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Chapter 1

Introduction

Inquisitive logic

Inquisitive logic provides a framework to encompass questions in order to employ
them in formal inferences and study their logical properties. This also prepares
the ground to investigate these properties from the perspective of natural lan-
guage.

The main obstacle to tackle in order to reason about questions in a formal
framework is that questions do not have an associated truth value. It is natural
to judge a statement either true or false depending on the context in which it
is evaluated (e.g., “it is raining” is true when water falls from the sky); and
we can easily make inferences between different statements based on their truth
values in different contexts (e.g., that “Either Thom or Tom has an umbrella”
implies that “Someone has an umbrella”, since the latter is true whenever the
former is). However this is not the case for questions, since questions do not
have an associated truth value in a given context (e.g., we cannot really judge
the question “who has an umbrella?” to be true or false, independently from the
context): questions raise issues which require some specific information to be
resolved.

Semantics of logical formalisms are usually based on the concept of truth
relative to a given state of affair. Examples of this are Tarskian semantics (where
a single state of affairs is modeled at once), possible world semantics (where
several states of affairs are modeled at once) and epistemic semantics (where the
description of the state of affairs includes also the knowledge of one or more ideal
agents). Thus these approaches do not seem suitable to reason about questions
and logical inferences involving them.

One of the first formalisms to address this issue is the predecessor of inquisi-
tive logic: partition semantics proposed by Groenendijk and Stokhof [1984]. This
semantics interprets a question as a partition of a set of possible worlds, in which

1



2 Chapter 1. Introduction

every cell of the partition corresponds to a distinct answer to the question true
in every world of the cell. Inquisitive logic inherits many traits from this sys-
tem: statements and questions are interpreted as formulas of a suitable logical
language; a new semantics is developed to formalize the concepts of asserting a
statement and resolving a question; and the corresponding entailment relation
allows to study logical relations between statements and questions.

However, the partition approach has some inherent limitations which do not
allow to define formal counterparts of some natural language concepts (e.g., de-
terminacy between questions), and so this precludes expressing complex sentences
like conditional questions and mention-some questions (e.g., “What is an instance
of. . . ?”). To overcome this hurdle, inquisitive logic proposes a semantics based on
information instead of truth or answerhood. So rather than characterize whether
a statement is satisfied in a given state of affairs or represent a question as the
set of its possible answers, inquisitive logics focuses on whether a sentence is
supported by a given piece of information.

More concretely, the semantics of inquisitive logic represents a certain piece
of information I as a set of possible worlds, that is, the set of those worlds sI in
which I is true. This allows to give a uniform semantic account to both statements
and questions : a statement is implied by a certain body of information I iff it is
true in every world of sI ; and a question is resolved by a certain information I iff
the issue it raises is settled in the same way in every world of sI . We will refer to
this as the support semantics of inquisitive logic and say that a sentence, being a
statement or a question, is supported by a piece of information in case the right
condition above is met.

This approach also allows to study logical relations involving both statements
and questions in terms of the information supporting them (see [Ciardelli, 2018]
for an in-depth discussion). For example, we say that a statement resolves a
question in case every piece of information implying the former also resolves the
issue raised by the latter (e.g., that “Ilaria has an umbrella” resolves the question
“whether someone has an umbrella”).

Since formulas are interpreted relative to information states, that is, sets of
possible worlds, inquisitive logic qualifies as an example of team semantics, a
family of formalisms firstly considered by Hodges [1997b] in which formulas are
not interpreted relative to a single point of evaluation (e.g., a world, a state)
but are interpreted at sets of points of evaluation (e.g., a set of worlds, a set
of assignments). Several logics fall under this family, for example independence
friendly logic [Hintikka and Sandu, 1989], dependence logic [Väänänen, 2007] and
the set-theoretic multiverse [Hamkins, 2012]. Even though these formalisms differ
on what is regarded as a team (e.g., in dependence logic a team is a set of variable
assignments), there are strong connections thoroughly explored in the literature
between inquisitive logic and the other members of the family of team logics (see
for example [Yang and Väänänen, 2016] and [Ciardelli, 2016, Chapter 5]).
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The first formalism implementing the team-based approach to questions is
inquisitive propositional logic, introduced by Ciardelli and Roelofsen [2009] as
a logical system extending classical propositional logic with questions (see also
[Ciardelli and Roelofsen, 2011] and [Ciardelli, 2016, Chapter 3]). In this system,
the role of possible worlds is played by propositional valuations (i.e., evaluations
of atomic propositions) and formulas from classical logic are treated as statements.
So a piece of information I in this context amounts to a property of propositional
models, and a statement α is supported by I iff α is true in all the models having
property I.

To include questions into the picture, a novel question-forming operator is
added to the semantics: inquisitive disjunction

>
. This operator allows to express

several kinds of questions, as for example the polar question “whether p holds”,
represented by the formula ?p := p

> ¬p. In this particular case, a piece of
information I resolves the formula ?p iff I implies either p or ¬p, that is, if every
model with property I satisfies p or every model with property I satisfies ¬p.

This approach allows to infer in a formal system natural logical relations
between statements and questions: for example, we can infer that the sentence
“p holds” (represented by the formula p) determines the question “whether p
holds” (represented by the formula ?p). Moreover, introducing questions through
additional question-forming operators allows to represent and study more complex
sentences: for example the conditional question “if p is the case, is q also the
case?”, represented by the formula p→ ?q.

Inquisitive propositional logic is a concrete incarnation of the support seman-
tics approach to questions. However, the approach itself is much more general and
can be implemented in many different ways: the concepts of possible world, piece
of information and resolution are deliberately underspecified so that, depending
on how they are instantiated, we obtain a different inquisitive logic. Some exam-
ples are inquisitive first order logic [Ciardelli, 2016, Chapter 4], inquisitive modal
logic [Ciardelli, 2016, Chapters 6-7], inquisitive intuitionistic logic [Ciardelli et al.,
2020, Holliday, 2020, Punčochář, 2016], inquisitive epistemic logic [Ciardelli, 2014,
Ciardelli and Roelofsen, 2015], substructural inquisitive logics [Punčochář, 2019],
relevant logics of questions [Punčochář, 2020].

The support semantics has been studied in detail in many of these instances.
For example, inquisitive propositional logic has been investigated from several
different points of view: there are several proofs of completeness for the logic
(e.g., [Ciardelli and Roelofsen, 2009, 2011] and [Ciardelli, 2016, Theorem 3.3.2])
and different proof systems (e.g., [Ciardelli, 2016, Section 3.1] and [Sano, 2009]);
a constructive interpretation of proofs was given in some of these systems, in
the style of the Curry-Howard interpretation [Ciardelli, 2018]; connections with
intermediate logics [Ciardelli, 2009] and with logics of dependence [Yang and
Väänänen, 2016] have been investigated in great detail; many extensions and
generalizations of the logic have been proposed and studied [Punčochář, 2015,
2016, 2020, Ciardelli et al., 2020]; several algebraic approaches have been proposed
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to study the logic and variations of it [Punčochář, 2015, 2019]. Another significant
example is modal inquisitive logic, for which interesting technical results have been
proved recently: the axiomatization of the logic [Ciardelli, 2016, Theorem 7.3.30];
bisimulation results for the logic and extensions [Ciardelli and Otto, 2017, 2018];
a faithful translation of the system in first order logic [Ciardelli and Otto, 2018,
Meißner and Otto, 2019]. These examples show that a considerable body of
results and techniques have been proposed to study inquisitive logics. However,
there is at least one aspect which has yet to be analyzed at this level of detail,
and which is exactly the topic of this dissertation: quantification.

Inquisitive first order logic

The logic we are interested to study in this dissertation is Inquisitive first order
logic, which extends classical first order logic with questions. Similarly to the
propositional case, the role of possible worlds is played by classical first order
models and a piece of information amounts to a property I of first order models.
For example I1: “the interpretation of c is in the extension of the relation P”
and I2: “the cardinality of the domain is finite and even” are considered pieces
of information.

This semantics account allows to interpret the standard quantifiers from first
and second order logic: for example “for all x it holds that. . . ”, “there exists an
x such that. . . ” and “there are finitely many x such that. . . ”. Formally, these
quantifiers are combinators that, given a property, produce a statement on the
set of elements respecting said property. So the statement “there exists an x such
that P holds at x” is supported by a piece of information I iff I ensures that the
extension of P is not empty.

In the more general semantic framework of inquisitive logic we can also natu-
rally interpret question-forming expressions as quantifiers: for example “what is
an x such that. . . ?”, “are there any x such that. . . ?”, “which x are such that. . . ?”
and “how many x are such that. . . ?”. All these expressions acts as combinators
that, given a property, produce a question on the set of elements respecting said
property. For example, “how many x are in the extension of P?” is supported
by a piece of information I iff I allows to pinpoint the cardinality of the set
of elements having property P . This novel approach generalizes the concept of
quantifier and enriches significantly the expressive power of classical first order
logic.

To represent questions in this context, we add to the syntax of first order
classical logic two question-forming operators: the inquisitive disjunction

>

(that
we already encountered in the propositional case) and the inquisitive existential
quantifier ∃. The latter introduces questions of the form “what is an x such
that. . . ”, as for example “what is an x in the extension of P?”, represented by
the formula ∃x.P (x) and resolved by the pieces of information I that implies for
some particular element d that it has property P .
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In this extended language we can capture and study several classes of natural
language questions involving quantifiers. Among these classes we have mention-
some questions [Ciardelli, 2016, Section 4.7], asking for an instance of an element
with a given property. “What is an x in the extension of P?” and “if q is
the case, what is an x in the extension of P?” (represented by the formula
q → ∃x.P (x)) are both examples of mention-some questions. Another important
class captured by inquisitive first order logic is comprised by mention-all questions
[Ciardelli, 2016, Section 4.8], asking for the extension of a certain property or
relation. For example, “what is the extension of P?” is a mention-all question
represented by the formula ∀x.(P (x)

> ¬P (x)) (literally, “for every element x, is
x in the extension of P?”). This last expression effectively acts as a second order
quantifier—for instance in the formula ∀x.(P (x)

> ¬P (x))→ ∀x.(Q(x)

> ¬Q(x)),
which expresses that the extension of Q is determined by the extension of P—
showing the enhanced expressive power of the logic.

We are also able to perform inferences involving questions and quantifiers. For
a simple example, the statement that “c is in the extension of P” (represented
by P (c)) resolves the question “what is an x in the extension of P” (represented
by ∃x.P (x)). In fact, every piece of information ensuring that c is in the exten-
sion of P also allows to pinpoint an element in said extension: the element c.
The following (less trivial) example shows that we can also formalize inferences
involving complex forms of quantification: the question “what is the extension
of P?” (represented by ∀x.(P (x)

> ¬P (x))) resolves the conditional question “if
the extension of P coincides with the extension of Q, what is the extension of
Q?” (represented by the formula ∀x.(P (x)↔ Q(x))→ ∀x.(Q(x)

> ¬Q(x))).

Studying support semantics in the presence of quantification brings forth in-
teresting theoretical issues, first and foremost on the expressive power of the logic.
We mentioned that the semantics allows to interpret all quantifiers from classical
logic, and even new quantifiers proper to questions. We even saw that we have
access to some form of second order quantification in the logical language. So a
natural question is how far we can go, what quantifiers can we express in first
order inquisitive logic? Can we characterize them or find some properties they
must meet to be expressible? And, more generally, what questions are expressible
in this enhanced version of first order logic?

These issues on the expressive power also kindle several questions about the
entailment of the logic. The most clear example is whether the entailment is
axiomatizable, a non-trivial question since the logic allows for some forms of
second order quantification. This problem was already tackled in the context of
fragments (e.g., the mention-some and mention-all fragments [Ciardelli, 2016,
Sections 4.7, 4.8]), but as of now it remains open for the full language. Other
natural questions stem from the relation with its classical first order counterpart,
as for example whether the entailment satisfies certain properties like compactness
or the Löwenheim-Skolem theorem, and if not in which fragments these remain
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valid.
To tackle all these issues we need new tools and techniques, and providing

them is the challenge this dissertation addresses. This work is meant to be a first
step in the direction of understanding the interactions between questions and
quantifiers and, more importantly, studying them in a systematic way. The focus
was first and foremost on developing tools and techniques that could be used to
better understand inquisitive first order logic and other logics of questions in the
presence of quantification. As we will show with several examples, these tools
have proved to do the job they were meant to: finding interesting properties of
the logic and proving them.

Content of the dissertation

The dissertation can be divided into four parts, each considering a different ap-
proach to study the logic.

Games and expressive power

In the first part, consisting of Chapters 4 and 5, we adapt a tool from the field of
model theory to inquisitive first order logic and use it to show different properties
of the logic: Ehrenfeucht-Fräıssé games.

Ehrenfeucht-Fräıssé games (also known as EF games or back-and-forth games),
introduced in 1967 by Ehrenfeucht [1967] developing model-theoretic results pre-
sented by Fräıssé [1954], have proved to be a powerful tool to study the expressive-
ness of classical first order logic. These games provide a particularly perspicuous
way of understanding what differences between models can be detected by means
of first order formulas of a certain quantifier rank.

One of the main merits of EF games is that they allow for relatively easy
proofs that certain properties of first order structures are not first order express-
ible. A classical application of this kind is the characterization of the cardinality
quantifiers definable in classical first order logic. This characterization yields a
range of interesting undefinability results: for instance, it implies that the quan-
tifiers an even number of individuals and infinitely many individuals are not first
order definable.

In this part of the dissertation we are going to develop the game-theoretic
approach to study inquisitive first order logic. We will show that the technique
of EF games adapts to this context and allows to detect when two inquisitive
models are indistinguishable by formulas of a given complexity. This requires
to develop a more general version of the game, due to the expressive power of
support semantics.

The game developed is quite flexible and can be modified to capture properties
other than logical equivalence. For example, variations of the game allow to char-
acterize in game-theoretic terms structural relations between inquisitive models
(e.g., the submodel relation). Moreover, the general approach can be applied to
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study also fragments of inquisitive first order logic.
Regarding applications, the EF game can be employed to study the expressive

limitations of the logic, similarly to the case of classical logic. For example, we
can achieve a characterization of the cardinality quantifiers definable in inquisitive
first order logic, generalizing the result for classical logic to this more expressive
setting.

Chapter 4 introduces a variation of the Ehrenfeucht-Fräıssé game for inquisi-
tive first order logic and shows that this game provides a characterization of the
expressive power of the logic. Moreover, it presents further variations of the game
(i.e., a symmetric version and a transfinite version), showing the flexibility of the
game-theoretic approach.

Chapter 5 showcases an application of the Ehrenfeucht-Fräıssé game intro-
duced in the previous chapter. We introduce the notion of cardinality quantifier
in inquisitive first order logic, and we use the game to characterize which among
them are definable using the game.

Manipulating models

The second part, consisting of Chapter 6, takes another step in the model-
theoretic direction and presents several ways to manipulate and combine models
of first order inquisitive logic. The theory developed allows to prove two interest-
ing properties of the logic: the Disjunction and Existence properties.

There is a close connection between intuitionistic logic and inquisitive logic,
as shown by several results. For example: there is an interpretation of proofs as
programs for both logics [Ciardelli, 2016, Proposition 2.4.8]; there is a translation
of inquisitive logic into intuitionistic logic [Ciardelli and Roelofsen, 2011, Section
6]; several intermediate logics have inquisitive logic as their negative translation
[Ciardelli, 2009, Theorem 3.4.9].

Two hallmarks of constructive logics are the disjunction property and the
existence property : the former states that, if a disjunction of the form ϕ

>

ψ is
valid, then at least one of the disjuncts ϕ and ψ is valid too; and the latter states
that, if an existential formula ∃x.ϕ is valid, then for a term t the formula ϕ[t/x]
is valid too. Both properties are famously true for intuitionistic logic, and the
disjunction property has been proven to hold also for inquisitive propositional
logic [Ciardelli, 2016, Corollary 2.5.6]. In this chapter we address whether these
properties hold for inquisitive first order logic, as already conjectured by Ciardelli
[2016].

The proof we give is semantical in nature: we develop several constructions to
combine and transform inquisitive models, and use them to prove the disjunction
and existence properties. Some of these constructions are inspired by operations
on intuitionistic Kripke-frames (e.g., disjoint union, direct sum) while others are
based on constructions typical of classical predicate logic (e.g., models of terms,
permutation models).

This approach allows us to prove also more general results: we define several
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classes of theories for which the corresponding consequence relations have the
disjunction and/or the existence property. Most notably, theories containing only
statements have this property.

Axiomatization

In the third part, consisting of Chapters 7 and 8, we shift our attention on the
axiomatization problem. As of now it is not known whether first order inquisi-
tive logic is axiomatizable—even though there is a candidate deduction system
proposed by Ciardelli [2016, Section 4.6]. However, we tackle a restricted version
of the axiomatization problem, that is, we axiomatize fragments and variations
of the logic.

This is not the first work focusing on this problem: Ciardelli [2016, Ch. 4]
showed that two fragments, the mention-some fragment and the mention-all frag-
ment, can be recursively axiomatized. This leads to the questions whether there
are other interesting fragments or variations of inquisitive first order logic which
are axiomatizable, and whether we can find novel techniques to axiomatize them.
In this part of the dissertation we give positive answers to these questions: we in-
troduce and axiomatize a new fragment—the classical antecedent fragment—and
we study a family of inquisitive logics—the finite-width inquisitive logics.

Chapter 7 focuses on the classical antecedent fragment, which extends the
mention-all and the mention-some fragments. It can be intuitively characterized
as the fragment where questions are not allowed in the antecedent of a condi-
tional. This fragment is particularly interesting since it contains—modulo logical
equivalence—all formulas corresponding to natural language sentences. We prove
that the natural deduction system proposed in [Ciardelli, 2016, Section 4.6], re-
stricted to the classical antecedent fragment, provides a sound and strongly com-
plete axiomatization.

Chapter 8 focuses on the finite-width inquisitive logics and on the bounded-
width fragment. Finite-width inquisitive logics were already introduced by Sano
[2011] as a hierarchy closely related to inquisitive first order logic (among which we
also find pair semantics by Groenendijk and Stokhof [1984]). In the same paper,
Sano axiomatized pair semantics by adapting the canonical model completeness
technique for first order intuitionistic logic with constant domain [Gabbay et al.,
2009, Section 7.2]. Two questions were left open in Sano’s paper, that is, whether
the other elements of the hierarchy are axiomatizable, and whether first order
inquisitive logic is the limit of this hierarchy: we give a positive answer to the
former and a negative answer to the latter.

The chapter also treats the bounded-width fragment, characterized by the
following property similar to the finite model property of modal logic and the
coherence property of dependence logic [Kontinen, 2010]: if a formula of the
fragment is not supported by an information state s, then there exists a finite
subset of s which still does not support the formula. This rather peculiar property
allows to derive several interesting results on the fragment (e.g., validities in
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the fragment are recursively enumerable, the restricted entailment is compact),
building on the completeness result for the finite-width inquisitive logics.

Alternative semantics

The fourth and last part, consisting of Chapter 9, is an exploratory work not yet
developed for the first order case, but only for the propositional case: we present
an algebraic and a topological semantics for inquisitive propositional logics. This
line of research strengthens the bonds between inquisitive logic and intermediate
logics, and opens new venues of research in the direction of universal algebra.
Generalizing these semantic accounts to the first order case could prove to be a
precious tool to study first order inquisitive logic from new perspectives, for ex-
ample using the methods employed by Rasiowa and Sikorski [1950] or Görnemann
[1971].

On the algebraic side, we introduce a new semantics based on Heyting algebras
by restricting the valuations of propositional atoms only over regular elements.
We also show that the possible-world semantics for inquisitive logic can be seen as
a particular instance of this algebraic semantics. From this we obtain an algebraic
semantics for inquisitive logic by imposing additional conditions—stemming from
the linguistic interpretation of the logic—and thus obtaining the class of inquisi-
tive Heyting algebras. We also prove rather interesting properties of these special
algebras: for example, an inquisitive Heyting algebra is univocally determined by
its set of regular elements (modulo isomorphism).

On the topological side, we apply a duality result developed by Bezhanishvili
and Holliday [2020] to characterize inquisitive algebras in terms of their dual
topological UV-spaces. This allows to define a topological semantics for inquisitive
logic which, as far as we know, is the first attempt to study inquisitive logic from
a topological perspective.





Chapter 2

Background

In this chapter we recall the main definitions and properties of inquisitive first
order logic InqBQ. We also introduce some tools that will be used in later chapters.

Before going to the main content of the chapter, let us recall some basic
notation and definitions from first order classical logic CQC. Henceforth we will
assume to have fixed a first order logic signature Σ consisting of relation symbols
(usually indicated with the letters p, P,R) and function symbols (usually indicated
with the letters c, f). 0-ary relation symbols will be referred to as propositional
atoms and 0-ary relation symbols will be referred to as constants. We will also
assume to have fixed an infinite set of variables Var.

The set of terms of Σ is produced by the following grammar:

t := x | c | f(t1, . . . , tAr(f))

where x ∈ Var is a variable, c ∈ Σ is a constant, f ∈ Σ is a non-0-ary function
symbol and t1, . . . , tAr(f) are other terms.

To make the connection between classical logic and inquisitive logic more clear,
we will present the syntax and semantics of CQC in a slightly unconventional way:
we will consider three different syntaxes and distinct associated semantics.

2.0.1. Definition (Syntaxes for CQC). The syntaxes LCQC
6= , LCQC

= and LCQC
� are

defined by the following grammars:

LCQC
6= : ϕ ::= ⊥ | R(t) | ϕ ∧ ϕ | ϕ→ ϕ | ∀x.ϕ
LCQC

= : ϕ ::= ⊥ | R(t) | t1 = t2 | ϕ ∧ ϕ | ϕ→ ϕ | ∀x.ϕ
LCQC
� : ϕ ::= ⊥ | R(t) | t1 � t2 | ϕ ∧ ϕ | ϕ→ ϕ | ∀x.ϕ

where t1 and t2 are terms of Σ and t is a sequence of terms of arity Ar(R).

The difference between the three languages is the equality symbol and its inter-
pretation: LCQC

6= does not have an equality; LCQC
= contains the equality symbol =,

which will be interpreted as the usual identity between elements of a model ; LCQC
�

11
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contains the equality symbol �, which will be interpreted as a congruence relation
explicitly encoded in the models. To introduce a terminological distinction, we
will call = the rigid equality and � the non-rigid equality.

Depending on which syntax we are working with, the models for CQC are
slightly different. For brevity, we give a compact but exhaustive definition cover-
ing the three cases.

2.0.2. Definition (Models of CQC). A model of CQC (or CQC-model) is a se-
quence

M =
〈
DM , I

〉
(if we are working with LCQC

6= or LCQC
= )

M =
〈
DM , I,�M

〉
(if we are working with LCQC

� )

where:

• DM is a non-empty set, called the domain of the model ;

• I is an interpretation map that associates to every symbol in the signature
an appropriate interpretation in the model, that is:1

– For R an n-ary relation symbol, I(R) ⊆ Dn;

– For f an n-ary function symbol, I(f) : Dn → D;

• �M⊆ D2 (if present) is an equivalence relation over D, that is also a congru-
ence with respect to the interpretation of relation and function symbols.2

When M is clear from the context, we will indicate DM with D, omitting the
reference to the model. As a notational convention, we will indicate I(R) and
I(f) with the symbols RM and fM respectively.

Before moving to the semantics, we introduce assignments and the interpreta-
tion of terms. Given a model M , an assignment over M is a function g : Var→ D.
We will indicate with g[x 7→ d] the assignment that maps x to d and that co-
incides with g on every other variable. Given a model M and an assignment
g : Var → D we can define tgM the interpretation of a term t in M relative to g
by the following clauses:

xgM := g(x) cgM := cM f(t1, . . . , tAr(f))
g
M := fM( (t1)gM , . . . , (tAr(f))

g
M )

If M is clear from the context, we will simply write tg instead of tgM .
Now we give a compact presentation of the semantics containing the clauses

of all the syntaxes.

1We assume the following notational convention: D0 indicates a fixed singleton set {∗}
not dependent on D. This way the interpretations of the symbol of the signature encompass
naturally propositional atoms (I(p) ⊆ {∗}) and constant symbols (I(c) : {∗} → D).

2An equivalence relation �⊆ D2 is called a congruence with respect to an n-ary relation R
(resp., function symbol f) if d1 � d′1, . . . , dn � d′n implies that R(d1, . . . , dn) ⇔ R(d′1, . . . , d

′
n)

(resp., f(d1, . . . , dn) � f(d′1, . . . , d
′
n)).
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2.0.3. Definition (Semantics of CQC). Let M be a CQC-model and g : Var→
D an assignment. We define the satisfaction relation �CQC over formulas of CQC
by the following inductive clauses:

M 2CQC
g ⊥

M �CQC
g t1 = t2 ⇐⇒ tg1 = tg2

M �CQC
g t1 � t2 ⇐⇒ tg1 �M tg2

M �CQC
g R(t1, . . . , tn) ⇐⇒ RM(tg1, . . . , t

g
n)

M �CQC
g ψ1 ∧ ψ2 ⇐⇒M �CQC

g ψ1 and M �CQC
g ψ2

M �CQC
g ψ1 → ψ2 ⇐⇒M 2CQC

g ψ1 or M �g ψ2

M �CQC
g ∀x.ψ ⇐⇒ For all d ∈ D we have M �CQC

g[x 7→d] ψ

As in the propositional case, we indicate with Γ �CQC ϕ that every model which
satisfies every formula in Γ satisfies ϕ too. For Γ empty we simply write �CQC ϕ
and, in case this holds, we say that ϕ is valid. We will indicate with CQC6=,
CQC= and CQC� the sets of valid formulas in the syntaxes LCQC

6= , LCQC
= and LCQC

�
respectively.

It is easy to show that CQC= and CQC� contain the same formulas, modulo
changing the equality symbol used. As we will see, this is not the case for inquis-
itive logic: the different models used in combination to the syntaxes L= and L�
lead to differences between the interpretations of = and � which are reflected at
the level of validity.

2.1 First Order Inquisitive Logic InqBQ

We now proceed to present the main definitions for the first order version of
inquisitive logic InqBQ. As anticipated in Chapter 1, this logic can be thought of
as an extension of CQC with question-forming operators.

As for CQC, we will work with different syntaxes depending on whether and
which equality we are using. We consider the syntaxes L 6= (without equality), L=

(with rigid equality) and L� (with non-rigid equality).

2.1.1. Definition (Syntaxes for the logic InqBQ). The syntaxes L 6=, L= and L�
are defined by the following grammars:

L 6=: ϕ ::= ⊥ | R(t) | ϕ ∧ ϕ | ϕ > ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ
L=: ϕ ::= ⊥ | R(t) | t1 = t2 | ϕ ∧ ϕ | ϕ

>

ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ
L�: ϕ ::= ⊥ | R(t) | t1 � t2 | ϕ ∧ ϕ | ϕ

>

ϕ | ϕ→ ϕ | ∀x.ϕ | ∃x.ϕ

where t1 and t2 are terms of Σ (defined as for CQC) and t is a sequence of terms
of arity Ar(R).
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Notice that the syntaxes introduced are that of CQC with in addition the two new
operators

>

(inquisitive disjunction) and ∃ (inquisitive existential quantifier).
The role of these two operators is to introduce questions into the picture:

>

is used to introduce alternative questions (e.g., “Does c have property P , or
property Q?” translates to P (c)

>

Q(c)) and ∃ to introduce existential questions
(e.g., “What is an element with property P?” translates to ∃x.P (x)).

Another important difference between CQC and InqBQ is the role of identity,
that is, the ways in which we interpret the equality symbol. We introduced the
rigid and non-rigid equalities for CQC-models, but the semantics of classical logic
cannot distinguish between the interpretations of the two: every classically valid
inference involving the rigid equality remains classically valid if we consider the
non-rigid equality instead, and vice versa.

However, in the context of inquisitive logic we can give a different interpreta-
tion to the two symbols, compatible with the view of InqBQ as a generalization
of CQC: the rigid equality = is interpreted as the real identity between elements,
that is, the one relating two formal objects only if they are the same object ; while
the non-rigid equality � is interpreted as an intensional equality, for which dif-
ferent formal objects may or may not represent the same individual and this is
an information encoded in the semantics itself.

We will discuss the technical consequences of this distinction after we intro-
duce the semantics of InqBQ, but for now let us point out that the two identities
can model different scenarios and have different logical properties. An emblem-
atic example is the following puzzle by Frege [1892]. The names Hesperus and
Phosphorus both refer to the same entity, that is, the planet Venus. However the
sentences “Hesperus is Hesperus” and “Hesperus is Phosphorus” seem to have
a different meaning, even though they are both true. The point to make here
is that the former is tautological, while the latter can be inferred only when we
have the information that the two names actually refer to the same entity.3 This
is a situation which can be modeled using the non-rigid equality since the piece
of information that the two names refer to the same object can be encoded in
the semantics itself ; but it cannot be captured by the rigid equality. For a more
extensive treatment of Frege’s puzzle from the point of view of inquisitive logic
we refer to [Ciardelli, 2016, Chapter 4].

To enrich the language we introduce the following shorthands.

¬ϕ :≡ ϕ→ ⊥ ϕ ∨ ψ :≡ ¬(¬ϕ ∧ ¬ψ) ∃x.ϕ :≡ ¬∀x.¬ϕ
?ϕ :≡ ϕ

> ¬ϕ t1 6= t2 :≡ ¬(t1 = t2) t1 6� t2 :≡ ¬(t1 � t2)

We will call the symbols ∨ and ∃ classical disjunction and classical existential
quantifier respectively. ∨ and ∃ play the role of statement-forming operators, as

3I found myself very confused when I heard this example for the first time during a seminar,
without knowing the premise that Hesperus and Phosphorus are both names for Venus: I was
thinking “Of course these two sentences have a different meaning, what is everybody talking
about?”.
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in their interpretation in CQC: “c has property P or property Q” translates to
P (c) ∨Q(c); “There exists an element with property P” translates to ∃x.P (x).

We will call a formula classical if it does not contain the symbols

>

and ∃,
that is, if it is generated by the grammar of CQC. Notice that, given two classical
formulas α and β, also ¬α, α ∨ β and ∃x.α are classical formulas. In the rest
of this dissertation, we will assume the following notational convention: with the
symbols α, β, γ, . . . we indicate classical formulas; while with the symbols ϕ, χ,
ψ, . . . we indicate generic formulas, possibly classical.

2.1.1 Models of InqBQ

As previously mentioned, the logic InqBQ aims to capture the logical relations
involving statements and questions through an information based approach. To
formalize this concept, we need an appropriate mathematical structure to repre-
sent information.

2.1.2. Definition (Information model). An information modelM of the syntax
L6= (resp. L=, L�) is a multiset

{
Mw

∣∣ w ∈ WM} where WM is a set (called the

set of worlds of the model) and the Mw are CQC-models of the syntax LCQC
6= (resp.

LCQC
= , LCQC

� ) with the same domain DM (called the domain of the model) and
the same interpretation of function symbols over DM.4

As a notational convention, we will always indicate the CQC-models constituting
an information model with the same name and we will use different fonts to
distinguish them (e.g.: Nw is a structure in N ). Regarding the interpretation
of the symbols from Σ, we will use the following notational convention: for R a
relation symbol, we indicate with RMw the interpretation of R in the model Mw

(we assume the same convention for �, whose interpretation is world-dependent);
for f a function symbol, we indicate with fM the interpretation of f at any of
the models Mw ∈ M (recall that the interpretation of f does not depend on
the world w; we assume the same convention for =, whose interpretation is not
world-dependent). WhenM is clear from the context, we will indicate WM, DM

and RMw with W , D and Rw respectively, omitting the reference to the model
(while we maintain the notation fM to distinguish the interpretation of f from
the symbol).

Notice that we require function symbols to have a rigid (i.e., non world-
dependent) interpretation. Symbols with a rigid interpretation further enhance
the expressive power of the logic, and as we will see some results proved in this
dissertation depend on their presence in the language—for example, the exis-
tence property (Chapter 6). Alternatively, we could have introduced also rigid

4With the term multiset we refer to a family of elements X := {xw | w ∈W } indexed by
another setW . Using multisets allows to have multiple copies of the same element (distinguished
by the index) without implicitly imposing an order on X (as we have with sequences).
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relation symbols and non-rigid function symbols in the signature, following the
presentation of [Ciardelli, 2016, Chapter 4]. However, this choice does not re-
strict the expressive power of the logic since we can simulate them at the level
of logical entailment (both functionality and rigidity are definable properties).
And in addition, this allows to simplify the axiomatic systems proposed to cap-
ture the support semantics. For example, the introduction rule for the existential
quantifier is not valid for terms containing non-rigid function symbols.

Information models are used to represent pieces of information. In this con-
text, we use the term piece of information to refer to any property I of first order
models in the given signature. For example I1: “the interpretation of c is in the
extension of P” and I2: “the extensions of P and Q are disjoint” are considered
pieces of information. Given an information model M we can encode a piece of
information I with the set of worlds sI := {w ∈ W |Mw has property I}; that is,
by selecting the worlds corresponding to the first order models having property
I. So in the examples given above, sI1 consists of all the worlds w ∈ W for which
Mw satisfies P (c); and sI2 consists of all the worlds w ∈ W for which Pw∩Qw = ∅.
This intuition motivates the following definition.

2.1.3. Definition (Information state). Given a model M, we will refer to a
subset s ⊆ W as an information state or info state. We will say that t ⊆ s is an
enhancement of s. Given an information state s ⊆ W , we define the restriction
of M to s as the model

M|s := {Mw | w ∈ s}

We now give some examples of information models and we introduce the graphical
representation we will use to visualize them.

2.1.4. Example. A graphical representation of an information modelM of the
language L� is depicted in Figure 2.1. The signature considered is Σ = {c, P},
consisting of a constant symbol c and a unary predicate P . M is defined by the
following clauses.

• The set of worlds of M is W = {w0, w1}. In Figure 2.1, the column with
label wi represents the classical structure Mwi

.

• The domain of M is D = {a, b}. In Figure 2.1, we depict one copy of the
domain for every classical structure.

• The interpretation of c is cM = a. In Figure 2.1, it is indicated by placing
the symbol c near a. Notice that by definition the interpretation of c has
to be the same for every world.

• For every column, the elements in the extension of P are represented by star-
shaped nodes, while the others are represented by square-shaped nodes. In
Figure 2.1 we have Pw0

(a), Pw1
(b) but not Pw0

(b), Pw1
(a).
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w0 w1

c a

b

c a

b

Figure 2.1: The model M described in Example 2.1.4.

• For every column, the identity � is represented by the pattern of the nodes
(filled or striped). Two elements in the column labelled w are related by
the identity �w of Mw if and only if they have the same pattern. In Figure
2.1 we have a 6�w0

b and a 6�w1
b.

Finally, the grey rectangle represents the information state s = {w0, w1}. s
represents the following piece of information: it is known that there are two
distinct individuals and that exactly one of these individuals has property P . It
is not known, however, which of the two individuals has property P .

2.1.5. Example (A model representing all finite cyclic groups). Consider the sig-
nature {0, S,+} and the set of worlds W = {wn |n ≥ 1 }. Consider the model
Z∗ = {Z /nZ | wn ∈ W} in the syntax L� where Z /nZ indicates the group Z
where � is interpreted by the following clause: a �wn b iff a − b ≡ 0 mod n. A
graphical representation of this model is given in Figure 2.2.

This model is suitable to represent informational scenarios in which we are
working with a finite cyclic group, but we have only partial information on which
one. For example, the information that we are working with a cyclic group of
even order is encoded by the info state s := {w2, w4, w6, . . . }.

As previously pointed out, some components of the model are not world-dependent,
that is, their interpretation does not depend on the particular structure Mw we
consider: the domain, the interpretation of the function symbols and the inter-
pretation of = (if present in the language). This suggests the following definition,
which we will extensively make use of in Chapter 6.

2.1.6. Definition (Skeleton). Given an information modelM, we call the skele-
ton of M the pair5

Sk(M) =
〈
DM,

{
fM

}
f∈Σ

〉
We will refer to a pair S =

〈
DM,

{
fM

}
f∈Σ

〉
simply as a skeleton, and we call

an information model M such that Sk(M) = S a model over the skeleton S.

5The interpretation of = is not indicated since, as we will see later, = is always interpreted
as the extensional equality between objects in D.
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Figure 2.2: A graphical representation of the model Z∗ from Example 2.1.5.
The same conventions as Figure 2.1 are adopted. Notice that the classical models
associated with two distinct worlds are distinguished only by the identity relation.
For example, at world w2 it holds that −2 �w2

2 because −2 ≡ 2 mod 2, while
at world w3 we have −2 6�w3

2 because −2 6≡ 2 mod 3.

Notice that to define an information model M it suffices to specify separately
W , Sk(M), Rw for every w ∈ W and relation symbol R ∈ Σ and �w (if we are
working with the language L�). In case we are working with the language L�,
to ensure that the structure so defined is an information model it is necessary
and sufficient to check that the relation �w is a congruence with respect to the
interpretation of the symbols for every choice of the world w ∈ W .

2.1.2 Semantics of InqBQ

Now we have all the ingredients needed to introduce the semantics for the logic
InqBQ. For brevity, we do not distinguish between models for the different lan-
guages, but note that the clause for � can be interpreted only in models of the
syntax L�.

2.1.7. Definition (Semantics of InqBQ). Let M = {Mw | w ∈ W} be an infor-
mation model, s ⊆ W an info state and g : Var → D an assignment. We define
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the support relation � over formulas of InqBQ by the following inductive clauses:

M, s �g⊥ ⇐⇒ s = ∅
M, s �g t1 = t2 ⇐⇒ tg1 = tg2

M, s �g t1 � t2 ⇐⇒ For all w ∈ s we have tg1 �Mw tg2

M, s �g R(t1, . . . , tn) ⇐⇒ For all w ∈ s we have RMw (tg1, . . . , t
g
n)

M, s �g ψ1 ∧ ψ2 ⇐⇒M, s �g ψ1 and M, s �g ψ2

M, s �g ψ1

>

ψ2 ⇐⇒M, s �g ψ1 or M, s �g ψ2

M, s �g ψ1 → ψ2 ⇐⇒ For all t ⊆ s, if M, t �g ψ1 then M, t �g ψ2

M, s �g ∀x.ψ ⇐⇒ For all d ∈ D we have M, s �g[x 7→d] ψ

M, s �g ∃x.ψ ⇐⇒ There exists d ∈ D such that M, s �g[x 7→d] ψ

In case s = W we simply write M �g ϕ, omitting the info state. In case ϕ
is a sentence (i.e., a formula without free variables) we simply write M, s �
ϕ, omitting the assignment. We use the notation M, s � ϕ(a1, . . . , an) as a
shorthand for M, s �g ϕ(x1, . . . , xn) for an arbitrary assignment g such that
g(xi) = ai for every i ∈ {1, . . . , n}.

Before showcasing some example, let us present the support conditions that can
be derived for some of the shorthands previously introduced.

M, s �g ¬ψ ⇐⇒ For all t ⊆ s, if t 6= ∅ then M, t 2g ψ
M, s �g ?ψ ⇐⇒M, s �g ψ or M, s �g ¬ψ
M, s �g t1 6= t2 ⇐⇒ For all w ∈ s, tg1 6= tg2

2.1.8. Example. Consider the model M depicted in Figure 2.1. Following the
semantics clauses defined above we have:

• M 2 P (c) since for the world w1 the element cM = a is not in the ex-
tension of Pw1

. However if we restrict to the information state {w0} we
have M, {w0} � P (c) since for every world in the info state—namely only
w0—we have that cM is in the extension of P .

• M 2 ¬P (c), since for the state {w0} ⊆ W we showed thatM, {w0} � P (c)
holds. For a similar reason, M, {w1} � ¬P (c) since for every non-empty
substate of {w1} (namely {w1} itself) the formula P (c) is not supported.

• M � P (a) → ¬P (b), since every substate of W supporting P (a)—namely
∅ and {w0}—supports also ¬P (b).

• M 2 ∃x.P (x), since for every choice of d ∈ D there is a substate of W not
supporting P (d): if we pick the element a we have M, {w1} 2 P (a); if we
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{w0, w1}

{w0} {w1}

∅

⊆ ⊇

⊇ ⊆

(a) P (c)

{w0, w1}

{w0} {w1}

∅
⊆ ⊇

⊇ ⊆

(b) ¬P (c)

{w0, w1}

{w0} {w1}

∅

⊆ ⊇

⊇ ⊆

(c) P (a)→ ¬P (b)

{w0, w1}

{w0} {w1}

∅

⊆ ⊇

⊇ ⊆

(d) ∃x.P (x)

Figure 2.3: A graphical description of Example 2.1.8. In gray the states that
support the formula.

pick the element b we haveM, {w0} 2 P (b). Notice that if we restrict to the
singleton information states {w0} and {w1} then the formula is supported,
since M, {w0} � P (a) and M, {w1} � P (b).

A graphical recap of the example is given in Figure 2.3.

Intuitively an information state s, which encodes a certain piece of information,
supports a statement (classical formula) α if all the worlds of W (the current
context) compatible with the information carried by s satisfy α; or in other terms,
if by knowing that s, we know that α is true. So for example, the formula P (c)
representing the statement “c has property P” is supported by the info state s if
and only if every classical structure Mw associated with a world w ∈ s satisfies
P (c).

When it comes to questions, an information state s supports a question ϕ if
the issue raised by the question is resolved by the information carried by s. For
example, the formula ∃x.P (x) representing the question “What is an element
with property P?” is supported by s if and only if we can identify an element
a such that P (a) is satisfied for every Mw with w ∈ s. Notice that, with the
information carried by s, we need to be able to identify an element a, and not
just know that there is one.

There are two characteristic properties of inquisitive semantics, which stem
from the information-based interpretation: the empty state property and the per-
sistency property.

2.1.9. Lemma. For every formula ϕ of the logic

Empty state M, ∅ �g ϕ.

Persistency If M, s �g ϕ and u ⊆ s, then M, u �g ϕ.

These two properties have a quite intuitive interpretation: the incoherent infor-
mation state (∅) supports every sentence—this can be thought as an ex falso quod
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libet principle; and when an information state (s) supports a sentence, then every
enhancement (t ⊆ s) supports that sentence too.

These properties allow to simplify the semantic clause for negation and to
obtain simple clauses also for the remaining shorthands.

M, s �g ¬ψ ⇐⇒ For all w ∈ s we have M, {w} 2g ψ

M, s �g ψ1

>

ψ2 ⇐⇒ For all w ∈ s we have M, {w} �g ψ1 or M, {w} �g ψ2

M, s �g ∃x.ψ ⇐⇒ For all w ∈ s there exists dw ∈ D
such that M, {w} �g[x 7→dw] ψ

M, s �g t1 6� t2 ⇐⇒ For all w ∈ s we have tg1 6�Mw tg2

We give a couple more examples to familiarize the reader with the semantics and
showcase properties of some interesting formulas.

2.1.10. Example. Consider the formula ?P (c) and the model from Example
2.1.8. Expanding the semantic clause for ? we obtain M 2 ?P (c), since we have
M 2 P (c) andM 2 ¬P (c). Intuitively, the information encoded in the info state
{w0, w1} is not enough to determine whether c is in the extension of P , since
there are possible worlds for which this is the case and possible worlds for which
this is not the case.

It is interesting to point out that the formula ?P (c) is always satisfied at
singleton states. In fact, expanding the definition we have:

M, {w} � ?P (c) iff cM ∈ Pw or cM /∈ Pw

and the right-hand side is trivially satisfied.

2.1.11. Example. Consider the formula ∀x.?P (x). This formula is particularly
interesting, since it requires the extension of P to be determined. In fact, expand-
ing the semantic clause for ∀ we have

M, s � ∀x.?P (x) iff For all d ∈ D we have M, s � P (d) or M, s � ¬P (d)
iff For all w,w′ ∈ s we have Pw = Pw′

In other terms, for every element d of the domain, all the worlds of s must agree
on whether the element has property P .

A similar formula, but with quite a different interpretation is ?∀x.P (x). In
this case we have

M, s �?∀x.P (x) iff
either for every w ∈ s, Pw = D

or for every w ∈ s, Pw 6= D
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So there are two cases in which the formula is supported: either all the worlds of
s agree that all the elements are in the extension of P ; or the formula ∀x.P (x) can
be refuted in every world of s, that is, for every world w there exists an element
dw which is not in the extension of P . Notice that the element dw could depend
on the the world w, so in the latter case we do not have definitive information on
the extension of P .

2.1.12. Example. Notice the difference between the semantics of the quantifiers
∃ and ∃:

M, s � ∃x.P (x) ⇐⇒ There exists d ∈ D such that for every w ∈ s, d ∈ Pw

M, s � ∃x.P (x) ⇐⇒ For all w ∈ s there exists dw ∈ D such that dw ∈ Pw

The former requires to exhibit a single element d that is in the extension of P
for every world in s; while the latter requires to find for every world w of s an
element dw—possibly depending on the world w—which is in the extension of P
in Mw.

This difference in the semantics is in line with the intuitive interpretation of
the two formulas: ∃x.P (x) represents the question “what is an x in the extension
of P”, and in fact it requires to exhibit an element in the extension; while ∃x.P (x)
represents the statement “there is an x in the extension of P”, which does not
require to exhibit such an element, but just to assert its existence.

As we did for CQC, we can define an entailment relation corresponding to the
semantics introduced.

2.1.13. Definition. We define the entailment relation of InqBQ as follows: given
a theory Φ and a formula ψ, we indicate with Φ � ψ that for every M, s and g
such thatM, s �g Φ, it holds thatM, s �g ψ too. In particular, we indicate with
ϕ ≡ ψ that ϕ � ψ and ψ � ϕ.

Since we are dealing with different syntaxes we introduce different sets of valid
formulas, one for each syntax.

2.1.14. Definition. We indicate with InqBQ 6=, InqBQ= and InqBQ� the sets
of valid formulas for the semantics introduced for the syntaxes L 6=, L= and L�
respectively.

As a notational convention, when we do not want to refer to a particular language
or the language is clear from the context we will simply use—with a slight abuse
of notation—the symbol InqBQ to indicate the set of valid formulas considered.
As usual, we will refer to elements of these sets as tautologies or validities.
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2.1.3 Properties of the Logic

In this subsection we review some of the main properties characterizing InqBQ.
For an in-depth treatment of these properties we refer to [Ciardelli, 2016, Section
4.4]. We start with a simple lemma showing that the semantics introduced is
indeed a generalization of the one for CQC.

2.1.15. Lemma. For M an information model, s an information state, g an
assignment and α a classical formula, it holds that

M, s �g α ⇐⇒ ∀w ∈ s. Mw �
CQC
g α

Unsurprisingly, this means that we can recover the semantics of CQC by simply
restricting the syntax to classical formulas and the semantics to single-world in-
formation models (i.e., models for which W is a singleton). This result is also in
line with the interpretation of classical formulas as statements: a classical formula
(statement) α is supported by an information state (piece of information) s if the
statement is true in every world of s. This leads to the following definition.

2.1.16. Definition. A formula ϕ is called truth-conditional if for every model
M, info state s and assignment g it holds that

M, s �g ϕ ⇐⇒ ∀w ∈ s.M, {w} �g ϕ

So Lemma 2.1.15 states exactly that classical formulas are truth-conditional. No-
tice that not every formula is truth-conditional: for example P (c)

> ¬P (c) is not
as we saw in Example 2.1.10.

As a consequence of Lemma 2.1.15 we obtain the following result, which shows
that the entailment relation of InqBQ is a generalization of its classical counter-
part.

