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Abstract

Satisfying real-time requirements in cyber-physical systems
is challenging as timing behaviour depends on the applica-
tion software, the embedded hardware, as well as the exe-
cution environment. This challenge is exacerbated as real-
world, industrial systems often use unpredictable hardware
and software libraries or operating systems with timing haz-
ards and proprietary device drivers. All these issues limit
or entirely prevent the application of established real-time
analysis techniques.

In this paper we propose PReGO, a generative method-
ology for satisfying real-time requirements in industrial
commercial-off-the-shelf (COTS) systems. We report on our
experience in applying PReGO to a use-case: a Search & Res-
cue application running on a fixed-wing drone with COTS
components, including an NVIDIA Jetson board and a stock
Ubuntu/Linux. We empirically evaluate the impact of each
integration step and demonstrate the effectiveness of our
methodology in meeting real-time application requirements
in terms of deadline misses and energy consumption.
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1 Introduction

Applying real-time systems theory to industrial systems is
challenging as such systems frequently fail to meet the un-
derlying assumptions of models and analyses. While theories
often make idealised assumptions, industrial systems tend
to use unpredictable hardware and software libraries, pro-
prietary device drivers, and operating systems with timing
hazards. Moreover, software architectures are often not de-
signed with real-time constraints in mind, neither are many
software engineers trained in real-time concerns.

Addressing this challenge is essential for successful de-
ployment in industrial scenarios. We present a generative,
component-based methodology to pragmatically providing
real-time guarantees for embedded systems under real-world
constraints: TeamPlay Real-time Guarantees for COTS-based
Systems (PReGO). PReGO includes the identification of real-
time properties in the software, guidelines for taming a Linux
0S, engineering principles to use the TeamPlay! component-
based architecture and declarative specification language [29],
and methods for applying the generative steps performed
by our tool. We provide a systematic approach that can be
applied to a wide range of Commercial-Off-The-Shelf (COTS)
platforms running COTS Operating Systems (OS).

We evaluate PReGO using a maritime Search & Rescue
(SAR) application executing on a fixed-wing drone, manu-
factured by our industrial partner Sky-Watch?. The system
embeds multiple computing boards, including a heteroge-
neous platform that executes the SAR application. The COTS

Iwww.teamplay-h2020.eu
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hardware and OS have been selected by our industrial part-
ner, aiming for a low-power platform with sufficient image
processing performance. The application software has been
designed according to the common practice of optimising for
average performance. The whole original system performs
well under average operating conditions, but it is not guar-
anteed to satisfy its requirements in a worst-case scenario.

This paper addresses the problem of pragmatically satisfy-
ing real-time guarantees under worst-case operating condi-
tions using a mostly generative method. PReGO is designed
to be applicable to a wide range of embedded Linux-based
systems and DAG-based component software [1]. The four
main contributions of this paper are:

1. PReGO, a partially generative methodology to prag-
matically adapt the system and derive the necessary
timing parameters to enable the use of an existing
schedulability analysis;

2. a generative component-based tool flow supporting
our methodology that turns a declarative specification
of the components, their dataflow dependencies, and
their timing requirements into an application infras-
tructure for C-based real-time programs;

3. details on how to improve the timing predictability of
the underlying stock Ubuntu/Linux environment;

4. a step-by-step quantitative evaluation of the worst-
case performance, memory consumption, and energy
consumption of the SAR application that demonstrates
the impact and trade-offs of the proposed adaptations.

The evaluation shows that after system integration with
PReGO the system does not miss any deadlines in the worst-
case scenario. At the same time energy consumption is re-
duced by 18% compared with the original code, thus increas-
ing the flight time of the drone.

The rest of this paper is organised as follows. First, we
present the PReGO methodology in Section 2. Then, we
describe the case study including hardware, operating envi-
ronment, and software in Section 3. In Section 4 we apply
our methodology to the case study. Finally, we review some
related work in Section 5 and conclude in Section 6.

2 Methodology

This section introduces the PReGO methodology for adapting
legacy software running on COTS Linux-based platforms to
meet real-time requirements. We begin with an overview of
the methodology and then present all details step-by-step.

2.1 Overview

Fig. 1 illustrates PReGO, distinguishing between manual and
tool-supported, automatic steps. There are two main work-
flows: 1) adapting the legacy software and 2) configuring the
COTS platform.

The main workflow starts with the identification of the
Worst-Case Execution Time (WCET) scenario. It is followed
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by the task model identification that identifies the relevant
system tasks. In the subsequent re-engineering step an exist-
ing implementation is (manually) refactored into identifiable
component implementations.

At the heart of our generative approach, component co-
ordination uses a declarative DSL that defines the external
behaviour of the components and their orderly interaction
[29]. The coordination DSL code describes the application
architecture at a high level of abstraction. Throughout the
paper we will use the terms component and task interchange-
ably. While the former is the common term in coordination
programming, the latter is common terminology in the real-
time domain.

From the coordination DSL code we automatically gener-
ate profiling code and obtain WCET estimations for individ-
ual component implementations. Subsequent schedulability
analysis determines component priorities and mappings. If it
turns out that our componentised application is not schedu-
lable under the given hardware and time constraints, we
must go back to the (manual) re-engineering step. Other-
wise, we automatically generate the necessary application
architecture code and link it with the separately compiled
component implementations (now without profiling) into
the final executable using platform configuration and APIL.

Independently, we configure (or tame) the COTS platform
to provide time-wise more predictable execution properties,
both for profiling component implementations and execution
of the final application.

Not every application of PReGO starts with legacy soft-
ware. When building new software from scratch the first
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three steps of our methodology become obsolete, and we start
with a componentised application architecture expressed in
our component coordination DSL and the corresponding
component implementations in C. In this case PReGO be-
comes fully automated and all steps are tool-supported.

