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Chapter 1

Introduction

1.1 Causality, conditionals and epistemic states

This thesis is a philosophical investigation which locates itself at the intersection
of studies of causality, epistemology and conditionals. By focusing on a couple
of specific issues at this intersection we hope to advance our understanding of
causal relations themselves, the way we talk about them in conditionals and
our epistemic attitudes toward them. Causality, epistemology and conditionals
are three central topics in the philosophical debate. Let us start by saying a bit
more about each of them and the way they are related before introducing the
main questions the thesis focuses on.

What a conditional sentence expresses has been a central question in the
philosophy of language for a long time. The truth condition of a conditional
sentence “If A then B” is obviously different from the material implication
A→ B. But it turns out to be very difficult to come up with a formal approach
that correctly captures these truth conditions. Even though it has been a central
objective in the work of many philosopher, still no consensus has been reached
about which approach should be chosen.

A maybe even older question in the philosophical debate is the question
about the nature of causality. What kind of metaphysical foundation does
it have? How do we come to know about causal dependencies? How do
we reason with this knowledge? The investigation on causality starts with
Aristotle, has been a central topic for philosophers like Kant and Hume and
also dominates many current debates in philosophy, cognition and artificial
intelligence. In recent years we have seen great progress in formal approaches
to causal reasoning and causal learning (Pearl [2002] and Halpern [2000]), but
still are a long way from answering the underlying philosophical questions.

Also epistemological questions have a long tradition in the philosophical
debate. Next to the traditional questions about the nature of knowledge and be-
lief in more recent times a lot of work has focused on the mechanisms of change
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2 Chapter 1. Introduction

in the epistemic states of agents, based on interaction with the environment and
other agents (See for instance Baltag and Smets [2008b], van Benthem [2011]
). Also this research went beyond the boarders of philosophy and has various
applications in computer science, artificial intelligence and media studies.

Conditionals, causality of epistemic states are also closely related to each
other. First, there seems to be a surprising strong connection between causality
and the meaning of a particular group of conditionals: counterfactual condi-
tionals. These are conditionals reasoning about hypothetical situations that are
– to the reasoner – known to be false. Some philosophers, most famously Lewis
have even argued that the question of causal dependence can be reduced to the
truth conditions of certain corresponding counterfactual conditionals.

Second, there appears to be also a very close relation between the meaning
of conditionals and belief change. The most dominant approach to the meaning
of conditionals follows Ramsey’s proposal, according to which we evaluate a
conditional by first updating our belief state with the belief in the antecedent
and then check if this new belief state supports the belief in the consequent of
the conditional. There is a lot of debate in the field on the question whether this
is also the right way to approach the meaning of counterfactual conditionals.
The causal approaches to the meaning of these sentences that became very
popular in recent years follow a different direction. But there are a couple of
famous examples in the literature that seem to force the conclusion that also
counterfactuals are interpreted based on reasoning about belief change. These
examples will play a central role in Chapter 3 of this thesis.

Finally, some of the core questions concerning causality also have a strong
epistemological dimension. Think, for instance, of the issue of how we come
to know about causal dependencies. Central in this thesis will be the question
of how we reason with the causal knowledge or beliefs that we have, and how
this then might affect which conditional sentences we are willing to endorse.

In recent years we can see that with the help of formal tools a lot of progress
has been made in the study of conditionals, causality and epistemology sep-
arately. The development of the causal modelling approach has let to a flood
of new developments on the topic of causation. This framework has been also
used very successfully for the semantics of conditional sentences (Pearl [2013],
Schulz [2011], Kaufmann [2013], Halpern [2016] and many more). Indepen-
dently, the development of new formal tools like Dynamic Epistemic Logic has
let to a lot of progress on epistemological questions. The central innovation of
this thesis lies is bringing these new formal tools together to study issues and
open problems concerning the interaction between causality, epistemology and
conditionals. Because these three topics are intrinsically related, drawing from
work on causal modelling, the analysis of conditionals and counterfactuals and
the modelling of epistemic attitudes, allows us to establish new connections
and provides us with a deeper insight into a number of open issues in the
literature. In particular in this thesis we will focus on the following four main
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questions:

• Can we build a qualitative formal system that can handle both causal and
epistemic reasoning together? Such a system should provide a syntax and
semantics that combines both counterfactual and qualitative epistemic
operators.

• Can we design a unified account of counterfactuals that can treat both,
causal and epistemic examples without having to postulate an ambiguity?

• Can we provide a causal modelling approach to the meaning of counter-
factual conditionals that can account for recent observations concerning
right-nested counterfactuals?

• Can a causal analysis of conditionals shed light on Aristotle’s modal
syllogistic?

To answer these questions we will combine philosophical analysis with meth-
ods from logic and formal reasoning while using input from experimental
results and examples in the literature.

1.2 The structure of the dissertation

The thesis is a collection of four research papers. Each of these research papers
has either been published or is currently under review. At and has in the exact
same form been copied into a chapter in this thesis (while for chapters 2 and 4
we have added the appendix of the paper at the end).

Chapter 2. In chapter 2, we will build a bridge between the work on causal
models/logics and epistemic models/logics. As mentioned before, in recent
years there has been a lot of development on the design of formal models
for causal reasoning. Especially the causal models developed by Pearl and
Halpern stand out. In a causal model, reality is characterized by a set of causal
variables. The causal dependencies between these variables are presented by
a set of structural functions connecting the values of the variables. However
the model does not represent the epistemic state of an agent. Therefore, the
causal language based accompanying the causal model cannot directly express
reasoning about causal knowledge. In order to represent epistemic states in
causal reasoning, we will extend the notion of a causal model to that of an
epistemic causal model. This model will represent both epistemic and causal
information. We will develop a corresponding logic for this new notion of
model and discuss some of its central properties. We will also address its
relationship to other recent extensions of causal models.



4 Chapter 1. Introduction

• Chapter 2 was written by K. Xie, F. Barbero, K. Schulz, S. Smets and F.
R. Velázquez-Quesada and has been submitted to DALI conference 2020
Prague.

• Contribution: K. Xie proposed a formal framework and arguments which
were then further developed and extended in collaboration with the co-
authors.

Chapter 3. In the third chapter, we will show that a combination of causal and
epistemic logic allows us to provide a better understanding of the semantics of
counterfactual conditionals. As has been shown by various authors, a causal
analysis is very successfull in accounting for the meaning of counterfactuals.
However, it seems that such an analysis is also limited in certain ways. In
particular, there appears to be a group of examples that such an approach
cannot account for. These examples have been often claimed to involve an
epistemic interpretation of counterfactuals. We will show that extending the
causal modeling approach with a representation of the knowledge and beliefs
of an agent allows us to provide a unified analysis of counterfactuals, which
can deal with these problematic examples.

• Chapter 3 has been written by K. Xie and K. Schulz and has been submitted
to Erkenntnis.

• Contribution: K. Xie provided the formal framework and developed the
argumentation and examples in close cooperation with K. Schulz

Chapter 4. Also the fourth chapter focuses on the meaning of counterfactual
conditionals. We will discuss a recent challenge brought forward against the
standard causal approach to the meaning of counterfactuals. According to
this objection, this approach cannot in general account for the interpretation of
right-nested counterfactuals, the problem being its strict interventionism. We
will report on the results of an empirical study supporting the objection and
extend the well-known logic of actual causality with a new operator expressing
an alternative notion of intervention that does not suffer from the problem (and
thus can account for the critical examples). The core idea of the alternative
approach is that the new notion of intervention operates on the evaluation of
the variables in a causal model, and not on their functional dependencies.

• Chapter 4 is a reprint of K. Schulz, S. Smets, F. R. Velázquez-Quesada,
K. Xie (2019). A logical and empirical study of right-nested counterfac-
tuals. In Proceedings of Logic, Rationality, and Interaction; 7th International
Workshop. Lecture Notes in Computer Science book series (LNCS, volume
11813), Pages 259-272.
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• Contribution: K.Xie initiated the paper with formal framework and argu-
ments which were then further developed and extended in collaboration
with the co-authors. The experimental results were brought in by K.
Schulz.

Chapter 5. The fifth chapter of the thesis aims to investigate a particular ap-
plication of the causal analysis of conditionals. In this chapter, we will provide
a causal analysis of modal syllogism. Modal syllogisms are first discussed in
Aristole’s Prior Analysis. Aristole claims that some forms of modal syllogisms
are valid and some are not, without that it is clear how he arrives at these judge-
ments. For a very long time, the interpretation of modal syllogism has been
considered a puzzle: what is the right semantics for modal syllogisms such
that it could fit Aristotle’s claims for their validity. Many commentators even
consider that there is no consistent way to provide a semantics for Aristotle’s
modal syllogisms. In this chapter we try to solve this problem. The core idea of
our approach is to provide a causal semantics for the conditionals involved in
modal syllogisms. We argue that this formalization fits better with Aristotle’s
intuitions concerning the evaluation of modal syllogisms.

• Chapter 5 is a reprint of R. van Rooij, K. Xie, A causal analysis of modal
syllogisms, Second Tsinghua Interdisciplinary Workshop on Logic, Lan-
guage, and Meaning: Monotonicity in Logic and Language.The paper
has has been accepted in the proceeding of the TLLM 2020 workshop, to
be published in the FoLLI LNCS series after revision.

• Contribution: K. Xie contributed to the formal analysis and part of the
writing.

1.2.1 Technical preliminaries

In this section we provide a very basic introduction to the main formal frame-
works we will employ in the thesis. We can keep this part short, because
detailed introductions will be provided in each of the individual chapters.

Causal models. The notion of causal models has been developed in Galles
and Pearl [1998a], Pearl [2002], Halpern [2000] and Glymour and Spirtes [1988].
The goal of this type of model is to provide a representation of the available
information about general causal dependencies. This model then has been used
to formalize causal reasoning, but also to serve as foundation for approaches
to causal learning.

A causal model is a pair (S,F ). The signature S consists of a set of causal
variables, which represent the entities in the causal scenario to be modelled.
These can be of various types, a particular stance as to the objects linked
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by causal dependencies is not presumed. A signature is defined as a triple
(U,V,R) where U represents the variables that are causally independent of
other variables (known as exogenous variables),V represents the variables that
causally depend on some other variables (known as endogenous variables) and
R is a function that indicates the range of possible values of each variable. We
can understand a causal model as zooming in on one particular part of the
overall network of causal dependencies that governs reality as we see it. For
some variables their causes are not part of the particular section of reality we
are zooming in on. These become the exogenous variables of the model.

The causal dependencies among the variables are represented by a set of
structural functions F , which map each endogenous variable Y to a function
FY that determines the value of Y given the value of all the other variables. So,
they describe the exact nature of the causal laws. They allow us to calculate the
exact status (value) of the effect given the status (value) of its cause(s)

Dynamic epistemic logic. Dynamic epistemic logic (DEL) is a logical ap-
proach for the analysis of epistemic and doxastic attitudes which not only has
logic operators that describe epistemic states, but also has dynamic operators
to characterize model changes resulting from information change. The earlier
work in this direction dates back to Hinttika’s epistemic logic (Hintikka [1973]
), and was further developed in a new direction by several researchers, e.g.
Plaza [2007], Baltag et al. [1998], van Ditmarsch et al. [2008], Baltag and Smets
[2008b], Liu [2007], Van Ditmarsch [2005], van Benthem [2011]). The language
of epistemic logic is able to express the epistemic state of an agent by epistemic
operators. Kφ stands for the agent knows φ and Belφ stands for the agent
believes φ.

According to the setting in Baltag and Smets [2008b] , an epistemic (plausi-
bility) model is a tuple (〈W,V,E〉,w) where W is a set of possible worlds, V is a
valuation function, and E is a well preorder on W1, w ∈ W is the actual world.
E is known as the plausibility ordering: w1 E w2 means that w1 is at least as
plausible as w2 to the agent. If neither w1 E w2 nor w2 E w1, then w1 and w2 are
two epistemically distinguishable worlds for the agent2.

The semantics is that an agent knows φ (Kφ) if and only if φ is true in all
the epistemically indistinguishable worlds from the actual world. An agent
believes φ (Belφ) if and only if φ is true in all the most plausible worlds from
the actual world.

Given the model illustrated in figure 1.2.1, let p and q be two propositions
and let us assume that in the actual world ¬p and q are the case. Figure 1.2.1,
characterizes a situation in which the agent knows that ¬p is the case, while

1this is a connected, transitive and well founded relation
2Note that in the epistemic models used in chapter 3, we will make the information partition

which is induced by the plausibility relation formally explicit in the signature of the models.
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¬p¬q ¬pq p¬q pq

w

Figure 1.1: An example of an epistemic model

she believes ¬q (we assume that w is the actual world).
For details and explanations on the use of the dynamic operators in DEL as

well as applications of the setting to different scenarios, we refer the reader to
Baltag and Renne [2016].





Chapter 2

Thinking about Causation: a causal
language with epistemic operators

2.1 Introduction

In recent years a lot of effort has been put in the development of formal models
of causal reasoning. A central motivation behind this is the importance of causal
reasoning for AI. Making computers take into account causal information is
currently one of the central challenges of AI research Pearl and Mackenzie
[2019], Bergstein [2020]. There has also been tremendous progress in this
direction after the earlier groundbreaking work in Pearl [2000] and Spirtes et al.
[1993]. Advanced formal and computational tools have been developed for
modelling causal reasoning and learning causal information, with applications
in many different scientific areas. In this paper we want to extend this work
further. The direction we want to explore is that of developing formal models
of the interaction between causal and epistemic reasoning.

Even though the standard logical approach to causal reasoning (Pearl [2000],
Halpern [2000, 2016]) can model epistemic uncertainty1, it does not permit rea-
soning about the interaction between causal and epistemic reasoning in the
object language. Even though recently there have been proposals adding prob-
abilistic expressions to the object language (e.g., Ibeling and Icard [2020]), very
little has been done on combining causal and qualitative epistemic reasoning.2

However, this kind of reasoning occurs frequently in our daily life, especially in
connection with counterfactual thinking. Consider, for instance, the following
situation.

1This can be achieved by adding a probability distribution over the exogenous variables of a
causal model. Uncertainty is then restricted to the value of variables. All causal dependencies
are deterministic.

2See Barbero and Sandu [2019] for an exception, though the epistemic element is not made
fully explicit in the language. Section 2.6 discusses the relationship between the referred paper
and the current proposal.

9
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1. Example. Suppose there is a button in front of Billie, which is connected with a
circuit breaker and a sprinkler. If the circuit is closed, then the sprinkler is working if
and only if the button is pushed. If the circuit is not closed, the sprinkler won’t work,
independently of the state of the button. Billie knows the causal laws in this scenario.
She can also see the button and the sprinkler, but she has no idea what the state of the
circuit breaker is. Suppose furthermore, that at the moment the circuit is closed, the
button is not pushed, and the sprinkler, as a result, is not working.

In such a situation we want to be able to derive that Billie is not sure that if
the button had been pushed, the sprinkler would have been working. Thus,
we want to be able to make inferences involving epistemic attitudes towards
counterfactuals, which, in turn explore causal dependencies. We also want to
be able to reason counterfactually about such epistemic attitudes. Considering
the same example, we also want to be able to infer that if Billie had pushed
the button and saw that that the sprinkler works, then she would have known
that the circuit is closed (because of the causal knowledge she has). In order
to formalize this type of reasoning, we need a framework that combines causal
reasoning with a model of epistemic attitudes.

Given the vast literature on epistemic logic, there is a lot of work that we
can build on. This paper makes a start on combining the standard approach to
causal reasoning (Pearl [2000], Halpern [2000, 2016]) with tools from Dynamic
Epistemic Logic (DEL; Baltag et al. [1998], van Benthem [2011], van Ditmarsch
et al. [2008]). The main motivation for this choice is the dynamic character of
both systems, even though this aspect will not be explored at depth here. For
now we will only consider a very simple extension of the standard system of
causal reasoning. But, as we will show, this basic extension already allows us
to formalise some interesting concepts and formulate concrete questions for
further research.

After introducing the standard approach to causal reasoning in Section 2.2,
we will explain in more detail, in Section 2.3, the particular aspects of the in-
teraction between causal and epistemic reasoning we intend to capture here.
Section 4.5 will contain the core of the paper: we will extend the standard
causal modeling approach in order to deal with with knowledge and external
communication. In Section 2.5 we will provide a sound and complete axiomati-
zation of this logic. We conclude the paper discussing the relationship between
our proposal and other recent extensions of causal models.

2.2 The standard causal modelling approach

What we refer to as the standard logic of causal reasoning was presented on
Pearl [1995], extended in Galles and Pearl [1998a], and then further developed
in, among others, Halpern [2000], Pearl [2002], Briggs [2012]. This section recall
briefly the most important concepts and tools.
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The starting point is a formal representation of causal dependencies. This
is done in terms of causal models, which represent the causal relationships
between a finite set of variables. These variables, as well as their ranges of
values, are given by a signature. Throughout this text, let S = 〈U,V,R〉 be a
finite signature where

• U = {U1, . . . ,Um} is a finite set of exogenous variables (those whose value
is causally independent from the value of every other variable in the
system),

• V = {V1, . . . ,Vn} is a finite set of endogenous variables (those whose value
is completely determined by the value of other variables in the system),
and

• R(X) is the non-empty range of the variable X ∈ U ∪V.3

A causal model is formally defined as follows.

