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Abstract
The purpose of an entanglement witness experiment is to certify the creation of an entangled state
from a finite number of trials. The statistical confidence of such an experiment is typically
expressed as the number of observed standard deviations of witness violations. This method
implicitly assumes that the noise is well-behaved so that the central limit theorem applies. In this
work, we propose two methods to analyze witness experiments where the states can be subject to
arbitrarily correlated noise. Our first method is a rejection experiment, in which we certify the
creation of entanglement by rejecting the hypothesis that the experiment can only produce
separable states. We quantify the statistical confidence by a p-value, which can be interpreted as the
likelihood that the observed data is consistent with the hypothesis that only separable states can be
produced. Hence a small p-value implies large confidence in the witnessed entanglement. The
method applies to general witness experiments and can also be used to witness genuine
multipartite entanglement. Our second method is an estimation experiment, in which we estimate
and construct confidence intervals for the average witness value. This confidence interval is
statistically rigorous in the presence of correlated noise. The method applies to general estimation
problems, including fidelity estimation. To account for systematic measurement and random
setting generation errors, our model takes into account device imperfections and we show how this
affects both methods of statistical analysis. Finally, we illustrate the use of our methods with
detailed examples based on a simulation of NV centers.

1. Introduction

Entanglement is a fundamental property of quantum mechanical systems [1] and an important resource for
many quantum information processing tasks. In quantum computing, coherently creating entanglement
between several qubits is necessary for computational speedups [1–3]. In quantum networks, remote
entanglement is an essential resource for quantum cryptography [4–6] and distributed computing
applications [7–9]. Entanglement also plays a crucial role in quantum sensing and metrology [10–12],
enabling more precise measurement of physical quantities. With the rapid experimental advances in the
manipulation and control of quantum systems, much progress had been made toward the generation of
entangled states in various physical platforms [13–19]. Yet, the creation of high-quality many-body
entanglement is still a significant challenge. It is therefore important to have good tools to certify the
creation of entanglement. The main tools used for this purpose are entanglement witnesses.

An entanglement witness is an observable W on a quantum system that can certify entanglement of a
state ρ∗ under investigation [20]. By definition, the witness W satisfies

Tr[ρW] � 0 ∀ρ ∈ S, (1)
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Figure 1. Geometric interpretation of a witness W as a hyperplane that separates the state ρ∗ from the convex set S . If S is the
set of separable states, then W certifies that ρ∗ is entangled.

for all separable states ρ ∈ S. As a consequence, it can be used to certify entanglement: If a state ρ∗ has
negative witness expectation value, Tr[Wρ∗] < 0, then it is necessarily entangled. If the expectation value is
non-negative, the test is inconclusive (the state can either be separable or not). The witness method applies
more generally than just for separating entangled from separable states. If S is an arbitrary convex set of
states and ρ∗ /∈ S, then there always exists a witness W such that equation (1) holds, while Tr[Wρ∗] < 0.
For example, a witness can be used to certify that states are genuinely multipartite entangled. Geometrically,
the witness W can be interpreted as a hyperplane that separates the convex set S from the state ρ∗ /∈ S. This
is illustrated in figure 1. In general, finding an appropriate witness W for a state ρ∗ is a difficult problem
that has been studied extensively in literature [21–23]. For the remainder of this article, we will assume that
W is chosen and fixed.

Often, a witness W is a non-local observable of the system for which entanglement is to be certified.
Such measurements are typically hard to perform, particularly in a network setting. Therefore, in
experiments, W is usually decomposed into a sum of locally measurable observables which are then
measured individually on the constituent subsystems. The witness expectation value Tr[Wρ∗] is then the sum
of the expectation values of the locally measurable observables. Each of these expectation values can then
only be estimated to some finite precision, since in any experiment only a finite number n of data points
can be collected. As a consequence, the witness estimate ŵn obtained from n measurement outcomes can
differ from the true value Tr[Wρ∗]. Therefore, it is an important question how to quantify the confidence in
the experimentally determined estimate ŵn.

1.1. Prior work and motivation
In many experiments, the confidence in the estimate ŵn of the true witness expectation value Tr[Wρ∗] is
expressed by the standard error σ̂ (the empirical standard deviation) [13–19, 24]. These experiments
typically claim the certification of entanglement if the estimate ŵn is a number of σ̂’s below zero. This
approach is simple and pragmatic, but may suffer from statistical and practical challenges (see [25] for
similar objections to using this method for quantifying Bell violations). We give a concrete example in
section 4.4 (see figure 6) where this approach could potentially be problematic.

Certification of entanglement by the number of sigma’s of witness violation is most easily justified
under the assumption that in each round i the state ρi is independent and identically distributed (iid
assumption). This is equivalent to assuming each round a fixed state ρ∗ is produced. Under this assumption,
the estimate ŵn is considered a realization of a Gaussian random variable Ŵn with mean E[Ŵn] = Tr[Wρ∗]
and standard deviation σ ∼ 1√

n (for sufficiently large n). This is justified by the central limit theorem. The
empirically obtained ŵn and σ̂ are appropriate estimates of the mean Tr[Wρ∗] and standard deviation σ.
Thus, the reported ŵn ± σ̂ is a complete and accurate characterization of the distribution (and hence leads
to meaningful confidence intervals etc.)

However, if the states ρ1, . . . , ρn produced in an n round experiment are not iid, several difficulties may
arise. This starts with what is even to be estimated. Most natural is to estimate the average witness value

〈W〉n :=
1

n

n∑
i=1

Tr[ρiW] = Tr[(
1

n

n∑
i=1

ρi)W], (2)

which can also be interpreted as the witness expectation value of the average state ρ∗ = 1
n

∑n
i=1 ρi. There are

versions of the central limit theorem that relax the iid assumption. They can be used to argue that the
estimate ŵn is still an observation of a Gaussian random variable Ŵn with mean E[Ŵn] = 〈W〉n for
sufficiently large n (Gaussian assumption). But in practical experiments it is not always clear when these
theorems can be applied, so that the convergence of Ŵn to a Gaussian with mean 〈W〉n is not guaranteed for
any n. Moreover, under non-iid states ρi it is unclear whether the observed standard error σ̂ is an
appropriate estimator of the true standard deviation σ. Finally, even if the central limit theorem applies, the
convergence of Ŵn to a normal distribution can be extremely slow in n (especially when the witness
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violation is large [25]), so that too small n will still cause Ŵn not to be Gaussian. Hence, in practice it can
be difficult to justify the Gaussian assumption.

When the iid assumption (or more generally the Gaussian assumption) fails, several different problems
can arise. First, it can lead to overestimation of the confidence in the witness violation based on the
observed data. This happens when Pr[Ŵn < 0] is smaller under the true distribution of Ŵn than under the
estimated distribution, based on the observed ŵn and standard error σ̂ (i.e., based on the Gaussian
assumption). Second, the reported numbers ŵn ± σ̂ lack rigorous interpretation. The empirical standard
deviation σ̂ may no longer be an appropriate estimate of the true standard deviation σ. Moreover, the mean
and standard deviation do not necessarily describe the distribution of Wn completely (if Ŵn is not Gaussian,
the true distribution may depend on more than 2 free parameters). Because of these two effects, the number
of σ̂’s of witness violation in relation to the estimate ŵn will depend on the way Ŵn fails to be Gaussian or
on how σ̂ fails to estimate σ. This also makes the results between different experiments and physical
platforms become incomparable, because the actual distribution of Wn may be influenced by experimental
parameters, such as the distribution of ρi, measurement settings, hardware imperfections or the choice of
witness. Hence the number of σ̂’s of violation may also be influenced by these experimental details.

Finally, we note that measurement noise (systematic errors) can also lead to overestimation of the
confidence in the witness violation. This is because any measurement noise leads to the imperfect
implementation W̃ of the witness W. In case that 〈W̃〉n < 〈W〉n, this again leads to an overconfidence in the
witness violation. In fact, it can even happen that 〈W̃〉n < 0 while 〈W〉n � 0, leading to falsely concluding
entanglement [26]. This overconfidence persists independent of the number of samples n taken, since the
error is systematic.

1.2. Our contribution
We propose a new method of carrying out and analyzing witness experiments that addresses all of the
aforementioned issues. This method applies without any assumption on the states produced by the
experiment (i.e., they may be arbitrarily correlated). Moreover, it has a simple and clear interpretation, and
yields figures of merit that are easily comparable between different experiments. Finally, our method takes
into account imperfections of the measurement device and random setting generation, avoiding systematic
overestimation of confidence.

In our method, we view the source of the states as a black box that produces a quantum state ρi on
demand. The source can produce multiple states sequentially. All of these states are modeled by random
variables that can be arbitrarily distributed and which may depend arbitrarily on the history of the
experiment. That is, we allow the source to have memory. We now model the experiment as a sequential
process of i = 1, . . . , n rounds. In each round, a state ρi and a random measurement setting (determined by
the decomposition of W into locally measurable observables) are requested. The appropriate measurement
is performed on the state and the outcomes are recorded for data processing. In this model of the
experiment, we additionally allow for arbitrary bounded-strength noise in the measurement devices and
random measurement setting generator. That is, we assume that the noise in these devices is smaller than a
quantified maximum amount. Witnessing entanglement without any assumptions on the devices, an area
known as self-testing [27, 28], is based on Bell-type inequalities, which are typically tighter than witness
inequalities (and therefore harder to violate experimentally). Thus, our model is very general and has
minimal assumption to be as widely applicable as possible for analyzing witness experiments.

The main contribution of this work is two different types of data analysis for witness experiments. Both
methods are valid under these extremely general assumptions (in particular the state assumptions). In the
first method, we quantify the confidence that the source has the capability to produce an entangled state (i.e.,
a state outside S). This means that we rigorously determine the confidence that Tr[ρiW] < 0 for at least one
i. We do this by applying the framework of hypothesis testing, in which a null hypothesis is to be rejected
based on the observed evidence in experiment. In witness experiments, the null hypothesis is that the
source only produces separable states (i.e. ∀i : ρi ∈ S). To reject this null hypothesis means that at least one
entangled state must have been produced by the source (i.e. ∃i : ρi /∈ S). The figure of merit to quantify the
confidence in rejecting the null hypothesis is the p-value. Intuitively, the p-value is the probability of
obtaining data at least as extreme as the observed data in an experiment if the experiment were governed by
the null hypothesis, i.e., if the source was only able to produce separable states. A small p-value is then
considered strong evidence against the null hypothesis: the observed data is very unlikely to be explained by
a model that includes the null hypothesis. If p is smaller than some significance level α, the null hypothesis
is rejected and we conclude that entanglement must have been produced at least once with confidence
1 − α. We shall refer to this entire procedure as a witness rejection experiment and the data analysis as the
rejection analysis. This method is different from the standard methods, in the sense that here we can make a
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statement about at least one state, whereas typically one makes a statement about the average produced states
(e.g. when estimating the average witness value 〈W〉n as defined in equation (2)). We emphasize that our
method and analysis applies in complete generality to arbitrary witness experiments (with an arbitrary
convex set of states S and witness W). For concreteness we will focus in this work on entanglement
witnessing, but see section 5.1 for other examples.

In the second method we aim to estimate the average witness value 〈W〉n and we provide a confidence
interval around this estimate. The main contribution of our confidence interval method is that it is valid
without any assumptions on the produced states and therefore always applies. We will refer to this method
as the witness estimation method and the data analysis as the estimation analysis, since the objective here is
to estimate 〈W〉n. This method is generally applicable to estimate any Hermitian observable, not just
witness operators (i.e., it is not necessary that there is a set S such that equation (1) holds). Thus our
estimation method even applies to fidelity estimation and other estimation experiments.

The contributions of our work are presented in the following way. First, we formulate the
round-by-round witness experiment as an entanglement witness game, expand on this description and
present a formal model that governs the experiment in section 2. In the model description we incorporate
imperfections in the measurement device and random setting generation in a quantitative way. Based on
this model, we give a step-by-step description how to set the parameters and carry out the witness
experiment in section 3.1. Then, we show how to calculate a witness correction from the quantification of
the imperfect experimental devices (section 3.2, theorem 1). It is used in both the rejection and estimation
experiments to account for systematic device errors and prevent possible overconfidence in the experiment
outcomes (rejection and estimation). Next, we provide the main result to perform the rejection analysis.
This is an easy-to-compute bound on the p-value (section 3.3, theorem 2). The bound is simply evaluated
from the measurement outcomes. By comparing this bound to a predetermined significance level α, we can
determine whether the experiment rejects the null hypothesis with statistical significance. This allows us to
rigorously conclude that the source has the capability to produce entangled states with confidence 1 − α.
Finally, we provide the main result to perform the estimation analysis. This is a direct method to compute
and estimate and confidence interval for the average witness value 〈W〉n (section 3.4, theorem 3). The
estimate and this confidence interval are also directly and easily computable from the observed
measurement data. We illustrate these contributions with several detailed numerical examples in section 4.
Two of our examples are based on the simulation of nitrogen vacancy centers. The focus of these examples
is to detect genuine multipartite entanglement between three qubits (i.e., not a convex combination of
biseparable states, states separable over some bipartition of the three subsystems). Our third example
(figure 6) shows an explicit case where the Gaussian assumption fails to be applicable and where our
methods are still applicable.

The technical ingredients of this work are summarized as follows. Both results are obtained by viewing
the witness experiment as a game [29], similar to Bell tests being viewed as nonlocal games. This allows us
to construct (super)martingale sequences and use a concentration inequality to upper bound the tail
probabilities (we use Bentkus’ inequality [30, 31], which is slightly tighter than the more commonly used
Hoeffding–Azuma inequality [32]). This method is inspired by the analysis of Bell inequalities of reference
[32]. By choosing the appropriate (super)martingale sequences, we obtain the p-value bound for the
rejection analysis and the confidence interval for the estimation analysis.

1.3. Relation to other work
In this work, we model the measurement noise as general as possible via the POVM formalism and
determine a witness correction from this model using analytical methods to guarantee we never
overestimate the confidence. Our measurement model can be viewed as a generalization of the model
studied in reference [26], where imperfect qubit measurements are modeled by Bloch vectors that are
misaligned by at most some fixed angle. In reference [26] a witness correction factor is computed under this
more restricted noise model. However, they compute the witness correction via numerical optimization (see
section 5.3.2 for why we opt for an analytical bound and how the witness correction factor can alternatively
be calculated using numerical optimization for our noise model).

The witness rejection experiment and analysis is new for entanglement witness experiments, but is
inspired by the use of this technique for testing local realism through nonlocal games [32]. We emphasize
that this rejection method aims to rigorously certify that a machine has the capability of producing
entanglement. This is different than typical witness experiments in literature where the objective is to
estimate the average witness value [13–19, 24]. The estimation method we study here also aims to estimate
the average witness value. The main difference is that most works implicitly assume that the states are iid
(or at least that the estimator is Gaussian by some type of central limit theorem argument), whereas our
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work applies in the most general case with arbitrary noise on the state. This makes our method more
generally applicable.

Closely related to the confidence interval we construct here, reference [33] provides a method to
construct a Bayesian credible interval for an estimate of the average fidelity of experimentally prepared
states to a fixed entangled state (note that is equivalent to a particular choice of witness). The model is
similar in the sense that the states can be arbitrarily correlated, but the estimation objective is different: the
goal of reference [33] is to estimate the average fidelity of the unmeasured states from the measurement of a
subset of all available states. Similarly, reference [34] derives an efficient method to verify the production of
graph states by measuring all but one copy of the state. In contrast, we measure all available states and only
aim to make a statement about all the created states (after the fact). The work in reference [35] is related to
this by giving general lower bounds on the size of a credible regions for quantum parameter estimation.