2.2 Worst-case Behaviour Identification

Identifying the worst-case behaviour is not generalisable
as it depends on the application and its operating environ-
ment. The idea is to find the worst-case conditions (e.g. input
data and environment) for each task that will lead to the
worst-case behavior. For instance, in an image processing
algorithm the worst-case behaviour could be triggered by the
largest possible image. We further elaborate on application-
specific worst-case behaviour identification in Section 4.1
when applying PReGO to our SAR application.

2.3 Taming Stock Linux

The stock Linux kernel does not provide real-time capabil-
ities. One could apply the patch set PREEMPT-RT, but in
practice this is often not possible, e.g. in the presence of pro-
prietary drivers. In the following we propose five customi-
sations of the GNU/Linux environment that pragmatically
reduce the interference between the system and application
tasks without touching the kernel.

First, a major source of interference from the kernel are
interrupt handlers. An interrupt is an event requesting imme-
diate attention from the processor. The processor must then
stop the currently executing code to run the interrupt handler.
To limit the interference of interrupt handlers on our tasks,
we configure the OS to map all interrupt handlers onto a spe-
cific CPU core on which no application tasks are scheduled.
We achieve this by setting the selected core id in /proc/irq/de-
fault_smp_affinity and all /proc/irq/*/smp_affinity.

Second, the scheduler in the Linux kernel is designed to
manage resources system-wide and per CPU. Hence, each
CPU periodically executes a kernel scheduler task to exam-
ine its current state or perform some housekeeping. This
feature is called real-time scheduler throttling and creates
undesirable interference with application tasks. We disable
this OS feature by writing the value —1 in /proc/sys/ker-
nel/sched_rt_runtime_us.

Third, another major source of interference from the OS
are a set of services provided in a stock Ubuntu/Linux. While
these services are convenient for general purpose usage, they
may pollute the cache when scheduled on the same core. All
extraneous services usually started at boot time, e.g. the
printing service daemon cupsd, are disabled. Disabling these
services decreases the number of processes/threads that po-
tentially interfere with our tasks and reduces the memory
footprint of the system.

Fourth, shared resources such as storage devices or mem-
ories can cause interference when accessed concurrently.
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Partitioning such devices avoids this interference by sepa-
rating physical accesses. For example, if a shared storage
devices is a bottleneck, adding an extra storage device and
distributing accesses among them reduces interference and
yields more control over temporal behaviour.

Fifth and last, to further increase control on the OS we
use the POSIX primitive pthread_setaffinity_np to bind each
thread to a single physical core. This way we effectively dis-
able OS-level mapping. Depending on the hardware platform,
however, the system CPU governor may conflict with this.
The CPU governor controls the on/off state of all cores and
continuously adapts the number of active cores to the work-
load. However, from a timing perspective the CPU governor
adds thread migration cost that is difficult to assess. To in-
crease our control of the OS and its predictability, we disable
the CPU governor; the precise way to do so is platform-
specific (detailed further in Section 4.2).

2.4 Task Model Identification

A key step towards providing real-time guarantees is to
identify the system tasks and their associated timing pa-
rameters. A plethora of task models exist, all with different
key properties. In the following we restrict ourselves to the
ones supported by our methodology. First, tasks can either
be dependent, modelled as a graph [36], or independent,
e.g. [20, 24]. When dependent, the whole graph becomes the
task, and timing properties are attached to the graph [3].
Second, the activation rate of each task in our context is a
strict periodicity [20]. Third, a task model has a deadline
constraint, which can be

o constrained when the deadline is less than or equal to
the period,

o implicit [20] when the deadline is equal to the period,
or

e arbitrary [24].

We support a Directed Acyclic Graph (DAG) task model
[1], where tasks exchange data, also called tokens. A DAG
task model can be identified when the predecessor/succes-
sor structure is not constrained (except the absence of cy-
cles), consumption/production rates are equal for each edge,
and each node produces and consumes the same amount of
tokens at each instantiation. This includes some common
task models that are related to the DAG model and are also
supported by our approach: Synchronous DataFlow graph
(SDF)? [18], where consumption and production rates may
be different for an edge (the source node produces a dif-
ferent number of tokens than the sink node consumes at
each instantiation) and the structure is not constrained; and
Fork-Join Graph [38], which is an SDF where the structure
is constrained, enforcing that only specific nodes can have

3SDF can be either cyclic or acyclic; we assume that if there is a cycle,
initialisation tokens (known as delay tokens) are present on back edges,
thus leaving the DAG theory applicable.
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1 app Example {

2 datatypes {

3 (int, "int") (type_t, "struct complexType")
4 }

5 components {

6 TaskA { outports [(out, 42, int)]

7 deadline 10ms

8 period 1Hz

9 } // 42 int per second

10 TaskB { inports [(in, 42, int)]

11 outports [(out, 21, type_t)]

12 } // two ints become one type_t

13 TaskC { inports [(in, 21, type_t)] }

14 }
15 edges {

16 TaskA .out —> TaskB.in
17 TaskB.out —> TaskC.in
18 }
19 }
TaskA TaskB TaskC
| \ out (42 int) Le-| in (42 int) | \ out (21type_t)|-»| in(21type7t)| \

deadline 1 10 ms
period I 1Hz

Figure 2. Example of a component coordination DSL speci-
fication of a simple pipeline of three successive components

multiple successors (split) or multiple predecessors (join),
and enforcing that each split corresponds to a join. SDF and
fork-join graphs need to be expanded in order to properly
schedule them [18, 34]. This expansion step can be automati-
cally done by our tool. Following that the resulting graph can
be analysed using the more general DAG-oriented analyses.