2.1.17. Theorem. For every set of classical formulas Γ ∪ {α} it holds that

Γ � α ⇐⇒ Γ �CQC α

We will refer to this result by saying that � is a conservative extension of �CQC.
As we recalled in Chapter 1 and in line with the result just presented, CQC is

a logic meant to represent statements, that is, sentences whose semantics is com-
pletely determined by their truth-conditions. The definition of truth-conditional
formulas given above expresses the same property: for these formulas the support
conditions boil down to truth at every world. In fact we can prove that (mod-
ulo logical equivalence) classical formulas are all and only the formulas with this
property.

2.1.18. Theorem (Truth-conditionality and classical formulas). For every for-
mula ϕ, ϕ is truth-conditional if and only if there exists a classical formula such
that ϕ ≡ α.
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There is another interesting class of formulas which are truth-conditionals: negated
formulas. As previously pointed out, the semantic clause for negation is

M, s �g ¬ψ ⇐⇒ For all w ∈ s we have M, {w} 2g ψ
⇐⇒ For all w ∈ s we have M, {w} �g ¬ψ

which amounts exactly to ¬ψ being truth-conditional. Moreover by Theorem
2.1.18 we can also infer that every truth-conditional formula is equivalent to a
negation, since ϕ ≡ α ≡ ¬¬α ≡ ¬¬ϕ. Consequently, we obtain yet another
characterization of truth-conditional formulas.

2.1.19. Corollary. For ϕ a formula, the following are equivalent:

• ϕ is truth-conditional;

• ϕ is equivalent to a classical formula α;

• ϕ is equivalent to ¬ψ for some ψ;

• ϕ ≡ ¬¬ϕ.

2.2 Relations with the Intuitionistic Logic CD

If we change perspective on how to look at information models, we can see a
clear connection between support semantics and intuitionistic forcing. For an
introduction to intuitionistic forcing see [Dalen, 2002, Section 3], [Gabbay, 1981,
Section 2.2] and [Gabbay et al., 2009, Chapter 3]. So far we presented info states
as sets of worlds—highlighting that they are a collection of objects—and we
derived the interpretation of the logical symbols on info states starting from their
interpretation on worlds. But we can also take a different approach. We can
think about info states as points of the ordered structure 〈P0(W ),⊇〉6 and define
a suitable interpretation of the logical symbols over this structure: de facto, we
can think of an information model as a particular instance of a Kripke model.7

This intuition and Lemma 2.1.9 hint at a connection between InqBQ and in-
tuitionistic first order logic with constant domain CD: the semantical clauses
defining the operators are nearly identical (when we treat

>

and ∃ as the cor-
responding operators in intuitionistic logic); both support and Kripke semantics
(for intuitionistic logic) satisfy similar principles like persistency ; and the treat-
ment of equality is similar in the two formalisms (see e.g. [Gabbay et al., 2009,

6P0(W ) indicates the set of all non-empty subsets of W .
7Notice that by considering the ordered structure 〈P0(W ),⊇〉 we are cutting out the empty

information state. By Lemma 2.1.9, the empty state satisfies every formula of the logic and so
we are not loosing any information on the original model by excluding it. Moreover, the empty
state cannot be interpreted as a point of a Kripke model if we want to preserve the semantics,
since the set of formulas it supports is not consistent.
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Section 3.5]). As we will show in this section, this is not a coincidence: there is
a one-to-one correspondence between information models and a special class of
intuitionistic Kripke models. We focus on the case of the syntax L�, but all the
results here presented can be easily adapted to the syntaxes L6= and L=.

To introduce this class, we need some notions from intuitionistic Kripke se-
mantics and some definitions. We start by recalling the definition of a first order
intuitionistic Kripke frame with constant domain.8

2.2.1. Definition (Constant domain Kripke models). An intuitionistic constant-
domain Kripke model, henceforth referred to as CD-model, is a tuple

K = 〈S,≤, D, I,�〉

where:

• S is a non-empty set called the set of states of K;

• ≤ is a partial order on S;

• D is a non-empty set called the domain of K;

• I is an interpretation map that associates to every symbol in the signature
an appropriate interpretation in the model, that is:

– For R an n-ary relation symbol, I(R) : S → Dn;

– For f an n-ary function symbol, I(f) : Dn → D;

• �: S → P(D2) is a map that associates to each state an equivalence relation.

Additionally we require the following properties to hold:

Persistency of relations For every pair of states s ≤ t and every relation sym-
bol R, it holds that I(R)(s) ⊆ I(R)(t);

Persistency of equality For every pair of states s ≤ t, it holds that � (s) ⊆
�(t);

Congruence condition For every state s, � (s) is a congruence with respect
to I(R)(s) and I(f) for every relation symbol R ∈ Σ and every function
symbol f ∈ Σ.

8The definition of constant-domain intuitionistic Kripke model that we present is not the
most general one (see for example [Gabbay et al., 2009, Section 3.4]) since the interpretation
of function symbols is not state-dependent. However this restriction allows to simplify the
formulation of some of the lemmas that follow and the theory presented is general enough for
the purposes of the current work.
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As we did for information models, we introduce the shorthands RKs := I(R)(s),
fK := I(f) and �Ks :=� (s). The partial order 〈S,≤〉 is commonly referred to as
the frame of the model.

The models introduced can be used to interpret intuitionistic formulas through
the so-called forcing relation.9

2.2.2. Definition (Forcing). Given a CD-model K, a state s ∈ S and a valu-
ation g : Var → D, we define recursively the forcing relation by the following
clauses:

K, s g⊥ ⇐⇒ s = ∅
K, s g t1 � t2 ⇐⇒ tg1 �Ks t

g
2

K, s g R(t1, . . . , tn) ⇐⇒ RKs (tg1, . . . , t
g
n)

K, s g ψ1 ∧ ψ2 ⇐⇒ K, s g ψ1 and K, s g ψ2

K, s g ψ1

>

ψ2 ⇐⇒ K, s g ψ1 or K, s g ψ2

K, s g ψ1 → ψ2 ⇐⇒ For all t ≥ s, if K, t g ψ1 then K, t g ψ2

K, s g ∀x.ψ ⇐⇒ For all d ∈ D we have K, s g[x 7→d] ψ

K, s g ∃x.ψ ⇐⇒ There exists d ∈ D such that K, s g[x 7→d] ψ

We indicate with K g ϕ that for every state s ∈ S it holds that K, s g ϕ. We

indicate with JϕKKg ⊆ S the set of states s such that K, s g ϕ.

As originally shown by Görnemann [1971], the logic of this class of models is
axiomatized by the axioms and rules of intuitionistic first order logic IQC [Dalen,
2002] with in addition the constant domain axiom schema:

CD : ∀x.(ϕ > ψ)→ ϕ

> ∀x.ψ for x not free in ϕ

This schema captures exactly the condition that all the points of the model share
the same domain of individuals.

We want to pinpoint a particular class of CD-models which are in one-to-
one correspondence with information models. We characterize this class as an
intersection of two other classes: negative models and P0 -CD-models. Let us
start by introducing negative models.

2.2.3. Definition (Negative models). We call a CD-model K a negative model
if, for every relation symbol R ∈ Σ and every state s ∈ S, it holds that

∀d ∈ DAr(R).
[
Rs(d) ⇐⇒ ∀t ≥ s. ∃u ≥ t. Ru(d)

]
∀d1, d2 ∈ D. [ d1 �s d2 ⇐⇒ ∀t ≥ s. ∃u ≥ t. d1 �u d2 ]

9Notice that the inquisitive symbols

>

and ∃ are playing the role of the intuitionistic dis-
junction and the intuitionistic existential quantifier in the clauses. This is to highlight the close
relationship between the operators and to greatly simplify the presentation of the results in this
dissertation.
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The definition above, which seems quite arbitrary, stems from a natural condition:
we are requiring the sets of states for which R•(d) hold and for which d1 �• d2

hold to be stable under ¬¬, as the following lemma shows.

2.2.4. Lemma. Let K be a CD-model. K is a negative model iff for every relation
symbol R it holds that

K  ∀x. (R(x)↔ ¬¬R(x))

K  ∀x. ∀y. (x = y ↔ ¬¬x = y)

The second class we introduce is the class of P0 -CD-models.

2.2.5. Definition (P0 -CD-models). We say that a CD-model is a P0 -CD-model
if 〈S,≤〉 = 〈P0(W ),⊇〉 for some non-empty set W .

Being a P0 -CD-model is a particularly strong restriction on the frame, and this is
reflected also at the level of the semantics. For example, the following schemata
are forced in every P0 -CD-model.

KF : ¬¬∀x.ϕ→ ∀x.¬¬ϕ
KP : (¬ϕ→ ψ

>

χ)→ (¬ϕ→ ψ)

>

(¬ϕ→ χ)

UP : (¬ϕ→ ∃x.ψ)→ ∃x.(¬ϕ→ χ)

The schema KF is forced since P0 -CD-models satisfy the McKinsey property, that
is, every state of a P0 -CD-model has a successor which is an endpoint. As for
the schemata KP and UP, the property follows from the following folklore results.

2.2.6. Lemma. Given W a non-empty set, the upsets of 〈P0(W ),⊇〉 stable under
¬¬ are exactly the rooted ones.10

This lemma, in combination with the intuitionistically valid principle ¬¬¬ϕ ≡
¬ϕ, implies the following.

2.2.7. Corollary. Let K be a P0 -CD-model, g : Var → D be an assignment
and ϕ be a formula. Then the set J¬ϕKKg :=

{
s ∈ S | K, s �g ¬ϕ

}
is a rooted

upset.

Now that we introduced negative and P0 -CD-models we are finally ready to relate
the semantics of InqBQ and of CD.

10An upset is called rooted if it admits a minimum (usually called the root of the upset).
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2.2.8. Lemma (From information models to negative P0 -CD-models). LetM be
an information model. Define the CD-model

K :=
〈
P0(WM),⊇, DM, I,�

〉
where:11

• For every relation symbol R, every state s ∈ P0(WM) and every sequence
of elements d ∈ (DM)Ar(R) we let RKs (d) iff ∀w ∈ s. RMw (d).

• For every function symbol f , every state s ∈ P0(WM) and every sequence
of elements d ∈ (DM)Ar(f) we let fK(d) = fM(d).

• For every d1, d2 ∈ DM and every state s ∈ P0(WM) we let d1 �Ks d2 iff
∀w ∈ s. d1 �Mw d2.

Then K is a negative P0 -CD-model and for every s ∈ P0(W ), for every g : Var→
DM and for every formula ϕ it holds that

K, s g ϕ iff M, s �g ϕ

2.2.9. Lemma (From negative P0 -CD-models to information models). Let K =
〈P0(W ),⊇, D, I,�〉 be a negative P0 -CD-model. Define the information model

M := 〈Mw | w ∈ W 〉

where:

• The common domain of the structures Mw is D (the domain of K).

• For every relation symbol R, every world w ∈ W and every sequence of
elements d ∈ DAr(R) it holds that RMw (d) iff RK{w}(d).

• For every function symbol f , every world w ∈ W and every sequence of
elements d ∈ DAr(f) it holds that fM(d) = fK(d).

• For every d1, d2 ∈ D, every world w ∈ W it holds that d1 �Mw d2 iff d1 �K{w}
d2.

Then for every s ∈ P0(W ), for every g : Var → DM and for every formula ϕ it
holds that

M, s �g ϕ iff K, s g ϕ

11Recall that we indicate the interpretation of the relation symbol R in the information
model M at world w with the notation RMw ; and we indicate the interpretation of R in the
model K at state s with the notation RKs . The same notational convention also applies to
function and equality symbols.
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w0 w1 w2

a

b

a

b

a

b {w0, w1, w2}

{w0, w1} {w0, w2} {w1, w2}

{w0} {w1} {w2}

Figure 2.4: An example of an information model in the signature Σ = 〈P 〉 for
P a unary predicate (on the left) and the frame of the corresponding P0 -CD-
model (on the right). The set of points satisfying P (a) are contained in the
area delimited with a continuous line; and the set of points satisfying P (b) are
contained in the area delimited with a dashed line. Notice in particular that
the interpretations of atomic formulas respect the persistency conditions of CD-
models.

An example of this correspondence is showcased in Figure 2.4. This correspon-
dence shows the close connection between the logics CD and InqBQ, and opens
up new approaches to study meta-theoretical properties of InqBQ. A clear exam-
ple of this is the axiomatization of the ClAnt fragment presented in Chapter 7,
inspired by completeness results for the logic CD as presented by Gabbay [1981,
Section 3.3].

The relation between information models and P0 -CD-models showed in Lem-
mas 2.2.8 and 2.2.9 is one of the main motivations behind the natural deduction
system to axiomatize InqBQ proposed by Ciardelli [2016, Chapter 4]. We present
a slightly modified version of this system in Figure 2.5: we substitute the clas-
sical negation rule with the KF − rule; we add rules to account for the equality
symbols and the rigidity conditions. We also propose an equivalent Hilbert-style
presentation of the system in Figure 2.6. Notice that the rules

>

-split and ∃-split
are substituted with the schemata KP and UP.12

As already discussed, the schemata KP, UP and KF are valid on P0 -CD-
models. Moreover, the DNC formulas (where DNC stands for Double Negation for
Classical formulas) is a direct consequence of Theorem 2.1.17. Consequently, all
the axioms in the table are sound for InqBQ.

As of now, it is not known whether this axiomatization is complete for the
logic InqBQ. It was shown by Ciardelli [2016, Sections 4.7,4.8] that fragments
of InqBQ are axiomatized by restrictions of this system. Moreover, in Chapters

12The equivalence of the two systems follows easily from the following observation: in the
natural deduction system without the rules

>

-split and ∃-split (resp., in the Hilbert-style system
without the axioms KP and UP), every classical formula is provably equivalent to a negated
formula and viceversa.
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ϕ[t/x]
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∃e
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[ϕ[y/x]]

...
ψ

ψ

Ex Falsum ⊥
ϕ DNC-rule ¬¬α

α

>

-split
α→ ψ

>

χ

(α→ ψ)

>

(α→ χ)
CD-rule

∀x.(ϕ > ψ)

∀x.ϕ > ψ

∃-split
α→ ∃x.ψ
∃x.(α→ ψ)

KF-rule
¬¬∀x. ϕ
∀x.¬¬ϕ

=i
t = t

=e
ϕ[t/x] t = t′

ϕ[t′/x]

�i
t � t

�e
ϕ[t/x] t � t′

ϕ[t′/x]

Rig =
∀x, y. ?x = y

Rig f=

∀x.∃y. f(x) = y

Rig f�
∀x.∃y. f(x) � y

Figure 2.5: A slight variation of the natural deduction system for InqBQ proposed
by Ciardelli [2016, Chapter 4]. The rules containing the equality symbols = and
� are present only when working with syntaxes containing said symbols. In
(∀e) and (∃i), t must be free for x in ϕ; in (∀i), y must not occur free in any
undischarged assumption; in (∃e), y must not occur free in ψ or any undischarged
assumption; in (DNC-rule), α ranges over classical formulas; in (

>

-split), α ranges
over classical formulas; in (∃-split), α ranges over classical formulas and x is not
free in α; in (CD), x must not occur free in ψ.
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Schemata of IQC

ϕ→ (ψ → ϕ)
(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ψ → χ))
ϕ ∧ ψ → ϕ
ϕ ∧ ψ → ψ
ϕ→ (ψ → ϕ ∧ ψ)
ϕ→ ϕ

>

ψ
ψ → ϕ

>

ψ
(ϕ→ χ)→ ((ψ → χ)→ (ϕ

>

ψ → χ))
⊥ → ϕ

∀x.ϕ→ ϕ[y/x]

ϕ(y)→ ∃x.ϕ(x)

Rules of IQC

Modus Ponens: ϕ, ϕ→ ψ / ψ

ϕ→ ψ / ∃x.ϕ→ ψ for x not free in ψ
ϕ→ ψ / ϕ→ ∀x.ψ for x not free in ϕ

Additional schemata

CD schema: ∀x.(ϕ > ψ)→ ϕ

> ∀x.ψ for x not free in ϕ
KP schema: (¬ϕ→ ψ

>

χ)→ (¬ϕ→ ψ)

>

(¬ϕ→ χ)

UP schema: (¬ϕ→ ∃x.ψ)→ ∃x.(¬ϕ→ ψ) for x not free in ϕ
KF schema: ¬¬∀x.ϕ(x)→ ∀x.¬¬ϕ(x)
DNC formulas: ¬¬α→ α for α classical

Rigid functions: ∀x.∃y. f(x) = y

∀x.∃y. f(x) � y
Rigid identity: ∀x.∀y. ?x = y
Identity axioms: ∀x.∀y. x = y ∀x. ∀y.( (x = y) ∧ ϕ(x)→ ϕ(y) )

∀x.∀y. x � y ∀x.∀y.( (x � y) ∧ ϕ(x)→ ϕ(y) )

Figure 2.6: An Hilbert-style axiomatization for InqBQ equivalent to the natural
deduction system in Figure 2.5. The axiomatic system for IQC is presented and
discussed in [Gabbay, 1981, Section 2.2].
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7 and 8 we will present two more fragments axiomatized by slight variations of
this systems. But the question remains open: are these principles enough to
axiomatize the whole logic?



Chapter 3

Preliminaries

In this chapter we collect some technical results which will be used at various
points of the dissertation. In particular, we are concerned with when two worlds
or individuals can be regarded as the same from the perspective of the logic—
in different terms, when two worlds or elements are indistinguishable. Studying
this issue, we will be able to define natural relations between information models
preserving or reflecting the formulas supported: the strong equivalence and the
submodel relation. These constructions are particularly useful to manipulate the
structure of information models while preserving their logic.

3.1 Essential Equivalence

We start by defining a relation telling us when two worlds instantiate exactly
the same state of affairs, that is, when they have the same associated first order
model.

3.1.1. Definition (Essential equivalence between worlds). Let M be an infor-
mation model and w,w′ two worlds ofM. We say that w is essentially equivalent
to w′ (and indicate it with w ≈e w′) iff Mw = Mw′ . Given W the set of worlds of
M, we define the essential set of worlds (and indicate it with W e) the quotient
W/≈e.

Notice that w ≈e w′ does not only imply that the two models Mw and Mw′ are
isomorphic, but it requires them to be exactly the same structure. In the former
case, we could still be able to tell the worlds w and w′ apart using the information
encoded by info states of the model, as shown in Figure 3.1.

So two worlds of a model M are considered essentially equivalent if they
describe exactly the same state of affairs. Essential equivalence can be thought
of as a bisimilarity relation between worlds: two worlds are considered essentially
equivalent if they are indistinguishable from one another.

33
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w0 w1 w2

a

b

a

b

a

b

Figure 3.1: In the information model depicted we have w0 6≈e w1 ≈e w2. Notice
that, even though Mw0

is isomorphic to Mw1
, we do not consider the worlds w0

and w1 essentially equivalent. In fact we have that the info states {w0, w2} and
{w1, w2} do not support the same formulas (e.g., ∃x.P (x) is supported only by
the latter), showing that the worlds w0 and w1 are not indistinguishable.

As for worlds, we can define also an essential equivalence between elements:
two elements are considered essentially equivalent if their role can be swapped
without altering the structural properties of the model.

3.1.2. Definition (Essential equivalence between elements). Let M be an in-
formation model. We define recursively a chain of binary relations ∼0, ∼1, . . . by
the following clauses:

• Given d, d′ two elements of M, d ∼0 d′ iff for every relation symbol R(x),
for every world w ∈M, for every tuple of elements

〈
d1, . . . , dAr(R)

〉
and for

every index i ≤ Ar(R) it holds that

Rw(d1, . . . , di−1, d, di+1, . . . , dAr(R)) ⇔ Rw(d1, . . . , di−1, d
′, di+1, . . . , dAr(R))

d = d0 ⇔ d′ = d0 (If working with L=)
d �w d0 ⇔ d′ �w d0 (If working with L�)

• Given d, d′ two elements of M, d ∼n+1 d′ iff d ∼n d′ and for every function
symbol f ∈ Σ, for every tuple of elements

〈
d1, . . . , dAr(f)

〉
, and for every

i ≤ Ar(f) it holds that

f( d1, . . . , di−1, d, di+1, . . . , dAr(f) ) ∼n f( d1, . . . , di−1, d
′, di+1, . . . , dAr(f) )

We say that two elements d, d′ are essentially equivalent (and indicate it with
d ∼e d′) iff d ∼n d′ for every n ∈ N. Given D the set of worlds of M, we define
the essential domain of M (and indicate with De) the quotient D/∼e.

Notice that ∼e is not only an equivalence relation, but also a congruence with
respect to the interpretation of the symbols of the signature. Intuitively, two
elements are considered essentially equivalent iff they are indistinguishable.

We also introduce relativized versions of the relation ∼e: given an info state
s we write d ∼es d′ if d, d′ are essentially equivalent for the modelM|s; and given
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a world w we write d ∼ew d′ for d ∼e{w} d′. Notice that if we are working with
the languages L= or L� the definition of essential equivalence can be simplified:
d ∼e d′ iff d = d′ in the former case; and d ∼e d′ iff d �MW d′ in the latter case.

The relations ≈e and ∼e allow us to obtain a compressed version of a model,
carrying the same information as the original one.

3.1.3. Definition (Essential quotient). Let M be an information model. We
define its essential quotient as the information model

Me =
〈
M e

[w]

∣∣ [w] ∈ W e
〉

where M e
[w] := Mw/∼e.

Notice that, by definition of ≈e, M e
[w] does not depend on the choice of the

representative w and so Me is well-defined.

3.1.4. Lemma. Let M be an information model, s an information state of M
and g : Var→ D an assignment over the domain ofM. Consider the information
state se := { [w] ∈ W e | w ∈ s} and the assignment ge : Var → De defined as
ge(x) = [g(x)]. Then for every formula ϕ it holds that

M, s �g ϕ ⇐⇒ Me, se �ge ϕ

Proof:

In the rest of this proof, we will indicate with ≈e and ∼e the essential equivalence
relations relative toM. The proof proceeds by induction on the structure of the
formula ϕ. We will spell out only the non-trivial cases.

• If ϕ is an atomic formula A(t), then we have

M, s �g A(t) ⇐⇒ ∀w ∈ s. Mw �g A(t)

⇐⇒ ∀[w] ∈ se. Mw/∼e �ge A(t)

⇐⇒ Me, se �ge A(t)

• If ϕ ≡ ψ → χ, firstly suppose M, s 2g ψ → χ. Then for some information
state t it holds that M, t �g ψ and M, t 2g χ. Then, by inductive hypoth-
esis, for te := {[w] ∈ W e | w ∈ t } we have Me, te �ge ψ and Me, te 2ge χ,
which in turn entails Me, se 2ge ψ → χ.

Secondly suppose Me, se 2ge ψ → χ. We proceed with a similar argument:
let u ⊆ se such that Me, u �ge ψ and Me, u 2ge χ, and consider the state
t ⊆ s defined as t := { w ∈ s | [w] ∈ u }. In particular, we have that te = u.
Then, by inductive hypothesis, it holds that M, t �g ψ and M, t 2g χ,
which in turn implies M, s 2g ψ → χ.
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• If ϕ ≡ ∃x.ψ, firstly suppose M, s �g ∃x.ψ. This means that for an element
d ∈ D it holds that M, s �g[x 7→d] ψ. By inductive hypothesis it follows

Me, se �ge[x 7→[d]] ψ, which in turn entails Me, se �ge ∃x.ψ.

Secondly suppose Me, se �ge ∃x.ψ. This means that for some element
[d] ∈ De it holds that Me, se �ge[x 7→[d]] ψ. By inductive hypothesis, it

follows that M, s �g[x 7→d] ψ, and consequently M, s �g ∃x.ψ.

• If ϕ ≡ ∀x.ψ, the proof can be carried out as in the case for ϕ ≡ ∃x.ψ with
minimal modifications.

2

3.2 Strong Equivalence and Submodel Relation

With the relations ≈e and ∼e, we considered ways to characterize “behavioral
equivalence” internal to a model. Now we are also going to present an external
concept of equivalence, basically generalizing the concept of isomorphism between
CQC-models.

3.2.1. Definition (Strong equivalence). Let M =
〈
Mw|w ∈ WM〉 and N =〈

Nw|w ∈ WN〉 be two information models. We say thatM is a strongly equivalent
to N (and we indicate it with M∼= N ) if there exist two maps F : WM → WN

and G : DM → DN such that

SEq1 F and G are bijections;

SEq2 G commutes with the interpretation of the logical symbols:

G(fM(d1, . . . , dn)) = fN (G(d1), . . . , G(dn))
RMw (d1, . . . , dn) ⇐⇒ RNF (w)(G(d1), . . . , G(dn))

d1 �Mw d2 ⇐⇒ G(d1) �NF (w) G(d2)

The intended interpretation of this relation is quite simple: M is strongly equiv-
alent to N iffM and N are the same model modulo renaming of the worlds and
of the elements. The following lemma follows immediately from the definition of
strong equivalence.

3.2.2. Lemma. Let M and N be two strongly equivalent models, and let F :
WM → WN and G : DM → DN be a pair of functions witnessing the equivalence.
Let s be a state of M and g : Var → DM be an assignment over M. Then for
every formula ϕ it holds that

M, s �g ϕ ⇐⇒ N , F [s] �G◦g ϕ
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We introduce one last relation between information models which will be particu-
larly useful to study the properties of InqBQ (especially in Chapters 4 and 6): the
submodel relation. Recall the definition of M|s := {Mw | w ∈ s}, the restriction
of M to an information state s.

3.2.3. Definition (Submodel). Let M and N be information models. We say
thatM is a submodel of N (and we indicate it withM ↪→ N ) if there exists two
maps F : WM → WN and G : DM → DN such that:

Sub1 For every b ∈ DN , there exists a ∈ DM such that G(a) ∼eF [WM] b;

Sub2 G commutes with the interpretation of the logical symbols (modulo essen-
tial equivalence):

G(fM(d1, . . . , dn)) ∼eF [WM] fN (G(d1), . . . , G(dn))

RMw (d1, . . . , dn) ⇐⇒ RNF (w)(G(d1), . . . , G(dn))

d1 �Mw d2 ⇐⇒ G(d1) �NF (w) G(d2)

It is easy to verify that M|s ↪→M, with F : s → W the inclusion map and G :
D → D the identity map. So the submodel relation can be seen as a generalization
of the restriction between models taking into account also the essential equivalence
between worlds and elements. The following lemma formalizes this intuition.

3.2.4. Lemma. Let M and N be two information models. Then M ↪→ N iff
there exists an information state s of N such that Me ∼= (N|s)e.

Proof:
We prove separately the two implications: (1) firstly thatM ↪→ N impliesMe ∼=
(N|s)e for some s; (2) secondly that Me ∼= (N|s)e for some s implies M ↪→ N .

Part (1): Firstly suppose that M ↪→ N , and let F : WM → WN and G :
DM → DN be a pair of functions witnessing it. Consider the information state
s := F

[
WM]. We want to prove that Me ∼= (N|s)e.

Consider the functions F ′ : WMe → W (N|s)e and G′ : DM
e → D(N|s)e defined

as

F ′([w]) = [F (w)] G′([d]) = [G(d)]

Firstly, we can show that F ′ is well-defined: let w,w′ ∈ WM such that w ≈e w′;
we have to show that F (w) ≈e F (w′). By definition of ≈e, we have Mw = Mw′ .
Consider now a relation symbol R and a sequence b1, . . . , bAr(R) ∈ DN . By Sub1,
there exists a sequence a1, . . . , aAr(R) ∈ DM such that G(ai) ∼eF [WM] bi; fix one



38 Chapter 3. Preliminaries

sequence with this property. We have〈
b1, . . . , bAr(R)

〉
∈ RNF (w)

⇐⇒
〈
G(a1), . . . , G(aAr(R))

〉
∈ RNF (w) (by Condition Sub1)

⇐⇒
〈
a1, . . . , aAr(R)

〉
∈ RMw (by Condition Sub2)

⇐⇒
〈
a1, . . . , aAr(R)

〉
∈ RMw′ (by hypothesis)

⇐⇒
〈
G(a1), . . . , G(aAr(R))

〉
∈ RNF (w′) (by Condition Sub2)

⇐⇒
〈
b1, . . . , bAr(R)

〉
∈ RNF (w′) (by Condition Sub1)

So we have that RNF (w) and RNF (w′) coincide; in the same way we can show that also

�NF (w) and �NF (w′) coincide. We conclude that NF (w) = NF (w′), and consequently

that F (w) ≈e F (w′).
Secondly, we can show that also G′ is well-defined: let d, d′ ∈ DM such that

d ∼e d′; we have to show that G(d) ∼e G(d′), that is, that for every n ∈ N it holds
that G(d) ∼n G(d′) (compare with Definition 3.1.2). By definition of d ∼e d′ for
every relation symbol R, for every world w ∈ WM, for every tuple

〈
d1, . . . , dAr(R)

〉
and for every index i ≤ Ar(R) it holds that〈

d1, . . . , di−1, d, di+1, . . . , dAr(R)

〉
∈ RMw

m〈
d1, . . . , di−1, d

′, di+1, . . . , dAr(R)

〉
∈ RMw

By Condition Sub2 this entails〈
G(d1), . . . , G(di−1), G(d), G(di+1), . . . , G(dAr(R))

〉
∈ RN|sF (w)

m〈
G(d1), . . . , G(di−1), G(d′), G(di+1), . . . , G(dAr(R))

〉
∈ RN|sF (w)

Since F is surjective over s = F [WM] and, by Condition Sub1, every element
in DN|s is ∼e-equivalent to some element in G[DM], it follows that: for every
relation symbol R, for every world v ∈ WN|s , for every tuple

〈
c1, . . . , cAr(R)

〉
of

elements of DN|s and for every index i ≤ Ar(R) it holds that〈
c1, . . . , ci−1, G(d), ci+1, . . . , cAr(R)

〉
∈ RN|sv

m〈
c1, . . . , ci−1, G(d′), ci+1, . . . , cAr(R)

〉
∈ RN|sv

that is, G(d) ∼0 G(d′).
With a simple induction we can now show that G(d) ∼n G(d′) for every

n ∈ N, and thus conclude G(d) ∼e G(d′). The basic case (G(d) ∼0 G(d′)) has
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been shown above. Suppose G(d) ∼n G(d′) for a certain value n ∈ N. Consider
now a function symbol f and a sequence

〈
c1, . . . , cAr(f)

〉
of elements of DN|s . By

Condition Sub1, there exists a sequence
〈
d1, . . . , dAr(f)

〉
of elements of DM such

that G(di) ∼es ci for every i ≤ Ar(f). Since d ∼e d′, it follows that d ∼n+1 d′ and
consequently, for every i ≤ Ar(f), it holds that

fN (c1, . . . , ci−1, G(d), ci+1, . . . , cAr(f))
∼e G(fM(d1, . . . , di−1, d, di+1, . . . , dAr(f))) (by Condition Sub2)
∼n G(fM(d1, . . . , di−1, d

′, di+1, . . . , dAr(f))) (by Definition of ∼n+1)
∼e fN (c1, . . . , ci−1, G(d′), ci+1, . . . , cAr(f)) (by Condition Sub2)

and consequently G(d) ∼n+1 G(d′). Notice that all the steps in this part of the
proof are reversible, thus showing that d ∼e d′ iff G(d) ∼e G(d′).

To conclude this part of the proof we need to show that Conditions SEq1 and
SEq2 hold for F ′ and G′. Injectivity of G′ follows from previous considerations:
G′([d]) = G′([d′]) iff G(d) ∼e G(d′) iff d ∼e d′ iff [d] = [d′]. Surjectivity of F ′

follows by definition of s = F [W ′] and surjectivity of G′ follows from Condition
Sub1. As for Condition SEq2, it follows directly from Condition Sub2.

We conclude by showing that F ′ is injective: suppose now that F ′([w]) =
F ′([w′]) for some worlds w,w′ ∈ WM, that is, NF (w) = NF (w′). By condition
Sub2 it follows that also Mw = Mw′ , that is, w ≈e w′. Thus [w] = [w′], showing
that F ′ is injective.

Part (2): Suppose now that Me ∼= (N|s)e for some information state s, and
let F ′ : WMe → W (N|s)e and G′ : DM

e → D(N|s)e a pair of functions witnessing
it, that is, respecting Conditions SEq1 and SEq2. We need to define a pair of
functions F : WM → WN and G : DM → DN respecting Conditions Sub1 and
Sub2.

Consider any sections F and G of the functions F ′ and G′ respectively, that
is, maps respecting the following conditions:

F (w) ∈ F ′([w]) G(d) ∈ G′([d])

We want to show that F and G respect all the conditions. For Condition Sub1:
since G′ is a bijection, it follows that every element of [c] ∈ D(N|s)e is of the form
G′([d]) for some d ∈M. By definition of G, this entails that c ∼e G(d), and since
c was arbitrary Condition Sub1 follows.

For Condition Sub2: let us start with the condition on relation symbols (the
case for � is completely analogous). For R(x) a relation symbol, w ∈ WM and
d1, . . . , dAr(R) ∈ DM it holds that〈

d1, . . . , dAr(R)

〉
∈ RMw

⇐⇒
〈
[d1], . . . , [dAr(R)]

〉
∈ RMe

[w] (by Lemma 3.1.4)

⇐⇒
〈
G′([d1]), . . . , G′([dAr(R)])

〉
∈ R(N|s)e

F ′([w]) (by Condition SEq2)

⇐⇒
〈
G(d1), . . . , G(dAr(R))

〉
∈ RNF (w) (by Lemma 3.1.4)
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We now show the condition on function symbols. For f a function symbol and
d1, . . . , dAr(f) ∈ DM it holds that

[G(fM(d1, . . . , dAr(f)))]
= G′([fM(d1, . . . , dAr(f))]) (by definition of G)
= G′(fM

e
([d1], . . . , [dAr(f)])) (by definition of Me)

= f (N|s)e(G′([d1]), . . . , G′([dAr(f)])) (by Condition SEq2)
= f (N|s)e([G(d1)], . . . , [G(dAr(f))]) (by definition of G)
= [fN (G(d1), . . . , G(dAr(f)))] (by definition of (N|s)e)

So it follows that G(fM(d1, . . . , dAr(f))) ∼e fN (G(d1), . . . , G(dAr(f))); and since f
and the elements d1, . . . , dAr(f) were arbitrary, Condition Sub2 follows.

2

Combining this result with Lemmas 3.1.4 and 3.2.2, we obtain the following prop-
erty of the submodel relation.

3.2.5. Corollary. Let M and N be information models such that M ↪→ N
and let F : WM → WN and G : DM → DN be a pair of functions witnessing
it, that is, respecting Conditions Sub1 and Sub2. Consider an information state
s ⊆ WM and an assignment g : Var → DM. Then for every formula ϕ it holds
that

M, s �g ϕ ⇐⇒ N , F [s] �G◦g ϕ

In particular, for every sentence ψ it holds that

N � ψ =⇒ M � ψ

Proof:
By Lemma 3.2.4Me ∼= (N|F [WM])

e, and the functions witnessing this are F ′ and
G′ defined as

F ′([w]) = [F (w)] G′([d]) = [G(d)]

Combining this with Lemmas 3.1.4 and 3.2.2 we obtain

M, s �g ϕ
⇐⇒ Me, se �ge ϕ (by Lemma 3.1.4)
⇐⇒ (N|F [WM])

e, F ′[se] �G′◦ge ϕ (by Lemma 3.2.2)
⇐⇒ N|F [WM], F [s] �G◦g ϕ (by Lemma 3.1.4)
⇐⇒ N , F [s] �G◦g ϕ (since F [s] ⊆ F [WM])

The second claim follows by persistency of the semantics.
2

We conclude this section by pointing out a particularly interesting application
of Corollary 3.2.5: when two models are one a submodel of the other, then they
satisfy the same formulas. This result is used extensively in Chapter 6.
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3.2.6. Corollary. Let M and N be two information models. Suppose that

• M ↪→ N and F,G is a pair of functions witnessing this.

• N ↪→M and F ′, G′ is a pair of functions witnessing this.

• F ′ ◦ F = id (the identity function).

Then for every information state s ⊆ WM, for every assignment g : Var→ DM

and for every formula ϕ it holds that

M, s �g ϕ ⇐⇒ N , F [s] �G◦g ϕ

Proof:
Firstly, by Corollary 3.2.5 we have the left-to-right implication. Moreover by the
same corollary (since F ′[F [s]] = s) we also obtain that

N , F [s] �G◦g ϕ =⇒ M, s �G′◦G◦g ϕ

By Condition Sub2 we have that G′ ◦ G preserve (modulo essential equivalence)
the interpretation of function, relation and equality symbols. It follows by a
simple structural induction on ϕ that:

M, s �G′◦G◦g ϕ ⇐⇒ M, s �g ϕ

from which we conclude.
2





Chapter 4

Ehrenfeucht-Fräıssé Games

A powerful tool to study the expressiveness of several logical systems is given by
Ehrenfeucht-Fräıssé games (also known as EF games or back-and-forth games),
introduced in 1967 by Ehrenfeucht [1967], developing model-theoretic results pre-
sented by Fräıssé [1954]. These games provide a particularly perspicuous way
of understanding what differences between models can be detected by means of
formulas of a given logic. Reasoning about winning strategies in this game, one
can prove that two first order structures are elementarily equivalent, or one can
find a formula telling them apart.

One of the main merits of Ehrenfeucht-Fräıssé games is that they allow for
relatively easy proofs that certain properties are not expressible by formulas. A
classical application of this kind is the characterization of the cardinality quan-
tifiers definable in classical first order logic. This characterization says that the
only cardinality quantifiers definable in classical first order logic are those which,
for some natural number m, are insensitive to the difference between any cardinals
larger than m. This characterization yields a range of interesting undefinability
results: for instance, it implies that the quantifiers an even number of individuals
and infinitely many individuals are not first order definable.

The basic idea of EF games has proven to be very flexible and adaptable to a
wide range of logical settings, including fragments of first order logic with finitely
many variables [Immerman, 1982]; extensions of first order logic with generalized
quantifiers [Kolaitis and Väänänen, 1995]; monadic second order logic [Fagin,
1975]; modal logic [Benthem, 1976]; and intuitionistic logic [Visser, 2001, Po lacik,
2008]; logics based on team semantics such as dependence logic [Väänänen, 2007,
Sec. 6.6] and inclusion logic [Grädel, 2016]. In each case, the game provides an
insightful characterization of the distinctions that can and cannot be made by
means of formulas in the logic.

In this chapter we introduce a variation of the Ehrenfeucht-Fräıssé game for
InqBQ and show that this game provides a characterization of the expressive
power of the logic. We then present further variations of the game, showing that

43
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this game-theoretic approach can be adapted to study other aspects of the logic.

4.1 The Ehrenfeucht-Fräıssé Game

The Ehrenfeucht-Fräıssé game for InqBQ is played by two players, Spoiler and
Duplicator (abbreviated as S and D respectively), using two inquisitive models
M,N as a board. The intuition behind the game is similar to the one for classical
logic: Spoiler wants to exhibit that the information encoded inM is not subsumed
by the information encoded in N ; while Duplicator wants to show otherwise.

As in the classical case, the game proceeds in turns: each turn, Spoiler picks
an object from one of the two models and Duplicator must respond by picking a
corresponding object from the other model. At the end of the game, a winner is
decided by comparing the atomic formulae supported by the sub-structures built
during the game.

However, there are two crucial differences with the game for classical logic.
Firstly, the objects that are picked during the game are not just individuals d ∈ D,
but also information states s ⊆ W . The reason is that the implication of InqBQ
behaves like a restrictor, that is, like a quantifier ranging over enhancements
of the current information state (this is apparent from the semantic clauses for
implication presented in Definition 2.1.7). Secondly, the roles of the two models
in the game are not symmetric: it could be that the information encoded byM is
subsumed by the information encoded by N , but not vice versa; this is the case,
for example, when M is a submodel of N (Definition 3.2.3). This asymmetry is
connected to the absence of a classical negation in the language of InqBQ.

Now we describe the game and introduce a standard notation for the objects
chosen during a run of the game.

Consider the following ingredients :

• M and N are information models;

• s and t are information states of M and N respectively;

• a and b are tuples (of the same length) of elements fromM and N respec-
tively.

A position in an EF game for InqBQ is a tuple
〈
M, s, a;N , t, b

〉
where:

If not otherwise specified, a game between the models M and N starts from
position 〈M,WM, ε;N ,WN , ε; 〉, where ε indicates the empty tuple.

Starting a round from a position
〈
M, s, a;N , t, b

〉
, S performs a move choosing

it from the following list:1

1In the following, the notation aa′ indicates the sequence obtained by adding the element
a′ at the end of the sequence a.
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∃-move: S picks an element a′ ∈ DM; D responds with an element b′ ∈ DN ; the
game continues from position

〈
M, s, aa′;N , t, bb′

〉
;

∀-move: S picks an element b′ ∈ DN ; D responds with an element a′ ∈ DM; the
game continues from position

〈
M, s, aa′;N , t, bb′

〉
;

→-move: S picks a sub-state t′ ⊆ t; D responds with a sub-state s′ ⊆ s. After
that, S decides if the game continues from position

〈
M, s′, a;N , t′, b

〉
or

from position
〈
N , t′, b;M, s′, a

〉
.

Notice that the game has a chirality, given by which of M and N plays the
role of the “first model”, which S partially controls: by performing a quantifier-
move—that is, an ∃-move or an ∀-move—S picks an element from a model of his
choice, but then the game continues with the same chirality; on the contrary, by
performing an →-move, S can pick an information state only from the second
model, and then the game proceeds with a chirality of his choice.

With respect to the termination condition, a pair of numbers 〈i, q〉 ∈ N2 is
fixed in advance and it is known to the two players; we call i, q the indexes of
the game. These numbers constrain the development of the game: in total, S
can play only i implication moves and only q quantifier moves. When there are
no more moves available, the game ends. Assuming

〈
M, s, a;N , t, b

〉
is the final

position, the game is won by Player D if the following condition is satisfied, and
by player S otherwise:

Winning condition for D: for all atomic formulas A(x1, . . . , xn) where n is the
size of the tuples a and b, we have:

M, s |= A (a) =⇒ N , t |= A
(
b
)

(4.1)

We indicate with EFi,q(M, s, a;N , t, b) the game with indexes i, q starting

from position
〈
M, s, a;N , t, b

〉
. For brevity, we indicate with EFi,q(M,N ) the

game EFi,q(M,WM, ε;N ,WN , ε).

4.1.1. Example. Consider the signature Σ =
{
P (1)

}
in the language L6=. Given

the modelsM and N in Figure 4.1, we simulate a run of the game EF0,2(M,N ):

• S starts by performing an ∃-move and choses a1 = d1 from M; D responds
by choosing b1 = e2 fromN . Current position: 〈M, {w0, w1} , 〈d1〉 ;N , {v0, v1} , 〈e2〉〉;
moves left: 0 →-moves, 1 quantifier-move.

• S performs an ∀-move and choses b2 = e1 from N ; D responds by choosing
a2 = d2 fromM. Current position: 〈M, {w0, w1} , 〈d1, d2〉 ;N , {v0, v1} , 〈e2, e1〉〉;
moves left: 0 →-moves, 0 quantifier-moves.
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M
w0 w1

d1 • ×

d2 × •

N
v0 v1

e1 • •

e2 × •

Figure 4.1: The information models used in Example 4.1.1.

M N
S a1 := d1

D b1 := e2

S b2 := e1

D a2 := d2

(a) Example of run of EF0,2(M,N ).

M N
S a1 := d1

D b1 := e2

S t1 := {v1}
D s1 := {w0}
S i := 1
S b2 := e1

D a2 := d2

(b) Example of run of EF1,2(M,N ).

• Since there are no moves left, the game is over. Duplicator is the winner,
since Condition 4.1 is met:

M, {w0, w1} 2 P (d1) =⇒ [M, {w0, w1} � P (d1) =⇒ N , {v0, v1} � P (e2)]

M, {w0, w1} 2 P (d2) =⇒ [M, {w0, w1} � P (d2) =⇒ N , {v0, v1} � P (e1)]

The run is represented in Table 4.2a.

4.1.2. Example. Referring to the same models of Example 4.1.1, we simulate a
run of EF1,2(M,N ):

• S starts by performing an ∃-move and choses a1 = d1 from M; D responds
by choosing b1 = e2 fromN . Current position: 〈M, {w0, w1} , 〈d1〉 ;N , {v0, v1} , 〈e2〉〉;
moves left: 1 →-move, 1 quantifier-move.

• S performs a →-move and choses t1 = {v1} an info state of N ; D responds
by choosing s1 = {w0} an info state of M; finally S chooses to change the
chirality of the system. Current position: 〈N , {v1} , 〈e2〉 ;M, {w0} , 〈d1〉〉;
moves left: 0 →-moves, 1 quantifier-move.

• S performs an ∃-move and choses b2 = e1 from N ; D responds by choosing
a2 = d2 from M. Current position: 〈N , {v0} , 〈e2, e1〉 ;M, {w0} , 〈d1, d2〉〉;
moves left: 0 →-moves, 0 quantifier-moves.
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• Since there are no moves left, the game is over. Spoiler is the winner,
since Condition 4.1 is not met:

N , {v1} � P ( e1︸︷︷︸
b2

) and M, {w0} 2 P ( d2︸︷︷︸
a2

)

The run is represented in Table 4.2b. Notice that, since we are working in the
language L 6=, Duplicator could have won the run by choosing a2 = d1 in the last
exchange.

As usual, a winning strategy for a player is a strategy which guarantees victory
to them, no matter which moves the opponent performs. If Duplicator has a
winning strategy in the game EFi,q(M, s, a;N , t, b) we write:

(M, s, a) �i,q (N , t, b)

We indicate with ≈i,q the relation �i,q ∩ �i,q. Notice that the game is fi-
nite (since the number of turns is bounded by i + q), zero-sum and has per-
fect information. Therefore, if (M, s, a) �i,q (N , t, b) does not hold, then it
follows from the Gale-Stewart Theorem that Spoiler has a winning strategy in
the game EFi,q(M, s, a;N , t, b). We simply write M �i,q N as a shorthand for
(M,WM, ε) �i,q (N ,WN , ε).

The following two propositions follow easily from the definition of the game,
and exhibit the recursive nature of the game.

4.1.3. Proposition. If (M, s, a) �i,q (N , t, b) then (M, s, a) �i′,q′ (N , t, b) for
all i′ ≤ i and q′ ≤ q.

4.1.4. Proposition. Suppose 〈i, q〉 6= 〈0, 0〉. (M, s, a) �i,q (N , t, b) iff the fol-
lowing three conditions are satisfied:

• If i > 0, then ∀t′ ⊆ t. ∃s′ ⊆ s. (M, s′, a) ≈i−1,q (N , t′, b);

• If q > 0, then ∀a′ ∈ DM. ∃b′ ∈ DN . (M, s, aa′) �i,q−1 (N , t, bb′);

• If q > 0, then ∀b′ ∈ DN . ∃a′ ∈ DM. (M, s, aa′) �i,q−1 (N , t, bb′).

4.2 IQ Degree and Types

We already mentioned the intuition behind the game: Spoiler wants to exhibit
that the information encoded inM is not subsumed by the information encoded
in N ; while Duplicator wants to show otherwise. We want to formalize this
intuition, and to do so we need to specify the notion of information encoded
by a model. More precisely, what Spoiler tries to show is that the definable
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information—that is, the properties definable by formulas of InqB—encoded by
M is not subsumed by the information encoded in N . This Subsection introduces
the tools to formalize this intuition.

