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When to Stop Reviewing in Technology-Assisted Reviews:

Sampling from an Adaptive Distribution to Estimate

Residual Relevant Documents

DAN LI and EVANGELOS KANOULAS, University of Amsterdam

Technology-Assisted Reviews (TAR) aim to expedite document reviewing (e.g., medical articles or legal doc-

uments) by iteratively incorporating machine learning algorithms and human feedback on document rele-

vance. Continuous Active Learning (CAL) algorithms have demonstrated superior performance compared to

other methods in efficiently identifying relevant documents. One of the key challenges for CAL algorithms is

deciding when to stop displaying documents to reviewers. Existing work either lacks transparency—it pro-

vides an ad-hoc stopping point, without indicating howmany relevant documents are still not found, or lacks

efficiency by paying an extra cost to estimate the total number of relevant documents in the collection prior

to the actual review.

In this article, we handle the problem of deciding the stopping point of TAR under the continuous active

learning framework by jointly training a ranking model to rank documents, and by conducting a “greedy”

sampling to estimate the total number of relevant documents in the collection. We prove the unbiasedness of

the proposed estimators under a with-replacement sampling design, while experimental results demonstrate

that the proposed approach, similar to CAL, effectively retrieves relevant documents; but it also provides a

transparent, accurate, and effective stopping point.
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1 INTRODUCTION

Given an information need, exhaustive search aims to retrieve all the relevant information, if pos-
sible. There is a real demand for exhaustive search in domains like electronic discovery, systematic
review, investigation, research, or even the construction of datasets for information retrieval eval-
uation [13, 14, 16, 20–22, 24, 26, 32]. Electronic discovery involves searching electronic business
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records such as correspondence, memos, emails, and balance sheets for documents that are rele-
vant or responsive to a lawsuit or a government investigation. It is an important aspect of the civil
litigation process in the United States [27]. Missing relevant business records may cause signif-
icant impact on a lawsuit or government investigation. Systematic review is a type of literature
review that uses systematic methods to reliably bring together the findings from multiple studies
that address a question and are often used to inform policy and practice, e.g., the development of
medical guidelines in evidence-based medicine [28]. Test collections are fundamental in Informa-
tion Retrieval (IR) evaluation. Assessing large-scale relevance labels is inevitable in order to build
a high-quality test collection. Missing relevant labels in test collections causes bias when evaluat-
ing retrieval models [14]. The electronic business records, studies, or documents in these domains
are usually large and their number is growing rapidly, making the task of identifying all relevant
information both complex and time consuming. Technology-Assisted Reviews (TAR) tackles the
problem by using classification or ranking algorithms to identify the relevant documents based
on relevance feedback from expert reviewers, until a substantial number (or all) of the relevant
documents have been identified.
The Continuous Active Learning (CAL) approach and its extensions have demonstrated high

effectiveness when used in the TAR process [7, 8, 10, 12]. Given a document collection and a
query, a ranker (or a classifier) is trained to identify documents to be shown to expert reviewers
for relevance assessment. Then, the assessed documents are used as training data to re-train the
ranker. As more and more documents are identified by the ranker and assessed by the reviewers,
the training data grows and the performance of the ranker improves. The TAR process continues
until “enough” relevant documents have been found. “Enough” is often specified by the additional
cost (in terms of reading irrelevant documents) required to find more relevant documents, or by
the importance of the missing relevant documents, e.g., toward resolving a legal dispute [7], or
even as a percentage of relevant documents. In this work, we assume the latter, i.e., the experts
specify a desired recall level to determine when should the reviewing process end.

In this case, the goal of the ranker is two-fold: first, to identify relevant documents as early as
possible during the TAR process, and second, to accurately estimate the total number of relevant
documents, R, in the collection so that we can stop the TAR process in a transparent manner, when
we reach the required level of recall.
The two goals are, to some extent, conflicting in terms of the optimal strategy of stopping the

TAR process. To demonstrate this, consider the following example. Suppose we have an unknown
perfect ranking model that ranks all the relevant documents before the non-relevant documents.
The most effective strategy in terms of achieving high recall is to select documents starting from
the top of the list and moving toward the bottom. However, in order to know the total number of
relevant documents in the collection, one needs to examine all the documents in the collection. On
the other hand, a random sampling design1 can produce an unbiased estimator of the total number
of relevant documents, R, by selecting a relatively low number of documents to review, leading,
however, to low recall if the sampled documents are the only ones the reviewer reads.
There is little work that tackles the problem of automatically stopping the TAR process and

they follow two directions. The first direction [8, 15, 25] proposes different methods to determine
an ad-hoc stopping point. However, such approaches lack transparency because they provide no
information on how many relevant documents are still not found. The second direction [9, 36]
first samples documents to obtain an unbiased estimate of R, paying a significant assessment cost,
and then employs a TAR method to rank and find the required number of relevant documents.

1A sampling design contains a sampling distribution, the manner to sample documents from the distribution (e.g., with

replacement or without replacement), and some statistical estimators of desired values such as population total [35].
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None of the directions that we just described can both produce effective rankings and support,
transparently, the decision to stop reviewing documents.
In this work, we tackle the problem of determining the stopping point of document selection

for constructing test collections that balance the cost of assessing document relevance and the
gain of identifying relevant documents by proposing a novel framework for the TAR process. The
framework consists of a ranking module, a sampling module, an assessment module, an estima-
tion module, and a stopping module (see Figure 1 and Section 3.1). The ranking module provides
a ranked list of documents based on their predicted relevance. The sampling module consists of
a sampling distribution and a manner to sample documents from the distribution. The estimation
module provides an estimator of R as well as its variance based on the sampling distribution and
the sampled documents. The stopping module determines whether to stop the TAR process. Our
framework approaches TAR in an active learningmanner following the CAL approach [8]. Thema-
jor difference from the CAL approach is that we allow random sampling from all the documents in
the collection instead of greedily assessing documents from top to bottom, in a with-replacement
sampling design that can both collect many relevant documents (Section 3.2) and produce an unbi-
ased estimator of R with low variance (Section 3.3). Further, we devise different stopping strategies
based on the estimated R and its variance (Section 3.5).

To summarize, in this work, we make the following contributions:

—We propose a novel framework for the TAR process that allows us to conduct a “greedy”
sampling over documents in order to collect as many relevant documents as possible, and
produce a sequence of statistically unbiased estimators of R.

—We provide a proof of the unbiasedness of the proposed estimators of R under our sampling
design and also empirically verify the unbiasedness.

—We validate the effectiveness of the proposed framework and provide a detailed analysis of
its components on various datasets including the Conference and Labs of the Evaluation Fo-
rum (CLEF) Technology-Assisted Reviews in Empirical Medicine datasets [20–22], the Text
Retrieval Conference (TREC) Total Recall datasets [16], and the TREC Legal datasets [13].

—We reproduce a large number of baselines, and we release the code, along with the code of
our work.

2 RELATEDWORK

In this section, we first introduce the CAL approaches since our framework is developed based on
these approaches. Then, we compare the merits and drawbacks of different methods that tackle
the problem of stopping the TAR process. Finally, we explain the main differences between our
method and existing work.

2.1 Continuous Active Learning Approaches

The TAR process aims to iteratively retrieve a substantial number (if not all) of the relevant doc-
uments in a collection—which makes it a total recall problem. Cormack and Grossman proposed
a family of CAL approaches used in various total recall tasks, including technology-assisted
reviews in electronic discovery and in empirical medicine, as well as the construction of test
collections in information retrieval [7, 8]. The first AutoTAR method proposed by Cormack and
Grossman [7] mainly consisted of an initial selection of training documents by a simple keyword
search, and subsequent selections by active learning. The method significantly outperformed
simple active learning with uncertainty sampling in terms of human reviewing cost. Cormack
and Grossman [8] later proposed a different instantiation of AutoTAR, which enhances the first
CAL method through a handful of adaptions including the Term Frequency–Inverse Document
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Frequency (TF-IDF) features, a single relevant seed document, pseudo non-relevant documents,
and exponentially increasing batch size of documents to be reviewed at each iteration. AutoTAR
is considered the current state-of-the-art method for total recall tasks.
However, AutoTAR leaves the question of when to terminate the reviewing process open. In

practice, there is no way to know the number of relevant documents in a collection before in-
specting and labeling every document. It is thus impossible to know exactly what level of recall
has been reached during the process. Hence, one is facing a dilemma between high recall and low
cost in terms of reviewing documents. Stopping reviewing documents too early will result in miss-
ing many valuable relevant documents; stopping too late will cause unnecessary cost when there
are no more relevant documents to be found.
So far, researchers have developed various approaches to solve the “stopping” problem. We in-

troduce them in the following two sections.

2.2 Topic-Wise Approaches

In their AutoTAR experiment, Cormack and Grossman [8] observed that the gain curve (i.e., recall
as a function of the number of documents reviewed) shows clearly diminishing returns at some
point, and that if a substantial number of relevant documents have been found with high precision
and precision drops later on, the vast majority of relevant documents have most likely been found.
Inspired by this observation, Cormack and Grossman [9] proposed the Knee method, the Target

method, and the Budgetmethod. TheKneemethod defines a knee of the gain curve through a simple
geometric algorithm [33]. The TAR process stops when the slope after the knee diminishes to less
than a ratio (e.g., 16 ) of the slope before the knee. In the Targetmethod Cormack and Grossman [9]
first review a randomly sampled set of documents, until a pre-defined number (e.g., 10) of them are
judged relevant, which is the target set. The documents in the collection are ranked and retrieved
within the AutoTAR framework without knowledge of the target set, until each document in the
target set has been retrieved. In the Budget method Cormack and Grossman [9] combine the Knee
and the Targetmethod. The TAR process stops when all the documents in the target set have been
retrieved and the slope after the knee diminishes to less than a ratio (e.g., 1

6 ) of the slope before
the knee.
It has been shown empirically that the Knee method is the most effective one [9]. However, the

Kneemethod is a “blind” method, and it does not indicate how many relevant documents have not
been found.
To solve the aforementioned problem, Cormack and Grossman [10] proposed the Scalability of

Continuous Active Learning (SCAL) method, which is designed to achieve high recall for a large
scale or infinite document collection. In the first step, SCAL randomly samples a large subset of

documents from the document collection in order to have an accurate R̂ – the estimator of R.
Stratified sampling is applied to the subset to calculate R̂: it first splits the subset into many small
strata, and then randomly samples documents from each stratum to estimate the total number of

relevant documents in each stratum; finally, R̂ is calculated by summing up the total number of
relevant documents over all the strata and multiplying it by a calibration factor. At each iteration,
a ranking model is also trained by using the sampled labeled documents as the training data. In the

second step, R̂ is used to define a threshold with which SCAL can select a ranking model from the
sequence of ranking models and produce a ranked list of documents for the reviewer to review.
Wallace et al. [36] proposed several estimators of R and let reviewers decide when to stop by

showing them how close they are to R̂. However, there is no guarantee that the estimators they
proposed are statistically unbiased.
Di Nunzio [15] proposed a thresholding method by investigating the interaction between the

probability of observing documentd given the current relevant documents –p (d | R ) and the same
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probability given the non-relevant documents – p (d | NR ). First, a document d is represented as
two coordinates (p (d | NR ) ,p (d | R )), denoted by (x ,y). Then, the original problem of classi-
fying (or ranking) documents can be transformed into an intuitive geometric problem of finding
two decision lines in the form of y = αx + β : (1) a line y = αx + βr el that fits the existing assessed
relevant documents, and (2) a parallel line y = αx + βleast passing through the least relevant doc-
uments. The TAR process stops when all the documents between the two lines are assessed.
Modeling the distribution of relevant and non-relevant documents and fitting them over scores

in a reasonable way, which is called score distributionmethod [6, 23, 37], has been studied since the
early days of information retrieval and is beneficial to a wide range of applications, as well as the
“stopping” problem [1, 30]. Hollmann and Eickhoff [18] proposed a thresholding method based on
score distributions. It first fits a Gaussian distribution to the scores of relevant articles from the
relevance feedback of random sampled articles, and then estimates the total number of relevant
documents at any rank position.