1. Definition (Causal model). A causal model is a triple 〈S,F ,A〉 where

• S = 〈U,V,R〉 is the model’s signature,

• F = { fV j | V j ∈ V} assigns, to each endogenous variable V j, a map

fV j : R(U1, . . . ,Um,V1, . . . ,V j−1,V j+1, . . . ,Vn)→ R(V j).

The map fV is sometimes called V’s structural function, and the set F is called
a set of structural functions forV.

• A is the valuation function, assigning to every X ∈ U ∪ V a value A(X) ∈
R(X). For each endogenous variable, the valuation should comply with the
variable’s structural function. In other words, for every V j ∈ V, the following
should hold:

A(V j) = fV j

(
A(U1), . . . ,A(Um),A(V1), . . . ,A(V j−1),A(V j+1), . . . ,A(Vn)

)
.

In a causal model 〈S,F ,A〉, the functions in F describe the causal relationship
between the variables. Using these functional dependencies, we can define
what it means for a variable to directly causally affect another variable.4

3Given (X1, . . . ,Xk) ∈ (U ∪V)k, abbreviate RX1 × · · · × R(Xk) as R(X1, . . . ,Xk).
4This notion of a direct cause is adopted from Galles and Pearl [1998a]; it is related to the

notion of a variable having a direct effect on another, as discussed in Pearl [2000] in the context
of Causal Bayes Nets. The notions defined here differ from Halpern’s notion of affect Halpern
[2000], and this affects the axiomatization: axiom HP6 (Table 2.5) has the same function as C6
in Halpern [2000] (ensuring that the canonical model is recursive), but does so in a slightly
different way.
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2. Definition (Causal dependency). Let F be a set of structural functions for V.
Given an endogenous variable V j ∈ V, rename each other variable in S, the variables
U1, . . . ,Um,V1, . . . ,V j−1,V j+1, . . . ,Vn, as X1, . . . ,Xm+n−1, respectively.

We say that, under the structural functions inF , an endogenous variable V j ∈ V is
directly causally affected by a variable Xi ∈ (U∪V) \ {V j} (in symbols, Xi ↪→F V j)
if and only if there is a tuple

(x1, . . . , xi−1, xi+1, . . . , xm+n−1) ∈ R(X1, . . . ,Xi−1,Xi+1, . . . ,Xm+n−1)

and there are x′i , x′′i ∈ R(Xi) such that

fV j(x1, . . . , x′i , . . . , xm+n−1) , fV j(x1, . . . , x′′i , . . . , xm+n−1).

When Xi ↪→F V j, we will also say that Xi is a causal parent of V j. The relation ↪→+
F

is the transitive closure of ↪→F .

As it is common in the literature, we restrict ourselves to causal models in
which circular causal dependencies do not occur.

3. Definition (Recursive causal model). A set of structural functions F is recur-
sive if and only if ↪→+

F
is a strict partial order (i.e., an asymmetric [hence irreflexive]

and transitive relation, so there are no cycles). A causal model 〈S,F ,A〉 is recursive
if and only if F is recursive. In this text, a recursive causal model will be called simply
a causal model.

The most important notion of this formalisation of causal reasoning is that of an
intervention. This notion refers to the action of changing the values of variables
in the system. Before we define an intervention formally, let us first introduce
the notion of assignment.

4. Definition (Assignment). Let S = 〈U,V,R〉 be a signature. An assignment
on S is an expression

−→
X=−→x where

−→
X is a tuple of different variables inU∪V (that is,

−→
X = (X1, . . . ,Xk) ∈ (U∪V)k for some k ∈N, with Xi , X j for i , j), and−→x ∈ R(

−→
X).

Now, an intervention that sets a variable X to the value x can be defined as
an operation that maps a given model M to a new model MX=x, which is the
same except that the function determining the value of X is replaced by the
constant function mapping X to x. In other words, X is cut off from all its causal
dependencies and fixed to the value x.

5. Definition (Intervention). Let M = 〈S,F ,A〉 be a causal model; let
−→
X=−→x be an

assignment on S. The causal model M−→
X=−→x = 〈S,F−→X=−→x ,A

F
−→
X=−→x
〉, resulting from an

intervention setting the values of variables in
−→
X to −→x , is such that
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• F−→X=−→x is as F except that, for each endogenous variable Xi in
−→
X, the function fXi

is replaced by a constant function f ′Xi
that returns the value xi regardless of the

values of all other variables.

• A
F
−→
X=−→x

is the unique valuation where (i) the value of each exogenous variable not

in
−→
X is exactly as inA, (ii) the value of each each exogenous variable Xi in

−→
X is

the provided xi, and (iii) the value of each endogenous variable complies with its
new structural function (that in F−→X=−→x ).5

Building on the notion of intervention we can now extend a propositional
language with a new type of sentence that considers the consequences of in-
terventions. The expression [

−→
X=−→x ]γ should be read as the counterfactual

conditional if the variables in
−→
X were set to the values −→x , respectively, then γ would

be the case.

6. Definition. Formulas φ of the languageLC based on the signature S are given by

γ ::= Z=z | ¬γ | γ ∧ γ for Z ∈ U ∪V and z ∈ R(Z)

φ ::= Z=z | ¬φ | φ ∧ φ | [
−→
X=−→x ]γ for

−→
X=−→x an assignment on S

The language makes free use of Boolean operators, but it forbids the nesting
of intervention operators [

−→
X=−→x ] (see Briggs [2012] for a way to extend the

system with nested interventions). Formulas of LC are evaluated in causal
models 〈S,F ,A〉. The semantic interpretation for Boolean operators is the
usual; for the rest,

〈S,F ,A〉 |= Z=z iff A(Z) = z

〈S,F ,A〉 |= [
−→
X=−→x ]γ iff 〈S,F−→X=−→x ,A

F
−→
X=−→x
〉 |= γ

2.3 Limitations of the standard system

The notion of a causal model contains an incredible amount of extra information
compared to classical models. Not only does it tell us which variables depend
causally on which other variables, but it also determines the exact character
of this dependence. On the side of the language this wealth of information is

5Note that, since F is recursive, the valuation AF−→
X=−→x

is uniquely determined. First, the

value of every exogenous variable U is uniquely determined, either from −→x (if U occurs in
−→
X)

or else fromA (if U does not occur in
−→
X). Second, the value of every endogenous variable V is

also uniquely determined, either from −→x (if V occurs in
−→
X , as V’s new structural function is a

constant) or else from the (recall: recursive) structural functions in F−→X=−→x (if V does not occur

in
−→
X).
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then explored in terms of counterfactual conditionals using the concept of an
intervention. This is where the actual causal reasoning happens. The standard
logic of causal reasoning is in fact a logic of counterfactual reasoning. This is no
accident: Judea Pearl, founder of the approach to causal reasoning introduced
above, sees both concepts as intimately related. He argues that only when
an agent can evaluate counterfactual conditionals does she fully engage with
causal reasoning Pearl [2009], Pearl and Mackenzie [2019]. Counterfactual
reasoning is the highest level of causal reasoning – a level that even the most
advanced AI technology doesn’t even come close to.6

Still, the basic causal framework has some limitations. An important one
is that causal (or counterfactual) reasoning does not stand on its own: it does
interact with other forms of reasoning. For instance, and as we illustrated in
the introduction, counterfactual reasoning also considers the effect interven-
tions have on the epistemic state of (observing) agents. We can reason that
If Peter had pushed the button, he would have known that his flashlight is broken,
which involves thinking about Peter’s epistemic state after observing a causal
intervention. This type of reasoning allows us to plan our actions (try out a
flashlight before we take it for a night walk), and also influences our interaction
with other agents (if you want Peter to come back from his walk, you should tell
him to test his flashlight before he leaves). Therefore, a full account of the logic
of causal reasoning needs to model its interaction with epistemic reasoning as
well. The next section takes a first step in this direction: it adds a represen-
tation of the epistemic state of an agent to the model, extending the language
with expressions that can talk about knowledge and knowledge-update in the
context of causal reasoning.

There is another perspective from which such an epistemic extension of
the standard framework can be motivated. In recent years there has been
growing interest in the logic of dependence/determinacy. For instance, the
IF logic of Mann et al. [2011] expresses dependence by decorations of the
quantifiers. Then, Väänänen [2007] and Baltag and van Benthem [2020] use a
primitive expression indicating that the value of one variable depends on that
of another. In all these cases, the discussed notion of dependence/determinacy
relies on considering a multiplicity of valuations in the model: the variable Y
depends on (it is determined by) the variables X1, . . . ,Xn when, in all valuations
that are being considered, fixing the value of the latter also fixes the value
of the former. This gives rise to the question of how the notion of causal
dependence modelled by the just introduced framework interacts with the
notions of dependence/determinacy modelled by these alternative frameworks,

6The other two levels that Pearl distinguishes are the level of association, which is based
on observation, and the level of intervention, which is based on doing. Modern AI technology
is for him still at the first level: association. Counterfactual reasoning is not possible without
a true understanding of why things happen – in our terminology, it is not possible without
knowing the causal relationships as determined by F .
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and how causal dependence fits into a general picture of reasoning with and
about dependencies. Interestingly, extending the standard causal reasoning
approach with basic epistemic notions gives us another way to express the
same notion of dependence as studied in the works just cited. This, then, allows
us to compare different notions of dependency within one logical system. We
will come back to this connection in Section 2.6.

2.4 Epistemic causal models

The first step towards a framework that combines causal with epistemic rea-
soning is adding a representation of the epistemic state of an agent to the
causal model. This is done by adding a set of valuations T , representing the
alternatives the agent considers possible.

7. Definition (Epistemic causal model). An epistemic (note: recursive) causal
model is a tuple 〈S,F ,T〉 where S = 〈U,V,R〉 is a signature, F is a (note:
recursive) set of structural functions for V, and T is a non-empty set of valuation
functions forU ∪V, each one of them complying with F .

As a consequence of this definition, it is not possible to model uncertainty about
the causal dependencies.

Investigating the consequences of lifting this restriction is left for future
research. The next step is to extend the notion of an intervention to epistemic
causal models.

8. Definition (Intervention). Let E = 〈S,F ,T〉 be an epistemic causal model; let
−→
X=−→x be an assignment on S. The epistemic causal model E−→X=−→x = 〈S,F−→X=−→x ,T

F
−→
X=−→x
〉,

resulting from an intervention setting the values of variables in
−→
X to −→x , is such that

• F−→X=−→x is defined from F just as in Definition 7,

• T
F
−→
X=−→x

:= {A′F−→
X=−→x
| A

′
∈ T } (see Definition 7.

Note how 〈S,F−→X=−→x ,T
F
−→
X=−→x
〉 is indeed an epistemic causal model, as F−→X=−→x is recursive

and all valuations in T F−→
X=−→x

comply with it.

This definition assumes that the agent has full epistemic access to the effect
of the intervention on the model; thus, she knows that the intervention takes
place (in the counterfactual scenario considered). This makes a lot of sense if
you think of the agent whose epistemic state is modelled as the one engaging in
the counterfactual thinking. It is less plausible in connection to counterfactual
thinking about the knowledge states of other agents. But this is something
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that we can leave for now, as we will not consider epistemic causal models for
multiple agents in this paper.

Based on these changes on the semantic side, we can now extend the object
language with expressions that talk about the epistemic state of the agent.
More specifically, we add the operator K for knowledge and “!” for information
update. In other words, we understand “!” as expressing the action of observing
or receiving information.

9. Definition. Formulas φ of the language LPAKC based on S are given by

γ ::= Z=z | ¬γ | γ ∧ γ | Kγ | [γ!]γ for Z ∈ U ∪V and z ∈ R(Z)

φ ::= Z=z | ¬φ | φ ∧ φ | Kφ | [φ!]φ | [
−→
X=−→x ]γ for

−→
X=−→x an assignment on S

Other Boolean operators (∨,→,↔) can be defined as usual. Note how, although
the language makes free use of Boolean, epistemic and announcement operators
(K and [φ!], for the latter two), nested intervention is again not allowed.7 Note
also how the tuple vector

−→
X can be empty, in which case [

−→
X=−→x ]γ becomes γ.

The semantics for this extended language is straightforward.

10. Definition. Formulas ofLPAKC are evaluated in a pairs (E,A) with E = 〈S,F ,T〉
an epistemic causal model and A ∈ T . The semantic interpretation for Boolean
operators is the usual; for the rest,

(E,A) |= Z=z iff A(Z) = z

(E,A) |= Kφ iff (E,A′) |= φ for everyA′ ∈ T

(E,A) |= [ψ!]φ iff (E,A) |= ψ implies (Eψ,A) |= φ

(E,A) |= [
−→
X=−→x ]γ iff (E−→X=−→x ,A

F
−→
X=−→x

) |= γ

with Eψ = 〈S,F ,T ψ
〉 such that T ψ := {A′ ∈ T | (E,A′) |= ψ}. Note how Eψ is an

epistemic causal model: F is recursive, and all valuations in T ψ comply with it.

Finally, we define an operator in terms of the existing vocabulary as a way
to express causal dependency in the object language.

11. Definition. Take X and Z inU ∪V. The formula X Z is defined as∨
−→w ∈ R((U ∪V) \ {X,Z}),
{x1, x2} ⊆ R(X), x1 , x2,

{z1, z2} ⊆ R(Z), z1 , z2

[
−→
W=−→w ,X=x1]Z=z1 ∧ [

−→
W=−→w ,X=x2]Z=z2,

7However, notice that the semantics already allows for nested occurrences of all dynamic
operators. We will extend the proofs of sound- and completeness to the unrestricted language
in the future.
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A formula X Z should be read as “X has a direct causal effect on Z”. It holds
when there is a vector −→w of values for variables in R(U ∪V \ {X,V}) and two
different values x1, x2 for X that produce two different values z1, z2 for Z (cf.
Halpern [2000]). When Z ∈ V, it is clear that is the syntactic counterpart of
the relation “↪→” of Definition 2.

2.5 Axiomatization

Propositional:

P: φ for φ an instance of a tautology MP: From φ→ ψ and φ derive ψ

Intervention:

HP1: [
−→
X=−→x ]Z=z → ¬[

−→
X=−→x ]Z=z′ for z , z′ ∈ R(Z)

HP2:
∨

z∈R(Z)[
−→
X=−→x ]Z=z

HP3:
(
[
−→
X=−→x ]Z=z ∧ [

−→
X=−→x ]W=w

)
→ [
−→
X=−→x ,Z=z]W=w

HP4: [
−→
X=−→x ,Z=z]Z=z

HP5:
(
[
−→
X=−→x ,Z=z]W=w ∧ [

−→
X=−→x ,W=w]Z=z

)
→ [
−→
X=−→x ]W=w for W , Z

HP6: (Z0 Z1 ∧ · · · ∧ Zk−1 Zk) → ¬(Zk Z0)

RH1: [
−→
X=−→x ](φ ∧ ψ) ↔ ([

−→
X=−→x ]φ ∧ [

−→
X=−→x ]ψ)

RH2: [
−→
X=−→x ]¬φ ↔ ¬[

−→
X=−→x ]φ

EX: U=u↔ [
−→
X=−→x ]U=u for U ∈ U with U <

−→
X

Epistemic:

K: K(φ→ ψ)→ (Kφ→ Kψ) T: Kφ→ φ

N: From φ derive Kφ 4: Kφ→ KKφ

5: ¬Kφ→ K¬Kφ

Epistemic+Intervention:

CM: [
−→
X=−→x ]Kφ ↔ K[

−→
X=−→x ]φ

Announcement:

RP1: [ψ!][
−→
X=−→x ]Z=z ↔ (ψ→ [

−→
X=−→x ]Z=z) RP3: [ψ!](φ ∧ χ) ↔ ([ψ!]φ ∧ [ψ!]χ)

RP2: [ψ!]¬φ ↔ (ψ→ ¬[ψ!]φ) RP4: [ψ!]Kφ ↔ (ψ→ K(ψ→ [ψ!]φ))

RE: From ψ1 ↔ ψ2 derive φ ↔ φ[ψ2/ψ1], with φ[ψ2/ψ1] a formula obtained by
replacing one or more non-announcement occurrences of ψ1 in φ with ψ2.8

Table 2.1: Axiom system LPAKC
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The axiom system LPAKC is presented in Table 2.5.The intervention axioms,
HP1-HP6, RH1 and RH2, are the standard axiomatization for the intervention
operator over recursive causal models, with EX an additional axiom indicating
that an exogenous variable is immune to interventions to any other variables.
Then, the epistemic part contains the standard modal S5 axiomatization for
truthful knowledge with positive and negative introspection.