We define the implication degree (Ideg) and quantification degree (Qdeg) of a
formula by the following inductive clauses. Here, p stands for a generic atomic
formula:

Ideg(p) = 0 Qdeg(p) = 0
Ideg(⊥) = 0 Qdeg(⊥) = 0
Ideg(ϕ1 ∧ ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) Qdeg(ϕ1 ∧ ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))
Ideg(ϕ1

>

ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) Qdeg(ϕ1

>
ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))

Ideg(ϕ1 → ϕ2) = max(Ideg(ϕ1), Ideg(ϕ2)) + 1 Qdeg(ϕ1 → ϕ1) = max(Qdeg(ϕ1),Qdeg(ϕ2))
Ideg(∀x.ϕ) = Ideg(ϕ) Qdeg(∀x.ϕ) = Qdeg(ϕ) + 1

Ideg(∃x.ϕ) = Ideg(ϕ) Qdeg(∃x.ϕ) = Qdeg(ϕ) + 1

To keep track of both these measures of complexity of a formula with a unique
formal object, we define the combined degree of a formula ϕ as IQdeg(ϕ) =
〈Ideg(ϕ),Qdeg(ϕ)〉. The natural order ≤ on such degrees is defined by

〈a, b〉 ≤ 〈a′, b′〉 ⇐⇒ a ≤ a′ and b ≤ b′

So a formula ϕ is (strictly) more complex than a formula ψ if and only if IQdeg(ϕ) ≥
IQdeg(ψ) and at least one among Ideg(ϕ) > Ideg(ψ) and Qdeg(ϕ) > Qdeg(ψ)
holds.

We denote by Ll the set of formulas ϕ with free variables included in {x1, . . . , xl};
and with Lli,q the formulas ϕ ∈ Ll with IQdeg(ϕ) ≤ 〈i, q〉.2

The notion of IQ degree allows us to adapt the notion of type from classical
model theory to the setup of inquisitive logic.

4.2.1. Definition (types and 〈i, q〉-types). LetM be a model, s an information
state of M, and a a tuple of elements in M of length l. The type and 〈i, q〉-type
of 〈M, s, a〉 are respectively

tp(M, s, a) :=
{
ϕ ∈ Ll

∣∣M, s |= ϕ(a)
}

tpi,q(M, s, a) :=
{
ϕ ∈ Lli,q

∣∣M, s |= ϕ(a)
}

Additionally, we define the relations v, ≡, vi,q and ≡i,q as:

〈M, s, a〉 v
〈
N , t, b

〉
iff tp(M, s, a) ⊆ tp(N , t, b)

〈M, s, a〉 ≡
〈
N , t, b

〉
iff tp(M, s, a) = tp(N , t, b)

〈M, s, a〉 vi,q
〈
N , t, b

〉
iff tpi,q(M, s, a) ⊆ tpi,q(N , t, b)

〈M, s, a〉 ≡i,q
〈
N , t, b

〉
iff tpi,q(M, s, a) = tpi,q(N , t, b)

2The results of this chapter are independent from the presence and the interpretation of the
equality symbol, so L will indicate a generic syntax among L6=, L= and L�.
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4.2.2. Example. Consider the models M, N in Figure 4.1. We have

N , {v0, v1} � P (e1) and M, {w0, w1} 6� P (d1)

⇓
(N , {v0, v1}, 〈e1〉) 6v0,0 (M, {w0, w1}, 〈d1〉)

Notice that, if the signature is finite, there are only a finite number of non-
equivalent formulas with a combined degree of at most 〈i, q〉, and consequently
only a finite number of 〈i, q〉-types. This can be shown by well-founded induction
on 〈i, q〉, relying on the fact that (Ll,∧, > ) is a distributive lattice:

• Up to logical equivalence, there are only finitely many formulas in Ll0,0—
atoms and combinations of them obtained using the operators ∧ and

>

.
Notice that the hypothesis of working with a finite signature is crucial to
have this result.

• Formulas in Lli,q are equivalent to combinations of formulas in I ∪ A ∪ E
obtained using the operators ∧ and

>

, where I =
{
ϕ→ ψ

∣∣ ϕ, ψ ∈ Lli−1,q

}
,

A =
{
∀x.ϕ

∣∣ ϕ ∈ Ll+1
i,q−1

}
and E =

{
∃x.ϕ

∣∣ ϕ ∈ Ll+1
i,q−1

}
(we impose the con-

vention Lli,q = ∅ if i < 0 or q < 0). By inductive hypothesis I, A and E
contain only finitely many non-equivalent formulas, thus the same holds for
Lli,q.

4.3 Ehrenfeucht-Fräıssé Theorem

In the following we state and prove the main result connecting the notion of type
and the Ehrenfeucht-Fräıssé game. In this section we will require the signature
Σ to satisfy the additional condition of being relational.

4.3.1. Definition (Relational signature). We say that a signature Σ is rela-
tional if it contains only relation and constant symbols.

This restriction can be easily dispensed with when we consider the languages L=

and L�, but not when we work with the language L 6=. We will discuss this issue
further in Section 4.4.

We are now ready to state the main theorem of this chapter.

4.3.2. Theorem. Suppose the signature Σ is finite and relational. Then

(M, s, a) �i,q (N , t, b) ⇐⇒ (M, s, a) vi,q (N , t, b)

Proof:
We will prove this by well-founded induction on 〈i, q〉. For the basic case, 〈i, q〉 =
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〈0, 0〉, we just have to verify that Condition 4.1 holds for all atomic formulas iff
it holds for all formulas ϕ ∈ Ll0,0: this is just a straightforward verification.

Next, we prove the right-to-left direction of the inductive step. Suppose
〈i, q〉 > 〈0, 0〉 and suppose the claim holds for all 〈i′, q′〉 < 〈i, q〉. For the left-
to-right direction, we proceed by contraposition. Suppose that some ϕ ∈ Lli,q
witnesses that (M, s, a) 6vi,q (N , t, b), that is:

M, s � ϕ (a) N , t 2 ϕ
(
b
)

We proceed by induction on the structure of ϕ.3

We first treat the easy cases:

• If ϕ is an atomic formula, it follows (M, s, a) 6�0,0 (N , t, b); so, by Proposi-

tion 4.1.3, we also have (M, s, a) 6�i,q (N , t, b).

• If ϕ is a conjunction ψ ∧ χ then we have:{
M, s � ψ(a) ∧ χ(a) =⇒ M, s � ψ(a) and M, s � χ(a)

N , t 2 ψ(b) ∧ χ(b) =⇒ N , t 2 ψ(b) or N , t 2 χ(b)

So, either ψ or χ is a less complex witness of (M, s, a) 6vi,q (N , t, b). By the

nested inductive hypothesis, we conclude that (M, s, a) 6�i,q (N , t, b).

• If ϕ is a disjunction ψ

>

χ, the reasoning is analogue to the case for con-
junction.

So the cases left are: (⇒1) ϕ of the form ψ → χ, (⇒2) ϕ of the form ∀xψ and
(⇒3) ϕ of the form ∃xψ. Let us consider the three cases separately.

Case ⇒1: ϕ is an implication of the form ψ → χ. In this case we have

N , t 2 ψ(b)→ χ(b) =⇒ ∃t′ ⊆ t.

{
N , t′ � ψ(b)

N , t′ 2 χ(b)

M, s � ψ(a)→ χ(a) =⇒ @s′ ⊆ s.

{
M, s′ � ψ(a)
M, s′ 2 χ(a)

Thus there exists a state t′ ⊆ t with a different 〈i− 1, q〉-type than every
s′ ⊆ s—either because it supports ψ or because it does not support χ. So
by main inductive hypothesis, if Spoiler performs a →-move and chooses
t′, for every choice s′ of Duplicator we have (M, s′, a) 6≈i−1,q (N , t′, b). It

follows by Proposition 4.1.4 that (M, s, a) 6�i,q (N , t, b).
3Since we are performing a nested induction, we will refer to the first induction on the

indexes 〈i, q〉 as the main induction, and to the second induction on the structure of ϕ as the
nested induction.
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Case ⇒2: ϕ is a universal formula of the form ∀x.ψ. In this case we have

N , t 2 ∀x.ψ(b, x) =⇒ ∃b′ ∈ DN . N , t 2 ψ
(
b, b′
)

M, s � ∀x.ψ(a, x) =⇒ ∀a′ ∈ DM. M, s � ψ (a, a′)

If Spoiler performs an ∀-move and chooses b′, then by main inductive hy-
pothesis, for every possible choice a′ of Duplicator, we have

(M, s, aa′) 6�i,q−1 (N , t, bb′)

It follows by Proposition 4.1.4 that (M, s, a) 6�i,q (N , t, b).

Case ⇒3: ϕ is an existential formula of the form ∃xψ. This case is similar
to the previous one: Spoiler can perform an ∃-move and pick an element
a′ ∈ DM with no counterpart in DN , and by Proposition 4.1.4 we obtain
(M, s, a) 6�i,q (N , t, b).

This completes the proof of the left-to-right direction of the inductive step. Now
consider the converse direction. Again, we proceed by contraposition: Suppose
that Spoiler has a winning strategy in the game EFi,q(M, s, a;N , t, b). We con-
sider again three cases, depending on the first move of Spoiler’s winning strategy
(cases ⇐1, ⇐2, ⇐3 respectively).

Case ⇐1: the first move is a →-move. Suppose that Spoiler starts by choosing
t′ ⊆ t. As this is a winning strategy for Spoiler, for every choice s′ ⊆ s of
Duplicator we have

(M, s′, a) 6�i−1,q (N , t′, b) or (N , t′, b) 6�i−1,q (M, s′, a)

By inductive hypothesis, this translates to

∃ψs′ ∈ tp(s′) \ tp(t′) or ∃θs′ ∈ tp(t′) \ tp(s′)

where tp(s′) := tpi−1,q(M, s′, a) and tp(t′) := tpi−1,q(N , t′, b).
So there exist two families {ψs′ | s′ ⊆ s} and {θs′ | s′ ⊆ s} such that:{

ψs′ ∈ tp(s′) \ tp(t′) if tp(s′) \ tp(t′) 6= ∅
ψs′ := ⊥ otherwise{
θs′ ∈ tp(t′) \ tp(s′) if tp(t′) \ tp(s′) 6= ∅
θs′ := > otherwise

Moreover we can suppose the two families to be finite, since there are only
a finite number of formulas of degree 〈i− 1, q〉 up to logical equivalence (see
Section 4.2). Define now

ϕ :=
∧
s′⊆s

θs′ → \
∨
s′⊆s

ψs′

We have:



52 Chapter 4. Ehrenfeucht-Fräıssé Games

1. IQdeg(ϕ) ≤ 〈i, q〉;
2. ϕ /∈ tpi,q(N , t, b) (since by construction ϕ is falsified at t′ ⊆ t);

3. ϕ ∈ tpi,q(M, s, a) (since by construction ϕ holds at every state s′ ⊆ s).

Thus we have (M, s, a) 6vi−1,q (N , t, b), as we wanted.

Case ⇐2: the first move is an ∀-move. Suppose Spoiler starts by choosing b′ ∈
DN . As this is a winning strategy for Spoiler, for every choice a′ ∈ DM of
Duplicator we have

(M, s, aa′) 6�i,q−1 (N , t, bb′)

By inductive hypothesis, the above translates to

∃ψa′ ∈ tp(a′) \ tp(b′)

where tp(a′) := tpi,q−1(M, s, aa′) and tp(b′) := tpi,q−1(N , t, bb′).
Now the formula

ϕ := ∀x \
∨

a′∈DM

ψa′

has IQ-degree at most 〈i, q〉, and by construction we have ϕ ∈ tpi,q(M, s, a)

and ϕ /∈ tpi,q(N , t, b). Thus, we have (M, s, a) 6vi,q (N , t, b).

Case ⇐3: the first move is an ∃-move. Reasoning as in the previous case, we
find that there exists a a′ ∈ DM—the element chosen by Spoiler following
the winning strategy—such that for every b′ ∈ DN

∃θb′ ∈ tp(s′) \ tp(t′)

In particular, it follows that the formula

ϕ := ∃x
∧

b′∈DN

ψb′

is a formula of complexity at most 〈i, q〉 such that ϕ ∈ tpi,q(M, s, a) and

ϕ /∈ tpi,q(N , t, b). Again, it follows that (M, s, a) 6vi,q (N , t, b).

This concludes the proof of the right-to-left direction.
2

As an immediate corollary, we also obtain a game-theoretic characterization of
the relation ≡i,q.

4.3.3. Corollary. For a finite signature Σ, we have:

(M, s, a) ≈i,q (N , t, b) ⇐⇒ (M, s, a) ≡i,q (N , t, b)
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4.4 Extending the Result to Function Symbols

The results we just obtained assume that the signature Σ is finite and relational.
However, under opportune hypotheses we can extend them to finite non-relational
signatures, that is, signatures containing also function symbols other than con-
stants. Recall that in InqBQ, function symbols are interpreted rigidly, that is,
their interpretation is independent from the world considered.

As in the case of classical logic [Hodges, 1997a, Section 3.3], the presence of
function symbols requires some care in formulating the Ehrenfeucht-Fräıssé game.
The reason is that allowing atomic formulas to contain arbitrary occurrences of
function symbols allows us to generate, with a finite number of choices in the
game, a sub-structure of the model of infinite size, which in turn spoils the crucial
locality feature of the game.

A simple way to generalize the result to finite signatures containing function
symbols is to follow the treatment by Hodges [1997a, Section 3.3] and define v,
vi,q in terms of unnested formulas.

4.4.1. Definition (Unnested formula). An unnested atomic formula is a for-
mula of one of the following forms:

x = y c = y f(x) = y x � y c � y f(x) � y R(x)

A formula ϕ is said to be unnested if every atomic subformula of ϕ is an unnested
atomic formula.

Examples of nested formulas—i.e., non-unnested formulas—are f(x) = g(y),
R(f(x)) and f(c) � x.

We can now make the following amendments to the previous section to account
for function symbols:

1. the winning conditions for the game are determined by looking at whether
Condition 4.1 is satisfied for all unnested atomic formulas;

2. the 〈i, q〉-types are defined as sets of unnested formulas of degree at most
〈i, q〉, instead of generic formulas of said degree.

Except for these small tweaks, the statement of the result and the proof are
completely analogous.

In case we are working with the languages L= or L�, that is, in case we have
an equality symbol in the language, we can turn an arbitrary formula into an
equivalent unnested one (e.g., replacing P (f(x)) with ∀y.(y � f(x) → Py)). So
the restriction to unnested formulas is not a limitation to the generality of the
game-theoretic characterization as long as we have the equality in the language;
rather, it can be seen as an indirect way of assigning formulas containing function



54 Chapter 4. Ehrenfeucht-Fräıssé Games

symbols with the appropriate 〈i, q〉-degree—making explicit the quantifications
which are implicit in the presence of function symbols.

Unfortunately, in case we are working with the language L6=, which does not
contain an equality symbol, there are infinitely many atomic formulas not equiv-
alent to any unnested formula, which in turns implies that we need to consider a
non-finitary winning condition for Duplicator. Since this goes beyond the scope
of this chapter, we will leave the study of this case for further work.

4.5 Variations of the Game

In this section we introduce some variations of the game presented in Section 4.3.

4.5.1 Symmetric Version

We introduce a symmetric version of the game, to address an issue of the original
game: the game presented is too convoluted. The players need to choose and
keep track of the elements picked, the states chosen and the chirality associated
to the position. These choices could interact in non-trivial ways during a run of
the game, so this makes the game quite complicated to play.

The symmetric version gets rid of the chirality from the game, paying a price
for that: this version of the game corresponds to the relations ≡i,q,≡, and not
to the relations vi,q,v; and only one direction of Theorem 4.3.2 holds, namely
the support-equivalence of two models given a winning strategy for Duplicator.
In later sections we will use this symmetric version of the game to show certain
expressive limitations of InqBQ.

The symmetric game is the same as the Ehrenfeucht-Fräıssé game presented
in Section 4.1, except for two things: the →-move and the winning condition for
Duplicator. The following are the clauses for the symmetric version of the game.

Possible moves, →-move: Starting a round from a position
〈
M, s, a;N , t, b

〉
,

S can perform a →-move, which consists in the following: S picks a sub-
state t′ ⊆ t or a sub-state s′ ⊆ s; D responds with a sub-state from the other
model. After that, the game continues from position

〈
M, s′, a;N , t′, b

〉
.

Winning condition: The game is won by Player D if the following condition is
satisfied, and by player S otherwise:

Winning condition for D: for all atomic formulas A(x1, . . . , xn) where
n is the size of the tuples a and b, we have:

M, s |= A (a) ⇐⇒ N , t |= A
(
b
)

(4.2)
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All the other components of the game—including the side conditions needed to
perform an ∃-move, ∀-move or →-move—remain unchanged. Notice that at the
end of the →-move, S does not choose the chirality of the game as in the original
game. Moreover, the winning condition for this version of the game is symmetric
with respect to the two models.

We will indicate with EFsi,q(M, s, a;N , t, b) the game just described. We will

indicate withM, s, a ≈si,q N , t, b the existence of a winning strategy for Duplicator

in the game EFsi,q(M, s, a;N , t, b); and with M, s, a ≈s N , t, b the existence of a
winning strategy for arbitrary i, q ∈ N. We will also use notational conventions
analogous to the ones introduced for the original game.

Notice that the roles of the two models in the game are interchangeable:

4.5.1. Lemma. ≈si,q and ≈s are symmetric relations.

Comparing this version with the original one, we clearly made Spoiler’s life much
easier: now he can perform →-moves choosing states from both models; and the
winning condition for Duplicator is more restrictive than the original one. So the
following result should not come as a surprise:

4.5.2. Lemma. If M, s, a ≈si,q N , t, b, then M, s, a ≈i,q N , t, b.

Proof:
The idea of the proof is really simple: given a winning strategy for Duplicator
in the game EFsi,q(M, s, a;N , t, b), this is also a winning strategy in the game

EFi,q(M, s, a;N , t, b). The details are left to the reader. 2

As an immediate corollary we obtain the following result, which we will use ex-
tensively in applications.

4.5.3. Corollary. Suppose the signature Σ is finite. Then

(M, s, a) ≈si,q (N , t, b) =⇒ (M, s, a) ≡i,q (N , t, b)

We can also easily show that the converse of Corollary 4.5.3 does not hold.

4.5.4. Example. Consider the models M and N in Figure 4.3a. It is easy to
show that:

• M �0,1 N : the winning strategy for Duplicator is described in Table 4.3b;

• M �0,1 N : the winning strategy for Duplicator is described in Table 4.3c;

• M 6≈s0,1 N : if Spoiler picks the element d2 with its first (and only) move,
every move of Duplicator leads to Spoiler’s victory.
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M
w0

d1 •PQ

d2 • P

d3 •

N
v0

e1 •PQ

e2 • Q

e3 •

(a) The two models considered.

S plays. . . D responds. . .

d1 e1

d2 e1

d3 e3

e1 d1

e2 d3

e3 d3

(b) Winning strategy for D in the game
EF0,1(M,N ).

S plays. . . D responds. . .

d1 e1

d2 e3

d3 e3

e1 d1

e2 d1

e3 d3

(c) Winning strategy for D in the game
EF0,1(N ,M).

Figure 4.3: The information models and the winning strategy considered in Ex-
ample 4.5.4.

4.5.2 Transfinite Version

As for the classical case, we can introduce a transfinite version of the game. The
intuition to achieve this is to introduce a “timer” to keep track of the stage of the
game reached during a run. After performing a move, the timer increases by one,
and this way we keep track of how many moves we performed. In the Ehrenfeucht-
Fräıssé game presented at the beginning of the Chapter, we can define the value
of the timer to be the ordered pair 〈h, k〉, where h is the number of implication
moves performed and k is the number of quantification moves performed. We will
call this pair the stage of the game.

If we allow the values of k to range over ordinals, and not only natural num-
bers, then we easily obtain a transfinite version of the game. The position of the
game when the timer assumes the value 〈h, α + 1〉—where α + 1 is a successor
ordinal—is determined by the position and the actions performed at stage 〈h, α〉;
while the position of the game when the timer assumes the value 〈h, θ〉 for θ a
limit ordinal, is the limit position (a concept that will be clarified in what follows)
of the stages of the form 〈h, α〉 for α < θ. Notice that, while there is a natural way
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to define a limit position after performing a transfinite amount of quantification
moves, there is no natural way to define a limit position after performing a trans-
finite number of implication moves: For example, what should be the chirality of
the limit position?

The transfinite version of the game is defined as follows:

Position: A position in the game is a tuple
〈
M, s, a;N , t, b;h, γ, i

〉
. h and γ

represent the stage reached in the run of the game, that is, h is the number
of implication moves performed and γ is the number of quantification moves
performed; in particular we require a = 〈aα|α < γ〉 and b = 〈bα|α < γ〉 to
be sequences of elements in the respective domains, indexed by the ordinal
γ. Additionally, the index i ∈ {0, 1} encodes the chirality of the game: if
i = 0 then M is the first model, otherwise N is the first model.4

Possible moves and limit positions: We define the positions reached during
the game by transfinite recursion on the ordinal representing the number of
moves performed at that point of the run. The starting position is given at
the start of the game.

Starting a round from a position
〈
M, s, a;N , t, b;h, γ, i

〉
, the following are

the possible moves:

∃-move: S picks an element a′ ∈ DM; D responds with an element b′ ∈ DN ;
the game reaches position

〈
M, s, aa′;N , t, bb′;h, γ + 1, i

〉
;

∀-move: S picks an element b′ ∈ DN ; D responds with an element a′ ∈ DM;
the game reaches position

〈
M, s, aa′;N , t, bb′;h, γ + 1, i

〉
;

→-move: S picks a sub-state t′ ⊆ t; D responds with a sub-state s′ ⊆ s.
After that, S decides a chirality, that is, which of the following positions
the game reaches:〈
M, s′, a; N , t′, b; h+ 1, γ, i

〉 〈
M, s′, a; N , t′, b; h+ 1, γ, 1− i

〉
Let θ be a limit ordinal. Suppose the positions encountered during the run
of the game up to the ordinal θ are〈 〈

M, sα, aα;N , tα, bα;hα, γα, iα
〉 ∣∣ α < θ

〉
Then we say that the run has reached the limit position〈

M, sθ, aθ;N , tθ, bθ;hθ, θ, iθ
〉

defined by the following clauses:

4Using an index to encode the chirality of the game is not as intuitive as using the position
of the models in the tuple, but allows to simplify significantly the definition of limit position
that follows.
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• Since only a finite amount of→-moves is allowed, the values of sα, tα, iα
are eventually constant in α; we define sθ, tθ, iθ as these constant values.

• We define
aθ =

⋃
α<θ

aα bθ =
⋃
α<θ

bα

Since 〈aα|α < θ〉 and
〈
bα
∣∣α < θ

〉
are pairwise coherent increasing se-

quences of sequences, then aθ and bθ are also sequences. Moreover,
since only a finite amount of →-moves is allowed, the sequences are
indexed by θ.

Termination conditions: A number i ∈ N and an ordinal Q ∈ ORD are fixed
in advance and these are the highest values allowed for h and γ respectively
during the run. In particular, a move is not allowed if performing it makes
the game reach a position with h > i or γ > Q. When there are no more
available moves, the game ends.

Winning condition: The game is won by Player D if the following condition is
satisfied, and by player S otherwise:

Winning condition for D: for all atomic formulas A(x1, . . . , xn) and for
every sequence of ordinals α1, . . . , αn < Q, we have:{
M, s � A

(
aα1

, . . . , aαn
)

=⇒ N , t � A
(
bα1
, . . . , bαn

)
if i = 0

N , t � A
(
bα1
, . . . , bαn

)
=⇒ M, s � A

(
aα1

, . . . , aαn
)

if i = 1

We will indicate with EFi,Q(M, s, a;N , t, b) the game just described (where i ∈
N, while Q ∈ ORD) starting from the initial position

〈
M, s, a;N , t, b; 0, 0, 0

〉
.

We will indicate with M, s, a �i,Q N , t, b the existence of a winning strategy

for Duplicator in the game EFi,Q(M, s, a;N , t, b). We will also use notational
conventions analogous to the ones introduced for the original game. Notice that
these notations extend the ones presented for the original game.

As for the previous games, the existence of a winning strategy for Duplicator
in the game EFi,Q(M,N ) gives us sensible information on the relation between
the two models. For example, the submodel relation (Definition 3.2.3) is captured
definable in terms of �i,Q.

4.5.5. Theorem. LetM and N be information models and define Q := |DM|+
|DN | + 1 (where + denotes the usual cardinal sum). Then the following are
equivalent:

1. M ↪→ N ;

2. N �2,QM;
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3. N �h,QM for every h ≥ 1.

Proof:
Firstly, suppose that Condition 1 holds, and let F,G be the functions that witness
it. We describe here a winning strategy for Duplicator in the game EFh,Q(N ,M)
for an arbitrary h ∈ N \ {0}, thus showing that Conditions 2 and 3 follow:

• If Spoiler plays a quantifier move and picks an element a of M, then Du-
plicator picks G(a) of N .

• If Spoiler plays a quantifier move and picks an element b of N , then Du-
plicator picks a of M such that G(a) ∼eF [WM] b (such an element exists by

Condition Sub1 of Definition 3.2.3).

• The first time that Spoiler plays an implication move and picks s ⊆ WM,
Duplicator responds by picking t = F [s] ⊆ WN .

• After the first implication move, whenever Spoiler performs an implication
move and chooses s ⊆ WM (resp. t ⊆ WN ), then Duplicator picks t ⊆ WN

(resp. s ⊆ WM) so that the invariant F (s) = t is maintained.

This is a winning strategy in the game since by definition of F,G:

∀w ∈ s. [M, {w} � A(d1, . . . , dn) ⇐⇒ N , {F (w)} � A(G(d1), . . . , G(dn)) ]

⇓
M, s � A(d1, . . . , dn) ⇐⇒ M, F (s) � A(G(d1), . . . , G(dn))

and since h ≥ 1, we have that F [s] = t and thus N �h,QM.

Since Condition 3 trivially implies Condition 2, then we just need to show that
Condition 2 implies Condition 1. To show this, we will play the part of Spoiler in
the game EF2,Q(N ,M) and use the winning strategy of Duplicator to build the
functions f and g.

Consider enumeration
〈
aα
∣∣α < ∣∣DM∣∣ 〉 of the elements of M; and an enu-

meration
〈
bα
∣∣α < ∣∣DN ∣∣ 〉 of the elements of N . Fix a winning strategy for

Duplicator:

1. Firstly Spoiler performs
∣∣DN ∣∣ many ∃-moves: each time Spoiler chooses

a distinct element bα of N , so that he covers the whole domain; define
H(bα) ∈ DM to be the element that Duplicator chooses in response.

2. Secondly Spoiler performs
∣∣DM∣∣ many ∀-moves: each time Spoiler chooses

a distinct element aα of M, so that he covers the whole domain; define
G(aα) ∈ DN to be the element that Duplicator chooses in response.
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3. After the previous moves, Spoiler can perform an implication move and
choose a singleton state {w} ⊆ WM. Following the winning strategy, Du-
plicator has to answer with a state t ⊆ WN comprised only of worlds
equivalent under the relation ≈eWN (Definition 3.1.1).

If this were not the case, then for a relation symbol R and some elements
d1, . . . , dAr(R) we would have N , t 2 ?R(d1, . . . , dAr(R)), and consequently
N , t 2 ∀x.?R(x). However a direct verification yields M, {w} � ∀x.?R(x),
and thusM, {w} 6�1,1 N , t. This contradicts the assumption that Duplica-
tor is employing a winning strategy.

In the notation above, for every possible choice w ∈ WM define F (w) to
be any element of t ⊆ WN , the state chosen by Duplicator following the
strategy.

Now that we defined F and G, we need to show that they respect the properties of
Definition 3.2.3. First of all, notice that for every world w ∈ WM, every sequence
a of DM, every sequence b of DN and every atomic formula A(x) it holds that

M, {w} � A(a) ⇐⇒ N , {F (w)} � A(G(a))

M, {w} � A(H(b)) ⇐⇒ N , {F (w)} � A(b)

In fact, after performing passage 3 of the run described above, we have by hy-
pothesis that5

M, {w} ,
〈
aα
∣∣ α < ∣∣DM∣∣ 〉_ 〈 H(bα)

∣∣ α < ∣∣DN ∣∣ 〉
≡1,1

N , {F (w)} ,
〈
G(aα)

∣∣ α < ∣∣DM∣∣ 〉_ 〈 bα ∣∣ α < ∣∣DN ∣∣ 〉
So Condition Sub2 of Definition 3.2.3 is respected.

As for Condition Sub1, notice that by the equivalences above we have, for
every b ∈ DN , b ∼eF [WM] G(H(b)). Thus the element H(b) ∈ M witnesses that
Condition Sub1 holds.

2

4.6 Conclusions

In this chapter we presented a generalization of the Ehrenfeucht-Fräıssé game in
order to study the expressive power of InqBQ. Moreover, we proved that a suitable
version of the Ehrenfeucht-Fräıssé theorem holds for this game (Theorem 4.3.2).
One of the main differences between the new game and its classical counterpart
is the novel notion of chirality : we are able to capture in game-theoretical terms

5With x_y we indicate the concatenation of the sequences x and y.
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not only when two models support the same formulas, but also when a model
supports all the formulas supported by the other.

The game introduced is quite flexible and can be redesigned in several ways.
One example is the symmetric version of the game, excluding chirality. Even
though this version does not fully characetrize support-equivalence between mod-
els (as shown in Example 4.5.4), it is a simpler game much easier to use in applica-
tions, as it will be showcased in Chapter 5. Another salient example is the trans-
finite version of the game, allowing for infinite runs indexed by an ordinal. This
version can be used to capture other relations other than support-equivalence, as
for example the submodel relation (Theorem 4.5.5).

The Ehrenfeucht-Fräıssé game proved to be a valuable tool to study the ex-
pressive power of the logic in several different contexts. One question that seems
crucial to address is how the IQ degree captures the expressiveness of InqBQ. More
concretely, if we call L≡i,q the set of formulas equivalent to formulas of IQdeg at
most 〈i, q〉, a natural conjecture would be that L≡i,q ⊆ L≡i′,q′ iff 〈i, q〉 ≤ 〈i′, q′〉 and
that the containments are all strict. In other terms, we are conjecturing that
the IQdeg is a suitable indicator to distinguish the expressive power of InqBQ
formulas. This issue seems natural to tackle using the Ehrenfeucht-Fräıssé games
introduced in this chapter.

L≡0,0

L≡1,0 L≡0,1

L≡2,0 L≡1,1 L≡0,2

. . .
... . .

.

) (

) ( ) (

Another question which we leave for further work is whether the game can be
modified to capture support-equivalence for interesting fragments of the logic or
for other inquisitive logics. For example, in Chapter 7 we define and study a vari-
ation of the game that captures support-equivalence restricted to formulas of the
classical antecedent fragment. It is still an open problem whether a suitable ver-
sion of the game can be defined for the mention-some and mention-all fragments
studied by Ciardelli [2016, Sections 4.7]; and the same question remains open for
the inquisitive logics of finite-width and the bounded-width fragment introduced
in this dissertation (Chapter 8).





Chapter 5

Cardinality Quantifiers

In this chapter we will use the EF-game for InqBQ to study in detail what InqBQ
can express about the number of individuals satisfying a predicate P . The sen-
tences we are concerned with include not only statements about the number of
individuals satisfying P , like those in (1), but also questions about the number
of individuals satisfying P , like those in (2).

(1) a. There is no P .
b. There are at least three P .
c. The number of P is even.
d. There are infinitely many P .

(2) a. Are there any P?
b. How many P are there?
c. Is the number of P even, or odd?
d. Are there infinitely many P?

Which among the statements in (1) and the questions in (2) can be expressed
in InqBQ? Instead of pursuing a direct answer to this question, we will tackle
the problem from a more general perspective. We will see that, in an inquisitive
setting, all these sentences instantiate the form Qx.P (x), where Q is a quantifier
which is sensitive only to the cardinality of its argument. Thus—interestingly—in
the inquisitive setting, not only no and at least three, but also how many can be
viewed as generalized quantifiers. We can then ask which cardinality quantifers
are expressible in InqBQ. In this chapter, we will establish a simple answer to
this question. From this answer, a verdict about the definability of the examples
above, as well as many other similar examples, can be easily reached.

We will first look at cardinality quantifiers in the setting of standard first order
logic, CQC, and recall the characterization of cardinality quantifiers expressible in
CQC; we will then present a generalization of the notion of a cardinality quantifier
to InqBQ, which encompasses also inquisitive quantifiers like how many ; finally,
we will use the Ehrenfeucht-Fräıssé game introduced in Chapter 4 to provide a
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characterization of the cardinality quantifiers expressible in InqBQ, and use this
characterization to show that, just like many interesting statements about cardi-
nalities are not expressible in CQC, many interesting questions about cardinalities
are not expressible in InqBQ.

5.1 Cardinality Quantifiers in Classical First Or-

der Logic

In classical logic, a formula α(x), with at most the variable x free, determines,
relative to a model M , a corresponding set of individuals:

αM := {d ∈ D |M � α(d)}

Recall that the elements of αM are divided in equivalence classes under the re-
lation ∼e (Definition 3.1.2).1 Since ∼e acts as an intensional equality for the
model, the natural way to define how many individuals satisfy α is to consider
the essential cadinality of the set αM .

|αM |
M
e := | {[d]∼e | d ∈ αM} |

Notice that the values that |αM |
M
e depend on the language and the signature we

consider: for example, in the language L 6= and in the empty signature Σ = {∅}
all the formulas of InqBQ are equivalent to either > or ⊥, and so we have either
|αM |

M
e = 0 or |αM | = |De|. To avoid this issue we restrict our attention to the

syntaxes L= and L�—for which there exists models of every cardinality in every
signature—and leave the case of the syntax L 6= for future work.

Let K be a class of cardinals. This is an operator that can be added to classical
first order logic by stipulating that if α(x) is a classical formula with at most x
free, then QKx.α(x) is a formula, with the following semantics:2

M � QKx.α(x) ⇐⇒ |αM |
M
e ∈ K

By a cardinality quantifier we mean a quantifier which is of the form QK for
some class of cardinals K. Notice that the existential quantifier ∃ is a cardinality
quantifier, since ∃ = QCARD\{0}, for CARD the class of all cardinals. However,

1Definition 3.1.2 considers essential equivalence between elements of information models and
not CQC-models. However we can extend the definition to CQC-models under the identification
of a CQC-model M with the singleton information model {M}.

2One can, more generally, allow the formation of the formula QKx.α for any formula α,
even when α contains free variables besides x. Extending the semantic clause to this case is
straightforward: we just have to relativize the clause to an assignment function g. However, we
restrict to the case in which QKx.α is a sentence, since this does not lead to a loss of generality
and it is convenient not to have assignments around all the time.
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the universal quantifier ∀ is not a cardinality quantifier, since the condition M �
∀x.P (x), namely, PM = D, cannot be formulated solely in terms of |PM |

M
e .3

Let χK [P ] be a CQC-formula (thus, not containing QK). We say that χK [P ]
defines QK if QKx.P (x) ≡ χK [P ], that is, if the two formulas are satisfied by
the same CQC-models. If this is the case, then for every formula α(x) we have
QKx.α(x) ≡ χK [α]. We say that the quantifier QK is definable in CQC if there is
a CQC-formula which defines it.

The statements in (1) can all be seen as having the form Qx.P (x), where Q
is a cardinality quantifier. Indeed, we have the following characterizations, where
[3, . . . ) is the class of cardinals ≥ 3; Even is the set of even natural numbers; Inf
is the class of infinite cardinals.

(3) a. M � (1-a) ⇐⇒ PM = ∅ ⇐⇒ |PM |
M
e ∈ {0}

b. M � (1-b) ⇐⇒ |PM |
M
e ≥ 3 ⇐⇒ |PM |

M
e ∈ [3, . . . )

c. M � (1-c) ⇐⇒ |PM |
M
e is even ⇐⇒ |PM |

M
e ∈ Even

d. M � (1-d) ⇐⇒ |PM |
M
e is infinite ⇐⇒ |PM |

M
e ∈ Inf

What cardinality quantifiers are definable in classical first order logic? That is, for
what classes K of cardinals is the quantifier QK definable? The answer is given by
the following theorem, which can be proved using the Erenfeucht-Fräıssé games
for CQC (and seems, to the best of our knowledge, to be folklore).

5.1.1. Theorem. Let K be a class of cardinals. The quantifier QK is definable
in first order logic if and only if there exists a natural number n such that K
contains either all or none of the cardinals κ ≥ n.

Consider again the statements in (1), repeated below for convenience with the
corresponding classes of cardinals given on the right. It follows immediately from
the characterization that statements (1-a) and (1-b) are expressible in classical
first order logic, while statements (1-c) and (1-d) are not.

(4) a. There is no P . K = {0}
b. There are at least three P . K = [3, . . . )
c. The number of P is even. K = Even
d. There are infinitely many P . K = Inf

3In this chapter, we focus on cardinality quantifiers of type 〈1〉, which operate on a single
unary predicate. More generally, one could consider cardinality quantifiers of type 〈n1, . . . , nk〉,
which operate on k predicates of arities n1, . . . , nk respectively. It seems quite possible that the
characterization result given here can be extended to this general setting. However, we leave
this extension for future work.
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5.2 Cardinality Quantifiers in InqBQ

Let us now turn to the inquisitive case. An information model M represents a
variety of states of affairs, one for each possible world w. At each world w, the
state of affairs is represented by the first order structure Mw, having domain D.

Let α(x) be a classical formula with at most the variable x free. Relative to
each world w, α(x) determines an extension αw, which is a set of individuals from
D:

αw := {d ∈ D |Mw � α(d)}

Each one of these extensions has an associated essential cardinality dependent on
the set of individuals αw and on the model Mw, which we will henceforth indicate
with |α|Mw := |αw|

Mw

e (or simply |α|w if the model is clear from the context).
Therefore, relative to an information state s, the formula α(x) determines a

corresponding set of cardinals, {|α|w | w ∈ s}. We refer to this set of cardinals as
the cardinality trace of α(x) in s.

5.2.1. Definition (Cardinality trace). Let M be an information model, s be
an information state, and α(x) be a classical formula where at most the variable
x occurs free. The cardinality trace of α(x) in s is the set of cardinals:

trs(α) = { |α|w | w ∈ s }

A cardinal κ is in trs(α) if, according to the information available in s, κ might
be the number of elements satisfying α(x); that is, if it might be the case that the
extension of α(x) has cardinality κ. Thus, trs(α) captures exactly the information
available in s about the number of individuals satisfying α(x).

Now let K be a class of sets of cardinals. We associate with K a corresponding
quantifier QK. We can add this quantifier to InqBQ by stipulating that if α(x) is
a classical formula with at most x free, then QKx.α(x) is a formula, interpreted
by the following clause:4

M, s � QKx.α(x) ⇐⇒ trs(α) ∈ K

A cardinality quantifier is a quantifier which is of the form QK, where K is a class
of sets of cardinals.

Let χK[P ] be an InqBQ-formula (thus, without cardinality quantifiers). We
say that χK[P ] defines the quantifier QK if QKx.P (x) ≡ χK[P ], that is, the
two formulas are supported by the same information models. Again, it is not
hard to see that if this holds, then for every classical formula α(x) we have

4The reason for restricting the application of QK to classical formulas is that QKx.α(x)
only looks at the semantics of α with respect to worlds. Non-classical formulas only become
significant when interpreted relative to information states; relative to single worlds, the opera-
tors

>

and ∃ collapse on their classical counterparts ∨ and ∃. Therefore, while extending our
quantifiers to operate on non-classical formulas is not problematic, it is also not interesting.
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QKx.α(x) ≡ χK[α]. We say that QK is definable in InqBQ if there is an InqBQ-
formula that defines it.

In order to make the notion of a cardinality quantifier more concrete, let us
see how the statements in (1) and the questions in (2) can be seen as instantiating
the form Qx.P (x) where Q is a cardinality quantifier in the sense of inquisitive
logic.

Consider first the statements in (1). In general, in inquisitive semantics a
statement α is supported by a state s iff the information available in s implies
that α is true. This means that α is true at all worlds w ∈ s. Keeping this in
mind, we can see that the statements in (1) have the following semantics:

(5) a. M, s � (1-a) ⇐⇒ ∀w ∈ s : Pw = ∅ ⇐⇒ trs(P ) ⊆ {0}
b. M, s � (1-b) ⇐⇒ ∀w ∈ s : |P |w ≥ 3 ⇐⇒ trs(P ) ⊆ [3, . . . )
c. M, s � (1-c) ⇐⇒ ∀w ∈ s : |P |w is even ⇐⇒ trs(P ) ⊆ Even
d. M, s � (1-d) ⇐⇒ ∀w ∈ s : |P |w is infinite ⇐⇒ trs(P ) ⊆ Inf

Let us now check that all these statements correspond to statements of the form
Qx.P (x) for Q a cardinality quantifier. For this, we introduce a useful notation.

5.2.2. Definition (Downward closure of a class). Let K be a class. We denote
by K↓ the class consisting of all sets X such that X ⊆ K.

Thus, if K is a set, then K↓ = ℘(K). However, if K is a proper class, then K↓

will not be a set either; moreover, K↓ will not contain K, since K is not a set.
Now consider the cardinality quantifiers Q1–Q4 determined by the following

classes:

K1 = {0}↓ K2 = [3, . . . )↓ K3 = Even↓ K4 = Inf↓

We have:

M, s � Q1x.P (x) ⇐⇒ trs(P ) ∈ K1 ⇐⇒ trs(P ) ⊆ {0} ⇐⇒ M, s � (1-a)
M, s � Q2x.P (x) ⇐⇒ trs(P ) ∈ K2 ⇐⇒ trs(P ) ⊆ [3, . . . ) ⇐⇒ M, s � (1-b)
M, s � Q3x.P (x) ⇐⇒ trs(P )∈ K3 ⇐⇒ trs(P ) ⊆ Even ⇐⇒ M, s � (1-c)
M, s � Q4x.P (x) ⇐⇒ trs(P ) ∈ K4 ⇐⇒ trs(P ) ⊆ Inf ⇐⇒ M, s � (1-d)

Next, consider the questions in (2). Start with (2-a), the question whether there
are any P . This question is settled in in an information state s in case the
information in s implies that there are no P , or it implies that there are some P .
The former is the case if the extension of P is empty in all worlds w ∈ s. The
latter is the case if the extension of P is non-empty in all worlds w ∈ s. Thus,
the semantics of (2-a) is as follows.

(6) M, s � (2-a) ⇐⇒ (∀w ∈ W : Pw = ∅) or (∀w ∈ W : Pw 6= ∅)
⇐⇒ (∀w ∈ W : |P |w = 0) or (∀w ∈ W : |P |w ≥ 1)
⇐⇒ trs(P ) = {0} or trs(P ) ⊆ [1, . . . )
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Second, consider the question (2-b), how many individuals are P . This question
is settled in an information state s if the information available in s determines
exactly how many individuals are P . This is the case if there is a cardinal κ such
that at every world w ∈ s, the extension Pw contains κ elements.5

(7) M, s � (2-b) ⇐⇒ ∃κ.∀w ∈ W. |P |w = κ
⇐⇒ trs(P ) contains at most one element
⇐⇒ trs(P ) ⊆ {κ} for some cardinal κ

Next, consider (2-c), the question whether the number of P is even or odd. This
is settled in an information state s in case the information available in s implies
that the number of P is even, or that the number of P is odd.6 The former holds
if the extension of P is even at every world in s. The latter holds if the extension
of P is odd al every world in s.

(8) M, s � (2-c) ⇐⇒ (∀w ∈ W : |P |w is even) or (∀w ∈ W : |P |w is odd)
⇐⇒ trs(P ) ⊆ Even or trs(P ) ⊆ Odd

Finally, consider (2-d), the question whether there are infinitely many P . This
is settled in an information state s in case the information available in s implies
that there are infinitely many P , or it implies that the aren’t infinitely many P .
The former is the case if the extension of P is infinite at every world w ∈ s, while
the latter is the case if the extension of P is finite at every world w ∈ s.

(9) M, s � (2-d) ⇐⇒ (∀w ∈ s : |P |w is finite) or (∀w ∈ s : |P |w is infinite)
⇐⇒ trs(P ) ⊆ Fin or trs(P ) ⊆ Inf

Now consider four cardinality quantifiers, Q5–Q8, determined by the following
classes:

(10) a. K5 = {0}↓ ∪ [1, . . . )↓

b. K6 =
⋃
{{κ}↓ | κ a cardinal}

c. K7 = Even↓ ∪ Odd↓

d. K8 = Fin↓ ∪ Inf↓

Then we have:

M, s � Q5x.P (x) ⇐⇒ trs(P ) ∈ K5 ⇐⇒ trs(P ) ⊆ {0} or trs(P ) ⊆ [1, . . . )
⇐⇒ M, s � (2-a)

M, s � Q6x.P (x) ⇐⇒ trs(P ) ∈ K6 ⇐⇒ trs(P ) ⊆ {κ} for some κ

5An equivalent way of formulating the same condition is to say that (2-b) is settled in s iff
the number of P is the same at all the worlds in s: M, s � (2-b) ⇐⇒ ∀w,w′ ∈ s : #Pw = #Pw′ .

6Notice that the question presupposes that the number of P is either even or odd. Since
all and only the finite cardinals are even or odd, the question presupposes that the number of
P is finite. About the way presuppositions of questions are interpreted in inquisitive logic, see
[Ciardelli, 2016, Section 1.3].
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⇐⇒ M, s � (2-b)

M, s � Q7x.P (x) ⇐⇒ trs(P ) ∈ K7 ⇐⇒ trs(P ) ⊆ Even or trs(P ) ⊆ Odd
⇐⇒ M, s � (2-c)

M, s � Q8x.P (x) ⇐⇒ trs(P ) ∈ K8 ⇐⇒ trs(P ) ⊆ Fin or trs(P ) ⊆ Inf
⇐⇒ M, s � (2-d)

So, in the inquisitive setting, a new range of “inquisitive” cardinality quantifiers
come into play, which combine with a property to yield questions like those ex-
emplified in (2). In addition to standard cardinality quantifiers like ‘no’, ‘at least
three’, ‘infinitely many ’, we also have new, question-forming cardinality quanti-
fiers like ‘how many ’ and ‘whether finitely or infinitely many ’.

5.3 Characterization

What cardinality quantifiers can be expressed in InqBQ? Given that, in the
inquisitive setting, cardinality quantifiers are in one-to-one correspondence with
classes of sets of cardinals, this question can be made precise as follows.

5.3.1. Question. For which classes of sets of cardinals K is the quantifier QK
definable in InqBQ?

The next theorem provides an answer to this question. In essence, what the
theorem says is that the cardinality quantifiers definable in InqBQ are all and
only the inquisitive disjunctions of cardinality quantifiers definable in classical
first order logic.7 Before stating the Theorem, let us fix some useful notations.
For any natural number n, we let:

• [0, n] := {m ∈ CARD | m ≤ n}

• [n, . . . ) := {κ ∈ CARD |κ ≥ n}

Moreover, we introduce an equivalence relation =n that disregards differences
between cardinals larger than n. More precisely, if κ and κ′ are two cardinals:

• κ =n κ
′ ⇐⇒ κ = κ′ or κ, κ′ > n

If A and B are sets of cardinals, we write A =n B if A and B are the same set,
modulo identifying all cardinals larger than n:

7While we have not specified a general notion of inquisitive generalized quantifier here,
a natural notion should allow as an instance the quantifier Q0 whose semantics is given by:
M, s � Q0x.P (x) ⇐⇒ ∀w,w′ ∈ s : Pw = Pw′ . Informally, Q0x.P (x) expresses the question
“which elements are P?”. Now this quantifier is definable in InqBQ by the formula ∀x.?P (x),
which is clearly not equivalent to an inquisitive disjunction of classical formulas. This shows
that the characterization in Theorem 5.3.2 is really specific for cardinality quantifiers.
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• A =n B ⇐⇒ ∀κ ∈ A.∃κ′ ∈ B. s.t. κ =n κ
′ and

∀κ′ ∈ B.∃κ ∈ A. s.t. κ =n κ
′

Moreover, we say that a class of sets of cardinals K is:

• =n-invariant, if whenever B ∈ K and A =n B we have A ∈ K;

• downward-closed, if whenever B ∈ K and A ⊆ B we have A ∈ K.