Task Model Definition. We define an application as a
group of tasks T, where each task 7; € T is defined as
7; = (Vi, E;, T;) where V is the set of nodes (or subtask),
E is the set of edges and T is the period. Then, within a task,
each subtask v; ; € V; is defined as v; ; = (C; j, W j), where
C;,j is the WCET estimate, and W; ; the Worst-Case Energy
Consumption estimate (WCEC).

2.5 Task Re-engineering

Once the tasks have been identified, a re-engineering step
is required to make the code reflect the task model and en-
able the generation feature available in our tool. The code
body of each task must be extracted from the application and
placed in separated functions. The core feature of the task
should not include any form of code for inter-task commu-
nication, inter-task synchronisation, or task management.
These mechanisms will later automatically be generated by
our tool, see Sec. 2.8.

In addition to the code of each task, our tool requires a
specification of the tasks and their interactions (the edges
in a DAG-based task model). To this end, we reuse our coor-
dination DSL, first described in [29]. We show an example
program and its graphical illustration in Fig. 2. Each task is
described with a set of input and output ports, which are
connected to ports of other tasks. Each connection specifies
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the amount and type of data exchanged between tasks. From
this DSL program our tool automatically checks stability of
data production and consumption rates (deadlock) and type
correctness, generates a special version of the application for
profiling, performs a schedulability analysis, and generates
the final version of the application. Automatically generating
multiple artifacts from a single model in this manner is a
best practice of model-based engineering and ensures that
artifacts are always consistent with the model [33]. Model-
driven engineering using tailor-made DSLs becomes increas-
ingly common in industry [42], including the domain of
embedded or cyber-physical systems [19]. The model-driven
approach generally benefits development time and improves
customisation, maintenance and evolution of software [2].

2.6 Worst-Case Execution Time

The WCET behaviour of each task can either be estimated
through static code analysis or via profiling [43]. Vendors
typically do not reveal detailed information about the timing
behaviour of their COTS hardware. We are not aware of
any static analysis tool that would be universally applica-
ble to real-time Linux-based systems. Therefore, the only
generally applicable method to estimate WCETs is to use
measurements.

For the purpose of the WCET analysis, a sequential ver-
sion of the application can be automatically generated, where
each task is executed in sequence, respecting dependencies.
The purpose of this approach is to remove task interference
during WCET profiling, so-called WCET estimation in isola-
tion [22]. We instrument each task call to record start and
stop times. All tasks are executed on the same core, and
the cache is flushed before each call to the task code, which
triggers worst-case timing behaviour.

As tasks may exchange data, the communication time
must also be included to guarantee the availability of data
when consuming tasks are scheduled. Data exchanged be-
tween tasks within a graph is done using shared memory.
Reading (resp. writing) the consumed (resp. produced) data
by a task using shared memory involves loading (resp. un-
loading) the cache. We flush the cache prior to each call.
Hence, the data transmission cost is included in our mea-
sured WCET.

Tasks may include computations across heterogeneous
hardware, for example both a CPU part and a GPU part. In
this case we employ a synchronous mechanism that stalls the
CPU when the GPU is computing. Therefore, the measured
WCET/WCEC for these particular tasks cover both parts of
the task.

Our sequential version for the WCET analysis does not
feature any parallelism. In the final parallel implementation
tasks are implemented as threads, as it is the only execution
container (with processes) available within our OS. Sched-
uling them implies context switching cost paid each time
the executing thread on a core is changed. This cost is not
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reflected in our measured WCET. Therefore, we must add
an estimated, platform-specific context switch overhead to
our measured WCET. Because estimations do not provide
an upper bound of the actual WCET, we add an arbitrary
safety margin of 20%, as in [30], to our estimated values to
account for unknown or undocumented overheads in the
COTS hardware and software.

2.7 Scheduling

Scheduling is usually performed by the Operating System
(OS). When using COTS components, available choices are
constrained by the OS supporting the platform. Depending
on the available options, our tool automatically computes
the schedule off-line, or it decides online. Online schedul-
ing opens up more configuration opportunities regarding
task-core mapping, priorities, etc. We here focus only on
configuration supported by our tool, and on-line schedul-
ing. As of writing, we support Partitioned (when task are
mapped on a specific core), no Preemption, Fixed priorities
and no Migration (hereafter referred as PnPFnM) scheduling
policy. As advocated by Casini et al. [8], we, too, believe that
this specific on-line scheduling policy is the rational choice
for bringing maximum control on the timing on a COTS-
based system not tailored for controlling timing behaviour.
Partitioned scheduling gives us control over which task is
executed on what core. Non-preemptive scheduling has the
benefit of reducing interference among tasks executing on
the same core. Lastly, fixed priorities allow us to influence
the execution order of tasks sharing a core.

Upon selection of an online scheduling policy, validat-
ing a real-time system requires performing a schedulability
analysis to a-priori guarantee that the system is schedulable.
Should a system be deemed unschedulable, it is required
to identify the root cause and to restart the re-engineering
process. Because the WCET does not capture scheduling
decisions, the difference between the start of a task and its
completion can be larger than the WCET due to, among oth-
ers, scheduling overhead. On the other hand, the Worst-Case
Response Time (WCRT) captures this environmental block-
ing time in the worst condition. A schedulability analysis
determines the WCRT for each task and checks whether it
is less than or equal to its deadline. If this holds for all tasks,
the task set is schedulable.

A schedulability analysis is strongly linked to both the
task model and the scheduling policy. Hence, a vast range
of literature addresses this research topic for every possible
pair of task model and policy [15]. To deal with our PnPFnM
scheduling policy, Casini et al. [8] derived a schedulability
analysis that fits our DAG-based task model. Therefore, we
implement their analysis in our tool to automatically check
for schedulability.