2.3 Cross-Topic Approaches

Losada et al. [25] proposed a stopping method for accurate evaluation of retrieval systems using
partially labeled test collections, with the estimation of R being a byproduct. During the train-
ing phase, a document pool, which consists of multiple ranked lists of documents from different
retrieval systems is formed; a power law function is used to model the number of new relevant
documents at each pool depth; the number of relevant documents is also known; during the test
phase, for a test query, a certain number of documents are assessed based on which the similar-
ity between the pattern of relevance of the current test query and the pattern of relevance of each
training query is calculated; finally, R is estimated by averaging the number of relevant documents
of each training query weighted by their similarity.
Although the work of Losada et al. [25] studies the stopping problem, its goal is to achieve

an accurate evaluation of retrieval systems, and not high recall, per se. Besides, it assumes the
existence of different retrieval systems, which producemultiple ranked lists. Pooling these systems
is critical since it is then that the number of new relevant documents at each pool depth follows
a power law distribution, based on which the method is designed. The method could be adapted,
reducing the pool of ranking systems to a single ranking, and the pool of documents to the top-k
documents of that ranking. Despite the fact that such a method could be used toward stopping the
reviewing process, such an adaptation goes beyond the intentions of Losada et al. [25].

2.4 Summary

Inspired by Cormack and Grossman [8–10], we propose to jointly estimate R and improve the
ranker at each iteration by “greedily” sampling documents. Our method is able to decide when
to stop the TAR process with transparency—by estimating how many relevant documents are still
missing. Such a model has several merits. First, it is topic-wise independent, which means no extra
training topics are needed. Second, it does not not need an extra procedure to estimate R; instead,
it iteratively utilizes the sampling module to collect relevant documents as well as to estimate R.

Third, instead of estimating R once, it produces R̂ at every iteration, compensating for variance

and reducing the risk of very wrong estimations. Fourth, it calculates R̂ as well as the variance

estimator of R̂, enabling v̂ar (R̂) to also contribute to the stopping decision.

3 METHOD

In this section, we first introduce the overall framework; then we elaborate on the sub-modules.
The notation used throughout this section is summarized in Table 1.

ACM Transactions on Information Systems, Vol. 38, No. 4, Article 41. Publication date: September 2020.



41:6 D. Li and E. Kanoulas

Table 1. Notation Used in Section 3

Symbol Description

q The input topic
Cq Document collection for topic q
N Total number of documents in Cq
R Total number of relevant documents in Cq
S Set of sampled documents
n Total number of documents in S
t Iteration number
bt Number of documents to be sampled at t-th iteration
k Number of pseudo-relevant documents added per iteration
Lt Labeled documents (training set) at t-th iteration
Ut Unlabeled documents at t-th iteration
dti Document indexed by i at t-th iteration

r ti Rank of dti
yti Relevance label of dti
pti Selection probability of dti
πi First-order inclusion probability of di
πi, j Second-order inclusion probability of di and dj
′ Operation of removing duplicates
˜ Operation of cumulating units in previous iterations
̂ Estimator of a variable or statistic

Fig. 1. The proposed framework for the TAR process.

3.1 The Framework

We propose a novel framework for the TAR process and we call it autostop. The framework mainly
consists of a ranking module, a sampling module, an assessment module, an estimation module,
and a stopping module (see Figure 1).
Given a topic, a reviewer is interested in,- denoted by q, a collection of documents for the topic,-

denoted by Cq , the reviewer can specify a target recall level,- denoted by recallt , which indicates
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what proportion of relevant documents retrieved by the framework makes the reviewer satisfied.
The framework iteratively trains a ranking model to produce a ranked list of documents from
which it samples documents for the reviewer to read toward satisfying her or his information
need; then, the framework outputs an estimator of the total number of relevant documents of the
collection, and an estimator of the variance of the estimator. The process stops once the estimated
recall exceeds the target recall.
We describe the framework in Algorithm 1. We start with the ranking and the sampling process.

A ranking model will be trained from scratch and produce a ranked list for the documents in Cq .
Let Lt denote the (labeled) training set for the ranking model at iteration t , and Ut denote the
unlabeled set at iteration t . Initially, L0 is empty and we fill it with a pseudo document d0. We
follow the AutoTAR method [8] to construct the pseudo document, i.e., we use the description of
the topic. For the cases where there is no description for the topic, one can always use the query
expanded by relevant feedback. Next, we also add non-relevant documents into the training set.
At each iteration, Lt is augmented with k documents, which are sampled uniformly and without
replacement fromUt (in line 3). These documents are temporarily labeled non-relevant, same as
the AutoTAR method [8]. In line 4, a ranking model is trained on Lt . In line 5, the ranking model
predicts the probability of relevance over all the documents in Lt and Ut (which equals Cq ).
These documents are ranked in the order of decreasing relevance probability. In line 6, a sampling
distribution Pt is constructed based on the ranked list of documents. We propose to use the AP
Prior distribution and provide the details in Section 3.2. In line 7, a number of bt documents are
sampled independently and with replacement from Pt .

After the documents are sampled, we start the assessment process. In line 8, the reviewer as-
sesses the relevance of the sampled documents. Note that the sampled bt documents may contain
duplicates; therefore, the reviewer only needs to assess the unique documents. Moreover, the sam-
pling design is with-replacement; therefore, it is possible to sample documents that have been
assessed before. As a consequence, the reviewer only assesses at most bt documents. In line 9, we
follow the same method with the AutoTAR method [8], i.e., we remove the temporary documents
from Lt . Meanwhile, we add the bt assessed documents (which may contain duplicates) in Lt and
remove them fromUt .
Given the sampled documents, their relevance labels, and their sampling probabilities, we can

estimate the total number of relevant documents—denoted by R̂t , as well as the variance of R̂t—

denoted by v̂ar (R̂t ). They are calculated in line 10. We propose to use two estimators for Rt , which
are the Horvitz-Thompson estimator and the Hansen-Hurwitz estimator. We provide the details
in Section 3.3.
Finally, the stopping module uses R̂t and v̂ar (R̂t ) to decide whether to stop the TAR process

or not. We propose two stopping strategies, an optimistic and a conservative one, and we explain
them in detail in Section 3.5.

3.2 Sampling Design

In this section, we elaborate on our sampling design with a focus on the sampling distributions.
Note that in Algorithm 1, we need to sample documents from a distribution Pt = {pti } (for nota-
tion simplicity, we omit t and use P = {pi }). Ideally, pi should be positively correlated with the

relevance label at position i , which allows an estimator R̂ with low variance (see the explanation
in Section 3.3). However, the relevance labels are not known until documents are assessed by the
reviewers. What we have instead is a ranking model that can predict relevance probability and
output a list of ranked documents. Therefore, we construct P based on the output ranked list of
documents.

ACM Transactions on Information Systems, Vol. 38, No. 4, Article 41. Publication date: September 2020.



41:8 D. Li and E. Kanoulas

ALGORITHM 1: Automatic thresholding algorithm

Input: Topic q; document collection Cq , target recall recallt .
Output: A list of labeled documents {(dti ,yti ) | i = 1, 2, . . . ; t = 1, 2, . . .}; a list of estimator

{R̂t | t = 1, 2, . . .} and {v̂ar (R̂t ) | t = 1, 2, . . .}.
1 t = 0, L0 = {pseudo document d0};
2 while not stop do

3 t += 1;

// Sampling

4 Temporarily augment Lt by uniformly sampling k documents fromUt , labeled non-relevant;

5 Train a ranking model on Lt ;
6 Rank all the documents in Cq with the ranker trained over Lt ;
7 Construct sampling distribution Pt over the ranked documents via Equation (1);

8 Sample bt documents from the distribution Pt ;
9 Render relevance assessments for the sampled documents;

10 Remove the k temporary documents from Lt ;
11 Place the bt assessed documents in Lt , and remove them fromUt ;

12 bt+1 = bt + [
bt
10 ];

// Estimation

13 Calculate R̂t and v̂ar (R̂t ) via Equation (5–9);

// Stopping

14 if R̂t and v̂ar (R̂t ) satisfy stopping strategy then

15 stop = True;

16 end

17 end

The probability over document rank is defined as the probability of sampling a document at a
certain rank of the ranked list. The underlying assumption is that a ranking model satisfies the
Probability Ranking Principle (PRP) [31], which dictates that the probability of relevance mono-
tonically decreases with the rank of the document. Any distribution that agrees with PRP can be
used.
When choosing the sampling distribution, we are faced with a tradeoff between collecting as

many relevant documents as possible and an accurate estimator of R with low variance. There
are many ways to construct a distribution to sample from, for example, sampling from the output
probability of relevance produced by the trained ranking model, or sampling from a power law
distribution produced based on document ranks.We tried both and neither performedwell enough.
To meet the goal, we propose to use AP-prior distribution. It is a widely used sampling distribution
in the task of information retrieval evaluation, and it has been empirically proved to be a good prior
for the relevance of documents in a ranked list [2–5, 24, 38, 39].

AP-prior Distribution. The AP-prior distribution is proposed in Refs [4] and [29], which
defines the probability at each rank position on the basis of the contribution of this rank posi-
tion in the calculation of average precision. The idea is that we first rewrite average precision as
AP = 1

N

∑
1�j�i�N

1
i
yiyj , where i, j denote the position in the ranked list, and y denotes the rele-

vance label; thenwe can construct a distribution of random variable (yi ,yj ) over position pairs (i, j )
that satisfies the expectation E(yi ,yj ) equalsAP ; finally, we add up all the probabilities associated
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When to Stop Reviewing in Technology-Assisted Reviews 41:9

with all pairs involving a given position r and get p (r ) = 1
2N

(
1 + 1

r
+ 1

r+1 + · · · + 1
N

)
≈ 1

2N log N
r
.

For more details, the readers are referred to Refs [4] and [29].
Thus, the AP-prior distribution is defined as follows:

pi =
1

Z
log

N

ri
ri ∈ [1,N ], (1)

where Z =
∑N

i=1 log
N
ri

is the normalization factor.