Axiom CM indicates that what the agent will know after an intervention
([
−→
X=−→x ]Kφ) is exactly what she knows now about the effects of the intervention

(K[
−→
X=−→x ]φ). Although maybe novel in the literature on causal models, the

axiom is simply an instance of the more general DEL pattern of interaction
between knowledge and a deterministic action without precondition. Finally,
axioms RP2-RP4 and rule RE in the announcement part are a reduction-based
axiomatisation for public announcements in the DEL style. Here, axioms RP4
and RP1 are the most important. The first, RP4, is the well-known reduction
axiom for announcement and knowledge, stating that knowing φ after an
announcement of ψ is equivalent to knowing, conditionally on ψ, that the
announcement of ψ would make φ true.9 The second, RP1, establishes the
reduction for ‘atoms’ of the form [

−→
X=−→x ]Z=z; when

−→
X is not empty, it states

that a public announcement does not change the causal rules in the model.

The axiom system LPAKC is sound and complete forLPAKC in epistemic causal
models. Here is the argument for soundness.

1. Theorem. The axiom system LPAKC is sound for LPAKC in epistemic causal models.

Proof. For the soundness of HP1-HP6, RH1 and RH2 on causal models (enough
for soundness on epistemic causal models, as evaluating the formulas does not
require a change in valuation), see Halpern [2000]. For the soundness of K,
N, T, 4, and 5 on relational structures with an equivalence relation (equivalent
to having a simple set of epistemic alternatives, as epistemic causal models
have), see Fagin et al. [1995], Blackburn et al. [2001]. For the soundness of RP1-
RP4 when [ψ!] describes the effect of a deterministic domain-reducing model
operation, see Wang and Cao [2013].

For axioms EX and CM, take any (〈S,F ,T〉,A). For EX note how, for any
−→
X=−→x , the valuationsA andAF−→

X=−→x
assign the same value to exogenous variables

not occurring in
−→
X (Definition 5). For CM, note how (i) K[

−→
X=−→x ]φ holds at

(〈S,F ,T〉,A) iff φ holds at (〈S,F−→X=−→x ,T
F
−→
X=−→x
〉,A′F−→

X=−→x
) for every A′ ∈ T , and

(ii) [
−→
X=−→x ]Kφ holds at (〈S,F ,T〉,A) iff φ holds at (〈S,F−→X=−→x ,T

F
−→
X=−→x
〉, (AF−→

X=−→x
)′)

8A non-announcement occurrence of ψ in φ is an occurrence of ψ in φwhere ψ is not inside
the brackets of an announcement operator.

9Note how the announcement of ψ is a deterministic action with precondition ψ. Hence the
similarities and differences between RP4 and CM.
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for every (AF−→
X=−→x

)′ ∈ T F−→
X=−→x

. Then it is enough to notice how, by Definition 8,

the set of relevant valuations for the second, T F−→
X=−→x

, is exactly the set of relevant

valuations for the first, {A′F−→
X=−→x

| A
′
∈ T }. Finally, soundness of RE follows

from two facts: the truth-value of every formula depends on the truth-value
of its subformulas, and model operations (intervention and announcements)
produce epistemic causal models. Thus, substituting a non-announcement
subformula for a formula that is semantically equivalent in the given class of
structures does not affect the final result.

The argument for completeness uses two steps. (i) First, using the reduction
axioms technique, it will be shown that LPAKC allow us to translate any for-
mula in LPAKC into a logically equivalent one without public announcements.
(ii) Then, relying on the canonical model construction for both causal models
Halpern [2000] and epistemic models [Fagin et al., 1995, Chapter 3], it will be
shown that LPAKC is complete for the language without public announcements.
For the full proof, see the appendix of Chapter 2.

2. Theorem. The axiom system LPAKC is complete forLPAKC in epistemic causal models.

2.6 Discussion

In this section we will compare our proposal to the Causal Team Semantics
developed in Barbero and Sandu [2019, 2020], Barbero and Yang. Causal Team
Semantics was proposed with the intention of supporting languages that dis-
cuss both accidental and causal dependencies. This is a topic that has gained
quite some interest in recent years; see, for instance, also (Chockler and Halpern
[2004], Ibeling and Icard [2020]). Causal Team Semantics was developed along
the lines of a non-modal tradition of logics of dependence and independence
(e.g. Väänänen [2007], Mann et al. [2011]) by extending the so-called team
semantics (Hodges [1997]) with elements taken from causal inference. Even
though the focus there is not on combining causal with epistemic reasoning,
this framework bears many similarities to the one we are using, which is why
we will discuss it here in detail. Furthermore, this also allows us to say a bit
more on the topic of dependence from the perspective of our proposal.

Let us quickly introduce the central notions of Causal Team Semantics to
facilitate a comparison of the two frameworks. A causal team10 is a tuple
T = 〈T ,F 〉 where F is defined similarly as in our paper11 and T is a possibly

10We are presenting here the definition from Barbero and Yang, which, save for implemen-
tation details, corresponds to what are called fully defined causal teams in Barbero and Sandu
[2019] (where a more general notion is considered).

11With some additional machinery (which is not worth exploring here) to keep track of the
domains of the functions. For simplicity, we may assume here that F is defined in the same
way as for causal epistemic models.
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empty set of valuations that comply withF . Papers on Causal Team Semantics
consider a variety of languages. The focus here is the one we shall call LCOD,
which is similar to the standard causal language (thus allowing to express var-
ious notions of causal dependence in terms of counterfactuals) except for the
additional dependence atoms “=(X1, ...,Xn; Y)”, which expresses (accidental) de-
pendency of the variable Y on the variables X1 to Xn. A sentence =(X1, ...,Xn; Y)
is interpreted as the claim that any two states s and s′ that agree on the valu-
ation of the variables X1, ...,Xn also have to agree on the value they assign to
Y. Below the complete semantics of LCOD is given, using the notation of this
manuscript.12

T |= Y=y iff s(Y) = y for all s ∈ T

T |= Y,y iff s(Y) , y for all s ∈ T

T |= =(X1, ...,Xn; Y) iff for all s, s′ ∈ T , if s(Xi) = s′(Xi) for 1 6 i 6 n, then s(Y) = s′(Y)

T |= φ ∧ ψ iff T |= φ and T |= ψ

T |= φ ∨ ψ iff there are T1 ∪ T2 = T such that 〈T1,F 〉 |= φ and 〈T2,F 〉 |= ψ

T |= α ⊃ ψ iff 〈T
α,F 〉 |= ψ, for T α := {s ∈ T | ({s},F ) |= α} and α without

dependence atoms

T |=
−→
X=−→x �ψ iff 〈T

F
−→
X=−→x

,F−→X=−→x 〉 |= ψ, with T F−→
X=−→x

and F−→X=−→x as in Definition 8.

Notice that formulas are evaluated on a causal team globally, i.e., no valuation
in T is isolated as being ‘the actual world’. Due to this global perspective, the
interpretation of some connectives (∨ and ⊃) differs from that given on epis-
temic causal models; however, these connectives behave classically if applied
to subformulas without occurrences of dependence atoms, and also when T is
a singleton.

From their definitions, it is clear that an epistemic causal and a causal team
are identical objects; the only difference is that, for evaluating formulas, the
former requires an ‘actual world’. On the syntactic side, even though the truth
clauses of the logical operators differ in various respects, we can find several
equivalences. For instance, the notion of dependence from team semantics can
be expressed in our formal language as well.13 Indeed, interpret the objectT of
a causal team as the epistemic state of some agent. Then, the statement Y = y
of causal team semantics can be understood as a claim about the knowledge of
the agent, written in our language as K(Y = y). Building on this translation, we
can express that variable Y depends on the variables

−→
X as the following claim:

12A full definition of the syntax can be found in the appendix of Chapter 2
13As far as we know, this has been first observed, independently, in van Eijck et al. [2017]

and Baltag [2016], in the context of epistemic languages with modalities for the knowledge of
values.
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for all possible valuations −→x of
−→
X there is some value y of Y such that the agent

knows that if she would observe
−→
X = −→x , she would know that Y has value y.∧

−→x ∈R(
−→
X)

∨
y∈R(Y)

[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y).

With this idea in mind we can define a translation of the non-nested formulas
of LCOD.14 Setting aside for a moment the case of the operator ⊃, and using A
to denote the set of all possible valuations for U ∪V, the translation is given
by the following clauses.

tr(Y=y) := K(Y=y) tr(φ1 ∧ φ2) := tr(φ1) ∧ tr(φ2)

tr(Y,y) := K(¬(Y=y)) tr(
−→
X=−→x �φ) := [

−→
X=−→x ]tr(φ)

tr(φ ∨ ψ) :=
∨
S⊆A

K
(
[(

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(φ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(ψ)

)
tr(=(X1, ...,Xn; Y)) :=

∧
−→x ∈R(

−→
X)

∨
y∈R(Y)

[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

Formulas of the form α ⊃ ψ translate into public announcement formulas.
However, in order to play the role of announcement, α cannot be translated
using tr, as announcements are evaluated according to the classical meaning.
We need instead a simpler translation e which just replaces logical operators
with their counterparts in LPAKC (X,x is replaced by ¬(X=x); β ⊃ γ by β → γ;
−→
X = −→x �φ by [

−→
X = −→x ]φ; ∧ and ∨ are left unaltered, or, more precisely, β ∨ γ

is replaced by ¬(¬β ∧ ¬γ)). Then we can define tr for ⊃ as follows:

tr(α ⊃ φ) := [e(α)!]tr(φ)

Let T = (T ,F ) be a causal team; let E = 〈S,F ,T〉 be a causal epistemic model.
The provided translation satisfies the following (for a proof see the appendix
of Chapter 2).

1. Proposition (Global translation). For any causal team 〈T ,F 〉 over a finite sig-
nature S and any formula φ ∈ LCOD, we have 〈T ,F 〉 |= φ if and only if, for all
A ∈ T , we have (〈S,F ,T〉,A) |= tr(φ).

14A formula is non-nested if, in every subformula of the form
−→
X=−→x �φ, no � occurs

inside φ. Providing a translation for these formulas is sufficient, since every formula of the
causal team language is provably equivalent to a non-nested one.
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This result compares truth on a causal team with validity over an epistemic
causal model. On the other hand, a different translation of the dependence
atom from van Eijck et al. [2017], Baltag [2016] suggests an alternative, “local”
translation. Let tr∗ be as tr, except for the following clauses (notice the additional
K operator in both clauses):

tr∗(=(X1, ...,Xn; Y)) :=
∧
−→x ∈R(

−→
X)

∨
y∈R(Y)

K[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

tr∗(α ⊃ φ) := K[e(α)!]tr(φ)

Now we have the following result.

2. Proposition (Local translation). For any causal team 〈T ,F 〉 over a finite sig-
nature S and any formula φ ∈ LCOD, we have:

(i) If 〈T ,F 〉 |= φ, then, for allA ∈ T , (〈S,F ,T〉,A) |= tr(φ).

(ii) If there is anA ∈ T such that (〈S,F ,T〉,A) |= tr(φ), then 〈T ,F 〉 |= φ.

This result shows that, in the finite case, LPAKC is at least as expressive as LCOD.
Despite this, the way the notion of (accidental) dependence is spelled out in the
two languages differs in an interesting way. While it is a primitive element in
the language of Causal Team Semantics, the way it is definable in our epistemic
framework emphasises what we can do with such a concept of dependence: we
can make predictions based on what we observe. Furthermore, it is interesting
to notice the similarity between this translation of (accidental) dependence and
the way causal dependence is expressed. It is also not defined as a primitive in
the language, but can be expressed using counterfactuals, which work based
on the concept of intervention. These counterfactuals, in turn, focus on what
you can do with causal information: prediction based on intervention.

Based on the counterfactual expression, various notions of causal depen-
dence can be defined. We saw one already in Section 4.5, Definition 11: X Z,
which expresses that X is a causal parent of Z (if Z is an endogenous variable).
The local translation of the notion of dependence from Causal Team Semantics
into our framework suggests a different notion of causal dependence. We repeat
the local translation below under the name of e-dependence. C-dependence
defines the corresponding causal notion.15

• Y e-depends on X in (E,A) iff (E,A) |=
∧

x∈R(X)
∨

y∈R(Y) K([(X = x)!]K(Y = y))

• Y c-depends on Y in (E,A) iff (E,A) |=
∧

x∈R(X)
∨

y∈R(Y)[X = x]K(Y = y)

15The additional K operator in the definition of e-dependence is needed to deal with the
fact that information update always checks first whether the information that the information
state is updated with is true. This problem disappears in the case of interventions, because the
formula you intervene with is made true in the hypothetical scenario you consider.
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Given an epistemic causal model, C-dependence holds between a list of vari-
ables X1, . . . ,Xn and a variable Y if any intervention fixing the value of the
variables X1, . . . ,Xn also determines the value of Y within the epistemic state
of the agent. While this notion is certainly more robust than the notion of e-
dependence, it still takes into account the epistemic state of the agent. The less
the agent knows about the values of the variables, the more variables she needs
to control to make sure that a variable Y is in a particular state. If the agent
knows more about the actual causal history of Y, she can predict the state of
Y already from smaller interventions. These kind of hybrid notions between
causal and epistemic dependence that our framework allows to define deserve
certainly some attention in future research.

2.7 Conclusions

In this paper we have moved some steps towards the integration of causal
and epistemic reasoning, providing an adequate semantics, a language com-
bining interventionist counterfactuals with (dynamic) epistemic operators and
a sound and complete system of inference. Our deductive system models
the thought of an agent reasoning about the consequences of hypothetical in-
terventions and observations. It describes what the agent may deduce from
her/his a priori pool of knowledge about a system of variables. It is therefore
a logic of thought experiments. Going back to Example 1 that we discussed
in the introduction, it allows us to account for the inference that Billie is not
sure that if the button had been pushed, the sprinkler would have been work-
ing. However, the logic is not yet able to also model the second inference
discussed in connection with this example: if Billie had pushed the button
and saw that the sprinkler works, then she would have known that the circuit
is closed. In order to account for this kind of reasoning we need to model
how an agent may reason about (from her perspective) actual experiments.
Things change significantly in such a setting: because of unobserved factors,
the agent may fail to predict the outcome of an experiment; yet the outcome
may sometimes be recovered from direct observation of the consequences of
the experiment. The development of a such a framework will involve a more
careful distinction between observable and unobservable variables. The result-
ing logic must necessarily abandon the right-to-left implication of axiom CM
([
−→
X=−→x ]Kφ → K[

−→
X=−→x ]φ), which expresses the fact that interventions cannot

increase the knowledge of the agent.
Our framework has many points in common with the earlier causal team

semantics, and we provided a translation between the two approaches. For
the purpose of modeling causal reasoning, our semantics has the advantage,
over causal team semantics, of encoding explicitly a notion of actual state of
the world (and in particular, of actual value of variables). Actual values seem
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to be crucial for the attempt of defining notions of token causation (Hitchcock
[2001], Woodward [2003], Halpern [2016]), i.e. causation between events. In
order to fully appreciate this advantage, though, we will need to consider richer
languages with hybrid features that allow to explicitly refer to the actual values
of variables.

Finally, in future work we plan to extend the setting to a multi-agent system.
This involves considering not only different agents with potentially different
knowledge, but also epistemic attitudes for groups (e.g., distributed and com-
mon knowledge) and the effect of inter-agent communication. This will bring
the potential to contribute to the discussion about causal agency and the role
of causation in the study of responsibility within AI (see, for instance, Baltag
et al. [forthcoming]).

2.8 Appendix

2.8.1 Proof of Theorem 2

As mentioned, the argument for completeness proceeds in two steps: trans-
lating any formula in LPAKC into a logically equivalent one without public
announcements, and using the canonical model construction for both causal
models Halpern [2000] and epistemic models Fagin et al. [1995] to show that
LPAKC is complete for the language without public announcements.

From LPAKC to LKC

The translation of a formula in LPAKC into a logically equivalent one without
public announcement operators proceeds in two stages. First, the formula in
LPAKC is translated into a logically equivalent one where the only formulas
inside the scope of intervention operators are of the form Z=z. This involves
the use of axiom CM for putting epistemic operators K outside the scope of
interventions, and the use of axioms RP1-RP4 for eliminating public announce-
ment operators inside the scope of interventions. The resulting formula is now
built by the free use of Boolean operators, K and [ψ!] over ‘atoms’ of the form
[
−→
X=−→x ]Z=z. Then, axioms RP1-RP4 can be applied once more to eliminate every

remaining public announcement operator.
To formalise the process, the following definitions will be useful.

12. Definition (Languages L1 and LKC).

• Formulas ξ of the language L1 are given by

ξ ::= [
−→
X=−→x ]Z=z | ¬ξ | ξ ∧ ξ | Kξ | [ξ!]ξ
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Thus, formulas in L1 (a fragment of LPAKC) are built by the free use of Boolean
operators, K and [ψ!] over ‘atoms’ of the form [

−→
X=−→x ]Z=z.16

• Formulas χ of the language LKC are given by

χ ::= [
−→
X=−→x ]Z=z | ¬χ | χ ∧ χ | Kχ

Thus, formulas in LKC (a fragment of LPAKC) are then built by the free use of
Boolean operators and K over ‘atoms’ of the form [

−→
X=−→x ]Z=z.

The process consists of two stages: translating fromLPAKC intoL1, and then
from L1 into LKC.

3. Proposition. (i) Every formula φ ∈ LPAKC is logically equivalent to a formula
ξφ ∈ L1. Moreover, φ ↔ ξφ is derivable in LPAKC. (ii) Every formula ξ ∈ L1 is
logically equivalent to a formula χξ ∈ LKC. Moreover, ξ↔ χξ is derivable in LPAKC.