We can now state our main result.

5.3.2. Theorem (Characterization of cardinality quantifiers definable in InqBQ).
Let K be a class of sets of cardinals. The following are equivalent:

1. The cardinality quantifier QK is definable in InqBQ.

2. K = K↓1∪· · ·∪K
↓
n where for each Ki ⊆ CARD there exists a natural number

m such that Ki contains either all or none of the cardinals κ ≥ m.

3. K is downward closed and =m-invariant for some natural number m.

In the proof we will assume to be working with the syntax L�. However, since
all the models employed satisfy for every world the condition d �w d′ iff d = d′,
the same proof applies also to the syntax L=.
Proof:
We show that 2⇒ 1⇒ 3⇒ 2.

[2⇒ 1][2⇒ 1][2⇒ 1] Suppose K = K↓1 ∪ · · · ∪ K
↓
n where for each Ki there exists a natural

number m such that Ki contains either all or none of the cardinals κ ≥ m. By
Theorem 5.1.1, for each Ki we have a classical formula χi such that, in classical
first order logic:

M � χi ⇐⇒ |PM |
M
e ∈ Ki

These formulas are also formulas of InqBQ, and it follows from Theorem 2.1.18
that we have:

M, s � χi ⇐⇒ ∀w ∈ s : Mw � χi
⇐⇒ ∀w ∈ s : |P |w ∈ Ki

⇐⇒ trs(P ) ⊆ Ki

⇐⇒ trs(P ) ∈ K↓i
Now consider the inquisitive disjunction χ1

>

. . .

>

χn. We have:

M, s � χ1

>

. . .

>

χn ⇐⇒ M, s � χ1 or . . . or M, s � χn
⇐⇒ trs(P ) ∈ K↓1 or . . . or trs(P ) ∈ K↓n
⇐⇒ trs(P ) ∈ K↓1 ∪ · · · ∪K↓n
⇐⇒ trs(P ) ∈ K
⇐⇒ M, s � QKx.P (x)
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This shows that the InqBQ formula χ1

>

. . .

>

χn defines the quantifier QK.

[1⇒ 3][1⇒ 3][1⇒ 3] Next, consider the implication from 1 to 3. Suppose QK is definable
in InqBQ by a formula ϕK. We need to show that K is downward closed and
=m-invariant for some natural number m.

We firstly show that K is downward closed. Suppose A ⊆ B ∈ K. This
means that there exists a modelM and an info state s such thatM, s � ϕK and
trs(P ) = B. Consider now the state t := {w ∈ s | |P |w ∈ A} ⊆ s. By definition
we have trt(P ) = A; and by persistency M, t � ϕK. Thus A ∈ K.

Next, we show that K is closed under =m for some m. We want to show
that the condition above holds for m = q, where q is the quantifier degree of the
defining formula ϕK. So, suppose A ∈ K and A =q B. If we find two information
modelsM,N such that trWM(P ) = A, trWN (P ) = B andM≈i,q N then we are
done, since in this case:

A ∈ K ⇐⇒ M � ϕK ⇐⇒ N � ϕK ⇐⇒ B ∈ K

Consider enumerations of the sets A and B:8 A := {κα | α < λ} and B :=
{κ′α | α < λ} which both start with the same initial sequence 〈κ1, . . . , κl〉 =
〈κ′1, . . . , κ′l〉 enumerating A ∩ [0, q] = B ∩ [0, q]. Let M,N be the models de-
fined by the following clauses:

WM := {wα | α < λ} WN := {wα | α < λ} = WM

DM :=
{
dαβ
∣∣ α < λ and β < κα

}
DN :=

{
eαβ
∣∣ α < λ and β < κ′α

}
PMwγ

(
dαβ
)
⇐⇒ α = γ PNwγ

(
eαβ
)
⇐⇒ α = γ

d �Mwγ d
′ iff d = d′ e �Nwγ e

′ iff e = e′

An example of these models is given in Figure 5.1. Notice that |P |Mwα = κα and

|P |Nwα = κ′α. In particular, it follows that trWM(P ) = A and trWN (P ) = B. So
if we show that M ≈i,q N , then we are done. In order to show this, we present
here a winning strategy for Duplicator in the symmetric version of the EF-game
between M and N (see Subsection 4.5.1):

• If Spoiler plays an implication move and chooses an information state s
from either of the models, then Duplicator responds by choosing the same
state s from the other model (this is possible since WM = WN );

• If Spoiler plays a quantifier move and chooses an element dαβ from the model
M, we consider two separate cases:

8In the enumerations, we allow for repetitions of the same elements with different indices.
This allows us to use the same cardinal λ as the set of indices for both sets A and B.
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M
w0 w1 w2

d00
d01

•
•
×
×
×
×

d10
d11
d12

×
×
×

•
•
•

×
×
×

d20
d21
d22
d23
d24

×
×
×
×
×

×
×
×
×
×

•
•
•
•
•

N
w0 w1 w2

e00
e01

•
•
×
×
×
×

e10
e11
e12

×
×
×

•
•
•

×
×
×

e13
e20
e21
e22
e23

×
×
×
×
×

•
×
×
×
×

×
•
•
•
•

Figure 5.1: Suppose q = 2, and consider the sets A = {2, 3, 5} and B = {2, 4}.
Notice that A =2 B. We enumerate these sets as 〈2, 3, 5〉 and 〈2, 4, 4〉. The figure
shows the models M and N derived from this enumeration. These models are
indistinguishable in the EF-game with only 2 quantifier moves, regardless of the
number of implication moves.

– If dαβ = ai for some i, that is, it has already been picked during the
run—by either Spoiler or Duplicator—then Duplicator responds by
choosing bi;

– If dαβ has not been previously picked, then Duplicator chooses an ele-
ment eαγ (notice that the elements have the same superscript and pos-
sibly different subscripts) which has not been previously picked during
the run. The fact that duplicator can find such an element is guaran-
teed by A =q B: this means that either κα = κ′α, or else κα, κ

′
α > q. In

the former case the number of elements dαβ and eαγ is exactly the same;
in the latter case the number of elements eαγ is larger than the number
of quantifier moves in the game.

• If Spoiler plays a quantifier move and chooses an element eαβ from the model
N , then Duplicator applies the same strategy as in the previous case, swap-
ping the roles of the models M and N .

Notice that with this strategy Duplicator ensures that at the end of the run
the final position:

1. has the same state s for both models;

2. ai = aj if and only if bi = bj;
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3. corresponding elements ai, bi in the two models have the same superscripts,
that is, ai and bi are of the form dαβ and eαβ respectively.

This is indeed a winning strategy, since:

M, s � P (dαβ) ⇐⇒ s ⊆ {α} ⇐⇒ N , s � P (eαγ )

M, s � ai = aj ⇐⇒ N , s � bi = bj

[3⇒ 2][3⇒ 2][3⇒ 2] Suppose K is downward closed and =m-invariant for some number m. Let
A1, . . . , An be the subsets of [0,m+ 1] which are contained in K. Now define:

Ki =

{
Ai if m+ 1 /∈ Ai
Ai ∪ [m+ 1, . . . ) if m+ 1 ∈ Ai

We claim that K = K↓1 ∪ · · · ∪ K
↓
n. Start with the right-to-left inclusion. Let

B ∈ K↓1 ∪ · · · ∪K
↓
n. This means that B ⊆ Ki for some i. Now we distinguish two

cases.

• Case 1: Ki = Ai. Then Ai ∈ K by definition, and since K is downward
closed, also B ∈ K.

• Case 2: Ki = Ai ∪ [m + 1, . . . ). We claim that in this case, Ai =m Ai ∪ B:
if so, since Ai ∈ K, and K is =m-invariant, we have Ai ∪ B ∈ K, which
in turn by downward closure yields B ∈ K. To see that Ai =n Ai ∪ B,
the only non-trivial step is to show that for all κ ∈ B there exists some
κ′ ∈ Ai such that κ′ =m κ. So, take κ ∈ B: if κ ≤ m then κ ∈ Ai (since
B ⊆ Ki = Ai ∪ [m + 1, . . . )), so we can take κ′ = κ; if on the other hand
κ > m, then κ =m m+ 1 ∈ Ai.

Either way, we conclude B ∈ K, which gives the right-to-left inclusion.
For the converse inclusion, suppose B ∈ K. Again, we distinguish two cases.

• Case 1: B ⊆ [0,m]. In this case, B = Ai for some i ≤ n, and thus B ∈ K↓i .

• Case 2: B 3 κ for some κ > m. In this case, B =m B ∪ {m + 1}, since
κ =m m + 1. Since B ∈ K and K is =m-invariant, also B ∪ {m + 1} ∈ K.
Now take (B ∪{m+ 1})∩ [0,m+ 1]: by downward closure, this set is in K,
and since it is a subset of [0,m + 1], it coincides with Ai for some i ≤ n.
Notice that m+1 ∈ Ai, and thus, Ki = Ai∪[m+1, . . . ). Therefore, B ⊆ Ki,
which implies B ∈ K↓i .

In either case, we conclude that B ∈ Ki for some i ≤ n, which gives the left-to-
right inclusion.

2
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Theorem 5.3.2 allows us to tell immediately which among the questions in (2) are
expressible in InqBQ: (2-a), the question whether there is any P , is expressible,
since it has the form QKx.P (x) for the class K5 = {0}↓ ∪ [1, . . . )↓, where both
{0} and [1, . . . ) are definable in classical first order logic. Indeed, the defining
formula is simply ?∃x.P (x), which abbreviates ∃x.P (x)

> ¬∃x.P (x).
The remaining questions, (2-b), (2-c), and (2-d) are not expressible, since they

have the form QKx.P (x) for the following classes K:

K6 =
⋃{
{κ}↓ | κ a cardinal

}
K7 = Even↓ ∪ Odd↓ K8 = Fin↓ ∪ Inf↓

Clearly, these classes are not the form K↓1 ∪ · · · ∪K
↓
n for K1, . . . , Kn definable in

classical first order logic. In a similar way, we can see that none of the following
questions about the cardinality of P is expressible in InqBQ.

(11) a. How many P are there, modulo k? for k ≥ 2
b. Is the number of P even, odd, or infinite?
c. Is the number of P a prime number, or a composite one?
d. Are there uncountably many P?

While InqBQ can express the question “what objects are P?” (by means of the
formula ∀x.?P (x)), it cannot express the corresponding cardinality question “how
many objects are P?”. From the perspective of logical modeling of questions, this
means that analyzing how many questions—an important class of questions—
requires a proper extension of the logic InqBQ. Developing and investigating such
an extension is an interesting prospect for future work.

Since the proof of Theorem 5.3.2 is quite flexible, the characterization result
can be seen to hold also when we restrict to certain salient classes of models, for
instance the class of finite models.

5.3.3. Corollary. Let K be a set of sets of finite cardinals. The following are
equivalent:

1. The cardinality quantifier QK is definable in InqBQ with respect to the class
of finite models. That is, there is a formula χK of InqBQ such that QKx.P (x)
is equivalent to χK[P ] in restriction to finite models.

2. K = K↓1 ∪ · · · ∪K
↓
n for some sets K1, . . . , Kn ⊆ N, where for each Ki there

exists m ∈ N such that Ki contains all or none of the numbers k ≥ m.

5.4 Conclusions

In this chapter we introduced and studied cardinality quantifiers in the context
of inquisitive logic. In particular, we showed how some natural questions (e.g.,
“How many P are there?”, “Are there infinitely many P?”) can be expressed by
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InqBQ extended with suitable cardinality quantifiers. Moreover, we characterized
which cardinality quantifiers are definable in the logic InqBQ (Theorem 5.3.2),
extending a folklore result for classical first order logic.

As mentioned in the main text, the cardinality quantifiers we consider are
only of type 〈1〉, that is, they operate on a single unary predicate. But we
could consider cardinality quantifiers of arbitrary types, operating on sequences
of predicates without restrictions on the arities. This more general framework
would allow to represent and study the logic of more complex expressions, as for
example “How many pairs are in the extension of R?” for R a binary predicate.
We leave this extended framework and the study of its properties for further work.

Another direction for future research is a generalization of the concept of
cardinality trace (Definition 5.2.1). We defined the trace trs(α) to be the set of
possible cardinalities of the family of elements satisfying the sentence α according
to the information carried by the info state s. In turns, we defined cardinality
quantifiers essentially as classes of cardinality traces. This approach has a major
limitation: the argument of a cardinality quantifier can be only a statement, and
not a question. So expressions with nested cardinality quantifiers (e.g., “How
many boys read how many books?”) cannot be captured and studied in the cur-
rent framework. By generalizing the definition of cardinality trace we would be
able to introduce a more flexible concept of cardinality quantifier. Moreover, we
would be able to study cardinality quantifiers in a fully compositional environ-
ment, allowing to freely combine statements, questions and quantifiers.





Chapter 6

Disjunction and Existence Properties

As pointed out in Section 2.2, there is a close connection between intuitionistic
logic and inquisitive logic. This connection is not limited to the reinterpretation
of inquisitive semantics in terms of intuitionistic Kripke frames (Lemmas 2.2.8
and 2.2.9). Ciardelli [2016] showed that some constructive results that hold for in-
tuitionistic logic have a natural counterpart in inquisitive logic, as for example the
Curry-Howard interpretation of proofs as programs [Ciardelli, 2016, Proposition
2.4.8].

One of the hallmarks of constructive logics is the disjunction property : if a
disjunction of the form ϕ ∨ ψ is valid intuitionistically, then at least one of the
disjuncts ϕ and ψ is valid too. This property is famously true for intuitionis-
tic logic, and it has been proven to hold also for inquisitive propositional logic
InqB w.r.t. inquisitive disjunction [Ciardelli, 2016, Corollary 2.5.6]. In this chap-
ter we address whether this property and its first order analogue—the existence
property—hold for InqBQ, as suggested by the fact they hold for intuitionistic
first order logic—and as already conjectured by Ciardelli [2016].

The proof we give is semantical in nature: we develop several constructions
to combine and transform information models, and use them to prove the dis-
junction and existence properties. Some of these constructions are inspired by
operations on intuitionistic Kripke-frames (e.g., disjoint union, direct sum) while
others are based on constructions typical of classical logic (e.g., models of terms,
permutation models). So, on a side note, this work can also be also interpreted
as a first step into developing a model theory for inquisitive models.

This approach allows us to prove also more general results: we define several
classes of theories for which the corresponding consequence relations have the
disjunction and/or the existence property. Most notably, classical theories (i.e.,
theories containing only classical formulas) have this property: Given Γ a classical
theory, if Γ � ϕ

>

ψ then Γ � ϕ or Γ � ψ (disjunction property); and if Γ �
∃x.ϕ(x) then there exists a term t of the language such that Γ � ϕ(t).

There is an important point to highlight: the disjunction and existence prop-

77
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erties hold for InqBQ only when we consider the non-rigid equality (L�) or no
equality at all (L 6=). Indeed, the disjunction property fails even for really simple
formulas in the language with a rigid equality (L=): for example, the formula
c = d

>

c 6= d for c, d constant symbols is valid, but neither disjunct is. So we
will assume, for the rest of the chapter, to be working with the syntax L�. All
the results and techniques can be immediately adapted to the language without
equality.

The chapter is divided as follows: In Section 6.1 we develop the toolkit of model-
theoretic constructions used to prove the main results; In Section 6.2 we prove
the general forms of the disjunction and existence properties. Section 6.3 presents
further refinements of the disjunction property. Section 6.4 provides some con-
cluding remarks and discusses open questions.

6.1 Model Constructions

In this section we will present several constructions involving information models
and we will study their characterizing properties. The aim is to build a toolkit
to study the properties of InqBQ through its models. Most of the proofs in this
section are technical but not particularly hard and they rely on the results on
submodels proved in Chapter 3 (in particular Corollary 3.2.5).

To make the constructions more transparent, we will accompany them with
examples and graphical representations. Moreover, we divide the constructions
by theme: each subsection contains constructions based on the same approach to
modify a model or to combine different models.

6.1.1 Extending a Model in Size

In this subsection we consider ways to extend a model in size: adding copies of the
elements, combining a model and a skeleton (Definition 2.1.6), building a model
of terms. These operations allow us to start from a model and define equivalent
models (meaning models supporting the same formulas) with a different structure.
This will give us more freedom to combine models in later parts of the chapter.

Adding copies of the elements.

The first and most intuitive way to modify the skeleton is to add copies of the
elements, that is, additional elements which are ∼e to elements already present
in the model. We have a lot of freedom when performing this kind of operation:
for each element of the model we can specify a number of copies of that specific
element to add to the structure. For our purposes, adding ω copies of each element
will suffice, so we define only this simpler operation.
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w0 w1

c

〈a, 0〉

〈b, 0〉

〈a, 1〉

〈b, 1〉

〈a, 2〉

〈b, 2〉

· · ·

· · ·
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〈b, 0〉
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〈a, 2〉

〈b, 2〉

· · ·

· · ·

Figure 6.1: In the picture we depict the model Mω, obtained from the model
M of Figure 2.1. The new domain is obtained by adding a countable amount of
copies of each element. For example, the elements in the gray box are the copies
of the element a and are �Mω

w -equivalent for every world w.

6.1.1. Definition. Given a modelM, we define the modelMω by the following
clauses:

• WMω := WM;

• DMω := DM × ω;

• fMω(〈d1, k1〉 , . . . , 〈dn, kn〉) :=
〈
fM(d1, . . . , dn), 0

〉
;

• RMω
w (〈d1, k1〉 , . . . , 〈dn, kn〉) iff RMw (d1, . . . , dn);

• 〈d1, k1〉 �
Mω
w 〈d2, k2〉 iff d1 �Mw d2.

The following lemma tells us that we only added redundant information by adding
copies of the model.

6.1.2. Lemma. Let s ⊆ WM be an info state and G : Var → DM × ω be an
assignment. Define π1 : DM × ω → DM as the projection on the first component
(that is, π1(〈d, k〉) = d) and g = π1 ◦G. Then for every formula ϕ

Mω, s �G ϕ ⇐⇒ M, s �g ϕ

Proof:
Firstly, notice that M ↪→ Mω: in fact, the functions id : WM → WMω (the
identity function) and ι0 : DM → DMω defined as ι0(d) := 〈d, 0〉 respect Con-
ditions Sub1 and Sub2. Secondly, we also have Mω ↪→ M: the functions
id : WMω → WM and π1 : DMω → DM respect Conditions Sub1 and Sub2.
The conclusion follows by Corollary 3.2.6. 2
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a b

S

c

d

T

〈a, c〉

〈a, d〉

〈b, c〉

〈b, d〉
SFT

Figure 6.2: A simple example of the product of two skeletons in the signature
Σ = {f}, for f a unary predicate function. In particular, the arrows represent
the interpretation of f (the target is the image of the source).

Product of skeletons.

The previous construction can be thought as a product between a model and the
set ω, and it is easy to generalize it to an arbitrary set instead of ω.

A slightly more challenging task is to define a product between a modelM and
a skeleton S (see Definition 2.1.6). S contains additional structure—the encoding
of the functions—which needs to be reflected in the output of the construction,
together with the structure of M.

To do this we proceed in two steps: firstly we encode Sk(M) and S in a
new skeleton having domain DM × S; secondly we encode the relations of M
by defining a structure of information model over the new skeleton. Let us start
with the first step.

6.1.3. Definition (Product of skeletons). Given two skeletons S and T , we de-
fine the skeleton SFT such that

• DSFT = DS ×DT ;

• fSFT (〈d1, e1〉 , . . . , 〈dn, en〉) =
〈
fS(d1, . . . , dn), fT (e1, . . . , en)

〉
.

6.1.4. Definition. Given a model M and a skeleton S, we define the model
MFS by the following clauses

• Sk(MFS) = Sk(M)FS;

• WMFS = WM;

• RMFSw (〈d1, e1〉 , . . . , 〈dn, en〉) iff RMw (d1, . . . , dn);

• 〈d1, e1〉 �MFSw 〈d2, e2〉 iff d1 �Mw d2.

Using the same technique used to prove Lemma 6.1.2 we can prove an analogous
result for MFS.
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6.1.5. Lemma. Let s ⊆ WM an info state and G : Var→ DM ×DS an assign-
ment. Define g = π1 ◦G. Then for every formula ϕ

MFS, s �G ϕ ⇐⇒ M, s �g ϕ

We can generalize the construction above to a family of skeletons instead of a
single one. We leave proofs and details to the reader.

6.1.6. Definition. Given a family of skeletons 〈Si|i ∈ I〉, we define the skeleton
Fi∈IS

i such that

• DFi∈ISi =
∏

i∈I D
Si ;

• fFi∈ISi (〈di1|i ∈ I〉 , . . . , 〈di1|i ∈ I〉) =
〈
fS

i
(di1, . . . , d

i
n) |i ∈ I

〉
.

6.1.7. Definition. Given a model M with skeleton Sj and 〈Si|i ∈ I〉 a family
of skeletons such that j ∈ I, we define the model MFj

i∈IS
i such that

• Sk(MFj
i∈IS

i) =Fi∈IS
i;

• WMFji∈IS
i

= WM;

• RMF
j
i∈IS

i

w (〈di1|i ∈ I〉 , . . . , 〈din|i ∈ I〉) iff RMw (dj1, . . . , d
j
n);

• 〈di1|i ∈ I〉 �
MFji∈IS

i

w 〈di2|i ∈ I〉 iff dj1 �Mw dj2.

6.1.8. Lemma. Let s ⊆ WM an info state and G : Var →
∏

i∈I D
Si an assign-

ment. Define g = πj ◦G. Then for every formula ϕ

MFj
i∈IS

i, s �G ϕ ⇐⇒ M, s �g ϕ

Blowup model.

A different approach to modifying the skeleton is to extend the domain to an
algebra of terms in a similar fashion as Hintikka’s model of terms (as presented
by Hodges [1997a], Section 2.3). This construction allows us to treat functions
symbols as formal combinators and to encode the structure of the model using
only relation symbols.

As for the product of a skeleton, we will define this construction in two steps:
firstly we will define the blowup of a skeleton; and then we will give to the output
the structure of an information model.
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6.1.9. Definition. Given a set A we define

T Σ(A) = {t
(
a1, . . . , an

)
|t(x1, . . . , xn) term of Σ and a1, . . . , an ∈ A}

where {a|a ∈ A} is a set of fresh constants not present in Σ.
We define the skeleton BA by the following clauses

• DBA = T Σ(A);

• fBA(t1, . . . , tn) = f(t1, . . . , tn) (notice that fBA is a function while f is a
formal symbol).

To study the relations between the structure of a skeleton and its blowup it is
useful to introduce the following projection operator.

6.1.10. Definition (Natural projection). Given a skeleton S, we define the nat-
ural projection ΠB : T Σ(DS)→ DS as the only function such that

ΠB(a) = a ΠB(f(t1, . . . , tn)) = fS(ΠB(t1), . . . ,ΠB(tn))

We are now ready to define the blowup of a model.

6.1.11. Definition. Given a modelM, consider the natural projection ΠB from
B(DM) to DM. We define the blowup of M as the model BM defined by the
following clauses

• WBM = WM;

• Sk(BM) = B Sk(M);

• RBMw (t1, . . . , tn) iff RMw (ΠB(t1), . . . ,ΠB(tn));

• t1 �BMw t2 iff ΠB(t1) �Mw ΠB(t2).

A graphical representation of the blowup of a simple model is given in Figure 6.3.

6.1.12. Remark. Some observations to understand the structure of this new
model:

• If the element e is the interpretation of the constant term c inM, we have
both e and c as distinct elements of BM.

• Given d, d′ ∈ DM the congruence condition for d and d′ reduces to d �BMw d′

iff d �Mw d′, thus we can interpret �BM as an extension of �M.

Using the natural projection, we can show that yet again we obtained a model
carrying the same information as M.
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Figure 6.3: An example of blowup of a single-world model (i.e., a model such that∣∣WM
∣∣ = 1) in the signature Σ = {f (1)}. The model M (on the left) represents

the set Z where f (depicted by the arrows) is interpreted as the usual successor
function and identity (represented by patterns) is interpreted as the real identity.
The model BM (on the right) contains all the terms of the extended signature
Σ(Z) and interprets the function f as the formal term combinator (i.e., fBM(t) =
f(t)). The equivalence classes of the relation �BM have been highlighted in
different shades of gray.

6.1.13. Theorem. Let s ⊆ WM and G : Var→ T Σ(DM). Define g = ΠB ◦G.
Then for every formula ϕ

BM, s �G ϕ ⇐⇒ M, s �g ϕ

Proof:
Firstly notice that M ↪→ BM: the functions id : WM → WBM and G : DM →
DBM defined as G(d) = d respect Conditions Sub1 and Sub2. Secondly we also
have BM ↪→M: the functions id : WBM → WM and ΠB : DBM →M respect
Conditions Sub1 and Sub2. The conclusion follows by Corollary 3.2.6. 2

6.1.2 Combining Models

In the previous section we considered constructions that modified a single model
at a time, possibly by combining it with other structures (sets, skeletons). Instead,
in this section we focus on constructions involving different models and ways to
combine them.
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Figure 6.4: The disjoint union of the models M (first model) and N (second
model). In the picture, the info state s of M (highlighted in gray in the first
model) naturally corresponds to the state sM of M]N (highlighted in gray in
the third model).

Disjoint union.

The first construction allows us to combine two models M and N in a quite
simple way, but the price to pay is that they must have the same skeleton S.
Under this hypothesis, we can just define a structure of information model on
S having one world w for each of the worlds of M and N , with associated the
corresponding structure of first order model.

6.1.14. Definition. Let M and N be two models with Sk(M) = Sk(N ) = S.
We define the disjoint union of M and N as the model

M]N =
{
Mw|w ∈ WM} ∪ {Nw|w ∈ WN}

In particular we have

• WM]N = WM tWN ;

• DM]N = DS;

• For f a function symbol fM]N = fS;

• For R a relation symbol and w ∈ WM a world, RM]N〈w,M〉 = RMw , and similarly

for w ∈ WN ;

• For d1, d2 ∈ DS and w ∈ WM a world, d1 �M]N〈w,M〉 d2 if and only if d1 �Mw d2,

and similarly for w ∈ WN .

As a notational convention we will write wM when we want to indicate that w
is a world in WM. We assume the same notation for information states: for
s ⊆ WM we will write sM. This notation is particularly useful when we consider
the disjoint union of several models with the same set of worlds.
The following Theorem describes the relation between the support ofM]N and
its components.
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6.1.15. Theorem (Disjoint union main property). Given an assignment g : Var→
DS and an info state s ⊆ WM of M, then for every formula ϕ

M]N , sM �g ϕ ⇐⇒ M, s �g ϕ

Proof:
By definition we have (M]N )sM =Ms, and so the result follows trivially. 2

This construction and the theorem above can be easily generalized to a family of
models as follows.

6.1.16. Definition. Let 〈Mi|i ∈ I〉 be a family of models where Sk(Mi) = S
for all i ∈ I. We define the disjoint union of the family as the model⊎

i∈I

Mi =
⊔
i∈I

〈
M i
〈w,Mi〉 | w ∈ WMi

〉
where M i

〈w,Mi〉 = M i
w.

6.1.17. Theorem. Given an assignment g : Var→ DS and s ⊆ WMj , then for
every formula ϕ it holds that⊎

i∈I

Mi, s
Mj �g ϕ ⇐⇒ Mj, s �g ϕ

Direct sum.

The next construction presents a generalization of the disjoint union to models
with different skeletons, using the same ideas of Definition 6.1.3. The construction
is slightly more complex, but it does not require additional hypotheses on the
models.

6.1.18. Definition. LetM and N be two models. We define the direct sum of
M and N as the model M⊕N defined by the following clauses

• WM⊕N = WM tWN (modulo renaming of the worlds);

• DM⊕N = DM ×DN ;

• For f a function symbol fM⊕N =
〈
fM, fN

〉
;

• For R a relation symbol and w ∈ WM a world

RM⊕N〈w,M〉 (〈d1, d
′
1〉 , . . . , 〈dn, d′n〉) ⇐⇒ RMw (d1, . . . , dn)

and similarly for N ;
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Figure 6.5: An example of direct sum: the modelM⊕N on the right is obtained
as the direct sum of the two models on the left,M (above) andN (below). Notice
that for w ∈ WM the projection map on the first component ΠM : DM×DN →
DM respects the relation �M⊕Nw (i.e., the elements in the same gray box have
the same image) and commutes with the interpretation of function symbols. The
same holds for w ∈ WN and the projection map on the second component ΠN .

• For d, d′ ∈ DS and w ∈ WM a world

〈d, d′〉 �M⊕N〈w,M〉 〈e, e
′〉 ⇐⇒ d �Mw e

and similarly for N .

A graphical representation of a direct sum model is given in Figure 6.5.

6.1.19. Remark. Notice that Definition 6.1.18 amounts to the following expres-
sion, obtained by combining the constructions previously introduced.

M⊕N =
{
MwF Sk(N ) | w ∈ WM } ∪ { Sk(M)FNw | w ∈ WN }

We assume the same notational convention for worlds and info states as for the
disjoint union. In particular, wM and sM refer to a world and an info state ofM
respectively.

Notice that the disjoint union preserves the skeletons of the initial models,
while the direct sum does not—not even when we start with models with the
same skeleton. This property of the disjoint union is fundamental to carry out
some of the constructions in this section.

Notice that there is a natural projection operation from the domain of this
new model to the domain of its components.
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6.1.20. Definition (Projection operation). We define the projection operations

ΠM : DM ×DN → DM ΠN : DM ×DN → DN

〈d; e〉 7→ d 〈d; e〉 7→ e

The projection operations can also be extended to assignments in a natural way.
Given an assignment g : Var → DM ×DN , define ΠMg : Var → DM such that
(ΠMg) (x) = ΠM(g(x)). Moreover, given a term t(x1, . . . , xn) it follows easily
that ΠM

(
tM⊕N (a1, . . . , an)

)
= tM (ΠM(a1), . . . ,ΠM(an)).

Reasoning as in the disjoint union case, we can obtain a strong connection
between M⊕N and the models M and N .

6.1.21. Theorem. Let g : Var→ DM ×DN be an assignment and let s ⊆ WM

be an info state of M. Then for every formula ϕ

M⊕N , sM �g ϕ ⇐⇒ M, s �ΠMg ϕ

Proof:
As noticed already, (M ⊕ N )sM = MsF Sk(N ). The result then follows by
Lemma 6.1.5. 2

6.1.22. Corollary. Using the notations of Theorem 6.1.21, for u ⊆ WM⊕N

M⊕N , u �g ϕ =⇒ M, u ∩WM �ΠMg ϕ

Proof:
By persistency we obtain

M⊕N , u �g ϕ =⇒ M⊕N , u ∩WM �g ϕ

=⇒ M, u ∩WM �ΠMg ϕ

2

As in the disjoint union case, the definition of direct sum can be extended to a
family of models preserving the main property.

6.1.23. Definition. Let 〈Mi|i ∈ I〉 a family of models. We define the direct
sum of the family as the model⊕

i∈I

Mi =
⊔
j∈J

〈
M j

wF
j
i∈I Sk(Mi) | w ∈ WMj

〉
6.1.24. Theorem. Let g : Var → D⊕M

i
be an assignment and let s ⊆ WMk

be
an info state of Mk. Then it holds that⊕

i∈I

Mi, sMk �g ϕ ⇐⇒ Mk, s �ΠMkg ϕ



88 Chapter 6. Disjunction and Existence Properties

Notice that from Theorems 6.1.17 and 6.1.24 we can derive an interesting result:
if we apply one of the previous constructions—disjoint union or direct sum—to a
family of models of a classical formula α, we obtain again a model of α.

6.1.25. Corollary.⊕
i∈I

Mi �G α ⇐⇒ ∀j ∈ I.Mj �ΠMj ◦G α

Proof:

⊕
i∈I

Mi �G α ⇐⇒ ∀wj ∈
⊔
j∈I

WMj

.
⊕
i∈I

Mi, {wj} �G α

⇐⇒ ∀wj ∈
⊔
j∈I

WMj

.Mj, {wj} �ΠMj ◦G α

⇐⇒ ∀j ∈ I.Mj �ΠMj ◦G α

2

6.1.3 Characteristic Model

The next construction we consider can be considered as a non-constructive canoni-
cal model for a classical theory. We start from a classical theory Γ and we combine
several information models of Γ—one countermodel for each formula not following
from Γ—to obtain an information modelMΓ with the canonical model property:
MΓ supports all and only the logical consequences of Γ.

Characteristic model of a classical theory.

Consider a classical theory Γ and define C(Γ) = {ϕ |Γ 6� ϕ} as the set of its
non-theorems. By definition, for every ϕ ∈ C(Γ) we can find a pair

〈
Mϕ, gϕ

〉
that acts as a witness of the non-entailment Γ 6� ϕ, meaning that Mϕ �gϕ Γ and

Mϕ 6�gϕ ϕ. Fixing now a family
〈〈
Mϕ, gϕ

〉
|ϕ ∈ C(Γ)

〉
of models as described, we

are ready to define our next construction.

6.1.26. Definition (Characteristic model of Γ). DefineMΓ =
⊕

ϕ∈C(Γ)Mϕ and

gΓ : Var→
∏

ϕ∈C(Γ)D
Mϕ as gΓ(x) =

〈
gϕ(x)|ϕ ∈ C(Γ)

〉
.

The definition of the characteristic model of Γ strongly depends on the set〈〈
Mϕ, gϕ

〉
|ϕ ∈ C(Γ)

〉
. Choosing these models is the non-constructive part of

the construction: notice that we need to make use of the Axiom of Choice.
As anticipated, this model supports exactly the logical consequences of Γ.
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6.1.27. Theorem. For every formula ψ

Γ � ψ ⇐⇒ MΓ �gΓ
ψ

Proof:
From Corollary 6.1.25 it follows that if Γ � ψ, then MΓ �gΓ

ψ, and so the
left-to-right implication of the theorem holds.

For the other direction, fix ϕ a non-theorem of Γ. We claim that the char-
acteristic model does not support ϕ. By contradiction, if the model supports
the formula then from Theorem 6.1.24 and the persistency of the logic we would
obtain

MΓ �gΓ
ϕ =⇒ MΓ,W

Mϕ �gΓ
ϕ (by the equality (MΓ)

W
Mϕ =Mϕ)

=⇒ Mϕ �gϕ ϕ

which gives a contradiction. 2

Notice that this result gives us a non-trivial property of InqBQ with respect to
CQC: given an arbitrary classical theory Γ, we can find a single model which
entail all and only the theorems of Γ. It is well-known that the same property
does not hold for CQC, as the set of formulas supported by a classical structure
is necessarily a complete theory. We will see that this property is of fundamental
importance for the proof of the generalized existence property presented in Section
6.2.

It is worth noticing that the same result does not hold for a generic theory.
Consider for example the theory Φ = {P (c)

> ¬P (c)} and suppose toward a
contradiction that there exists a pair 〈M, g〉 such that

Φ � ψ ⇐⇒ M �g ψ
Then it is clear that M �g P (c) or M �g ¬P (c) by the semantic clause for

>

.
But clearly Φ 6� P (c) and Φ 6� ¬P (c), which leads to a contradiction.

6.1.4 Permutation Models

We introduce now some constructions with a combinatoric nature. These con-
structions are based on the idea that permuting the names of the elements of
a model—unsurprisingly—does not change its logical properties. However this
operation of permuting the names allows us to combine the models in new and
more complex structures: this will be the key ingredient to prove the existence
property in the following section.

Permutation model.

A simple way to obtain a new model is by simply swapping the names of the
elements. As done before, we introduce the construction first by defining the
skeleton of the resulting structure and then the interpretation of relations.
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M M(ab)
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Figure 6.6: An example of a permutation model. In the Figure we depict the
modelsM (upper left), M(ab) (upper right) andM(abc). Notice that the roles of
the elements in the models are swapped according to the inverse of the permuta-
tion considered. For example, the element a inM(abc) behaves like the element c
in M, as a is mapped onto c by the permutation (abc)−1.

Henceforth, given a set X we will indicate with S(X) the set of permutations
of X, that is, the bijective functions σ : X → X having as domain and codomain
X.

6.1.28. Definition. Let S be a skeleton and σ ∈ S(DS) a permutation. We
define the skeleton Sσ by the following clauses

• DSσ = DS;

• fSσ(d1, . . . , dn) = σ(fS(σ−1d1, . . . , σ
−1dn)).

6.1.29. Definition. Given a modelM we define the modelMσ by the following
clauses

• WMσ
= WM;

• Sk(Mσ) = Sk(M)σ;

• RMσ

w (d1, . . . , dn) iff RMw (σ−1d1, . . . , σ
−1dn);

• d1 �M
σ

w d2 iff σ−1d1 �Mw σ−1d2.
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6.1.30. Theorem. Let s ⊆ WM be an info state and g : Var→ DM an assign-
ment. Then for every formula ϕ

M, s �g ϕ ⇐⇒ Mσ, s �σg ϕ

Proof:
Notice that M ↪→ Mσ: the functions id : WM → WMσ

and σ : DM → DM
σ

respect Conditions Sub1 and Sub2. Moreover the inverse of id and σ also respect
Conditions Sub1 and Sub2, thus showing that we also have Mσ ↪→ M. The
conclusion follows by Corollary 3.2.6.

2

Blowup and permutations.

There is a particularly interesting case of permutation models that we can con-
sider, namely the one obtained by starting from a blowup model BM and con-
sidering a permutation induced by a certain σ ∈ S(DM).

6.1.31. Definition. Given σ ∈ S(DM) we extend it inductively to a permuta-
tion σ̃ ∈ S(T Σ(DM)) by the following clauses:

• For d ∈ D, σ̃(d) = σ(d);

• For f a function symbol, σ̃ (f(t1, . . . , tn)) = f (σ̃(t1), . . . , σ̃(tn)).

6.1.32. Definition. Given σ ∈ S(DM), we define the model BσM = (BM)σ̃.
A graphical representation of a model of this kind is given in Figure 6.7.

Combining together the results we have on blowup models and permutation mod-
els, we obtain the following.

6.1.33. Corollary. Let s ⊆ WM an info state and G : Var → T Σ
(
DM

)
an

assignment. Define g = ΠB ◦G. Then for every formula ϕ

BσM, s �σ̃G ϕ ⇐⇒ M, s �g ϕ

Proof:
This result follows by combining Theorem 6.1.13 and Theorem 6.1.30. 2

Notice that Sk(BσM) = Sk(BM) since we have

fffB
σM(t1, . . . , tn) = σ̃ fffBM(σ̃−1t1, . . . , σ̃

−1tn)

= σ̃f(σ̃−1t1, . . . , σ̃
−1tn)

= f(σ̃σ̃−1t1, . . . , σ̃σ̃
−1tn)

= f(t1, . . . , tn)

= fffBM(t1, . . . , tn)
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Figure 6.7: An example of a permutation model. Above, the model BM of
Figure 6.3. Below, its corresponding permutation model BσM for σ(n) = −n− 1.
Notice that the skeleton is preserved by this operation, while the interpretation
of predicate P and of identity changes in accordance with the permutation. For
example, 0 �BM f−1, but 0 6�BσM f−1.
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This remark allows to apply the disjoint union (Definition 6.1.16) to different per-
mutation models of the kind BσM, as we will see with the following construction.

Full permutation model.

As we saw with the previous constructions, we can consider a permutation σ over
the domain of a model M, and this gives us a way to define a new model Mσ.
From here, it is not hard to define an action of the group S(DM) over the set
{Mσ|σ ∈ S(DM)}. What is surprising, is that this action can be encoded by a
single information model obtained by “gluing together” the blowups of the models
Mσ. This construction allows us to study which properties expressed by InqBQ
are preserved under the action presented above and gives us the tools needed to
prove the existence property.

6.1.34. Definition (Full Permutation Model). Let M be a model. We define
its full permutation model as

SM =
⊎

σ∈S(DM)

BσM

Notice in particular that

• WSM = WM × σ(DM);

• Sk(SM) = Sk(M);

• SMWBσM = BσM.

To simplify the notation, we will write wσ and sσ instead of wB
σM and sB

σM to
refer to worlds and info states in BσM.

6.1.35. Corollary. Let s ⊆ WM be an info state, σ ∈ S(DM) a permutation
and G : Var → T Σ

(
DM

)
an assignment. Define g = ΠB ◦ G. Then for every

formula ϕ
SM, sσ �σ̃G ϕ ⇐⇒ M, s �g ϕ

Proof:
Using Theorem 6.1.17 and Corollary 6.1.33 we obtain

SM, sσ �σ̃G ϕ ⇐⇒ BσM, s �σ̃G ϕ

⇐⇒ M, s �g ϕ

2
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BM Mσ

BσM

M]N

SM

MFS

M⊕N

MΓ

Mω

Figure 6.8: Summary of the constructions introduced. An arrow connects two
constructions if the source was used to define the target.

6.1.36. Corollary. Let u ⊆ WSM be an info state, G : Var → T Σ(DM) an
assignment and τ ∈ S(DM) a permutation. Define τu = {w(τσ)|wσ ∈ u}. Then
for every formula ϕ

SM, u �G ϕ ⇐⇒ SM, τu �τG ϕ

Proof:
As silly as it seems to spell it out, we firstly notice that SM ↪→ SM. The
interesting part is that we can find functions different from the identity that
witness this: consider the functions

Fτ : WSM → WSM

wσ 7→ w(τσ) τ̃ : DSM → DSM

By definition of SM, these functions respect Conditions Sub1 and Sub2. More-
over, their inverse also respects Conditions Sub1 and Sub2. The conclusion then
follows by Corollary 3.2.6. 2

In Figure 6.8 we give a graphical summary of the constructions introduced.

6.2 Disjunction and Existence Properties

6.2.1 Disjunction Property

We make use of the constructions introduced to prove that the logic InqBQ satisfies
a strong form of the disjunction property, namely the disjunction property over
classical theories.

6.2.1. Theorem. Given a classical theory Γ (i.e., Γ ⊆ CQC), for every formulas
ϕ and ψ

Γ � ϕ

>

ψ =⇒ Γ � ϕ or Γ � ψ
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Proof:
Suppose Γ 6� ϕ and Γ 6� ψ. LetMϕ,Mψ two models and gϕ, gψ two assignments
such that {

Mϕ �gϕ Γ

Mϕ 6�gϕ ϕ

{
Mψ �gψ Γ

Mψ 6�gψ ψ

Then consider the model Mϕ ⊕ Mψ and the assignment G =
〈
gϕ, gψ

〉
. By

Corollary 6.1.25 it follows that Mϕ ⊕Mψ �G Γ. Moreover by Theorem 6.1.21
and persistency it follows

Mϕ 6�gϕ ϕ =⇒ Mϕ ⊕Mψ,W
Mϕ 6�G ϕ

=⇒ Mϕ ⊕Mψ 6�G ϕ

and with a similar argument we obtainMϕ⊕Mψ 6�G ψ too. From this it follows
that Γ 6� ϕ > ψ, thus the thesis. 2

6.2.2. Remark. Another possible proof of the theorem could be carried out
considering the characteristic model of Γ instead of the models Mϕ and Mψ.
The advantage of the proof presented above is that it does not make use of the
axiom of choice.

6.2.2 Existence Property

In a similar fashion we can prove that InqBQ satisfies a strong form of the existence
property, namely the existence property for classical theories.

6.2.3. Theorem. Given a classical theory Γ, then for every formula ∃x.ϕ(x)

Γ � ∃x.ϕ(x) =⇒ Γ � ϕ(t) for some t term

Proof:
Without loss of generality we can suppose Γ to be closed.1

Fix ϕ(x, y1, . . . , ym) (where x, y1, . . . , ym is a complete list of the distinct free
variables in ϕ) and suppose that Γ 6� ϕ(t, y1, . . . , ym) for every term t. Consider
the characteristic modelMΓ of the theory Γ and the assignment gΓ : Var→ DMΓ

such that Γ � ψ iff MΓ �gΓ
ψ. Our aim is now, manipulating the model MΓ,

to build a model of Γ but not of the formula ∃x.ϕ(x, y), thus proving that Γ 6�
∃x.ϕ(x, y).

1It is trivial to prove that for InqBQ, as for CQC, entailment is invariant under substitutions
of variables with fresh constants. Formally, consider a set of formulas Φ ∪ {ψ} and a partial
variable substitution f : Var → C for C a set of constants not appearing in Φ ∪ {ψ}. Define
Φ[f ] and ψ[f ] as the result of applying the substitution to the set Φ and ψ in the usual way.
Then it holds that Φ � ψ iff Φ[f ] � ψ[f ].
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As such a model consider S((MΓ)ω). This is a model of Γ as we have

MΓ � Γ

⇐⇒ ∀w ∈ WMΓ .MΓ, {w} � Γ by Lemma 2.1.15

⇐⇒ ∀w ∈ W (MΓ)ω . (MΓ)ω, {w} � Γ by Lemma 6.1.2

⇐⇒ ∀σ ∈ S(D(MΓ)ω).∀wσ ∈ W (MΓ)ω . S((MΓ)ω), {wσ} � Γ

by Corollary 6.1.35

⇐⇒ ∀v ∈ WS((MΓ)ω). (MΓ)ω, {v} � Γ

⇐⇒ S((MΓ)ω) � Γ by Lemma 2.1.15

Towards a contradiction suppose that Γ � ∃x.ϕ(x, y). So for a certain element

t
(
〈d1, k1〉, . . . , 〈dn, kn〉

)
∈ DS((MΓ)ω) = T Σ

(
D(MΓ)ω

)
(where we suppose the

elements 〈di, ki〉 to be distinct) we have

S((MΓ)ω) �h ϕ(x, y1, . . . , ym) if h(x) = t
(
〈d1, k1〉, . . . , 〈dn, kn〉

)
from which it follows that

S((MΓ)ω) �h ϕ(t(z1, . . . , zn), y1, . . . , ym) if h(zi) = 〈di, ki〉 (6.1)

where z1, . . . , zn are fresh variables distinct from y1, . . . , ym.
Fix now the assignment H such that H(zi) = 〈gΓ(zi), i〉 for 1 ≤ i ≤ n and

H(yj) =
〈
gΓ(yj), n+ j

〉
for 1 ≤ j ≤ m. As H is injective over the set {z1, . . . , zn},

it is possible to find a permutation σ ∈ (MΓ)ω such that σ
(
〈gΓ(zi), i〉

)
= 〈di, ki〉

for 1 ≤ i ≤ n.

6.2.4. Remark. This passage justifies the fact that we are considering the model
S((MΓ)ω) instead of the model S(MΓ). Indeed, if gΓ(zi) = gΓ(zj) for i 6= j then
it would not be possible to find a permutation σ as above. A natural question
(currently open) is if S(MΓ) 6� ∃x.ϕ(x) generally holds.

To conclude the proof, consider now the following steps

S((MΓ)ω) �σH ϕ(t(z), y) by Equation 6.1

=⇒ S((MΓ)ω) �H ϕ(t(z), y) by Corollary 6.1.36

=⇒ S((MΓ)ω),W (MΓ)ω �H ϕ(t(z), y) by persistency

=⇒ (MΓ)ω �ΠBH
ϕ(t(z), y) by Corollary 6.1.35

=⇒MΓ �gΓ
ϕ(t(z), y) by Lemma 6.1.2

=⇒ Γ � ϕ(t(z), y) by Theorem 6.1.27
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and this is a contradiction, since it goes against the initial hypothesis that Γ 6�
ϕ(t, y) for any term t. Thus we have Γ 2 ∃x.ϕ(x, y), concluding the proof.