Inclusion probability. In order to have a simple expression for inclusion probability, we adopt
sampling with replacement as our sampling method. At each iteration t and for each draw, a doc-
ument is sampled independently from one of the aforementioned distributions. Let selection prob-

ability denote the probability that a document is sampled for a draw, and inclusion probability the
probability that a document is included in the sample set considering all the draws. The first-order
and second-order inclusion probabilities under sampling with replacement are indispensable to

calculate R̂. Under sampling-with-replacement design, the first-order inclusion probability πi is
given by:

πi = 1 −
T∏
t=1

(
1 − pti

)nt
. (2)

The second-order inclusion probability πi, j—the probability of any two different document di
and dj being included—is given by:

πi, j = πi + πj −
⎡⎢⎢⎢⎢⎣
1 −

T∏
t=1

(
1 − pti − ptj

)nt ⎤⎥⎥⎥⎥⎦ . (3)

3.3 Estimate R and var (̂R)

As mentioned in Section 1, one of our goals is to estimate R—the total number of relevant doc-
uments in the document collection for a given topic. In this section, we first clarify the exact
expression of R with regard to the population, then introduce its estimators on the sample set.
Also, for notation simplicity, sometimes we omit the subscript t .
Let Cq = ∑N

i=1 di denote a population of documents, and let yi be an indicator variable of di ,
with yi = 1 if the document di is relevant, and yi = 0 otherwise. The population total is defined as
the summation of all yi , i.e., the total number of relevant documents in the collection. We write R
as follows:

R =
n∑
i=1

yi . (4)

Suppose our framework produces a sample set at each iteration t , denoted by St . Let S̃t denote

the cumulated sample set till iteration t , S̃t = ∪tk=1Sk . Furthermore, we also let S̃ ′t denote the subset
of S̃t and S̃

′
t only contains unique documents. Correspondingly, let nt be the number of documents

in St , ñt be the number of documents in S̃t , and ñ
′
t be the number of documents in S̃ ′t .

Note that when sampling documents, each document has different sampling probability com-
pared to other ones; therefore, we can not apply a simple estimator for equal sampling probability
(e.g., N

ñt

∑
i ∈S̃t yi ) to estimate R. Instead, we employ Horvitz-Thompson estimator and Hansen-

Hurwitz estimator, both of which can estimate R as well as var (R̂).
Both of them are designed for sampling with unequal probabilities, Hansen-Hurwitz estimator

is only restricted for with-replacement sampling, while Horvitz-Thompson estimator is for any
design. On the other hand, the inclusion probability of Horvitz-Thompson estimator is not easy
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to calculate when the sampling design is complex. One can choose to use one of the estimators
according to their sampling design.We provide the proof of unbiasedness of the two estimators un-
der our sampling design in Section 3.4. We also provide the theoretical conditions of zero variance
estimators in this section. For more details of the derivation, the reader can refer to Ref. [35].

3.3.1 Horvitz-Thompson Estimator. The Horvitz-Thompson estimator provides an unbiased es-
timator of population total under any sampling design, with or without replacement [19]. It is
written as τ̂ =

∑
i ∈S ′

yi
πi
, where S ′ is a subset of S , S ′ only contains unique units, and πi is the

inclusion probability for unit i .

In our case, the population total is R. The Horvitz-Thompson estimator of R on S̃ ′t is written as:

R̂HTt =
∑
i ∈S̃ ′t

yi
πi
. (5)

Furthermore, it is good to know whether the estimator is stable. An estimator with low variance
is desirable. In order to calculate the variance, we need to conduct the same sampling procedure
many times, which is not feasible in practice. Luckily, there is an unbiased estimator of the variance
of the population total estimator, given by:

�var1
(
R̂HTt

)
=
∑
i ∈S̃ ′t

(
1

πi 2
− 1

πi

)
yi

2 + 2
∑

i>j ∈S̃ ′t

(
1

πiπj
− 1

πi j

)
yiyj . (6)

As �var1(R̂HTt ) may produce negative values, the true variance must be non-negative. Hence, we
also adopt another estimator of variance,2 given by:

�var2
(
R̂HTt

)
=

N − ñ′t
Nñ′t

1

ñ′t − 1
∑
i ∈S̃ ′t

(
ñ′t

yi
πi
− R̂HTt

)2
. (7)

Note that when πi =
ñ′tyi
N

, the variance of R̂HTt equals 0 [19].

3.3.2 Hansen-Hurwitz Estimator. Hansen-Hurwitz estimator provides an unbiased estimator of
population total under sampling with replacement, and the sampling distribution should be the
same for each draw [35]. In our case, the sampling distribution changes at each iteration and
converges to the ultimate distribution produced by the ranking model trained on the whole doc-
uments. This is the major difference with the setting of the vanilla Hansen-Hurwitz estimator. In

Section 3.4.1, we will prove that under varying sampling distributions at different iterations, R̂HH
t

is also unbiased.
The Hansen-Hurwitz estimator of R on S̃t is expressed as follows3:

R̂HH
t =

1

ñt

t∑
k=1

∑
i ∈Sk

yi

pki
. (8)

2It is biased yet “conservative” (meaning it tends to be larger than the actual variance). The intuition is taking the Horvitz-

Thompson estimator as the average of i.i.d. random variable.
3Note that if taken in the view of importance sampling, Hansen-Hurwitz estimator equals to the estimation of popu-

lation total obtained by importance sampling, denoted by qi = ñ
′
t
yi
πi

. The sample variance of qi is defined by s2 =

1
ñ′t −1

∑ñ′t
i=1 (qi − R̂HTt )2. The alternative variance estimator is v̂ar (R̂HTt ) =

N−ñ′t
N ñ′t

s2 [35].
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Similarly, there is also an estimator of the variance of the population total estimator, given by:

v̂ar
(
R̂t

HH
)
=

1

ñt (ñt − 1)
t∑

k=1

∑
i ∈Sk


�

yi

pki
− R̂t HH �

�

2

. (9)

Note that when
yi

pki
is a constant, the variance of the Hansen-Hurwitz estimator equals 0 [35, page

68].
For both Horvitz-Thompson and Hansen-Hurwitz, there is no guarantee that their estimators

of variance are unbiased.

3.4 Unbiasedness

3.4.1 Hansen-Hurwitz Estimator.

Lemma 3.1. Given that the sampling design is with replacement, and at each draw l , a unit is

independently sampled from a different distribution {pli } from the previous draws. Let S denote the

sample set. The Hansen-Hurwitz estimator of population total is unbiased, i.e., E (
∑
yli ∈S

yli
pli
) = τ .

Proof. First consider the one unit case. Assume there is only one unit in S ; thus, there are N
possible sample sets for S . Let yS denote the sample value and pS the selection probability; thus,
Hansen-Hurwitz estimator can be rewritten as τS =

yS
pS
. Its expected value over all possible sample

sets is:

E(τS ) =
N∑
S=1

τSpS =
N∑
S=1

yS = τ . (10)

For the n unit case, take each unit i as a sample set with only one unit, which is denoted by Si .
Thus, E

(
τSi
)
= τ .

As each Si is independent from any other S j , we have

E(τS ) = E 
�

1

n

n∑
i=1

τSi
�
�

(11)

=
1

n

�

n∑
i=1

E
(
τSi
)�
�

(12)

=
nτ

n
= τ . (13)

Equation (11) to Equation (12) is because {τSi } is a set of independent variables; thus, we can swap
expectation and summation. Equation (12) to Equation (13) is because Equation (10) holds. �

3.4.2 Horvitz-Thompson Estimator. The unbiasedness of Horvitz-Thompson estimator is
proved [35, page 76]. We rephrase the proof below for reader’s convenience.

Lemma 3.2. Given that the sampling design is with replacement, and at each iteration t , a set of

units are independently sampled from a different distribution {pti } from the previous iterations. Let S ′
denote the sample set where all the duplicated units are removed. The Horvitz-Thompson estimator of

population total is unbiased, i.e., E
(∑

yi ∈S ′
yi
πi

)
= τ .

Proof. Let random variable zi denote whether the i-th unit is included in the sample set: zi = 1
means that the i-th unit is in the sample set and zi = 0 means that the i-th unit is not in the sample
set. For any unit i , zi is a Bernoulli random variable; thus, Ezi = p (zi = 1) = πi .
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The Horvitz-Thompson estimator can be rewritten as follows, where each yi is regarded as a
constant:

∑
yi ∈S ′

yi
πi
=

N∑
i=1

yizi
πi
. (14)

The expected value is:

E �
�

∑
yi ∈S ′

yi
πi

��
�
= E 

�

N∑
i=1

yizi
πi

�
�

(15)

=

N∑
i=1

yiEzi
πi

(16)

=

N∑
i=1

yiπi
πi
=

N∑
i=1

yi = τ . (17)

Equation (15) to Equation (16) is because {yizi
πi
} is a set of independent variables; thus, we can swap

expectation and summation. Equation (16) to Equation (17) is because Ezi = p (zi = 1) = πi . �

3.5 Stopping Strategy

We propose two stopping strategies based on R̂ and its estimated variance, v̂ar (R̂). They represent
different levels of conservativeness in terms of deciding when to stop the TAR process.
For notational simplicity, we omit the subscript t . Let r denote the number of unique relevant

documents that have already been read by the reviewer. Let R̂ denote the estimated total number

of relevant documents, v̂ar (R̂) the estimated variance, and recallt the target recall specified by the
reviewer.

Optimistic. This strategy examines whether r
r ecallt

≥ R̂, and if so, stops the TAR process. The

intuition is straightforward: if we have collected more relevant documents than the target
number we estimated, we should feel confident to stop.

Conservative. This strategy examines whether r
r ecallt

≥ R̂ +

√
v̂ar (R̂), and if so, stops the TAR

process. This inequality is more conservative than the first one; that is, it continues pro-
viding document to the reviewer until it accumulates a higher confidence that the target
recall is reached.

4 EXPERIMENTAL SETUP

4.1 Research Questions

The goal of the TAR process is to identify as many relevant documents as possible with minimal
cost of returned irrelevant documents, and to stop exactly at the target recall specified by the
reviewer. Based on this, our research questions are as follows.

RQ1 Can the framework autostop proposed in Section 3 achieve target recall with minimal as-
sessment cost and stop the document selection process on time?

RQ2 Are the estimated R̂ using the Horvitz-Thompson estimator (Section 3.3.1) and the Hansen-
Hurwitz estimator (Section 3.3.2) unbiased with low variance?