An alternative method to estimate a property of a quantum system, is by using quantum state
tomography to collect measurement data, estimate a figure of merit (fidelity or witness value) and
determine a confidence interval [36]. However, this typically requires more measurement data than partial
state characterization since the complete state is reconstructed.

Finally, we mention that there is also a way of witnessing entanglement without the need to trust the
measurement devices at all (measurement-device-independent entanglement witnessing, MDI-EW) [37,
38]. This, however, requires each party to hold auxiliary local quantum states in each round and perform a
joint measurement between the auxiliary quantum state and the quantum state under investigation. This
method has been implemented in an experiment under the iid assumption [38].

2. Formulation and model of witness experiments

In this section, we will discuss the formulation and modeling of witness experiments. We will start with a
brief review of entanglement witness games as known in the literature in section 2.1. Next, we will
generalize the game formulation to handle two additional things: (1) multiple terms in the decomposition
of the witness operator may be inferred from a single measurement; and (2) measurements are allowed to
be implemented by arbitrary POVMs. We explain how to do this and introduce notation in section 2.2.
Finally, in section 2.3 we give a complete description of the experimental model that underpins our
experiment. This includes the characterization of noisy measurement and random setting generation
devices.

2.1. Entanglement witness games
In this section, we will recap entanglement witness games from the literature. We will start from the
assumption that a choice of witness W has been made. The quantum system under investigation is
decomposed into m subsystems on which local measurements can be performed (e.g., m = 2 for bipartite
entanglement witnessing). The witness operator then admits a decomposition into locally measurable
observables of the form

W = cI +
∑

x

wxM(1)
x ⊗ · · · ⊗ M(m)

x , (3)

where each M(j)
x is a locally measurable observable on subsystem j and where x runs over the terms in the

decomposition. Note that such a decomposition is always possible. A decomposition is minimal if the
number of terms over which x runs is minimal. In practice, the locally measurable observables M(j)

x will
often be Pauli observables. The decomposition in equation (3) is chosen such that each locally measurable
observable can be easily measured in the experiment. Measurement of M(j)

x yields one of the possible
outcomes labeled by aj (in the case of Pauli observables, the outcomes are simply ±1). We shall denote the
vector of all outcomes of the m subsystems as

a = (a1, . . . , am). (4)

With this decomposition, an entanglement witness experiment can be formulated as a game [29]. This is
similar to how Bell experiments are often formulated as nonlocal games. See figure 2 for an illustration of
an entanglement witness game. The game consists of n rounds. There are m players, one for each subsystem.
At the start of each round, each player receives a subsystem of a quantum state ρi, as well as a random
measurement setting Xi (we will use the conventional notation of writing random variables as capital letters
and their realizations as lowercase letters). This random setting Xi dictates which measurements the players
should perform on their local subsystems (according to the decomposition equation (10)). Hence, upon

5



Quantum Sci. Technol. 5 (2020) 035007 B Dirkse et al

Figure 2. Round i of the entanglement witness game. By pressing the red button, a source produces a quantum state ρi and
sends its subsystems to the players. We model the source as a black box, meaning it can produce a state by an arbitrary process.
The state in round i can arbitrarily depend on everything that happened earlier in the experiment, i.e. the source is allowed to
show memory effects. Then, by pressing the gray button, the random setting generator produces a measurement setting xi

(almost independently from ρi). The players each perform a measurement according to setting xi and send their outcomes ai to a
referee, who computes the score of that round. Afterward, round i + 1 starts.

receiving Xi = x in round i, each player j perform the local measurement labeled by x and j. They then
report their respective outcomes a to a referee, who assigns a score to the round according to

s(x, a) = −wx

px

m∏
j=1

aj, (5)

where px is the desired probability of realizing measurement setting Xi = x. A priori, any choice of px defines
a valid game. However, the choice of px has a significant influence on finite statistics in an experiment. We
suggest a reasonable choice in equation (17) and discuss the issue further in section 5.2.3. The negative sign
in equation (5) is added conform the common convention that games aim to maximize score. The score can
be interpreted as the contribution of round i to the witness value. Note that the score itself is a random
variable Si := s(Xi, Ai), since it is a function of the random measurement setting Xi and the random
measurement outcomes Ai. The score is constructed in such a way that the expected value of the score (in
the ideal scenario with perfect measurements and randomness) satisfies

Tr[ρiW] = c − E[Si|ρi], (6)

for all possible states ρi. Thus, the witness expectation value is affinely related to the expected score of each
round.

2.2. Generalization of the game formulation
In this section, we will expand on the game formulation as discussed in the previous section. In particular,
we will make two generalizations. First, we will explain and introduce notation to easily infer the
expectation value of multiple terms in the witness decomposition equation (3) from a single measurement.
Doing this typically requires fewer measurements for fixed confidence so it is advantageous to do so when
possible. Second, to be as general as possible in our measurement model, we shall allow every local
measurement on a individual subsystem to be described by a POVM. Let us make these things more
precise.

Sometimes it is not needed to measure all terms in equation (3) separately [13, 22]. For example, with
m = 3 single-qubit subsystems, Pauli-Z measurements on each subsystem would allow to one infer the
expectation values of all operators (omitting the tensor symbol)

ZZZ, ZZI, ZIZ, IZZ, ZII, IZI, IIZ. (7)

This holds in general. Measurement of m non-identity operators on all of the subsystems, would allow one
to infer 2m − 1 expectation values. We shall refer to the non-identity operators that are measured (ZZZ in
this example) as the measurement setting [13, 22] and refer to one or more of the possible 2m − 1 operators
whose expectation value can be computed (operators from equation (7) in this example) as observables.
Throughout the rest of this work, we will denote measurement settings as M(1)

x ⊗ · · · ⊗ M(m)
x , where every
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M(j)
x �= I is not the identity, and index them with a subscript x. We will denote observables as

O(1)
ξ ⊗ · · · ⊗ O(m)

ξ and index them with the subscript ξ. Note that ξ may run over different (more) terms
that x. Using this new notation, the witness decomposition (equation (3)) is thus written as

W = cI +
∑
ξ

wξO(1)
ξ ⊗ · · · ⊗ O(m)

ξ . (8)

To keep track of which observables (labeled by ξ) are related to which measurement setting (labeled by x),
we define f(ξ) = x if the observable O(1)

ξ ⊗ · · · ⊗ O(m)
ξ can be measured by the measurement setting

M(1)
x ⊗ · · · ⊗ M(m)

x . Furthermore, we define b(ξ) ∈ {0, 1}m as the bitstring of length m such that

O(1)
ξ ⊗ · · · ⊗ O(m)

ξ = (M(1)
f (ξ))

b1(ξ) ⊗ · · · ⊗ (M(m)
f (ξ))

bm(ξ). (9)

In this way, each term in equation (8) is related to a measurement setting from which it can be obtained.
For example, the observables IZZ, ZIZ, ZZI can all be measured by the setting ZZZ, and the corresponding
bitstrings b are 011, 101, 110, respectively. Note that if all observables require a different setting, then
ξ = f(ξ) = x, b(ξ) = 11 · · · 1 and O(j)

ξ = M(j)
x , thus reducing to the simple case discussed in section 2.1.

Using this notation, we can write equation (8) alternatively as

W = cI +
∑
ξ

wξ

m⊗
j=1

(
M(j)

f (ξ)

)bj(ξ)
. (10)

To allow for the most general model of measurements, we will allow each M(j)
x in a measurement setting to

be measured by a POVM {Π(j),x
a }

a∈Ω(j)
x

with outcomes labeled by a (which take values in the finite set Ω(j)
x ).

That is, we will write
M(j)

x =
∑

a∈Ω(j)
x

aΠ(j),x
a . (11)

For a standard measurement of the observable M(j)
x , this decomposition is simply given by the spectral

decomposition, so that the POVM elements are the eigenprojections and the outcomes are simply the
eigenvalues of M(j)

x . However, this is not the only option: the decomposition is not unique. In particular, the
POVM need not be a projective measurement. This allows for the modeling of known non-unitary
measurement noise. Suppose for example that we wish to implement the measurement setting M(j)

x = Z, the
Pauli Z-operator. Its standard implementation would be by a projective measurement in the |0〉, |1〉-basis.
This corresponds to the decomposition Z = |0〉〈0| − |1〉〈1| in equation (11). However, suppose that we
cannot perfectly discriminate |0〉 from |1〉 and you incorrectly obtain the opposite outcome in 1% of the

measurements. Such a situation is modeled, e.g., by the POVM {
[

0.99 0
0 0.01

]
,

[
0.01 0

0 0.99

]
}. Nevertheless,

this POVM allows us to implement the desired measurement setting if we choose a = ± 1
0.98 . Indeed,

Z =
1

0.98

[
0.99 0

0 0.01

]
− 1

0.98

[
0.01 0

0 0.99

]
. (12)

Our results take into account the additional statistical uncertainty introduced by non-projective
measurements in estimating the expectation value from finite single-shot measurements on the level of
single-shot outcomes. Requiring that equation (11) holds, ensures the expectation value of this
non-projective measurement equals the expectation value of observable to be implemented.

With the generalizations just discussed, the score function in equation (5) needs to be generalized to

s(x, a) = − 1

px

∑
ξ:f (ξ)=x

wξ

m∏
j=1

(aj)
bj(ξ), (13)

The score now sums over all observables ξ obtained from the same setting x. The fact that the outcomes are
raised to the power bj(ξ) reflects the fact that O(j)

ξ = I if bj(ξ) = 0 (in which case all outcomes are 1). Note
that the weights wξ are labeled by ξ as they appear in equation (8), whereas the probabilities px are labeled
by the measurement setting x. This generalized score function still satisfies equation (6) and is related to the
witness decomposition equation (10) via (see appendix A for details)

W = cI −
∑

x

px

∑
a

s(x, a)(Π(1),x
a1

⊗ · · · ⊗Π(m),x
am

). (14)

We give an overview of the introduced notation in table 1.
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Table 1. Summary of notation to allow multiple observables per measurement
setting. The objects in the top half relate only to the choice of witness and its
decomposition into observables (labeled by ξ). The objects in the bottom half
relate to the implementation of the witness using measurement settings (labeled
by x), which are implemented by POVMs.

Object Symbol(s) Definition/constraint

Witness W Tr[ρW] � 0, ∀ρ ∈ S
Observable O(j)

ξ W = cI +
∑

ξwξ⊗m
j=1O(j)

ξ

Weight wξ , c

Setting M(j)
x , f , b O(j)

ξ = (M(j)
f (ξ))

bj(ξ)

POVM {Π(j),x
a }

a∈Ω(j)
x

M(j)
x =

∑
a∈Ω(j)

x
aΠ(j),x

a

Distribution px Equation (17) recommended

Table 2. List of model assumptions on the experimental devices and the nature of the experiment. These assumptions should plausi-
bly hold in the real experiment. The validity of our results depends on these assumption holding. We give a mathematically rigorous
definition of the model in appendix B.

Model Assumptions

(I) Sequentiality. Rounds of the witness game are played sequentially. At the start of each round i, each player
j receives one part of a joint state ρi generated by the black box source, as well as a random measurement setting xi.
Each player j performs a POVM measurement that depends on the setting xi, and reports the outcome aj to a referee,
who computes the score si of that round using equation (13). The next round i + 1 only starts after the referee received
all players’ measurement outcomes for round i. The experiment is allowed to depend arbitrarily on the past

(II) Trusted randomness. The random setting generator produces in each round i a random setting Xi, whose distribution
˜
pi,x

(conditioned on the history of the experiment and the state produced) is close to the desired distribution px:

|p̃i,x − px| � τ ∀i, x. (15)

We assume τ < px for all x, so that each setting has nonzero probability of being realized

(III) Trusted measurements. In each round i, each player j performs a noisy POVM measurement {Π̃(j)
i,a}a∈Ω(j)

Xi

that is close to the

ideal POVM from equation (11):

‖Π̃(j)
i,a −Π(j),Xi

a ‖∞ � δj ∀i, x, j, a. (16)

The noisy measurements have the same outcomes a ∈ Ω(j)
Xi

as the ideal measurements. Measurement outcomes follow

Born’s rule

2.3. Model of the experiment
Above we explained that an entanglement witness experiment can naturally be interpreted as a game carried
out by m players in n rounds (cf figure 2). We now summarize the key properties of our model in more
detail—see table 2. A mathematically rigorous formulation is given in appendix B.

Assumption (I) states that the experiment is performed sequentially. Importantly, we do not assume that
the states ρi are independently and identically distributed (iid). In fact, we allow that the ith round depends
arbitrarily on the previous rounds. Thus, the state ρi as well as the measurement setting Xi and the noisy
POVMs elements of round i can be arbitrarily correlated and depend arbitrarily on the state, settings,
POVMs, and outcomes of the previous rounds, as long as assumptions (I) and (III) are satisfied. This takes
into account any possible systematic error in the experiment and in particular closes the detection loophole
for entanglement witness experiments (the possibility of violating the witness due to classical correlations in
POVM measurements) [39].

Assumptions (II) and (III) model the devices used to perform the measurements in the experiment. We
assume that the random setting generator is characterized up to some precision τ and that the
measurement devices are characterized up to some δj, as defined in equations (15) and (16) respectively. In
principle, τ and the δj may all depend on the round number i, and the δj may also depend on the
measurement setting x. However, in practice, these dependencies will be small and we may safely take a
maximum. Moreover, it would be extremely impractical to characterize the devices for each round
specifically. The parameters τ and δj are later used to calculate the witness correction. With this we ensure
that the confidence in the witness violation is never overestimated, even in the presence of systematic device
errors.

8
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Finally, in the rejection experiment, we also need to formalize the null hypothesis which we wish to
reject. In the case of entanglement witnessing, the null hypothesis is that all states produced ρi are separable
in every round i. We formulate this more generally, by letting S a convex subset of states (e.g. the separable
states) such that W is a witness operator for S. This means that Tr[Wρ] � 0 for all ρ ∈ S. Then we can
finally state the null hypothesis for S mathematically as the following assumption:

(H0) Null hypothesis. In every round i, the source produces a state ρi ∈ S.

This assumption is to be rejected with statistical confidence by the experiment, as we will describe in the
next section.

3. Results

In this section we present the main results of our work. In section 3.1 we start by giving a step-by-step
description of our method and give an outline on how to apply the rejection analysis and estimation
analysis. Then, in section 3.2, we compute the witness correction as a function of the model parameters that
quantify the maximum device noise (τ and the δj’s). Next, in section 3.3 we provide an easy-to-compute
upper bound to the p-value, which is used to perform the witness rejection experiment. Finally, in
section 3.4 we state how to compute a confidence interval for the average witness value equation (2). These
results apply in the presence of arbitrary, possibly correlated noise on the states.

3.1. The design and analysis of an experiment
In this section, we detail all steps necessary to apply our framework—from the design of the experiment to
the analysis of the data. In table 3 we summarize our method. We now explain each step in detail.

In this work, we assume that the specific observable W has been chosen. Of course, this choice is part of
defining the entire experiment. For the rejection analysis, W should be a witness for some set S (as defined
by property equation (1)). With entanglement witnessing in mind, S is the convex set of separable states
and W is some entanglement witness. See section 5.2.1 for a discussion on how to choose a suitable W for
witness experiments.

Step 1. Define the experiment. With a choice of W fixed, we now choose a decomposition of the witness
W as in equation (10) (such a decomposition is not unique). A good decomposition minimizes the number
of terms, while keeping each term simple to measure.