2

The following result is a simple corollary of the general form of the existence
property, and shows the strongly constructive character of the logic InqBQ.

6.2.5. Theorem. Let ϕ(x1, . . . , xn, y) be a formula and Γ a classical theory. Sup-
pose that

Γ � ∀x.∃y.ϕ(x, y)

Then there exists a term t(x1, . . . , xn) such that

Γ � ∀x.ϕ(x, t(x))

Proof:
In this proof we will adopt a slightly different notation to make explicit reference
to the signature adopted: with �Σ we indicate the entailment relation of InqBQ
relative to the signature Σ.

Consider c1, . . . , cn fresh constant symbols not appearing in Γ∪ ϕ and Σc the
signature obtained by adding the new constants to the signature Σ. Then we
have

Γ �Σ ∀x.∃y.ϕ(x, y) ⇐⇒ Γ �Σc
∃y.ϕ(c, y)

⇐⇒ Γ �Σc
ϕ(c, t(c)) for some t (by Theorem 6.2.3)

⇐⇒ Γ �Σ ∀x.ϕ(x, t(x)) for some t

2

This theorem has an interesting interpretation connected to the notion of function
definability. In the CQC case, we say that a formula ϕ(x1, . . . , xn, y) defines a
function under a classical theory Γ if the following entailment holds

Γ � ∀x.∃!y.ϕ(x, y)

that is if ϕ(x, y) identifies a function in every classical model of Γ.
In InqBQ we can consider a stronger notion of function definability associated

to the inquisitive quantifier. We say that a formula ϕ(x, y) strongly defines a
function under a classical theory Γ if the following entailment holds

Γ � ∀x.∃!y.ϕ(x, y)

where we have substituted the symbol ∃ with ∃. In particular, the condition
implies that in every modelM of the theory Γ, ϕ(x, y) identifies the same function
in every world ofM. Theorem 6.2.5 gives us then a complete characterization of
which formulas strongly define a function, that is, only the ones that identify the
interpretation of a fixed term of the language.
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6.3 Further Refinements

It is worth noticing that the proof of the disjunction property given in Theorem
6.2.1 can be split into two passages:

1. Given two modelsM and N of a classical theory Γ, thenM⊕N is a model
of Γ too;

2. Given two modelsMϕ andMψ of Γ such thatMϕ 6� ϕ andMψ 6� ψ, then
Mϕ ⊕Mψ 6� ϕ

>

ψ by persistency.

This leads naturally to the following definition.

6.3.1. Definition (⊕ property). Given a theory Φ, we say that it has the ⊕
property if

If M �g Φ and N �h Φ then M⊕N �〈g,h〉 Φ

Given a formula ϕ we say it has the ⊕ property if and only if the theory {ϕ} has
the ⊕ property.

6.3.2. Corollary. Every classical theory has the ⊕ property.

Proof:
This is a direct consequence of Corollary 6.1.25. 2

And with the same proof as Theorem 6.2.1 we obtain the following corollary.

6.3.3. Corollary. If a theory Φ has the ⊕ property, then it has the disjunction
property.

This also leads to the question whether the ⊕ property and the disjunction prop-
erty actually coincide. The answer is no, as we will show with the next results.

6.3.4. Lemma. There exists a theory with the disjunction property and without
the ⊕ property.

Proof:
Consider the signature {c, d} with c and d constant symbols, the model M de-
picted in Figure 6.9 on the left and the set Th(M) = {ϕ | M � ϕ}. This theory
clearly has the disjunction property as

Th(M) � ϕ

>

ψ ⇐⇒ M � ϕ > ψ
⇐⇒ M � ϕ or M � ψ
⇐⇒ Th(M) � ϕ or Th(M) � ψ
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w0
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ddd

〈w0, 0〉 〈w0, 1〉

〈ccc, ccc〉

〈ccc,ddd〉

〈ddd, ccc〉

〈ddd,ddd〉

〈ccc, ccc〉

〈ccc,ddd〉

〈ddd, ccc〉

〈ddd,ddd〉

Figure 6.9

Moreover it does not have the ⊕ property as the formula

∀x.∀y.(x = y
>

x 6= y)

is supported at M but not at M⊕M (Figure 6.9 on the right).
2

Using Corollary 6.3.3 we can extend Theorem 6.2.1 to a larger class of theories,
namely the quasi

>

theories.

6.3.5. Definition (q
>

-free formulas). A formula of InqBQ is called quasi

>

free
(q

>

-free) if it is generated by the following grammar.

ψ ::= α | ψ ∧ ψ | ϕ→ ψ | ∃x.ψ | ∀x.ψ

where α ranges over classical formulas and ϕ ranges over formulas of InqBQ. A
theory is called q

>

-free if it contains only q

>

-free formulas.

Basically a formula is q

>

-free if and only if every occurrence of the symbol

>

(if there are any) appears in the antecedent of an implication. Thus for example
the formula (R(x)→ P (x)

>

Q(x))→ P (x) is q

>

-free, while the formula P (x)→
(R(x)→ P (x)

>

Q(x)) is not q

>

-free.
Notice that this fragment is strictly more expressive than the classical frag-

ment. For example the formula ∃x.P (x) is not truth-conditional, and so it is not
equivalent to any classical formula (Theorem 2.1.18).

6.3.6. Lemma. A q

>

-free theory has the ⊕ property.

Proof:
We will show by induction on the structure of ϕ a q

>

-free formula that ϕ has
the ⊕ property.In the rest of the proof M and N will indicate two generic in-
formation structures; g and h will indicate two generic assignments on M and
N respectively. Moreover we indicate with the abbreviation IH the inductive
hypothesis.

Case ϕ ≡ α this case coincides with Corollary 6.3.2.
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Case ϕ ≡ ψ ∧ χ

M �g ψ ∧ χ and N �g ψ ∧ χ
⇐⇒ M �g ψ and M �g χ and N �h ψ and N �h χ (by IH)

⇐⇒ M⊕N �〈g,h〉 ψ and M⊕N �〈g,h〉 χ
⇐⇒ M⊕N �〈g,h〉 ψ ∧ χ

Case ϕ ≡ ψ → χ

M �g ψ → χ and N �h ψ → χ

⇐⇒
{
∀s ⊆ WM.

[
Ms �g ψ =⇒ Ms �g χ

]
∀t ⊆ WN . [Nt �h ψ =⇒ Nt �h χ]

(
by Corollary 6.1.22

and IH

)
=⇒ ∀s ⊆ WM.∀t ⊆ WN .

[
Ms ⊕Nt �〈g,h〉 ψ =⇒ Ms ⊕Nt �〈g,h〉 χ

]
⇐⇒ ∀u ⊆ WM⊕N .

[
(M⊕N )u �〈g,h〉 ψ =⇒ (M⊕N )u �〈g,h〉 χ

]
⇐⇒ M⊕N �〈g,h〉 ψ → χ

Case ϕ ≡ ∃x.ψ

M �g ∃x.ψ and N �h ∃x.ψ
⇐⇒ ∃d ∈ DM.M �g[x 7→d] ψ and ∃e ∈ DN . N �h[x 7→e] ψ

⇐⇒ ∃d ∈ DM. ∃e ∈ DN .
[
M �g[x 7→d] ψ and N �h[x 7→e] ψ

]
(by IH)

⇐⇒ ∃〈d, e〉 ∈ DM⊕N .M⊕N �〈g,h〉[x 7→〈d,e〉] ψ
⇐⇒ M⊕N �〈g,h〉 ∃x.ψ

Case ϕ ≡ ∀x.ψ the same passages as case ϕ ≡ ∃x.ψ apply here.

2

6.4 Conclusions

In this chapter we gave a proof of a conjecture formulated by Ciardelli [2016],
namely that the disjunction and existence properties hold in InqBQ for every
classical theory. Moreover we found a generalization of the disjunction property
and determined two classes of theories with interesting features connected to said
property, namely theories with the ⊕ property and q

>

-free theories.
To do this, a toolkit of model-theoretic constructions was developed in Section

6.1. These constructions proved to be effective instruments to study the semantics
and entailment of InqBQ, and gave more insight into the mechanisms governing
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this semantics. In view of this, we hope to have laid out the foundations of a
model-theoretic approach to the study of InqBQ that could potentially lead to
discover other meta-logical properties of the logic.

One additional remark: throughout the chapter, several definitions and results
made a fundamental use of the varying identity of information models: to define
BM; to define the product of a model and a set/a skeleton; to define MΓ; to
combine models by means of the operator ⊕. One may wonder if we obtain the
same logic or a logic with similar properties if we restrict our attention to the class
of models that interpret identity rigidly. The result of this chapter gives a negative
answer to both these questions, as it can be easily proven that the disjunction
and existence properties do not hold when restricting to this particular class of
models.

We conclude the chapter with some questions of interest which, as of now,
remain open. To summarize the results of Section 6.3, we have the following
classes of theories

TC: the class of truth-conditional theories.

Cl: the class of theories equivalent to a classical theory.

q

>

f: the class of theories logically equivalent to a q

>

-free theory.

⊕P: the class of theories with the ⊕ property.

DP: the class of theories with the disjunction property.

and the following hierarchy

TC =
Theorem 2.1.18

Cl ⊆ q

>

f ⊆
Lemma 6.3.6

⊕P (
Lemma 6.3.4

DP

Some questions on this hierarchy remain open, the first being the following: do
the classes q

>

f and ⊕P coincide, as in the case of TC and Cl?
Another more conceptual question arises from this hierarchy: notice that we

can divide the descriptions of the classes presented here into two kinds, semantic
descriptions and syntactic descriptions. For example, the class TC is described
semantically, as truth-conditionality of a theory Φ is a condition on the class of
models of Φ (i.e., that it is closed under the operation

⊎
for arbitrary families).

On the other hand the class Cl, although it coincides with TC, is described syn-
tacticly as it is the class of theories of a certain fragment of the language (modulo
equivalence).

In this regard DP is described neither purely syntactically, as we explicitly
refer to the entailment relation, nor purely semantically, as the condition strongly
focuses on inquisitive disjunctions. Are there syntactic and semantic conditions
characterizing the class DP? The same question can be asked for the classes q

>

f



102 Chapter 6. Disjunction and Existence Properties

and ⊕P. Is there a semantic condition characterizing the class q

>

f? Is there a
syntactic condition characterizing the class ⊕P?

If we move to the existence property, the same questions arise. Can we find
a similar hierarchy for the existence property? And can we find syntactic and
semantic characterizations for the existence property?



Chapter 7

Classical Antecedent Fragment

Although a recursive axiomatization has been found for several inquisitive logics
[Ciardelli, 2014, Ciardelli et al., 2020, Ciardelli and Roelofsen, 2011, Punčochář,
2015, 2019, Sano, 2011], it is still not known whether InqBQ admits one. A
sound natural deduction system for InqBQ has been proposed by Ciardelli [2016,
Ch. 4], together with a conjecture of its completeness, which as of now remains
open. In [Ciardelli, 2016, Chapter 4] it is also shown that two fragments of
the logic—the mention-some fragment L∃ and the mention-all fragment L∀—can
be recursively axiomatized. This leads to the questions whether there are other
interesting fragments or variations of InqBQ which are axiomatizable, and whether
we can find novel techniques to axiomatize them. In the following two chapters
we give positive answers to these questions: we introduce two new fragments—
the classical antecedent fragment ClAnt and the bounded-width fragment BW—
and a class of logics “approximating” InqBQ—the finite-width inquisitive logics
InqBQn—and we present some variations of the canonical model technique to
axiomatize them.

This chapter focuses on the classical antecedent fragment ClAnt, which ex-
tends L∀ and L∃. It can be intuitively characterized as the fragment in which
questions are not allowed in the antecedent of an implication. This fragment is
particularly interesting since it contains—modulo logical equivalence—all formu-
las corresponding to natural language statements and several classes of formulas
corresponding to natural language questions: for example polar questions (“Will
Joey come to the party?”), alternative questions (“Is Joey coming to the party
or is Chandler coming?”), mention-some and mention-all questions (“Who, for
example, is coming to the party?”, “Who exactly is coming to the party?”), and
their conditional versions (“If Chandler comes to the party, will Joey come to the
party too?”). We prove that the natural deduction system proposed for InqBQ
by Ciardelli [2016], restricted to ClAnt, provides a sound and strongly complete
axiomatization of InqBQ validities in the fragment.

103
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7.1 ClAnt Fragment

In this section we present the main protagonist of this chapter, the ClAnt frag-
ment.

7.1.1. Definition (ClAnt fragment). The ClAnt fragment is generated by the
following grammar:

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ > ϕ | α→ ϕ | ∀x.ϕ | ∃x.ϕ
where p ranges over atomic formulas and α ranges over classical formulas.

In [Ciardelli, 2016, Ch. 4], two other fragments were presented and studied,
namely the mention-some (L∃) and the mention-all fragment (L∀). These two
fragments are generated by the following grammars respectively:

L∃ Mention-some: ϕ ::= α | ϕ > ϕ | ∃x.ϕ | ϕ ∧ ϕ | α→ ϕ

L∀ Mention-all: ϕ ::= α | ?α | ∀x.ϕ
where α ranges over classical formulas.

It was proven by Ciardelli [2016] that the support relation for inquisitive logic
restricted to both these fragments is finitely axiomatizable.1 Interestingly, the
proofs presented are quite different and cannot, prima facie, be adapted to the
other fragment. For the mention-some fragment, the completeness proof uses a
canonical model construction similar to the one proposed for propositional inquis-
itive logic by Ciardelli [2016, Ch. 3], heavily relying on the existence of a disjunc-
tive normal form for formulas. For the mention-all fragment, the completeness
proof passes through a translation to the Logic of Interrogation [Groenendijk,
1999, ten Cate and Shan, 2007], a logic with a partition-based semantics.

Notice that ClAnt subsumes both these fragments. So the axiomatization
for ClAnt and the corresponding completeness proof, presented in Section 7.3
and 7.4 respectively, introduce a novel approach to axiomatize both L∃ and L∀.
Moreover, ClAnt is strictly more expressive than both these fragments, as shown
by the following result.

7.1.2. Proposition. The sentence ∀x.∃y.(P (x)↔ ¬P (y)) is in ClAnt and it is
not logically equivalent to any formula in L∃ ∪ L∀.

This formula holds if for every element x there is an associated element y such
that exactly one of them has property P . This condition is particularly interesting
in contexts where epistemic identity does not correspond to ontological identity,
such as inquisitive logic (see [Ciardelli, 2016, Sec. 4.3.4] for a small discussion on
the topic).

1In the scope of this dissertation, a semantics relation is considered finitely axiomatizable if
it can be described in terms of finitely many axioms, schemata (ranging over all the formulas of
the language or over formulas in given syntactic fragments) and rules of an opportune axiomatic
system. For example, the systems presented in Figures 2.5 and 2.6 are regarded as finite
axiomatizations.
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M

w

a •

b •

c ×

N

w v

a • •

b • ×

c × ×

(a)

w1 w2 w3

a × • •

b × × ×

c • × •

d • • ×

(b)

Figure 7.1: Three models in the syntax L6= and in the signature Σ = {P} for P
a unary predicate symbol, used in the proof of Proposition 7.1.2.

Proof:
In the scope of this proof, we will use the notation θ := ∀x.∃y.(P (x) ↔ ¬P (y)).
θ is clearly in ClAnt—notice that P (x)↔ ¬P (y) is a classical formula.

To show that θ is not equivalent to a formula in L∃, consider the models
depicted in Figure 7.1a. It is straightforward to verify that M � θ, while N 2 θ.
Assume towards a contradiction that θ is equivalent to a formula in L∃. By the
normal form described in [Ciardelli, 2016, Proposition 4.7.2], this means that

θ ≡ ∃x1.α1

>

. . .

> ∃xn.αn

for some classical formulas α1, . . . , αn. In particular, this means that for some
i ∈ {1, . . . , n} we have M � ∃xi.αi, that is, M �g αi for some assignment g.
Since the extension of P in M consists of a and b, a straightforward induction
over the the structure of αi shows that M �h αi for h defined as follows:

h(x) =

{
g(x) if g(x) ∈ {a, c}
a if g(x) = b

Similarly, since the image of h is contained in {a, c}, another straightforward
induction over the structure of αi shows that N �h αi, and consequently N � θ.
And this is a contradiction, as desired.

To show that θ is not equivalent to a formula in L∀ we use [Ciardelli, 2016,
Proposition 4.8.4], which states that every formula ϕ ∈ L∀ is pair-distributive,
that is:

M, s �g ϕ iff ∀t ⊆ s.
[
|t| < 2 =⇒ M, t �g ϕ

]
So we just need to show that θ is not pair-distributive: given the model in Figure
7.1b, every state t with at most two worlds satisfies θ, but the whole model does
not. 2
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We conclude this section with an alternative presentation of the ClAnt fragment.

7.1.3. Lemma. Every formula in ClAnt is equivalent to a formula generated by
the following grammar:

ϕ ::= α | ϕ ∧ ϕ | ϕ > ϕ | ∀x.ϕ | ∃x.ϕ

where α ranges over classical formulas.

To distinguish between the two syntaxes, we will indicate with FClAnt the set of
formulas generated by the grammar in Definition 7.1.1 and with FClAnt2 the set
of formulas generated by the grammar just introduced in Lemma 7.1.3.

Proof sketch:
The main idea of the proof is to “massage” the implications toward the classical
formulas using the following equivalences, taking care of renaming the bounded
variables when necessary.

α→ ϕ

>

ψ ≡ (α→ ϕ)

>

(α→ ψ)
α→ ϕ ∧ ψ ≡ (α→ ϕ) ∧ (α→ ψ)
α→ (β → ϕ) ≡ (α ∧ β)→ ϕ
α→ ∀x.ϕ ≡ ∀x.(α→ ϕ) (For x not free in α)

α→ ∃x.ϕ ≡ ∃x.(α→ ϕ) (For x not free in α)

Notice that the equivalences read from left to right reduce the complexity of the
consequent of the implication. 2

This result tells us that we can dispense with implications outside of classical
formulas. At the level of expressive power this is a significant limitation, since→
is the only logical operator acting as a second-order quantifier for the semantics—
compare with Definition 2.1.7. It is not clear yet whether the completeness proof
presented in the following sections relies on this limitation or it can be generalized
to more expressive fragments, or even the whole logic. What is known, is that
ClAnt is strictly less expressive than InqBQ, as the following result shows.

7.1.4. Proposition. The formula θ := ∀x.?P (x) →?r (for P a unary relation
symbol and r a 0-ary relation symbol) is not logically equivalent to any formula
in ClAnt.

The proof of this result relies on yet another variation of the Ehrenfeucht-Fräıssé
game we presented in Chapter 4, which captures the expressive power of the ClAnt
fragment. We are going to present the game and its properties in the following
section.
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7.2 Ehrenfeucht-Fräıssé Game for ClAnt

In Chapter 4 we introduce a model-theoretic game that succesfully captures the
notion of support-equivalence between models (≡), and more fine-grained rela-
tions meaningful to describe and study the expressive power of the logic (≡i,q).
We can achieve the same kind of result also for fragments of the logic, by mod-
ifying the game in a suitable way. We will now define a variation of the game
which captures the expressive power of the ClAnt fragment.

Position: A position in the game is a tuple
〈
M, s, a;N , t, b

〉
—the same as in

the original version of the game.

Possible moves: Starting a round from a position
〈
M, s, a;N , t, b

〉
, the follow-

ing are the possible moves:

∃-move: S picks an element a′ ∈ DM; D responds with an element b′ ∈ DN ;
the game continues from position

〈
M, s, aa′;N , t, bb′

〉
;

∀-move: S picks an element b′ ∈ DN ; D responds with an element a′ ∈ DM;
the game continues from position

〈
M, s, aa′;N , t, bb′

〉
;

w-move: S picks a world v ∈ t; D responds with a world w ∈ s. After
that, the game continues from position

〈
M, {w} , a;N , {v} , b

〉
. This

move must be performed exactly only once during the game (notice
that performing it a second time would not change the position).

Notice that the →-move is replaced by the w-move (world-move). In par-
ticular, the chirality cannot be changed during the run.

Termination conditions: A number q ∈ N is fixed in advance, which is the
number of quantifier-moves that Spoiler is allowed to perform during the
run. As stated above, the w-move can be performed only once. When there
are no more available moves, the game ends.

Winning condition: Suppose the final position of the game is
〈
M, {w} , a;N , {v} , b

〉
.

The game is won by Player D if the following condition is satisfied, and by
player S otherwise:

Winning condition for D: for all atomic formulas A(x1, . . . , xn) where
n is the size of the tuples a and b, we have:

M, {w} |= A (a) ⇐⇒ N , {v} |= A
(
b
)

As in the symmetric version of the game presented in Subsection 4.5.1, the
winning condition is symmetric with respect to the two models.
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We will indicate with EFClAnt
q (M, s, a;N , t, b) the game just described. We will

indicate with M, s, a ≈ClAnt
q N , t, b the existence of a winning strategy for Du-

plicator in the game EFClAnt
q (M, s, a;N , t, b); and with M, s, a ≈ClAnt N , t, b the

existence of a winning strategy for arbitrary q ∈ N. We will also use notational
conventions analogous to the ones introduced for the original game.

Notice that after performing the w-move the game follows the same rules as
the Ehrenfeucht-Fräıssé game for classical logic between the models Mw and Nv.
So a run of the game can be divided in two phases: a first phase, before the w-
move, in which the game is played as the inquisitive version of the game with no
implication-moves; and a second phase, after the w-move, played as the classical
version of the game.

To study the relations between this game and the expressive power of ClAnt,
we need to introduce an alternative measure of complexity for formulas in the
fragment. We define the ClAnt-degree (in symbols, CAdeg) of a formula ϕ ∈
FClAnt by the following inductive clauses:

CAdeg(p) := 0
CAdeg(⊥) := 0
CAdeg(ϕ ∧ ψ) := max {CAdeg(ϕ),CAdeg(ψ)}
CAdeg(ϕ

>

ψ) := max {CAdeg(ϕ),CAdeg(ψ)}
CAdeg(α→ ϕ) := Qdeg(α) + CAdeg(ϕ)
CAdeg(∀x.ϕ) := CAdeg(ϕ) + 1

CAdeg(∃x.ϕ) := CAdeg(ϕ) + 1

Notice in particular that in the clause for the formula α → ϕ, we consider
the quantifier degree of α and we sum it to the ClAnt-degree of ϕ. As for the full
signature, we indicate with FClAnt

q the ClAnt formulas of CAdeg bounded by q.
This allows us to introduce the relations vClAnt, vClAnt

i,q , ≡ClAnt and ≡ClAnt
i,q , where

we restrict our focus to formulas in ClAnt.
This notion of degree behaves similarly to the quantification degree when we

focus on classical formulas. To make this more precise, we need an additional
definition.

7.2.1. Definition. Let ϕ be a ClAnt formula. We say that ϕ is classically-
reduced if every classical subformula α of ϕ contains implications only in the
form of negation, that is, if α ≡ β → γ then γ ≡ ⊥.

Notice that every ClAnt formula ϕ is equivalent to a ClAnt formula meeting the
restriction: we just need to substitute the subformulas of the form β → γ with
the equivalent formula ¬β ∨ γ.

The notion of classically-reduced formula will play a crucial role in the proofs
that follow. The reason is that the CAdeg and Qdeg coincide for classically-
reduced classical formulas.
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7.2.2. Lemma. Let α be a classical formula. Them CAdeg(α) ≥ Qdeg(α). More-
over, if α is classically-reduced then CAdeg(α) = Qdeg(α).

Proof:
The first statement can be proven by induction on the structure of the formula α.
The only non-trivial case is that of implication: suppose α is of the form β → γ.
By inductive hypothesis we have:

CAdeg(α) = Qdeg(β) + CAdeg(γ) ≥ Qdeg(β) + Qdeg(γ) ≥ Qdeg(α)

Assume now that α is in disjunctive normal form. Then the second statement
of the Theorem follows easily from the following identities: for arbitrary classical
formulas β and γ we have

CAdeg(¬β) = Qdeg(β) + CAdeg(⊥)
= Qdeg(¬β)

CAdeg(β ∨ γ) = CAdeg(¬(¬β ∧ ¬γ))
= Qdeg(¬β ∧ ¬γ) + CAdeg(⊥)
= Qdeg(¬(¬β ∧ ¬γ))
= Qdeg(β ∨ γ)

CAdeg(∃x.β) = CAdeg(¬∀x.¬β)
= Qdeg(∀x.¬β) + CAdeg(⊥)
= Qdeg(¬∀x.¬β)
= Qdeg(∃x.β)

2

7.2.3. Corollary. Every formula ϕ in ClAnt is logically equivalent to a classically-
reduced formula ψ with CAdeg(ϕ) ≥ CAdeg(ψ) and Qdeg(ϕ) = Qdeg(ψ).

Proof:
As noticed above, to obtain a classically-reduced formula ψ starting from ϕ we can
just recursively substitute classical subformulas of the form β → γ (for γ 6≡ ⊥)
with ¬β ∨ γ. We claim that each of these reduction steps preserves the Qdeg of
the formula and does not increase the CAdeg of the formula. If this is the case, we
can apply the reduction until we obtain a classically-reduced formula equivalent
to the original one.

Suppose at a certain point of the reduction procedure we are starting from
the formula θ[β → γ] and we substitute β → γ with ¬β∨γ, obtaining θ[¬β∨γ].2

Since
Qdeg(β → γ) = max {Qdeg(β),Qdeg(γ)} = Qdeg(¬β ∨ γ)

2In this context, the square bracket notation θ[χ] indicates a single occurrence of the sub-
formula χ in the formula ϕ.
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we have Qdeg(θ[β → γ]) = Qdeg(θ[¬β ∨ γ]). Moreover, since

CAdeg(β → γ) = Qdeg(β) + CAdeg(γ)
≥ max {Qdeg(β),Qdeg(γ)}
= Qdeg(¬β ∨ γ)
= CAdeg(¬β ∨ γ) (by Lemma 7.2.2)

it follows that CAdeg(θ[β → γ]) ≥ CAdeg(θ[¬β ∨ γ]).
2

Before moving to the Ehrenfeucht-Fräıssé theorem we need one last result that
will allow us to show the connection between the CAdeg and the game.

Indicate with tϕ the formula obtained starting from ϕ using the reduction
steps described in the proof of Lemma 7.1.3. Notice that FClAnt2 ⊆ FClAnt, and so
CAdeg is defined also for formulas in FClAnt2. In particular, since the reduction
steps in the proof above do not increase the CAdeg of the formulas considered,
we obtain that CAdeg(tϕ) ≤ CAdeg(ϕ).

Moreover, we can combine the results on the CAdeg with Lemma 7.1.3 to
obtain the following corollaries.

7.2.4. Corollary. Let ϕ ∈ FClAnt2 be classically-reduced. Then CAdeg(ϕ) =
Qdeg(ϕ).

Proof:
By induction on the structure of the formula ϕ. The basic case follows from
Lemma 7.2.2; the inductive steps follow trivially from the definition of CAdeg. 2

7.2.5. Corollary. Every ϕ ∈ FClAnt is logically equivalent to a classically-
reduced formula ψ ∈ FClAnt2 with Qdeg(ψ) ≤ CAdeg(ϕ).

Proof:
Consider the formula ψ obtained by applying first Lemma 7.1.3 and then Corol-
lary 7.2.3 starting from ϕ. As noticed, both these results do not increase the
CAdeg of the formula considered, and so we obtain CAdeg(ψ) ≤ CAdeg(ϕ). The
inequality then follows from Corollary 7.2.4. 2

We are finally ready to prove the main result of this section, the Ehrenfeucht-
Fräıssé theorem for the game.

7.2.6. Theorem. Suppose the signature Σ is relational and finite. Then Du-
plicator has a winning strategy in the game EFClAnt

q (M, s, a;N , t, b) iff for every
formula ϕ(x) ∈ FClAnt2 with Qdeg(ϕ(x)) ≤ q and every sequence x of the same
length as a and b it holds that

M, s � ϕ(a) =⇒ N , t � ϕ(b)
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Proof:
We prove the result by induction on q. Firstly, suppose q = 0. In this case, the
game consists of only one w-move. So in particular, the condition of Duplicator
having a winning strategy in the game is equivalent to the following condition:

∀v ∈ t. ∃w ∈ s. ∀A(x) atomic formula.
[
M, {w} � A(a) ⇐⇒ N , {v} � A(b)

]
or equivalently

∀v ∈ t. ∃w ∈ s.
[
Mw, a ≡CQC

0 Nv, b
]

(7.1)

where ≡CQC
q indicates satisfying the same classical formulas of quantifier degree

up to q. We are going to see that this last condition is equivalent to

M, s, a �ClAnt
0 N , t, b (7.2)

In fact:

• Suppose Condition 7.1 holds and assume that for ϕ(x) a formula of quan-
tifier degree 0 we have N , t 2 ϕ(b). By the normal form theorem [Ciardelli,
2016, Proposition 2.4.4] we can assume that ϕ ≡ α1

>

. . .

>

αn for α1, . . . , αn
classical formulas. So we have the following:

N , t 2 ϕ =⇒ ∀i ∈ {1, . . . , n} . ∃vi ∈ t. Nvi
2 αi

=⇒ ∀i ∈ {1, . . . , n} . ∃wi ∈ s. Mwi
2 αi (by Condition 7.1)

=⇒ M, s 2 ϕ

• Suppose Condition 7.2 holds and suppose towards a contradiction that Con-
dition 7.1 does not hold. Spelling out the latter, we have3

∃v ∈ t. ∀w ∈ s. ∃αw classical.
[

Qdeg(αw) = 0 and Mw � αw(a) and Nv 2 αw(b)
]

This in particular implies that M, s �

>

w∈s αw(a) and N , t 2 > w∈s αw(b),
and this contradicts the hypothesis that Condition 7.2 holds.

This concludes the basic inductive step.
As for the inductive step, we follow the same structure of the proof of Theorem

4.3.2. We proceed by contradiction: firstly (⇒ direction) we show that we can
use a formula ϕ with CAdeg(ϕ) = q supported by 〈M, s, a〉 and not by

〈
N , t, b

〉
to define a winning strategy for Duplicator in the game EFClAnt

q (M, sa;N , t, b);
secondly (⇐ direction) we start from a winning strategy to obtain a formula
supported by 〈M, s, a〉 and not by

〈
N , t, b

〉
.

3Notice that Condition 7.1 entails the existence of a formula αw distinguishing the two
models, but we do not know a priori which model supports αw and which does not. However,
since αw is classical, we can use either αw or its negation, thus obtaining a classical formula
supported by Mw and not by Nv.
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Since this proof has the same structure of the proof of Theorem 4.3.2, we limit
ourselves to show the key steps. In particular, the cases for the quantifiers (cases
⇒2, ⇒3, ⇐2 and ⇐3 in the proof of Theorem 4.3.2) are completely analogous.
So we only consider the cases for the w-move (cases ⇒1 and ⇐1 in the proof of
Theorem 4.3.2).

Case ⇒1: ϕ is an implication of the form β → γ with CAdeg(ϕ) = q and it
holds that

M, s � ϕ(a) N , t 2 ϕ(b)

Notice that, since ϕ ∈ FClAnt2, β and γ are necessarily classical formulas.
In this case we have:

N , t 2 β → γ =⇒ ∃v ∈ t.
{
N , {v} � β
N , {v} 2 γ

M, s � β → γ =⇒ @w ∈ s.
{
M, {w} � β
M, {w} 2 γ

So by main inductive hypothesis, if Spoiler performs a w-move and chooses
v ∈ t as above, for every choice w of Duplicator we have (Mw, a) 6≈CQC

q

(Nv, b). Since after performing the w-move the game follows the rules of
the EF-game for classical first order logic, it follows that Spoiler has a
winning strategy from this point of the game.

Case ⇐1: Duplicator has a winning strategy in the game EFClAnt
q (M, s, a;N , t, b)

and the first move is a w-move.

Suppose that Spoiler starts by choosing v ∈ t. As this is a winning strategy
for Spoiler, for every choice w ∈ s of Duplicator we have

(M, {w} , a) 6≈ClAnt
q (N , {v} , b)

or stated in terms of the corresponding classical structures

(Mw, a) 6≈CQC
q (Nv, b)

So, by properties of the EF-game for classical first order logic, there exists
a classical formula βw with Qdeg(βw) ≤ q such that

Mw � βw(a) Nv 2 βw(b)

By persistency of the support semantics (Lemma 2.1.9), it follows that

M, s �

>

w∈s
βw(a) N , t 2 >

w∈s
βw(b)
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If we show that CAdeg(

>

w∈s βw) ≤ q, then we can conclude that there exists
a formula in FClAnt2 which is supported by 〈M, s, a〉 and not by

〈
N , t, b

〉
.

Notice that by Corollary 7.2.3, we can assume that βw is classically-reduced.
By Lemma 7.2.2 this means that CAdeg(βw) = Qdeg(βw) ≤ q for every
w ∈ s, and consequently that CAdeg(

>

w∈s βw) ≤ q. This concludes the
proof.

2

7.2.7. Corollary.

(M, s, a) �ClAnt
q (N , t, b) ⇐⇒ (M, s, a) vClAnt

q (N , t, b)

Proof:
For the left-to-right direction, suppose (M, s, a) �ClAnt

q (N , t, b). Consider a for-
mula ϕ ∈ FClAnt with CAdeg(ϕ) ≤ q. By Corollary 7.2.5, ϕ is logically equivalent
to a classically-reduced formula ψ ∈ FClAnt2 with Qdeg(ψ) ≤ CAdeg(ϕ). So, by
Theorem 7.2.6 we have:

M, s � ϕ(a) ⇐⇒ M, s � ψ(a) =⇒ N , s � ψ(b) ⇐⇒ N , t � ϕ(b)

Since ϕ was an arbitrary formula in FClAnt, we have (M, s, a) vClAnt
q (N , t, b).

For the right-to-left direction, suppose that (M, s, a) vClAnt
q (N , t, b). Let ϕ ∈

FClAnt2 with Qdeg(ϕ) ≤ q. Applying Corollary 7.2.3 to ϕ, we obtain a classically-
reduced formula ψ ∈ FClAnt2 equivalent to ϕ with Qdeg(ϕ) = Qdeg(ψ).4 More-
over, by Corollary 7.2.4, CAdeg(ψ) = Qdeg(ψ)

By hypothesis it follows that

M, s � ϕ(a) ⇐⇒ M, s � ψ(a) =⇒ N , s � ψ(b) ⇐⇒ N , t � ϕ(b)

Since ϕ was an arbitrary formula in FClAnt2with Qdeg(ϕ) ≤ q, by Theorem 7.2.6
if follows (M, s, a) �ClAnt

q (N , t, b).
2

This result allows us to study the expressive power of the ClAnt fragment. An
example of this is given by the following theorem.

7.2.8. Theorem. Let M and N be information models and suppose that q :=
|DM|+ |DN | is finite. Then the following are equivalent:

1. M ↪→ N ;

4Notice that the reduction procedure described in the proof of Corollary 7.2.3 preserves the
property of being a formula in FClAnt2.
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2. N vClAnt
q M.

Proof:
By Corollary 7.2.7, Condition 2 is equivalent to N �ClAnt

q M. So to prove the
implication from Condition 1 to Condition 2 we just need to exhibit a winning
strategy for Duplicator in the game EFClAnt

q (N ,M). We can reason as in the proof
of Theorem 4.5.5. Given f and g witnessing M ↪→ N , the winning strategy for
Duplicator is as follows:

• If Spoiler plays a quantifier move and picks an element a ∈M, then Dupli-
cator picks g(a) ∈ N .

• If Spoiler plays a quantifier move and picks an element b ∈ N , then Dupli-
cator picks a ∈M such that f(a) ∼e b (such an element exists by definition
of submodel 3.2.3).

• When Spoiler plays the w-move and picks w ∈ WM, Duplicator responds
by picking v = f(w) ∈ WN .

This is a winning strategy in the game since by definition of f, g:

M, {w} � A(d1, . . . , dn) ⇐⇒ N , {f(w)} � A(g(d1), . . . , g(dn))

To show the implication from Condition 2 to Condition 1, we will again reason
as in the proof of Theorem 4.5.5: we will play the part of Spoiler in the game
EFq(N ,M) and use the winning strategy of Duplicator to build the functions f
and g.

Consider enumeration
〈
a1, . . . , a|DM|

〉
of the elements ofM; and an enumera-

tion
〈
b1, . . . , b|DN |

〉
of the elements of N . Fix a winning strategy for Duplicator:

1. Firstly Spoiler performs |DN | many ∃-moves: each time Spoiler chooses a
distinct element bj ofN , so that he covers the whole domain; let h(bj) ∈ DM
to be the element that Duplicator chooses in response.

2. Secondly Spoiler performs |DM| many ∀-moves: each time Spoiler chooses
a distinct element ai of M, so that he covers the whole domain; define
g(ai) ∈ DN to be the element that Duplicator chooses in response.

3. After the previous moves, Spoiler can perform a w-move and choose a world
w ∈ WM. Following the winning strategy, Duplicator has to answer with a
world v ∈ WN . For every possible choice w ∈ WM define f(w) := v ∈ WN

the world chosen by Duplicator following the strategy.
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Now that we defined f and g, showing that they respect the properties of Defini-
tion 3.2.3 can be done exactly as in the proof of Theorem 4.5.5.

2

Using Theorem 7.2.6 we can finally show that ClAnt is strictly less expressive than
InqBQ, that is, we can give a proof of Proposition 7.1.4.

Proof of Proposition 7.1.4:
To prove this result, for a given natural number q we will present two modelsM
and N such that

1. M 2 θ;

2. N � θ;

3. M≡ClAnt
q N .

This implies that the formula θ is not equivalent to any ClAnt formula of CAdeg
at most q; and since q is arbitrary, it follows that θ is not equivalent to any ClAnt
formula.

Consider the model G defined by the following clauses:

• W G = { 〈A, e〉 |A ∈ Pfin(N) and e ∈ {+,−}};

• DG = N;

• P〈A,e〉(n) iff n ∈ A;

• r〈A,e〉 iff e = +.

We define M and N to be restrictions of G to certain information states. In
particular:

M = G|sM for sM :=

{
〈A, e〉 ∈ W G

∣∣∣∣ ( |A| ≤ q and e = + )
or ( |A| > q )

}
N = G|sN for sN :=

 〈A, e〉 ∈ W G

∣∣∣∣∣∣
( |A| ≤ q and e = + )

or ( |A| > q and |A| even and e = + )
or ( |A| > q and |A| odd and e = − )


The formula θ is supported by an information state s iff s does not contain two
worlds with the same extension of P and that assign two different truth-values to
r. In particular, an information state s of G supports θ iff s contains at most one
between 〈A,+〉 and 〈A,−〉, for every A ∈ Pfin(N). It readily follows thatM 2 θ
and N � θ.

It remains to show thatM≡ClAnt
q N . Notice that sN ⊆ sM, so we haveMv

N , and consequently M vClAnt
q N . To prove the converse, that is, N vClAnt

q M,
we will use the variation of the Ehrenfeucht-Fräıssé game for ClAnt. By Corollary
7.2.7, we just need to prove N �ClAnt

q M. We describe a strategy for Duplicator

in the game EFClAnt
q (N ,M), and prove it is indeed a winning strategy:
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• If Spoiler plays a quantifier move before the w-move and picks an element
n in one of the models, then Duplicator picks the same element in the other
model.

• If Spoiler plays the w-move and picks a world 〈A, e〉 ofM, then Duplicator
has to pick a world 〈B, e′〉 of N . We consider two cases:

– Either |A| ≤ q, in which case Duplicator picks 〈B, e′〉 = 〈A, e〉 in N ;

– Or |A| > q. Suppose that the elements chosen in the previous turns
are a1, . . . , ak ∈ N (the same in both models). Then Duplicator picks
〈B, e′〉 such that

ai ∈ A ⇐⇒ ai ∈ B |B| > q |B| even iff e = +

Notice that, by definition of N , the clauses on the cardinality of B
entail that e′ = e.

• If Spoiler plays a quantifier move after the w-move and picks an element
already picked in previous rounds of the game, then Duplicator picks the
corresponding element in the other model. On the other hand, if the element
picked is fresh, say the element n of M, then Duplicator picks an element
n′ such that n ∈ A iff n′ ∈ B. This is always possible since either A = B;
or |A| , |Ac| , |B| , |Bc| > q and at most q quantifier moves can be performed
during a run of the game.

Call a1, . . . , ak the elements picked before the w-move (the same in both models);
d1, . . . , dq−k the elements picked in M after the w-move; and d′1, . . . , d

′
q−k the

elements picked in N after the w-move. It remains to show that this is a winning
strategy for Duplicator.

• Since we choose e′ = e when performing the w-move, we have

M, {〈A, e〉} � r ⇐⇒ e = e′ = + ⇐⇒ N , {〈B, e′〉} � r

• By our choice of 〈B, e′〉 in the w-move, we have

M, {〈A, e〉} � P (ai) ⇐⇒ ai ∈ A ⇐⇒ ai ∈ B ⇐⇒ N , {〈B, e′〉} � P (ai)

• Since we imposed this condition in the moves after the w-move, we have

M, {〈A, e〉} � P (di) ⇐⇒ di ∈ A ⇐⇒ d′i ∈ B ⇐⇒ N , {〈B, e′〉} � P (d′i)

Thus the winning condition for Duplicator is met, showing that this is indeed a
winning strategy. 2
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7.3 Deductive System

In this section we present the natural deduction system for the ClAnt fragment
and we study the properties of some special classes of deductively closed theories.

We will focus on languages not containing rigid symbols, that is, on signatures
containing only relational symbols and on either the syntax L6= or L�. The
reason why we restrict our scope to this case is that the rigidity of function
symbols imposes an additional layer of complexity to the proof that the system
is complete for the fragment. We leave the generalization of the results of this
chapter to arbitrary signatures for future work.

7.3.1. Definition (Natural deduction system for ClAnt). For Φ∪{ψ} ClAnt for-
mulas we say that Φ derives ψ in ClAnt (in symbols Φ . ψ) if there is a derivation
of ψ from Φ containing only ClAnt formulas.

Indicate with ` the consequence relation of the system in Figure 2.5. Clearly if
Φ . ψ then Φ ` ψ, but the converse is not true a priori ; for example, it could be
necessary to assume and discharge hypotheses not in ClAnt in every derivation of
ψ from Φ.5

Notice that if we apply a rule in Figure 2.5—with the exception of (→ i)—
to ClAnt formulas, the conclusion produced is again a ClAnt formula. A weaker
version of the introduction rule with this property is the following:
So the relation . can be characterized in terms of the deductive system in Figure
7.2, obtained by replacing the rule (→i) with the rule (ClAnt→i).

To study the properties of this system and the relations with the system
presented in Figure 2.5, we focus on theories of InqBQ and of ClAnt, that is, sets
of formulas in InqBQ and in ClAnt respectively. Since we need to be particularly
careful when handling free variables, we distinguish between open and closed
theories.

7.3.2. Definition. Let Σ be a fixed signature.

• An open Σ-theory is any set Φ of InqBQ formulas in the signature Σ.

• A closed Σ-theory is any set Φ of InqBQ sentences in the signature Σ.

So closed Σ-theories do not contain formulas with free variables, while open Σ-
theories may. It is easy to transform an open theory into a corresponding closed
one, at the cost of adding new constant symbols in the signature. For A a set
of parameters—that we assume disjoint from the set Σ—we define Σ(A) as the
signature extending Σ with the elements of A as fresh constant symbols.

5We will show in Theorem 7.4.3 that Φ . ψ iff Φ ` ψ, and so this kind of scenarios do not
occur.
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∧i
ϕ ψ

ϕ ∧ ψ
∧e

ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

>

i
ϕ

ϕ

>

ψ

ψ

ϕ

>

ψ

>

e
ϕ

>

ψ

[ϕ]

...
χ

[ψ]

...
χ

χ

→i

[α]

...
ψ

α→ ψ

→e
α α→ ψ

ψ

∀i ϕ[y/x]

∀x.ϕ
∀e ∀x.ϕ

ϕ[t/x]

∃i ϕ[t/x]

∃x.ϕ
∃e

∃x.ϕ

[ϕ[y/x]]

...
ψ

ψ

Ex Falsum ⊥
ϕ DNC-rule ¬¬α

α

>
-split

α→ ψ

>

χ

(α→ ψ)

>

(α→ χ)
CD-rule

∀x.(ϕ > ψ)

∀x.ϕ > ψ

∃-split
α→ ∃x.ψ
∃x.(α→ ψ)

�i
t � t

�e
ϕ[t/x] t � t′

ϕ[t′/x]

Figure 7.2: Natural deduction system for ClAnt. The rules containing the equality
symbol � are present only when working with the syntax L�. In (ClAnt→ i), α
ranges over classical formulas; In (→ e), α ranges over classical formulas; In (∀e)
and (∃i), t must be free for x in ϕ; in (∀i), y must not occur free in any undis-
charged assumption; in (∃e), y must not occur free in ψ or any undischarged as-
sumption; in (DNC-rule), α ranges over classical formulas; in (

>

-split), α ranges
over classical formulas; in (∃-split), α ranges over classical formulas and x is not
free in α; in (CD), x must not occur free in ψ.
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ClAnt→i

[α]

...
ψ

α→ ψ

For α classical.

7.3.3. Definition. Let Φ be an open Σ-theory and let V be the set of open
variables appearing in Φ. Consider a set Ṽ := { x̃ |x ∈ V } of distinct formal
parameters. We define the closure of Φ as the closed Σ(Ṽ )-theory Φ̃ obtained by
substituting every free occurrence of the variable x in Φ with x̃, for every x ∈ V .

7.3.4. Proposition. Let Φ ∪ {ψ} be an open Σ-theory. Then6

Φ � ψ ⇐⇒ Φ̃ � ψ̃

The proof consists only in comparing the semantic clauses of the two entailments,
and it is therefore omitted. This proposition allows us to focus our attention on
closed theories and to highlight the role of the parameters in the proofs that follow.
To lighten the notation, from now on we will simply write Σ-theory instead of
closed Σ-theory.

To prove the completeness of the system introduced, we need to study more
in detail three special classes of theories: saturated theories, classically saturated
theories and ClAnt-saturated theories. In what follows, we will indicate with A a
set of constant symbols not appearing in the signature Σ.

7.3.5. Definition (Saturated theory). A Σ(A)-theory Φ is called saturated (w.r.t.
A) if for every pair of sentences ϕ, ψ of Σ(A) it satisfies:

• Coherence: Φ 0 ⊥;
• Deductive closure: if Φ ` ϕ then ϕ ∈ Φ;
• Disjunction property: If Φ ` ϕ > ψ then Φ ` ϕ or ψ ` ϕ;

• Existence property: If Φ ` ∃x.ϕ then Φ ` ϕ[a/x] for some a ∈ A;
• Normality condition: If Φ 0 ∀x.ϕ then Φ 0 ϕ[a/x] for some a ∈ A.

It is fairly easy to produce examples of saturated theories: consider an inquisitive
model M on the signature Σ(A) for which the interpretations of the symbols in
A cover the whole domain, that is, {aM | a ∈ A} = D—henceforth we will call
these models A-covered. Given an information state s, define the theory of 〈M, s〉
as Th(M, s) := {ϕ closed formula of Σ(A) |M, s � ϕ }. It is immediate to show
that Th(M, s) is a saturated Σ(A)-theory. In particular, the existence property
and the normality condition rely on the fact that the model is A-covered.