RQ3 How does the proposed framework trade off high recall against accurate R̂?
RQ4 How does the estimation module (Section 3.3) and the stopping module (Section 3.5) impact

the performance of the model?
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4.2 Dataset

We test our framework on a wide range of datasets including the CLEF Technology-Assisted Re-
views in Empirical Medicine datasets (EMED for short), the TREC Total Recall datasets (TR for
short), and the TREC Legal datasets (LEGAL for short).
EMED dataset. The TAR in EMED Task at CLEF aims at evaluating search algorithms that seek

to identify all studies relevant for conducting a systematic review in empirical medicine.
Three datasets have been released—namely, EMED 2017 [20], EMED 2018 [21, 34], and EMED

2019 [22]. EMED 2017 and EMED 2018 only include Diagnostic Test Accuracy reviews, while
EMED 2019 includes three new review types, which are Intervention, Prognosis, and Qualitative
systematic reviews. We use all the Diagnostic Test Accuracy reviews in the three datasets for our
experiments. There are 42, 30, and 31 reviews (topics), respectively. We select 12 topics in EMED
2017 as the training topics for hyper-parameter fine-tuning of baselines and our method. The
12 topics are selected in the way that their prevalence values ranging from small to large value.
We use the 30 topics in EMED 2017, 30 topics in EMED 2018, and 31 topics in EMED 2019 as the
test topics.
For each topic, a topic description, a subset of the PubMed abstracts that are related to the topic

and need to be ranked, along with the relevance judgments of the studies in this set are provided.
Each topic description provides a topic title, which is the title of the corresponding systematic
review article, like “Galactomannan detection for invasive aspergillosis in immunocompromised
patients.” The titles usually contain terms in biomedical literature, not like general queries users
submit to search engines in their everyday life. The document collection—PubMed Baseline Repos-
itory4—comprises biomedical literature from MEDLINE, life science journals, and online books.
TR dataset. The TREC Total Recall track [16] aims to evaluate methods designed to achieve

very high recall—as close as 100%—with a human assessor in the loop.
We use the athome1 and athome4 dataset provided in the TREC 2016 Total Recall track. Athome1

contains 10 topics and athome4 contains 34 topics.5 We use the 10 topics in athome1 as the training
topics and the 34 topics in athome4 as the test topics.
Each topic supplies a short topic title, typically one to three words, like “Olympics” or “bottled

water”. The topics are similar to queries people submit to search engines in their everyday life.
The document collection consists of the Jeb Bush’s emails. It consists of 290,099 emails from Jeb
Bush’s eight-year tenure as Governor of Florida.
LEGAL dataset. The TREC Legal track [13] focuses on evaluation of search technology for

discovery of electronically stored information in litigation and regulatory settings. We use the
dataset provided in the interactive task in the TREC 2010 Legal track.6 It includes topic 301, 302,
303, and 304. As we did not find any other topics that have the same document collection and
relevancy labels, we use 301 and 302 as the training topics and 303 and 304 as the test topics.
Each topic consists of a mock complaint and document requests, where the mock complaint

sets forth the legal and factual basis for the hypothetical lawsuit that motivates the discovery
requests, and the document requests specify the categories of documents that must be located and
produced. The document collection is a processed variant of the Enron email dataset, containing
about 685,592 email messages captured by the Federal Energy Review Commission (FERC) from
Enron, in the course of its investigation of Enron’s collapse. Similarly with the TR dataset, we use
the same strategy to generate the subset of documents for each topic.
Table 2 lists the statistics of the datasets used in our experiments. For more details of topic

splits readers can refer to Table 8. We calculated prevalence, which is defined as the percentage of

4It is publicly available under ftp://ftp.ncbi. nlm.nih.gov/pubmed/baseline.
5The TR dataset is publicly available conditioned on a usage agreement. https://plg.uwaterloo.ca/∼gvcormac/total-recall/.
6The dataset is available at https://trec-legal.umiacs.umd.edu.
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Table 2. Dataset Statistics

EMED TR LEGAL

train test test test train test (TR) train test (LEGAL)

(EMED 2017) (EMED 2018) (EMED 2019)

Collection PubMed abstracts Jeb Bush emails Enron emails

# doc per topic 4,494.17 6,257.97 7,292.73 2,658.74 290,099 290,099 685,592 685,592

# topic 12 30 30 31 10 34 2 2

avg doc length 190.37 182.26 205.41 236.92 211.81 211.81 470.08 470.08

# rel per topic 95.67 94.47 132.43 54.26 4,398.00 1,056.09 505.00 1,015.50

% rel per topic 0.97 1.80 2.05 2.15 1.56 0.35 0.10 0.15

Fig. 2. Boxplot of topic prevalence of the five datasets.

relevant documents in the given documents for a topic. Overall the prevalence is low for all the
datasets, ranging from 0.10% to 2.15%, indicating it is not an easy task to retrieve all the relevant
documents. Figure 2 further shows the boxplot of topic prevalence of the five test datasets. The
three EMED datasets have larger prevalence than TR, followed by LEGAL.

4.3 Evaluation Metrics

The effectiveness of the proposed framework can be interpreted in three aspects: (1) to maximize
the recall, (2) to minimize the assessment cost, and (3) to stop the document selection process on
time in the sense that the difference between the achieved recall and the target recall is minimized.
The recall metric can be used for the evaluation of (1). It is formally defined as:

recall =
r

R
, (18)

where r is the number of relevant documents identified, and R is the total number of relevant
documents.
The cost metric can be used for the evaluation of (2). It is formally defined as:

cost =
n

N
, (19)

where n is the number of documents shown to the reviewer for assessment, and N is the total
number of documents for the topic.
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The relative error between the achieved recall and the target recall can be used for the evaluation
of (3). It is formally defined as:

RE =
|recallc − recallt |

recallt
, (20)

where recallt denotes the target recall specified by the reviewer.
Following the convention in IR evaluation, it is usually desired to have one metric that considers

all the three aspects. However, there does not exist such a metric. As an alternative, we use an
existing metric losser for the combined evaluation of (1) and (2). losser is introduced for the first
time in Ref. [9] and latter used as a metric for the total recall task in the CLEF technology assisted
reviews in empirical medicine overview tracks [20, 21, 22]. It is defined as:

losser = (100% − recallc )2 +
(
100

N

)2 ( n

R + 100

)2
, (21)

where recallc is the achieved recall when the TAR process is stopped. The intuition behind losser is
straightforward: 100% − recallc expresses a loss due to the inability to find all relevant documents
or to achieve a recall of 100%, and n

R
expresses a loss in terms of the effort spent in assessing

both relevant and non-relevant documents. Note that the 100% in the formula means that a target
recall of 100% is wanted. One may propose to use recallt − recallc to replace 100% − recallc in
order to evaluate system performance given different target recall levels, but using recallt − recallc
penalizes systems that achieve recall higher than the target recall. Also note that the rationale of
using 100

N
and n

R+100 can be understood in this way: aR + b (in this case, a = 1, b = 100) represents
a reasonable amount of effort to achieve high recall, which has been empirically shown in the
TREC total recall tracks [16, 32];n represents the actual effort spent in reviewing documents; n

R+100

actually says how many percentages of the reasonable effort is spent in reviewing documents. 100
N

is a fixed weight that balances the two types of loss. Readers are also recommended to read the
original explanation in Ref. [9].
In addition to the aforementioned metrics, it is interesting to see how often the framework

achieves a target recall over different topics because the proposed framework relies on a random
sampling of documents. We use reliability [9] for the evaluation. reliability is defined as the per-
centage that an estimator achieves the target recall for all topics [9]. It is expressed as:

reliability =
| {q | recallc (q) ≤ recallt (q),q ∈ Q|}

|Q| , (22)

where Q is a set of topics, and recallc (q) and recallt (q) are the achieved recall and the target recall
for topic q.

For RQ1, we use all the aforementioned metrics. For RQ2, we compare the difference between R

and R̂ through a scatter plot. For RQ3, we interpret the ability of identifying relevant documents
as the gain, and the assessment effort spent in reviewing documents as the loss. We use a curve of
recall as a function of cost for the evaluation. RQ4 is an effectiveness analysis of the submodules
of the proposed framework; therefore, we use the same metrics as in RQ1.
All the metrics are calculated using open-sourced script tar_eval.7

4.4 Baselines

We compare our approach with several representative baselines, including two greedy methods
designed for high recall and early stopping, namely Knee [9] and Target [9], one hybrid method of
greedy method and sampling method designed for high recall and early stopping, namely SCAL

7https://github.com/CLEF-TAR/tar.

ACM Transactions on Information Systems, Vol. 38, No. 4, Article 41. Publication date: September 2020.

https://github.com/CLEF-TAR/tar


41:16 D. Li and E. Kanoulas

[10], and two variants of Score Distribution [18], which are designed for high recall and accurate
estimator of R. The Knee method is the state-of-the-art method for the total recall task. In what
follows, we elaborate on the baseline methods and their precise implementation.

4.4.1 AutoTAR. AutoTAR [8] aims to improve recall by repeatedly selecting documents for users
to review. AutoTAR is considered the current state-of-the-art method for total recall problems. As
it lays the foundation of several methods, we provide the algorithm in Algorithm 2.
We are faced with several design choices in implementing the method. For example, in line 6

of Algorithm 2, when training the ranking model, we are faced with choices such as the corpus
and the minimum term frequency used for the TF-IDF vector of documents, and the regularization
strength weight used for the Logistic Regression.
We ran our implementation of the AutoTAR method against the 30 test topics in the 2017 CLEF

technology-assisted reviews in empirical medicine track, as this allows us to compare the results of
our implementation with those reported in Ref. [11]. We use grid search to sweep over all possible
configurations. The corpus varies between the document texts of the whole 30 topics or only of the
target topic. Theminimum term frequency varies among 2, 3, or 5. The regularizationweight varies
among 0.001, 1.0, and 10,000. We find that the best configuration is to use document texts of only
the target topic as the corpus, set the minimum term frequency to 2, set the regularization weight
to 1.0, which is slightly different from that reported in Ref. [11]. We report metrics that are also
reported in Ref. [11]; they are ap—average precision, norm_area—area under the cumulative recall
curve normalized by the optimal area, and last_rel—minimum number of documents returned to
retrieve all relevant documents. With the best configuration we achieve an ap score of 0.191, an
norm_area score of 0.947, and a last_rel score of 493, and the metrics are 0.189, 0.948, and 461
reported in Ref. [11]. We use the same configuration for all the latter methods.

ALGORITHM 2: AutoTAR

Input: Topic q; document collection Cq , target recall recallt .
Output: A ranked list of documents Dq = [d1,d2, . . . ,d |Cq |].
Parameter: None.

1 t = 0, L0 = {pseudo document d0}, Dq = [];

2 while Cq is not exhausted do

3 t += 1;

4 Temporarily augment Lt by uniformly sampling k documents fromUt , labeled non-relevant;

5 Train a ranking model on Lt ;
6 Rank all the documents in Cq with the ranker trained over Lt ;
7 Select the top bt documents from the ranked list and append them in Dq ;

8 Render relevance assessments for the selected documents;

9 Remove the k temporary documents from Lt ;
10 Place the bt assessed documents in Lt , and remove them fromUt ;

11 Update batch size: bt+1 = bt + [
bt
10 ];

12 end

4.4.2 Knee. On the basis of the AutoTAR method, Cormack and Grossman [9] propose the
Knee method. It defines a knee of the gain curve through a simple geometric algorithm [33], and
stops the TAR process when the slope after the knee diminishes to less than a ratio of the slope
before the knee. LetG = {(xi , zi ) | i = 1, . . . , t } denote the data points observed on the grain curve
until the t-th iteration, xi denote the cost or percentage of documents reviewed at the i-th iter-
ation, and zi denote the recall at the i-th iteration. Let i∗ denote the iteration where the knee is
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detected. Let ρ denote the slope ratio, defined as ρ =
| {dj |rdj ≤i∗ ,ydj =1} |
| {dj |t ≥rdj >i∗ } |

t−i∗
i∗ , where rdj is the rank

of document rdj , and ydj is the relevance label of rdj . If ρ is larger than a bound, the TAR process
is stopped. We implemented the method described in Ref. [9] and summarized it in Algorithm 3.
We run the Knee method on the 30 test topics in the 2017 CLEF technology-assisted reviews

in the empirical medicine track, as it is possible to compare our performance with the perfor-
mance of AutoTAR reported in Ref. [11]. As suggested in Ref. [9], a dynamic bound, bound =
156 −min (Rt , 150), has been empirically proven to be effective, where Rt is the number of rel-
evant documents found so far at the t-th iteration. Similar to AutoTAR, we also swept over all
possible configurations of the ranking model. The best configuration is the same with that of Au-
toTAR. With the best configuration, we achieve a loss_er score of 0.610 and a recall score of 0.999;
the metrics are 0.657 and 1.000, reported in Ref. [11].