Proof. For (i), consider the translation tr1 : LPAKC → L1 given by

tr1(Z=z) := Z=z

tr1(¬φ) :=¬ tr1(φ)

tr1(φ1 ∧ φ2) := tr1(φ1) ∧ tr1(φ2)

tr1(Kφ) := K tr1(φ)

tr1([φ′!]φ) := [φ′!] tr1(φ)

tr1([
−→
X=−→x ]Z=z) := [

−→
X=−→x ]Z=z

tr1([
−→
X=−→x ]¬γ) := tr1(¬[

−→
X=−→x ]γ)

tr1([
−→
X=−→x ](γ1 ∧ γ2)) := tr1([

−→
X=−→x ]γ1 ∧ [

−→
X=−→x ]γ2)

tr1([
−→
X=−→x ]Kγ) := tr1(K[

−→
X=−→x ]γ)

tr1([
−→
X=−→x ][γ′!]Z=z) := tr1([

−→
X=−→x ](γ′ → Z=z))

tr1([
−→
X=−→x ][γ′!]¬γ) := tr1([

−→
X=−→x ](γ′ → ¬[γ′!]γ))

tr1([
−→
X=−→x ][γ′!](γ1 ∧ γ2)) := tr1([

−→
X=−→x ]([γ′!]γ1 ∧ [γ′!]γ2))

tr1([
−→
X=−→x ][γ′!]Kγ) := tr1([

−→
X=−→x ](γ′ → K(γ′ → [γ′!]γ)))

tr1([
−→
X=−→x ][γ′!][γ′′]γ) := tr1([

−→
X=−→x ][γ′!] tr1([γ′′]γ))

From the cases defined in the second column, it should be clear that tr1 does
yield formulas in L1. Indeed, the second and third cases push intervention
operators [

−→
X=−→x ] through Boolean operators until the formula directly in front

of [
−→
X=−→x ] is either Z=z, or else K or else [γ′]. Then, while the fourth case

in the second column takes K outside the scope of [
−→
X=−→x ], cases six through

eight ‘push’ [γ′] inside the formula until it has only an atom Z=z in front, at

16Recall that Z=z is the particular case of [
−→
X=−→x ]Z=z where

−→
X is empty.
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which moment [γ′] is eliminated (fifth case).17 The ninth case deals with nested
announcements following an ‘inside-first‘ strategy.

Then, note how |= φ↔ tr1(φ) holds for every φ ∈ LPAKC. This can be shown
by induction on φ, with the crucial cases being those corresponding to the
definitions in the second column. The first is obvious. The second and third
follow from the validity of axioms RH1 and RH2, and the fourth follows from
CM. Cases fifth through eighth rely on the validity of axioms RP1 through RP4,
and the ninth case uses the rule RE. This last rule is used through all the cases,
allowing us to replace sub-formulas for logically equivalent ones.

Finally note how, within the axiom system LPAKC, there is a derivation ofφ↔
tr1(φ), as every non-trivial equivalence that is used for defining the translation
(axioms RH1, RH2, CM, RP1-RP4 and rule RE) is in LPAKC.

For (ii), consider the translation tr2 : L1 → LKC given by

tr2([
−→
X=−→x ]Z=z) := [

−→
X=−→x ]Z=z

tr2(¬ξ) := ¬ tr2(ξ)

tr2(ξ1 ∧ ξ2) := tr2(ξ1) ∧ tr2(ξ2)

tr2(Kξ) := K tr2(ξ)

tr2([ξ′!][
−→
X=−→x ]Z=z) := tr2(ξ′ → [

−→
X=−→x ]Z=z)

tr2([ξ′!]¬ξ) := tr2(ξ′ → ¬[ξ′!]ξ)

tr2([ξ′!](ξ1 ∧ ξ2)) := tr2([ξ′]ξ1 ∧ [ξ′!]ξ2)

tr2([ξ′!]Kξ) := tr2(ξ′ → K(ξ′ → [ξ′!]ξ))

tr2([ξ′!][ξ′′!]ξ) := tr2([ξ′!] tr2([ξ′′!]ξ))

As Wang and Cao [2013] shows, tr2 eliminates public announcement oper-
ators, thus yielding indeed a formula in LKC. Then, note how |= ξ ↔ tr2(ξ)
holds for every ξ ∈ L2. This can be shown by induction on χ: the crucial cases,
those corresponding to the definitions in the second column, follow from the
validity of axioms RP1 through RP4. For the last entry in the second column,
it is the rule RE which allow us to nest the translation function. This last rule
is used through all the cases, allowing us to replace sub-formulas for logically
equivalent ones. Finally note how, within the axiom system LPAKC, there is a
derivation ξ↔ tr1(ξ), as every non-trivial equivalence defining the translation
(axioms RP1-RP4 and rule RE) is in LPAKC.

Then,

3. Theorem. Every formula φ ∈ LPAKC is logically equivalent to a formula χφ ∈ LKC.
Moreover, φ↔ χφ is derivable in LPAKC.

17Proving that the translation ends and that announcement operators are indeed eventually
eliminated requires some care. The crucial thing to notice is that, in cases sixth through eighth,
the formula occurring under the scope of announcement operators on the right-hand side is
less complex that the one occurring under the scope of the same announcement operator on
the left-hand side. See [van Ditmarsch et al., 2008, Section 7.4] and Wang and Cao [2013] for a
detailed explanation of the way the reduction works.
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Canonical model for LKC

Now it will be shown that LKC, the fragment of LPAKC without axioms RH1,
RH2, CM and RP1-RP4, is strongly complete for LKC over epistemic causal
models. This will be done by showing, via the construction of a canonical
model, that any LKC-consistent set of LKC-formulas is satisfiable in a pointed
epistemic causal model. The construction here will follow those in Halpern
[2000] and Fagin et al. [1995], for causal and epistemic models, respectively.

Let C be the set of all maximally LKC-consistent sets of LKC-formulas. The
first step will be show how each Γ ∈ C gives raise to a causal model.

13. Definition (Building a causal model). Let Γ ∈ C be a maximally LKC-consistent
set of LKC-formulas.

• Let
−→
U be the tuple of all exogenous variables. For each endogenous variable

V ∈ V, let
−→
Y be the tuple of all endogenous variables inV\ {V}. The structural

function f Γ
V is defined, for each −→u ∈ R(

−→
U) and −→y ∈ R(

−→
Y ), as

f Γ
V(−→u ,−→y ) = v if and only if [

−→
U=−→u ,

−→
Y=−→y ]V=v ∈ Γ

Note: axioms HP1 and HP2 ensure that f Γ
V is well-defined, as they guarantee Γ

has one and only one formula of the form [
−→
U=−→u ,

−→
Y=−→y ]V=v for fixed −→u , −→y and

V. Then, the set of structural functions forV in Γ defined asF Γ := { f Γ
V | V ∈ V}.

• The valuationAΓ is defined, for every Z ∈ U ∪V, as

A
Γ(Z) = z if and only if Z=z ∈ Γ

Note: axioms HP1 and HP2 ensure that AΓ is a well-defined function, as they
guarantee Γ has one and only one formula of the form Z=z for a fixed Z.

We show that the structure just defined is indeed a causal model.

4. Proposition. Take Γ ∈ C. The tuple 〈S,F Γ,AΓ
〉 is a proper causal model, that is,

(i) F Γ is recursive, and (ii)AΓ complies with F Γ.

Proof.
(i) Suppose F Γ is not recursive, i.e., suppose ↪→+

F Γ is either not asymmetric or
else not transitive. The relation is transitive by construction, so the problem
should be asymmetry: there are X1,X2 ∈ U ∪V such that X1 ↪→+

F Γ X2 and
X2 ↪→+

F Γ X1, that is,

X1 ↪→F Γ Y1 ↪→F Γ · · · ↪→F Γ Yp ↪→F Γ X2, X2 ↪→F Γ W1 ↪→F Γ · · · ↪→F Γ Wq ↪→F Γ X1
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Now, note how, for any two variables Z1,Z2 ∈ U ∪ V, if Z1 ↪→F Γ Z2 then
Z1 Z2 ∈ Γ.18 Thus, all formulas in X1 Y1, Y1 Y2, . . . ,Yp−1 Yp, Yp X2,

X2 W1, W1 W2, . . . ,Wq−1 Wq, Wq X1


are in Γ, and so is their conjunction. But, by axiom HP6, (X1  Y1 ∧

· · · ∧ Wq−1  Wq) → ¬(Wq  X1) ∈ Γ. This makes Γ inconsistent; a
contradiction.

(ii) Suppose AΓ does not comply with F Γ. Then, there is V ∈ V such that
A

Γ(V) = v but f Γ
V(AΓ(

−→
U),AΓ(

−→
Y )) , v, with

−→
U the tuple of all exogenous

variables and
−→
Y the tuple of all endogenous variables in V \ {V}. Take

A
Γ(
−→
U) = −→u andAΓ(

−→
Y ) = −→y .

From AΓ’s definition, AΓ(
−→
U) = −→u , AΓ(

−→
Y ) = −→y and AΓ(V) = v imply that

the formulas in {V=v} ∪ {Ui=ui | Ui ∈
−→
U} ∪ {Yi=yi | Yi ∈

−→
Y } are all in Γ. This

and axiom HP3 imply that [
−→
U=−→u ,

−→
Y=−→y ]V=v ∈ Γ. But, from f Γ

V’s definition,

f Γ
V(AΓ(

−→
U),AΓ(

−→
Y )) , v implies [

−→
U=−→u ,

−→
Y=−→y ]V=v < Γ, a contradiction.

We have so far been using expressions of the form
−→
X = −→x (“assignments”)

only inside intervention modalities. From this point onwards we follow the
literature and we allow such expressions to occur also outside of modalities;
in such contexts, they must be understood as conjunctions of atoms, such as
X1 = x1 ∧ · · · ∧ Xn = xn.

1. Lemma (Inverse of composition). Let
−→
X ,
−→
Y ,
−→
Z be tuples of variables inU ∪V,

and −→x −→y z ∈ R(
−→
X
−→
Y
−→
Z ). From the assumptions [

−→
X=−→x ]

−→
Y=−→y and [

−→
X=−→x ,

−→
Y=−→y ]

−→
Z =

−→z we can formally prove [
−→
X=−→x ]

−→
Z=−→z in LKC.

Proof. Suppose for the sake of contradiction that the set ∆ = {[
−→
X = −→x ]

−→
Y =

−→y , [
−→
X = −→x ,

−→
Y = −→y ]

−→
Z = −→z ,¬[

−→
X = −→x ]

−→
Z = −→z } is consistent. If |(R(

−→
Z )| = 1,

this contradicts axiom HP2; so assume |R(
−→
Z )| > 1. By applying RH2, HP2 and

classical logic to the last of these formulas, we obtain that also ∆′ = {[
−→
X =

18Indeed, let
−→
Z− be a vector containing all variables in (U ∪ V) \ {Z1,Z2}, and suppose

Z1 ↪→F Γ Z2. By definition of ↪→F Γ , there is a vector
−→
z− ∈ R(

−→
Z−) and there are z1, z′1 ∈ R(Z1)

with z1 , z′1 such that, if f Γ
Z2

(
−→
z−, z1) = z2 and f Γ

Z2
(
−→
z−, z′1) = z′2 (with f Γ

Z2
the structural function for

X2 in F Γ), then z2 , z′2. Thus, from the definition of the structural functions in F Γ, it follows

that [
−→
Z−=
−→
z−,Z1=z1]Z2=z2 ∈ Γ and [

−→
Z−=
−→
z−,Z1=z′1]Z2=z′2 ∈ Γ for

−→
z− ∈ R(

−→
Z−), z1 , z′1 and z2 , z′2.

Since Γ is maximally consistent, the conjunction of both formulas is also in Γ, and hence so is
Z1 Z2.
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−→x ]
−→
Y = −→y , [

−→
X = −→x ,

−→
Y = −→y ]

−→
Z = −→z , [

−→
X = −→x ]

−→
Z = −→z ′} is consistent, for

some −→z ′ , −→z . Applying HP3 to the first and third formulas of ∆′, we obtain
[
−→
X = −→x ,

−→
Y = −→y ]

−→
Z = −→z ′; by HP1 we obtain ¬[

−→
X = −→x ,

−→
Y = −→y ]

−→
Z = −→z ,

contradicting the consistency of ∆′.

The following proposition is the crucial part of the proof: it shows that
〈S,F Γ,AΓ

〉 satisfies all ‘atoms’ (formulas of the form [
−→
X=−→x ]Z=z) in Γ.

5. Proposition. Let Γ ∈ C be a maximally LKC-consistent set of LKC-formulas. Let
−→
X=−→x be an assignment, for

−→
X a tuple of variables in U ∪V; take Z ∈ U ∪V and

z ∈ R(Z). Then,

[
−→
X=−→x ]Z=z ∈ Γ if and only if 〈S,F Γ,AΓ

〉 |= [
−→
X=−→x ]Z=z

Proof. From the semantic interpretation, the right-hand side 〈S,F Γ,AΓ
〉 |=

[
−→
X=−→x ]Z=z is equivalent to AΓF

Γ

−→
X=−→x

(Z) = z. Then, the proof will show that, for

any assignment
−→
X=−→x onU ∪V, any Z ∈ U ∪V and any z ∈ R(Z),

[
−→
X=−→x ]Z=z ∈ Γ if and only if A

ΓF
Γ

−→
X=−→x (Z) = z

There are two main cases. First, suppose Z ∈ U, and take any
−→
X=−→x .

• Suppose further that Z occurs in
−→
X , so Z = Xk for some 1 6 k 6 |

−→
X |. (⇒)

Suppose [
−→
X=−→x ]Xk=z ∈ Γ. By axiom HP4, we also have [

−→
X=−→x ]Xk=xk ∈ Γ;

thus, axiom HP1 and the consistency of Γ imply z = xk. Now, from the def-
inition of the value of intervened variables after an intervention (Definition
5), it follows that AΓF

Γ

−→
X=−→x

(Xk) = xk; this, together with z = xk, produces the

required AΓF
Γ

−→
X=−→x

(Xk) = z. (⇐) Suppose AΓF
Γ

−→
X=−→x

(Xk) = z. From Definition 5

again,AΓF
Γ

−→
X=−→x

(Xk) = xk, so z = xk. Now, by axiom HP4 again, [
−→
X=−→x ]Xk=xk ∈ Γ

so, since z = xk, it follows that [
−→
X=−→x ]Xk=z ∈ Γ.

• Suppose Z does not occur in
−→
X . By axiom EX, [

−→
X=−→x ]Z=z ∈ Γ if and only

if Z=z ∈ Γ; by the definition of AΓ (Definition 13), Z=z ∈ Γ if and only if
A

Γ(Z) = z; by the definition of the value an intervened valuation assigns to
a non-intervened exogenous variable (Definition 5),AΓ(Z) = z if and only if
A

ΓF
Γ

−→
X=−→x

(Z) = z.
Suppose now Z ∈ V. The proof proceeds by induction on the number of

non-intervened endogenous variables, i.e., by induction on the size ofV \
−→
X .

Case |V \
−→
X | = 0. This is the case when every endogenous variable is being

intervened; in particular, Z is. Then, the argument for the case Z ∈ U with Z
occurring in

−→
X shows that the equivalence holds.
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Case |V \
−→
X | = 1. If Z is being intervened (i.e., Z occurs in

−→
X), then the argu-

ment for the case |V \
−→
X | = 0 is enough.

If Z is the lone non-intervened endogenous variable,
−→
X contains all variables in

V\{Z}. Then, define
−→
U′=
−→
u′ as the assignment over the exogenous variables not

in
−→
X (i.e., U′ ∈

−→
U′ if and only if both U′ ∈ U and U′ <

−→
X) by taking u′i := AΓ(U′i ).

From the definition of AΓ, it is clear that U′i =u′i ∈ Γ for all U′i ∈
−→
U′. Note how

the disjoint vectors
−→
X and

−→
U′ contain, together, exactly all the variables in

(U ∪V) \ {Z}.Notice that, by the definition of intervention (Definition 5), we
have AΓF

Γ

−→
X=−→x

(Z) = AΓF
Γ

−→
X
−→
U′=−→x

−→
u′

(Z) = f Γ
Z (−→x ,−→u ′). But then, by the construction of

f Γ
Z (Definition 13) we have AΓF

Γ

−→
X=−→x

(Z) = z if and only if [
−→
X=−→x ,

−→
U′=
−→
u′]Z=z ∈ Γ.

In the presence of [
−→
X=−→x ]

−→
U′=
−→
u′ ∈ Γ (a consequence of the previous

−→
U ′=−→u ′ ∈ Γ

and axiom EX), the latter is equivalent to the required [
−→
X = −→x ]Z = z (by Lemma

1 in one direction, and by axiom HP3 in the other).

Case |V \
−→
X | = k > 1. If Z is being intervened, equivalence follows as shown

in the case |V \
−→
X | = 0.

Suppose Z is not being intervened. Define
−→
U′=
−→
u′ as in the previous case.