Then we choose an ideal model for the implemented measurements by describing each measurement as
a POVM {Π(j),x

a }
a∈Ω(j)

x
that satisfies equation (11). These POVMs should model the real implementation of

the local measurements as accurately as possible (we will quantify the deviation of the real measurement
devices in the second step). Note that these POVMs can simply be projective measurements.

Next, we choose the desired probability distribution px of the random measurement settings in each
round. In principle, this can be chosen arbitrarily and the method will still work, but it has significant
influence on the finite statistics of the experiment. We propose to choose px as

px =

∑
ξ:f (ξ)=x|wξ |∑

ξ |wξ |
. (17)

Here wξ are the weights appearing in the decomposition equation (10). This equation can be interpreted as
choosing px proportional to the sum of absolute values of the weights |wξ| of all observables ξ that
correspond to setting x. Hence, heavy-weight terms are measured more frequently to increase the precision
of estimating that term. See section 5.2.3 for a more detailed discussion on choice of px. The choices made
so far define the score function equation (13) that assigns a score to each round i of the game.

Finally, we fix the number of rounds n to play in the entanglement witness game, as well as a
significance level α (typical values are α = 0.05, 0.01, 0.001). In the rejection experiment, the significance
level determines how small the observed pbound on the p-value must be in order for us to reject hypothesis
(H0). In the estimation experiment, the significance level α determines the confidence of the constructed
confidence intervals around the estimate. For the entanglement rejection experiment, it is important that all
these parameters, especially α and n are set before the experiment is carried out (see section 5.4).

Step 2. Characterize devices. In this step, we need to characterize the measurement devices that aim to
implement the POVM elements of equation (11), and the random setting generator that aims to implement
px. This characterization is done by determining suitable τ and δj’s such that equations (15) and (16) hold
(ensuring that assumptions (II) and (III) plausibly hold). In practice, this process requires calibration and
characterization of the real experimental devices. From the numbers τ and δj’s obtained in this
characterization, we can compute the so-called witness correction γ = γ1 + γ2 using theorem 1,

9
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Table 3. Outline of our method for designing, performing and analyzing witness experiments. We assume that the experiments are
guided by the model assumptions of table 2 and that an appropriate operator W is fixed.

Outline of experiment design and analysis

1 Define the experiment. Choose (a)
(a) Decomposition of W of the form equation (10);
(b) Measurement model of the form equation (11);
(c) Probability px of measurement settings (e.g., using equation (17));
(d) Number of rounds n;
(e) Significance level α

For a rejection experiment, W should be a witness for some set S . Choose the null hypothesis to be hypothesis (H0)
2 Characterize devices w.r.t. the model assumptions. Determine suitable τ and δj (see equations (15) and (16)) for the hardware

devices. From this compute the witness correction γ using theorem 1, equations (25) and (26)
3 Carry out the experiment. In each round i, record the obtained score si using equation (13)
4a Perform the rejection analysis. From the recorded scores, compute the total normalized score tn using equation (18).

Evaluate the upper bound pbound(tn, n, γ) using theorem 2, equation (30). If pbound � α, reject (H0) and conclude that the
source is capable of producing states ρ /∈ S with confidence at least 1 − α. Otherwise, the test was inconclusive

4b Perform the estimation analysis. From the recorded scores, compute the witness estimate ŵn using equation (21).
From the significance level α, compute the confidence interval radius ε using theorem 3, equation (34).
Then, I = [ŵn − ε, ŵn + ε] is a (1 − 2α) two-sided confidence interval and J = (−∞, ŵn + ε] is a (1 − α)
one-sided confidence interval for the unknown quantity 〈W〉n as defined in equation (2)

equations (25) and (26), in section 3.2. When appropriate, one can use a first-order approximation for γ2

given in equation (29). The witness correction γ is defined such that it bounds ‖W − W̄i‖∞, where W̄i is
the effectively implemented operator in round i and W is the ideal target operator. It is a function of the
parameters τ and δj, which quantify the device imperfections. The witness correction γ is used to protect
against the largest possible systematic error in the experiment under the model assumptions of
table 2.

Step 3. Carry out the experiment. Play n rounds of the witness game. Each round i, receive a state ρi

from the source and measurement setting Xi = x from the random setting generator. Then each subsystem j
performs the POVM measurement {Π̃(j)

i,a}a∈Ω(j)
x

corresponding to setting x and obtains one of the possible

outcomes labeled by aj. Collect all the obtained outcomes Ai = a, compute and the score si = s(x, a) using
the score function in equation (13) and record si. After the data collection has completed, one can do the
analysis. We differentiate between the rejection analysis and estimation analysis. Both can be done using the
same recorded data.

Step 4a. The rejection analysis. After the data collection has completed, we can determine if the
experiment successfully rejected the null hypothesis (H0) with confidence 1 − α. To do so, we compute the
total normalized score tn, defined by

tn =

n∑
i=1

si − smin

Δs
, (18)

where Δs := smax − smin and
smin :=min

x,a
s(x, a), smax :=max

x,a
s(x, a), (19)

are the algebraic minimum and maximum value of the score function, respectively. Note that tn ∈ [0, n].
This total normalized score is the our test statistic for the hypothesis test. We can reject the null hypothesis
if the p-value is at most α. The p-value is defined as the probability

p := Pr
[
Tn � tn |H0

]
(20)

of obtaining a total normalized score Tn under the null hypothesis (H0) that is at least as large as the
observed total normalized score tn. To determine if p � α, we compute an upper bound p � pbound(tn, n, γ)
to the p-value in theorem 2, equation (30), and compare pbound to α. If pbound � α then we can reject the
null hypothesis (H0) with confidence at least 1 − α. We can therefore conclude that at least one state ρ /∈ S
must have been produced and therefore the source has the capability of producing such states. In the context
where S is the set of separable states, this is interpreted as concluding that the source is capable of
producing entangled states. This logical reasoning is only valid if all the model assumptions (I) to (III) in
table 2 hold. If these fail then one may incorrectly reject H0.

Step 4b. The estimation analysis. From the collected data, we can also estimate the average witness
value 〈W〉n as defined in equation (2) and construct a rigorous confidence interval for around the estimate

10
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in the presence of arbitrary noise. The average witness value is estimated by the estimator

ŵn = c − 1

n

n∑
i=1

si. (21)

This estimator can, in the absence of noise on the measurements and random number generation, be seen
as an unbiased estimator of 〈W〉n by equation (6). In the presence of unknown noise, the bias of the
estimate can only be bounded by the witness correction γ (see the discussion in section 3.2). Using γ, we
can compute the radius ε of the confidence interval using equation (34). By theorem 3, the interval
I(ŵn) = [ŵn − ε, ŵn + ε] is a (1 − 2α) two-sided confidence interval and J (ŵn) = (−∞, ŵn + ε] is a
(1 − α) one-sided confidence interval for 〈W〉n. If W is a witness for the set S in the sense of equation (1)
and if ŵn + ε < 0, then one can conclude that 〈W〉n < 0, meaning that on average states outside S must
have been produced, i.e.

ρ∗ =
1

n

n∑
i=1

ρi /∈ S, (22)

with confidence at least 1 − α. We emphasize that the intervals I,J are corrected for systematic
(measurement and random setting generation) errors within the model assumptions via the witness
correction γ of theorem 1 (since ε depends on γ) and that it is statistically rigorous for arbitrary state noise.

3.2. Computing the witness correction
In this section we present theorem 1 to compute the witness correction γ as a function of the randomness
and measurement imperfection parameters τ , δj determined in step 2 of table 3. The imperfect
implementation of the measurements and random number generator will lead to an effectively
implemented operator

W̄i = cI −
∑

x

p̃i,x

∑
a

s(x, a) Π̄x
i,a. (23)

Here Π̄x
i,a is the expected implemented joint POVM in round i, conditioned on the history of the

experiment, the state produced, and the event that Xi = x (which happens with probability p̃i,x). See
appendix C for a precise definition. Note that this effectively implemented operator W̄i is closely related by
the ideal witness operator W by comparing to equation (14). Indeed, the ideal random setting distribution
px is replaced with the implemented distribution p̃i,x (which differ little by assumption (II)) and the ideal
POVM elements Π(1),x

a ⊗ · · · ⊗Π(m),x
a are replaced with the conditional expected implemented joint POVM

elements Π̄x
i,a (which differ little by assumption (III)). The witness correction γ we derive in theorem 1

precisely captures how much W̄i can deviate from W within the model assumptions of table 2.

Theorem 1. Let W be a Hermitian operator (not necessarily a witness in the sense of equation (1)) with
decomposition and ideal implementation given by equations (10) and (11). Suppose the experiment is modeled
by the model assumptions in table 2. Define the effectively implemented operator W̄i by equation (23). Then, in
every round i,

‖W − W̄i‖∞ � γ, (24)

where the witness correction γ := γ1 + γ2 is the sum of the random number generation correction γ1 and the
measurement correction γ2 defined by

γ1 := τ
∑

x

max
a

|s(x, a)| (25)

γ2 :=
∑
ξ

|wξ |
m∑

j=1

(
j−1∏
k=1

(λ(k)
ξ + ε(k)

ξ )

)
ε

(j)
ξ

m∏
k=j+1

λ(k)
ξ , (26)

respectively, in terms of

ε
(j)
ξ := bj(ξ)δj

∑
a∈Ω(j)

f (ξ)

|a| and λ
(j)
ξ := ‖O(j)

ξ ‖∞. (27)

The proof is given in appendix C. Let us first explain why we call the quantity γ the witness correction. An
important consequence of equation (24) is that
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|Tr[Wρi] − Tr[W̄iρi]| � γ (28)

for all ρi. This means the witness inequality Tr[Wρi] � 0 implies that Tr[W̄iρi] � −γ. Thus, if W is a
witness, then the operator W̄i + γI is also a witness. Hence, γ is the witness correction in the sense that any
effectively implemented witness W̄i corrected by γ is still a witness. We emphasize that this result does not
say anything about the effects of finite statistics, but is solely about the required correction of expectation
values due to imperfect devices. That is, the factor γ protects against potential systematic errors in an
experiment.

The witness correction γ has two terms, γ1 and γ2. The term γ1 quantifies the correction due to
imperfect random number generation. The constant γ2 quantifies the correction due to measurement
errors. Thus, γ can be interpreted as the total correction required if the witness W is implemented with
noisy measurements and with an imperfect number generator. Note that the choice of px influences the
correction γ1, as the score function equation (13) depends on px.

The measurement correction γ2 has a simple first-order approximation under the assumption that
λ

(j)
ξ = 1, making it easier to compute. This assumption means that all measurement operators have

eigenvalues in the interval [−1, 1] and is satisfied for example by all Pauli operators. Then a first-order
approximation for γ2 is

γ2 =
∑
ξ

|wξ |
m∑

j=1

ε
(j)
ξ + O(ε2), (29)

where ε is a constant such that ε(j)
ξ � ε for all ξ, j. Hence, this is a good approximation if ε � 1. This is

typically the case when δj � 1, which means that the measurement devices have been well-characterized. In
section 5.3.2, we discuss a possible alternative method for deriving γ.

3.3. Bound on the p-value for witness rejection experiments
In this section, we give the main result to perform the rejection analysis in theorem 2. The theorem provides
an easy-to-compute upper bound on the p-value under the null hypothesis (H0). Recall that the p-value is
the probability of observing a total normalized score Tn under the Null Hypothesis (H0) that is at least as
large as the observed total normalized score tn in the experiment, p = Pr[Tn � tn|H0]. If the p-value is
smaller than a previously chosen significance level α, then we may consider the Null Hypothesis (H0) to be
statistically unlikely to explain the observed tn, and we may reject the model at significance level α. To
determine if p � α, we put an upper bound pbound on p in theorem 2, which can be compared to the
significance level α.

Theorem 2. Let W be a witness operator (satisfying equation (1)) for the set S with decomposition and ideal
implementation given by equations (10) and (11). Suppose that the experiment is governed by the model
assumptions of table 2 and consider the null hypothesis (H0) with respect to S. Let tn denote the observed total
normalized score after n rounds in the experiment. Then, the p-value as defined in equation (20) is
upper-bounded by

pbound := eF◦
n,β(tn), (30)

where
F◦

n,β(x) := Fn,β(�x�)1−(x−�x�)Fn,β(�x�+ 1)x−�x� (31)

is the log-linear interpolation of the survival function of a binomial distribution with parameters n and β,

Fn,β(k) =
n∑

l=k

(n

l

)
βl(1 − β)n−l, (32)

and where

β = min

(
1,

c + γ − smin

Δs

)
. (33)

Finally, �x� is the largest integer less than or equal to x.

We give a detailed theorem 2 in appendix D. We construct a supermartingale sequence from the total
normalized scores up to each round i. We then apply Bentkus’ inequality [30, 31] (a concentration
inequality for bounded difference supermartingale sequences, similar to, but tighter than, the
Hoeffding–Azuma inequality) to obtain an upper bound for the p-value. Our proof is inspired by the
approach of [32] to certify Bell violations.
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3.4. Confidence intervals for average witness estimation experiments
In this section, we give the main result for the witness estimation analysis in theorem 3. The theorem
provides confidences interval for the average witness expectation value 〈W〉n as defined in equation (2). The
point estimate for 〈W〉n is given in equation (21), and is a function of the scores recorded in the
experiment. We construct a (1 − 2α) two-sided confidence interval I and a (1 − α) one-sided confidence
interval J .

Theorem 3. Let W be a Hermitian operator (not necessarily a witness in the sense of equation (1)) with
decomposition and ideal implementation given by equations (10) and (11). Suppose that the experiment is
governed by the model assumptions in table 2. Let Ŵn denote the average witness estimate as defined in
equation (21). Fix the significance level α ∈ [0, 1]. If α < e( 1

2 )n, define ε = Δs, otherwise define
ε ∈ [γ, γ +Δs] implicitly via

α = eF◦
n, 1

2

(
n

2
(1 +

ε− γ

Δs
)

)
. (34)

Here γ is defined in equations (25) and (26), and F◦
n,β is defined in equation (31) (with β = 1

2 and e ≈ 2.72).
Then, the intervals

I(ŵn) := [ŵn − ε, ŵn + ε] (35)

J (ŵn) := (−∞, ŵn + ε] (36)

are a (1 − 2α) two-sided and a (1 − α) one-sided confidence interval respectively for the average witness value
〈W〉n as defined in equation (2). That is

Pr[〈W〉n ∈ I(Ŵn)] � 1 − 2α, (37)

Pr[〈W〉n ∈ J (Ŵn)] � 1 − α. (38)

The proof of this theorem is given in appendix E. The confidence interval is also based on the construction
of a martingale sequence and the application of Bentkus’ inequality. The techniques are very similar to the
theorem 2. We chose to use Bentkus’ inequality because it is tighter than the more standard
Hoeffding–Azuma inequality [32]. The radius of the interval ε is however slightly more difficult because it
involves (numerically) solving equation (34). See section 5.3.3 for a brief discussion on this.