2.7.1 Mapping Algorithm. Partitioned scheduling poli-
cies, such as our PnPFnM, require us to map tasks to cores
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prior to schedulability analysis (for online scheduling) or
offline scheduling. Algorithms that map tasks to cores essen-
tially solve the well-known bin-packing problem. Therefore,
any algorithm addressing this problem is a potential candi-
date to determine how to map tasks to cores. More focused
algorithms exist to perform this partitioning step, e.g., Wang
et al. [41] use a machine learning approach. However, a sim-
ple space exploration, as presented by Casini et al. [8], is also
possible when the number of tasks and cores are low.

2.7.2 Priority Assignment. Fixed priority scheduling pol-
icy, such as our PnPFnM, requires assigning a priority to

each task prior to performing a schedulability analysis or to

scheduling this application. According to Davis et al. [15],

the Deadline Monotonic (DM) strategy is the most frequently

used as it is simple to implement and yields optimal results

in many cases. It assigns higher priority to tasks with shorter

deadline.

2.7.3 Enforcing the Schedule. The targeted OS offers
us different, limited real-time scheduling possibilities with
three main schedulers in a stock Linux kernel: SCHED_FIFO,
SCHED_RR, SCHED_DEADLINE. All of them queue threads
that are ready to execute. The next scheduled thread is the
one with the highest priority. SCHED_FIFO and SCHED_RR
implement a fixed priority based scheduling policy, whereas
SCHED_DEADLINE implements a dynamic priority scheme
and, hence, can not be used with our aforementioned sched-
uling configuration.

Enforcing fixed priorities is straightforward. At the cre-
ation of a new thread using the pthread_create POSIX primi-
tive, we can set the assigned priority for the corresponding
task using the priority assignment already derived. Enforc-
ing a partitioned scheduling policy is also straightforward
using the POSIX primitive pthread_attr_setaffinity_np before
the thread is created. The choice of mapping is performed
using the mapping already derived. Finally, enforcing a non-
preemptive schedule is realised using the aforementioned
technique to limit the interference with the real-time sched-
uler throttling mechanism, as described in Sec. 2.3.

2.8 Generating the Final Application

The final step of our methodology is the automatic genera-
tion of all synchronisation, communication and task man-
agement code. Fig. 3 shows the code our tool generates for
TaskB from Fig. 2. We likewise generate initialisation code
and the entire main-function, but space limitations prevent
us from showing more code here.

2.8.1 Execution Container. The idea behind an execut-
ing container is to decide if a component or a group of com-
ponents should be executed within a process or a thread.
For example, a developer wishing for full isolation of com-
ponents may prefer to execute each component in its own
process. Each task can be executed in its own thread or pro-
cess, and when partitioned, a group of tasks can be executed
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1 typedef struct {

2 size_t head; size_t tail; int fifo [42];
3 } fifo_int42_t;

4 char pop_int42(fifo_int42_t «e, int« res) {
5 if (e—>tail == e—>head) return 0;

6 «res = (e—>fifo)[e—>tail ];

7 e—>tail = (e—->tail +1)%42;

8 return 1;

9 1}

10 /«type_t is used as the type in Figure 2+/

11 void push_type_t21(fifo_type_t42_t =e, int val) {
12 (e—>fifo)[e—>head] = val;

13 e—>head = (e—>head+1)%42;

14}

15 fifo_int42_t TaskB_in;

16 fifo_type_t21_t «TaskB_out = &TaskC_in;

17 void « __TaskB_(void+ unused) {

18 int status; int in[42]; type out[2];

19 for(size_t i =0 ; ; ++i) {

20 status = sem_wait(TaskA_out_lock);
21 for(size_t j =0 ; j < 42 ; ++j)
22 pop_int42 (TaskB_in, &in);

23 TaskB (in, &out); // user code of TaskB
24 for(size_t j =0 ; j < 21 ; ++j)
25 push_type_t21(&TaskB_out, out);
26 sem_post(TaskB_out_lock);

27 }

28 return NULL;

Figure 3. Code snippet generated for TaskB from Fig. 2

within the same thread/process. Lines 17-29 in Fig. 3 show
the thread function for TaskB.

In order to improve fault tolerance, the TeamPlay com-
ponent framework has been extended such that each task
graph is a process and each subtask (node in the graph) is
a thread. This separation has been implemented to allow
an automatic relaunch of a crashing process: when a thread
crashes, the whole process crashes, but a crashing process
does not affect other processes.

2.8.2 Task Management. There are two types of events
to release a task: the beginning of a new period and the com-
pletion of a predecessor. First, we implemented new period
releasing using alarms available within Linux: one alarm per
component. Second, we implemented a semaphore-based
mechanism to manage predecessor and successor (Lines 20
and 26 in Fig. 3).

2.8.3 Intra-component Communication. A dependency
in graph-based task models implies a data exchange between
a source and a sink task. Such dependencies are materialised
with a FIFO channel. To access this channel we use the prim-
itives push and pop [38]. They push tokens produced by the
source into the channel, and they pop tokens consumed by
the sink, respectively. The types of tokens and their transmit-
ted amount are application dependent. The code generator
produces an implementation of the aforementioned primi-
tives for each required type. These types are extracted from
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Figure 5. Drone installation

the task re-engineering produced file, see Sec. 2.5. FIFO chan-
nels can also be implemented using different techniques de-
pending on the target OS. We generate buffers implemented
with shared memory (Lines 1-16 in Fig. 3).

3 Case Study Overview

This section presents our industrial case study including
hardware and operating environment. The system under
study is a fixed-wing drone manufactured by our industrial
partner Sky-Watch?. The application scenario is a Search
& Rescue (SAR) mission where the drone flies above the
sea and sends an alarm to a ground station when it detects
life boats. Fig. 4 provides a graphical sketch of the system.
The drone embeds multiple computing platforms that can
be split in three parts: flight control, image capture, and
mission-specific payload application (here SAR).