If we restrict our attention only to classical formulas or ClAnt-formulas, we
can define the corresponding concepts of classically and ClAnt-saturated theories.

6If the set Φ and ψ have a common free variable, let us say x, Φ̃ and ψ̃ are obtained by
substituting the free occurrences of x with the same formal parameter x̃.
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7.3.6. Definition (Classical theories and classically saturated theories). A clas-
sical Σ-theory is a Σ-theory containing only classical formulas.

We say that a classical Σ(A)-theory Γ is classically-saturated (w.r.t. A) if for
every pair of classical sentences α, β of Σ(A) it satisfies:

• Coherence: Γ 0 ⊥;
• Deductive closure: If Γ ` α, then α ∈ Γ;
• Classical disjunction property: If Γ ` α ∨ β then Γ ` α or Γ ` β;
• Classical existence property: If Γ ` ∃x.α then Γ ` α[a/x], for

some a ∈ A.

A simple induction shows that, given Γ∪{α} classical formulas, Γ .α if and only
if α is a consequence of Γ in classical first order logic. From this it easily follows
that the condition corresponding to normality is also satisfied.

Classically saturated theories are examples of Hintikka sets for classical first
order logic (see for example [Hodges, 1993, Section 2.3]). The following is a direct
consequence of [Hodges, 1993, Theorem 2.3.3].

7.3.7. Fact. Every Hintikka set Γ in the signature Σ(A) admits a (first order)
model MΓ with domain A such that each constant a ∈ A is interpreted as itself
in MΓ.

As mentioned, a classically-saturated Σ(A)-theory Γ is a Hintikka set; moreover,
since Γ is also deductively closed, it follows that Γ is complete, that is, for every
sentence ϕ of Σ(A) we either have ϕ ∈ Γ or ¬ϕ ∈ Γ.7 This allows us to give a
concise description of the model MΓ in this particular case.

7.3.8. Lemma. Let Γ be a classical Σ(A)-theory classically-saturated w.r.t. A,
and let MΓ be the unique first order model with domain A such that, for every
atomic sentence p of Σ(A) it holds that MΓ � p iff p ∈ Γ. Then MΓ is an
A-covered model of Γ.

These observations can be restated in terms of classically saturated theories.

7.3.9. Definition (Classical part and ClAnt part of Φ). Let Φ be a theory. The
classical part of Φ (Φ�cl) and the ClAnt part of Φ (Φ�ClAnt), are defined as the set
of classical formulas contained in Φ and the set of ClAnt formulas contained in Φ
respectively.

7.3.10. Corollary.

• Let M be an A-covered model on the signature Σ(A) and w a world of M.
Then Th(M, {w})�cl is a classically-saturated Σ(A)-theory.

7The proof is straightforward: for every sentence ϕ, ϕ∨¬ϕ ∈ Γ (by deductive closure), and
so ϕ ∈ Γ or ¬ϕ ∈ Γ (by classical disjunction property).
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• Let Γ be a classically-saturated Σ(A)-theory. Then there exists a model M
on the signature Σ(A) and a world w of M such that Γ = Th(M, {w})�cl.

If we restrict our attention to A-covered models in the signature Σ(A), Corollary
7.3.10 tells us that classically saturated theories are exactly the classical parts
of theories of singleton information states, that is, states of the form {w}. It is
worth noticing that for an arbitrary information state s, the set Th(M, s)�cl is
not necessarily classically-saturated.

7.3.11. Definition (ClAnt-theories and ClAnt-saturated theories). A ClAnt Σ-
theory is a Σ-theory containing only ClAnt formulas.

We say that a ClAnt Σ(A)-theory Φ is ClAnt-saturated (w.r.t. A) if for every
pair of ClAnt sentences ϕ, ψ of Σ(A) it satisfies:

• Coherence: Φ 7 ⊥;
• Deductive closure: If Φ . ϕ, then ϕ ∈ Φ;
• Disjunction property: If Φ . ϕ

>

ψ then Φ . ϕ or Φ . ψ;

• Existence property: If Φ . ∃x.ϕ then Φ . ϕ[a/x] for some a ∈ A;
• Normality condition: If Φ 7 ∀x.ϕ then Φ 7 ϕ[a/x] for some a ∈ A.

From Definition 7.3.1 it follows readily that, given Φ a saturated Σ(A)-theory, the
subset of its ClAnt formulas is a ClAnt-saturated Σ(A)-theory. The converse—that
every ClAnt-saturated theory can be obtained by restricting a saturated theory
in the whole language—is not as obvious, but surprisingly it is the case.

7.3.12. Theorem. Let Φ be a ClAnt-saturated Σ(A)-theory. Then there exists a
saturated Σ(A)-theory Ψ such that Φ = Ψ�ClAnt.

The rest of this section is devoted to proving this result. Henceforth, given a
ClAnt-theory Φ, we will indicate with Φ its deductive closure w.r.t. .—which is
again a ClAnt-theory.

7.3.13. Lemma. Given Φ a ClAnt-saturated Σ(A)-theory and α a classical sen-
tence such that Φ 7 ¬α, then Φ ∪ {α} is ClAnt-saturated Σ(A)-theory.

Proof:
Let us call Θ := Φ ∪ {α}. Clearly Θ is deductively closed. Moreover it is coherent,
since Φ 7 ¬α iff Φ, α 7 ⊥: the left-to-right implication can be deduced using
the rule (ClAnt → i); the right-to-left implication can be deduced using the rule
(→ e).

So we just need to show that Θ satisfies the disjunction property, the existence
property and the normality condition.
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Disjunction property

Θ . ϕ

>

ψ

=⇒ Φ . α→ ϕ

>

ψ (ClAnt→ i)

=⇒ Φ . (α→ ϕ)

>

(α→ ψ) (

> −split)
=⇒ Φ . α→ ϕ or Φ . α→ ψ Disjunction property of Φ

=⇒ Θ . ϕ or Θ . ψ (→ e)

Existence property
Notice that since α is a sentence, x does not appear free in α.

Θ . ∃x.ϕ
=⇒ Φ . α→ ∃x.ϕ (→ i)

=⇒ Φ . ∃x.(α→ ϕ) (∃ − split)
=⇒ Φ . α→ ϕ[a/x] for some a Existence property of Φ

=⇒ Θ . ϕ[a/x] for some a (→ e)

Normality condition
Notice that since α is a sentence, x does not appear free in α.

Θ . ϕ[a/x] for all a

=⇒ Φ . α→ ϕ[a/x] for all a (ClAnt→ i)

=⇒ Φ . ∀x.(α→ ϕ) Normality condition of Φ

=⇒ Φ . α→ ϕ (∀e)
=⇒ Θ . ϕ (→ e)

=⇒ Θ . ∀x.ϕ (∀i)

Notice that the last passage is justified since Θ is a set of sentences, and conse-
quently x does not appear free in Θ. 2

7.3.14. Lemma. Let Φ,Ψ be two ClAnt-saturated Σ(A)-theories such that Φ�cl =
Ψ�cl. Then Φ = Ψ.

Proof:
We start with a preliminary result: given any Φ and Ψ as in the hypothesis, then
for every classical formula α it holds that (Φ ∪ {α})�cl = (Ψ ∪ {α})�cl. The proof
is straightforward:

β ∈ Φ ∪ {α}
=⇒ α→ β ∈ Φ (→ i)

=⇒ α→ β ∈ Ψ Inductive hypothesis

=⇒ β ∈ Ψ ∪ {α} (→ e)
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Using this technical result, we can show by induction on the length of the ClAnt
sentence θ—intended as the number of symbols appearing in θ—that θ ∈ Φ ⇐⇒
θ ∈ Ψ.
• If θ is an atom, the result follows by hypothesis—atoms are classical formu-

las.
• If θ ≡ ψ ∧ χ, then

θ ∈ Φ

⇐⇒ ψ ∈ Φ and χ ∈ Φ Deductive closure of Φ

⇐⇒ ψ ∈ Ψ and χ ∈ Ψ Inductive hypothesis

⇐⇒ θ ∈ Ψ Deductive closure of Ψ

• If θ ≡ ψ

>

χ, then

θ ∈ Φ

⇐⇒ ψ ∈ Φ or χ ∈ Φ Deductive closure and Disjunction property of Φ

⇐⇒ ψ ∈ Ψ or χ ∈ Ψ Inductive hypothesis

⇐⇒ θ ∈ Ψ Deductive closure and Disjunction property of Ψ

• If θ ≡ α→ ψ, then

θ ∈ Φ

⇐⇒ ψ ∈ Φ ∪ {α} (ClAnt→ i) and (→ e)

⇐⇒ ψ ∈ Ψ ∪ {α} Inductive hypothesis applied to Φ ∪ {α} and Ψ ∪ {α}
⇐⇒ θ ∈ Ψ (ClAnt→ i) and (→ e)

Notice that we can apply the inductive hypothesis to the theories Φ ∪ {α} and
Ψ ∪ {α} by Lemma 7.3.13.
• If θ ≡ ∃x.ψ, then

θ ∈ Φ

⇐⇒ ψ[a/x] ∈ Φ for some a Existence property for Φ

⇐⇒ ψ[a/x] ∈ Ψ for some a Inductive hypothesis

⇐⇒ θ ∈ Ψ Existence property for Ψ

• If θ ≡ ∀x.ψ, then

θ ∈ Φ

⇐⇒ ϕ[a/x] ∈ Φ for all a Normality condition for Φ

⇐⇒ ψ[a/x] ∈ Ψ for all a Inductive hypothesis

⇐⇒ θ ∈ Ψ Normality condition for Ψ
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2

To obtain a result analogous to Corollary 7.3.10, we need to introduce a construc-
tion resembling the canonical models for intuitionistic logic.

7.3.15. Definition (Canonical model). We define the canonical model of Σ(A)
as the model Mc defined by the following clauses:

• The set of worlds is W c, the set of classically-saturated Σ(A)-theories;

• The common domain of the structures is Dc := A;

• The model corresponding to world Γ is MΓ—introduced in Lemma 7.3.8.

A straightforward induction shows that Th(Mc, {Γ})�cl = Γ for every Γ ∈ W c.
From this observation we obtain the following Lemma.

7.3.16. Lemma. Let s ⊆ W c and Γ a classical theory. Then

Mc, s � Γ ⇐⇒ ∀Θ ∈ s. Γ ⊆ Θ

Proof:
For every α ∈ Γ we have

Mc, s � α ⇐⇒ ∀Θ ∈ s. α ∈ Th(Mc, {Θ}) (By Theorem 2.1.18)

⇐⇒ ∀Θ ∈ s. α ∈ Θ

2

Given a coherent classical Σ(A)-theory Θ it is not generally true that there exists
a world of the canonical model satisfying Θ. A simple example, for P a unary
predicate symbol, is Θ := {¬∀x.P (x) } ∪ {P (a) | a ∈ A }. The problem in this
case is that for every theory Γ of a world of the canonical model—that is, by
Lemma 7.3.16, for every classically-saturated Σ(A)-theory Γ—if Γ 0 ∀x.P (x)
then there must be a witness a ∈ A for which Γ 0 P (a).

So the normality condition is necessary for such a world to exist. The following
lemma shows that it is also a sufficient condition.8

7.3.17. Lemma (Classical saturation lemma). Let Θ be a coherent classical Σ(A)-
theory such that for every sentence α in the signature Σ(A) it holds that

Normality condition: Θ 0 ∀x.α =⇒ Θ 0 α, for some a ∈ A.

Then there exists a classically-saturated Σ(A)-theory Γ such that Θ ⊆ Γ.

8Recall that, by Theorem 2.1.17, ` amounts to classical entailment when restricted to
classical formulas.
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Proof:
This proof is an adaptation of the proof by Gabbay [1981, Section 3.3, Theorem
2] for the intuitionistic case.

We start by showing a useful property, that we will later refer to as (∗)-
property: given β a classical sentence of Σ(A), if ∆ is a classical theory that
satisfies the normality condition above then ∆ ∪ {β} also satisfies the condition.
In fact for any classical formula α we have

∆ ∪ {β} ` ∀x.α =⇒ ∆ ` β → ∀x.α
=⇒ ∆ ` ∀x.(β → α)

=⇒ ∆ ` β → α[a/x] for some a ∈ A
=⇒ ∆ ∪ {β} ` α[a/x] for some a ∈ A

Now we go back to the main proof. Fix an enumeration B0, B1, . . . of the classical
sentences in the signature Σ(A). We will define inductively a chain of classical
Σ(A)-theories Γi indexed by N such that:

1. Γi is coherent, that is, Γi 0 ⊥.

2. For every index i, Γi ⊆ Γi+1.

3. For every index i, Γi respects the normality condition.

The plan is to take Γ := ∪i∈NΓi. During the construction we will impose some
additional conditions to ensure Γ to be a classically-saturated Σ(A)-theory. We
start the construction by defining Γ0 := Θ. By hypothesis Conditions 1 and 3 are
satisfied; Condition 2 is trivially satisfied.

Suppose we already defined Γn with the properties above. We proceed by
cases.

• Case Γn 0 ¬Bn and Bn 6= ∃x.α(x). Define Γn+1 := Γn ∪ {Bn}. Condition 1
follows from Γn 0 ¬Bn; Condition 2 is trivially satisfied; Condition 3 follows
from the (∗)-property.

• Case Γn 0 ¬Bn and Bn = ∃x.α(x). Notice that Γn ∪ {∃x.α} 0 ∀x.¬α. So
by Condition 3 and the (∗)-property, there exists a parameter a ∈ A such
that Γn ∪ {∃x.α} 0 ¬α[a/x]. Define Γn+1 := Γn ∪ {Bn, α[a/x]}. Condition
1 follows from Γn 0 ¬Bn and Γn ∪ {Bn} 0 ¬α[a/x]; Condition 2 trivially
holds; Condition 3 follows from the (∗)-property.

• Case Γn ` ¬Bn. Define Γn+1 := Γn. Conditions 1,2 and 3 trivially hold.

Define Γ := ∪i∈NΓi. By Condition 2, Θ ⊆ Γ. So it remains to show that Γ
is classically-saturated. First of all, Γ is coherent since Γ ` ⊥ iff there exists
an index i ∈ N such that Γi ` ⊥, but the latter would contradict Condition 1.
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Moreover Γ is deductively closed, since if Γ ` Bn for some n ∈ N, then Γn 0 ¬Bn

and so Bn ∈ Γn+1 ⊆ Γ.
To show the classical disjunction property, suppose that Γ ` Bm ∨ Bn. This

implies that Γ 0 ¬Bm or Γ 0 ¬Bn; without loss of generality, suppose the former
is the case. Then Γm 0 ¬Bm, and by construction Bm+1 ∈ Γm+1 ⊆ Γ. Finally,
to show the classical existence property suppose that Γ ` ∃x.α and let Bn be
the enumeration of ∃x.α. Then Γ 0 ¬∃x.α, and consequently Γn 0 ¬∃x.α. By
construction, there exists an a ∈ A such that α[a/x] ∈ Γn+1 ⊆ Γ.

This shows that Γ is a classically-saturated Σ(A)-theory as desired. 2

Combining the results above, we can show the connection between ClAnt-saturated
theories and the semantics of the logic.

7.3.18. Theorem. Given Φ a ClAnt-saturated Σ(A)-theory, there exists a state
EΦ of Mc such that for every ClAnt formula ψ of Σ(A):

ψ ∈ Φ ⇐⇒ Mc, EΦ � ψ

Proof:
Define the state EΦ := {Γ ∈ W c | Φ�cl ⊆ Γ } and consider the theory of this state
Ψ := Th(Mc, EΦ). By Lemma 7.3.16, Φ�cl ⊆ Ψ�cl. We would like to show that
also the other inclusion holds.

Fix a classical formula α ∈ Ψ and suppose toward a contradiction that α /∈
Φ�cl. In particular, α is not a consequence of Φ�cl in classical first order logic—since
Φ�cl is classically-saturated. By Lemma 7.3.17, there exists a classically-saturated
Σ(A)-theory Θ such that Φ�cl ⊆ Θ and α /∈ Θ. But this leads to a contradiction,
since we have:

α ∈ Ψ =⇒ ∀Γ ∈ EΦ. α ∈ Γ (by Lemma 7.3.16)
=⇒ ∀Γ ⊇ Φ�cl. α ∈ Γ

So we established that α ∈ Φ�cl, and since α was an arbitrary classical formula in
Ψ, we also established that Ψ�cl ⊆ Ψ�cl.

By Lemma 7.3.14, since Φ�cl = Ψ�cl, we obtain that Φ = Ψ�ClAnt, from which
the result follows. 2

From the previous result, Theorem 7.3.12 follows trivially.

Proof of Theorem 7.3.12:
Consider Ψ := Th(Mc, EΦ). Since Mc is A-covered, Ψ is a saturated Σ(A)-
theory. Moreover, by Theorem 7.3.18, Φ = Ψ�ClAnt, as desired. 2

This result, together with the saturation lemma presented in Section 7.4, leads
to the completeness of the natural deduction system introduced for ClAnt.
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7.4 Completeness

This section is completely devoted to the proof of completeness for the ClAnt frag-
ment. To lighten the proofs of the following lemmas, we introduce the following
notation for inferences with multiple conclusions: let Φ and Ψ be sets of ClAnt
formulas; we write Φ . Ψ to indicate that there exists ψ1, . . . , ψn ∈ Ψ such that
Φ . ψ1

>

. . .

>

ψn or, in case Ψ is empty, that Φ .⊥.

7.4.1. Lemma. Let Φ ∪Ψ ∪ {χ} be a set of ClAnt formulas. If Φ ∪ {χ} .Ψ and
Φ .Ψ ∪ {χ}, then Φ .Ψ.

Proof:
By hypothesis, for some ϕi, ϕ

′
i′ ∈ Φ and ψj, ψ

′
j′ ∈ Ψ, we have9

ϕ1 · · · ϕh χ
T1

ψ1

>

. . .

>

ψk
and

ϕ′1 · · · ϕ′h′
T2

ψ′1

>

. . .

>

ψ′k′

>

χ

Combining the two proofs together we get

ϕ′1 · · · ϕ′h′
T2

ψ′1

>

. . .

>

ψ′k′

>

χ

[ψ′1

>

. . .

>

ψ′k′ ]

ψ1

>

. . .

>

ψk

>

ψ′1

>

. . .

>

ψ′k′

ϕ1 · · · ϕh [χ]
T1

ψ1

>

. . .

>

ψk >

i
ψ1

>

. . .

>

ψk

>

ψ′1

>

. . .

>

ψ′k′ > e
ψ1

>

. . .

>

ψk

>

ψ′1

>

. . .

>

ψ′k′

and thus Φ .Ψ. 2

7.4.2. Lemma (Saturation lemma). Consider Φ∪{ψ} a set of ClAnt formulas in
the signature Σ such that Φ 7 ψ. Consider the objects Ṽ , Φ̃ and ψ̃ as defined
in Proposition 7.3.4. Then given A a countable set of parameters disjoint from
Σ(Ṽ ), there exists a ClAnt-saturated Σ(A ∪ Ṽ )-theory ∆ such that Φ̃ ⊆ ∆ and
ψ̃ /∈ ∆.

Proof:
This proof is an adaptation of the proof by Gabbay [1981, Section 3.3, Theorem
2] for the intuitionistic case.

First of all, by Proposition 7.3.4 we can assume that Φ ∪ {ψ} contains only
sentences, and that we just need to find a ClAnt-saturated Σ(A)-theory ∆ such
that Φ ⊆ ∆ and ψ /∈ ∆. Fix an enumeration B1, B2, . . . of the ClAnt sentences in
the signature Σ(A).10 We will define inductively a chain of pairs of Σ(A)-theories
〈∆i,Θi〉 indexed by i ∈ N such that:

9In the natural deduction proofs that follows we will use a single line for the application of
an instance of a rule; while we will use a double line for a subproof. On the right of a single line
we will write the name of the rule applied; on the right of a double line we will write a label
naming the subproof.

10Notice that this can be done without the use of the Axiom of Choice since we are considering
a countable signature Σ and a countable set A.
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1. ∆i 7 Θi.

2. For every index i, ∆i ⊆ ∆i+1 and Θi ⊆ Θi+1.

3. Bn ∈ ∆n+1 ∪Θn+1.

The plan is to take ∆ := ∪i∈N∆i. During the construction we will impose some
additional conditions to ensure ∆ to be a ClAnt-saturated Σ(A)-theory.

We start the construction by defining 〈∆0,Θ0〉 := 〈Φ, {ψ}〉. By hypothesis
Φ 7 ψ, and so Condition 1 is satisfied; Conditions 2 and 3 are trivially satisfied.

Suppose we already defined 〈∆n,Θn〉 with the properties above. We consider
several cases—notice that Lemma 7.4.1 ensures that this is an exhaustive list,
since we cannot have that ∆n .Θn ∪ {Bn} and ∆n ∪ {Bn} .Θn.

• Case ∆n 7 Θn ∪ {Bn} and Bn 6= ∀x.ϕ(x). In this case we simply define
∆n+1 := ∆n and Θn+1 := Θn ∪ {Bn}. Conditions 1, 2 and 3 follow by
construction.

• Case ∆n 7 Θn ∪ {Bn} and Bn = ∀x.ϕ(x). Consider a fresh parameter
a ∈ A (that is, an element not appearing in ∆n ∪ Θn ∪ {Bn}) and define
∆n+1 := ∆n and Θn+1 := ∆n ∪ {Bn, ϕ(a)}.
Clearly Conditions 2 and 3 are satisfied. Moreover also Condition 1 holds,
i.e. ∆n+1 7 Θn+1; for otherwise, for some δ1, . . . , δh ∈ ∆n and some
θ1, . . . , θk ∈ Θn, we would have:

δ1 · · · δh

θ1

>

. . .

>

θk

> ∀x.ϕ(x)

>

ϕ(a)
∀i∀x.(θ1

>

. . .

>

θk

> ∀x.ϕ(x)

>

ϕ(x))
CD

θ1

>

. . .

>

θk

> ∀x.ϕ(x)

> ∀x.ϕ(x)

So in particular ∆n .Θn ∪ {Bn}, which is a contradiction.

• Case ∆n ∪ {Bn} 7 Θn and Bn 6= ∃x.ϕ(x). Define then ∆n+1 := ∆n ∪ {Bn}
and Θn+1 := Θn; clearly Conditions 1, 2 and 3 are satisfied.

• Case ∆n ∪ {Bn} 7 Θn and Bn = ∃x.ϕ(x). Consider a fresh parameter
a ∈ A (that is, an element not appearing in ∆n ∪ Θn ∪ {Bn}) and define
∆n+1 := ∆n ∪ {Bn, ϕ(a)} and Θn+1 := Θn.

Clearly Conditions 2 and 3 are satisfied. Also Condition 1 holds, for other-
wise:

δ1 · · · δh ∃x.ϕ(x) ϕ(a)
T

θ1

>

. . .

>

θk
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and so

∃x.ϕ(x)

δ1 · · · δh [∃x.ϕ(x)]

[∃x.ϕ(x)]
∃iϕ(a)

T
θ1

>

. . .

>

θk ∃eθ1

>

. . .

>

θk

Thus ∆n ∪ {Bn} .Θn, which is a contradiction.

Thus we built the sequence 〈∆i,Θi〉 for i ∈ N. Define ∆ := ∪i∈N∆i and Θ :=
∪i∈NΘi. We would like to show that ∆ is ClAnt-saturated, that Φ ⊆ ∆ and that
ψ /∈ ∆.

First of all, notice that Φ ⊆ ∆0 ⊆ ∆. Moreover by Condition 1 and 2 we have
∆ 7 Θ, for otherwise there would be a finite n such that ∆n .Θn. Consequently
ψ ∈ Θ0 ⊆ Θ, and so ψ /∈ ∆. What is left to show is that ∆ is ClAnt-saturated.

By Condition 3, we have that every sentence in ClAnt is an element of ∆∪Θ;
by Condition 1 and 2, ∆ 7 Θ. These two conditions (together with Θ 6= ∅) ensure
that ∆ is deductively closed and ⊥ /∈ ∆.

As for the Disjunction property, suppose ∆.ϕ

>

ψ. By contradiction, assume
ϕ, ψ /∈ ∆, which in turn implies ϕ, ψ ∈ Θ. In particular we would have ∆ . Θ,
which is a contradiction; thus at least one among ϕ and ψ has to be in ∆.

For the Existence property, suppose ∃x.ϕ(x) ∈ ∆. Let Bn = ∃x.ϕ(x) be the
enumeration given to this sentence. Since Bn ∈ ∆n+1 ∪ Θn+1 (Condition 3) and
Θn+1 ∩∆ ⊆ Θ ∩∆ = ∅, it follows that Bn ∈ ∆n+1. In particular, following the
inductive construction presented above, we have that ∆n+1 := ∆n ∪ {Bn, ϕ(a)}
for some a ∈ A. So in particular we have ϕ(a) ∈ ∆n+1 ⊆ ∆. Since ∃x.ϕ(x) is an
arbitrary existential sentence, it follows that ∆ has the existence property.

The normality condition follows from considerations completely analogous to
the one in the previous paragraph. 2

Using the results we collected so far, we can completely characterize the connec-
tion between the relation . and the relations ` and �.

7.4.3. Theorem. Let Φ ∪ {ψ} be ClAnt formulas. Then it holds that

Φ . ψ ⇐⇒ Φ ` ψ

Proof:
The left-to-right implication follows trivially, since every derivation in the deduc-
tive system for ClAnt is also a derivation for the deductive system for InqBQ.

For the right-to-left implication, we show the contrapositive. Suppose that
Φ 7 ψ. Then by Lemma 7.4.2 there exists a ClAnt-saturated theory ∆ (in an
extended signature) such that Φ ⊆ ∆ and ψ /∈ ∆. By Theorem 7.3.12, there
exists a saturated theory Ψ such that ∆ = Ψ�ClAnt, and so in particular Φ ⊆ Ψ
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and ψ /∈ Ψ. Since Ψ is deductively closed w.r.t. `, it follows that Φ 0 ψ. 2

7.4.4. Theorem (Completeness). Let Φ∪{ψ} be ClAnt formulas. Then it holds
that

Φ � ψ =⇒ Φ . ψ

Proof:
We prove the result by contraposition: suppose that Φ 7 ψ. By Lemma 7.4.2,
given A a countable set of fresh parameters there exists a ClAnt-saturated Σ(Ṽ ∪
A)-theory ∆ such that Φ̃ ⊆ ∆ and ψ̃ /∈ ∆. By Theorem 7.3.18, given Mc the
canonical model for the signature Σ(Ṽ ∪ A), we have Th(Mc, E∆)�ClAnt = ∆.
Thus in particular Mc, E∆ � Φ̃ and Mc, E∆ 6� ψ̃.

Define the assignment g : V → D such that g(x) = (x̃)M. An easy induction
shows that, for every formula χ in the signature Σ with free variables in V we
have Mc, E∆ �g χ iff Mc, E∆ � χ̃. In particular, it follows that Mc, E∆ �g Φ
and Mc, E∆ 2g ψ. Thus Φ 6� ψ. 2

7.5 Conclusions

In this chapter we defined and studied the classical antecedent fragment ClAnt of
inquisitive first order logic. In particular, we considered two problems regarding
the fragment: how to capture its expressive power and how to axiomatize it. To
address the former, we developed a variation of the Ehrenfeucht-Fräıssé game
introduced in Chapter 4 and showed that we can characterize in game-theoretic
terms support-equivalence restricted to ClAnt formulas. And to address the latter,
we defined a natural deduction system based on the one proposed by Ciardelli
[2016, Section 4.6] and proved its strong completeness with respect to support
semantics restricted to ClAnt. The completeness proof proposed strongly relies
on the connections of InqBQ with classical and intuitionistic first order logics: for
example, to carry on the proof we needed to strengthen the folklore saturation
lemma for CQC (Lemma 7.3.17); and we needed to adapt the saturation lemma
for the logic CD to the inquisitive setting (Lemma 7.4.2).

A natural question which we did not address in this chapter is whether a
similar proof can be used to study the entailment relation of InqBQ. For example,
it is hard to say whether Lemma 7.3.14—one of the key results—generalizes to
the full language, that is, whether if two saturated theories containing the same
classical formulas coincide. If that were the case we would obtain a completeness
proof for the whole language simply by adapting the one presented in this chapter.

Another interesting observation is that we can define a hierarchy of fragments
of InqBQ in the same spirit as ClAnt. Define recursively ClAntn as follows: ClAnt0
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is the fragment comprised by all and only classical formulas (i.e., ClAnt0 is sim-
ply CQC); and ClAntn is defined by restricting formulas in the antecedent of an
implication to range only over formulas of ClAntn−1.

ClAnt0 ϕ0 ::= ⊥ | p | ϕ0 ∧ ϕ0 | ϕ0 → ϕ0 | ∀x.ϕ0

ClAntn ϕn ::= ϕn−1 | ϕn ∧ ϕn | ϕn

>

ϕn | ϕn−1 → ϕn | ∀x.ϕn | ∃x.ϕn

In particular, under this definition ClAnt coincides with ClAnt1. Adapting the
completeness proof presented in this chapter to the fragments ClAntn would be a
first step towards a completeness result for the whole language. Moreover, since
every formula of InqBQ belongs to some of these fragments, axiomatizing the
entailment relation restricted to every ClAntn would give a weak completeness
result for InqBQ.





Chapter 8

Finite-Width Inquisitive Logics and
Bounded-Width Fragment

As anticipated in Chapter 7, we are now going to study the axiomatization prob-
lem for the family of finite-width inquisitive logics and the bounded-width frag-
ment.

Finite-width inquisitive logics were already introduced by Sano [2011] as a
hierarchy approximating inquisitive first order logic. The idea to define these
logics is rather simple: instead of considering arbitrary information models, we
consider only models with at most n worlds for n ∈ N a fixed natural number.
Sano noticed that this hierarchy is the first order version of the inquisitive hier-
archy by Ciardelli [2009, Chapter 4], a chain of propositional logics 〈InqBn〉n∈N
which approximates inquisitive propositional logic: InqB =

⋂
n∈N InqBn. An open

question left by Sano [2011] is whether the first order hierarchy he presents ap-
proximates inquisitive first order logic, in analogy with the propositional case: as
we will show, this is not the case. As a direct consequence of this fact, we obtain
that the logic InqBQ cannot be characterized only in terms of information models
with finitely many worlds.

Among the finite-width inquisitive logics we find a first order version of the
pair semantics by Groenendijk and Stokhof [1984], obtained for n = 2. Sano
axiomatized the latter by adapting the canonical model completeness technique
for first order intuitionistic logic with constant domain outlined in [Gabbay et al.,
2009, Section 7.2]. However he did not attempt to tackle the axiomatization
problem for the other logics in the hierarchy, leaving it as an open question. In
this chapter we will present an alternative completeness proof which adapts to
any logic in the hierarchy, thus giving a positive answer to Sano’s problem.

Finally, the chapter also treats the bounded-width fragment of InqBQ, char-
acterized by a rather interesting property, analogous to the finite model property
from modal logic and coherence from Dependence logic [Kontinen, 2010]: if a for-
mula of the fragment is not supported by an information state s, then there exists
a finite subset of s which still does not support the formula. This rather peculiar

133
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property allows us to derive interesting properties of the fragment, building on
the novel completeness result for the finite-width inquisitive logics.

8.1 A Hierarchy of Inquisitive Logics

As mentioned above, we are interested in studying the hierarchy proposed by
Sano [2011], comprised of the logics of the classes of information models with a
finite and bounded number of worlds. Let us start by introducing these classes
of models and the hierarchy.

8.1.1. Definition. Given a cardinal λ, define the classes of information models:

M<λ :=
{
M
∣∣∣ ∣∣WM∣∣ < λ

}
Mλ :=

{
M
∣∣∣ ∣∣WM∣∣ ≤ λ

}
We indicate with InqBQ<λ the logic of the class M<λ and with InqBQλ the logic
of the class Mλ.

1

So InqBQ<λ and InqBQλ are the logics of inquisitive models with strictly less than
λ worlds and with at most λ worlds respectively. Notice that InqBQλ = InqBQ<λ+1

and that whenever λ < κ we have Mλ ⊆ Mκ and consequently InqBQ<λ ⊇
InqBQ<κ.

The propositional counterpart of this hierarchy has been defined and studied
by Ciardelli [2009, Chapter 4]: the logic InqBn for n ∈ N is defined as the logic
of propositional information models with at most n worlds. The propositional
hierarchy has been studied quite thoroughly in the literature: an explicit axiom-
atization has been given for all its elements [Ciardelli, 2009, Theorem 4.2.2]; they
form a strict chain, that is, InqBn ) InqBn+1 [Ciardelli, 2009, Proposition 4.1.8];
and their intersection coincides with InqB [Ciardelli, 2009, Corollary 4.1.6].

InqB1 ) InqB2 ) . . . )
⋂
n∈N

InqBn = InqB

In analogy with the propositional case, Sano [2011] introduces only the logics
InqBQn for n a natural number: we will call these logics the finite-width inquisitive
logics. A natural question to ask is whether the chain 〈InqBQn〉n∈N respects
the same properties as its propositional counterpart. The rest of this section is
dedicated to study this problem, and we start by proving a useful technical result
that will accompany us for the rest of the chapter.

1In what follows we use the classes M<λ (resp., Mλ) of models whose essential cardinality is
strictly smaller than λ (resp., at most λ). This class is defined in terms of cardinality, and not
in terms of essential cardinality. However the logic of the class does not depend no this choice:
in fact the essential quotients of the elements of the former and the essential quotients of the
elements of the latter are the same, and so by Lemma 3.1.4 they generate the same logics.
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8.1.2. Definition. Given an information model M and an info state s, the
essential cardinality of s relative to M is2

|s|Me := | { [w]≈e | w ∈ s } |

WhenM is clear from the context, we will simply write |s|e omitting the model.

8.1.3. Lemma. Let Σ be a signature containing only finitely many relation sym-
bols. Let R1, . . . , Rl be all the non-rigid symbols of the syntax.3 Consider the
formulas recursively defined as follows:4

C1 := ∀x.
l∧

j=1

?Rj(x) Cn+1 := ∃x.
n

\
∨
i=1

l

\
∨
j=1

[
(Rj(x)→ Ci)∧(¬Rj(x)→ Cn+1−i)

]
Then for every model M and information state s it holds that

M, s � Cn iff |s|e ≤ n

Notice that the hypothesis that Σ only finitely many relational symbols is neces-
sary for the formulas Cn to be well defined.

Proof:
We prove this result by strong induction on n. For the base case for n = 1, by
expanding the definition of C1 we obtain

M, s � C1

m
For all j ∈ {1, . . . , l} , for all d ∈ DAr(Rj), for all w ∈ W, d ∈ (Rj)w or d /∈ (Rj)w

which amounts to saying that the extension of all the non-rigid symbols of the
syntax is the same in every world; or in other terms, that all the models Mw for
w ∈ s coincide. By definition of ≈e, it follows there is a unique ≈e-equivalence
class, that is, |s|e = 1.

For the inductive step, fix a modelM and a state s. Firstly, suppose the model
satisfies Cn. Then there exists an index j ∈ {1, . . . , l}, a sequence d ∈ DAr(Rj)

and a value k ∈ [1, n − 1] such that M, s � Rj(d) → Ck and M, s � ¬Rj(d) →
Cn−k. If we define s+ :=

{
w ∈ s | d ∈ (Rj)w

}
and s− :=

{
w ∈ s | d /∈ (Rj)w

}
,

2The relation ≈e was introduced in Definition 3.1.1.
3That is, either all the relation symbols in Σ, if we are working in the syntax L 6= or L=; or

all the relation symbols in Σ and the equality symbol �, if we are working in the syntax L�.
4To lighten the notation, in the following formulas we indicate with ∀x (resp., ∃x) the string

of quantifiers ∀x1. . . .∀xk (resp., ∃x1. . . .∃xk) where k = max {Ar(R1), . . . ,Ar(Rl)}; and with

Rj(x) the formula Rj

(
x1, . . . , xAr(Rj)

)
.
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by the inductive hypothesis the two conditions are equivalent to |s+|e ≤ k and
|s−|e ≤ n− k. And since s = s+ ∪ s−, it follows that |s|e ≤ n as wanted.

Secondly, suppose |s|e ≤ n. If |s|e = 1, notice that by inductive hypothesis
M, s � Cj for j ≤ n−1, and so the formula Cn is trivially supported. So suppose
that |s|e > 1, that is, that there exists an inde j ∈ {1, . . . , l}, a sequence of
elements d ∈ DAr(Rj) and two worlds w,w′ ∈ s such that d ∈ (Rj)w \ (Rj)w′ .
Defining s+ and s− as above, it follows that w ∈ s+ \ s− and w′ ∈ s− \ s+, and so
|s+|e ≥ 1 and |s−|e ≥ 1.

Since all the worlds of s+ support Rj(d) and all the worlds of s− do not, worlds
from s+ and worlds from s− belong to different ≈e-equivalence classes. It follows
that n = |s|e = |s+|e + |s−|e, and together with the previous results we have
|s+|e , |s−| ∈ {1, . . . , n− 1}. If we define k := |s+|, by inductive hypothesis we
obtain M, s � Rj(d) → Ck and M, s � ¬Rj(d) → Cn−k, from which M, s � Cn

easily follows.

2

Using Lemma 8.1.3 we can already show that the logics InqBQn are pairwise
distinct.5

8.1.4. Proposition. InqBQn ) InqBQn+1.

Proof:
Since Mn ⊆ Mn+1, we have InqBQn ⊇ InqBQn+1. To show that the containment
is strict notice that, by Lemma 8.1.3, Cn is satisfied by all the models in Mn and
not by all the models in Mn+1. Consequently we have Cn ∈ InqBQn\ InqBQn+1. 2

The next question we tackle is whether the intersection of this chain is the logic
InqBQ—this was left as an open problem by Sano [2011]. We show that the
answer is negative, that is, there are formulas not valid in InqBQ that admit only
counterexamples with infinitely many worlds.

8.1.5. Proposition.
⋂
n∈N InqBQn = InqBQ≤ℵ0

( InqBQ.

To prove this proposition, we need another technical result.

8.1.6. Definition (P -chains). Let M be an information model in a signature
Σ containing a unary predicate symbol P . Consider the preorder � defined over
the worlds of M as follows:

w � w′ iff Pw ⊆ Pw′

We call M a P -chain if the relation � is a total preorder.
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w0 w1 w2 · · ·
a0

a1

a2

...
...

...
...

· · ·

Figure 8.1: An example of P -chain. In this case we have wi � wj iff i ≤ j and so
it is a total (pre)order.

An example of P -chain is presented in Figure 8.1. The proof of Proposition 8.1.5
that we are going to give relies on the fact that the class of P -chains is definable
by inquisitive formulas, as we show in the following lemma.

8.1.7. Lemma. Consider the formula

Pc := ∀x, y. [ (P (x)→ P (y))

>

(P (y)→ P (x)) ] .

Let M be a model in a signature Σ containing the unary predicate P . Then the
formula Pc is satisfied by an information state s iff M|s is a P -chain.

Proof:
Firstly, suppose that M, s 2 Pc. Let a, b be elements such that M, s 2 P (a) →
P (b) andM, s 2 P (b)→ P (a). Since both are classical formulas and consequently
truth-conditional formulas (Theorem 2.1.18), it follows that there exist two worlds
w,w′ such that

M, {w} � P (a) M, {w} 2 P (b) M, {w′} 2 P (a) M, {w′} � P (b)

or equivalently

a ∈ Pw b /∈ Pw a /∈ Pw′ b /∈ Pw′ (8.1)

In particular, w and w′ are incomparable under � and so M|s is not a P -chain.
Secondly, suppose that M|s is not a P -chain. So there exist two incompara-

ble worlds w,w′ under �; which in turns means there exist two elements a, b for
which the relations in 8.1 hold. From this it easily follows that M, s 2 Pc. 2

We are now ready to prove Proposition 8.1.5.

Proof of Proposition 8.1.5:
We prove this result only for the syntax L6= and for models in the signature

5This was already proved by Sano [2011] generalizing the approach for propositional logic
used in [Ciardelli, 2009, Proposition 4.1.8].
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Σ = {P}, but the proof can be easily generalized to and arbitrary syntax and an
arbitrary signature containing at least one relation symbol.6

Consider the formula ψ := Pc → ∃x.[P (x) → C1]. We want to show that
ψ ∈ InqBQ<ℵ0

\ InqBQ. ψ is not a valid formula of InqBQ, since the model in
Figure 8.1 is a counterexample. So it remains to show that ψ ∈ InqBQ<ℵ0

, that
is, that ψ is valid on models with finitely many worlds.

Consider a modelM and suppose that |W | < ℵ0. Given a non-empty state t ⊆
W such thatM, t � Pc, by Lemma 8.1.7M|t is a P -chain. To make the following
passages easier to follow, we will assume that the relation � corresponding toM|t
is a total order (meaning that � is also anti-reflexive), but the same proof applies
to the general case with minor changes.

We have two cases: either |t| = 1 or |t| ≥ 2. In the former case we have
M, t � C1, and consequently M, t � ∃x.[P (x)→ C1].

In the latter case, since |t| ≤ |W | < ℵ0, the total order � admits a maximum
w and a second greatest element w′; pick an arbitrary d ∈ Pw \Pw′ . By definition
of �, it follows that w is the only world in t for whichM, {w} � P (d), and so in
particular M, t � ∃x.[P (x)→ C1]. So in both cases we have M, t � ∃x.[P (x)→
C1].

Since t was an arbitrary substate of W , it follows that M � ψ. 2

This result shows that there is a difference between the propositional hierarchy
and its first order version proposed by Sano [2011]. The propositional logics
InqBn approximate InqB, meaning that the formulas refuted by InqB are exactly
the formulas refuted by some InqBn; and as we saw in Proposition 8.1.5, this is
not the case for the finite-width inquisitive logics, since there are formulas refuted
by InqBQ and valid for every InqBQn. However, if we consider the generalized
hierarchy from Definition 8.1.1 instead of the finite-width inquisitive logics, we
regain this approximation result.

8.1.8. Proposition. There exists a cardinal λ > ℵ0 such that InqBQ = InqBQλ.

Proof:
Let {ϕα|α < ρ} be an enumeration of the non-valid formulas in the signature Σ,
for ρ a suitable cardinal. For every ϕα we can find an information modelMα such
thatMα 2 ϕα; let λα = |WMα|. If we define λ = sup(λα|α < ρ), we have that all
the models Mα are in the class Mλ and consequently {ϕα|α < ρ} ∩ InqBQλ = ∅,
that is, InqBQ = InqBQλ.

7 2

6Notice that if we work only with rigid symbols (i.e., either in the syntax L 6= or L=, and
without relation symbols in the signature) then information models are required to contain only
instances of the same classical first order model. In this case the result trivially follows and,
more interestingly, the support semantics boils down to the usual semantics of CQC.

7A priori this proof depends on the signature Σ considered. But since any formula con-
tains only finitely-many symbols from Σ, the maximum value of λ is reached for any signature
containing infinitely-many relation and function symbols of every arity.
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Axioms and rules of IQC (Figure 2.6)

Additional schemata

CD schema: ∀x.(ϕ > ψ)→ ϕ

> ∀x.ψ for x not free in ϕ
H2 schema: ϕ

>

(ϕ→ ψ

> ¬ψ)
W2 schema: (ϕ→ ψ)

>

(ψ → ϕ)

>

((ϕ→ ¬ψ) ∧ (ψ → ¬ϕ))
DNC formulas: ¬¬α→ α for α classical

Figure 8.2: Hilbert-style axiomatization for InqBQ2 proposed by Sano [2011]. In
the original source Sano treats a syntax without equality, thus the axioms for
identity are not required.

This leaves us with the question of what is the minimal λ such that InqBQ =
InqBQλ. For example we could have InqBQ = InqBQℵ0

, the logic of models with
countably-many worlds (recall we only showed that InqBQ 6= InqBQ<ℵ0

). Another
natural question is what logics in this chain are axiomatizable. As of now there
are no results regarding these logics. We leave these issues open, with the hope
to address them in future research.

We briefly recap the results of the current section—and what is still not
known—with the following expression.

CQC = InqBQ1 ) InqBQ2 . . . ) InqBQ<ℵ0
) InqBQℵ0

?
= InqBQ<λ = InqBQ

8.2 Axiomatizing the Finite-Width Inquisitive

Logics

In this section we consider the axiomatization problem for the finite-width in-
quisitive logics. As we did for the completeness results of Chapter 7, we focus
only on the languages not containing rigid symbols, that is, on signatures con-
taining only relational symbols and on either the syntax L 6= or L�. We leave
the generalization of the results of this chapter to arbitrary signatures for future
work.

Sano [2011, Subsection 2.2] gave an axiomatization of InqBQ2, which we re-
port in Figure 8.2. This axiomatization is particularly simple and elegant and it
highlights the essential features of the CD-models corresponding (through Lemma
2.2.8) to the elements in M2. However it does not seem easy to adapt this ax-
iomatization to the other finite-width inquisitive logics, and in fact this is left as
an open problem by Sano [2011].

To tackle this issue, we propose an alternative approach to the problem. We
define a Hilbert-style system HInqBQn parametric in n and show that this is
strongly complete for the logic InqBQn. The system is derived from the variation
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Axioms and rules of IQC (Figure 2.6)

Additional schemata

CD schema: ∀x.(ϕ > ψ)→ ϕ

> ∀x.ψ for x not free in ϕ
KP schema: (¬ϕ→ ψ

>

χ)→ (¬ϕ→ ψ)

>

(¬ϕ→ χ)

UP schema: (¬ϕ→ ∃x.ψ)→ ∃x.(¬ϕ→ ψ) for x not free in ϕ
KF schema: ¬¬∀x.ϕ(x)→ ∀x.¬¬ϕ(x)
DNC formulas: ¬¬α→ α for α classical

Identity axioms: ∀x.∀y. x � y ∀x.∀y.( (x � y) ∧ ϕ(x)→ ϕ(y) )

Cn:

 ∀x.
∧l
j=1?Rj(x) if n = 1

∃x. > n−1
i=1

> l
j=1

[
(Rj(x)→ Ci) ∧ (¬Rj(x)→ Cn−i)

]
otherwise

Figure 8.3: Hilbert-style axiomatization for InqBQn. The formula Cn was intro-
duced in Lemma 8.1.3.

of the one proposed by Ciardelli for InqBQ (Figure 2.6) and can be found in Figure
8.3. HInqBQn is obtained simply by adding to the proposed axiomatization for
InqBQ the formula Cn (so we are not adding a schema, only a single formula).

Let us point out some peculiarity of the system HInqBQn. Firstly, the system
itself depends on the syntax considered. In fact the definition of the formula Cn

(given in Lemma 8.1.3) depends on the non-rigid symbols present in the signature
and on the presence of the non-rigid equality �. Secondly, since the formulas Cn

are not defined for a signature containing infinitely many non-rigid symbols, then
the system itself is not defined for arbitrary signatures. Whether the axiomatiza-
tion method presented in this chapter can be generalized to arbitrary signatures
remains an open problem.