4. Examples and illustration

In this section, we will illustrate our results with two examples based on simulations of a proposed
entanglement witness experiment in nitrogen vacancy (NV) centers. Moreover, we will give a concrete
example in which the iid and Gaussian assumptions fail. Finally, we shall illustrate how the function eF◦

n,β of
equation (31) scales in its arguments and parameters. This function determines the p-value bound and the
confidence interval size in our results. Before we present these examples, we briefly describe the physical
system that we aim to simulate in section 4.1. This section serves as a motivation for our simulation, but the
examples can also be understood without knowledge of the physical system we simulate. Then we present
the two examples. In the first example (section 4.2), we describe how to apply our method in detail,
outlining all the steps in section 3.1 in a concrete example. For this example, we simulate a single
experiment with identically distributed states ρ. In the second example (section 4.3), we illustrate our
method for non-iid states. To do so, we will perform a large Monte Carlo simulation of many independent
experiments. In each experiment, we use a sequence of three-qubit states ρi that are neither independent
nor identically distributed. Then, in section 4.4, we give an artificial example of non-iid states in which the
Gaussian assumption fails considerably. This example shows that a Gaussian assumption, on which the
central limit theorem relies in prior work, need not always be justified (cf the discussion in section 1.1). Our
method applies regardless of the validity of a Gaussian assumption. Finally, in the section 4.5 we illustrate
how the function eF◦

n,β(x) defined in equation (31) (which directly determines the p-value bound
equation (30), and the confidence interval equation (34)) scales with n, β and x. Note that β scales linearly
with the witness correction γ that captures device imperfections.

4.1. Simulation details of nitrogen vacancy systems
Both examples in sections 4.2 and 4.3 are based on a scheme for generating tripartite GHZ states in three
physically separated nitrogen vacancy (NV) centers in diamond (see reference [40] for a review of this
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Figure 3. Schematic illustration of tripartite entanglement generation using diamond nitrogen vacancy (NV) center systems. (a)
The single click entanglement (SCE) scheme generates a single EPR pair between two NV centers. (b) Two EPR pairs are
generated using the SCE scheme and combined into a GHZ state by interfering and measurement. The classically conditioned
operations Ua, Ub and Uc are Pauli operations.

system). In these NV centers, the electronic spin associated with the defect can be used as qubit. This qubit
is optically accessible and can be entangled with the presence or absence of a photon, which can be used as a
flying qubit. Surrounding the NV center there are several carbon-13 atoms (1.1% natural abundance). Their
nuclear spins can be used as additional qubits, which can be controlled via the hyperfine interaction
between the nuclear and electronic spins.

Two NV centers are entangled in the following way [19]: first, each NV center produces a spin-photon
entangled pair, where the qubit state is encoded in the absence/presence of a photon. The joint state of the
spin-photon pair is then given by √

z|↑〉|1〉+
√

1 − z|↓〉|0〉, (39)

where z is a tunable parameter. By coupling the photons into single mode fibers and interfering them using
a beam splitter, the two electronic spins can become entangled. In essence, this amounts to detecting the
presence of a photon but erasing the information about which arm the photon came from. This single click
entanglement (SCE) scheme is illustrated in figure 3(a). The joint state between the two electronic spins is
now (ideally)

|z↑↑〉〈↑↑|+ (1 − z)|Ψ+
θ 〉〈Ψ

+
θ |, (40)

where |Ψ+
θ 〉 = |↑↓〉+ eiθ|↓↑〉. Here, θ is a relative phase that needs to be characterized and controlled

experimentally to create useful entanglement.
To generate a tripartite GHZ state, two EPR pairs are combined into a single GHZ state in the following

way: first create one EPR pair between two NV centers using the electronic qubits. Then, one node swaps
the state of the electronic spin with a nuclear spin qubit, so that the electronic spin becomes free again for
entanglement production. At this point a second EPR pair is produced between the now-free electronic spin
of this node and a third node. The GHZ state is then created by coupling the nuclear spin and electronic
spin in the middle node and measuring the electronic qubit. This results into a state that is equivalent to a
GHZ state under local Pauli operations (the Pauli operations can depend on the observed measurement
outcome). This procedure is sketched in figure 3(b).

When simulating this procedure, we account for several noise processes. First, we include noise in the
generation of the EPR pairs. Our model for EPR generation follows the noise model for SCE generation
developed in [19]. This model incorporates several independent noise parameters: the single photon
detection efficiency pdet (the probability of detecting a photon in the heralding station, conditioned on it
being emitted from the NV center), the distinguishability V of the emitted photons, the double excitation
probability p2ph (when more than one photon is emitted by an NV center in single entanglement attempt),
the probability of dark counts pdc, as well as an uncertainty in the relative phase θ that is modeled by
applying a Pauli-Z to one of the qubits with probability pθ . We assume that the detection efficiency is the
same for all three setups, and furthermore assume that in each SCE scheme symmetric values for the free
parameter z (see equation (39)) are used. However, this parameter may be different for the first and second
EPR pair. We refer the reader to reference [19] for full details on the SCE generation model.

On top of the detailed SCE noise, our model assumes dephasing noise on the first EPR pair while it is
kept in memory, waiting for the successful generation of the second EPR pair. The off-diagonal terms in the
density matrix of the first EPR pair are multiplied with dephasing parameter q = 1 − exp(−Nmax/ν), where
Nmax is a free parameter determining the maximal number of attempts before we discard everything and
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Table 4. Values of the parameters used in the simulated creation of a tri-
partite GHZ state in NV centers as discussed in section 4.1. The resulting
state is described in table 5.

Noise parameter Value Free parameter Value

pdet 1.5 × 10−3 z1 0.016
V 0.9 z2 0.080
p2ph 0.02 Nmax 468
pdc 4.0 × 10−7

pθ 0.030
ν 1500

start over (because the first EPR pair has decohered too much) and ν is a parameter quantifying the
strength of the dephasing noise. Finally, we assume that all single- and two-qubit gates are performed with
unit fidelity. In section 4.2 we instantiate this model with representative numerical values for all model
parameters (see table 4) to produce the simulated experimental data.

4.2. Step-by-step application of our method
In our first example, we illustrate our method on data produced by a simulation of iid states on three qubits
(m = 3). The aim is to witness a genuine tripartite entanglement by producing a GHZ state:

|GHZ〉 = 1√
2

(|000〉+ |111〉). (41)

Therefore, we let S be the set of biseparable states, i.e., the set of all states ρ that are a mixture of separable
states on any bipartition of the three subsystems. To witness a state not in S (and reasonable close to a GHZ
state), we use is the projection witness, given by

W =
1

2
I − |GHZ〉〈GHZ|. (42)

This factor 1
2 is known to be optimal for the GHZ projection witness [20]. Note that c �= 1

2 in equation (8).
In fact, it is easily observed that c = 1

2 − 1
d = 3

8 here (since d = 2m = 8 in this example). We will now
describe all steps of section 3.1 to illustrate how to fully define the experiment, obtain the (simulated) data,
and calculate the resulting p-value and confidence interval of the experiment.

Step 1a. The first step is choosing a decomposition of our choice of W (equation (42)) of the form
equation (10). This witness has a four-setting and five-setting decomposition. We will use the five-setting
decomposition into local Pauli observables:

WGHZ =
1

8
(3III − IZZ − ZIZ − ZZI −XXX + XYY + YXY + YYX) , (43)

where {I, X, Y, Z} are the Pauli operators (including the identity operator) and the tensor symbol is omitted
for clarity. Thus, equation (43) is a decomposition of the form equation (8) with c = 3

8 . We shall label the
seven non-identity, traceless observables by ξ = 1, . . . , 7 in the order of their appearance in equation (43).

There are only five measurement settings needed for the decomposition in equation (43). These are
{ZZZ, XXX, XYY, YXY, YYX}, since the first three observables (ξ = 1, 2, 3) can all be computed from the
first measurement setting ZZZ (x = 1), as discussed in section 3.2. Therefore we have x = 1, . . . , 5, indexing
the settings. The formal mapping between observables and measurement settings is given by

f (ξ) =

⎧⎨⎩1, if ξ = 1, 2, 3,

ξ − 2, if ξ = 4, 5, 6, 7,
(44)

and

b(ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
011, if ξ = 1,

101, if ξ = 2,

110, if ξ = 3,

111, if ξ = 4, 5, 6, 7.

(45)

Step 1b. Next, we specify a model for measuring each of the Pauli observables that occur in the chosen
measurement settings. In our simulation, we shall model each measurement as systematically imperfect,
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meaning that X, Y and Z is not implemented by the usual projective measurements. Instead, we model all
Pauli measurement by POVM elements, parameterized by two parameters u, v ∈ [0, 1], which characterize
the efficiency of detecting the +1 and −1 eigenstate of the Pauli operator, respectively. In experiments, these
numbers are referred to as the readout fidelity [19, 41]. Concretely, for the Pauli-Z measurement on each
subsystem, we model (dropping the subsystem index j for notational compactness) the measurement by the
POVM elements

ΠZ
a+ =

[
u 0
0 1 − v

]
, ΠZ

a− =

[
1 − u 0

0 v

]
. (46)

The X and Y POVM elements are defined by

ΠX
a± = HΠZ

a±H†, ΠX
a± = KΠZ

a±K†, (47)

where the H and K gate are the gates that rotate the Z to the X and Y basis respectively. The two outcomes of
all Pauli measurements are

a± =
v − u ± 1

u + v − 1
. (48)

These values are chosen in such a way that

a+ΠP
a+ + a−ΠP

a− = P, (49)

for all Pauli’s P = X, Y, Z, so that the measurement operators correspond to the desired observables
(according to equation (11)). In our model, we will set u = 0.95 and v = 0.99. This results in a+ ≈ 1.1064
and a− ≈ −1.0213.

Step 1c. Next, we choose px according to equation (17). That is, we choose

px =

⎧⎪⎨⎪⎩
3

7
if x = 1,

1

7
if x = 2, 3, 4, 5

(50)

This now fully defines the score function (per equation (13)):

s(x, a) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

7

24
(a2a3 + a1a3 + a1a2), if x = 1,

7

8
a1a2a3, if x = 2,

−7

8
a1a2a3, otherwise.

(51)

Note how the observables IZZ, ZIZ and ZZI are combined into one measurement setting ZZZ which
directly contributes to the score.

Step 1d–e. Finally, we fix the total number of rounds to be n = 600 and set α = 0.05.
Step 2. We characterize our (simulated) devices to have an RNG bias τ = 10−6 and measurement

imperfection as compared to the model described in the previous step of δj = δ = 2 × 10−3 for all parties
j = 1, 2, 3. The value of δ is determined from the uncertainty in the measurement characterization of the
NV system. The value of τ is chosen sufficiently large for any practical implementation of randomness.

With these values of τ and δ, and the score function equation (51), the witness correction γ can be
computed from theorem 1. The random number generation correction γ1 is computed using equation (25)
to be

γ1 = τ

5∑
x=1

max
a

|s(x, a)| ≈ 5.8 × 10−6. (52)

The measurement correction γ2 is computed using equation (26) and (27). First, we compute ε(j)
ξ from

equation (27). We find that

ε
(j)
ξ =

⎧⎨⎩0, if ξ = j = 1, 2, 3,

δ(|a+|+ |a−|) ≈ 4.26 × 10−3, otherwise.
(53)

Furthermore, from equation (43), it is clear that λ(j)
ξ = 1 for all ξ, j, since all local observables O(j)

ξ are any of

the four Pauli operators I, X, Y, Z, which have operator norm 1. Since λ(j)
ξ = 1 and ε

(j)
ξ � 1, we use the
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Table 5. Nonzero components of the state ρ used in each round of
the simulation of the entanglement witness experiment described in
section 4.2. The expected witness value of ρ is Tr[Wρ] = −0.172.

M Tr[Mρ] M Tr[Mρ] M Tr[Mρ]

III 1 XXX 0.782 IIX −0.077
IZZ 0.787 XYY −0.737 XXI 0.072
ZIZ 0.478 YXY −0.478 YYI −0.047
ZZI 0.608 YYX −0.507 ZZX −0.047

approximation equation (29) instead of the full equation (26). We compute that

γ2 ≈
7∑

ξ=1

|wξ |
3∑

j=1

ε
(j)
ξ ≈ 9.6 × 10−3. (54)

Hence we find that
γ = γ1 + γ2 ≈ 9.6 × 10−3 � 0.01. (55)

Step 3. In this step, the experiment is simulated. We play n rounds of the entanglement witness game. In
our simulation, we take the same state ρi = ρ in each round, corresponding to an iid situation. This state is
computed using the model of tripartite GHZ generation in remote NV centers as discussed in section 4.1.
The valued of the parameters we used in the simulation are given in table 4. The resulting state ρ is given in
table 5. In addition to the state ρi = ρ, we also generate a random setting xi ∈ {1, 2, 3, 4, 5} with probability
given by equation (50). The randomness is generated by a standard pseudo-random number generator. For
efficiency reasons, we use the ideal POVM elements to simulate the measurement outcomes. We
nevertheless use a nonzero value of δ to illustrate the effect of measurement noise on the witness correction.
The set of measurement outcomes ai is obtained according to Born’s rule. From this, we compute and
record the score of this round si = s(xi, ai) using the score function equation (51).

Step 4a. In this step, we calculate the upper bound pbound to the p-value using theorem 2. This is
straightforwardly done using γ, n, c, smin, smax and the total normalized score tn by evaluating
equations (30)–(33) of theorem 2. The quantities smin and smax as defined in equation (19), can be
computed from the score function equation (51). In our example we find smax = −smin ≈ 1.185. The total
normalized score tn is computed from the recorded scores si for i = 1, . . . , n, according to equation (18). To
compute pbound from concrete numbers, suppose the a single simulation of the experiment yields a total
normalized score of tn = 440.97. To compute the p-value bound, we first calculate β using equation (33).
We find (using γ � 0.01) that β ≈ 0.662. Hence, we can evaluate our p-value bound, equations (30) and
(31), by

pbound = eFn,β(440)0.03Fn,β(441)0.97 ≈ 2.1 × 10−4. (56)

Since p � pbound � α, we have rejected the null hypothesis (H0) at significance level α = 5%. As we trust
that the model assumptions (I) to (III) hold, we can reject hypothesis (H0) and conclude that our
(simulated) source of quantum states is capable of producing genuinely multipartite entangled states
ρ∗ /∈ S. This is indeed the case, since ρ defined by table 5 is not biseparable (i.e., not in S, since
Tr[Wρ] < 0).

To illustrate how the p-value evolves as more rounds are played (more data is taken), we plot in figure 4
the running value of pbound computed with the total normalized score up to round i, as a function of i. Up
until round i ≈ 520, the bound remains constant at its maximal value e ≈ 2.72, due to the prefactor of e in
equation (30). In this regime there is insufficient data to draw any conclusions. Then our p-value bound
starts decreasing roughly exponentially in i. The jitter can be explained by the randomness due to
measurement settings and outcomes.

Step 4b. Finally, we illustrate how to estimate 〈W〉n as defined in equation (2) and compute the
confidence intervals around this estimate using theorem 3. The witness estimate is directly computed from
the observed scores and c using equation (21). Suppose that a run of the experiment yielded scores such
that ŵn = −0.182 (this is consistent with tn = 440.97 by comparing equations (18) and (21)). Now the
radius of the confidence interval can be computed from α = 0.05, n = 600, γ = 0.01 and Δs = 2.370 by
solving equation (34) numerically. We find that ε ≈ 0.216 in this example. Hence, we find the 90%
two-sided confidence interval and the 95% one-sided confidence interval

I0.9 = [−0.398, 0.034], J0.95 = (−∞, 0.034], (57)
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Figure 4. Running p-value bound for our simulated GHZ witness experiment with parameters as defined in the main text. Up
until round i = 520, the upper bound is the maximal value of e ≈ 2.72, due to the prefactor e in equation (30). The final p-value
bound after n = 600 rounds is 2.1 × 10−4.

respectively. This is just insufficient to conclude that on average ρ was not in S (i.e., genuinely multipartite
entangled). However, we can compare these intervals to the true value 〈W〉n = −0.172 (see table 5 and
recall that ρi = ρ in this example). Clearly 〈W〉n ∈ I0.9 and 〈W〉n ∈ J0.95. Moreover, the point estimate ŵn

is not far off the true value.