3.1 Flight Control

To fly in total autonomy the drone uses a GPS-based autopilot
software stack that pilots the drone above the mission area
loaded into the drone before taking off. The system uses
an open-source autopilot software stack called PX4°, which

4www.sky-watch.com

Shttps://px4.io/
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runs on top of a PixHawk 2 platform® (single-core Cortex
MA4F with 256 KB RAM).

The PX4 software communicates with our payload applica-
tion using Mavlink-encoded’ messages sent through a serial
port on the PixHawk board. Among others, these messages
provide time synchronisation, update GPS coordinates, and
enable/disable the payload application. The latter feature
allows us to save energy by not running the SAR application
while navigating to and from the mission area.

3.2 Image Capture

To capture images an Elphel® board with two cameras is
mounted below the drone. The two cameras have a 51° field
of view and are mounted at a 30° angle forward, as shown
in Fig. 5a. Only a single camera is used in this case study, the
other is disabled to avoid interference. The Elphel board runs
GNU/Linux; captured frames are streamed using standard
GStreamer’ libraries. The configured GStreamer pipeline
streams out the image via a HTTP server, which is accessi-
ble through an Ethernet port on the Elphel board. The use
of GStreamer to deliver images at a fixed frame rate is a
requirement for the implementation of the system.

3.3 Search & Rescue Payload Application

The SAR application runs on a Toradex Apalis TK1'” Computer-
on-Module hardware platform, which provides a quad-core
ARM Cortex-A15 CPU, 2 GB of DDR3 RAM, and 16 GB of
non-volatile storage. It also features an NVIDIA Kepler GPU
with 192 cores. The GPU device can be exploited to accel-
erate image processing tasks. Fig. 5b shows the TK1 board
mounted inside the drone.

The board runs a modified Ubuntu/Linux'!, which in-
cludes NVIDIA proprietary drivers for the Kepler GPU. This
precludes the use of both a Real-Time Operating System
(RTOS) and the RT-patch set for Linux as neither of them
supports this hardware platform. This greatly increases the
challenge of providing real-time guarantees.

The original SAR application code, as provided by our in-
dustrial partner, has mostly been developed in C++, with an
object detection function in CUDA. The application is split
into different processes and threads, thus enabling parallel
execution. Processes communicate with each other using a
socket mechanism. All processes and threads are, in this orig-
inal version, scheduled using the default Linux scheduling
policy (SCHED_OTHER, a completely fair scheduler).

The SAR application receives messages from Flight Con-
trol through a serial port on the board and frames from

®https://pixhawk.org/

"https://mavlink.io/en/

8https://www.elphel.com/
“https://gstreamer.freedesktop.org/
1Ohttps://developer.toradex.com/products/apalis-tk1
https://ubuntu.com/
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the Image Capture through its Ethernet port. Upon recep-
tion of a toggle image capture message from flight control, a
GStreamer pipeline is activated, that downloads a new frame
by accessing the HTTP server running on the Elphel board.
This frame is stored in a queue until it is processed by the
detection algorithm, which is likewise activated/deactivated
by the same message.

Upon detecting life boats a message is sent to ground
control, including the number of boats, their corresponding
GPS location, and the image itself for manual validation. A
second GStreamer pipeline from the same camera records a
video of the flight. It uses the same frame fetching method
as above and is intended for post-mission verification.

Due to the low speed of the drone, there is no need for a
high frame rate. Depending on the requested altitude, the
frame rate can go from 2 to 10 frames per second (fps). The
higher the altitude of the drone is, the wider area a single
frame covers, and the lower the frame rate can be. To reduce
the number of false positives, a restriction is given on the
minimum size of detected objects. To be marked as life boats,
detected objects must be wider that 0.5m? on the picture.
Obviously, the number of pixels needed for the size of the
object depends on the parameters of the cameras (e.g. the
focal) and the altitude.

4 Applying the PReGO Methodology

This section continues the demonstration of the PReGO
methodology introduced in Section 2 by applying it step-
by-step to the case study from Section 3.

4.1 Worst-case Behaviour Identification

The initial system works reasonably well under typical oper-
ating conditions. However, to ensure life boats are not left
undetected, we need to provide real-time guarantees in a
worst-case scenario (WCS), for which defining parameters
is a challenge.

Examining the application software provided by our part-
ner, we concluded that the WCS is triggered by the maximum
number of detected objects in a frame when they are at their
minimum size (determined by the altitude). While at the
highest possible altitude (about 1000 m), it is theoretically
possible to have over 5 million boats in a single frame, this
worst WCS is unlikely to happen in real life. Together with
our industrial partner, we decided to consider the life boat
capacity of the biggest Oasis-class cruise ship as a reference
to create a worst-case image with the maximum considered
number of life boats, estimated to be 440.

To enforce the WCS we need to simulate a worst-case
image stream that triggers the worst possible execution time
for each frame processing operation. We run the SAR appli-
cation under worst-case operating conditions given by our
partner, which is 1000 m altitude, a frame rate of 2 fps, and a
continuous stream of the worst-case image. Fig. 6 reports the
execution time per frame in this WCS. We observe that there
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Figure 7. Original code base running on a tuned Ubuntu/Linux in a WCS. AVG energy consumption: 4.9]/frame.

is substantial variation in execution times and that some
59% of the frames miss their 500 ms deadline (blue line). The
observed variation in execution time stems from the regular
interference of the OS with various parts of the application
software as well as hardware interrupts. We measure the en-
ergy of each frame by measuring the power consumption of
the board using an external power supply (Kethley 2280S-32-
6). This device allows us to measure at a frequency of 100 ms
and link measurements with time stamps representing the
beginning and end of the processing of each frame. We can
then estimate the energy consumed while the frame was
processed. During the frame processing time, other tasks of
the system might be running, but since this is the case for
all experiments, the average energy consumption per frame
gives us a useful value for comparison.