Let us indicate with `n the consequence relation of the system HInqBQn and
with �n the entailment of the logic InqBQn. In particular Φ �n ψ means that for
every model M ∈ Mn, if M � ϕ for every ϕ ∈ Φ then M � ψ. The rest of the
section is dedicated to prove the following completeness theorem:

8.2.1. Theorem. The system HInqBQn is strongly complete for InqBQn, that is,
for every set of formulas Φ ∪ {ψ} it holds that

Φ 0n ψ =⇒ Φ 2n ψ

Our strategy to prove Theorem 8.2.1 consists of three steps. Firstly, in Subsection
8.2.1 we will show that the completeness problem for HInqBQn can be restated
in terms of superintuitionistic logics. In particular, the saturated theories of
HInqBQn coincide exactly with some saturated theories of the superintuitionistic
logic CD + KF + KP + UP meeting some additional requirements. Secondly, in
Subsection 8.2.2 we will focus on the superintuitionistic logic mentioned above,
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and in particular on its constant domain canonical model KcA [Gabbay et al., 2009,
Section 7.2]. To be more precise, we will study the portion of KcA comprised of
theories of HInqBQn and show that the point-generated submodels of this portion
are actually P0 -CD-models, that is, CD-models corresponding to information
models (recall Lemma 2.2.9). Finally, in Subsection 8.2.3 we will apply the results
from the previous steps to show the completeness of HInqBQn.

8.2.1 Connection with CD + KF + KP + UP

For brevity, let us indicate the superintuitionistic logic CD+KF+KP+UP simply
with L. Notice that in the definition ofHInqBQn the axiomatic schemata required
to be closed under arbitrary substitutions (so excluding DNC) are exactly CD, KF,
KP and UP. So the choice of working with this logic to study the properties of
HInqBQn should not come as a surprise. In fact, the following result shows exactly
the connection between this superintuitionistic logic and the axiomatic system in
Figure 2.6.

Let `L be the consequence relation of the logic L. Given a set of sentences
Φ, let Φ`L be its deductive closure w.r.t. `L and let Φ` be its deductive closure
w.r.t. `.8

8.2.2. Lemma. Given Φ a set of sentences in the signature Σ(A), the following
identity holds:

Φ` = (Φ ∪ DNCA)`L

where DNCA is the set of instances of the schema DNC in the signature Σ(A).

The proof follows trivially from the definitions of `L and `; the details are left
to the reader. This result taken on its own is not particularly relevant, but it
has some really interesting consequences for the axiomatization problem, as the
following corollary shows.

8.2.3. Corollary. Theorem 8.2.1 is equivalent to the following condition:

Suppose that Φ is a theory containing every instance of the schema DNC and
the formula Cn. Moreover suppose that Φ 0L ψ for a certain formula ψ. Then
Φ 2n ψ.

Proof:
We restate the condition above in an equivalent form: for an arbitrary set of
formulas Φ it holds that

ψ /∈ (Φ ∪ DNCA ∪ {Cn})`L ⇒ Φ 2n ψ

8Recall that ` indicates the consequence relation of the deductive system in Figure 2.6.
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In turn, by Lemma 8.2.2 and the definition ofHInqBQn this condition is equivalent
to

Φ 0n ψ ⇒ Φ 2n ψ

which is exactly the statement of Theorem 8.2.1. 2

So the completeness problem for the system HInqBQn boils down to showing
a property of `L in connection with the semantics of InqBQn. This does not
seem a great step ahead in the proof, but it has a major consequence: it allows
us to borrow techniques to show completeness of a system from the theory of
superintuitionistic logic, and in particular the canonical model technique.

We will develop this aspect in the next Subsection, but for now let us show
another auxiliary result using the correspondence in Lemma 8.2.2. In particular,
we will now focus on L-saturated theories.

8.2.4. Definition (L-saturated theory). Let A be an infinite set of parameters.
A Σ(A)-theory Φ is called L-saturated (w.r.t. A) if for every sentences ϕ, ψ of
Σ(A) it satisfies:

• Coherence: Φ 0L ⊥;
• Deductive closure: if Φ `L ϕ then ϕ ∈ Φ;
• Disjunction property: If Φ `L ϕ

>

ψ then Φ `L ϕ or ψ `L ϕ;

• Existence property: If Φ `L ∃x.ϕ then Φ `L ϕ[a/x] for some a ∈ A;
• Normality condition: If Φ 0L ∀x.ϕ then Φ 0L ϕ[a/x] for some a ∈ A.

We will indicate with ST(A) the set of L-saturated theories.

As we will see in the next subsection, L-saturated theories are the points of the
canonical model for the logic L. Connecting these theories with saturated theories
(Definition 7.3.5) is another key to use the canonical model to study the system
HInqBQn. This is exactly what we achieve with the following lemma.

8.2.5. Lemma. Given Φ a set of formulas of Σ(A), the following are equivalent:

1. Φ is a saturated theory (Definition 7.3.5);

2. Φ contains every instance of the schema DNC and it is a L-saturated theory.

This result follows trivially from Lemma 8.2.2 and the definitions of saturated
theory and of L-saturated theory; the details are left to the reader.

8.2.2 Constant Domain Canonical Model

Lemmas 8.2.2 and 8.2.5 allow us to study the consequence relation ` of inquisitive
logic using the consequence relation `L of the logic L. In particular, we can
employ the constant domain canonical model KcA for the logic L to study the
properties of `. Let us recall the definition and the main properties of KcA.
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8.2.6. Definition. Given an infinite set of parameters A, the canonical model
with constant domain for L over A is the CD-model9

KcA := 〈 ST(A), ⊆, A, IcA, � 〉

where:

• ST(A) is the set of L-saturated theories (Definition 8.2.4);

• The interpretation of the relation and equality symbols is defined by the
following clauses:

R
KcA
Φ (a1, . . . , an) iff R(a1, . . . , an) ∈ Φ

a �K
c
A

Φ b iff a � b ∈ Φ

8.2.7. Theorem ([Gabbay et al., 2009, Theorem 7.2.6]). For every L-saturated
theory Φ, every sequence of elements a1, . . . , an ∈ A and every formula ψ(x1, . . . , xn),
it holds that

KcA,Φ  ψ(a1, . . . , an) iff ψ(a1, . . . , an) ∈ Φ

8.2.8. Lemma (Saturation lemma [Gabbay et al., 2009, Lemma 7.2.3]). Consider
a theory Φ ∪ {ψ} in the signature Σ such that Φ 0L ψ. Then there exists an A-
saturated theory ∆ in the signature Σ(A) such that Φ ⊆ ∆ and ψ /∈ ∆.

The lemmas above are the cornerstone of the canonical model technique. Com-
bining them, we can show that every non-derivation Φ 0L ψ is witnessed by a
point of KcA: we just need to apply Lemma 8.2.8 to obtain a theory ∆ ∈ ST(A)
extending Φ and not containing ψ; and consequently Theorem 8.2.7 ensures that
∆ (seen as a point of the canonical model) forces all the formulas in Φ and does
not force ψ. So this results allow to show that the consequence relation `L and
the entailment relation  restricted to models of the logic L actually coincide.

However our current aim is not to study the relation , but the relation �n.
Following the intuition given by Corollary 8.2.3, we will focus on some special
theories belonging to KcA, that is, we will focus on the theories containing all the
instances of the schema DNC and the formula Cn.

As we will show in this subsection, the part of the canonical model comprised
of these theories has a rather peculiar shape: all its point-generated submodels
are negative P0 -CD-models, which in turn correspond to inquisitive models by
Lemma 2.2.9. This property allow us to relate the consequence relation `L and
the entailment relation �n.

9Recall that CD-models are defined in Chapter 3, Definition 2.2.1.
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The strategy to prove this consists in collecting information on the shape
of this portion of the canonical model: what are the theories corresponding to
endpoints, how many endpoints has a theory among its successors, and so on.
Once we have collected enough information, we can prove the key lemma, turning
this cacophony of results into the right harmony to prove completeness.

Let us start with a folklore result, telling us what theories correspond to the
endpoints of KcA.

8.2.9. Lemma. Consider a theory Φ ∈ ST(A). Then Φ is an endpoint of KcA iff
Φ is classically saturated.10

This is a well known result in the literature, which follows easily from Theorem
8.2.7; we omit the proof for brevity.

If we focus on the part of the canonical model which satisfies the schema DNC,
we can infer more results about endpoints of the model. For example, this part
of the canonical property satisfies the so called McKinsey property : every point
of KcA that satisfies the schema DNC has an endpoint among its successors.

8.2.10. Corollary. Let Φ ∈ ST(A) be a theory satisfying every instance of the
axiom DNC. Then one of the successors of Φ is an endpoint of KcA.

Proof:
Given a formula ϕ, define ϕcl as the formula obtained substituting every instance
of the symbols

>

and ∃ in ϕ with their classical analogue ∨ and ∃ respectively.
Given a set of formulas Θ, define Θcl :=

{
ϕcl | ϕ ∈ Θ

}
. Notice that Θcl is

always a classical theory (in the sense of Definition 7.3.6).
By Lemma 8.2.5, Φ is a saturated theory (in the sense of Definition 7.3.5).

Notice that, since Φ is coherent by hypothesis, then as a direct consequence of
[Ciardelli, 2016, Proposition 4.6.4] also Θcl is coherent.

By Lemma 7.3.17 there exists a classical theory ∆ ⊇ Φcl which is classically
saturated; and by Lemma 8.2.9 ∆ is an endpoint of KcA. In particular, a direct
verification of the semantics clauses for

>

and ∃ shows that ϕ ∈ ∆ iff ϕcl ∈ ∆,
and consequently Φcl ⊆ ∆ implies Φ ⊆ ∆. 2

Let us point out that we basically proved this result in Chapter 7, under the guise
of Lemma 7.3.17. Lemma 8.2.5 is the bridge that allows us to translate this result
in terms of KcA—and to skip a quite tedious proof at that.

The next few results do not focus on whether the points of the canonical model
have endpoints among their successors, but they focus on what endpoints they
have among their successors. Before implementing the strategy, let us start with
a useful definition.

10Classically saturated theories first appear in Definition 7.3.6.
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8.2.11. Definition (E-width). Given a CD-modelK with underlying frame 〈S,≤〉
and a state s ∈ S, we indicate with Es the set of successors of s which are also
endpoints.

Es := { e ∈ S | s ≤ e and e is an endpoint }

The E-width (or endpoint-width) of s is |Es|. The E-width of K is the sup of the
E-widths of its states.

The definition of E-width arises naturally when we consider the correspondence
between P0 -CD-models and information models (Lemmas 2.2.8 and 2.2.9): the
E-width of a P0 -CD-model K is the cardinality of W , the set of worlds of its
corresponding information model.

The following lemma tell us that, as long as we are interested in theories
containing Cn, we can restrict our attention to points of KcA with E-width at
most n.

8.2.12. Lemma. Let Φ ∈ ST(A) be a theory containing every instance of DNC
and the formula Cn. Then Φ has E-width at most n.

Proof:
We prove the result dividing the two cases n = 1 and n > 1. For n = 1, we have
KcA,Φ  C1, that is, for every relation symbol R and elements a1, . . . , aAr(R) ∈ A
we have KcA,Φ  R(a1, . . . , aAr(R)) or KcA,Φ  ¬R(a1, . . . , aAr(R)). This means
that Φ is a classically saturated theory and so an endpoint of KcA by Lemma
8.2.9. It follows that the E-width of Φ is 1.

As for the case n > 1, suppose KcA,Φ  Cn. We are going to find formulas
α1, . . . , αn such that (1) every endpoint of KcA satisfies exactly one among them
and (2) KcA,Φ  αi → C1 for every i ∈ {1, . . . , n}. From these two properties the
conclusion follows easily.

Let us start by expanding the formula Cn in the assumption KcA,Φ  Cn:

KcA,Φ  ∃x.

> n−1
i=1 [(P (x)→ Ci) ∧ (¬P (x)→ Cn−i)]

=⇒ for some a0 ∈ A, for some 1 ≤ k0 ≤ n− 1

{
KcA,Φ  P (a0)→ Ck0

KcA,Φ  ¬P (a0)→ Cn−k0

Notice that every endpoint of EΦ satisfies exactly one among the formulas P (a0)
and ¬P (a0): we define E+

0 to be the set of endpoints that satisfy the former and
E−0 to be the set of endpoints that satisfy the latter. So {E+

0 , E
−
0 } is a partition

of EΦ.
We found two interesting conditions, namely KcA,Φ  P (a0) → Ck0

and
KcA,Φ  ¬P (a0) → Cn−k0

. We need to work with both of them by expand-
ing the definition of Ck0

and Cn−k0
in the respective formulas. To keep track of

the expansion operations we perform, we associate the formula P (a0) → Ck0
to
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E+
0 , the first element of the partition previously defined; and ¬P (a0)→ Cn−k0

to
E−0 , the second element of the partition. Notice that three invariants hold: (a)
each set collects exactly the endpoints satisfying the antecedent of the associated
formula; (b) the sum of the indexes of the subformulas C• appearing in the con-
sequents of the formulas is n; and (c) the formulas associated are all forced in
Φ.

We now focus on the formula P (a0) → Ck0
. If k0 = 1, then by inductive

hypothesis the formula P (a0) is supported by at most one endpoint, which is the
only possible element of E+

0 . In this case we stop the procedure and shift our
attention to the other formula. Otherwise we proceed by expanding the formula
Ck0

in the condition KcA,Φ  P (a0)→ Ck0
.

KcA,Φ  P (a0)→ ∃x. > k0−1
i=1 [(P (x)→ Ci) ∧ (¬P (x)→ Ck0−i)]

⇓(by DNC)

KcA,Φ  ¬¬P (a0)→ ∃x. > k0−1
i=1 [(P (x)→ Ci) ∧ (¬P (x)→ Ck0−i)]

⇓(by UP)

KcA,Φ  ∃x.
(
¬¬P (a0)→ > k0−1

i=1 [(P (x)→ Ci) ∧ (¬P (x)→ Ck0−i)]
)

⇓(by KP)

KcA,Φ  ∃x.
> k0−1

i=1 [(¬¬P (a0) ∧ P (x)→ Ci) ∧ (¬¬P (a0) ∧ ¬P (x)→ Ck0−i)]

⇓(by DNC)

KcA,Φ  ∃x.

> k0−1
i=1 [(P (a0) ∧ P (x)→ Ci) ∧ (P (a0) ∧ ¬P (x)→ Ck0−i)]

⇓(for some a00 ∈ A, k00 ≤ k0)

KcA,Φ  P (a0) ∧ P (a00)→ Ck00
and KcA,Φ  P (a0) ∧ ¬P (a00)→ Ck0−k00

We are in a situation analogous to the previous one. The endpoints in E+
0 satisfy

exactly one among P (a0) ∧ P (a00) and P (a0) ∧ ¬P (a00): we define E+
00 to be the

set of endpoints that satisfy the former and E−00 to be the set of endpoints that
satisfy the latter. Notice that {E+

00, E
−
00, E

−
0 } is a partition of EΦ strictly finer

than {E+
0 , E

−
0 }.

To keep tabs of the expansion operations, we associate to each element of
this partition a different formula: we associate P (a0)∧ P (a00)→ Ck00

to E+
00; we

associate P (a0)∧¬P (a00)→ Ck0−k00
to E+

00; and we already associated ¬P (a0)→
Cn−k0

to E−0 . Notice that the three invariants still hold: (a) each set collects
exactly the endpoints satisfying the antecedent of the associated formula; (b) the
sum of the indexes of the subformulas C• appearing in the consequents of the
formuals is n; and (c) the formulas associated are all forced in Φ.

Because this unpacking procedure maintains invariant (b), we can keep per-
forming it until we obtain a partition {E1, . . . , En} of EΦ such that the formula
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associated to every Ei is of the form αi → C1. By invariant (a) each Ei collects
all and only the endpoints satisfying αi, and so by invariant (c) and inductive
hypothesis each Ei contains at most one endpoint. Since this was a partition of
EΦ, it follows that |EΦ| ≤ n.

2

So, given a theory Φ extending DNC and Cn, we gathered quite some information
on the set EΦ, in particular that it is non-empty and that it contains at most n
points. But we still do not have any information on what happens between Φ
and the points in EΦ. The following lemma sheds some light on this issue.

8.2.13. Lemma (Interpolation). Let Φ ∈ ST(A) be a theory containing every
instance of DNC and the formula Cn. Let E ⊆ EΦ be a non-empty set of endpoints
above Φ. Then there exists a state Θ ∈ ST(A) such that Φ ⊆ Θ and EΘ = E.

We refer to Θ as an interpolant between Φ and E.

Proof:
We start by making some observations on the structure of the successors of Φ. If
E consists of only one point the result follows trivially—just take said point as
Θ; so suppose |E| ≤ 2. Let ∆1, . . . ,∆m with m < n be an enumeration of the
elements of EΦ and suppose (without loss of generality) that E = {∆1, . . . ,∆k}.

As shown in the proof of Lemma 8.2.12, we can find formulas α1, . . . , αm such
that

KcA,∆i  αj iff i = j

By Corollary 8.2.10, Φ and all its successors have an endpoint as a successor. It
follows that for a state Φ′ ⊇ Φ we have

KcA,Φ′  ¬¬(αi1

>

. . .

>

αil) iff EΦ′ ⊆ {∆i1
, . . . ,∆il

}

Define the formulas

β :≡ ¬¬(α1

>

. . .

>

αk) βi :≡ ¬¬(α1

>

. . .

>

αi−1

>

αi+1

>

. . .

>

αn)

By the previous observations, KcA,Φ′  β iff EΦ′ ⊆ E; and KcA,Φ′  βi iff
∆i /∈ EΦ′ .

Now we go back to the proof of the main result. Suppose towards a contradic-
tion that there is no state Θ ⊇ Φ whose set of endpoints is E. It follows that for
every point Φ′ above Φ such that EΦ′ ⊆ E, then there exists i ∈ {1, . . . , k} such
that EΦ′ ⊆ E \ {i}. Restating this in terms of the formulas introduced above, we
have

KcA,Φ  β → β1

>

. . .

>

βk
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On the other hand, since KcA,∆i  β and KcA,∆i 6 βi for every i ∈ {1, . . . , k},
we also have

KcA,Φ 6 (β → β1)

>

. . .

>

(β → βk)

But this leads to a contradiction, since Φ forces all the instances of the schema
KP, and so it follows that

KcA,Φ  (β → β1

>

. . .

>

βk)→ (β → β1)

>

. . .
>

(β → βk)

2

We gathered some interesting information about KcA, that is, given a state Φ
satisfying all the instances of DNC and Cn we have 1 ≤ |EΦ| ≤ n and for every
non-empty subset of EΦ there is an interpolant. So the submodel of KcA generated
by Φ starts to look like a P0 -CD-model. However we still miss an important
piece of the puzzle: whether the interpolants we found are unique. The following
proposition shows exactly this property.

8.2.14. Proposition. Given a finite non-empty set E of endpoints of KcA, there
exists a unique theory Φ satisfying every instance of DNC and such that EΦ = E.
Moreover, this is the theory of an inquisitive model with |E| worlds.

Proof:
We prove first the existence of Φ and then the uniqueness.

Existence: Consider the inquisitive model M with domain A and set of worlds
E, and such that for every relation R ∈ Σ, every ∆ ∈ E and every a, a′, a1,. . . ,
aAr(R) ∈ A it holds that

M, {∆} � R(a1, . . . , aAr(R)) iff R(a1, . . . , aAr(R)) ∈ ∆
M, {∆} � a � a′ iff a � a′ ∈ ∆

Since ∆ is an endpoint of KcA and so a classically saturated theory (Lemma 8.2.9),
it follows that for every formula ϕ it holds that

M, {∆} � ϕ iff ϕ ∈ ∆

Since the domain of M is A (i.e., M is an A-covered model, in the notation of
Chapter 7), it follows that11

Th(M) := { ϕ closed formula of Σ(A) | M � ϕ }

is a state of the canonical model. Moreover M supports every instance of the
schema DNC (Theorem 9.1.5) and, since M has exactly n worlds, it also sup-
ports Cn (Lemma 8.1.3). So by Lemma 8.2.12

∣∣ETh(M)

∣∣ ≤ n, and by persistency

11Th(M) was already introduced in Section 7.3, after Definition 7.3.5. Recall also that
Th(M) is a saturated theory whenever M is an A-covered model.
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(Lemma 2.1.9) for every ∆ ∈ Ewe have Th(M) ⊆ Th(M|{∆}) = ∆. So we can
conclude that E = ETh(M), that is, Th(M) is the theory that we were looking
for.

Uniqueness: We can show by structural induction on ϕ that, if Φ,Φ′ ∈ ST(A)
both satisfy every instance of DNC and EΦ = EΦ′ = E, then ϕ ∈ Φ iff ϕ ∈ Φ′.

The only non-trivial cases are the case of ϕ atomic and the case of ϕ ≡ ψ → χ.
If ϕ is an atomic formula, then we have:

KcA,Φ � ϕ ⇐⇒ KcA,Φ � ¬¬ϕ (by DNC)
⇐⇒ For every ∆ ∈ E, KcA,∆ � ϕ (by Corollary 8.2.10)
⇐⇒ KcA,Φ′ � ¬¬ϕ (by Corollary 8.2.10)
⇐⇒ KcA,Φ′ � ϕ (by DNC)

If ϕ ≡ ψ → χ, we show that if ψ → χ /∈ Φ then ψ → χ /∈ Φ′; the other implication
follows with an analogous proof. Suppose that ψ → χ /∈ Φ, that is, that there
exists a state Θ ⊇ Γ such that

KcA,Θ  ψ KcA,Θ 6 χ

By Lemma 8.2.13, there exists a point Θ′ above Φ′ such that EΘ = EΘ′ . By
inductive hypothesis, it follows that

KcA,Θ′  ψ KcA,Θ′ 6 χ

and consequently that ψ → χ /∈ Φ′.
So we showed that for every ϕ it holds that ϕ ∈ Φ iff ϕ ∈ Φ′, that is, Φ = Φ′.

This concludes the proof of uniqueness.
2

Let us conclude this subsection by showing that the submodels of KcA generated
by theories extending DNC and containing Cn are indeed negative P0 -CD-models.
Given the previous results, this determines the shape of the submodel consisting
of all the points of finite E-width.

8.2.15. Corollary. Let Φ ∈ ST(A) be a theory containing every instance of
DNC and the formula Cn. Then the submodel generated by Φ is a negative P0 -CD-
model with at most n endpoints.

Proof:
Negativity follows from Lemma 2.2.4 and the hypothesis that Φ contains every
instance of DNC, and so in particular every instance of ¬¬p→ p for p an atomic
formula. Moreover by Lemma 8.2.12, |EΦ| ≤ n.

It remains to show that the submodel generated by Φ is a P0 -CD-model.
We already know that it is a CD-model by definition of KcA. So, defining Φ↑ :=
{ Ψ ∈ ST(A) | Ψ ⊇ Φ }, it suffices to show that

〈
Φ↑,⊆

〉 ∼= 〈P0(EΦ),⊇〉.
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By Proposition 8.2.14, given a set of endpoints E ⊆ EΦ there exist a unique
theory Ψ ∈ ST(A) such that EΨ = E; moreover by Lemma 8.2.13, this Ψ is
a successor of Φ. Finally, every state in Φ↑ has at least one endpoint for a
successor by Lemma 8.2.10. This shows that Φ↑ is in one-to-one correspondence
with P0(EΦ).

It remains to show that for every Ψ1,Ψ2 ⊇ Φ it holds that

Ψ1 ⊆ Ψ2 iff EΨ1
⊇ EΨ2

The left-to-right direction follows trivially by definition of endpoint. For the
right-to-left direction, since EΨ2

⊆ EΨ1
by Lemma 8.2.13 there exists Θ ⊇ Ψ1

such that EΘ = EΨ2
. And by Lemma 8.2.14 it follows that Θ = Ψ2, showing that

Ψ1 ⊆ Ψ2.
2

8.2.3 Completeness of HInqBQn

We are finally ready to collect the results from the previous subsections and to
prove the completeness result for the system HInqBQn.
Proof of Theorem 8.2.1:
As we showed in Corollary 8.2.3, the statement of Theorem 8.2.1 is equivalent to
the following:

Suppose that Φ is a theory containing every instance of the schema DNC and
the formula Cn. Moreover suppose that Φ 0L ψ for a certain formula ψ. Then
Φ 2n ψ.

So we proceed to prove this condition. Consider Φ and ψ as in the hypothesis.
By Lemma 8.2.8, there exists a theory Θ ∈ ST(A) such that Φ ⊆ Θ and ψ /∈ Θ.
Moreover, since Φ contained every instance of the schema DNC and the formula
Cn, so does Θ. By Lemmas 8.2.14 and 8.2.12, Θ is the theory of an information
model M with at most |EΘ| ≤ n worlds. By definition of theory of a model,
M � χ iff χ ∈ Θ, from which it follows M � ϕ for every ϕ ∈ Φ and M 2 ψ.
Finally, since M∈Mn, we conclude that Φ 2n ψ.

2

8.3 The BW Fragment

The results of the previous section suggest to study models with finitely many
worlds in more detail. Unfortunately, as shown in Proposition 8.1.5, focusing our
attention on these models does not allow us to capture the expressive power of
InqBQ, since there are formulas which admit only countermodels with infinitely
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many worlds. However there is a fragment of the logic which can be studied using
only models with finitely many worlds: the bounded-width fragment BW.

8.3.1. Definition (BW fragment). The bounded-width fragment (indicated with
BW) is generated by the following grammar:

ψ ::= ⊥ | p | ψ ∧ ψ | ψ > ψ | ϕ→ ψ | ∀x.ψ

where p ranges over atoms; ϕ ranges over generic formulas.

So the condition for a formula ψ to be part of the BW fragment is that every
subformula of the form ∃x.χ has to be on the left side of an implication. For
example, the formulas ∃x.P (x)→ P (a) and (¬P (a)→ ∃x.P (x))→ ∀x.?P (x) are
in the BW fragment; while the formulas ∃x.P (x) and P (b)→ (¬P (a)→ ∃x.P (x))
are not. Notice in particular that all the formulas not containing the symbol ∃
are in the fragment.

This definition, which seems somewhat arbitrary, stems from a quite inter-
esting property of the fragment, corresponding to coherency in Dependence logic
[Kontinen, 2010]: for every formula ϕ of the BW fragment there exists a natural
number n(ϕ) such that, for every modelM, info state s and assignment g it holds
that

M, s �g ϕ iff For all t ⊆ s, if |t| ≤ n(ϕ) then M, t �g ϕ

So to verify that a formula in the fragment is supported by a model, we need to
verify it is supported only on states of bounded size; moreover the bound is finite
and depends only on the formula. Let us prove the property with the following
lemma.

8.3.2. Lemma. Let ϕ be a formula of the BW fragment. There exists a natural
number n = n(ϕ) such that, for every information model M, every info state s
and every assignment g : Var→ D it holds that

M, s �g ϕ iff ∀t ⊆ s.
[
|t| ≤ n =⇒ M, t �g ϕ

]
Moreover we can give an explicit bound to n(ϕ):

n(⊥) = 1 n(A) = 1 for A atomic

n(ψ ∧ χ) = max(n(ψ), n(χ)) n(ψ

>

χ) = n(ψ) + n(χ)

n(ψ → χ) = n(χ) n(∀x.ψ) = n(ψ)

Proof:
We prove the equivalent statement

M, s 2g ϕ iff ∃t ⊆ s.
[
|t| ≤ n andM, t 2g ϕ

]
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Notice that the right-to-left implication follows by persistency of the support
semantics (Lemma 9.1.6). The proof of the left-to-right implication consists of a
simple structural induction on ϕ. The cases of ϕ ≡ ⊥, ϕ atomic, ϕ ≡ ψ ∧ χ are
trivial and left to the reader. In what follows we abbreviate “inductive hypothesis”
with IH.

• If ϕ ≡ ψ

>

χ:

M, s 2g ψ

>

χ

⇐⇒ M, s 2g ψ and M, s 2g χ

⇐⇒

{
∃t ⊆ s.

[
|t| ≤ n(ψ) and M, t 2g ψ

]
∃t′ ⊆ s.

[
|t′| ≤ n(χ) and M, t′ 2g χ

]
=⇒ ∃u ⊆ s.

[
|u| ≤ n(ψ) + n(χ) and M, u 2g ψ

>

χ
]

(for u := t ∪ t′)

• If ϕ ≡ ψ → χ:

M, s 2g ψ → χ

⇐⇒ ∃t ⊆ s.

{
M, t �g ψ

M, t 2g χ

⇐⇒ ∃t ⊆ s.

{
M, t �g ψ

∃u ⊆ t. |u| ≤ n(χ) andM, u 2g χ
(by IH)

=⇒ ∃u ⊆ s. |u| ≤ n(χ) and

{
M, u �g ψ

M, u 2g χ
(by persistency)

⇐⇒ ∃u ⊆ s. |u| ≤ n(χ) andM, u 2 ψ → χ

• If ϕ ≡ ∀x.χ:

M, s 2g ∀x.ψ
⇐⇒ ∃a ∈ D.M, s 2g[x 7→a] ψ

⇐⇒ ∃a ∈ D. ∃t ⊆ s.
[
|t| ≤ n(ψ) andM, t 2g[x 7→a] ψ

]
(by IH)

⇐⇒ ∃t ⊆ s.
[
|t| ≤ n(ψ) andM, t 2g ∀x.ψ

]
2

Notice that the bound n(ϕ) is not sharp: for example, the formula P (a)

>

P (a)
is truth-conditional since it is equivalent to the classical formula P (a), but the
bound previously defined is n(P (a)

>

P (a)) = 2. We leave as an open problem
whether there exists a decision procedure to find the optimal bound.

Notice that this lemma entails the finite model property for the entailment
restricted on BW consequences.
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8.3.3. Corollary (Finite model property). Let Φ ∪ {ψ} a set of formulas and
suppose that ψ ∈ BW. Then it holds that

Φ � ψ iff For every M∈M<ℵ0
, if M � ϕ for every ϕ ∈ Φ, then M � ψ

Proof:
The left-to-right direction is trivial. For the right-to-left direction, we show the
contrapositive of the statement. Suppose that Φ 2 ψ, that is, there exists an
information model M such that M � ϕ for every ϕ ∈ Φ and M 2 ψ. We want
to find a model in M<ℵ0

that supports all the formulas in Φ, but not ψ.
By Lemma 8.3.2, there exists a state s of M such that |s| ≤ n(ϕ) M, s 2 ψ.

Moreover by persistency (Lemma 2.1.9) we have M, s � ϕ for every ϕ ∈ Φ. It
follows that M|s is a model with the properties required.

2

So to study the entailment between BW formulas we only need models with
finitely many worlds. Let us point out that this result does not imply that the
set of BW validities is decidable: in fact even though we need only models with
finitely many worlds, we do not have any restriction on the cardinality of the
domain. For example, every classical first order model M belongs to the class
M<ℵ0

, modulo identifying M with the singleton information model M = {M}.
Combining the results from Section 8.2 and Lemma 8.3.2, we can show that the

set of validities of the BW fragment is recursively enumerable. The key observation
to obtain this result is the following.

8.3.4. Lemma. Let Φ∪{ψ} be a set of formulas and suppose that ψ ∈ BW. Then
it holds that

Φ � ψ iff Φ `n(ψ) ψ

Proof:
Firstly we show that the condition Φ � ψ is equivalent to Φ �Mn(ψ)

ψ. It follows
trivially by definition of � and �Mn(ψ)

that Φ � ψ implies Φ �Mn(ψ)
ψ. As for the

other implication, we prove the contrapositive. Suppose that Φ 2 ψ. This means
that there exists an information modelM such thatM � ϕ for every ϕ ∈ Φ and
M 2 ψ. By Lemma 8.3.2, there exists an info state s of M such that |s| ≤ n(ψ)
andM, s 2 ψ. Moreover, by persistency of the semantics (Lemma 2.1.9) we have
M, s � ϕ for every ϕ ∈ Φ. It follows thatM|s ∈Mn(ψ) supports all the formulas
in Φ and does not support ψ, thus Φ 2Mn(ψ)

ψ.
Since by Theorem 8.2.1 the condition Φ �Mn(ψ)

ψ amounts to Φ `n(ψ) ψ, the
result follows. 2

8.3.5. Theorem. The set of validities in the BW fragment is recursively enu-
merable.
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Proof:
For every natural number m, the set of formulas of InqBQ derivable in `m is re-
cursively enumerable. Since we have a decidable procedure to establish whether
a formula is in the BW fragment and to compute n(ϕ) given ϕ, then also the
set Xm := {ϕ ∈ BW | `m ϕ and n(ϕ) = m} is recursively enumerable. It follows
that the set X :=

⋃
m∈NXm is recursively enumerable too, and by Lemma 8.3.4

this is exactly the set of valid formulas in the BW fragment 2

However, Theorem 8.3.5 is not the only consequence of Lemma 8.3.4. In fact
there is another low-hanging fruit to pick: the compactness of � for consequences
in BW.

8.3.6. Theorem (Compactness for BW consequences). Let Φ ∪ {ψ} be a set of
formulas and suppose that ψ ∈ BW. Then

Φ � ψ iff there exists Φ′ ⊆ Φ finite such that Φ′ � ψ

Proof:
The right-to-left direction follows trivially by definition of the entailment relation
�. For the left-to-right direction, by Lemma 8.3.4 the condition Φ � ψ is equiv-
alent to Φ `n(ψ) ψ, that is, there exists a derivation of ψ from Φ in the system
HInqBQn. Since a derivation uses only finitely many premises, if we define Φ′ to
be the set of premises used in the derivation above we have Φ′ `n(ψ) ψ, and so by
Lemma 8.3.4 we have Φ′ � ψ. 2

We still do not know whether the compactness property holds for the logic InqBQ,
so this result is an interesting clue to tackle the problem. For example, since all
∃-free formulas are in the BW fragment, if we want to find a derivation Φ � ψ
violating the compactness principle, ψ must contain the symbol ∃.

As shown with the two theorems above, Lemma 8.3.4 gives us an effective
way to study the BW fragment from a syntactic point of view. However this
approach is somewhat unsatisfying: we are not gathering any new information
about the relation `, that is, the consequence relation of the system in Figure
2.6 for the full language. The most effective way to do so would be to find
an axiomatization for BW consequences, not relying on the systems HInqBQn.
Knowing whether additional axioms are required to capture logical consequences
between BW formulas could lead us closer to finding whether InqBQ is finitely
axiomatizable.

Unfortunately, as of now it is not known whether the system is finitely axiom-
atizable. We conclude this section with the following conjecture, with the hope
that it will become a theorem in future work.
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8.3.7. Conjecture (Completeness for BW). The axiomatic system in Figure 2.6
is complete for the relation � restricted to the BW fragment: For every set of for-
mulas Φ ∪ {ψ} from the BW fragment it holds that

Φ 0 ψ =⇒ Φ 2 ψ

8.4 Conclusions

In this chapter we introduced the inquisitive logics InqBQ<λ and InqBQλ, defined
by restricting the support semantics to information models with less than λ worlds
and with at most λ worlds respectively. These logics generalize the hierarchy
introduced by Sano [2011] consisting of the finite-width inquisitive logics, that
is, the logics InqBQn for n ∈ N. We focused on tackling two open problems
left by Sano: determining whether InqBQ is approximated by the logics InqBQn

(i.e., InqBQ =
⋂
n∈N InqBQn); and finding an axiomatization for the finite-width

inquisitive logics.
We gave a negative answer to the first problem by defining a formula valid

in all the logics InqBQn, but not valid in InqBQ. In particular, this shows that
the semantics of InqBQ cannot be characterized by a class of models with finitely
many worlds. As for the second problem, we defined an Hilbert-style system for
InqBQn and showed its strong completeness, thus axiomatizing the finite-width
inquisitive logics. The completeness proof strongly relies on the close connection
between InqBQ and the intuitionistic logic of constant domains CD. In particular,
the proof strategy consists in taking the canonical model with constant domain
KcA for the superintuitionistic logic CD+KF+KP+UP and study the properties
of the portion of KcA satisfying some additional axioms. So rather than building a
canonical model starting from an axiomatization, we borrow the canonical model
of a suitable superintuitionistic logic and use it to carry on the proof. It remains
an open question whether we can generalize this strategy to axiomatize InqBQ or
other members of the hierarchy introduced (e.g., the logic of information models
with finitely many worlds InqBQ<ℵ0

).
In this chapter we also introduced and studied the bounded-width fragment

BW, whose formulas have the following interesting property: if ϕ is in the frag-
ment, then there is a finite number n(ϕ) such that a model M supports ϕ iff
for every info state s of size at most n(ϕ) the restriction M|s supports ϕ. In
other terms, to verify that a formula in the fragment is supported by a model, it
suffices to check the support condition for information states of a bounded finite
size. In particular, to study these fragment we only need models with finitely
many worlds. We proved that the entailment relation of InqBQ restricted to this
fragment has several interesting properties: it can be characterized in terms of
the axiomatic systems for the logics InqBQn; it is compact; and the set of its va-
lidities is recursively enumerable. However, we still lack a proper axiomatization
for the fragment, as pointed out in Conjecture 8.3.7. Let us point out a possible
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strategy to prove the conjecture: the completeness result would follow directly
by Lemma 8.3.4, if we were to prove that the conditions Φ ` ψ and Φ `Cn(ψ)

ψ
are equivalent. We leave the study of this problem and possible implementations
of this last proof step for further work.



Chapter 9

Algebraic and Topological Semantics

In this chapter we present an algebraic and a topological semantics for inquisitive
propositional logic InqB. This line of research strengthens the bonds between
inquisitive logic and intermediate logics, and opens new avenues of research in
the direction of universal algebra. Generalizing these semantic accounts to the
first order case could prove to be a precious tool for studying InqBQ from new
perspectives, for example using the methods employed by Rasiowa and Sikorski
[1950] or Görnemann [1971].

The starting point is the connection between InqB and several intermediate
logics, including Medvedev’s logic ML [Medvedev, 1966] and Kreisel-Putnam logic
KP [Chagrov and Zakharyaschev, 1997, p. 148] (see [Ciardelli, 2009] for a thorough
analysis of these connections). In particular InqB can be characterized as the logic
of general intuitionistic Kripke models based on Medvedev’s frames for which the
valuations of atomic propositions are principal upsets [Ciardelli, 2009, Proposition
2.2.2]. So we can think of InqB as the logic corresponding to a certain Kripke
semantics.

Even though the algebraic structures arising from this characterization have
been already considered in the literature (e.g., by Frittella et al. [2016]), proper
algebraic and topological semantics for inquisitive logic were introduced and de-
veloped only in the last few years ([Bezhanishvili et al., 2019]; see also [Quadrel-
laro, 2019, Bezhanishvili et al., 2020] for further developments). The aim of this
chapter is to present these new approaches to the study of InqB.

After reviewing some topological preliminaries in Section 9.1, we start in Sec-
tion 9.2 with an algebraic semantics for inquisitive logic based on Heyting algebras
with propositional valuations ranging over only the ¬¬-fixpoints. The Kripke se-
mantics for inquistive logic can be seen as a particular instance of this algebraic
semantics: for F a Medvedev frame, the algebra Upp(F ) of principal upsets of F
is the algebra of ¬¬-fixpoints of the Heyting algebra Up(F ) of all upsets of F . For
our algebraic semantics, we motivate restricting attention to only special Heyting
algebras, which we call inquisitive algebras, of which Up(F ) for a Medvedev frame
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F is an example.
We also show how inquisitive algebras arise from Boolean algebras: for a given

Boolean algebra B, we define in Section 9.3.1 its inquisitive extension H(B) and
prove in Section 9.3.2 that H(B) is the unique inquisitive algebra having B as
its algebra of ¬¬-fixpoints. We also show that inquisitive algebras determine
Medvedev’s logic. In addition to the algebraic characterization of H(B) in Section
9.3.2, we give a topological characterization of H(B) in Section 9.3.3 in terms of
the recently introduced choice-free duality for Boolean algebras employing upper
Vietoris spaces (UV-spaces) [Bezhanishvili and Holliday, 2020], which we review
in Section 9.1.3. In particular, while a Boolean algebra B is realized as the
Boolean algebra of compact regular open elements of a UV-space dual to B, we
show that H(B) is realized as the algebra of compact open elements of this space.

The topological characterization ofH(B) leads in Section 9.4 to a new topolog-
ical semantics for inquisitive logic based on UV-spaces. As an additional benefit,
we obtain a new topological semantics for Medvedev’s logic.

We conclude in Section 9.5 with some directions for future research.

9.1 Background

In what follows we will assume the reader to be familiar with the basic notions on
Kripke semantics for intuitionistic logic (see, e.g., [Chagrov and Zakharyaschev,
1997, Sections 2.1-2.3]) and algebraic semantics for intuitionistic logic (see, e.g.,
[Chagrov and Zakharyaschev, 1997, Section 7.1-7.3]).

9.1.1 Propositional Inquisitive Logic InqB

In this chapter we will work with inquisitive propositional logic InqB (see, e.g.,
[Ciardelli and Roelofsen, 2011] and [Ciardelli, 2016, Chapters 2-3]), chronolog-
ically the first incarnation of the support semantics. InqB is an extension of
classical propositional logic CPC with questions and has been by far the most
studied inquisitive logic in the literature. We quickly recall in this section the
definitions concerning InqB and the main properties of the logic. Henceforth, we
will assume to have fixed an infinite set of atomic propositions AP.

9.1.1. Definition (Syntax of InqB). The syntax Lp of InqB is defined by the
following grammar:

Lp : ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ > ϕ | ϕ→ ϕ

where p ∈ AP.

We will use the same shorthands for ¬, ∨ and ? as for InqBQ, that is:

¬ϕ :≡ ϕ→ ⊥ ϕ ∨ ψ :≡ ¬(¬ϕ > ¬ψ) ?ϕ :≡ ϕ

> ¬ϕ
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As in the first order case, Lp can be thought as the syntax of CPC with in addition
the question-forming operator

>

. We maintain the terminology classical formula
to indicate

>

-free formulas and usually indicate them with lowercase first letters
of the greek alphabet: α, β, . . . The role of

>

is, yet again, to introduce alternative
questions: for example the formula ?p :≡ p

> ¬p stands for the question “whether
p is the case”.

Models of InqB are analogous to their first order counterpart.

9.1.2. Definition (Propositional information model). A (propositional) infor-
mation model M is a multiset

{
Mw

∣∣ w ∈ WM} where WM is a set (called the
set of worlds of the model) and the Mw are CPC-models, that is, propositional
valuations over the set {>,⊥}.

We will assume the same notational conventions as for InqBQ: we will indicate
WM with W when the model is clear from the context; we write pw instead of
pMw for the interpretation of the atomic formula p in the model Mw. We also
maintain the terminology information state for the subsets of the set W .

9.1.3. Definition (Semantics of InqB). Let M = {Mw | w ∈ W} be a proposi-
tional information model and s ⊆ W an info state. We define the support relation
� over formulas of InqB by the following inductive clauses:

M, s �⊥ ⇐⇒ s = ∅
M, s � p ⇐⇒ For all w ∈ s, pw holds

M, s � ψ1 ∧ ψ2 ⇐⇒M, s � ψ1 and M, s � ψ2

M, s � ψ1

>

ψ2 ⇐⇒M, s � ψ1 or M, s � ψ2

M, s � ψ1 → ψ2 ⇐⇒ For all t ⊆ s, if M, t � ψ1 then M, t � ψ2

The intuition behind information models, information states and the semantics
are completely analogous to the first order case: information models acts as con-
texts to represent information; information states encode pieces of information—
in this case, properties of CPC-models; and the semantics describes whether a
piece of information supports a given sentence (be it a statement or a question).

Also the other properties presented for the first order case are analogous for
the propositional system:

9.1.4. Lemma. Every classical formula is truth-conditional. That is, for M an
information model, s an information state and α a classical formula, it holds that

M, s � α ⇐⇒ ∀w ∈ s. Mw �
CPC α

9.1.5. Theorem (Truth-conditionality and classical formulas). For every formula
ϕ, ϕ is truth-conditional if and only if there exists a classical formula such that
ϕ ≡ α.
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9.1.6. Lemma. For every formula ϕ of the logic

Empty state M, ∅ �g ϕ.

Persistency If M, s �g ϕ and u ⊆ s, then M, u �g ϕ.

9.1.7. Theorem. For every set of classical formulas Γ ∪ {α} it holds that

Γ � α ⇐⇒ Γ �CPC α

Until now we focused on what InqB and InqBQ have in common—it does not come
as a surprise that the two logics are so similar since they are defined through the
same approach starting from CPC and CQC respectively. However, the following
result distinguishes the two logics: the disjunctive normal form lemma.

9.1.8. Lemma (Disjunctive normal form [Ciardelli, 2016, Proposition 2.4.4]). Let
ϕ be a formula in the language Lp. Then there exist classical formulas α1, . . . , αn
such that

� ϕ ≡ α1

>

. . .

>

αn

Lemma 9.1.8 is particularly relevant for the study of propositional inquisitive
logic and even goes beyond InqB. Most of the axiomatizations and the techniques
presented in the literature to study InqB and other propositional inquisitive logics
make use of some form of the disjunctive normal form lemma.

9.1.2 Kripke Semantics for InqB

As is the case for the semantics of InqBQ, also the semantics of InqB can be re-
stated in terms of a special class of intuitionistic Kripke models based on Medvedev
frames. Recall that Medvedev frames are Kripke frames of the form 〈P0(W ),⊇〉
for W a finite non-empty set;1 the logic of this class of models is called Medvedev
logic of finite problems ML [Medvedev, 1966].

What follows is the propositional version of Lemma 2.2.8.

9.1.9. Lemma ([Ciardelli, 2009, Proposition 2.2.2]). Let M := {Mw | w ∈ W}
be a (propositional) information model and s ⊆ W a non-empty information state.
Consider the (propositional) intuitionistic Kripke model K := 〈P0(W ),⊇, V 〉
where

V (p) := P0({w ∈ W |Mw �
CPC p}).

Then for every formula ϕ ∈ L, we have2

W , s � ϕ ⇐⇒ K, s  ϕ.
1Recall that P0(W ) := {V ⊆W | V 6= ∅}.
2Under the intuitionistic semantics, we interpret

>

as the intuitionistic disjunction.
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If W is finite, then 〈P0(W ),⊇〉 is a Medvedev frame, and V (p) is a principal upset
of this frame. InqB can also be characterized as the logic of finite information
models [Ciardelli, 2009, Remark 3.1.11]; combining this and the previous result
we obtain the following.

9.1.10. Proposition. InqB is the logic of the class of intuitionistic Kripke mod-
els

{ 〈P0(W ),⊇, V 〉 | W is finite and V (p) is principal for all p ∈ AP }.

Based on this observation, Ciardelli [2016, Section 3.1] proposes a sound and
complete natural deduction system for InqB, which is equivalent to the following
Hilbert style system:

Axioms Rules
Axioms of IPC Modus Ponens
KP schema: (¬ϕ→ ψ

>
χ)→ (¬ϕ→ ψ)

>

(¬ϕ→ χ)
DNA formulas: ¬¬p→ p for p atomic

Figure 9.1: Hilbert-style axiomatization for InqB.

9.1.3 UV-Spaces

In this section, we recall the basic constructions of the choice-free duality for
Boolean algebras recently developed by Bezhanishvili and Holliday [2020]. They
will be used in Sections 9.3.3 and 9.4, where we introduce a topological semantics
for inquisitive logic. For an introduction the basic notions of topology used in
this chapter, we refer to [Kelley, 1975].

Recall that for any poset (X,≤), we define

Cl≤(U) = {x ∈ X | ∃y ≥ x. y ∈ U}, (9.1)

Int≤(U) = X \ Cl≤(X \ U) = {x ∈ X | ∀y ≥ x. y ∈ U}. (9.2)

We call a set U ≤-regular open if U = Int≤Cl≤(U). Let X be a topological space
and ≤ its specialization order. Let RO(X) be the collection of ≤-regular open
subsets of X. Let CO(X) denote the collection of compact open subsets of X.
Finally, let CORO(X) = CO(X) ∩RO(X).