ALGORITHM 3: Knee

Input: Topic q; document collection Cq , target recall recallt .
Output: A ranked list of documents Dq = [d1,d2, . . .].
Parameter: slope ratio bound: bound , number of documents should be reviewed when knee detection

takes effect: β .

1 Dq = [],G = [];

2 t = 0, L0 = {pseudo document d0};
3 while Cq is not exhausted & not stop do

4 t += 1;

5 Temporarily augment Lt by uniformly sampling k documents fromUt , labeled non-relevant;

6 Train a ranking model on Lt ;
7 Rank all the documents in Cq with the ranker trained over Lt ;
8 Select the top bt documents from the ranked list and append them in Dq ;

9 Render relevance assessments for the selected documents;

10 Remove the k temporary documents from Lt ;
11 Place the bt assessed documents in Lt , and remove them fromUt ;

12 Append (xt , zt ) to G;

13 Update batch size bt+1 = bt + [
bt
10 ];

14 if |Lt | ≥ β then

15 if knee is detected & ρ ≥ bound then

16 stop = True;

17 end

18 end

19 end

4.4.3 Target. Similar to theKneemethod, the Targetmethod [9] is designed for high recall tasks.
It consists of two steps. In the first step, it randomly samples documents until a pre-defined number
of documents is judged relevant. In the second step, the documents in the collection are ranked
and retrieved with the AutoTAR method without knowledge of the target set, until each relevant
document in the target set has been retrieved. Note that Target is designed to achieve high recall,
but not 100% recall. It has been strictly proven that the size of the target set guarantees a recall of
70% with 95% probability under certain assumptions [9].
We implemented the method described in Cormack and Grossman [9] and summarized it in

Algorithm 4.
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We ran the Targetmethod on the combination of athome1, athome2, and athome3 datasets, which
consists of 30 topics and 290,099 Jeb Bush emails, 465,147 hacker forum documents, and 902,434
local news documents. The datasets are released by the TREC 2015 Total Recall track and results
are reported in Ref. [9]. There is one hyper-parameter to be tuned: relevant document number
in the target set nr el . The recommended value reported in Ref. [9] is 10. Based on this, we also
conducted a hyper-parameter sweeping: we alternate nr el between 5, 10, and 15. The best hyper-
parameter configuration (nr el = 5) leads to a recall of 0.93 and number of reviewed documents of
49,151, while the reported metrics in Ref. [9] are 0.91 and 44,079.

ALGORITHM 4: Target

Input: Target topic q, document collection Cq , target recall recallt .
Output: A ranked list of documents D = [d1,d2, . . .].
Parameter: Relevant document number in the target set: nr el .

1 D = [];

2 t = 0, L0 = {pseudo document d0};
// Sample set, target set

3 Sample documents uniformly from Cq until nr el relevant documents have been found or the collection

is exhausted. Let Ssample denote the sampled set, Rsample denote the target set only containing the

nr el relevant documents;

4 if Cq is exhausted then

5 D = list (Cq );
6 stop = True;

7 end

// Re-find relevant documents in the target set

8 Let Sinteract denote documents re-found, Rinteract denote the relevant ones.
Sinteract = Rinteract = ∅;

9 while Cq is not exhausted & not stop do

10 t += 1;

11 Temporarily augment Lt by uniformly sampling k documents fromUt , labeled non-relevant;

12 Train a ranking model on Lt , let ft denote the corresponding ranking function;
13 Rank all the documents in Cq with ft ;

14 Select the top bt documents from the ranked list and add them in Sinteract ;
15 Place the bt assessed documents in Lt , and remove them fromUt ;

16 Remove the k temporary documents from Lt ;
17 bt+1 = bt + [

bt
10 ];

// Stop the TAR process

18 if Rinteract ⊆ Rsample then

19 stop = True;

20 end

21 end

// Final ranked list

22 Apply fT on Ssample ∪ Sinteract to produce a ranked list D, where T denotes the last iteration;

4.4.4 SCAL. SCAL [10] is designed to achieve high recall for large scale or infinite document
collection. To this end, it uses a large fixed-sized sample of the collection to generate the ranker,
estimate the prevalence, and determine the cutoff necessary for a particular target recall.
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ALGORITHM 5: SCAL

Input: Topic q; document collection Cq , target recall recallt .
Output: A ranked list of documents D = [d1,d2, . . .].
Parameter: Size of the document sample set: NU , sub-sample size of a batch: b, calibration factor: η.

1 D = [];

2 t = 0, L0 = {pseudo document d0},U0 = U , b0 = 1;

// Large sample set

3 Draw a large uniform random sample setU of size NU from Cq ;
// Construct a series of rankers, training sets, and estimators

4 whileU is not exhausted & not stop do

5 t += 1;

6 Temporarily augment Lt by uniformly sampling k documents fromUt , labeled non-relevant;

7 Train a ranking model on Lt , let ft denote the corresponding ranking function;
8 Rank all the documents inUt with ft ;

9 Select the top bt documents from the ranked list;

10 Calculate the sub-sample size at this iteration: ḃt = b is R̂ = 1 or bt < b, otherwise ḃt = b;

11 Render relevance assessments for the ḃt documents;

12 Remove the k temporary documents from Lt . Place the ḃt documents in Lt , and remove the bt
documents fromUt (note ḃt and bt are different);

13 R̂t+1 = R̂t +
ṙt
ḃt
bt , where ṙt is the number of relevant documents in the sub-sample;

14 bt+1 = bt + [
bt
10 ];

15 end

// Cutoff the ranked list

16 R̂ = η · R̂T , where T denotes the last iteration;

17 t∗ = argmin
t
{R̂t ≥ recallt · R̂};

18 threshold = min ({ ft ∗ (d ) | d ∈ U0\Ut ∗ ,d is relevant });
19 Produce a ranked list D = {d | fT (d ) ≥ threshold,d ∈ Cq };

We implemented themethod described in Ref. [10] and summarize it in Algorithm 5. SCAL solves
three major problems. First, in order to deal with the large scale or infinite document collection, a
large document set is uniformly sampled (line 3). Second, in order to save the effort of reviewing
documents, only a finite number instead of the exponentially increasing batch size of documents
are sampled and reviewed. The reviewed documents comprise a stratified sample of the entire

collection, which is used for training the ranker and calculating R̂ (line 10). Third, it defines a
cutoff to stop the TAR process based on the list of rankers and estimators (lines 18–20).
Note that line 18 is different from the corresponding line in the original work [10], which is

threshold = max
(
{ ft ∗ (d ) | d ∈ U0\Ut ∗ }

)
. During our effort to reproduce the published results,

we found that taking the maximum score over documents inU0\Ut ∗ will cutoff the final ranked
list at a very high rank. When using min, we can achieve similar recall to that reported in Ref. [10],
but of much larger cost. We further found that using only relevant document scores to determine
the threshold can achieve similar recall and cost as in Ref. [10].

We ran SCAL on the athome1 dataset, which consists of 10 topics and 290,099 Jeb Bush emails,
released with the TREC 2015 Total Recall track, and compare our results to that reported in
Ref. [10]. There are three hyper-parameters: the size of the large document sample set NU (%), the
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sub-sample size of a batch b, and the calibration factor η. The recommended configuration re-
ported in Ref. [10] is NU = 1.0 (the whole 290,099 emails), b = 30, and η = 1.05. Based on this, we
conducted a grid search with NU ∈ [0.6, 0.8, 1.0], b ∈ [30, 50, 70, 90, 110], η ∈ [1.0, 1.05]. We also
compare our line 18 and the responding line in Ref. [10]: determining the threshold with either
max or min, filtering either documents in the bucket, or documents in the sampled set, or only
relevant documents in the sampled set.
We find that indeed our line 18 leads to similar results as those reported in Ref. [10]. The best

hyper-parameter configuration (NU = 1.0, b = 110, η = 1.05) leads to recall of 0.91 and the number
of reviewed documents of 13,198, where the metrics are 0.90 and 9504 in Ref. [10].

4.4.5 Score Distribution. The score distribution methods proposed by Ref. [18] provide ways to
estimate the total number of relevant documents at any rank position, making it possible to stop
the TAR process at an appropriate cutoff in order to achieve a target recall.
We implement the two methods described in Ref. [18]—score distribution using training topics

(SD-training) and score distribution not using training topics (SD-sampling). The main difference
is the way of collecting scores of relevant documents. SD-training needs extra training topics and
the corresponding relevance labels of the documents in the collection, while SD-sampling needs to
sample documents and render relevance labels from users. The two versions that we implemented
are summarized in Algorithms 6 and 7. One notable design choice we are faced with is the ranking
model.We use BM25 as the rankingmodel as it is impossible to use exactly the same rankingmodel
with AutoTAR. One reason is that the features used for the logistic regression ranking model of
AutoTAR are document-wise TF-IDF vectors, and training data is interactively obtained from user
relevance feedbacks; however, the two score distribution methods are not interactive methods.
Thus, extra training topics are needed, and the features must be topic-document-wise if we train a
cross-topic ranking model. Therefore, it is not possible to use exactly the same ranking model with
AutoTAR. Another reason is that what matters for the score distributionmethods is the distribution
of scores instead of the absolute value of each score [1].
We ran SD-training and SD-sampling on the 30 test topics in the TAR in EMED Task at CLEF

2017, as this makes it possible to compare our implementation with the performance reported in
Ref. [18]. For SD-training, we achieved a recall of 0.994 and precision of 0.042, while the metrics re-
ported are 0.989 and 0.057. For SD-sampling, we fine-tune the hyper-parameter sample sizepsample

(%) with psample ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. The best configuration (psample = 0.2) leads to a recall of
0.978 and precision of 0.062, with Hollmann and Eickhoff [18] reporting 0.948 and 0.079.

4.5 Implementation

Similar to AutoTAR and related methods, our proposed framework is topic-wise independent,
which means a brand new ranking model is trained at the beginning of the TAR process for each
topic.
For fair comparison in terms of precisely stopping the TAR process at a target recall, we use the

same document representation and ranking model as AutoTAR. Specifically, we use TF-IDF docu-
ment representation and logistic regression for ranking: we consider all documents associated to
a given topic as the corpus, and construct a TF-IDF vector for each document as its representation.
We use scikit-learn (a Python Machine Learning toolkit)8 for the implementation. In particular,
we use TfidfVectorizer with its default configuration to preprocess the input text and generate
the TF-IDF vector, while we use LogisticRegression with the default configuration (which is

8https://scikit-learn.org/.
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ALGORITHM 6: Score distribution using training topics (SD-training)

Input: Target topic q, the corresponding document collection Cq , target recall recallt , training topics,
the corresponding document collections, and the full relevance judgement sets.

Output: A ranked list of documents D = [d1,d2, . . .].
Parameter: None.