(⇒) Suppose [
−→
X=−→x ]Z=z ∈ Γ. Based on this, we will build a complete valuation

A
∗, and we will show thatA∗ (i) agrees withAΓ on the values of all exogenous

variables not in
−→
X , (ii) follows

−→
X=−→x for the values of exogenous variables in

−→
X ,

and (iii) complies with all structural functions in F Γ
−→
X=−→x

. Since there is a unique
valuation satisfying these three requirements (F Γ is recursive, as shown in
Proposition 4), it will follow thatA∗ = AΓF

Γ

−→
X=−→x

. As it will be shown,A∗(Z) = z,

so that will produce the requiredAΓF
Γ

−→
X=−→x

(Z) = z.

Recall that
−→
U′ contains exactly all exogenous variables not in

−→
X ; let

−→
V′ be the

vector containing exactly all endogenous variables not in
−→
X . Then, define

• A
∗(Xi) := xi for Xi ∈

−→
X ;

• A
∗(U′i ) := u′i for U′i ∈

−→
U′;

• A
∗(V′i ) := v′i if and only if [

−→
X=−→x ]V′i =v′i ∈ Γ, for V′i ∈

−→
V′.19

Note how (i)A∗ agrees withAΓ on the values of all exogenous variables not in
−→
X (i.e., variables in

−→
U′) because

−→
u′ is directly taken from AΓ. Moreover, (ii) it

follows
−→
X=−→x for the values of all (in particular, the exogenous) variables in

19Axioms HP1 and HP2 guarantee that this uniquely determines the value of each variable
in
−→
V′.
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−→
X . Then, (iii) it is only left to show thatA∗ complies with F Γ

−→
X=−→x

. For notation,
use y∗ to denote the value a variable Y receives according to A∗. Note how,
since |V \

−→
X | > 1, there are at least 2 endogenous variables that are not being

intervened (i.e., there are at least two variables in
−→
V′); denote them by W1

and W2. By definition of the values in
−→
v′ , we have [

−→
X=−→x ]W1=w∗1 ∈ Γ and

[
−→
X=−→x ]W2=w∗2 ∈ Γ.

For the proof, it should be shown that, for every endogenous variable Y, the
value y∗ complies with the structural function for Y in F Γ

−→
X=−→x

. Take any en-

dogenous variable Y different from W1. If Y is in
−→
X , from axiom HP4 it

follows that [
−→
X=−→x ,W1=w∗1]Y=y∗ ∈ Γ. Otherwise, Y is not in

−→
X , so Y is in

−→
V′ and therefore [

−→
X=−→x ]Y=y∗ ∈ Γ. But [

−→
X=−→x ]W1=w∗1 ∈ Γ so, by axiom HP3,

[
−→
X=−→x ,W1=w∗1]Y=y∗ ∈ Γ. Thus, [

−→
X=−→x ,W1=w∗1]Y=y∗ ∈ Γ holds for every Y ∈ V

different from W1. Since |V \ (
−→
X ∪ {W1})| = k − 1, from inductive hypothesis it

follows thatAΓF
Γ

−→
X=−→x ,W1=w∗1

(Y) = y∗, and also thatA∗ complies with the structural

function for Y fromF Γ
−→
X=−→x ,W1=w∗1

, sinceA∗ agrees withAΓ outside of {
−→
X ,W1}. But

Y is different from W1, so A∗ complies with the structural function for Y from
F

Γ
−→
X=−→x

.

Thus, for any Y different from W1, the valuationA∗ complies with the structural
function for Y at F Γ

−→
X=−→x

. An analogous reasoning shows that, for any Y different
from W2, the valuationA∗ complies with the structural function for Y at F Γ

−→
X=−→x

.
Thus, for every endogenous variable Y, the valuation A∗ complies with the
structural function for Y at F Γ

−→
X=−→x

. This proves (iii), so we get the desired

A
∗ = AΓF

Γ

−→
X=−→x

. For the final detail, note how our variable Z is in
−→
V′; since we

have assumed [
−→
X=−→x ]Z=z ∈ Γ, we have A∗(Z) = z, that is, AΓF

Γ

−→
X=−→x

(Z) = z, as
required.

(⇐) Suppose AΓF
Γ

−→
X=−→x

(Z) = z. Since |V \
−→
X | = k > 1, there are at least two

endogenous variables not in
−→
X . One of them is Z; let W be one of the others,

and let w ∈ R(W) be the value satisfyingAΓF
Γ

−→
X=−→x

(W) = w.

• Consider the valuation AΓF
Γ

−→
X=−→x ,W=w

. Since AΓF
Γ

−→
X=−→x

and AΓF
Γ

−→
X=−→x ,W=w

agree on

W, it follows that AΓF
Γ

−→
X=−→x ,W=w

(Z) = z. As |V \ (
−→
X ∪ {W})| = k − 1, from the

inductive hypothesis it follows that [
−→
X=−→x ,W=w]Z=z ∈ Γ.

• Consider the valuationAΓF
Γ

−→
X=−→x ,Z=z

. SinceAΓF
Γ

−→
X=−→x

andAΓF
Γ

−→
X=−→x ,Z=z

agree on Z, it

follows thatAΓF
Γ

−→
X=−→x ,Z=z

(W) = w. As |V \ (
−→
X ∪ {Z})| = k− 1, from the inductive
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hypothesis it follows that [
−→
X=−→x ,Z=z]W=w ∈ Γ.

Thus, [
−→
X=−→x ,W=w]Z=z ∈ Γ and [

−→
X=−→x ,Z=z]W=w ∈ Γ. Then, by axiom HP5,

[
−→
X=−→x ]Z=z ∈ Γ, as required.

Having proved this ‘truth Lemma’ for ‘atoms’ in LKC, the next step is to
go from the causal model 〈S,F Γ,AΓ

〉 to an epistemic causal model where all
formulas in Γ are satisfied. The definition and lemma are below.

14. Definition. Take Γ ∈ C.

• LetDΓ := {Γ′ ∈ C | F Γ′ = F Γ
} be the set maximally consistent sets in C whose

structural functions coincide with those of Γ. Obviously, Γ ∈ DΓ.

• Define RΓ
⊆ DΓ

×DΓ as (Γ1,Γ2) ∈ RΓ if and only if Kχ ∈ Γ1 implies χ ∈ Γ2 for
every χ ∈ LKC. This is the standard definition of the relation in modal canonical
models (see, e.g., Fagin et al. [1995], Blackburn et al. [2001]). The elements ofD
are maximally LKC-consistent sets, and LKC includes axioms T, 4 and 5; thus, it
follows from standard modal results (see, e.g., the just mentioned reference) that
RΓ is an equivalence relation. In particular, axiom T implies (Γ,Γ) ∈ RΓ.

• Define T Γ := {AΓ′
| (Γ,Γ′) ∈ RΓ

} as containing the valuation function (see
Definition 13) of each maximally consistent set in D that is RΓ-reachable from
Γ. In particular, from (Γ,Γ) ∈ RΓ it follows thatAΓ

∈ T
Γ.

The structure EΓ is given by 〈S,F Γ,T Γ
〉.

2. Lemma (Truth lemma for LKC). Take Γ ∈ C; recall thatAΓ
∈ T

Γ. Then,

(〈S,F Γ,T Γ
〉,AΓ) |= χ if and only if χ ∈ Γ

Proof. The proof is by induction on χ ∈ Γ.

Case [
−→
X=−→x ]Z=z. The truth-value of an ‘atom’ [

−→
X=−→x ]Z=z at (〈S,F Γ,T Γ

〉,AΓ)
is independent from T Γ; then,

(〈S,F Γ,T Γ
〉,AΓ) |= [

−→
X=−→x ]Z=z if and only if 〈S,F Γ,AΓ

〉 |= [
−→
X=−→x ]Z=z

By Proposition 5, the right-hand side is equivalent to [
−→
X=−→x ]Z=z ∈ Γ.

Case ¬χ. Immediate from the inductive hypothesis and the properties of a
maximally consistent set.

Case χ1 ∧ χ2. Immediate from the inductive hypotheses and the properties of
a maximally consistent set.

Case Kχ. As in the same case in the completeness proof of basic modal logic
with respect to relational models (see, e.g., [Fagin et al., 1995, Chapter 3]), using
the fact that LKC contains axiom K and rule N.
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It is only left to check that 〈S,F Γ,T Γ
〉 is indeed an epistemic causal model.

6. Proposition. Take Γ ∈ C. The tuple 〈S,F Γ,T Γ
〉 is such that every valuation in

T
Γ complies with F Γ.

Proof. Take any AΓ′
∈ T

Γ. Note how AΓ′ complies with F Γ′ (second item in
Proposition 4). But AΓ′

∈ T
Γ, so (Γ,Γ′) ∈ RΓ and hence Γ′ ∈ D, which implies

F
Γ′ = F Γ. Thus,AΓ′ complies with F Γ.

Here is, then, the full argument for the strong completeness of LKC for
LKC in epistemic causal models. Let Γ− be any LKC-consistent set of LKC-
formulas. From the enumerability of LKC, the set Γ− can be expanded into a
maximally LKC-consistent set Γ. By Lemma 2, all formulas in Γ− are satisfiable
in (〈S,F Γ,T Γ

〉,AΓ), which by Proposition 6 is an epistemic causal model.

2.8.2 Syntax of LCOD

The signatures used in Barbero and Sandu [2019] are pairs of the form 〈Dom,Ran〉,
where Dom is a set of variables (not encoding the distinction between exogenous
and endogenous variables) and Ran is defined analogously as the R() used in
this paper. For any fixed such signature S, the language LCOD is defined as

α ::= Z=z | Z , z | α ∧ α | α ∨ α | α ⊃ α |
−→
X=−→x � α

φ ::= Z=z | Z , z | =(
−→
X ; Y) | φ ∧ φ | φ ∨ φ | α ⊃ φ |

−→
X=−→x �φ

for Z,Y,
−→
X ∈ Dom and z ∈ Ran(Z).

Note that the expression
−→
X = −→x used in the antecedent of counterfactuals

is just an abbreviation for a conjunction of the form X1 = x1 ∧ · · · ∧ Xn = xn.
One can then have inconsistent antecedents, say if

−→
X = −→x contains conjuncts

X = x and X = x′ with x , x′. In such cases the intervention is undefined. The
semantic clause given in the main text should be extended so as to have any
counterfactual with such an antecedent evaluated as (vacuously) true.

Notice also that the antecedent of the operator ⊃ (selective implication) is
restricted to formulas without occurrences of dependence atoms. The conse-
quents of counterfactuals, instead have no restrictions, and they may contain
occurrences of�.

2.8.3 Proof for proposition 1 and 2

As pointed out in the main text, here we show how to translate only the non-
nested formulas of LCOD into LPAKC. Furthermore, we denote as α, β, γ...non-
nested formulas of LCOD that have no occurrences of dependence atoms. We
need to define a simple preliminary translation e of such formulas, so that they
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may correctly act as public announcements. This will be needed in order to
translate formulas of the form α ⊃ ψ.

e(Y=y) := Y=y, e(β ∧ γ) := e(β) ∧ e(γ), e(β ⊃ γ) := e(β)→ e(γ),

e(Y,y) := ¬(Y=y), e(β ∨ γ) := ¬(¬e(β) ∧ ¬e(γ)), e(
−→
X = −→x � γ) := [

−→
X = −→x ]e(γ).

We point out two simple properties of the preliminary translation e.

3. Lemma. Let α be a non-nested formula ofLCOD without occurrences of dependence
atoms. Let 〈S,F ,T〉 be an epistemic causal model. Then, for everyA ∈ T ,

(〈S,F ,T〉,A) |= e(α) if and only if 〈{A},F 〉 |= α.

Proof. A simple induction on the syntax of α.

4. Lemma. Let α be a non-nested formula ofLCOD without occurrences of dependence
atoms. Let E = 〈S,F ,T〉 be an epistemic causal model. Then Ee(α) = 〈S,F ,T α

〉.

Proof. By definition, Ee(α) differs from E only in that its set of valuations is
{A ∈ T | (E,A) |= e(α)}. But, by Lemma 3, this is equal to {A ∈ T | 〈{A},F 〉 |=
α} = T α.

Now we can define the translation of (non-nested formulas of)LCOD intoLPAKC.

tr(Y=y) := K(Y=y) tr(φ1 ∧ φ2) := tr(φ1) ∧ tr(φ2)

tr(Y,y) := K(¬(Y=y)) tr(
−→
X=−→x �φ) := [

−→
X=−→x ]tr(φ)

tr(α ⊃ φ) := [e(α)!]tr(φ)

tr(φ ∨ ψ) :=
∨
S⊆A

K
(
[(

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(φ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(ψ)

)
tr(=(X1, ...,Xn; Y)) :=

∧
−→x ∈R(

−→
X)

∨
y∈R(Y)

[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

We need to show for any causal team 〈T ,F 〉 over a signature S and any
formula φ ∈ LCOD, we have 〈T ,F 〉 |= φ if and only if, for all A ∈ T , we have
(〈S,F ,T〉,A) |= tr(φ). This can be done by induction on the complexity of φ.
We write E for 〈S,F ,T〉.

Case Y=y. 〈T ,F 〉 |= Y=y iffA(Y) = y for eachA ∈ T iff (E,A) |= K(Y=y).

Case Y,y. 〈T ,F 〉 |= Y,y iffA(Y) , y for eachA ∈ T iff (E,A) |= K(¬(Y,y)).
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Case ψ ∧ χ. This case follows immediately from the inductive hypothesis.

Case
−→
X=−→x � χ. 〈T ,F 〉 |=

−→
X=−→x � χ iff 〈T F−→

X=−→x
,F−→X=−→x 〉 |= χ iff for allB ∈ T F−→

X=−→x
we have
(〈S,F−→X=−→x ,T

F
−→
X=−→x
〉,B) |= tr(χ) iff for allA ∈ T we have (〈S,F−→X=−→x ,T

F
−→
X=−→x
〉,A−→X=−→x ) |=

tr(χ) iff for allA ∈ T we have (〈S,F ,T〉,A) |= [
−→
X=−→x ]tr(χ).

Case α ⊃ χ. 〈T ,F 〉 |= α ⊃ χ iff 〈T α,F 〉 |= χ iff (by inductive hypothesis)
(〈S,F ,T α

〉,A) |= tr(χ) for all A ∈ T α iff (by Lemma 4) (Ee(α),A) |= tr(χ) for all
A ∈ T

α iff (E,A) |= [e(α)!]tr(χ) for allA ∈ T α. For the rest, (E,A) |= [e(α)!]tr(χ)
holds trivially for everyA ∈ T \ T α, as e(α) is false onA by Lemma 3.

Case ψ ∨ χ. As a preliminary observation, note how the causal team language
is downward closed, in the sense that if 〈T ,F 〉 |= θ and T ′ ⊆ T , then 〈T ′,F 〉 |= θ
(see Barbero and Sandu [2020] for a proof). By downward closure, it is easy
to see that the statement that there are T1,T2 such that T1 ∪ T2 = T , T1 |= ψ
and T2 |= χ is equivalent to stating the existence of such T1,T2 which are
furthermore disjoint.

Now, write
−→
Y forU∪V; recall that A is the set of all possible assignments to

−→
Y .

We have 〈T ,F 〉 |= ψ∨ χ iff there are disjoint T1 ∪T2 = T such that 〈T1,F 〉 |= ψ
and 〈T2,F 〉 |= χ iff

(by inductive hypothesis) there are disjointT1∪T2 = T such that (〈S,F ,T1〉,A) |=
tr(ψ) for allA ∈ T1 and (〈S,F ,T2〉,A) |= tr(χ) for allA ∈ T2 iff there are disjoint
T1 ∪ T2 = T such that (E,A) |= [(

∨
B∈T1

−→
Y = B(−→y ))!]tr(ψ) for all A ∈ T1 and

(E,A) |= [(
∨
B∈T2

−→
Y = B(−→y ))!]tr(χ) for allA ∈ T2.

For the next step, notice that the first of these public announcement formu-
las holds trivially on valuations from T2 (where the announcement is false);
analogously, the second formula holds trivially on valuations from T1 Thus,
the statement above is equivalent to the assertion that both formulas hold on
each valuation of T . If furthermore we write S for the set of assignments
to
−→
Y that correspond to valuations in T1, since T1 and T2 are disjoint we

can rewrite the statement as: there is an S ⊆ A such that, for all A ∈ T ,
(E,A) |= [(

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(ψ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(χ).

By the semantic clauses, this is equivalent to saying that the same assertion
holds for the same formula preceded by K. By classical logic, it follows that we
can invert the order of the quantifiers,

for allA ∈ T there is an S ⊆ A such that

(E,A) |= K
(
[(
∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(ψ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(χ)

)
.

(∗)
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Then this is equivalent to: for all A ∈ T , (E,A) |=
∨

S⊆A K
(
[(
∨
−→
Y=−→y ∈S

−→
Y =

−→y )!]tr(ψ) ∧ [(¬
∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(χ)

)
, i.e. the desired conclusion.