9.1.11. Definition. An upper Vietoris space (UV-space) is a T0 space X such
that:

1. CORO(X) is closed under ∩ and Int≤(X \ ·) and forms a basis for X;
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2. every proper filter in CORO(X) is CORO(x) = {U ∈ CORO(X) | x ∈ U}
for some x ∈ X.

Given a UV-space X the set CORO(X) forms a Boolean algebra, where ∧ is the
intersection, ∨ is Int≤Cl≤ of the union, and ¬ is Int≤ of the set-theoretic com-
plement. It was observed by Bezhanishvili and Holliday [2020] that CORO(X)
coincides with the set of compact regular open (in the topology of X) subsets
of X. Conversely, for a Boolean algebra B we consider the set UV (B) of all
proper filters of B and define a topology generated by {â | a ∈ B}, where
â = {x ∈ UV (B) | a ∈ x}. Then UV (B) is a UV-space, where the special-
ization order is the inclusion order of filters, and B is isomorphic to the algebra
CORO(UV (B)). This correspondence can be extended to a full (choice-free) du-
ality of the category of Boolean algebras and the category of UV-spaces [Bezhan-
ishvili and Holliday, 2020]. The name “upper Vietoris” refers to the fact that,
assuming the Axiom of Choice, the UV-dual of a Boolean algebra B is homeo-
morphic to the space of closed subsets of the Stone dual of B equipped with the
upper Vietoris topology (for a choice-free version of this, see [Bezhanishvili and
Holliday, 2020]).

9.2 Algebraic Semantics via Inquisitive Algebras

In this section, we define inquisitive algebras and a semantics for InqB via these
algebras. We start with the following well known result (see, e.g., [Johnstone,
1982, p. 51]).

9.2.1. Proposition. For any Heyting algebra H, let H¬¬ = {¬¬x | x ∈ H}.
Then:

1. H¬¬ forms a bounded {∧,→}-subalgebra of H;

2. H¬¬ forms a Boolean algebra with join given by a ∨H¬¬
b = ¬¬(a ∨H b).

9.2.2. Example. Let B be a complete Boolean algebra and consider the Heyt-
ing algebras Dw0(B) and Dwp(B) of its non-empty and principal downsets, re-
spectively. The latter is isomorphic to B, with the join in Dwp(B) given by
{a}↓ ∨ {b}↓ = ¬¬({a}↓ ∪ {b}↓) = {a ∨B b}↓, where U↓ is the downset generated
by U . Then we can prove that the following identity holds:

Dwp(B) = (Dw0(B))¬¬.

Firstly, if we consider a principal downset, we have

¬{b}↓ = {a ∈ B | a ∧ b = ⊥} = {¬b}↓ =⇒ ¬¬{b}↓ = {b}↓.
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So Dwp(B) ⊆ (Dw0(B))¬¬. For the other inclusion, it suffices to show that ¬D
is principal for every downset D. We have

¬D = {a ∈ B | ∀d ∈ D. a ∧ d ≤ ⊥} ⊆
{∨
¬D
}↓
.

On the other hand,
∨
¬D ∈ ¬D, since for every e ∈ D, we have

e ∧
∨
¬D =

∨
{e ∧ a | ∀d ∈ D. a ∧ d ≤ ⊥} =

∨
{⊥} = ⊥.

It follows that ¬D = {
∨
¬D}↓, thus ¬D is principal.

9.2.3. Example. Let B be a Boolean algebra—not necessarily complete—and
let Dwfg(B) be the set of finitely generated downsets of B. Then we can show
that:

Dwp(B) = (Dwfg(B))¬¬.

The inclusion Dwp(B) ⊆ (Dwfg(B))¬¬ is proved as in Example 9.2.2. For the
other inclusion it suffices to show that for any b1, . . . , bn ∈ B, ¬{b1, . . . , bn}↓ is
principal. This follows from the identities

¬{b1, . . . , bn}↓ = {a ∈ B | ∀i ≤ n. a ∧ bi = ⊥} = {¬b1 ∧ · · · ∧ ¬bn}↓. (9.3)

Elements of Dwfg(B) can be represented in a special way that will be useful for
later results. The proof of the next lemma consists of a simple induction on the
number of generators of a finitely generated downset and is left to the reader.

9.2.4. Lemma. Every downset D ∈ Dwfg(B) can be represented in a unique way
as D = {a1, . . . , an}↓ with ai 6≤ aj for i 6= j.

We now want to define an algebraic semantics by restricting the interpretations of
atoms to H¬¬. This semantics was first introduced by Bezhanishvili et al. [2019]
and was later studied from the perspective of universal algebra by Quadrellaro
[2019] and Bezhanishvili et al. [2020]. Following Bezhanishvili et al. [2020] we will
refer to this semantics as DNA-semantics, where DNA stands for “double negation
for atoms”. To highlight the connections with inquisitive logic, we will denote
the meet, join, and implication in a Heyting algebra with the same symbols used
for the connectives of our language, ∧,

>

, and →.
We recall the standard definition of algebraic semantics for intuitionistic logic

via Heyting algebras and we define DNA-semantics.

9.2.5. Definition (Intuitionistic and DNA-semantics). Let H be a Heyting al-
gebra and let V : AP→ H be an atomic valuation over H. For each ϕ ∈ Lp, we

define JϕKH,V ∈ H recursively as follows:

J⊥KH,V = ⊥ Jϕ ∧ ψKH,V = JϕKH,V ∧ JψKH,V

JpKH,V = V (p) Jϕ

>

ψKH,V = JϕKH,V

>

JψKH,V

Jϕ→ ψKH,V = JϕKH,V → JψKH,V .
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A formula ϕ is intuitionistically valid in H iff for every V : AP → H we have
JϕKH,V = >. Let IntLog(H) be the set of formulas intuitionistically valid in H. It
is known that formulas valid in every Heyting algebra are exactly the formulas of
intuitionistic propositional logic IPC [Chagrov and Zakharyaschev, 1997, Theorem
7.21].

A formula ϕ is DNA valid in H iff for every V : AP→ H¬¬, we have JϕKH,V =
>. Let DNALog(H) be the set of formulas inquisitively valid in H. A formula is
DNA valid iff it is inquisitively valid in every Heyting algebra.

From now on we write JϕK instead of JϕKH,V if H and V are clear from the context.
Some properties of the semantics are straightforward to prove. For example:

9.2.6. Lemma. If ϕ does not contain the symbol

>

, then JϕK ∈ H¬¬.

It follows from the definition above that every intuitionistic validity is also a DNA
validity. And since the image of the valuations is restricted to H¬¬—the regular
elements of the algebra—also the formula ¬¬p → p is DNA valid. However,
for some formulas ϕ ∈ Lp we have that ¬¬ϕ → ϕ is not a DNA validity, as
shown in Example 9.2.7. So the set of DNA validities is not closed under uniform
substitution.

9.2.7. Example. Consider H = Dwfg(P(W )) for a finite set W with at least two
elements. Notice that H = Dw0(P(W )) ∼= Dw(P0(W )). Since the elements of
(Dwfg(P(W )))¬¬ are exactly the principal downsets—as shown in Example 9.2.3—
in this case DNA semantics boils down to the support semantics for inquisitive
logic (cf. Lemma 9.1.9).

For the same reason, given A ⊆ W we have that ¬¬{A}↓ = {A}↓ and con-
sequently ¬¬p → p ∈ DNALog(H). On the other hand, for A,B ⊆ W we have
¬¬{A,B}↓ = {A ∪B}↓ (obtained by applying two times Equation 9.3), which is
generally different from {A,B}↓. Thus ¬¬(p

>

q)→ (p

>

q) /∈ DNALog(H).

A natural question is whether we can characterize for which Heyting algebras H
we have InqB ⊆ DNALog(H), that is, every inquisitive validity is also a DNA valid
formula of H. The following lemma gives a partial answer to this question. We
call H a KP-algebra if H validates (intuitionistically) the axiom schema KP.

9.2.8. Lemma. If H is a KP-algebra, then InqB ⊆ DNALog(H).

Combining Lemma 9.2.8 with the fact that the standard support semantics is a
special case of our algebraic semantics (as shown in Example 9.2.7), we obtain
the following:

9.2.9. Proposition. The set of formulas DNA valid on KP-algebras is exactly
the set of InqB validities.

{ ϕ ∈ Lp | ϕ ∈ DNALog(H) for every KP-algebra H } = InqB
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However, arbitrary KP-algebras are somewhat “too big” for our semantics. For
example, if H = Dw0(B) for a complete Boolean algebra B, then no matter what
propositional valuation we consider, the semantic value JϕK of a formula ϕ has to
be an element of the subalgebra generated by Dwp(B), that is, Dwfg(B). This
observation is formalized by Point 3 of the following Lemma.

9.2.10. Lemma. Let H be a Heyting algebra and H ′ the subalgebra of H generated
by H¬¬. Then:

1. (H ′)¬¬ = H¬¬;

2. for every valuation V : AP → H¬¬ and formula ϕ we have JϕKH,V =

JϕKH
′,V ;

3. if H is a KP-algebra, so is H ′.

The proof follows directly from the definition of subalgebra, and it is thus omit-
ted. As a consequence of this lemma, we can restrict our attention to algebras
generated by H¬¬.

9.2.11. Definition. A Heyting algebra H is called regularly generated if it is
generated by H¬¬.

Notice that the algebras of the form Dw0(B) for B a complete Boolean algebra
(Example 9.2.2) are regularly generated iff B is finite. While the algebras of
the form Dwfg(B) for B a generic Boolean algebra (Example 9.2.3) are always
regularly generated.

The choice of restricting to regularly generated algebras has a technical nature:
since our semantics does not allow to leave the subalgebra generated by the regular
elements, we restrict our attention to regularly generated algebras. There is also
another restriction we can impose on the algebras we are studying, this time
related to the intuitive interpretation we gave to formulas of inquisitive logic.

In Subsection 9.1.1 we recall this interpretation: formulas of InqB represent
statements and questions and the support semantics is meant to represent in-
formational content and model a certain piece of information implying a state-
ment/resolving a question. For example, a question p

> ¬p (“Does p hold?”) is
supported by an information state iff either p (“p holds”) or ¬p (“p does not
hold”) is supported by the state.

However, this is not necessarily the case in the algebraic setting just intro-
duced. For example, a Boolean algebra B is trivially a regularly generated KP-
algebra, since B¬¬ = B. And Jp

> ¬pK = > regardless of the value of JpK and J¬pK.
This seems somewhat odd under the intuitive interpretation given: a question is
considered resolved, but neither p nor ¬p is considered true.

This leads to the following definition from [Chagrov and Zakharyaschev, 1997,
p. 455].
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9.2.12. Definition. A Heyting algebra H is well connected if for all a, b ∈ H,
if a

>

b = 1, then a = 1 or b = 1.

The algebras of the form Dw0(B) for B a complete Boolean algebra (Example
9.2.2) and the algebras of the form Dwfg(B) for B a generic Boolean algebra
(Example 9.2.3) are both examples of well-connected algebras.

Working with a well-connected algebra H ensures that JϕK = 1 iff JαK = 1
for at least one of the resolutions of ϕ (Lemma 9.1.8), in accordance with the
linguistic interpretation.

We are finally ready to define the class of algebras which we will focus on to
study InqB.

9.2.13. Definition (Inquisitive algebra). An inquisitive algebra is a regularly
generated well-connected KP-algebra.

Summarizing the previous remarks, we have that algebras of the form Dw0(B)
for B a complete Boolean algebra (Example 9.2.2) are inquisitive algebras iff B is
finite; while algebras of the form Dwfg(B) for B a generic Boolean algebra (Ex-
ample 9.2.3) are always inquisitive algebras. The latter is our standard example
of inquisitive algebra.

9.3 Inquisitive Extension of a Boolean Algebra

In this section, we show an interesting property of inquisitive algebras highlighting
their constructive character: given a Boolean algebra B, there is a unique (up
to isomorphism) inquisitive algebra H such that B = H¬¬; moreover there is a
constructive procedure to obtain H starting from B. We call H the inquisitive
extension of B.

9.3.1 Construction of the Inquisitive Extension

We construct the inquisitive extension of B as a quotient of the free Heyting
algebra built using elements of B as constants. Firstly, consider the set

T =
{
t(b1, . . . , bn)

∣∣∣ t is a term in the signature
{
∧̇, ∨̇, →̇, ⊥̇, >̇

} }
.

where ∧̇, ∨̇, →̇, ⊥̇, >̇ are formal symbols. We also introduce the shorthand ¬̇t for
t →̇ ⊥̇.

Define the binary relation ≈ on T as the smallest equivalence relation such
that:

• ≈ respects all Heyting algebra equations (e.g., for commutativity of ∧̇ we
require that t1 ∧̇ t2 ≈ t2 ∧̇ t1);
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• ≈ respects KP:

¬̇t1 →̇ (t2 ∨̇ t3) ≈ (t1 →̇ t2) ∨̇ (t1 →̇ t3)

• ≈ agrees with the operations on B: for a, b ∈ B it holds that

a ∧̇ b ≈ a ∧ b a →̇ b ≈ a→ b ⊥̇ ≈ ⊥ >̇ ≈ >

T / ≈ has a natural structure of KP-algebra, with operations defined as

[t1] ∧ [t2] = [t1 ∧̇ t2] [t1]

>

[t2] = [t1 ∨̇ t2] [t1]→ [t2] = [t1 →̇ t2].

We call this algebra the inquisitive extension of B and denote it by H(B). Notice
that by construction it is a regularly generated KP-algebra. To simplify the
notation, henceforth we drop the square brackets for the equivalence classes.

We can prove that the following universal property holds for inquisitive ex-
tensions.

9.3.1. Lemma. Let B be a Boolean algebra and H a KP-algebra such that B =
H¬¬. Then there exists a unique homomorphism h : H(B)→ H such that h|B =
idB. Moreover, if H is regularly generated, then h is surjective.

Proof:
Consider the map f : T → H defined by the clauses

f(b) = b, for b ∈ B f(t1 ∧̇ t2) = f(t1) ∧ f(t2)
f(t1 ∨̇ t2) = f(t1)

>

f(t2) f(t1 →̇ t2) = f(t1)→ f(t2).

Since H is a KP-algebra and agrees with the operations on B, f factors through
H(B), and thus we obtain a quotient map h : H(B) → H. Moreover, by con-
struction, h is a Heyting algebra homomorphism.

The image of B is fixed and H(B) is generated by B, so uniqueness follows.
Moreover, if H is regularly generated, then h is surjective, since B ⊆ h[H(B)]
and B generates H. 2

This result allows us to better understand the structure of the algebra H(B).
In particular, elements of H(B) can be represented in a disjunctive normal form
analogous to the normal form of InqB formulas (Lemma 9.1.8).

9.3.2. Proposition.

1. Every x ∈ H(B) can be represented in a unique way as x = a1

>

. . .

>

an
with a1, . . . , an ∈ B and ai 6≤ aj for i 6= j.

2. H(B) ∼= Dwfg(B).
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We will call a representation of x as in item 1 non-redundant.

Proof:
For item 1, we divide the proof in two steps: proving that every element x ∈ H(B)
can be written in the form x = b1

>

. . .

>

bm with b1, . . . , bm ∈ B; and proving
that from this form we can obtain a non-redundant representation.

We start by proving that every element x ∈ H(B) can be written in the form
x = b1

>

. . .

>

bm. Since H(B) is the quotient of the set T of terms, we can
proceed by induction on t ∈ T .

• If x ∈ B, we are done.

• If x = y ∧ z, consider two representations y = c1

>

. . .

>

ck and z =
d1

>

. . .

>

dl. Then

x = y ∧ z = (c1

>

. . .

>

ck) ∧ (d1

>

. . .

>

dl) = \
∨
{ci ∧ dj | i ≤ k, j ≤ l}.

• If x = y

>

z, then

x = y

>

z = c1

>

. . .

>

ck

>

d1

>

. . .

>

dl.

• If x = y → z, then

x = y → z = (c1

>

. . .

>

ck)→ (d1

>

. . .

>

dl)

= (c1 → d1

>

. . .

>

dl) ∧ · · · ∧ (ck → d1

>

. . .

>

dl)

= ∧li=1 ((ci → d1)

>

. . .

>

(ci → dl)) (by KP )

= ∨f :[n]→[m]

(
∧li=1(ci → df(i))

)
.

Now we show that every element admits a non-redundant representation. Let
x = b1

>

. . .

>

bm be an arbitrary representation of x. If ∀i, j. bi 6≤ bj, then we are
done. Otherwise, suppose (without loss of generality) that b1 ≤ b2. Then

b1

>

b2

>

. . .

>

bn = b2

>

. . .

>

bn.

Repeating this procedure, we obtain a non-redundant representation of x.

For item 2, consider the map h : H(B)→ Dwfg(B). Since

h(a1

>

. . .

>

an) = h(a1) ∪ · · · ∪ h(an) = {a1, . . . , an}↓,

h is injective. It is then easy to see that h is an isomorphism. 2

A direct consequence of Proposition 9.3.2 is that H(B) is well connected and thus
an inquisitive algebra. We can also prove the following interesting property of
H(B), which will be useful for later applications.



9.3. Inquisitive Extension of a Boolean Algebra 169

9.3.3. Lemma. Let H ′ be a finitely generated subalgebra of H(B). Then H ′ is a
subalgebra of a finite subalgebra of H(B) of the form H(B′), where B′ a Boolean
subalgebra of B.

Proof:
Let a1

1

>

. . .

>

a1
k1
, . . . , an1

>

. . .

>

ankn be the non-redundant representations of the

generators of H ′, and let A be the set A = {aij | i ≤ n, j ≤ ki}. Let B′ be the
Boolean subalgebra of B generated by A. Notice that this is a finite algebra.
Clearly H ′ ⊆ H(B′) ⊆ H(B).

Finally, the isomorphism in Item 2 of Proposition 9.3.2 maps H(B′) onto
Dwfg(B

′)—which is finite, since |Dwfg(B
′)| is equal to the number of antichains

in B′. Therefore, H(B′) is finite. 2

The results of this section allow us to draw a strong connection between regularly
generated KP-algebras and Medvedev’s logic ML.

9.3.4. Theorem. If H is a regularly generated KP-algebra, then H is an ML-
algebra.

Proof:
Let H be a regularly generated KP-algebra. Then, by Lemma 9.3.1, H is a
homomorphic image of some algebra of the form H(B). Thus, it suffices to show
that H(B) is an ML-algebra.

It is well known that for every Heyting algebra A and intermediate logic L
we have that A is an L-algebra iff every finitely generated subalgebra of A is an
L-algebra. Therefore, by Lemma 9.3.3, we obtain that H(B) is an ML-algebra iff
H(B′) is an ML-algebra for every finite Boolean subalgebra B′ of B.

Thus, we only need to prove the result for algebras of the form H(B′) where
B′ is finite. Then B′ ∼= P(W ) for some finite set W . By Proposition 9.3.2,

H(B′) ∼= Dwfg(B
′) ∼= Dwfg(P(W )) ∼= Dw0(P(W )) ∼= Dw(P0(W )),

which is exactly the algebra corresponding to the Medvedev frame 〈P0(W ),⊇〉.
We conclude that H(B) is an ML-algebra and therefore H is also an ML-algebra.
2

9.3.5. Corollary.

IntLog({H | H is a regularly generated KP-algebra})
= IntLog({H(B) | B is a finite Boolean algebra})
= ML.
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Proof:
Let C1 be the class of regularly generated KP-algebras and C2 the class of H(B)’s
for a finite Boolean algebra B. Firstly, notice that everyH(B) is a regularly gener-
ated KP-algebra, so C2 ⊆ C1. Consequently IntLog(C1) ⊆ IntLog(C2). Therefore,
we just need to prove that ML ⊆ IntLog(C1) and IntLog(C2) ⊆ ML.

The first inclusion follows directly from Theorem 9.3.4. For the second inclu-
sion, consider an arbitrary Medvedev frame 〈P0(W ),⊇〉—recall that W is finite.
As noticed in the proof of Theorem 9.3.4, the Heyting algebra corresponding to
this frame is Dw(P0(W )) ∼= H(P(W )). Hence it is isomorphic to an element of
C2. It follows that IntLog(C2) ⊆ ML, as required. 2

9.3.2 Algebraic Characterization of the Inquisitive Exten-
sion

We are now ready to provide our first characterization of H(B).

9.3.6. Theorem. For a Boolean algebra B, its inquisitive extension H(B) is the
unique (up to isomorphism) inquisitive algebra such that H(B)¬¬ is isomorphic
to B.

Proof:

Let H be an inquisitive algebra where H¬¬ ∼= B, and fix an isomorphism g :
H¬¬ → B. By Lemma 9.3.1, there exists a unique morphism h : H(B)→ H such
that h|H(B) = g, which is surjective since H is regularly generated.

It only remains to show that h is also injective, thus proving that h is an iso-
morphism. Let x, y ∈ H(B) and suppose that h(x) = h(y). Let x = a1

>

. . .

>

an
and y = b1

>

. . .

>

bm be their non-redundant representations. Then where u,t,⇒
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are the operations of H, we have

a1 t · · · t an = b1 t · · · t bm
=⇒ (a1 t · · · t an)⇔ (b1 t · · · t bm) = >

=⇒
{ ⊔

f :[n]→[m]

d
i≤n(ai ⇒ bf(i)) = >⊔

g:[m]→[n]

d
j≤m(bj ⇒ ag(j)) = >

=⇒
{
∃f : [n]→ [m].

d
i≤n(ai ⇒ bf(i)) = >

∃g : [m]→ [n].
d
j≤m(bj ⇒ ag(j)) = > (since H is inquisitive)

=⇒
{
∀i ≤ n. ∃j ≤ m. (ai ⇒ bj) = >
∀j ≤ m. ∃i ≤ n. (bj ⇒ ai) = >

=⇒
{
∀i ≤ n. ∃j ≤ m. ai ≤ bj
∀j ≤ m. ∃i ≤ n. bj ≤ ai

(since h|B = idB)

=⇒
{
x ≤ y
y ≤ x

=⇒ x = y.

So h is injective and thus an isomorphism, as required.
2

9.3.7. Corollary. A Heyting algebra A is an inquisitive algebra iff A is iso-
morphic to H(A¬¬).

Proof:
The right-to-left implication is clear. For the left-to-right, consider an inquisitive
algebra A. By Theorem 9.3.6, H(A¬¬) is isomorphic to any inquisitive algebra
with A¬¬ as the set of ¬¬-fixpoints. In particular, A ∼= H(A¬¬). 2

We conclude this section with a result analogous to Corollary 9.3.5 but now for
inquisitive logic.

9.3.8. Corollary.

DNALog({H | H is a KP-algebra})
= DNALog({H(B) | B is a finite Boolean algebra})
= InqB.

Proof:
By Lemma 9.2.8, InqB is included in the inquisitive logic of the two classes of
algebras. For the other inclusion: by Proposition 9.3.2, given a finite set W we
have H(P(W )) ∼= Dw(P0(W )). So by Proposition 9.1.10, the inquisitive logic of
the second class of algebras is indeed InqB; and since the first class of algebras
includes the second, we obtain both equalitites. 2
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9.3.3 Topological Characterization of the Inquisitive Ex-
tension

Using the UV-spaces of Section 9.1.3, we can give a topological realization of
H(B), which in the next section will lead to a topological semantics of inquis-
itive logic. By item 2 of the following theorem, H(B) may be characterized as
(isomorphic to) the Heyting algebra of compact open sets of the UV-space dual
to B.

9.3.9. Theorem. Let B be a Boolean algebra and X its dual UV-space.

1. (O(X),⊆) ∼= Dw0(B).

2. (CO(X),⊆) ∼= Dwfg(B) ∼= H(B).

To prove Theorem 9.3.9, we will use the following lemma.

9.3.10. Lemma. Let A =
⋃
i∈I Ui and B =

⋃
j∈J Vj be open sets of a UV-space

X, where Ui, Vj are CORO-sets. Then A ⊆ B iff ∀i ∈ I. ∃j ∈ J. Ui ⊆ Vj.

Proof:
Firstly, we show that every CORO-set U is the upset of a singleton: since {U}↑
is a filter in CORO(X), there exists a point x such that {U}↑ = CORO(X). It
follows that U =

⋂
CORO(x) = {x}↑.

We can use this to prove the result. Call xi the generator of Ui for each i ∈ I.

A ⊆ B ⇐⇒
⋃
i∈I Ui ⊆

⋃
j∈J Vj ⇐⇒ ∀i ∈ I. Ui ⊆

⋃
j∈J Vj

⇐⇒ ∀i ∈ I. Ui ⊆
⋃
j∈J Vj ⇐⇒ ∀i ∈ I. xi ∈

⋃
j∈J Vj

⇐⇒ ∀i ∈ I. ∃j ∈ J. xi ∈ Vj ⇐⇒ ∀i ∈ I. ∃j ∈ J. Ui ⊆ Vj.

2

Proof of Theorem 9.3.9:

For the first part: consider the map f : O(X)→ Dw0(B) defined by3

f

(⋃
i∈I

âi

)
= {ai | i ∈ I}↓.

3Here we are adopting the convention {}↓ := {⊥}, so that f(∅) = {⊥}.
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To show that f is well defined and order preserving and reflecting, we observe
the following equivalences, using Lemma 9.3.10 for the first:

⋃
i∈I

âi ⊆
⋃
j∈J

b̂j ⇐⇒ ∀i ∈ I. ∃j ∈ J. âi ⊆ b̂j

⇐⇒ ∀i ∈ I. ∃j ∈ J. ai ≤ bj

⇐⇒ ∀i ∈ I. ∃j ∈ J. {ai}↓ ⊆ {bj}↓

⇐⇒ {ai | i ∈ I}↓ ⊆ {bj | j ∈ J}↓.

Thus, f is also injective. Notice that surjectivity is trivially satisfied. Hence f is
an isomorphism.

For the second part: since elements of CO(X) are exactly the sets of the form
â1 ∪ · · · ∪ ân for some a1, . . . , an ∈ B, we obtain that f |CO(X) is an isomorphism
with range Dwfg(B), as required.

2

For the readers familiar with Esakia duality for Heyting algebras ([Esakia, 2019],
in particular Section 3.4), we can further exploit Theorem 9.3.9 to obtain a con-
nection between the choice-free duality for Boolean algebras and Esakia duality.
This connection is based on the following proposition.

9.3.11. Proposition. The following function defines an order isomorphism be-
tween the set Spec(H(B)) of prime filters of H(B), ordered by inclusion, and the
set Filt(B) of filters of B, ordered by inclusion:

r : (Spec(H(B)),⊆) → (Filt(B),⊆)
F 7→ F ∩B

Proof:
It is easy to verify that r is well defined and order preserving. For injectivity,
notice that a prime filter p of H(B) is completely determined by the elements of
B it contains, since for every non-redundant representation a1

>

. . .

>

an, we have

a1

>

. . .

>

an ∈ p ⇐⇒ a1 ∈ p or . . . or an ∈ p. (9.4)

Using this fact, we can also show surjectivity: let F be a filter of B and define pF
as the smallest set including F and respecting (9.4). Then clearly pF is an upset
and respects the primality condition (a

>

b ∈ pF iff a ∈ pF or b ∈ pF ). Moreover,
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algebras spaces
B ∼= CORO(UV (B)) UV (B)
H(B) ∼= CO(UV (B)) '

H(B) ∼= CO(Spec(H(B))) Spec(H(B))

Figure 9.2: Summary of results of Section 9.3.3.

it is closed under meets, since

a1

>

. . .

>

an ∈ pF and b1

>

. . .

>

bm ∈ pF

⇐⇒ ∃i. ai ∈ pF and ∃j. bj ∈ pF

⇐⇒ ∃i. ai ∈ F and ∃j. bj ∈ F
⇐⇒ ∃i. ∃j. ai ∧ bj ∈ F
⇐⇒ ∃i. ∃j. ai ∧ bj ∈ pF

⇐⇒ (a1

>

. . .

>

an) ∧ (b1
>

. . .

>

bm) = \
∨
{ai ∧ bj | i ≤ n, j ≤ m} ∈ pF .

Since r(pF ) = F , we also have surjectivity.
2

9.3.12. Proposition. Given B a Boolean algebra, the Esakia space Spec(H(B))
dual to H(B) is homeomorphic to the UV-space UV (B) dual to B.

Proof:
The map r defined in Proposition 9.3.11 above is a homeomorphism; all the ver-
ifications are standard and left to the reader. 2

We summarize the results of this section in Figure 9.2.

9.4 Topological Semantics for Inquisitive Logic

Theorem 9.3.9 and Lemma 9.4.2 allow us to define a topological semantics for
InqB based on UV-spaces.

9.4.1. Definition (Topological semantics).

Let X be a UV-space and V : AP → CORO(X) an atomic valuation. For each
inquisitive formula ϕ ∈ L, we define its semantic valuation JϕKX,V ∈ CO(X)
recursively as follows:4

J⊥KX,V = ∅ Jϕ ∧ ψKX,V = JϕKX,V ∩ JψKX,V

JpKX,V = V (p) Jϕ

>

ψKX,V = JϕKX,V ∪ JψKX,V

Jϕ→ ψKX,V = Int
(

(X \ JϕKX,V ) ∪ JψKX,V
)
.
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We adopt the same notational conventions for validity as in Definition 9.2.5.

In the Boolean algebra CORO(X), implication is given by U → V = ¬U ∨ V
= Int≤Cl≤(Int≤(X \U)∪ V ), and it is easy to verify that the right-hand side is
equal to Int≤((X \ U) ∪ V ). Interestingly, in the semantic clause for → we can
use either the operator Int or Int≤, as shown in the following lemma.

9.4.2. Lemma. Given A,B ∈ CO(X), Int((X \ A) ∪B) = Int≤((X \ A) ∪B).

To prove Lemma 9.4.2, we first need to establish some technical results. In the
following we denote X \A by A. For a UV space X and x, y ∈ X, let xuy be the
greatest lower bound of x and y in the specialization order of X [Bezhanishvili
and Holliday, 2020, Corollary 5.5].

9.4.3. Lemma. Let U ∈ CORO(X) and x1, x2 ∈ U . Then x1 u x2 ∈ U .

Proof:
By [Bezhanishvili and Holliday, 2020, Corollary 5.5], U = U∨U = U∪{x u y | x, y ∈ U}.
2

9.4.4. Lemma. Given U, V ∈ CORO(X), Int≤
(
U ∪ V

)
= ¬U ∨ V .

Proof:
Left-to-right inclusion. Consider an element x ∈ Int≤

(
U ∪ V

)
. If x ∈ ¬U∪V ,

then there is nothing to prove; so suppose this is not the case. By [Bezhanishvili
and Holliday, 2020, Corollary 5.5], there is a decomposition x = x1ux2 such that
x1 ∈ ¬U and x2 ∈ U .

Since x2 /∈ U and x2 ≥ x ∈ Int≤
(
U ∪ V

)
, it follows that x2 ∈ V . So

x ∈ {y u z | y ∈ ¬U, z ∈ V } ⊆ ¬U ∨ V , as desired.

Right-to-left inclusion. Consider x ∈ ¬U ∨ V and take an arbitrary w ≥ x.
We want to show that w ∈ U ∪ V .

If w ∈ ¬U ∪ V ⊆ U ∪ V , then there is nothing to prove; so suppose this is
not the case. By [Bezhanishvili and Holliday, 2020, Corollary 5.5], we can write
w = w1 uw2 with w1 ∈ ¬U and w2 ∈ V . In particular, w1 is a successor of w not
in U , and since U is a ≤-downset, it follows that w ∈ U ⊆ U ∪ V .

Since w was an arbitrary successor of x, it follows that x ∈ Int≤
(
U ∪ V

)
.
2

4Notice that Theorem 9.3.9 ensures that Jϕ→ ψKX,V ∈ CO(X).
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9.4.5. Lemma. Given Ui, Vj ∈ CORO(X), the following identity holds:

Int≤

((
m⋂
i=1

Ui

)
∪

(
n⋃
j=1

Vj

))
=

⋃
f :[m]→[n]

m⋂
i=1

(
¬Ui ∨ Vf(i)

)
.

Proof:

By Lemma 9.4.4, the identity is equivalent to

Int≤

((
m⋂
i=1

Ui

)
∪

(
n⋃
j=1

Vj

))
=

⋃
f :[m]→[n]

Int≤

(
m⋂
i=1

(
U i ∪ Vf(i)

))
.

Let L and R be the left-hand side and right-hand side, respectively.

Right-to-left inclusion. Consider x ∈ R. This means that:

∃f : [m]→ [n]. ∀y ≥ x. y ∈
m⋂
i=1

(
U i ∪ Vf(i)

)
.

So with fixed f as above, given y ≥ x, we have:

y ∈
m⋂
i=1

(
U i ∪ Vf(i)

)
⊆

m⋂
i=1

(
U i ∪

(
n⋃
j=1

Vj

))
=

(
m⋂
i=1

Ui

)
∪

(
n⋃
j=1

Vj

)
.

As y was an arbitrary successor of x, it follows that x ∈ L.

Left-to-right inclusion. We will show this step by contradiction. Suppose that
x /∈ R. This means that:

∀f : [m]→ [n]. ∃y ≥ x. ∃i ∈ [m]. y /∈ U i ∪ Vf(i),

or equivalently

∃i ∈ [m]. ∀j ∈ [n]. {x}↑ ∩ Ui ∩ V j 6= ∅.

Fix an index k instantiating the first quantifier, and consider for each j ∈ [n]
an element yj ∈ {x}↑ ∩ Uk ∩ V j. Define y = y1 u · · · u yn. We have:

• For every j ∈ [n], yj ≥ x, and thus y ≥ x.

• Since yj ∈ V j and Vj is open, it follows that Cl(yj) ⊆ V j; and consequently

y ∈ V j, since y ≤ yj.

• Since y1, . . . , yn ∈ Uk, we have y ∈ Uk (see Lemma 9.4.3).
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So it follows that y ≥ x and y ∈ Uk ∩ V1 ∩ · · · ∩ Vn. Thus in particular

y /∈
(⋂m

i=1 U i

)
∪
(⋃n

j=1 Vj

)
, from which we obtain x /∈ L, as desired.

2

Proof of Lemma 9.4.2:
By Lemma 9.4.5, Int≤(A ∪ B) ∈ CO(X). Since the order topology is finer than
the main topology, we have

Int(A ∪B) = Int
(
Int≤(A ∪B)

)
= Int≤(A ∪B).

2

9.4.6. Theorem. The set of formulas valid on UV-spaces under this semantics
is exactly the set of theorems of InqB.

Proof:
Let X be a UV-space. By Theorem 9.3.9, CO(X) ∼= H(CORO(X)). Moreover,
by [Bezhanishvili and Holliday, 2020], every Boolean algebra is isomorphic to one
of the form CORO(X). Combining this result with Corollary 9.3.8, we obtain:

DNALog({X |X a UV-space}) = DNALog({H(B) |B a Boolean algebra})
= InqB.

2

We conclude this section by pointing out a connection with Medvedev’s logic
ML. UV-spaces can be used to give a new topological semantics for ML in a
way analogous to inquisitive logic, namely by allowing valuations to range over
CO-sets in Definition 9.4.1—and not only CORO-sets.

9.4.7. Corollary. ML is sound and complete with respect to the topological
semantics presented above.

Proof:
As noticed in the proof of Theorem 9.4.6, DNALog({X | X a UV-space}) =
DNALog({H(B) | B a Boolean algebra}). Combining this observation with Corol-
lary 9.3.5 and Theorem 9.3.9, we obtain the desired result. 2

9.5 Conclusions

In this chapter, we introduced algebraic and topological semantics for inquisitive
logic and connected them via choice-free duality for Boolean algebras by Bezhan-
ishvili and Holliday [2020]. This opens up new avenues for further research which
we will briefly mention.
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The main results of this chapter are concerned with KP-algebras, since the
KP-axiom is essential for inquisitive logic. However, we could consider different
classes of regularly generated Heyting algebras and study the corresponding gen-
eralized logics. This is the direction taken by Quadrellaro [2019], Bezhanishvili
et al. [2020], where the DNA-semantics is further developed for equationally de-
finable classes of Heyting algebras, leading to a Birkhoff-type result for varieties
of regularly generated algebras [Bezhanishvili et al., 2020, Corollary 3.27].

We can also consider substituting the double negation nucleus ¬¬ with an-
other nucleus or interesting endomorphism of Heyting algebras. This direction
was followed for example by Holliday [2020], which yields the nuclear semantics
for “inquisitive intuitionistic logic”. How to define and characterize inquisitive ex-
tensions in this setting and whether there is a corresponding topological semantics
remain open problems. Another work on this topic is [Grilletti and Quadrellaro,
forthcoming], where the endomorphism ¬¬ is substituted with an arbitrary defin-
able endomorphism. Interestingly, most of the theory developed in [Quadrellaro,
2019, Bezhanishvili et al., 2020] adapts to this case. How to develop a topolog-
ical semantics using Esakia duality in this alternative setting is currently under
investigation.

Finally, it is worth exploring whether these results can be generalized to the
first order case. The major obstacle towards this generalization is that an ax-
iomatization for InqBQ is still not known, and this prevents us from finding an
equationally definable class of algebras whose logic is InqBQ. On the other hand,
a generalization of the DNA-semantics to the first order case would provide new
ways to tackle the axiomatization problem: for example trying to adapt the com-
pleteness proof for classical first order logic given by Rasiowa and Sikorski [1950],
or the completeness proof for the logic CD by Görnemann [1971].
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Samenvatting

Deze dissertatie focust op de studie van inquisitieve eerste-ordelogica, een lo-
gisch formalisme dat vragen in de aanwezigheid van kwantificatie omvat, ontwik-
keld met als doel het aanwenden van vragen in formele gevolgtrekkingen en het
bestuderen van hun logische eigenschappen. In het bijzonder focussen we op het
ontwikkelen van gereedschappen en technieken voor het bestuderen van de uit-
drukkingskracht van inquisitieve eerste-ordelogica en de eigenschappen van haar
logisch gevolg. De dissertatie bestaat uit vier delen, die elk een andere aanpak
om de logica te bestuderen beschouwen.

In het eerste deel, bestaande uit hoofdstukken 4 en 5, maken we een gereed-
schap uit het gebied van modeltheorie geschikt voor inquisitieve eerste-ordelogica:
Ehrenfeucht-Fräıssé-spellen. We laten zien dat de techniek van Ehrenfeucht-
Fräıssé-spellen zich laat aanpassen aan deze context en dat het ons kan laten
detecteren wanneer twee inquisitieve modellen niet te onderscheiden zijn door for-
mules van een bepaalde complexiteit. Het ontwikkelde spel is vrij flexibel en kan
aangepast worden om andere eigenschappen dan logische equivalentie te vatten,
bijvoorbeeld de submodelrelatie. Door middel van het spel kunnen we kenschetsen
welke kardinaliteitskwantoren definieerbaar zijn in inquisitieve eerste-ordelogica,
waarmee we het resultaat voor klassieke logica generaliseren naar dit expressievere
systeem.

Het tweede deel, bestaande uit hoofdstuk 6, neemt een andere stap in de
modeltheoretische richting en presenteert verscheidene manieren om de modellen
van inquisitieve eerste-ordelogica te manipuleren en combineren. De ontwikkelde
theorie stelt ons in staat om te bewijzen dat twee belangrijke kenmerken van
constructieve logica’s ook van toepassing zijn op inquisitieve eerste-ordelogica:
de disjunctie- en existentie-eigenschap. Het bewijs dat we geven is semantisch
van aard: we ontwikkelen verscheidene constructies om inquisitieve modellen te
combineren en transformeren, en gebruiken ze om de disjunctie- en existentie-
eigenschap te bewijzen. Sommige van deze constructies zijn geinspireerd op be-
werkingen van intuitionistische Kripke-frames (bijvoorbeeld disjuncte vereniging),
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terwijl andere gebaseerd zijn op constructies die typisch voor klassieke predikaten-
logica zijn (bijvoorbeeld modellen van termen). Deze aanpak staat ons toe om ook
algemenere resultaten te bewijzen: we definiëren verscheidene klassen van theo-
rieën waarvan de overeenkomstige gevolgrelaties de disjunctie- en/of de existentie-
eigenschap hebben.

In het derde deel, bestaande uit hoofdstukken 7 en 8, verleggen we onze
aandacht naar het axiomatiseringsprobleem. Op dit moment is het niet be-
kend of inquisitieve eerste-ordelogica axiomatiseerbaar is. We behandelen een
beperkte versie van het axiomatiseringsprobleem, dat wil zeggen, we axiomatise-
ren fragmenten en variaties van de logica. Hoofdstuk 7 focust op het klassieke-
antecedentfragment, dat intuitief gekenschetst kan worden als het fragment waarin
vragen niet toegestaan zijn in het antecedent van een implicatie. Dit fragment is
in het bijzonder interessant omdat het—modulo logische equivalentie—alle for-
mules bevat die overeenkomen met zinnen uit de natuurlijke taal. We bewijzen
dat het systeem van natuurlijke deductie zoals voorgesteld in [Ciardelli, 2016,
Section 4.6], beperkt tot het klassieke-antecedentfragment, een correcte en sterk
volledige axiomatisering biedt. Hoofdstuk 8 focust op het eindige-breedte inquisi-
tieve logica’s en op het begrensde-breedtefragment.

Eindige-breedte inquisitieve logica’s zijn gëıntroduceerd door Sano [2011] als
een hiërarchie die nauw verwant is aan inquisitieve eerste-ordelogica. Sano axio-
matiseerde één van deze logica’s en liet twee vragen open: of de andere elementen
van de hiërarchie axiomatiseerbaar zijn, en of inquisitieve eerste-ordelogica de
limiet van deze hiërarchie is. We geven een positief antwoord op de eerste en een
negatief antwoord op de laatste vraag. Hoofdstuk 8 behandelt ook het begrensde-
breedtefragment, dat gekenmerkt wordt door de volgende eigenschap: als een
formule van het fragment niet ondersteund wordt in een informatiestaat s, dan
bestaat er een eindige deelverzameling van s die de formule ook niet ondersteunt.
Deze nogal eigenaardige eigenschap staat ons toe om verscheidene interessante
resultaten voor het fragment af te leiden (bijvoorbeeld dat validiteiten in het
fragment recursief opsombaar zijn en dat de begrensde gevolgrelatie compact is),
voortbouwend op het volledigheidsresultaat voor de eindige-breedte inquisitieve
logica’s.

Het vierde deel, bestaande uit hoofdstuk 9, is een verkennend werk dat nog
niet ontwikkeld is voor eerste-ordelogica, maar alleen voor propositionele logica:
we presenteren een algebräısche en een topologische semantiek voor inquisitieve
propositionele logica. Een generalisatie van deze aanpak naar eerste-ordelogica
zou een kostbaar hulpmiddel kunnen blijken te zijn voor het bestuderen van
inquisitieve eerste-ordelogica vanuit nieuwe perspectieven, bijvoorbeeld met be-
hulp van de methoden die worden gebruikt door Rasiowa en Sikorski [1950] of
Görnemann [1971]. Aan de algebräısche kant introduceren we een nieuwe se-
mantiek, gebaseerd op Heyting-algebra’s, door de valuaties van propositionele
atomen alleen te beperken tot reguliere elementen. Hieruit verkrijgen we een al-
gebräısche semantiek voor inquisitieve logica door de semantiek te beperken tot
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de klasse van inquisitieve Heyting-algebra’s. Aan de topologische kant passen
we een door Bezhanishvili en Holliday [2020] ontwikkeld dualiteitsresultaat toe
om inquisitieve algebra’s te karakteriseren in termen van hun duale topologische
UV-ruimtes. Dit maakt het mogelijk om een topologische semantiek voor inquisi-
tieve logica te definiëren die, voor zover de auteur weet, de eerste poging is om
inquisitieve logica te bestuderen vanuit een topologisch perspectief.





Abstract

This dissertation focuses on the study of inquisitive first order logic, a logical
formalism encompassing questions in the presence of quantification, developed in
order to employ questions in formal inferences and study their logical properties.
In particular, we focus on developing tools and techniques to study the expressive
power of inquisitive first order logic and the properties of its entailment. The
dissertation can be divided in four parts, each considering a different approach
to study the logic.

In the first part, consisting of Chapters 4 and 5, we adapt a tool from the field
of model theory to inquisitive first order logic: Ehrenfeucht-Fräıssé games. We
show that the technique of Ehrenfeucht-Fräıssé games adapts to this context and
allows to detect when two inquisitive models are indistinguishable by formulas of
a given complexity. The game developed is quite flexible and can be modified to
capture properties other than logical equivalence, as for example the submodel
relation. Using the game, we achieve a characterization of the cardinality quan-
tifiers definable in inquisitive first order logic, generalizing the result for classical
logic to this more expressive setting.

The second part, consisting of Chapter 6, takes another step in the model-
theoretic direction and presents several ways to manipulate and combine models of
first order inquisitive logic. The theory developed allows us to prove that two hall-
marks of constructive logics hold for inquisitive first order logic: the Disjunction
and Existence properties. The proof we give is semantical in nature: we develop
several constructions to combine and transform inquisitive models, and use them
to prove the disjunction and existence properties. Some of these constructions are
inspired by operations on intuitionistic Kripke-frames (e.g., disjoint union) while
others are based on constructions typical of classical predicate logic (e.g., models
of terms). This approach allows us to prove also more general results: we define
several classes of theories for which the corresponding consequence relations have
the disjunction and/or the existence property.

In the third part, consisting of Chapters 7 and 8, we shift our attention on the
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axiomatization problem. As of now it is not known whether first order inquisi-
tive logic is axiomatizable. We tackle a restricted version of the axiomatization
problem, that is, we axiomatize fragments and variations of the logic. Chapter
7 focuses on the classical antecedent fragment, which can be intuitively charac-
terized as the fragment where questions are not allowed in the antecedent of a
conditional. This fragment is particularly interesting since it contains—modulo
logical equivalence—all formulas corresponding to natural language sentences.
We prove that the natural deduction system proposed in [Ciardelli, 2016, Section
4.6], restricted to the classical antecedent fragment, provides a sound and strongly
complete axiomatization. Chapter 8 focuses on the finite-width inquisitive logics
and on the bounded-width fragment. Finite-width inquisitive logics were intro-
duced by Sano [2011] as a hierarchy closely related to inquisitive first order logic.
Sano axiomatized one of these logics and left open two questions: whether the
other elements of the hierarchy are axiomatizable, and whether first order inquis-
itive logic is the limit of this hierarchy. We give a positive answer to the former
and a negative answer to the latter. Chapter 8 also treats the bounded-width
fragment, characterized by the following property: if a formula of the fragment
is not supported by an information state s, then there exists a finite subset of s
which still does not support the formula. This rather peculiar property allows to
derive several interesting results on the fragment (e.g., validities in the fragment
are recursively enumerable, the restricted entailment is compact), building on the
completeness result for the finite-width inquisitive logics.

The fourth part, consisting of Chapter 9, is an exploratory work not yet de-
veloped for the first order case, but only for the propositional case: we present an
algebraic and a topological semantics for inquisitive propositional logics. Gener-
alizing these semantic accounts to the first order case could prove to be a precious
tool to study first order inquisitive logic from new perspectives, for example us-
ing the methods employed by Rasiowa and Sikorski [1950] or Görnemann [1971].
On the algebraic side, we introduce a new semantics based on Heyting algebras
by restricting the valuations of propositional atoms only over regular elements.
From this we obtain an algebraic semantics for inquisitive logic by restricting the
semantics to the class of inquisitive Heyting algebras. On the topological side,
we apply a duality result developed by Bezhanishvili and Holliday [2020] to char-
acterize inquisitive algebras in terms of their dual topological UV-spaces. This
allows to define a topological semantics for inquisitive logic which, as far as the
author knows, is the first attempt to study inquisitive logic from a topological
perspective.
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