// Training topics

1 Produce ranking scores for the relevant documents of all the training topics by applying BM25 ranking

function;

2 Fit a Gaussian distribution N (μ,σ 2) over the scores of these relevant documents;

// Target topic

3 Produce ranking scores for all documents of the target topic by applying BM25 ranking function;

4 Find the point where the cumulative density probability of N (μ,σ 2) equals 1 − recallt ;
5 Extract from Cq all the documents of which the ranking scores are larger than the point;

// Final ranked list

6 Sort the extracted documents by the descending order of ranking scores, denoted as D;

ALGORITHM 7: Score distribution not using training topics (SD-sampling)

Input: Target topic q, the corresponding document collection Cq , target recall recallt .
Output: A ranked list of documents D = [d1,d2, . . .].
Parameter: Sample size psample (%).

// Sample documents

1 Produce a ranked list of all the documents and a ranked list of normalized score by applying BM25

ranking function on Cq ;
2 Sample uniformly |Cq | · psample documents, denoted by D1;

// Fit Gaussian distribution

3 Fit a Gaussian distribution N (μ,σ 2) over the scores of the sampled relevant documents;

4 Find the point where the cumulative density probability of N (μ,σ 2) equals 1 − recallt ;
5 Extract from Cq the documents of which the ranking scores are larger than the point, denoted by D2;

// Final ranked list

6 Output the final ranked list D by merging D1 and D2 by the descending order of ranking scores;

also proven to be the best configuration when reproducing the AutoTAR baseline) for the logistic
regression models.
We also implemented and reproduced all the baselines: AutoTAR, Knee, Target, SCAL, SD-

training, and SD-sampling given that their source code is not available online. The code used in
this work will be released as open source code online.9

5 EXPERIMENTS

In this section, we conduct experiments on all the datasets to answer the aforementioned research
questions.

9https://github.com/dli1/auto-stop-tar.
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5.1 Stopping Effectiveness

This experiment is designed to answer RQ1. In this experiment, methods to be compared are pro-
vided with a target recall. A method is considered better than another whether (1) it achieves
higher recall, (2) it spends less assessment cost, and (3) the achieved recall when it decides to stop
the TAR process is as close as possible to the target recall. As explained in Section 4.3, we use a
portfolio of metrics including recall , cost , RE, losser , and reliability for evaluation.

5.1.1 Experimental Setting. As our framework provides the flexibility to target the TAR process
for recall, we vary the target recall value between 0.8, 0.9, and 1.0 to see whether the proposed
framework is capable of stopping the TAR process on time. We focus on {0.8, 0.9, 1.0} because
high recall is usually desired in the TAR process.
The proposed framework provides multiple choices for its sampling module, estimation mod-

ule, and stopping module. The estimator varies between the Horvitz-Thompson estimator and the
Hansen-Hurwitz estimator, and the stopping strategy varies between optimistic and conservative.
In total, there are five variations of the proposed framework: HT-opt, HT-con1 (variance is calcu-
lated based on Equation (6)), HT-con2 (variance is calculated based on Equation (7)), HH-opt, and
HH-con (variance is calculated based on Equation (9)).
By running the five variations on the corresponding training topics of the EMED, TR, and LEGAL

datasets, we find the combination of APPrior and HT-con1 performs the best. In the rest of the
work, we use this configuration as our method. The impact on the stopping effectiveness with
regards to the sampling methods (APPrior, PowerLaw, MixtureUniform), estimators (HT and HH),
and stopping strategies (optimistic and conservative) can be found in Section 5.4.
This experiment is conducted on all five test datasets including EMED 2017, EMED 2018, EMED

2019, TR, and LEGAL. Note that for a topic on TR and LEGAL, there are no associated documents
filtered with some initial ranking techniques like on the EMED datasets; therefore; we use the
whole document collection as the associated documents for each topic. On the other hand, our
method typically needs a large amount of memory (or a long time depending on the implemen-
tation) when calculating the first order and the second order inclusion probabilities. For example,
it needs about 20GB memory to deal with topics associated with about 15,000 documents. As a
consequence, it is impossible to run our method directly on our computational resources. As an
alternative, for the TR and LEGAL datasets, we split the whole collection into buckets of 1,000
documents, run our method over these buckets, and concatenate all the sampled documents for
the final reviewing. This adaption is only for our method. All the baselines are run on the TR and
LEGAL dataset as it is.
We compare our method with the Knee, Target, SCAL, SD-training, and SD-sampling methods.

The Knee and Target methods are designed to achieve 100% recall, and the rest are designed to
stop the TAR process at a specified target recall. We present the results of the Knee method and
Target methods only when the target recall is 1.0. We fine-tune all the methods (if needed) on the
training topics when the target recall is 0.8, 0.9, and 1.0, respectively. The Knee method has two
hyper-parameters: slope ratio bound, bound ; and number of reviewed documents when knee de-
tection takes effect, β . The recommended value reported in Ref. [9] is bound = 156 −min (Rt , 150)
and β = 1,000. Based on this, we conducted a grid search for bound ∈ [3, 6, 10, 156 −min (Rt , 150)],
and β ∈ [100, 1000]. The Target method has one hyper-parameter: relevant document number in
the target set nr el . The recommended value reported in Ref. [9] is nr el = 10. Based on this, we con-
ducted a grid search by alternating nr el = [5, 10, 15]. SCAL has three hyper-parameters: the size
of the large document sample set NU (%), the sub-sample size of a batch b, and the calibration fac-
tor η. The recommended configuration reported in Ref. [10] is NU = 1.0, b = 30, and η = 1.05.
Based on this, we conducted a grid search for NU ∈ [0.6, 0.8, 1.0], b ∈ [30, 50, 70, 90, 110], and
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Table 3. Fine-Tuned Parameters

target recall Knee Target SCAL SD-training SD-sampling

bound β nr el NU b η — psample

EMED 2017/2018/2019

0.8 156 −min(Rt , 150) 1,000 15 0.8 50 1.05 — 0.4

0.9 156 −min(Rt , 150) 1,000 15 0.8 70 1.05 — 0.3

1.0 156 −min(Rt , 150) 1,000 15 1.0 110 1.05 — 0.2

TR

0.8 10 1,000 15 0.8 70 1.05 — 0.1

0.9 10 1,000 15 1.0 110 1.05 — 0.1

1.0 10 1,000 15 1.0 110 1.05 — 0.1

LEGAL

0.8 156 −min(Rt , 150) 1,000 10 1.0 30 1.05 — 0.1

0.9 156 −min(Rt , 150) 1,000 10 1.0 30 1.05 — 0.1

1.0 156 −min(Rt , 150) 1,000 10 1.0 30 1.05 — 0.1

η ∈ [1.0, 1.05]. SD-training has no hyper-parameter. SD-sampling has one hyper-parameter: sample
size psample ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. The best configuration of these baselines for different target
recall is shown in Table 3.

5.1.2 Results.

Effectiveness in terms of high recall and low cost. Achieving 100% recall is desired in elec-
tronic discovery, systematic review, investigation, research, and the construction of datasets for
information retrieval evaluation. It is interesting to see whether the stopping methods can achieve
100% recall with low cost.
In Table 4, the target recall is set to 100%, and we focus on the recall , cost and losser values.

On the EMED 2017 dataset, all the methods can achieve very high recall (97.8% to 99.9%); among
them, Knee only needs around 30% cost, while Target, SCAL, SD-sampling and our method needs
double cost (61.4% to 76.2%), and SD-training needs to review almost the full document collection.
When comparing the losser value, which considers both recall and cost , Knee achieves the best
performance, and our method achieves the second best performance. Similar results can be ob-
served on the EMEM 2018, EMED 2019, and TR datasets. Note that the performance of all methods
on LEGAL is very different from those on the remaining four datasets. The cost on TR and LE-
GAL are always larger than that on EMED. This is because our method applied on TR and LEGAL
is a slightly different from the original algorithm, as mentioned at the beginning of this section.
Specific reason is that we train a new ranking model from scratch for each split of the document
collection, which leads to reviewing more non-relevant documents. This issue can be addressed
by training a global ranking model for all the splits; we leave this for the future work.
In order to better understand the relation of cost and recall , we further visualize the cost and

recallc columns of Table 4. Figure 3 shows the scatter plots of different methods, and the cost and
recallc values are averaged over all topics. When the target recall is set to 100% (subplots (a) to (e)
in Figure 3), the Kneemethod, the SD-trainingmethod, and our method are on the Pareto frontier,
indicating they achieve a good balance between cost and recall.
Overall, when the goal is achieving high recall and low cost, the Kneemethod performs the best.

It is a greedy method designed for total recall tasks; there is no sampling mechanism and the goal
is to collect many relevant documents as fast as possible. Our method achieves the second best
performance. It is a sampling method that trades off the assessment cost for the estimation of R.
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Fig. 3. Visualization of stopping effectiveness on five datasets. x-axis is cost , y-axis is recallc . Each point in

the plots represents one method. The desirable situation is to stop the TAR process exactly when recallc =
recallt .
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Fig. 3. (Con’t) Visualization of stopping effectiveness on five datasets. x-axis is cost , y-axis is recallc . Each
point represents one method. The desirable situation isto stop the TAR process exactly when recallc =
recallt .

Effectiveness in terms of on-time stopping. Another goal of the proposed framework is to
stop the TAR process on time. It is also interesting to see whether the recall achieved when the
TAR process is stopped is close to the target recall and how often the achieved recall is equal to
or higher than the target recall. We vary target recall value between 0.8, 0.9, and 1.0 in Tables 4, 5,
and 6, and focus on the RE and reliability values.
First, let us examine each table and compare the performance of different methods. Our method

achieves either the best or comparable RE and reliability values among all baselines, indicating
that it can stop the TAR process on time. The Knee method performs slightly worse than our
method because it stops the TAR process early; thus, it is more likely to achieve a recall less than
100%. The Target method performs worse than the Knee method because it needs much more as-
sessment cost while still achieving slightly lower recall than the Knee method; the observation is
similar to the conclusion in Ref. [9]. Note that given a target recall, although it is possible to fine-
tune the hyper-parameters for the Kneemethod, or adapt the method by collecting a subset of the
target set for the Target method, these tricks do not represent their original intentions. Therefore,
we only report the results when recallt = 1.0 for Knee and Target. The SCAL method, which also
stops the TAR process based on an estimator of R, can achieve the target recall accurately, but the
cost is higher than Knee as expected. The SD-training method estimates the cutoff of stopping re-
viewing documents by fitting a Gaussian distribution of the ranking scores of relevant documents
of training data. It is not an interactive method. Instead, the documents are only ranked one time.
SD-training does not stop the TAR process on time, and it also needs more cost. SD-sampling is
similar to SD-training; the difference is that the documents that provide ranking scores are sam-
pled from the documents of the current topic, instead of training topics. SD-sampling stops the
TAR process better than SD-training.
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Table 4. Stopping Effectiveness (recallt = 1.0)

Method recallc ↑ cost ↓ reliability ↑ losser ↓ RE ↓*
EMED 2017

Knee 0.998 ± 0.006 0.291 ± 0.194 0.833 ± 0.379 0.041 ± 0.081 0.002 ± 0.006
Target 0.978 ± 0.036 0.614 ± 0.258 0.567 ± 0.504 0.292 ± 0.349 0.022 ± 0.036
SCAL 0.984 ± 0.038 0.659 ± 0.281 0.700 ± 0.466 0.253 ± 0.265 0.016 ± 0.038
SD-training 0.999 ± 0.003 0.997 ± 0.007 0.967 ± 0.183 0.466 ± 0.292 0.010 ± 0.001
SD-sampling 0.973 ± 0.042 0.762 ±0.283 0.533 ± 0.507 0.311 ± 0.320 0.027 ± 0.036
Ours 0.999 ± 0.008 0.625 ± 0.190 0.967 ± 0.183 0.161 ± 0.115 0.001 ± 0.008

