precision increase
gradually at the beginning, but they decrease afterward. The best
performance is not achieved when A = 0 or A = 1. This indicates
that combining local and global policies properly is necessary.

Second, the overall trend of micro Precision is downward and
it reaches the maximum when A = 0 (i.e., 61.94%). However, the
micro Recall, macro Precision, and macro Recall at that time are
very low, with 33.26%, 29%, and 22% respectively. Since when A = 0,
the prediction result is completely dependent on the global policy,
the result indicates that the global policy pays more attention to
the frequent ICD codes, but ignores rare ICD codes.

Third, with increases in A, the macro Recall, macro F1 show
an overall growth trend. Specifically, the macro Recall reaches
maximum (i.e., 47.86%) when A = 0.6. This result indicates that
unlike the global policy, the local policy pays more attention to rare
ICD codes. Eventually, taking both global and local policies into
account, RPGNet performs best at A = 0.2.

6 CONCLUSION AND FUTURE WORK

In this work, we reformulate Electronic Health Record (EHR) cod-
ing as a path generation task, and propose Reinforcement Path
Generation Network (RPGNet), which incorporates a Path Mes-
sage Passing (PMP) module to encode the relations between EHR
and International Classification of Diseases (ICD) codes. We also
devise an adversarial reinforcement learning schema for training
RPGNet. Experiments on a benchmark dataset show that RPGNet
significantly outperforms recent state-of-the-art methods. Further
analysis demonstrates the effectiveness of the proposed PMP and
of the adversarial reinforcement learning mechanisms.

A limitation of RPGNet is that it only uses unstructured free-text
of EHRs; it does not take semi-structured and/or structured infor-
mation into account. As to future work, we plan to first extract semi-
structured and/or structured information from EHRs and ground
it to a knowledge base. Then, we hope to further improve RPGNet
by exploring how to model the unstructured, semi-structured and
structured information in EHRs with grounded knowledge.

DATA AND CODE

To facilitate reproducibility of our work, we are sharing all resources
used in this paper at https://github.com/WOW5678/RPGNet.
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