In the opposite direction, assume (∗) holds. We need to show that we can swap
the two quantifiers; this is not given by a logical rule, but we have instead
to show that we can take the same S for all A. But this follows immediately
from the clause for K: if, for a fixed S, we have (E,A) |= K

(
[(
∨
−→
Y=−→y ∈S

−→
Y =

−→y )!]tr(ψ) ∧ [(¬
∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(χ)

)
for some A, then it holds (with the

same S) for eachA ∈ T .

Case =(
−→
X ; Y). Let

−→
X be X1, . . . ,Xn. Suppose 〈T ,F 〉 |= = (

−→
X ; Y); this holds

iff for all A1,A2 ∈ T , if A1(Xi) = A2(Xi) for all 1 ≤ i ≤ n, then A1(Y) =

A2(Y), that is, iff for all −→x ∈ R(
−→
X) there is some y ∈ R(Y) such that for all

A ∈ T , A(X1) = x1, ...,A(Xn) = xn implies A(Y) = y, which is equivalent to
stating that for all −→x ∈ R(

−→
X), there is some y ∈ R(Y) such that for all A ∈ T ,

(E,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y = y). Then, it follows that for all A ∈ T ,
(E,A) |=

∧
−→x ∈R(

−→
X)

∨
y∈R(Y)[(X1=x1 ∧ ... ∧ Xn=xn)!]K(Y=y).

In the opposite direction, supposing that for all A ∈ T the above holds, we
only need to prove that y can be chosen independently of A (i.e., only as a
function of x1, . . . , xn). Actually, we prove that it must be chosen independently
ofA. Suppose for the sake of contradiction that, for some x1 . . . xn ∈ R(

−→
X), we

have y , y′ ∈ R(y) such that (〈S,F ,T〉,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y = y)
and (〈S,F ,T〉,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y′). From this we easily get
that every assignment B in the causal epistemic model 〈S,F ,T X1=x1∧···∧Xn=xn〉

satisfies both B(Y) = y and B(Y) = y′, a contradiction.

Similarly, we can prove each of the two claims of Proposition 2 by induction
on the complexity of φ. As before, the case for ∧ is trivial. Again, write E for
〈S,F ,T〉. In the case of claim (i), for all operators except dependence atoms,
we can follow word-by-word the left-to-right entailments from the proof of
Proposition 1. In the proof of the case = (

−→
X ; Y) we observe, as an additional

step, that from the assumption that for all −→x ∈ R(
−→
X) there is some y ∈ R(Y)

such that for all A ∈ T , (E,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y) we can infer,
by the semantic clause for K, that the same statement holds for the formula
K[(X1=x1 ∧ · · · ∧Xn=xn)!]K(Y = y). It is then immediate to conclude that, for all
A ∈ T , (E,A) |= tr∗(φ).

Let us then prove claim (ii) of Proposition 2.

Cases X=x and X,x. Suppose there isA ∈ T such that (E,A) |= tr∗(X=x) (i.e.,
K(X=x)). Then, for allA ∈ T ,A(X) = x, i.e. 〈T ,F 〉 |= X=x. The proof for X,x
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is analogous.

Case
−→
X=−→x � χ. Suppose (〈S,F ,T〉,A) |= [

−→
X=−→x ]tr∗(χ) holds for some A ∈

T . Then, (〈S,F−→X=−→x ,T
F
−→
X=−→x
〉,A−→X=−→x ) |= tr∗(χ) and therefore, by inductive hypoth-

esis, 〈T F−→
X=−→x

,F−→X=−→x 〉 |= χ, i.e., 〈T ,F 〉 |=
−→
X=−→x � χ.

Case α ⊃ χ. Suppose there is A ∈ T such that (E,A) |= K[e(α)!]tr(χ). Then
for all A ∈ T we have (E,A) |= [e(α)!]tr(χ). In particular, this holds for all
A ∈ T

α
⊆ T , so we can proceed as in the right-to-left direction of the proof of

Proposition 1.

Case ψ ∨ χ. Suppose there is a valuation A in the set T satisfying (E,A) |=∨
S⊆A K

(
[(
∨
−→
Y=−→y ∈S

−→
Y=−→y )!]tr(φ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y=−→y )!]tr(ψ)

)
. So there is an S ⊆ A

such that, for all A ∈ T , (E,A) |= [(
∨
−→
Y=−→y ∈S

−→
Y = −→y )!]tr(φ) ∧ [(¬

∨
−→
Y=−→y ∈S

−→
Y =

−→y )!]tr(ψ). From this point we can proceed as in right-to-left direction of the
proof of Proposition 1.

Case =(
−→
X ; Y). Suppose there isA ∈ T such that (E,A) |=

∧
−→x ∈R(

−→
X)

∨
y∈R(Y) K[(X1=x1∧

· · · ∧ Xn=xn)!]K(Y=y); then, for all x1, . . . , xn ∈ R(X1, . . . ,Xn) there is a y ∈ R(Y)
such that, for all A ∈ T , (E,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y). From this
point we can proceed as in the right-to-left case of Proposition 1.





Chapter 3

A Causal Account of Epistemic
Counterfactuals

3.1 Introduction

For many years the literature on the meaning of counterfactual conditionals
has been dominated by the similarity approach of Stalnaker [Stalnaker, 1968]
and Lewis [Lewis, 1973]. According to this approach a counterfactual with
antecedent A and consequent C is true in a possible world w, if among the
worlds that make A true those most similar to w also make C true. The central
challenge this approach has to face is to specify the relevant similarity relation
correctly.1 Without proper restrictions on the similarity relation the approach
is prone to counterexamples and mispredictions. Recently, we see a wave of
causal approaches to counterfactuals, building on the seminal work of Judea
Pearl [Pearl, 2009, 2013], cf. Hiddleston [2005], Schulz [2011], Santorio [2019],
Ciardelli et al. [2018] among others.2 These proposals have been able to account
for many properties of counterfactual conditionals that have been problematic
for the similarity approach. But there is still a group of examples that cannot be
treated this way. What they have in common is that they seem to involve epis-
temic reasoning. Consider, for instance, the following example from Kratzer
[1989].

2. Example. (King Ludwig Example)
King Ludwig of Bavaria likes to spend his weekends in Leoni Castle. Whenever the
Royal Bavarian flag is up and the lights are on, the King is in the Castle. From a
distance a traveler observes that the lights are on, the flag is down, and concludes that
the King is away. She says ...

1See, for instance Fine [1975] and Lewis [1979] for discussion.
2Pearl’s approach can to a great extent be understood as working with a very specific

similarity relation, see Halpern [2013], Marti and Pinosio [2014a].
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(1) If the flag had been up, the King would have been in the castle.

The conditional (1) is generally judged true in the given context. This condi-
tional seems to have a strong epistemic element, which can be brought out with
the paraphrase given in (2a), but disappears in (2b). This later counterfactual is
intuitively false in this context. Standard causal approaches to counterfactuals
can correctly capture our intuitions concerning (2b), but are unable to deal with
the acceptability of (1) or its paraphrase (2a), which reason from the observation
of a certain effect (the flag being up) to its cause (the king being in the castle).

(2) a. If the flag had been up, I would have thought that the king is in the
castle.

b. If the flag had been up, this would have caused the king to be in the
castle.

Examples like this are the topic of the present paper. We will develop an ap-
proach that can account for them, but still stays within the framework of causal
approaches to counterfactuals. In other words, we will not account for the
acceptability of (1) by proposing a second epistemic reading for the counter-
factual. Instead, we will argue that we need to add epistemic reasoning to the
meaning assigned by the causal approach to counterfactuals. More concretely,
we propose that counterfactuals reason about what one would have believed in
case the antecedent had been brought about. In order to formalise this idea we
will build on the causal approach to counterfactuals developed in Pearl [2009].
We will extend the structural models used in this approach with a representa-
tion of an agent’s belief state using Baltag and Smets [2008a]. This allows us
to add belief operators to the formal language for causal models introduced
in Halpern [2016]. Using this extended language we can then express the
proposed meaning of counterfactual conditionals in the object language. This
approach still accounts for the examples used to motivate the causal approach
to counterfactuals, but is also able to deal with epistemic counterfactuals like
(1).

The paper is structured as follows. Section 3.2 introduces the version of
the causal approach to counterfactuals that we will work with, which is the
formalisation of Pearl’s original ideas proposed in Halpern [2016]. In Section 3.3
we will dive in more detail into the problem this approach has with epistemic
counterfactuals. We will argue against solving this problem by proposing a
second epistemic reading of counterfactuals that is based on belief revision. Our
alternative solution will be introduced in the Sections 3.4 and 3.5. In Section 3.4
we will define epistemic causal models plus a formal language talking about
these models. Section 3.5 spells out the new proposal for the meaning of
counterfactual conditionals and contains a discussion of key examples. In
Section 3.6 we will discuss a number of interesting questions this approach gives
rise to. Section 3.7 will summarise our results and highlight open questions.
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3.2 Counterfactuals in terms of interventions

As pointed out in the introduction, in recent years the literature on the meaning
of counterfactual conditionals has been dominated by causal approaches. The
strength of this line of approach can be nicely illustrated with the following
example from Lifschitz.

3. Example. (Circuit Example)
Suppose there is a circuit such that the light is on (L) exactly when both switches are
in the same position (up or not up). At the moment switch 1 is down (¬S1), switch 2
is up (S2) and the lamp is out (¬L).

(3) If switch 1 had been up, the light would have been on.

The challenge that any approach to the meaning of counterfactual condition-
als has to face can be described as follows: when we interpret a counterfactual
conditional, we consider a hypothetical scenario in which the antecedent is true
and check whether the consequent is true as well. But which facts of the actual
world do still hold in this hypothetical scenario? In order to account for the
truth of (3) in the given context, for instance, the position of the second switch
has to be selected as one of the facts that is kept, while the state of the lamp is
given up. Otherwise, the truth of the counterfactual (3) cannot be predicted.
But why should it be that S2 is fixed, but L is not? A causal approach pro-
poses that the reason is that S2 doesn’t causally depend on the variable S1 the
antecedent talks about, while L does. In other words, when interpreting coun-
terfactuals, we fix the causally independent facts and vary the facts causally
dependent on the antecedent.

Let’s have a closer look at how this idea can be made formally precise. For
this we will use the formalisation proposed in Halpern [2013, 2016] of the sem-
inal work of Judea Pearl [Pearl, 2009, 2013, Galles and Pearl, 1998b]. Following
Pearl counterfactuals should be understood as reasoning about hypothetical
interventions: given a representation of the relevant causal dependencies, the
antecedent is cut loose from the facts it causally depends on and stipulated
to hold by law. On the resulting model you run a simulation computing the
causal effects of such an intervention and check whether the consequent of the
counterfactual becomes true as well. If yes, the counterfactual is predicted to
be true. In the circuit example 3 we consider what would have happened, had
we manipulated the position of switch 1 to being up. Well, this would have
caused the light to be on. Thus, the counterfactual is predicted to be true.

We introduce the formalisation of this idea in three steps. First, we define
the notion of a causal model. Causal models are direct representations of causal
dependencies between a number of variables. Then, we will introduce a for-
mal language that can talk about these models. This language will contain an
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expression of intervention and allow us to formulate counterfactual condition-
als. Thus, the approach to the meaning of counterfactuals comes as part of the
semantics that will be provided for this formal language.

Causal models. A causal model is a pair (S,F ). The signature S fixes a set
of causal variables, which represent the objects related by causal dependency.
These variables are divided into two kinds: exogenous variables, which do not
depend causally on any other variable, and endogenous variables, which do
depend on other variables. Formally, a signature is defined as a triple (U,V,R)
withU the set of exogenous variables,V the set of endogenous variables and
R a function that indicates the range of possible values of each causal variable.
To model example 3, for instance, we can use three endogenous variables
V = {S1,S2,L} (already introduced in the example itself), which can each take
two values, 1 and 0 (1 stands for up and 0 for down in case of the switches, and 1
for on and 0 for off for the lamp). We add two exogenous variablesU = {U1,U2}

that represent factors causally responsible for the position of the switches.
Next, we need to represent the causal dependencies holding between the

variables. This is done using structural functions, captured by a function F ,
which maps each endogenous variable Y to a function FY that determines the
value of Y given the value of all the other variables in U ∪ (V − {Y}).3 Even
though FY formally takes into account all other variables, the value of Y might
not depend on some of them. In our example, for instance, the values of the
switches do not causally depend on the state of the lamp or on each other.
We call those variables X1, ...,Xn that the value of some endogenous variable Y
depends on according to FY the causal parents of Y. When we describe FY for
concrete examples we will only define FY for the parents of Y. As an example,
on the right side of Figure 3.1 we define the functions FS1 , FS2 and FL for our
circuit example. As you can see, U2, S2 and L, for instance, are not mentioned
in the definition of FS1 . Using the notion of parents we can also represent
the dependencies encoded in a causal model graphically by connecting two
variables with an arrow in case the first variable is a causal parent of the second
variable. For the circuit example the resulting graph is given on the left side of
Figure 3.1. If the graph constructed in this way doesn’t contain any loops, the
causal model is called recursive. In this paper we will only consider recursive
causal models.

Formal language. The primitive elements of the languageLS for a signatureS
are statements claiming that a certain variable takes a particular value: X = x,
where X is an endogenous variable and x a possible value of this variable.

3This model spells out a deterministic conception of causation. However, uncertainty
about the values of variables can be introduced in terms of uncertainty about the value of the
exogenous variables; in our example U1 and U2.



3.2. Counterfactuals in terms of interventions 43

U1 S1

U2 S2

L

FS1 : U1 S1 FL: S1 S2 L

0 0 0 0 1

1 1 0 1 0

FS2 : U2 S2 1 0 0

0 0 1 1 1

1 1

Figure 3.1: A representation of the causal model for the circuit example 3

Based on these primitive elements we build a propositional language in the
familiar way. The only new expressions we add are formulas of the form
[Y1 = y1, ...,Yk = yk]φ, whereφ is a Boolean combination of formulas of the form
X = x, Y1, ...,Yk are distinct endogenous variables, and x ∈ R(X), y1 ∈ R(Y1),
y2 ∈ R(Y2), ... . We will often shorten Y1 = y1, ...,Yk = yk using vector notation
and write

−→
Y = −→y . The sentences [

−→
Y = −→y ]φ are according to Pearl [2009] and

Halpern [2000] the formal counterparts of counterfactual sentences. So, going
back to our example 3, the counterfactual in (3) translates as [S1 = 1]L = 1.

Semantics. Sentences of the language LS are interpreted with respect to a
causal model M = (S,F ) and an assignment of values to the exogenous vari-
ables u.4 Notice, that because we restrict ourselves to recursive causal models,
given M and u we can compute the value of all endogenous variables based on
the functional dependencies encoded in M. Let aM,u be the resulting extension
of u to all variablesU ∪V of the model.

An atomic sentence X = x is true given a model M and an assignment
function u for the exogenous variables in M, M,u |= X = x, if aM,u(X) = x. Truth
for Boolean combinations of atomic formula can be defined in the standard
way. The most important part of the semantics is the definition of the truth
conditions for counterfactuals [

−→
Y = −→y ]φ. The “antecedent" [

−→
Y = −→y ] of this

sentence is interpreted as performing an intervention on the model: it maps
a given causal model to a new model in which the variables in

−→
Y are cut off

their causal history and forced to the values in −→y . Given a causal model M =

(S,F ), we can define the new causal model that results from setting
−→
Y to −→y as

M−→
Y=−→y = (S,F−→Y=−→y ) whereF−→Y=−→y is the result of replacing the structural functions

for
−→
Y in F by F−→Y (

−→
Y ) = −→y (by turning FY1 , ...,FYn into constant functions whose

output is y1, ..., yn) and leaving the remaining functions untouched.5 A formula

4Thus, u maps all exogenous variables U ∈ U to a value r ∈ R(U) this variable can take.
5Notice that this operation will again result in a recursive model. Thus, it still holds that
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[
−→
Y = −→y ]φ is defined to be true given a causal model M and a setting of the

exogenous variables u iff M−→
Y=−→y ,u |= φ. So, this is how counterfactuals are

interpreted according to this approach.
Based on the semantics we can now evaluate whether our translation of

the counterfactual (3) of Example 3 is true given the causal model (S,F ) we
introduced above (see Figure 3.1). Since switch S1 is down and switch S2 is
up, the assignment u for the involved exogenous variables maps U1 to 0 and
U2 to 1 (U1 and U2 are supposed to be all external factors that determine S1

and S2’s initial state). Intervention with the antecedent [S1 = 1] brings us to
a model M′ = (S,F ′), where F ′S2 = FS2 and F ′L = FL, but F ′S1 = 1, i.e. S1

is cut loose from U1 and fixed to the value 1. The extension aM′,u of u to all
variables given M′ maps S1 to 1, S2 to 1 and L to 1. Thus, we predict that
the lights are on under the counterfactual assumption that the first switch is
up (M,u |= [S1 = 1]L = 1). In other words, the approach can account for the
intuition that the counterfactual (3) is true in the context of Example 3.

This is the form of the causal approach to the meaning of counterfactuals
that we will work with. This approach has been proven to be very successful
and can account for many puzzles concerning the meaning of counterfactuals
[Pearl, 2009, 2013, Schulz, 2011, Ciardelli et al., 2018, Santorio, 2019]. We think
that the approach can also deal with epistemic counterfactuals when extended
in the right way.