4.3. Illustration of method for correlated noise
In the previous example we gave a step-by-step illustration of how our method is applied to data gathered
in a single (simulated) experiment with identical states each round. Since our method is applicable in
general, we now illustrate its use for states ρi that are neither independent nor identically distributed. As
before, we will consider states ρi that are created from two EPR pairs, each of which has a relative phase θ
(see equation (40) in section 4.1), but we now assume that the relative phase θ drifts between subsequent
rounds following a random walk. That is, the relative phase in round i depends on its value in round i − 1,
which creates correlation between the rounds. This modeled phase drift is motivated by the observation in
experiments that the relative phase θ changes over time due to fluctuation in the optical path length [19].
The simulation uses the same parameters as in section 4.2, table 4, except that now pθ = 0. Instead, in the
first round, we model (both EPR pairs) with known initial phase θ0 = 0◦. Then, each round, the phase
drifts with step size Δθ = ±0.98◦ (for each EPR pair the drift is an independent random walk). This creates
dependence and correlation between the rounds. Furthermore, we use the same witness (equation (42)) and
employ the same measurement model with witness correction γ � 0.01 (equation (55)) as in
section 4.2.

Instead of performing a single simulation with this noise model, we perform a Monte Carlo simulation
with N = 2 × 104 repetitions of the experiment, each with n = 600 rounds. For each repetition, we
calculate the witness estimate from the observed score using equation (21). We emphasize that in this
simulation, each repetition also a different 〈W〉n is realized, because the collection of ρ1, . . . , ρn can be
different every time. We also compute a bound on the p-value for each repetition of the experiment by
using theorem 2. We thus obtain N = 2 × 104 witness estimates and bounds on the p-value from our
Monte-Carlo simulation.

In figure 5 we plot histograms of the witness estimates ŵn and p-value bounds pbound, both of which are
directly computed from the observed scores s1, . . . , sn (via equation (21) and theorem 2, respectively). We
emphasize that all si are realizations of a random variable Si, determined by the random measurement
settings Xi, the random measurement outcomes Ai (following Born’s rule), and the correlated random
states ρi produced by the source. The produced states were not necessarily biseparable (i.e., not necessarily
in S).

In figure 5(a) we plot a histogram of the witness estimates ŵn and compare to a Gaussian reference
curve. We clearly see that this noise process can lead to a non-Gaussian witness distribution. The skew in
the plot is mainly due to the fact that different true average witness values 〈W〉n = 1

n Tr[Wρi] are realized in
each run of the experiment. The figure illustrates that under non-iid noise, the standard Gaussian
prediction ŵn ± σ̂ŵn does not accurately predict future repetitions of the experiment. We emphasize that
the plot in figure 5(a) cannot be interpreted as the probability distribution of ŵn under a particular, fixed
sequence of states ρ1, . . . , ρn (because each Monte Carlo iterate used a different sequence of states), and
hence no inference could be made from this plot about the uncertainty of ŵn.

In figure 5(b) we plot a histogram of the p-value bounds. Note that the p-value is plotted logarithmically
on the x-axis, making the bins of unequal size. We show the significance level α = 0.05 as a red line, which
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Figure 5. Histograms for a Monte-Carlo simulation of N = 2 × 104 independent witness experiments (each with n = 600
rounds). Here, the noise model is not iid but rather follows a stochastic process, as described in section 4.3. (a) Histogram of
witness estimates. The blue histogram shows the distribution of the witness estimate ŵn (cf equation (21)). The distribution is
non-Gaussian, as is obvious from comparison with the red Gaussian reference curve. Thus, the standard Gaussian prediction
ŵn ± σ̂ŵn does not accurately predict future repetitions of the experiment. The skew in the distribution is primarily due to skew
in the true average witness value 〈W〉n across different runs of the non-iid experiment (due to the changing sequence of n states).
(b) Histogram of p-value bounds. The blue histogram shows the distribution of p-value upper bounds (cf theorem 2). The red
line indicates the significance level α = 0.05, the number below which we reject the null hypothesis (H0).

in this example turns out to be the 95th percentile. Thus, in 95% of the simulated experiments, the null
hypothesis (H0) was rejected with statistical confidence. Note that it is merely a coincidence that α = 0.05
marks the 95% percentile of the distribution of pbound over the N simulated experiments. We emphasize that
the p-value itself (as defined in equation (20)) cannot be inferred from the simulation results. This is
because the p-value is a statement about the distribution of the total normalized score Tn assuming that the
null hypothesis (H0) holds. But here the states produced are not necessarily in S, so hypothesis (H0) is
violated. See section 5.4 for more detailed discussion.

4.4. Example where iid assumption fails
In the previous section we saw an example where the states within each experiment were generated by a
non-iid noise process, and we discussed the corresponding distribution of the witness estimate and p-value
bound across different runs of the non-iid experiment. While the witness estimate ŵn was non-Gaussian,
this was largely explained by skew in true average witness value 〈W〉n. In this section we give an explicit
example where the iid assumption (more generally the Gaussian assumption) is inappropriate even when
the average witness value 〈W〉n is fixed. This example is not based on simulation of NV centers, but is based
on a noise model that is designed to clearly exhibit non-iid behavior.

In this example, we generate the states according to a noise process in which the source of states
produces a perfect GHZ state in a fraction F of the n rounds and produces an orthogonal state in the
remaining (1 − F)n rounds. Importantly, the fraction of good states F is held constant in this model. This is
the only source of correlations between the states in a single run of the experiment. This model is an
extreme case of the more realistic scenario in which the source intermittently produces good and bad
quality states. These bad quality states can for example be produced when a heralding signal (a signal that
indicates entanglement was created) is falsely triggered. Note that the fraction F of good states equals the
true average fidelity to the GHZ state,

F =
1

n

n∑
i=1

Tr
[
ρi|GHZ〉〈GHZ|

]
. (58)

and with our choice of witness operator W (according to equation (42)), the true witness value is

〈W〉n =
1

n

n∑
i=1

Tr[(
1

2
I − |GHZ〉〈GHZ|)ρi] =

1

2
− F. (59)

In this example, we fix F = 0.672, which yields a true average witness value is 〈W〉n = −0.172.
In figure 6 we plot a histogram of the witness estimate ŵn, computed using equation (21), under the

described noise model. The histogram represents N = 2 × 104 independent simulated experiments (each
with n = 600 rounds). We also plot the Gaussian distribution that would be obtained under the iid
assumption on the median run. For this run, the mean and standard deviation ŵn ± σ̂ŵn are computed
from the observed scores s1, . . . , sn in that run. In particular, for the red curve we observed
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Figure 6. Histogram of a Monte-Carlo simulation of N = 2 × 104 witness experiments (each with n = 600 rounds). The
histogram shows the distribution of the witness estimate ŵn computed from the observed scores using equation (21) in blue.
This approximates the true distribution of ŵn. The 95% interval is shaded in blue. The true average witness value is
〈W〉n = −0.172 in each run of the experiment, which coincides with the mean (and median) ŵn. The red curve is shows the
inferred distribution from the data (the scores) observed in the median run when the data is assumed to be iid. That is, the red
curve is a Gaussian with mean ŵn and standard deviation σ̂ŵn as computed from the observed scores under the iid assumption in
this particular run. The central 95% interval of this Gaussian is shaded with red lines. Clearly, the distribution inferred from the
iid assumption does not match the true distribution of ŵn .

Figure 7. Scaling of the function pbound = eF◦
n,β(tn), which determines the bound on the p-value theorem 2 and the radius of the

confidence interval theorem 3, with the total normalized score tn (equation (18)), the number of rounds n and β (which depends
on γ, see equation (33)). The black dots correspond to the simulation discussed in section 4.2, where n = 600, β = 0.662 (using
γ = 0.01), and tn = 440.97, yielding pbound = 2.1 × 10−4.

ŵn ± σ̂ŵn = −0.171 ± 0.026. The 95% central interval is shown as the shaded region under the red curve.
This region is [ŵn − 2σ̂, ŵn + 2σ̂] = [−0.223,−0.120]. However, the 95% central interval found from the
Monte Carlo simulation is only [−0.205,−0.138]. Hence, the 95% central interval estimated under iid
assumption (red shaded region) is roughly 1.5 times larger than the 95% central interval found from the
Monte Carlo simulation of ŵn (the medium blue region). This example clearly shows that in this scenario
the iid assumption fails.

4.5. Scaling of the p-value bound
Finally, we analyze how our bound pbound = eF◦

n,β(tn) (see theorem 2, equation (30)) scales with its three
free parameters: the total normalized score tn, the number β (which depends on the witness correction γ,
see equation (33)) and the number of rounds n. Note that this also directly illustrates how the size of the
confidence interval ε scales with the significance level α according to α = eF◦

n, 1
2
( n

2 (1 + ε−γ
Δs )) (see theorem 3,

equation (34)). We discuss the scaling here from the perspective of the rejection analysis. Then it is
qualitatively clear that a larger observed score tn and smaller γ (and hence smaller β) should lead to
statistically more significant results (meaning a smaller pbound). Similarly, a larger number of rounds n
should lead to a smaller uncertainty and hence make it less likely to observe extreme data under the null
hypothesis (H0). We show that this is indeed the case in figure 7. To compute pbound numerically, we used
c = 3

8 and smax = −smin = 1.185, just as in the example of section 4.2 as the fixed values. The black dots in
the figure correspond to n = 600, β = 0.662 and tn = 440.97 as used for illustration in section 4.2. The
corresponding bound is pbound = 2.1 × 10−4.

In the left plot of figure 7, we see that it appears that pbound ∝ e−t2
n for fixed n in the regime tn � nβ.

Even if this is not exact, pbound at least appears to decrease (super)exponentially in tn. The p-value bound is
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trivial in the regime tn � nβ. This is understood to mean that nβ is a total normalized score that is likely to
be achieved under the null hypothesis. In the middle plot, we see that pbound seems to decrease exponentially
with n as well and that the asymptotic decay rate depends on the mean normalized score tn

n . This is also
expected behavior, which for example also holds in the iid case. In the right plot, we focus on the effects of
increasing β. The p-value bound increases (sub)exponentially with β. It also seems that an increment of β
(which is due to increased γ from noisy devices) can be directly compensated by observing an increased tn,
since the three curves seem to be identical but displaced in the x-axis.

5. Discussion

5.1. Applicability of our work
The methods we have discussed throughout this work were frequently motivated by and illustrated with
entanglement witness experiments. Here we elaborate how generally applicable all of our results are. First,
the estimation experiment can in principle be done for any Hermitian observable W. In theorems 1 and 3
we do not require that the operator is a witness; we only need to write W in the form of equations (10) and
(11). Note that this is in principle always possible (although for general W, the number of terms labeled by
ξ might grow exponentially with the total system dimension). This allows one to perform the experiment
and do the estimation analysis of step 4b in table 3. This yields a point estimate and confidence interval for
estimating the average value 〈W〉n as defined in equation (2), which is valid without any assumption about
the sequence of states ρ1, . . . , ρn produced sequentially in the experiment.

Second, the rejection analysis of the experiment is valid for any witness W that satisfies equation (1) for
some convex subset of states S. The null hypothesis we aim to reject is always the hypothesis that the source
can only produce states ρ ∈ S, conform hypothesis (H0). Therefore, the experiment can witness the
creation of any state ρ∗ /∈ S, given suitable choices of W and S. Examples include witnessing different types
of entanglement, defined by non-membership of a particular separability class S. A frequently encountered
separability class is the set Sk of k-separable states. These states are a convex combination of pure states that
are separable over some k-partition of the subsystems [42]. Our examples in section 4 focused on k = 2, the
class of biseparable states. In certain applications it might also be important to certify entanglement across a
particular partition of subsystems, which leads to a different definition of S. In this case, the set S describes
separability between any specific partitioning of the system. Corresponding witness operators for graph
states have been identified in [43]. Finally, S can also be chosen to include specific classes of entangled
states, so that non-membership signals that the entanglement is not of that particular class. As an example
of this, S can be chosen as the convex hull of all biseparable states and W-class states [42]. All of this can be
tested with our method by accordingly defining S in hypothesis (H0). Of course, this also requires one to
find a suitable witness operator W that separates S from some particular state ρ∗ that one aims to witness
(according to equation (1)).

5.2. Choosing the free parameters of the experiment
5.2.1. The witness operator W

The choice of witness operator is another integral part of the design of the experiment. It affects the
number of trials n needed in an experiment to attain a certain p-value given some target state ρ∗. It affects
the (expected) p-value bound or interval size ε one would observe in an experiment given finite n. There are
two different mechanisms behind this. First, the choice of W influences the decomposition equation (8),
and in particular the number of terms that appear in this decomposition. A smaller number of terms
directly implies more statistically significant results. This is intuitively understood since the budget of n data
points can now be used to measure less observables in the decomposition, meaning each can be estimated
more accurately. Second, for witness rejection experiments where some (average) ρ∗ is assumed to be
produced, one would ideally like to minimize the pbound over all witness operators W for fixed ρ∗ and n.
This task is extremely difficult and impractical. Instead, one often employs the heuristic of minimizing the
witness violation. That is, one seeks to find the minimizer W of the following optimization problem

min
W :‖W‖∞�1,

Tr[Wρ]�0 ∀ρ∈S

Tr[Wρ∗]. (60)

This witness will then give large contributions to the witness violation, hence making it statistically less
likely to observe such a violation with finite number of states from S. The downside of this is that it only
optimizes for the magnitude of the violation in case of infinite statistics. In particular, it does not take into
account the number of terms in the decomposition.
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Many different methods for entanglement witness design have been discussed extensively in literature
[20, 22, 23]. Most methods rely on some form of numerical optimization to find a witness with particular
attractive properties such as efficient decomposition, maximal violation with a given state or large noise
tolerance. For pure states, the most widely used witness operator for genuine multipartite entanglement of
states close to |ψ〉 is the projection witness W = λ2I − |ψ〉〈ψ|, where λ is the maximum of the Schmidt
coefficients of |ψ〉 when all bipartitions are considered [20, 22]. This is also the choice that we made in
section 4 for |ψ〉 = |GHZ〉 (see equations (42) and (43)).

5.2.2. The number of rounds n
An important design parameter of a witness experiment is the number n of rounds to be played. This is
often delicate, as too small n renders the entire experiment yielding no conclusion (see figure 4) but too
large n can be overly costly in experiment resources. To get a good estimate of n that produces small enough
pbound without being unnecessarily expensive, the experimenter must have a good understanding of the
quantum states being produced and the measurements being performed (e.g., from a theoretical model of
the experiment). With this, the experiment can be simulated, so that one can get an estimate of the
distribution of the total normalized score Tn. Then pick n such that you are very likely (e.g., in 90% of the
experiments) to realize a tn that evaluates with known or estimated γ to a pbound less than α (for the
rejection experiment) or that evaluates given α to a confidence interval that is sufficiently small (e.g. such
that the entire interval is smaller than zero).

5.2.3. The target distribution of measurement settings px

In principle, the choice of probability distribution over the measurement settings px is left free in this work.
Each choice leads to a valid witness experiment from which the conclusion can be drawn rigorously.
However, bad choices of px will lead to suboptimal bounds on the p-value or suboptimal confidence
intervals for equal experimental cost. An interesting question is what choice of px yields the smallest p-value
bound (resp. confidence interval) given fixed n and γ. This question is hard to address, since px influences
both the distribution of Tn and the value of Δs (which enters in theorem 2 via β and theorem 3 via
equation (34)). Based on the underlying concentration inequality (Bentkus’ inequality, see lemma 1 in
appendix D for details), we conjecture that px should optimally be chosen to minimize Δs. This conjecture
holds in the simulation of our experiments. Intuitively, this requirement ensures that Si − Si−1 is often large
compared to Δs. However, finding a distribution px that minimizes Δs is not a simple problem. In small
instances, it can be solved by brute force search. If all possible outcome sets are Ω(j)

x = {1,−1}, then the px

that minimizes Δs is given by our recommended choice in equation (17).