Since frames are queued before processing, missing the
500 ms deadline leads to increasing memory usage as images
are added to the queue faster than they are processed (red
line in Fig. 6). This results in increasingly delayed object de-
tection reports until memory exhaustion eventually causes
the whole application to crash. Since the real-time require-
ments of the application are not satisfied under worst-case
conditions, we now apply the subsequent steps of the PReGO
methodology.

4.2 Taming Stock Linux

The second step of PReGO is taming Linux. As the pres-
ence of proprietary NVIDIA drivers prevents us from using

the PREEMPT-RT patch set, we proceed with the five sub-
steps introduced in Sec. 2.3. The first three taming steps
are straightforward: we map all interrupt handlers to a spe-
cific CPU, disable real-time scheduler throttling, and disable
all extraneous services. For step four, we store images and
videos in separate storage devices. Originally, both images
and videos are stored on one SD-card. However, the low
writing speed of SD-cards causes interference when stor-
ing both video frames and images on the same device. To
prevent resulting delays we attach an external USB drive to
the board to save the video, thus removing the cause of the
interference.

The last taming step is to disable the CPU governor, which
is part of the Tegra driver installed in the OS. Migration
points are beyond our control as the NVIDIA Tegra drivers
are proprietary. We disable this governor by setting the value
0 in /sys/devices/system/cpu/cpuquiet/tegra_cpuquiet/enable
and enable all required cores for our application by setting
the value 1 in all /sys/devices/system/cpu/*/online.

Evaluation. Fig. 7 presents the result on the processing
time and the memory usage after applying the five afore-
mentioned customisation steps on our Ubuntu/Linux envi-
ronment. We observe considerably less variation in frame
processing times, but there are still 0.8% deadline misses. The
energy consumption has increased from 3.8] to 4.9], which
we believe is primarily due to a combination of disabling
the CPU governor and wasting significant CPU resources
on thread management. We note that even though the CPU
governor is disabled, the default NVIDIA dynamic frequency
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Figure 8. Identified task graphs in the Search & Rescue application

scaling governor is still enabled. Therefore, high CPU load
causes high energy consumption.

4.3 Task Model Identification

Applying existing schedulability analyses to our industrial
use-case is not straightforward: The initial application pro-
vided by our partner was not designed to meet the underlying
assumptions of such analyses. To enable existing analyses to
be applied, we need to extract task graphs from the existing
code and transform them to the task models supported by
our methodology, as discussed in Sec. 2.4.

4.3.1 Task Identification. We extract task graphs from
the initial system as described in Sec. 2.4. From the initial
code we manually follow messages and frames variables,
and we identify code sections that apply a specific feature on
these variables. These portions of code are then identified as
tasks while the exchanged messages/frames between these
tasks create our task dependencies. From these tasks and
dependencies we extract our task graphs and proceed with
further PReGO steps.

The resulting task graphs are shown in Fig. 8, where each
of the four sub-figures represents an independent Directed
and Acyclic Graph (DAG). In the figure nodes represent tasks,
and edges represent dependencies between tasks. Not all
parameters are present for every node, as further discussed
in Sec. 4.3.2. Each edge is labeled with the amount of data
(a.k.a. number of tokens) that are transmitted along it and
some type information about the data.

Fig. 8a shows the task graph that handles the reception of
periodic messages sent by the Flight Control (later referred to
as I'pc), previously discussed in Sec. 3.1. The source node/task

of the graph first reads a message arriving on the serial port
and then dispatches it to one of its successors for further
processing. Hence, when a message is received, only one of
the sinks is executed depending on the message content.

Fig. 8b represents the task graph that detects life boats
at sea, later referred to as I'ppr. It first fetches a frame from
a queue with atomic access. The frame is then sent to dif-
ferent tasks for further processing, such as Exchangeable
image file format (Exif'?) extraction and object detection.
Upon successful detection, the number of detected objects
is transmitted to one task (save_to_disk) while the object
locations are sent to another task (send_to_GC). The sink
task deallocates memory for the just processed frame and its
corresponding Exif data.

Fig. 8c and 8d, later referred to as I's; and Iy, respec-
tively, represent the two GStreamer pipelines used to capture
frames from the HTTP server running on the Elphel board
(see Sec. 3.2). The first one, I'sy, is in charge of fetching frames
and storing them in a queue with atomic access, where
they are later accessed by the task graph I'pyr. The second
pipeline, Iy, also fetches frames from the HTTP server, but
to reconstruct the video of the mission that is stored on-board.
Each pipeline is executed in a single thread, and all filters
present in each pipeline run sequentially. With this in mind,
and due to the lack of control we have over GStreamer library
filters, we decided to represent each GStreamer pipeline as a
task graph with a single task.

Having identified the task graphs in the system, we pro-
ceed by looking at their respective timing parameters. In the
task graph I'rc some tasks have a period attached, whereas

2https://exifdata.com/
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others do not. If a period is shown, we were able to extract
the information from the flight control configuration (PX4
configuration provided by Sky-Watch'?, see Sec. 3.1). It corre-
sponds to the receiving frequency of the respective message.
For the sink nodes where no period is present the corre-
sponding message is aperiodic. For example, the message
triggering payload_store is sent only once to kill the payload
application, whereas the message triggering cmd_capture is
sent to activate/deactivate the image capturing and is there-
fore mission-dependent.