3.3 What about King Ludwig?

3.3.1 King Ludwig with intervention

Let us return to the King Ludwig example from the introduction. We repeat
the example here for convenience.

1. Example (Revisiting the King Ludwig Example 2). King Ludwig of Bavaria likes
to spend his weekends in Leoni Castle. Whenever the Royal Bavarian flag is up and
the lights are on, the King is in the Castle. From a distance a traveler observes that the
lights are on, the flag is down, and concludes that the King is away. She says ...

(1) If the flag had been up, the king would have been in the castle.

A straightforward causal model for this example is given in Figure 3.2. We
distinguish three endogenous variables K, F and L for the presence of the king,
the position of the flag and the state of the lights. All factors that determine King
Ludwig’s presence are packaged into an exogenous variable U1. According to

given an assignment for the exogenous variables the value of all variables in this model are
uniquely defined [Halpern, 2000].
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the information provided in Example 2 the position of the flag F and the state of
the lamps L are causally dependent on K. Since the story leaves it open whether
there are other reasons causing the light to be on or the flag to be up in case
the king is away, we add an exogenous variable U2 to represent uncertainty
about the status of the flag and lights when the king is absent.6 However, the
presence of the king is the only reason for the flag being up and the lamp being
on at the same time. This leads to the particular definition of the functional
dependencies given in the tables of Figure 3.2.

K FU1

LU2

FK: FF: FL:

U1 K U2 K F U2 K L

0 0 1 0 0 1 0 0

1 1 1 1 1 1 1 1

2 0 0 2 0 1

2 1 1 2 1 1

3 0 1 3 0 0

3 1 1 3 1 1

Figure 3.2: A causal model for the King Ludwig example

In order to account for the counterfactual (1) we would need its formal
translation [F = 1]K = 1 to be true with respect to the model above and the
setting U1 = 0,U2 = 2 of the exogenous variables (this is the setting describing
the actual world). Obviously, this is not the case. Changing F by intervention
will have no (causal) effect on K. Thus, the counterfactual (1) is – incorrectly –
predicted to be false in the given context. The only thing the causal approach
can do is account for the unacceptability of the causal paraphrase of (1) that
we gave in (2b) (see p. 40). The problem is that the approach only reasons
unidirectionally with the causal flow, while in the King Ludwig example we
are asked to reason in the other direction: from effect (flag up) to cause (presence
of king).

3.3.2 Why not belief revision?

One suggestion often made to overcome the problem mentioned above is that
next to the so called ontic reading of counterfactuals – which the causal ap-
proach captures – we should distinguish a second, epistemic reading of coun-

6We could have also used two different exogenous variables for F and L, but we try to keep
the model as simple as possible.
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terfactuals.7 This second reading should be modelled based on belief revision.
However, it is not trivial to make such an approach work for examples like
the one at hand. The problem is that we have to explain why when revising
the beliefs of the speaker with the proposition that the flag is up, the belief
that the lights are on is kept, while the belief that the king is away is given
up. One way to solve this issue is to give priority to beliefs that are based on
direct observation. In the natural interpretation of the King Ludwig example,
for instance, the position of the flag and the status of the lights are directly
observed by the speaker, while the fact that the king is away is inferred from
these observations. We could propose now that when revising the beliefs of
the speaker with the antecedent, we only check consistency with her beliefs
based on direct observation (or at least prioritise these beliefs). This approach
to belief revision would predict the acceptability of the counterfactual in (1).

While this is a possible strategy to address this and similar epistemic fla-
vored examples, we think it is still worthwhile to look for a solution that can do
without multiplying senses of counterfactuals. In fact, there are also some em-
pirical arguments that speak against assuming an ambiguity between a causal
(or ontic) reading of counterfactuals and an epistemic one based on belief re-
vision. If we propose that counterfactuals are ambiguous, we also need to be
able to explain how this ambiguity is resolved in concrete cases. But that seems
to be rather problematic for the particular ambiguity proposed here. Consider,
for instance, the following example (Veltman [2005], footnote 21).8

4. Example. (Three Sisters)
Consider the case of three sisters, Ann, Billie and Carol, who own just one bed, large
enough for two of them but too small for all three. Every night at least one of them has
to sleep on the floor.

Suppose Carol is invisible. Suppose further that you are a proud parent of Ann,
and before you go to bed you go in and check the kids. You see that Ann is on the floor,
Billie is in bed and Carol (obviously) is also in bed. Now you turn to your spouse and
comment:

(4) If Ann had been in bed, Carol would have been on the floor.

Intuitively, the counterfactual (4) seems to be acceptable in the described con-
text. In order to account for this observation we have to explain why when
considering the possibility that Ann had been in bed, we keep the fact that
Billie is in bed, but are willing to give up the fact that Carol is in bed as well.
This example is a variation of the King Ludwig case, but without the causal

7Already Lewis suggests that there are different ways to resolve similarity, see, for instance,
Lewis [1979].

8The text of the example is slightly adapted. The original text refers to another example,
which we had to incorporate in our version.
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dependency of the latter.9 The causal approach of Section 3.2 cannot account
for the example: Ann’s being in bed doesn’t cause Carol to sleep on the floor.
But we could explain the example by proposing that this counterfactual gets
an epistemic reading based on the version of belief revision described above:
we keep the fact that Billie is in bed, because this is observed by the speaker.
The whereabouts of Carol had to be inferred from this observation. But just a
slight variation of the context gets us in a situation where the counterfactual
(4) becomes unacceptable, however, the epistemic approach would still predict
the sentence to hold.

5. Example. (Three Sisters with causality)
Consider the case of three sisters who own just one bed, large enough for two of them
but too small for all three. Every night at least one of them has to sleep on the floor.
However, whenever Ann and Carol are both in bed, they will kick off Billie; she will have
to sleep on the floor.

Suppose Carol is invisible. Suppose further that you are a proud parent of Ann,
Billie and Carol. Before you go to bed you go in and check on the kids. As described in
the original version, Ann is on the floor, Billie is in bed and Carol (obviously) is also in
bed. Now you turn to your spouse and comment:

(4) If Ann had been in bed, Carol would have been on the floor.

The only change is the addition of the underlined sentence. But now (4) is
no longer true: if Ann had been in bed, Billie would have been on the floor,
because Ann and Carol would have kicked her off the bed. From an epistemic
point of view nothing changed, so it’s hard to see how any account using belief
revision could predict the counterfactual to be false now, while at the same
time account for its truth in the first context. The causal approach can explain
the example. In Example 5, and in contrast to Example 4, Billie’s sleeping
place causally depends on Carol’s behaviour. That is the reason why now
the position of Carol cannot be freely varied anymore. But why should this
example get a causal reading, while the former needs to be read epistemically?
The answer cannot simply be: because this accounts for the data.10 Examples
like this make an ambiguity approach hard to defend.

3.3.3 Exploring an alternative approach

As mentioned before, in this paper we want to explore the possibility to account
for epistemic counterfactuals without multiplying readings of counterfactuals.

9Notice that it is implicitly assumed that always two girls will sleep in the bed. Otherwise,
the parent wouldn’t be able to conclude that Carol must be sleeping in the bed as well.

10Notice, that it wouldn’t help to claim that the reading changes, because now causality is
involved in the context. Then, the King Ludwig example should get a causal reading as well.
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More concretely, we will propose that the causal approach to counterfactuals
can deal with epistemic counterfactuals, if extended with the possibility of
epistemic reasoning. The causal approach is right when claiming that coun-
terfactuals reason about what can be inferred from hypothetically making the
antecedent true. But inferred in this paraphrase means more than just causally
inferred. Epistemic inferences need to be taken into account as well. Another
way to put our proposal is this: the consequent of a counterfactual conditional
is not a statement about the facts after intervention, but about what the speaker
would have believed under these circumstances. For instance, in case of the
King Ludwig example, the consequent doesn’t reason about what would have
happened if one intervened in the position of the flag, but about what the speaker
would have believed in this case. Hoisting the flag would not have brought the
king to the castle, but it would have made an observer believe that the king
is in the castle. This idea will be worked out in the next two sections in more
detail.

3.4 Combining causal and epistemic reasoning

3.4.1 Causal epistemic models

Before we can make the proposal outlined at the end of the previous section
precise, we first need to extend the formal framework of the causal approach
introduced in Section 3.2 with an epistemic dimension. This is what will
happen in the present section. We will start by adding to a causal model a
representation of the epistemic state of an agent. Afterwards, we will enrich
the formal language with means to talk about this epistemic state.

Epistemic models. A common way to formalise an epistemic state is by using
a plausibility ordering over possible worlds (to capture belief) together with
an information partition (to capture knowledge).11 Let us define an epistemic
model as a triple (W,V,Π,E) where W is a set of possible worlds and V maps all
elements of W to an interpretation of the non-logical vocabulary. Π is an infor-
mation partition over W, i.e. for each w ∈ W Π(w) is the set of possible worlds
that are epistemically indistinguishable for the agent at w. The plausibility
ordering E is a pre-order over W (w1 E w2 stands for “w1 is considered to be at
least as plausible as w2 by the agent”). We demand that only possible worlds in
the same cell of partition Π can be related by E; worlds in different cells of the
information partition are incomparable with respect to their plausibility. Given
such a model, we can say that an agent knows a proposition φ in w iff φ holds

11See, for instance, Baltag and Smets [2008b].
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Figure 3.3: An epistemic model for the toy example of Paragraph 3.4.1. The
dashed line represents the information partition, the thin arrows stand for the
plausibility ordering within each information cell. An arrow points from world
w to world v if v / w. For simplicity, the reflexive loops are not shown in the
graph.

in all possible worlds w′ ∈ Π(w), and that the agent believes a proposition φ in
w iff φ holds in the E-minimal worlds of Π(w).12,13

Let us illustrate these notions using a scenario very similar to the King
Ludwig example. Let F stand for the proposition the flag is up and L stand for
the light is on. Based on these two variables we can distinguish four possible
worlds: w1 where L holds, but not F, w2 where both F and L hold, w3 where
neither F nor L hold, w4 where F holds, but not L. Furthermore, let us assume
that our agent is able to see whether the lights are on, but not whether the
flag is up. Then, the agent’s knowledge can be captured by the information
partition Π(w1) = Π(w2) = {w1,w2}; Π(w3) = Π(w4) = {w3,w4}. Our agent might,
additionally, think that the flag is more likely to be down. That would mean
that for this agent w1 / w2 and w3 / w4 (where w / w′ is shorthand for w E w′

and w′ 5 w). A graphical representation of this epistemic model is given in
Figure 3.3.

Merging epistemic models with causal models. We can combine this notion
of an epistemic model with that of a causal model. A causal model doesn’t
directly distinguish a set of possibilities. But it is very natural to take each
combination of possible settings of variables as a possible world and consider
the set of all possible combinations of values as the universe. Thus, given a
causal model M = (S,F ), we define the universe WS of this model to be the
set of all possible assignment functions from the variables of S to values these

12This formalisation expresses that if an agent is in a possible world w, the agent will believe
that she is located in the most plausible worlds in Π(w).

13w is a E-minimal world of S iff there is no w′ such that w′ E w and w 5 w′.
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variables can take according toS. Notice that this universe will contain worlds
that violate causal dependencies encoded in F . This feature of our notion of
possible world plays an important role in our approach. With this take on
what the set of possibilities is given a causal model, we can now add epistemic
structure to this model.

15. Definition. A causal epistemic model is a tuple
〈S,F ,Π,E〉 that satisfies the following conditions.

(i) S is a triple (U,V,R) whereU is the set of exogenous variables andV is the set
of endogenous variables, and R is a function that indicates the range of possible
values of each causal variables.

(ii) For each X ∈ V, FX is a function from (×Z∈UR(Z) × (×Y∈V−{X}R(Y)) to R(X).

(iii) Let WS be the set of possible assignments of values to the variables in U ∪V.
Π is a function from WS to ℘(WS) such that: w ∈ Π(w) for each w ∈ WS,
w2 ∈ Π(w1) implies w1 ∈ Π(w2), and w2 ∈ Π(w1) and w3 ∈ Π(w2) implies
w3 ∈ Π(w1).

(iv) E is a pre-order on WS that obeys the following constraints: (i) w1 E w2 implies
w1 ∈ Π(w2)14 (ii) for any w1,w2 such that w1 ∈ Π(w2), if there is X ∈ V such
that w1 complies with FX and w2 does not, but there is no X ∈ V such that
w2 complies FX and w1 does not, then w1 / w2 (where w1 / w2 if w1 E w2 and
w2 5 w1).

The only non-straightforward part of this definition is condition (ii) imposed on
the plausibility order. What we express here is the requirement that the agent
believes in the causal laws of the model. This is captured by demanding that a
possible world that complies with more causal rules is always considered to be
more plausible than a possible world in which some of these laws are broken.
Thus, we do not exclude worlds in which causal laws are broken, but they are
considered to be less plausible to the agent than other worlds. Going back to
the King Ludwig example and the causal model we proposed for this example
in Section 3.3.1, a world in which the king is in the castle, the flag is up and
the lights are on will always be more plausible for the agent than a world in
which the king is in the castle, but the lights, for instance, are off. This is so,
because the later world would violate the assumed causal connection between
the presence of the king in the castle and the position of the flag/the state of the
light.

Notice that condition 4 in Definition 15 formulates constraints for the plau-
sibility order, but doesn’t fix the plausibility structure based on the causal laws.

14The plausibility ordering is usually assumed to be locally connected in each information
cell (i.e. w1 ∈ Π(w2) implies w1 E w2 or w2 E w1). This assumption can be added to the
definition proposed here; this change would have no effect on our predictions.
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Figure 3.4: The full epistemic model for the King Ludwig Example. The
arrows stand for the plausibility ordering (with reflexive loops omitted). Dotted
lines represent different cells of the information partition. Within each cell the
most plausible worlds are explicitly represented, all other worlds are packed
together.

Depending on the context the agent might have other preferences/expectations,
which also inform this order. Our definition only claims that, no matter what,
the agent will always have a preference for more law-like worlds.

To have a look at a more involved model, let’s give the causal epistemic
model 〈S,F ,Π,E〉 for the King Ludwig example (1). We already provided a
causal model for this example, see Figure 3.2 and the discussion in Section 3.3.1.
We just need to add to the signature S and dependency function F defined
there an information partition Π and a preference order E fitting the example.

The universe of the model WS consists of all possible assignment of values
to the causal variables U1,U2,K,F,L (K stood for the king is in the castle, F for the
flag is up, and L for the light is on, see Section 3.3.1). Since the status of the flag
and the light is observable for the agent, she can distinguish between possible
worlds whenever the value they assign to F or L differ. In other words for any
w and w′ ∈ W, w′ < Π(w) if and only if w and w′ differ in the value they assign
to F or L.

Next, let us have a look at the preference order. According to clause 4 of
Definition 15, possible worlds that comply with causal laws should always
be more plausible than those that do not. It follows that for this example the
possible worlds given in the top-row of Figure 3.4 should be preferred over
any other (comparable) possible world, as they are the only worlds that obey
the causal dependencies encoded in F . Since in the story there is no other
information about the plausibility ordering, we can take E to be the weakest
pre-order over W complying with the restriction imposed by the causal laws.
The resulting causal epistemic model is sketched in Figure 3.4.



52 Chapter 3. A Causal Account of Epistemic Counterfactuals

3.4.2 A formal language for causal epistemic models

Using the notion of a causal epistemic model we can extend the formal language
from Section 3.2 with operators expressing belief (Bel) and knowledge (K).

16. Definition. LetS = (U,V,R) be a signature. The extended language forS,L+
S

,
is defined as follows:

α ::= V = v | ¬α | α ∧ α f or V ∈ V, v ∈ R(V)

φ ::= α | ¬φ | φ ∧ φ | [
−→
V = −→v ]φ | Belφ | Kφ for

−→
V = (V1, . . . ,Vn) ∈ Vn, Vi ,

V j for i , j, −→v = (v1, . . . , vn) with
vi ∈ R(Vi), n ∈N

The next step is to provide a semantics for this extended language.

17. Definition. Let M = 〈S,F ,Π,E〉 be a causal epistemic model and w ∈ WS be a
possible world for this model, i.e. an assignment for all variables in S. Let u be the
restriction of w to the exogenous variables. The truth conditions of the formulas in
L(S) with respect to M and w are defined as follows.

(i) For atomic sentences X = x, M,w |= X = x iff w(X) = x.

(ii) The Boolean combinations are defined in the usual way.