5.3. Possible modifications of our method
5.3.1. Model modifications
It is not hard to incorporate different ways of characterization the hardware devices [modifying
assumptions (II) and (III)]. For example, the bias in random measurement setting generation can be
quantified by different �q-norms than the �∞-norm considered here. Similarly, there are many other ways of
characterizing noisy measurement devices. For example, one may model and characterize noisy
measurements by a small misalignment angle, defined as the angle between the Bloch vectors of the ideal
and the noisy measurements [26]. Any modification of the way hardware devices are characterized, requires
that theorem 1 is modified accordingly to calculate an appropriate correction γ. We emphasize that this is
the only part that needs modification. Theorems 2 and 3 can directly be applied with the new
bound γ.

5.3.2. Alternative method for computing γ
In the theorem 1, we applied an analytical method to find the witness correction γ. This bound is not
necessarily tight in all cases. If the correction γ is too large for a practical experiment, one can see if tighter
bounds can be found numerically. The optimization problem for gamma under and of the model takes the
form

γ = −min
p̃x

min
W̄

min
ρ∈S

Tr[W̄ρ], (61)

where the minimization over p̃x is constrained by assumption (II) and the minimization over W̄ is
constraint by assumption (III). This optimization is not always easy to carry out. For example, optimizing
over S is hard in general (e.g., when S is the set of separable states), although in low dimensions one can
often resort to using PPT relaxations [44, 45]. Furthermore, the set of feasible W̄ is not convex, and the
objective function Tr[W̃ρ] is bilinear in the variables. For non-convex problems, general nonlinear
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optimization methods usually only find local optima which may result in witness corrections γ that are
smaller than justified.

5.3.3. Using Hoeffding–Azuma instead of Bentkus
In this work, we have chosen to use Bentkus’ inequality to bound the relevant tail probabilities in theorems
2 and 3, because this is often slightly tighter than the more common Hoeffding–Azuma inequality. We have
stated Bentkus’ inequality in lemma 1 in appendix D. Whenever this lemma applies, the Hoeffding–Azuma
inequality also applies. So if R0, . . . , Rn is a supermartingale with R0 = 0 and −β � Ri − Ri−1 � 1 − β,

then for all x � 0 Hoeffding–Azuma states that Pr[Rn � x] � e−
2x2

n . By replacing this in the right places in
the proofs of appendices D and E, we can modify the statements of theorems 2 and 3. In particular,
equation (30) can be modified to

Pr[Tn � tn|H0] � e−2 max (tn−nβ,0)2

n , (62)

with β still defined as in equations (33) and (34) can be modified to

α = e−
n
2 ( ε−γ

Δs )2
. (63)

Especially this latter modification can be useful, since this makes it easier to compute the confidence interval
in theorem 3. This is because the above equation can be explicitly solved for ε to find

ε = γ +Δs

√
2

n
ln(α−1). (64)

One may choose to use these equation instead of the theorems as stated, but generally this could come at a
slight cost in the tightness of the bounds.

5.4. General remarks regarding hypothesis testing and the p-value
Our rejection analysis of entanglement witness experiments fits into the general framework for hypothesis
testing in statistics. As always, it is important that all relevant parameters are fixed prior to the experiment
being carried out. In our case, this concerns the quantities defined in steps 1 and 2 of section 3.1. Most
notably, this includes the number of trials n and the significance level α, but also the witness operator, its
decomposition, and all other parameters of the model assumptions. This also implies that one may not
simply combine data from multiple experiments (e.g., extending experiments by further trials until a
desirable outcome is achieved). Instead, p-values of different experiments can be combined using known
statistical methods [32, 46], or one can carry out a larger, independent experiment instead.

In the framework of hypothesis testing, the p-value is defined as the probability of observing a test
statistic T (in our case, the total normalized score Tn) under the null hypothesis (in our case hypothesis
(H0)) that is at least as large as the observed value t:

p = Pr[T � t|H0]. (65)

If the p-value is smaller than a previously chosen significance level α, then the null hypothesis is considered
to be statistically unlikely to explain the observed t, and we reject the null hypothesis at significance level α.
This means that the p-value is a statement about the observed data in relation to a hypothesis about the
distribution of T. In particular, it does not give any information about the distribution of T if the null
hypothesis does not hold. Neither should the p-value be interpreted as ‘the probability that the null
hypothesis was valid’ or as ‘when the experiment is repeated many times, the null hypothesis is rejected in a
1 − p fraction of experiments’. The p-value is only quantifies the likelihood of a particular assumption
about the distribution of T, namely that it is governed by the null hypothesis. Therefore, it is this a
hypothesis that we may plausibly reject upon observing a small p-value. Finally, we emphasize that the
p-value itself can be seen as a random variable, as it is a function of the realization of a randomly observed
test statistic t (whether or not governed by the null hypothesis). Each experiment is simply a realization of a
particular p-value.

6. Conclusions

In this work, we proposed two new methods to analyze witness experiments. Both methods are applicable
to any source of quantum states that produces a sequence of states on demand. These states can be arbitrary
distributed and correlated—unlike previous works, which often implicitly assume that the noise
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is well-behaved so that the central limit theorem applies. With our rejection analysis, the experimenter can
rigorously certify that a device has the capability of producing entangled quantum states. The statistical
confidence is quantified by a bound on the p-value, the probability that an experiment yields data as
extreme as the observed data under the assumption that the source produces only separable states. Hence a
small p-value is directly interpreted as strong evidence for the production of entangled states. The rejection
method applies more generally to any witness experiment that is defined by a set of states and a
corresponding witness operator. In particular, it can be used to witness genuine multipartite entanglement.
With our estimation analysis, the experimenter can estimate the average witness value and construct a
statistically rigorous confidence interval around this estimate. This method allows the experimenter to
conclude whether entanglement was produced on average. This confidence is valid regardless of the type of
noise present. The estimation method applies to any general estimation problem. This means that it is not
necessary that W is a witness in the sense of equation (1). Fidelity estimation is therefore also covered by
this method.

Both methods we derived are simple to use. We provide a step-by-step recipe to choose all relevant
parameters, collect the necessary experimental data and compute both a bound on the p-value and a
average witness estimate with confidence intervals from this collected data. Our method requires no
modification compared to prior methods of performing witness experiments, except possibly the
requirement of measuring different settings in random order instead of a fixed, predetermined order. This
requirement is however inevitable if one wishes to deal with arbitrarily correlated noise. Both of our
methods yields a figure of merit—a bound on the p-value or a point estimate with a confidence
interval—that has a concrete interpretation and is comparable between experiments. We illustrated our
methods with simulations of an experiment in nitrogen vacancy centers.

In this work we chose to treat the witness operator as a fixed object that has been chosen with a state to
be witnessed in mind. However, other methods exist in which the witness is modified adaptively based on
the measurement data collected so far [24]. The objective of adaptive witnessing is to tune the witness
operator (perhaps within a parameterized family) to have maximal detection efficiency, based on the partial
knowledge of the noise obtained from prior measurement data. In particular, one can attempt to identify
and counteract coherent components of the noise. Indeed, coherent and local noise preserve entanglement,
and adaptive protocols have been shown to enhance entanglement detection [47]. An interesting open
question is whether the statistical methods we develop in this work can be combined with adaptive witness
methods. This would open ways to increase the detection efficiency of the witness method, while
maintaining the robustness against correlated noise.
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Appendix A. Game formulation

In this first appendix, we expand on sections 2.1 and 2.2. We will redefine all objects introduced in the main
text, while being slightly more formal and precise. We will also show that equation (14) holds, which relates
the definition of the score function to the witness decomposition. Let us start of with recapturing the
notion of a witness operator (or simply witness). A witness is defined as a Hermitian observable W that, for
some convex subset of states S, satisfies

Tr[ρW] � 0 ∀ρ ∈ S. (A1)
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As described in the main text (equation (8)), we assume the witness admits a decomposition into the sum
of local observables:

W = cI +
∑
ξ

wξO(1)
ξ ⊗ · · · ⊗ O(m)

ξ . (A2)

Often, it is possible to compute the expectation value of multiple observables {O(1)
ξ ⊗ · · · ⊗ O(m)

ξ }ξ from a

single measurement setting M(1)
x ⊗ · · · ⊗ M(m)

x (we shall label measurement settings by a label x). To keep
track of which observables (labeled by ξ) are related to which measurement setting (labeled by x), we define
f(ξ) = x if the observable O(1)

ξ ⊗ · · · ⊗ O(m)
ξ can be measured by the measurement setting

M(1)
x ⊗ · · · ⊗ M(m)

x . This means that there exists a bitstring b(ξ) ∈ {0, 1}m of length m such that

O(1)
ξ ⊗ · · · ⊗ O(m)

ξ = (M(1)
f (ξ))

b1(ξ) ⊗ · · · ⊗ (M(m)
f (ξ))

bm(ξ). (A3)

To allow for the most general model of measurements, we allow each M(j)
x in a measurement setting to be

measured by a POVM {Π(j),x
a }

a∈Ω(j)
x

with outcomes labeled by elements a in some finite set Ω(j)
x . That is, we

write
M(j)

x =
∑

a∈Ω(j)
x

aΠ(j),x
a . (A4)

The tensor product POVM for setting x has outcomes a = (a1, . . . , am) in Ωx :=Ω(1)
x × · · · × Ω(m)

x . We
denote it by

Πx
a :=Π(1),x

a1
⊗ · · · ⊗Π(m),x

am
. (A5)

Sometimes we also need Ω(j) :=
⋃

xΩ
(j)
x and Ω :=Ω(1) × · · · × Ω(m). We formally define Π(j),x

a := 0 for
a ∈ Ω(j)\Ω(j)

x and Πx
a := 0 for a ∈ Ω\Ωx. This is useful in case we want to sum over a ∈ Ω(j) or a ∈ Ω

without knowing x.
Using equation (A4), we can write each local observable O(j)

ξ as

O(j)
ξ =

(
M(j)

f (ξ)

)bj(ξ)
=

⎛⎝ ∑
a∈Ω(j)

aΠ(j),f (ξ)
a

⎞⎠bj(ξ)

=
∑

a∈Ω(j)

abj(ξ) Π(j),f (ξ)
a , (A6)

where the last equality follows from the facts that bj(ξ) ∈ {0, 1} and POVM elements sum to the identity I,
and we use the convention that a0 = 1, Q0 = I for any number a and operator Q. Hence by plugging
equation (A6) into equation (A2), the witness operator can be further decomposed as

W = cI +
∑
ξ

wξ

m⊗
j=1

∑
a∈Ω(j)

abj(ξ) Π(j),f (ξ)
a = cI +

∑
a∈Ω

∑
x

⎛⎝ ∑
ξ:f (ξ)=x

wξ

m∏
j=1

a
bj(ξ)
j

⎞⎠Πx
a. (A7)

The last equality follows from rearrangement and equation (A5). Table 1 in the main text summarizes all
relevant objects.

As discussed in sections 2.1 and 2.2, the witness experiment now proceeds in each round by selecting a
measurement setting x at random, measuring the corresponding POVMs on each subsystem, and, upon
obtaining outcomes a ∈ Ωx, assigning a score according to equation (13):

s(x, a) = − 1

px

∑
ξ:f (ξ)=x

wξ

m∏
j=1

a
bj(ξ)
j . (A8)

It is useful to define s(x, a) := 0 if a /∈ Ωx. Now it becomes apparent why we had written W in the form
equation (A7): it allows us to plug in the definition of the score function equation (A8). As a consequence,
we find that

W = cI −
∑
x,a

px s(x, a)Πx
a, (A9)

showing that equation (14) holds. Finally, we define the algebraic minimum and maximum score, and their
difference, as

smin :=min
x,a

s(x, a), smax :=max
x,a

s(x, a), Δs := smax − smin. (A10)
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Table B1. Summary of the random variables present in the model and analysis

Object Random variable Type Restrictions

History Hi Arbitrary Assumption (I)
States ρi Arbitrary Hypothesis (H0)
Measurement setting Xi Discrete Assumption (II)

POVM elements Π̃(j)
i,a Arbitrary Assumption (III)

Measurement outcomes Ai Discrete Born’s rule (equation (B7))

Score Si Discrete Equation (B8)
Total normalized score Ti Discrete Equation (D5)

Appendix B. Formal definition of the model assumptions and null hypothesis

In this appendix, we expand on the model as formulated in section 2.3 and formalize further the model
assumptions and null hypothesis that enter our description of the experiment. This allows us to rigorously
draw conclusions from the witness experiment. The model assumptions are the collection of the following
three assumptions:

(I) Sequentiality. The experiment is performed in rounds i = 1, 2, . . . , n. For each round, there are
random variables that model the state ρi, measurement setting Xi, POVM {Π̃(j)

i,a}a and measurement
outcome Ai (defined in the remaining assumptions and summarized in table B1). Apart from the
restrictions implied by the remaining assumptions, all these random variables in round i can depend
arbitrarily on all previous rounds. We formalize this by random variables Hi that models the history
of the experiment up until, but excluding, round i. We assume that Hi contains at least

(a) the history of the preceding round, i.e, the σ-algebra of Hi−1 is contained in the σ-algebra of
Hi:

σ(Hi−1) ⊆ σ(Hi) ∀i = 2, . . . , n. (B1)

(b) the state, measurement setting and outcome of round i − 1, i.e.,

σ(Xi−1, Ai−1, ρi−1) ⊆ σ(Hi) ∀i = 2, . . . , n, (B2)

By Assumption (I)a, this implies that X1, A1, ρ1, . . . , Xi−1, Ai−1, ρi−1 are all contained in the
history Hi.

(II) Trusted randomness. The measurement setting for the ith round of the experiment is modeled by a
random variable Xi. We assume that the distribution of Xi given the history Hi and the state ρi (we
denoted this informally as p̃i,x in the main text) is close to a known distribution px, i.e., there is τ > 0
such that

|Pr[Xi = x|Hi, ρi] − px| � τ ∀i, x (B3)

holds almost surely. We further assume that

τ < min
x

px. (B4)

(III) Trusted measurements. The measurement in the ith round of the experiment is modeled by random
POVMs {Π̃(j)

i,a}a that are close to known POVMs {Π(j),x
a }

a∈Ω(j)
x

, where we recall that x labels the

measurement setting, j = 1, . . . , m the subsystem, and Ω(j)
x is the set of possible outcomes (we

formally set Π(j),x
a := 0 for a /∈ Ω(j)

x ). We model this by assuming that for each of these POVMs {Π̃(j)
i,a}a

there exists a constant δj > 0 such that for each j, almost surely,∥∥∥Π̃(j)
i,a −Π(j),Xi

a

∥∥∥
∞

� δj ∀i, j, a. (B5)

We further assume that
Π̃

(j)
i,a = 0 ∀a /∈ Ω

(j)
Xi
∀i, j, a, (B6)

which means the noisy measurements have the same sets of possible outcome as the ideal
measurements. Finally, we assume that the measurement outcomes Ai follow Born’s rule, so we
demand that
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Pr
[

Ai = a
∣∣∣Hi, ρi, Xi, {Π̃(j)

i,a}
]
= Tr

[
ρi

(
Π̃(1)

i,a1
⊗ · · · ⊗ Π̃(m)

i,am

)]
∀i, a. (B7)

In terms of the above data, the score of the ith round is given by the following random variable:

Si := s(Xi, Ai), (B8)

where s(x, a) is the score function as defined in equation (A8).
The model assumptions (I) to (III) are sufficient for analyzing a witness estimation experiment. To

analyze a witness rejection experiment, we will also need to define the null hypothesis. We formally define
this as follows (an informal definition was already given in section 2.3):

(H0) Null hypothesis: states in S. The quantum states ρi almost surely take values in the set S.