EMED 2018
Knee 0.994 ± 0.013 0.328 ± 0.258 0.700 ±0.466 0.047 ± 0.080 0.006 ± 0.013
Target 0.983 ± 0.022 0.594 ± 0.289 0.500 ± 0.509 0.251 ± 0.310 0.017 ± 0.022
SCAL 0.982 ± 0.039 0.657 ± 0.284 0.600 ± 0.498 0.233 ± 0.254 0.018 ± 0.039
SD-training 1.000 ± 0.000 0.996 ± 0.008 1.000 ± 0.000 0.394 ± 0.277 0.010 ± 0.000
SD-sampling 0.964 ± 0.093 0.688 ± 0.270 0.533 ± 0.507 0.180 ± 0.170 0.036 ± 0.090
Ours 0.992 ± 0.044 0.662 ± 0.182 0.967 ± 0.183 0.163 ± 0.136 0.008 ± 0.044

EMED 2019
Knee 0.998 ± 0.009 0.420 ± 0.311 0.968 ± 0.180 0.122 ± 0.160 0.002 ± 0.009
Target 0.985 ± 0.025 0.753 ± 0.275 0.645 ± 0.486 0.428 ± 0.350 0.015 ± 0.025
SCAL 0.993 ± 0.022 0.808 ±0.219 0.839 ± 0.374 0.410 ± 0.288 0.007 ± 0.022
SD-training 0.999 ± 0.004 0.992 ± 0.016 0.968 ± 0.180 0.545 ± 0.262 0.010 ± 0.001
SD-sampling 0.974 ± 0.070 0.767 ± 0.249 0.623 ± 0.489 0.306 ± 0.273 0.028 ± 0.066
Ours 1.000 ± 0.000 0.651 ± 0.198 1.000 ± 0.000 0.223 ± 0.148 0.000 ± 0.000

TR
Knee 0.960 ± 0.056 0.016 ± 0.041 0.088 ± 0.288 0.005 ± 0.016 0.040 ± 0.056
Target 0.944 ± 0.063 0.120 ± 0.150 0.147 ± 0.359 0.024 ± 0.068 0.056 ± 0.063
SCAL 0.919 ± 0.168 0.146 ± 0.317 0.147 ± 0.359 0.079 ± 0.211 0.081 ± 0.168
SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.122 ± 0.173 0.010 ± 0.000
SD-sampling 0.988 ± 0.066 0.944 ± 0.225 0.941 ± 0.239 0.106 ± 0.142 0.022 ± 0.063
Ours 1.000 ± 0.000 0.779 ± 0.148 0.941 ± 0.239 0.100 ± 0.160 0.000 ± 0.000

LEGAL
Knee 0.966 ± 0.048 0.287 ± 0.272 0.500 ± 0.707 0.004 ±0.002 0.034 ± 0.048
Target 0.953 ± 0.028 0.147 ± 0.008 0.000 ± 0.000 0.003 ± 0.003 0.047 ± 0.028
SCAL 0.039 ± 0.031 0.005 ± 0.001 0.0 ± 0.0 0.924 ± 0.060 0.961 ± 0.031
SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.010 ± 0.000
SD-sampling 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.010 ± 0.000
Ours 0.996 ± 0.001 0.833 ± 0.025 0.000 ± 0.000 0.005 ± 0.001 0.004 ± 0.001
∗: ↑means that higher values are better, and ↓means that lower values are better.

Now, let us examine how the RE and reliability values change across the three tables. It can
be found that the RE and reliability values of all the methods increase when the target recall
decreases. SCAL stops the TAR process on time when target recall is 1.0 and 0.9, but not on time
when target recall is 0.8. SD-sampling stops the TAR process more accurately than SD-training,
indicating sampling relevant documents within one topic is effective for on-time stopping. The
aforementioned observations are also supported in the scatter plots in Figure 3 (values averaged
over topics) and Figure 4 (topic-wise values). The desirable situation is to stop the TAR process
exactly when recallc = recallt .
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Table 5. Stopping Effectiveness (recallt = 0.9)

Method recallc (≈ recallt )* cost ↓ reliability ↑ losser ↓ RE ↓
EMED 2017

SCAL 0.914 ± 0.075 0.496 ± 0.244 0.667 ± 0.479 0.168 ± 0.209 0.072 ± 0.042

SD-training 0.955 ± 0.057 0.691 ± 0.054 0.833 ± 0.379 0.233 ± 0.148 0.080 ± 0.034

SD-sampling 0.902 ± 0.083 0.506 ± 0.277 0.567 ± 0.504 0.192 ± 0.278 0.071 ± 0.057

Ours 0.884 ± 0.088 0.421 ± 0.097 0.500 ± 0.509 0.097 ± 0.065 0.069 ± 0.070
EMED 2018

SCAL 0.902 ± 0.087 0.493 ± 0.241 0.667 ± 0.479 0.154 ± 0.168 0.074 ± 0.060

SD-training 0.972 ± 0.033 0.701 ± 0.038 0.967 ± 0.183 0.196 ± 0.138 0.082 ± 0.030

SD-sampling 0.855 ± 0.108 0.379 ± 0.217 0.367 ± 0.490 0.077 ± 0.074 0.080 ± 0.102

Ours 0.892 ± 0.075 0.441 ± 0.103 0.600 ± 0.498 0.098 ± 0.078 0.046 ± 0.071
EMED 2019

SCAL 0.893 ± 0.104 0.621 ± 0.206 0.516 ± 0.508 0.271 ± 0.198 0.082 ± 0.082

SD-training 0.940 ± 0.100 0.713 ± 0.043 0.774 ± 0.425 0.295 ± 0.156 0.092 ± 0.075

SD-sampling 0.893 ± 0.095 0.517 ± 0.270 0.508 ± 0.504 0.198 ± 0.260 0.072 ± 0.077

Ours 0.878 ± 0.096 0.479 ± 0.129 0.387 ± 0.495 0.159 ± 0.154 0.072 ± 0.080
TR

SCAL 0.903 ± 0.171 0.144 ± 0.318 0.647 ± 0.485 0.083 ± 0.210 0.094 ± 0.163

SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.122 ± 0.173 0.111 ± 0.000

SD-sampling 0.936 ± 0.129 0.779 ± 0.407 0.794 ± 0.410 0.102 ± 0.136 0.133 ± 0.063

Ours 0.953 ± 0.030 0.766 ± 0.163 0.941 ± 0.239 0.103 ± 0.158 0.062 ± 0.027
LEGAL

SCAL 0.039 ± 0.031 0.005 ± 0.001 0.000 ± 0.000 0.924 ± 0.060 0.957 ± 0.035

SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.111 ± 0.000

SD-sampling 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.111 ± 0.000

Ours 0.803 ± 0.006 0.811 ± 0.029 0.000 ± 0.000 0.043 ± 0.004 0.108 ± 0.007
∗: It means that the r ecallc value close to r ecallt is better.

Overall, when the goal is to stop the TAR process on time, our method performs better than
Knee. Our method also performs similarly well with SCAL and SD-sampling and performs better
than SD-training.

5.2 Estimating R

This experiment is designed to answer RQ2. We examine whether the estimator R̂ is unbiased

with low variance. Further, as the estimator R̂ is expected to be more accurate with more sampled

documents, we also examine how the estimator R̂ changes as the target recall changes.

5.2.1 Experimental Setting. The experimental setting is the same as in the previous experiment.
We only report results for the EMED 2017 dataset since the results for the other datasets are similar.
Because Knee, Target, SD-training, and SD-sampling do not provide an estimation of R, we only
compare our method with SCAL.

5.2.2 Results. For each topic, we record R and R̂ when the TAR process stops and present them
in scatter plots shown in Figure 5. We also report the MSE metric to see how far the estimated
value is from the true value.
We can see that most points of our method lie on the diagonal line when recallt = 1.0, indi-

cating that our method accurately estimates R; whereas, when recallt = 0.9 and recallt = 0.8, R is
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Table 6. Stopping Effectiveness (recallt = 0.8)

Method recallc (≈ recallt )* cost ↓ reliability ↑ losser ↓ RE ↓
EMED 2017

SCAL 0.888 ± 0.089 0.451 ± 0.255 0.800 ± 0.407 0.177 ± 0.246 0.138 ± 0.072

SD-training 0.881 ± 0.113 0.417 ± 0.068 0.767 ± 0.430 0.109 ± 0.062 0.148 ± 0.088

SD-sampling 0.798 ± 0.087 0.350 ± 0.270 0.433 ± 0.504 0.170 ± 0.269 0.077 ± 0.076
Ours 0.787 ± 0.090 0.335 ± 0.077 0.367 ± 0.490 0.105 ± 0.056 0.088 ± 0.080

EMED 2018

SCAL 0.862 ± 0.093 0.428 ± 0.245 0.767 ± 0.430 0.144 ± 0.162 0.119 ± 0.070

SD-training 0.886 ± 0.094 0.414 ± 0.059 0.833 ± 0.379 0.086 ± 0.055 0.141 ± 0.074

SD-sampling 0.753 ± 0.137 0.258 ± 0.168 0.367 ± 0.490 0.099 ± 0.100 0.121 ± 0.134

Ours 0.781 ± 0.073 0.347 ± 0.089 0.467 ± 0.507 0.104 ± 0.061 0.064 ± 0.069
EMED 2019

SCAL 0.887 ± 0.086 0.577 ± 0.245 0.903 ± 0.301 0.261 ± 0.228 0.134 ± 0.071

SD-training 0.826 ± 0.153 0.421 ± 0.066 0.613 ± 0.495 0.146 ± 0.085 0.155 ± 0.114

SD-sampling 0.787 ± 0.125 0.366 ± 0.249 0.475 ± 0.504 0.166 ± 0.217 0.111 ± 0.110

Ours 0.791 ± 0.121 0.397 ± 0.119 0.452 ± 0.506 0.158 ± 0.143 0.111 ± 0.100
TR

SCAL 0.761 ± 0.288 0.107 ± 0.282 0.676 ± 0.475 0.167 ± 0.285 0.247 ± 0.263

SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.122 ± 0.173 0.250 ± 0.000

SD-sampling 0.896 ± 0.168 0.690 ± 0.456 0.735 ± 0.448 0.100 ± 0.117 0.231 ± 0.063

Ours 0.885 ± 0.053 0.754 ± 0.174 0.912 ± 0.288 0.115 ± 0.153 0.111 ± 0.056
LEGAL

SCAL 0.039 ± 0.031 0.005 ± 0.001 0.000 ± 0.000 0.924 ± 0.060 0.952 ± 0.039

SD-training 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.250 ± 0.000

SD-sampling 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.007 ± 0.002 0.250 ± 0.000

Ours 0.684 ± 0.022 0.794 ± 0.032 0.000 ± 0.000 0.105 ± 0.015 0.145 ± 0.027
∗: It means that the r ecallc value close to r ecallt is better.

under-estimated. But if we also take v̂ar (R̂) into consideration, i.e., the bar of one standard devi-

ation R̂ ± v̂ar (R̂), it is more likely that the bar covers R when recallt = 0.9 and recallt = 0.8. The
major reason of under-estimation for low target recall are due to the low prevalence of the topics
in the collection. At the early iterations, the estimator fluctuates drastically.Withmore documents,
especially more non-relevant documents for low-prevalence topics being sampled, the inclusion
probabilities are generally approaching 1.0. Hence, finding a new relevant document will only

slightly increase R̂, and this makes the estimator slowly approaching the true value. It is interest-
ing to study how the accuracy of the estimator changes with different prevalences. We leave this
in the future work.
The SCAL baseline method also under-estimates R for recallt = 0.9 and recallt = 0.8 but over-

estimates R for recallt = 1.0.