Due to the absence of timing constraints in the initial use-
case, there are no explicit task-level deadlines. After further
discussion and analysis, we decided to consider all task-level
deadlines to be implicit. The consequence for the SAR ap-
plication is that to process a new frame the previous one
must be complete. The benefit of this decision is that it limits
interference on shared resources, e.g. the GPU. However, it
prevents us from exploiting frame-level parallelism.

Following the approach described in Sec. 2.4, we split the
task graph I'rc into multiple periodic tasks. Regarding the
two GStreamer tasks I'z; and I'gy we are not able to define
any period, neither WCET nor WCRT. Therefore, we spatially
isolate them (map on an unused core) and do not consider
them in our analysis.

4.3.2 Inferring Periods. In the task graph I'r¢c we have
four tasks with a missing period. To enable the use of anal-
yses for the periodic task model, we need to first infer this
missing information, as described in Sec. 2.4. The tasks pay-
load_store and do_preflight_check are aperiodic and will be
grouped into a polling server meta-task. The task cmd_capture
is also aperiodic as it responds to a message from flight con-
trol requesting to toggle the frame capturing. Similar to tasks
payload_store and do_preflight_check, cmd_capture is placed
in its own polling server as it requires a different period
determined by the frame rate of the camera capture. As il-
lustrated in Fig. 9, if the period for cmd_capture is too long
then the task graph I'ppr (represented with its source node
fetch_frame in the figure) will, in the worst case, miss the
first frame, i.e. the life time ¢ of frame A is expired (¢ depends
on the frame rate, e.g. 2 fps implies £ = 500ms).

L N )] ,
Frame A | Frame B |

fetch_frame

cmd_capture f B

other task

fetch_message_FC D ¢

Legend

[ Life time of
[ 2 different frames
D WCET of a task

f Period
¢ Deadline

t

Figure 9. A wrong choice for task cmd_capture period leads
to task fetch_frame missing the first frame
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To avoid the problem illustrated in the figure, the period
of the server task must account for the reaction time upon
message reception. Equation (1) limits the computed period
to be the minimum period for a valid system. However, and
as illustrated by the example of Fig. 9, in the unlikely event
of other tasks with higher priority reaching their WCET, task
cmd_capture can be delayed up to its WCRT. To overcome
this situation, we make sure that the cmd_capture task gets
a higher priority in our system. See Sec. 2.7.2 for details on
priority assignment.

Tcmd_capture < t- WCETfetch_frame
- WCETcmdicapture (1)
- WCETfetchﬁmessageﬁFC

H
Tfetch_msg_FC = H (2)

T.
iesuccessors(fetch_msg_FC) "'

The last missing period concerns the task fetch_msg FC.
This task periodically receives a message from the flight con-
trol and unicasts it to another task. To compute its period
we compute the hyperperiod (H). From this, we derive the
period as shown in Equation (2). Note that the derived period
in Equation (2) is floored as time is in N*. This may result
in one more activation of the task than strictly necessary.
However, if there is no message to read from the flight con-
trol then the task simply completes earlier than its WCET
without transmitting a message. Equation (2) holds because
in this use-case we consider strictly periodic messages.

4.4 Task Re-engineering

Tasks and subtasks have now been identified and their tim-
ing properties extracted. We manually re-engineer the code
of their implementations, as described in Sec. 2.5. We also
describe the component coordination or task dependencies
using the DSL from Fig. 2, but due to space limitations we
cannot show the DSL code here, unfortunately.

4.5 Worst-case Execution Time

We estimate the WCET of each task using the previously
described profiling-based technique. The sequential version
of the application is generated and used to perform the mea-
surements. The object detection algorithm includes both a
CPU part and a GPU part, but, as described earlier, this is han-
dled by stalling the CPU. We add a context switch overhead
of 48ms to our measured WCET [14], which looks relevant to
us as they cover ARM-based architectures running a Linux-
based OS. The measured WCETs, including the 20% safety
margin, are reported in Table 1.
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Table 1. Mapping and priority table

Task name WCET | Period WCRT | Prio | CPU
(ns) (Hz) (ns) | rity D
fetch_msg_FC 61333 | 31.038 126916 99 1
heartbeat 111165 1 154831 95 3
id_gps_raw 65583 10 175165 98 3
id_status_raw 21833 1 21833 93 3
cmdicapture 9358216 11 9469381 99 3
id_attitude_raw 22083 10 | 39003917 97 3
glob_pos_raw 16583 5 113081 96 3
payload_store 48249
do_preflight_... 25583 1| 18938762 9 3
fetch_frame 2682383 95 2
extract_exif 170414 96 1
object_detection 3374114 96 2
augment_exif 54333 2 | 45283660 97 1
save_to_disk 38981834 98 2
send_frame_... 150248 98 1
free_frame 23833 99 2

4.6 Scheduling

We show the resulting mapping and priority assignment in
Table 1. We arbitrarily select SCHED_FIFO. Since one core is
reserved for interrupts, the application tasks and the related
schedulability analysis from Sec. 2.7 only make use of three
of the four available cores (see Sec. 3.3).

4.7 Generating the Final Application

We use our toolchain to generate the final code, as described
in Sec. 2.8. We generate one process per graph while each
subtask becomes a thread of its corresponding process. Task
management and communication follow the principle de-
scribed in Fig. 3 with semaphores for releasing subtasks and
shared-memory FIFO buffers for communication.

4.8 Evaluation & Validation

Fig. 10 presents the processing time and the memory usage
after task identification using our toolchain and after enforc-
ing the schedule on the application task graphs from Fig. 8.
Task identification makes the parallelism more fine-grained,
which improves performance, but, as shown in Fig. 10a, also
decreases predictability without real-time scheduling.