The model assumptions together with this null hypothesis are sufficient for performing the witness
rejection experiment, with the objective of rejecting hypothesis (H0).

Appendix C. Theorem 1—correcting for imperfect randomness and measurements

In this appendix, we discuss how the witness inequality must be corrected in the case of imperfect
measurements (noisy POVM elements) and imperfect randomness. To do so, we first introduce shorthand
notation for the noisy POVM elements analogously to equation (A5):

Π̃i,a := Π̃(1)
i,a1

⊗ · · · ⊗ Π̃(m)
i,am

(C1)

Moreover, we define the effectively implemented operator W̄i for each round i as (cf equations (23) and
(A9))

W̄i = cI −
∑

x,a

Pr[Xi = x|Hi, ρi]s(x, a) Π̄x
i,a, (C2)

in terms of the following random variables

Π̄x
i,a :=

E

[
Π̃i,a1[Xi=x]|Hi, ρi

]
Pr[Xi = x|Hi, ρi]

. (C3)

We note that the denominator is nonzero almost surely by equation (B4), so that {Π̄x
i,a} is almost surely

well-defined and a POVM for each i and x. These POVM elements can be interpreted as the expected
implemented POVM elements in round i, conditioned on the event that setting Xi = x is realized. We now
bound the deviation of the effectively implemented operator W̄i from the target operator W as a result of
imperfect measurements and randomness.

Theorem 1 (restated). Let W be a Hermitian operator of the form of equation (A7) (not necessarily a witness
in the sense of equation (A1)). Suppose the experiment is modeled by the model assumptions (I) to (III) in
appendix B. Define the score function as in equation (A8). Denote by W̄i the effectively implemented operators
as in equation (C2). Then, in every round i,

‖W̄i − W‖∞ � γ (C4)

holds almost surely, where the witness correction

γ := γ1 + γ2 (C5)

is the sum of the random number generation correction and the measurement correction defined by

γ1 := τ
∑

x

max
a

|s(x, a)|, and γ2 :=
∑
ξ

|wξ |γ2(ξ), (C6)
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respectively, in terms of

γ2(ξ) :=
m∑

j=1

(
j−1∏
k=1

(λ(k)
ξ + ε(k)

ξ )

)
ε

(j)
ξ

⎛⎝ m∏
k=j+1

λ(k)
ξ

⎞⎠ , ε
(j)
ξ := bj(ξ)δj

∑
a∈Ω(j)

f (ξ)

|a| and λ
(j)
ξ := ‖O(j)

ξ ‖∞. (C7)

�

Proof. Define
W̌i := cI −

∑
x

px

∑
a

s(x, a) Π̄x
i,a. (C8)

We will show that, almost surely, ‖W̌i − W̄i‖∞ � γ1 and ‖W − W̌i‖∞ � γ2, which together imply the
theorem by the triangle inequality. For the former, we find that by comparing the definitions of W̄i and W̌i,
equations (C2) and (C8) respectively, that

‖W̌i − W̄i‖∞ =‖
∑

x

(
Pr[Xi = x|Hi, ρi] − px

)∑
a

s(x, a)Π̄x
i,a‖∞ (C9)

� τ
∑

x

‖
∑

a

s(x, a)Π̄x
i,a‖∞ (C10)

� τ
∑

x

max
a

|s(x, a)| = γ1, (C11)

using assumption (II) in the first inequality and using in the second inequality that the operators {Π̄x
i,a}

form a POVM for each i and x.
To show that ‖W − W̌i‖∞ � γ2, we start by comparing their respective definitions equations (A9) and

(C8), which gives

W − W̌i =
∑

x

px

∑
a

s(x, a)
(
Π̄x

i,a −Πx
a

)
=

∑
ξ

wξ

∑
a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Πf (ξ)

a − Π̄
f (ξ)
i,a

)
, (C12)

where we inserted the definition of the score function equation (A8) in the second step. Thus,

‖W − W̌i‖∞ �
∑
ξ

|wξ |

∥∥∥∥∥∥
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Πf (ξ)

a − Π̄
f (ξ)
i,a

)∥∥∥∥∥∥
∞

, (C13)

so it remains to prove that ∥∥∥∥∥∥
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Πf (ξ)

a − Π̄
f (ξ)
i,a

)∥∥∥∥∥∥
∞

� γ2(ξ), (C14)

for all ξ to conclude the proof. Using the definition of Π̄f (ξ)
i,a , equation (C3), we find that

∑
a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Πf (ξ)

a − Π̄
f (ξ)
i,a

)
=

∑
a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠⎛⎝Πf (ξ)
a −

E

[
Π̃i,a1[Xi=f (ξ)]|Hi, ρi

]
Pr[Xi = f (ξ)|Hi, ρi]

⎞⎠ (C15)

=
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠ E

[
(Πf (ξ)

a − Π̃i,a)1[Xi=f (ξ)]|Hi, ρi

]
Pr[Xi = f (ξ)|Hi, ρi]

(C16)

=

E

[∑
a

(
∏m

j=1 a
bj(ξ)
j )(Πf (ξ)

a − Π̃i,a)1[Xi=f (ξ)]|Hi, ρi

]
Pr[Xi = f (ξ)|Hi, ρi]

. (C17)

Therefore, we find that
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∥∥∥∥∥∥
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Πf (ξ)

a − Π̄
f (ξ)
i,a

)∥∥∥∥∥∥
∞

�
E

[
‖
∑

a

(∏m
j=1 a

bj(ξ)
j

)
(Πf (ξ)

a − Π̃i,a)‖∞1[Xi=f (ξ)]|Hi, ρi

]
Pr[Xi = f (ξ)|Hi, ρi]

. (C18)

To established the desired equation (C14), it therefore remains to show that, almost surely,∥∥∥∥∥∥
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠ (Πf (ξ)
a − Π̃i,a)

∥∥∥∥∥∥
∞

1[Xi=f (ξ)] � γ2(ξ) 1[Xi=f (ξ)]. (C19)

We will show equation (C19) in the remainder of the proof. We expand Π̃i,a −Πx
a using a telescoping sum

of the form
C1C2C3 − B1B2B3 = (C1 − B1)B2B3 + C1(C2 − B2)B3 + C1C2(C3 − B3). (C20)

In this case, with the tensor product and m terms, we get

Π̃i,a −Πx
a =

m∑
j=1

(
j−1⊗
k=1

Π̃(k)
i,ak

)
⊗

(
Π̃

(j)
i,aj

−Π(j),x
aj

)
⊗

⎛⎝ m⊗
k=j+1

Π(k),x
ak

⎞⎠ . (C21)

Using this, and by distributing the product and sum in the below expression over the tensor factors, we find
that

∑
a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠(
Π̃i,a −Πf (ξ)

a

)
=

m∑
j=1

(
j−1⊗
k=1

Õ(k)
i,ξ

)
⊗

(
Õ(j)

i,ξ − O(j)
ξ

)
⊗

⎛⎝ m⊗
k=j+1

O(k)
ξ

⎞⎠ , (C22)

where

Õ(j)
i,ξ :=

⎛⎝ ∑
a∈Ω(j)

a Π̃(j)
i,a

⎞⎠bj(ξ)

=
∑

a∈Ω(j)

abj(ξ)Π̃
(j)
i,a, (C23)

by the fact that bj(ξ) ∈ {0, 1} and POVM elements sum to the identity, in analogy to their ideal

counterparts O(j)
ξ given in equation (A6). Therefore, using the fact that the operator norm ‖ · ‖ ∞ is

multiplicative with respect to tensor products (i.e. ‖C ⊗ B‖ ∞ =‖C‖ ∞ ‖B‖ ∞), we find that∥∥∥∥∥∥
∑

a

⎛⎝ m∏
j=1

a
bj(ξ)
j

⎞⎠ (Π̃i,a −Πf (ξ)
a )

∥∥∥∥∥∥
∞

�
m∑

j=1

(
j−1∏
k=1

∥∥∥Õ(k)
i,ξ

∥∥∥
∞

)∥∥∥Õ(j)
i,ξ − O(j)

ξ

∥∥∥
∞

⎛⎝ m∏
k=j+1

∥∥∥O(k)
ξ

∥∥∥
∞

⎞⎠ . (C24)

We continue by bounding ‖Õ(j)
i,ξ − O(j)

ξ ‖∞ and ‖Õ(j)
i,ξ‖∞. We start with bounding the first, by considering the

two cases bj(ξ) = 0 and bj(ξ) = 1 separately. If bj(ξ) = 0, then

Õ(j)
i,ξ − O(j)

ξ =
∑

a∈Ω(j)

abj(ξ)
(
Π̃

(j)
i,a −Π(j),f (ξ)

a

)
=

∑
a∈Ω(j)

(
Π̃

(j)
i,a −Π(j),f (ξ)

a

)
= I − I = 0, (C25)

so then ‖Õ(j)
i,ξ − O(j)

ξ ‖∞ = 0. On the other hand, if bj(ξ) = 1, then, almost surely,

∥∥∥Õ(j)
i,ξ − O(j)

ξ

∥∥∥
∞

1[Xi=f (ξ)] =

∥∥∥∥∥∥
∑

a∈Ω(j)

a(Π̃(j)
i,a −Π(j),f (ξ)

a )

∥∥∥∥∥∥
∞

1[Xi=f (ξ)] (C26)

�
∑

a∈Ω(j)

|a|
∥∥∥Π̃(j)

i,a −Π(j),f (ξ)
a

∥∥∥
∞

1[Xi=f (ξ)] (C27)

=
∑

a∈Ω(j)
f (ξ)

|a|
∥∥∥Π̃(j)

i,a −Π(j),Xi
a

∥∥∥
∞

1[Xi=f (ξ)] (C28)

� δj

∑
a∈Ω(j)

f (ξ)

|a| 1[Xi=f (ξ)]. (C29)
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For the equality, note that we can assume that Xi = f(ξ) by the indicator function; since then both POVMs
have outcomes in Ω

(j)
f (ξ) we can also restrict the summation (cf equation (B6)). The last step holds by

equation (B5) in assumption (III). Both cases are neatly summarized by∥∥∥Õ(j)
i,ξ − O(j)

ξ

∥∥∥
∞

1[Xi=f (ξ)] � ε
(j)
ξ 1[Xi=f (ξ)], (C30)

with ε
(j)
ξ defined as in equation (C7). By the triangle inequality, this in turn implies that

∥∥∥Õ(j)
i,ξ

∥∥∥
∞

1[Xi=f (ξ)] �
∥∥∥O(j)

ξ

∥∥∥
∞

1[Xi=f (ξ)] +
∥∥∥Õ(j)

i,ξ − O(j)
ξ

∥∥∥
∞

1[Xi=f (ξ)] �
(
λ

(j)
ξ + ε

(j)
ξ

)
1[Xi=f (ξ)] (C31)

with λ
(j)
ξ =‖ O(j)

ξ ‖∞ defined as in equation (C7). Thus, plugging equations (C30) and (C31) into (C24), we
obtain the desired bound equation (C19), completing the proof. �

As a consequence of this theorem, we obtain two corollaries that related the expected score E[Si|Hi, ρi]
to the witness value Tr[Wρi]. These corollaries are used in theorems 2 and 3. We state and proof both
below.

Corollary 1.1. Let W be a Hermitian operator of the form of equation (A7) (not necessarily a witness in the
sense of equation (A1)). Suppose that the experiment is modeled by the model assumptions (I) to (III) in
appendix B. Let the score function be defined as in equation (A8). Then, in every round i,

|Tr[Wρi] − (c − E[Si|Hi, ρi])| � γ (C32)

holds almost surely, where c and γ are defined in equations (A7) and (C5).

Proof. We first compute

E

[
Si|Hi, ρi, Xi, {Π̃(j)

i,a}
]
= E

[
s(Xi, Ai)|Hi, ρi, Xi, {Π̃(j)

i,a}
]

(C33)

=
∑

a

E

[
s(Xi, a)1[Ai=a]|Hi, ρi, Xi, {Π̃(j)

i,a}
]

(C34)

=
∑

a

s(Xi, a)E
[

1[Ai=a]|Hi, ρi, Xi, {Π̃(j)
i,a}

]
(C35)

=
∑

a

s(Xi, a) Pr
[

Ai = a
∣∣∣Hi, ρi, Xi, {Π̃(j)

i,a}
]

(C36)

=
∑

a

s(Xi, a)Tr[ρiΠ̃i,a], (C37)

using Born’s rule (B7) in the last equation. This implies that

E
[
Si|Hi, ρi

]
=

∑
a

E

[
s(Xi, a)Tr[ρiΠ̃i,a] |Hi, ρi

]
(C38)

=
∑

x,a

s(x, a)E
[

1[Xi=x]Tr[ρiΠ̃i,a] |Hi, ρi

]
(C39)

= Tr

[
ρi

∑
x,a

s(x, a)E
[

1[Xi=x]Π̃i,a |Hi, ρi

]]
(C40)

= c − Tr[W̄iρi], (C41)

where in equation (C40) we pull can pull ρi out of the conditional expectation value since it is conditioned
on ρi and in equation (C41) we use the definition of W̄i (given in equations (C2) and (C3)). From this, it
follows that

|Tr[Wρi] − (c − E[Si|Hi, ρi])| = |Tr[(W − W̄i)ρi]| �‖ W − W̄i‖∞ � γ, (C42)

where the last inequality follows from the theorem, equation (C4). �
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Corollary 1.2. Let W be an operator of the form of equation (A7) that is a witness for the set S (i.e., W satisfies
equation (A1)). Suppose that the experiment is modeled by the model assumptions (I) to (III) in appendix B.
Furthermore, assume that the Hypothesis (H0) holds with respect to this S. Then, almost surely,
E[Si|Hi] � c + γ for all rounds i = 1, . . . , n, where c and γ are defined in equations (A7) and (C5).

Proof. From corollary 1.1, we directly obtain the one-sided inequality E[Si|Hi, ρi] � γ + c − Tr[ρiW].
Now, hypothesis (H0) and equation (A1) imply that Tr[ρiW] � 0 holds almost surely, so that
E[Si|Hi, ρi] � γ + c − Tr[ρiW] � c + γ. Thus, E[Si|Hi] = E[E[Si|Hi, ρi]|Hi] � E[c + γ|Hi] = c + γ. �

Appendix D. Theorem 2—bounding the p-value

The goal of this section is to prove theorem 2. In this theorem, we derive a bound on the p-value. The main
ingredient for the proof is a concentration inequality that bounds the tail probabilities of
(super)martingales. Here, we use a concentration inequality due to Bentkus [30, 31], which was used in
reference [32] for the analysis of Bell violation experiments. We state Bentkus’ inequality in the form of
theorem 1 in reference [32].