Overall, the estimator R̂ of our method is accurate, especially for tasks of high target recall, and

summing up v̂ar (R̂) and R̂ partially solves the under-estimation problem for tasks of low target
recall.

5.3 Tradeoff Recall Against Estimating R

5.3.1 Experimental Setting. This experiment is designed to answer RQ3. The motivation for
this research question is that we introduce extra assessment costs when we use random sampling
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Fig. 4. Topic-wise visualization of stopping effectiveness on five datasets. Color and marker together distin-

guish different methods. Each point represents one topic.

instead of a greedy method. Hence, it is beneficial to know whether we sacrifice the effectiveness
of the ranker too much to collect relevant documents for the ability to accurately estimate the
number of missing relevant documents through sampling. In the previous experiment, we study

the quality of the estimator R̂ when the TAR process stops. This is a “static” experiment in the sense

that it only considers R̂ at the final iteration. In this experiment, we will show how the actual recall

and the relative error between R and R̂ changes along the iteration. For each topic, we let the TAR
process run until it almost exhausts all the documents, reaching at a cost of 95%.

5.3.2 Results. Figure 6 shows the tradeoff between high recall and accurate estimation of R.
The AutoTAR method (the grey line) serves as an upper bound of recall. An interesting point is
when AutoTAR achieves a recall of 100% with a cost of 40%; our method achieves a recall of 85%
and also provides an estimation of R with a relative error of 10%.
The mechanism of AutoTAR is to repeatedly select documents from the top of the ranking to-

wards the bottom until all the documents are selected; it does not address the stopping problem.
Built on top of the AutoTAR, the Kneemethod allows for automatic stopping by using a geometric
algorithm to detect the knee of the recall curve. It does not need extra assessment cost to determine
the stopping point; however, it does not provide any insight on how many relevant documents
one would miss if one stops reviewing. It turns out that knowing this information does need to
trade off a certain amount of recall. The overall finding is that we need to trade off around 15% of
the relevant documents against estimating R with a relative error of 10%.

Knowing an estimation of R is necessary in many cases, for example, estimating the number of
missing documents to study the reliability of the results of systematic reviews [17], and estimating
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Fig. 4. (Con’t) Topic-wise visualization of stopping effectiveness on five datasets. Color and marker together

distinguish different methods. Each point represents one topic.
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Fig. 5. R vs. R̂ on EMED 2017 (topic-wise). In each subplot, marker and color distinguish estimators; each

point corresponds to a topic. The bar on each point indicates a one standard deviation (

√
v̂ar (R̂)) away from

mean (R̂). An unbiased estimator with zero variance should lead to points that lie on the x = y line.

Fig. 6. Tradeoff recall against estimating R. The dataset is EMED 2017. The grey line (AutoTAR) serves as

an upper bound of the recall. The blue dotted line and the blue triangle line indicates how much recall our

method trades off against accurately estimating R̂.
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Table 7. Impact of the Hansen-Hurwitz and Horvitz-Thompson Estimators,

and the Conservative and Optimistic Stopping Strategies on

the Performance of the Framework

RE ↓ losser ↓
con1 con2 opt con1 con2 opt

recallt = 1.0
HH 0.003 — 0.023 0.159 — 0.144
HT 0.000 0.000 0.000 0.170 0.170 0.170

recallt = 0.9
HH 0.059 — 0.054 0.130. — 0.120
HT 0.060 0.063 0.073 0.108 0.132 0.097

recallt = 0.8
HH 0.086 — 0.037 0.124 — 0.117
HT 0.059 0.091 0.095 0.104 0.112 0.124

∗: ↑means that higher values are better, and ↓means that lower values are better.

the volume of social media posts to track brands popularity and product sales [40]. The framework
can be applied in these application fields.

5.4 Model Component Analysis

5.4.1 Experimental Setting. This experiment is designed to answer RQ4. We examine how the
Horvitz-Thompson (HT) and Hansen-Hurwitz (HH) estimators, and the optimistic (opt) and con-

servative (con) stopping strategies impact the performance of the proposed framework. The com-
bination of the estimators and the stopping strategies give rise to the following options: HT-opt,
HT-con1 (where the variance is calculated based on Equation (6)), HT-con2 (where the variance is
calculated based on Equation (7)), HH-opt, and HH-con1 (where the variance is calculated based
on Equation (9)). We conduct this experiment on the training topics of EMED 2017. Similar with
the previous setting, we alternate the target recall level between 0.8, 0.9, and 1.0.

5.4.2 Results. We show the performance of each configuration with respect to losser and RE in
Table 7.
Estimator.TheHorvitz-Thompson estimator performs slightly better than theHansen-Hurwitz

estimator in terms of both losser and RE. In practice, if the goal is to achieve high effectiveness, the
Horvitz-Thompson estimator is recommended. Note that the calculation of the Horvitz-Thompson
estimator is of relative low-efficiency, and the way of calculating inclusion probability is not trivial
if the sampling is not random sampling with replacement. In other words, if efficiency is a concern
or the sampling is without replacement, the Hansen-Hurwitz estimator is recommended.
Stopping strategy. The conservative strategy performs slightly better than the optimistic strat-

egy. In practice, if not missing relevant documents is very important and the cost is not the main
concern, the conservative strategy is recommended. We find that in our experimental results, the

estimator R̂ tends to be lower than the true value R (as shown in Figure 5); therefore, adding one
standard deviation (remember that both the mean and variance are provided in the estimation
module) to the estimated mean value does help to stop the TAR process more effectively. In all the
experiments in this work, we have only tried to add one standard deviation; adding two or three
standard deviations can be tried in order to mitigate the underestimation of R in future work.

6 CONCLUSION

In this work, we have studied how to determine the stopping point of document selection in order
to construct test collections that balance the cost of assessing document relevance and the gain of
identifying relevant documents.
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Wepropose a novel continuous active learning framework by jointly training a rankingmodel to
rank documents, and conducting “greedy” sampling to estimate the total number of relevant doc-
uments in the collection. Within the framework, we propose to use the AP-Prior as the sampling
distribution, the Horvitz-Thompson or Hansen-Hurwitz estimator to estimate the total number
of relevant documents, and the optimistic or conservative strategy to determine whether to stop
the TAR process or not. We prove the unbiasedness of the proposed estimators under a with-
replacement sampling design. To examine the effectiveness of the proposed framework, we com-
pared it against the Knee, Target, SCAL, SD-training, and SD-sampling methods and provided de-
tailed analysis on various datasets including the CLEF Technology-Assisted Reviews in Empirical
Medicine datasets [20–22], the TREC Total Recall datasets [16], and the TREC Legal datasets [13].
The experimental results demonstrate that the proposed method performs secondary to Knee but
better than other baselines in terms of high recall and low cost; on the other hand, the proposed
framework performs better than Knee and other baselines in terms of stopping the TAR process
on time.
To sum up, the proposed framework combines the advantages of the continuous active learning

approach with the advantages of sampling methods. It can effectively retrieve relevant documents
similar to CAL but also provide a transparent, accurate, and effective stopping point. Specifically,
it is recommended to use the AP-Prior distribution, and the Horvitz-Thompson estimator together
with the conservative stopping strategy. If efficiency is also considered, the Hansen-Hurwitz esti-
mator is recommend instead of the Horvitz-Thompson estimator.
There are limitations and several directions that we have not touched and can be followed in

the future work. First, the sampling and estimation in the proposed framework is in a “sequential”
manner, i.e., at each iteration, a certain number of documents are sampled and an estimator of R is
calculated. When the sequence of estimators are repeatedly compared with the target recall until
the desired result is observed—the estimated recall exceeds the target recall, the process yields
a biased estimate of recall, even though the estimator at each iteration is unbiased. This issue is
inherent for sequential testing [37]. Second, the proposed framework is designed for small-scale
document collections. It requires a relatively small list of documents instead of a collection contain-
ing millions of documents so that the calculation of mean and variance of R is feasible. Currently,
we adapted our framework on the large document collection of TR and LEGAL by randomly split-
ting the documents, running our algorithm, and then concatenating the sampled documents for
the final reviewing. However, this is not the best solution. More work can be done such as train-
ing the ranking model globally to avoid sampling too many non-relevant documents. Third, like
all other sampling methods, the proposed framework inherently has the high variance problem
for low-prevalence topics. In practice, where prevalence is low, one must resort to solutions such
as snowball sampling, capture-recapture, and other techniques that are common in biostatistics
and medicine. It is worth studying how to integrate these solutions. Fourth, the performance of
the ranking model can be further improved in order to produce a good ranked list of documents.
Currently, only the document text instead of the topic text is employed for feature representation;
the simple TF-IDF is used for document representation, the logistic regression model is used as
the ranking model, and the ranking model is trained in a topic-wise manner, i.e., a new ranking
model is trained from scratch for each topic. In future work, a stronger ranking model can be
trained by addressing these issues. Finally, the current framework only considers the number of
missing relevant documents to stop the TAR process. More factors should be taken into account
such as the importance of the missing documents. For example, risk of bias and quality, two con-
cepts from systematic review domain indicating how reliable the results of the studies included in
a systematic review are, can be leveraged to determine stopping the TAR process [17].
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APPENDICES

Table 8. Topic Splits of the Datasets

EMED TR LEGAL

train
test
(EMED
2017)

test
(EMED
2018)

test (EMED
2019)

train test (TR) train
test
(LEGAL)

Topics

CD008686
CD009593
CD011548
CD009372
CD008803
CD009323
CD008691
CD010542
CD009944
CD008760
CD009185
CD009925

CD008081
CD007394
CD007427
CD008054
CD008643
CD008782
CD009020
CD009135
CD009519
CD009551
CD009579
CD009591
CD009647
CD009786
CD010023
CD010173
CD010276
CD010339
CD010386
CD010409
CD010438
CD010632
CD010633
CD010653
CD010705
CD011134
CD011549
CD011975
CD011984
CD012019

CD008122
CD008587
CD008759
CD008892
CD009175
CD009263
CD009694
CD010213
CD010296
CD010502
CD010657
CD010680
CD010864
CD011053
CD011126
CD011420
CD011431
CD011515
CD011602
CD011686
CD011912
CD011926
CD012009
CD012010
CD012083
CD012165
CD012179
CD012216
CD012281
CD012599

CD006468
CD000996
CD001261
CD004414
CD007867
CD009069
CD009642
CD010038
CD010239
CD010558
CD010753
CD011140
CD011571
CD011768
CD011977
CD012069
CD012164
CD012342
CD012455
CD012551
CD012661
CD011558
CD011787
CD008874
CD009044
CD011686
CD012080
CD012233
CD012567
CD012669
CD012768

athome100
athome101
athome102
athome103
athome104
athome105
athome106
athome107
athome108
athome109

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

301
302

303
304
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