Also, the per-frame energy consumption decreases sig-
nificantly from the original code (4.9]) to our version with
identified tasks (2.7]), but is again increased in the final ver-
sion (3.1]). We believe the decrease to 2.7] is due to a better
use of computing resources since the number of threads is
increased and, thus, can better spread out the computation
across the cores, letting the DVFS governor run some CPUs
at lower speed. The increase to 3.1J is believed to be due
to a different use of computing resources after reassigning
threads to ensure real-time responsiveness of the system.
In particular, threads were reassigned in a way that puts
a significant computational load on each core of the sys-
tem without fully loading any core of the system, which

GPCE ’20, November 16-17, 2020, Virtual, USA

appears to increase the overall energy consumption of the
system. Interestingly, this appears to indicate that dynami-
cally changing the scheduling policy between real-time and
non-real-time would provide a trade-off in energy consump-
tion versus real-time behaviour. In the end, the per-frame
energy consumption of 3.1] represents an 18% improvement
over the initial 3.8] per frame (Fig. 6). For battery-powered
devices like our drone this make a considerable difference.

The final version of the application from Fig. 10b was
validated by Sky-Watch'*, deploying it to the actual drone
platform and flying the default test mission, which concerns
detecting a lifeboat placed in a uniform dry-land environ-
ment. The application was observed to perform identically to
the original version from a functional point of view. Changes
in the overall energy consumption of the drone platform
(computation and actuation) were observed, but an analysis
of the energy consumption of the system taking into account
for external factors, such as changing wind conditions, is
considered future work.

5 Related Work

PReGO is based on the TeamPlay component-based architec-
ture and declarative specification language, which were pre-
viously described in terms of general principles and the con-
cept of energy-, time-, and security-aware scheduling [29].
This paper investigates the practice of applying this approach
to a Linux-based system, presents the PReGO methodology
for systematically applying TeamPlay to COTS-based sys-
tems, and is the first reported experimental evaluation of the
TeamPlay component-based architecture and specification
language.

The generative aspect of PReGO is based on model-driven
software development (MDSD) [40], which is increasingly
used in robotics [35] and drones [26, 31] to automatically gen-
erate parts of the implementation of a component-based sys-
tem, such as ROS [28]. In the case of ROS, robotics toolchains
like BRIDE [7] and SmartSoft [35] provide strong support
for MDSD, and similarly rely on DSLs to specify the overall
composition of the system. Unlike PReGO, these toolchains
have, however, not explicitly been designed to tackle the
challenge of integrating legacy code, making them better
suited for developing new applications.

Drones have been the subject of research studies targeting
many different use-cases. While most of them use COTS
components, they mainly focus on the mission of the drone
rather than extra-functional properties, such as guaranteeing
the timing behaviour of the system. For example, [25, 39] con-
cerns path planning, [17] focuses on communication with the
ground station, [21] extracts environment features (e.g. wa-
ter) from frames, and [11] focuses on object tracking.

In [12, 13] different applications are generated from a
set of components. They use C++ and template program-
ming capabilities to generate component code and glue code.

14www.sky-watch.com
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Figure 10. Final integration: componentisation and real-time scheduling

Similarly, [37] proposes a DSL to apply this generative meta-
programming paradigm to embedded systems. In [9], authors
also propose a DSL and a generative framework along with
a simulator, and targeting pervasive systems. Neither are
these DSLs suitable for real-time systems, nor do they allow
the timing analysis presented in this paper.

The language Lustre [4] and its compiler framework ap-
plies generative programming to embedded real-time sys-
tems. However, it is focused on the avionic domain, or more
generally on control systems. In contrast, our methodology
and framework covers a wider range of application domains,
as the tool chain is independent of the inner body of tasks
and only relies on the structure.

We acknowledge that using a proper RTOS like HIPPEROS
[27] or an OS kernel with real-time capabilities like Linux
with the PREEMPT_RT patch set or LitmusRT [10]) increases
the control of the timing behaviour on the platform. How-
ever, we are constrained to use proprietary drivers and li-
braries not supported by such environments. Related work
on taming Linux is mostly outdated, or the code is unavail-
able, e.g. implementation of EDF in the Linux kernel [16].
We found inspiration to tame our Linux kernel in [5, 23] for
interrupt handling and scheduling enforcement and in [6]
for CPU isolation.

In our work we deactivated the Dynamic Voltage and Fre-
quency Scaling (DVES) feature of the kernel to run cores at
maximum frequency. Scordino et. al. on the contrary leave
DVFS active in a Linux environment [32] and only deacti-
vate it for real-time tasks to ensure timing constraints. This
approach, however, relies on modifying the Linux kernel and

its EDF scheduler (SCHED DEADLINE), which was not an
option in our setting.

6 Conclusion

This paper introduces a novel methodology called PReGO for
satisfying real-time constraints on commercial-of-the-shelf
(COTS) platforms with hardware and operating system soft-
ware with generally unpredictable timing behaviour. PReGO
includes both manual and generative steps. We illustrate
our methodology on the industrial case study of a Search
& Rescue application executing on a fixed-wing drone. Fol-
lowing PReGO, the use-case successfully satisfies its timing
requirements in the worst-case scenario with no deadline
misses. In addition, we managed to reduce the overall energy
consumption from 3.8] to 3.1] per video frame processed by
the application.

Our case study shows that PReGO successfully combines
various engineering pieces into a systematic methodology
that is well-suited to considerably increase trust in the real-
time properties of applications executing on COTS plat-
forms. This makes PReGO an attractive approach for (re-
)Jengineering software in the large grey area of applications
that need to meet real-time requirements, but are neither
designed according to real-time principles nor are supposed
to run on hardware and OS suitable for real-time guarantees.

To further improve the energy consumption and the pre-
dictability of the system, we plan to improve the task man-
agement and integrate a multi-mode scheduling policy. In
addition, we plan to integrate our own energy-aware sched-
uler for the described task model.
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