Lemma 1 (Bentkus’ inequality [30, 31]). Let R0, R1, . . . , Rn be a supermartingale (with respect to an arbitrary
filtration) with R0 = 0 and differences bounded as −βi � Ri − Ri−1 � 1 − β i almost surely for constants
βi ∈ [0, 1]. Let β := (β1 + · · ·+ βn)/n. Then, for all x ∈ R,

Pr[Rn � x − nβ] � eF◦
n,β(x), (D1)

where
F◦

n,β(x) = Fn,β(�x�)1−(x−�x�)Fn,β(�x�+ 1)x−�x� (D2)

is the log-linear interpolation of the survival function of a binomial distribution with parameters n and β,

Fn,β(k) = Pr[X � k|X ∼ Binom(n,β)] (D3)

=

n∑
l=k

(n

l

)
βl(1 − β)n−l. (D4)

In equation (D2), we define 00 := 1.

With this main ingredient in hand, we now state and prove a bound on the p-value p := Pr[Tn � tn|H0],
where

Tn :=
n∑

i=1

Si − smin

Δs
(D5)

is the total normalized score after n rounds (see equations (A8) and (B8) for the definition of the score). We
recall that smin and smax are defined in equation (A10) as the minimum and maximum value, respectively,
that can be attained by the score function.

Theorem 2 (restated). Let W be an operator of the form of equation (A7) that is a witness for the set S (i.e.,
which satisfies equation (A1)). Assume that the experiment is modeled by the model assumptions (I) to (III) in
appendix B and consider the null hypothesis (H0) with respect to S. Then, for all tn ∈ R,

Pr[Tn � tn|H0] � eF◦
n,β(tn), whereβ := min

(
1,

c + γ − smin

Δs

)
, (D6)

and where c, γ, and F◦
n,β are defined in equations (A7), (C5), and (D2), respectively. �

Proof. We first verify that β � 0, so that F◦
n,β is well-defined and we can later apply lemma 1. Now,

hypothesis (H0) and equation (A1) imply that Tr[ρiW] � 0. Therefore by the decomposition of W from
equation (A9), we find that

0 � Tr[Wρi] = c −
∑
x,a

pxTr
[
ρiΠ

x
a

]
s(x, a) � c − smin. (D7)

Since γ � 0, it follows that indeed β � 0.
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Next, we verify that the bound in equation (D6) holds for β = 1. Indeed, Pr[Tn � tn] > 0 only if tn � n,
since Tn ∈ [0, n]. But in this case, F◦

n,1(tn) = 1, so the bound reads Pr[Tn � t] � e, which holds trivially.
Now assume that β ∈ [0, 1), so that

β =
c + γ − smin

Δs
. (D8)

The proof comes down to constructing a suitable supermartingale and applying lemma 1. For
i = 0, 1, . . . , n, define

Ri :=
i∑

l=1

Sl − c − γ

Δs
. (D9)

By convention of the empty sum, this means R0 = 0. Note that Ri is affinely related to Ti, the total
normalized score after round i.

We first show that R0, R1, . . . , Rn is a supermartingale with respect to H1, . . . , Hn, i.e.,

E[Ri|H1, . . . , Hi] � Ri−1 ∀i = 1, . . . , n. (D10)

Note that, for any i = 1, . . . , n, we have the recursion formula

Ri = Ri−1 +
Si − c − γ

Δs
. (D11)

In view of equations (B8) and (D9), Ri−1 depends only on the measurement settings and outcomes of the
first i − 1 rounds. Thus, E[Ri−1|H1, . . . , Hi] = Ri−1 by assumption (I)b. Moreover,
E[Si|H1, . . . , Hi] = E[Si|Hi] by assumption (I)a. Therefore,

E[Ri|H1, . . . , Hi] = Ri−1 +
E[Si|Hi] − c − γ

Δs
� Ri−1. (D12)

where the last inequality holds by corollary 1.2, which asserts that E[Si|Hi] � c + γ almost surely. Thus,
R0, R1, . . . , Rn is a supermarginale as claimed.

Next we bound the differences. Since smin � Si � smax, we find using equation (D11) that

smin − c − γ

Δs
� Ri − Ri−1 =

Si − c − γ

Δs
� smax − c − γ

Δs
. (D13)

Thus, it holds that −β � Ri − Ri−1 � 1 − β since β is given by equation (D8). Indeed,

− β =
smin − c − γ

Δs
, 1 − β =

smax − c − γ

Δs
. (D14)

Thus we can apply lemma 1, which gives

Pr[Rn � x − nβ] � eF◦
n,β(x) ∀x ∈ R. (D15)

To complete the proof, we need to relate Tn to Rn and evaluate at the appropriate value of x. By comparing
equations (D5) and (D9), we find that

Rn =

n∑
l=1

Sl − smin − (c + γ − smin)

Δs
= Tn − nβ. (D16)

If we combine this with equation (D15), we arrive at

Pr[Tn � tn|H0] = Pr[Rn + nβ � tn|H0] = Pr[Rn � tn − nβ|H0] � eF◦
n,β(tn). (D17)

This completes the proof. �
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Appendix E. Theorem 3—confidence intervals for the witness estimate

In this appendix we will prove theorem 3 in the main text. This theorem establishes a (1 − 2α) two-sided
and a (1 − α) one-sided confidence interval around an estimate ŵn of the average witness value 〈W〉n.
Recall (from equation (21)) that the witness estimate is computed from the score as

Ŵn := c − 1

n

n∑
i=1

Si. (E1)

It is a point estimate of the average realized witness value 〈W〉n, which is defined as (recall equation (2))

〈W〉n :=
1

n

n∑
i=1

Tr[ρiW]. (E2)

We start with a lemma that establishes the some properties of the function F◦
n, 1

2
from Bentkus’

inequality, so that it has a well-defined inverse.

Lemma 2. Let F◦
n, 1

2
(x) be defined as in equation (D2) for any n ∈ N (with β = 1

2 ). Then for any n ∈ N the

function x �→ F◦
n, 1

2
(x) has the following properties:

(a) F◦
n, 1

2
(x) is a strictly decreasing and continuous in x on the interval [ n

2 , n]; and

(b) F◦
n, 1

2
([ n

2 , n]) ⊇ [ 1
2n , 1

2 ].

Hence, for any y ∈ [ 1
2n , 1

2 ], there is a unique x ∈ [ n
2 , n] such that F◦

n, 1
2
(x) = y.

Proof. Recall from equation (D2) that F◦
n, 1

2
interpolates the survival function Fn, 1

2
(k) = Pr[X � k] of a

binomial random variables X ∼ Binom(n, 1
2 ) at non-integer points by the log-linear function

F◦
n, 1

2
(x) = Fn, 1

2
(�x�)1−(x−�x�)Fn, 1

2
(�x�+ 1)x−�x�. (E3)

(a) Since Fn, 1
2
(k) is strictly decreasing in k and strictly positive for all k = 0, . . . , n, and since the

logarithm is strictly monotonic and continuous, it is clear that F◦
n, 1

2
is strictly decreasing and

continuous in x for all x ∈ [ n
2 , n].

(b) By the convention that 00 = 1 in the log-linear interpolation, it follows that F◦
n, 1

2
(n) = Fn, 1

2
(n) = 1

2n .

Now we show that F◦
n, 1

2
( n

2 ) � 1
2 . To do so, we use the symmetry of the binomial distribution with

parameter half. We observe that

Fn, 1
2
(k) =

n∑
i=k

(n

i

) 1

2n
=

n∑
i=k

(
n

n − i

)
1

2n
=

n−k∑
i=0

(n

i

) 1

2n
= 1 − Fn, 1

2
(n − k + 1). (E4)

So, for even n, we find that

2F◦
n, 1

2
(

n

2
) = 2Fn, 1

2
(

n

2
) = Fn, 1

2
(

n

2
) + 1 − Fn, 1

2
(

n

2
+ 1) � 1 (E5)

since Fn, 1
2
( n

2 + 1) > Fn, 1
2
( n

2 ). And for odd n is odd, then we find [by property (a)]

2F◦
n, 1

2
(

n

2
) � 2F◦

n, 1
2
(

n + 1

2
) = Fn, 1

2
(

n + 1

2
) + 1 − Fn, 1

2
(n − n + 1

2
+ 1) = 1. (E6)

Hence in either case F◦
n, 1

2
( n

2 ) � 1
2 . By property (a) and F◦

n, 1
2
(n) = 1

2n statement (b) follows. �

With this lemma in hand, we can state and proof the theorem. The main ingredient in the proof is again
lemma 1 applied to a suitably chosen martingale.
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Theorem 3 (restated). Let W be a Hermitian operator of the form of equation (A7) (not necessarily a witness
in the sense of equation (A1)). Suppose that the experiment is modeled by the model assumptions (I) to (III) in
appendix B. Let Ŵn denote the average witness estimate as defined in equation (E1). Fix the significance level
α ∈ [0, 1]. If α < e

2n , define ε = Δs, otherwise define ε ∈ [γ, γ +Δs] as the unique solution to

α = eF◦
n, 1

2

(
n

2
(1 +

ε− γ

Δs
)

)
. (E7)

Here γ and F◦
n,β are defined in equations (C5) and (D2), respectively (with β = 1

2 here and e ≈ 2.72).
Then,

(a) Pr[|〈W〉n − Ŵn| � Δs] = 1;

(b) Pr[〈W〉n − Ŵn � ε] � 1 − α and Pr[〈W〉n − Ŵn � −ε] � 1 − α;

(c) Pr[|〈W〉n − Ŵn| � ε] � 1 − 2α.

That is, if ŵn is the average witness estimate after n rounds, then I(ŵn) := [ŵn − ε, ŵn + ε] is a (1 − 2α)
two-sided confidence interval and J (ŵn) := [ŵn −Δs, ŵn + ε] is a (1 − α) one-sided confidence interval for
the average witness value 〈W〉n as defined in equation (E2). �

Proof.

(a) We show that −Δs � 〈W〉n − Ŵn � Δs holds almost surely by

〈W〉n − Ŵn =
1

n

n∑
i=1

(Tr[ρiW] − c + Si) (E8)

=
1

n

n∑
i=1

⎛⎝Si −
∑

x

∑
a

pxTr

⎡⎣ m⊗
j=1

Π(j),x
aj

ρi

⎤⎦ s(x, a)

⎞⎠ (E9)

� 1

n

n∑
i=1

⎛⎝smax −
∑

x

∑
a

pxTr

⎡⎣ m⊗
j=1

Π(j),x
aj

ρi

⎤⎦ smin

⎞⎠ = Δs, (E10)

since px, Tr
[
⊗m

j=1Π
(j),x
aj

ρi

]
� 0 and sum to one. Similarly 〈W〉n − Ŵn � −Δs, so that

Pr[|〈W〉n − Ŵn| � Δs] = 1.

(b) For α < e
2n , both statements in (b) follow immediately from (a), since then ε = Δs. So from now on,

assume that α ∈ [ e
2n , 1]. First we show that ε is well-defined. This follows from lemma 2, which states

that for all y = α
e ∈ [ 1

2n , 1
e ] ⊂ [ 1

2n , 1
2 ], there exists a unique x = n

2 (1 + ε−γ
Δs ) ∈ [ n

2 , n] such that
F◦

n, 1
2
( n

2 (1 + ε−γ
Δs )) = α

e . Hence for all α ∈ [ e
2n , 1] there is a unique ε ∈ [γ, γ +Δs] such that

equation (E7) holds.
Now, we construct a suitable martingale sequence Zi so that we can apply lemma 1 to Zi and −Zi

(to get both statements). For i = 0, . . . , n we define

Zi :=
1

2

i∑
l=1

Sl − E[Sl|Hl, ρl]

Δs
(E11)

This is a martingale sequence with respect to the sequence (H1, ρ1), . . . , (Hn, ρn), since

E[Zi|H1, ρ1, . . . , Hi, ρi] =
1

2Δs

i∑
l=1

E
[
Sl − E[Sl|Hl, ρl] |H1, ρ1, . . . , Hi, ρi

]
(E12)

=
1

2Δs

i∑
l=1

(
E
[
Sl |H1, ρ1, . . . , Hi, ρi

]
− E[Sl|Hl, ρl]

)
(E13)

=
1

2Δs

(
E
[
Si |H1, ρ1, . . . , Hi, ρi

]
− E[Si|Hi, ρi]

)
(E14)

+
1

2Δs

i−1∑
l=1

(
E
[
Sl |H1, ρ1, . . . , Hi, ρi

]
− E[Sl|Hl, ρl]

)
(E15)
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=
1

2Δs

(
E[Si|Hi, ρi] − E[Si|Hi, ρi]

)
+

1

2Δs

i−1∑
l=1

(
Sl − E[Sl|Hl, ρl]

)
(E16)

= 0 + Zi−1. (E17)

In equation (E13) we used that E[E[Sl|Hl, ρl]|H1, ρ1, . . . , Hi, ρi] = E[Sl|Hl, ρl] for all l = 1, . . . , i.
Equation (E16) holds since E[Si|H1, ρ1, . . . , Hi, ρi] = E[Si|Hi, ρi] and E[Sl|H1, ρ1, . . . , Hi, ρi] = Sl

for all l = 1, . . . , i − 1 by assumptions (I)a and (I)b. Moreover, Zi is bounded difference, where the
difference is bounded by

|Zi − Zi−1| =
1

2

|Si − E[Si|Hi, ρi]|
Δs

� 1

2

Δs

Δs
=

1

2
, (E18)

since smin � Si � smax for all i = 1, . . . , n. Hence lemma 1 applies with β = 1
2 (to both Zi and −Zi),

which yields

Pr[Zn � x − n

2
] � eF◦

n, 1
2
(x) and Pr[−Zn � x − n

2
] � eF◦

n, 1
2
(x). (E19)

Next, we invoke corollary 1.1 to relate 〈W〉n − Ŵn to Zn. We find that

∣∣∣∣〈W〉n − Ŵn −
2Δs

n
Zn

∣∣∣∣ =
∣∣∣∣∣
(

1

n

n∑
i=1

Tr[Wρi]

)
−

(
c − 1

n

n∑
i=1

Si

)
−

(
1

n

n∑
i=1

Si − E[Si|Hi, ρi]

)∣∣∣∣∣
(E20)

=

∣∣∣∣∣ 1

n

n∑
i=1

Tr[Wρi] − (c − E[Si|Hi, ρi])

∣∣∣∣∣ (E21)

� 1

n

n∑
i=1

|Tr[Wρi] − (c − E[Si|Hi, ρi])| � γ (E22)

almost surely. In equation (E22), we applied corollary 1.1 for each i = 1, . . . , n. Hence by using
equations (E19) and (E22), we find that

Pr[〈W〉n − Ŵn � ε] � Pr[γ +
2Δs

n
Zn � ε] (E23)

= Pr[Zn � n(ε− γ)

2Δs
] (E24)

� eF◦
n, 1

2

(
n

2
(1 +

ε− γ

Δs
)

)
= α, (E25)

by evaluating equation (E19) at the appropriate value of x and using the implicit definition of ε in
equation (E7). Similarly,

Pr[Ŵn − 〈W〉n � ε] � Pr[γ − 2Δs

n
Zn � ε] (E26)

= Pr[−Zn � n(ε− γ)

2Δs
] (E27)

� eF◦
n, 1

2

(
n

2
(1 +

ε− γ

Δs
)

)
= α. (E28)

Equations (E25) and (E28) imply the one-sided intervals

Pr[〈W〉n − Ŵn � ε] � 1 − α, and Pr[〈W〉n − Ŵn � −ε] � 1 − α, (E29)

respectively, as claimed.
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(c) Combining equations (E25) and (E28) with the union bound yields

Pr[|〈W〉n − Ŵn| � ε] � Pr[〈W〉n − Ŵn � ε] + Pr[Ŵn − 〈W〉n � ε] � 2α. (E30)

This implies that
Pr[|〈W〉n − Ŵn| � ε] � 1 − 2α, (E31)

as claimed. �
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