(iii) M,w |= [
−→
X = −→x ]φ iff M, aM−→

X=−→x
,u
|= φ.15

(iv) M,w |= Belφ iff M,w′ |= φ for all w′ ∈MinE(Π(w))

(v) M,w |= Kφ iff for all w′ ∈ Π(w), M,w′ |= φ

The truth conditions for atomic sentences are defined in the obvious way:
M,w |= X = x iff the assignment w assigns value x to X. For the epistemic
operators we apply exactly the same definition of belief and knowledge as in
the epistemic logic of Baltag and Smets [2008a]. This leaves us with defining
the semantics for sentences of the form [

−→
X = −→x ]φ. The definition of their

intervention provided here is an extension of the definition given in Section 3.2,
but with one subtle difference. In the approach introduced in Section 3.2,
formula are evaluated with respect to a model and an assignment of values to
the exogenous variables. [

−→
X = −→x ] is interpreted as changing the model, and

φ is, then, evaluated with respect to the same assignment for the exogenous
variables and the new, manipulated model. In our approach, formula are
evaluated with respect to a model and a world: an assignment of values to all
variables. This gives us the possibility to let intervention move us to a different
world, but leave the model intact. This new world is the assignment we get

15For the definition of M−→X=−→x and aM,u see Section 3.2, p. 43.
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by keeping the evaluation of the exogenous variables but recalculating the
endogenous variables assuming an intervention forcing

−→
X = −→x in the causal

dependencies. We will write w−→X=−→x for the resulting assignment whenever the
model is clear from the context. φ is then evaluated with respect to this new
possible world w−→X=−→x and the old model M. We want to have the intervention
encoded in the world instead of the model, because that is what the plausibility
order is looking at. This change allows us to formalise belief in causal laws.16

Despite this difference between the two formalisations for the most part
the framework of epistemic causal models introduced here is a conservative
extension of causal models as defined in Section 3.2. Let us make this a bit
more precise. The formal language L+ introduced here is an extension of the
language L of Section 3.2. Let 〈S,F ,Π,E〉 be an epistemic causal model, u
an assignment to the exogenous variables of S and w = a(S,F ),u the extension
of u to all variables given F (see Section 3.2). In this case we can prove that
(S,F ),u |= φ iff 〈S,F ,Π,E〉,w |= φ for all sentences φ ∈ L, except for iterations
of the intervention operator, i.e. formula like [X = x]([Y = y]φ). So, for the vast
majority of formula both approaches give the same results.17

3.5 A new approach to epistemic counterfactuals

3.5.1 Two different ways to reason about interventions

Now that we have our formal framework in place we can come back to our
proposal for epistemic counterfactuals. As already stated in Section 3.3.3, we
will not propose an ambiguity between two readings of counterfactuals, one
based on causation and intervention and one based on belief revision. We
propose that counterfactuals are always interpreted as considering a hypo-
thetical intervention. However, we propose that in the resulting hypothetical
scenario the agent is not checking whether the consequent holds simpliciter,
but whether she would have believed the consequent to be true. We can express
this difference between our proposal and the standard proposal using the for-
mal language introduced in the previous section. For the counterfactual in (5a)
the formula in (5b) describes the interpretation that considers the facts after
intervention, the formula in 5c represents the interpretation that considers the
beliefs of the agent after intervention. This second formula is the analysis of

16Notice that our semantics also works for worlds that violate causal laws. The way the
semantics is set up here, these law violations will be ignored for the interpretation of formula
[
−→
X = −→x ]φ: they get assigned the same truth value as if evaluated in a world with the same

interpretation of the exogenous variables, but without any law violations. For now this simple
approach taken above is sufficient.

17What a correct semantics is for iterated interventions is an interesting, but also complex
question. We leave that topic for a different occasion.
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counterfactuals that we propose.

(5) a. If X = x had been the case, then φ would have been true.

b. [X = x]φ

c. [X = x]Belφ

Figure 3.5 illustrates the difference between the two interpretations in (5b)
and (5c). In both cases the antecedent is interpreted as introducing an interven-
tion that moves us to a hypothetical scenario wX=x where the antecedent is true.
If the intervention takes place on a variable that is observable, this will also
mean that the new world is in a different cell Π(wX=x) of the information par-
tition. We can now either check directly whether in this hypothetical scenario
wX=x the consequent is true – this is expressed by (5b) and results in the causal
reading captured by the approach described in Section 3.2. Or we can move
to the best world(s) in Π(wX=x) and check the facts there – this is expressed by
(5c) and the analysis that we propose. It is adding epistemic reasoning to the
evaluation of counterfactuals, but in a very specific and restricted role.

Figure 3.5: Schematic representation of the differences between the truth con-
ditions of (5b) and (5c) for (5a). Only the relevant cells of the information
partition are displayed.

For most counterfactuals there is no difference between the truth conditions
of (5b) and (5c). Differences can only occur in case the consequent φ of the
conditional contains unobservable variables (otherwise there is no variation
in the cell of the partition ΠX=x that we end up in after intervention). That
means that, for instance, in the circuit example 3 discussed in Section 3.2 there
is no difference between the two readings and, because no right nested coun-
terfactuals are involved, we make the same predictions as does the approach
introduced there. In general, this holds for the gross of the examples discussed
in the literature to motivate taking a causal, interventionist approach to coun-
terfactuals. Even if the consequent of a counterfactual contains unobservable



3.5. A new approach to epistemic counterfactuals 55

variables, it doesn’t automatically mean that (5b) and (5c) will have different
truth conditions. If the only thing that counts for the plausibility order are
the causal laws, then additionally the variables occurring in the consequent
have to be causal ancestors of the variable(s) occurring in the antecedent of the
counterfactual for there to be any difference between the two interpretations.
The reason is that the only violations of causal laws that might occur in wX=x,
and thus the only leverage for the plausibility order, are those introduced by
the intervention that makes the antecedent true.

3.5.2 Accounting for epistemic flavored counterfactuals

With this approach at hand we can now revisit the troublesome examples for
counterfactuals discussed in the first part of the paper. Except for the circuit
example they all concern situations in which some of the variables are not
observable, and thus unknown to the speaker/interpreter (assuming the notion
of knowledge formalised here). So, in all these cases our judgements concern
our beliefs in the truth of the conditional given what we know and believe
about the actual world. Thus, what we need to check in these cases is the
truth of the formula Bel([

−→
X = −→x ]Belφ), where [

−→
X = −→x ]Belφ is the translation

of the relevant counterfactual. In other words, the truth of the counterfactual
is checked in the most plausible worlds given what the agent knows. Because
the plausibility relation will always take into account the causal laws, in these
worlds the facts agree with the laws.18 For instance, if the agent is in a world
in which she can observe some cause, but not its effect, but the laws predict
the occurrence of the effect in this case, then she will believe that the effect did
occur and evaluate a counterfactual under this assumption. This is illustrated
by the grey part (left side) in Figure 3.5. If the context provides us with the
information that we are in Πw0 , then Bel([

−→
X = −→x ]φ) holds if [

−→
X = −→x ]φ is true

in the optimal world w0 in this cell of the partition.

King Ludwig of Bavaria. Let us start with looking at the predictions this
approach makes for the King Ludwig example. We repeat the example a final
time.

2. Example (Revisiting the King Ludwig Example). King Ludwig of Bavaria likes
to spend his weekends in Leoni Castle. Whenever the Royal Bavarian flag is up and
the lights are on, the King is in the Castle. From a distance a traveler observes that the
lights are on, the flag is down, and concludes that the King is away. She says ...

(1) If the flag had been up, the king would have been in the castle.

18If this is possible given what the agent observes.
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We already introduced an epistemic causal model for this example in Sec-
tion 3.4, Page 51. This was a straightforward extension of the model used
in Section 3.2. Just by looking at the model you can already see that this is
one of the few cases in which our approach can disagree with the predictions
made by the approach introduced in Section 3.2: the consequent talks about
a not observable variable that is a causal parent of the variable intervened on
in the antecedent. So, let’s check whether we predict that Bel[F = 1]Bel(K = 1)
holds in the given context.19 That means that we need to check whether
Bel([F = 1]Bel(K = 1)) is true at any possible world where F = 0 and L = 1
hold (see Π1 in Figure 3.4). The sentence is a belief statement Hence, in order to
be true the formula in scope of the main belief operator has to hold at the most
plausible world of the same cell of the partition. This is the world w where
the flag is down, the light is on and (now we use the causal laws encoded in
the model) the king is not in the castle.20 M,w |= [F = 1]Bel(K = 1) holds, iff
(using Definition 17) M,wF=1 |= Bel(K = 1). wF=1 is the world we get by setting
variable F to value 1 and then recalculating the value of all other endogenous
variables based on what w assigns to the exogenous variables and the laws.
This will bring us to the world where the flag is up (by intervention), the light
is on and the king is away (see Figure 3.6). At this world wF=1 the consequent of
the conditional, Bel(K = 1), needs to be true. Thus, we have to check whether
K = 1 holds in all the most plausible worlds in Π(wF=1). The unique most
plausible world in this cell of the partition is w′ where the flag is up, the light
is on and the king is in the castle. In this world K = 1 is obviously true. Thus,
M,wF1 |= Bel(K = 1) and, consequently, the sentence Bel([F = 1]Bel(K = 1)) holds
in the partition where the agent knows that the flag is down and the lights are
on. The conditional (1) is predicted to be true by our approach.

Let us shortly reflect on why this approach works. Just as in the causal ap-
proach to counterfactuals discussed in Section 3.2, interpreting the antecedent
will bring us to a world where the light is on, the flag is up and – the king is
away. Intervening in the position of the flag will not bring the king to the castle.
However, the agent can only observe the variables F and L, not the whereabouts
of the king. Therefore, in this hypothetical scenario the agent would still be-
lieve that the king is in the castle. This is why the counterfactual comes out as
acceptable.

Three Sisters – version 2. In Section 3.6.1 we used two other examples to
argue against a proposal that would try to account for our core example by
introducing an epistemic reading of counterfactuals based on belief revision.
The approach defended here can also account for them. It’s worth taking a
closer look at these examples, because they involve a non-causal restriction on

19To ease notational clutter, we will always write Bel([F = 1]Bel(K = 1)) as Bel[F = 1]Bel(K = 1).
20Furthermore, the two exogenous variables have the values U1 = 0, U2 = 2.
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Figure 3.6: A part of the causal epistemic model for the King Ludwig Example.
For ease of presentation we collapsed worlds that only differ in the value they
assign to U1 and U2.

the plausibility relation. Let us start with the second example from that section,
repeated below.

3. Example (Revisiting Three Sisters with causality). Consider the case of three
sisters who own just one bed, large enough for two of them but too small for all three. Ev-
ery night at least one of them has to sleep on the floor. However, whenever Ann and Carol
are both in bed, they will kick off Billie; she will have to sleep on the floor.

Suppose Carol is invisible. Suppose further that you are a proud parent of Ann,
Billie and Carol. Before you go to bed you go in and check on the kids. As described in
the original version, Ann is on the floor, Billie is in bed and Carol (obviously) is also in
bed. Now you turn to your spouse and comment:

(4) If Ann had been in bed, Carol would have been on the floor.

Let A = 1, B = 1 and C = 1 stand for “Ann is in bed”, “Billie is in bed” and “Carol
is in bed” and let UA, UB and UC be the external factors that decide whether Ann,
Billie and Carol want to sleep on the floor or in bed. Since in the story Ann and
Billie are visible while Carol is invisible, the information partition is defined by
the values of the variables A and B. Figure 3.7 represents the relevant causal
structure for this example. This causal structure will restrict the plausibility
order relevant for this example. But there is a additional, non-causal law that
also restricts the plausibility order in the given context: because there are only
two available beds, in the most plausible worlds there will be two girls in
bed and the third one on the floor. Thus, other things being equal, worlds in
which exactly two girls are in bed will be preferred to worlds where less or
more girls are in bed. Because there are no other restrictions mentioned in the
context, we assume that the plausibility order is the weakest order satisfying
these restrictions.
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Figure 3.7: The causal dependencies in the three sisters example.

Now, let us check the truth conditions of the counterfactual Bel[A = 1]Bel(C = 0)
given this model and the observation that Ann is on the floor and Billie is in
bed. The most plausible world given the available information is a world w
in which Ann doesn’t sleep in bed, Billie does, and (because of the preference
for two girls in bed) Carol does as well (see w in Figure 3.8). Thus, we have to
check whether M,w |= [A = 1]Bel(C = 0), i.e. M,wA=1 |= Bel(C = 0), where wA=1

is the world whose setting of exogenous variables is same as w1, A is set to 1
and all other endogenous variables are recalculated from this and the causal
laws. In particular, because B causally depends on A (and C) the value of this
variable is recalculated and now is set to 0 (see wA=1 in Figure 3.8). To check
whether Bel(C = 0) holds in this world we have to check whether C = 0 holds in
the preferred worlds in this cell of the partition. This the world w′ in Figure 3.8,
where Ann and Carol are in bed, but Billie isn’t. Thus, C = 0 doesn’t hold in
this case. Thus, the counterfactual is predicted to be false, as intended.

Two interesting aspects of our approach can be observed in this context.
First of all, notice the dominance of causal reasoning over epistemic reasoning
in our approach. First, the causal impact of the intervention is calculated,
resulting in concluding that Billie can no longer be in bed. Only then are
epistemic consequences considered. This is also one of the many examples
where an analysis that does not assume an extra epistemic operator in the
consequent would have made the same prediction. Both analyses, (5b) and
(5c), agree that (4) needs to be rejected in this context.

Three sisters – version 1. However, in Section 3.6.1 we also discussed a
different version of the context in which the counterfactual If Ann had been in
bed, Carol would have been on the floor was acceptable. This version, Example 4,
didn’t contain any information about causal links between the sleeping places
of the three sisters. In other words, the causal model now looks as in Figure 3.7,
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Figure 3.8: A graphic representation of the causal epistemic model of the three
sisters Example.

but without any arrows connecting the variables A, B and C (consequently,
FB(B) only depends on U2). To check the predictions our approach makes for
(4) in this context, we have to check whether [A = 1]Bel(C = 0) holds with
respect to this model and the the world w where Ann is on the floor and Billie
and Carol are sleeping in the bed (see w in Figure 3.8). But now wA=1 will still
have Billie sleeping in bed, because changing the value of Ann will not causally
affect the whereabouts of Billie. We end up in a different cell of the partition
(one where Ann and Billie are observed to be in bed), and the most preferred
worlds in this cell have Carol sleeping on the floor. In the world we reach after
intervention, we would see Ann and Billie sleep in the bed and conclude that
Carol must be on the floor. The counterfactual comes out as acceptable, just as
intended.

3.6 Discussion

3.6.1 Comparing with an approach using belief revision

In Section 3.3.2 we argued against an approach that distinguishes next to a
causal reading of counterfactuals also an epistemic reading based on belief
revision. Some readers might have observed that the examples discussed in
the previous section (the King Ludwig example and the two versions of the
example with the three sisters) could also been explained using this approach,
proposing a reading based on the particular version of belief revision intro-
duced in Section 3.3.2. In Section 3.3.2 we argued against this approach based
on problems with disambiguating between the two readings. Now we can
add also empirical reasons to prefer our approach. A first type of evidence
comes from counterfactuals that involve a combination of causal and epistemic
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reasoning. Consider, for instance, the following extension of the three-sisters
example.

6. Example. (Four Sisters)
Consider the case of four sisters (Ann, Billie, Carol, and Dotty) who own two beds,
one red and one blue. Both beds are large enough for two of the girls but too small for
three or four. As one can imagine, four girls living together in one room leads to some
tension and Ann really hates Billie and Dotty at the moment. Therefore, whichever bed
Ann chooses, she will kick off Billie and Dotty; they have to sleep in the other bed.

Suppose Carol is invisible. Suppose further that you are a proud parent of Ann,
Billie, Carol and Dotty. Before you go to bed you go in and check on the kids. You see
that Ann is in the red bed, and Billie and Dotty are in the blue bed. Carol (obviously)
is also in the red bed. Now you turn to your spouse and comment:

(6) If Ann had been in the blue bed, Carol would have been in the blue bed
as well.

This sentence is intuitively true in the given context. However, to predict
this judgement, one needs to combine causal and epistemic reasoning. In this
new example Ann’s sleeping choices will causally determine where Billie and
Dotty sleep. At the moment Ann is sleeping in the red bed. If you change this
by intervention to the blue bed, then this will cause Billie and Dotty to move to
the red bed (in the world resulting from intervention, Carol would be in the red
bed as well). But given what you would observe in this counterfactual scenario
(Ann in the blue bed, Billie and Dotty in the red bed), you would conclude that
Carol is with Ann in the blue bed (this would be the most preferred world. An
ambiguity approach along the lines sketched in Section 3.3.2 would not be able
to deal with examples like this, because according to such an approach there
is always a decision that needs to be made between either causal reasoning
or epistemic reasoning. Both modes of reasoning cannot be combined. Notice
additionally that we need the particular order in which both modes of reasoning
are applied in our framework: first causal reasoning based on intervention, then
epistemic reasoning on the result.

The following epistemic variation of the circuit example illustrates the dif-
ferences between the kind of epistemic inferences our approach gives rise to
and what belief revision would predict.

7. Example. (Circuit with invisible switch)
Suppose there is a circuit such that the light is on (L) exactly when both switches are
in the same position (up or not up). The switches are at both ends of a long corridor.
You are standing at one end close to switch 1. You can see this switch and the lamp,
but you can’t see the other switch. At the moment switch 1 is down (¬S1), the lamp is
out (¬L). Thus, switch 2 is (obviously) up (S2).
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(7) If switch 1 had been up, the light would have been on.

Intuitively, this counterfactual is true in the given context. The proposal
involving belief revision that we discussed in Section 3.3.2, however, predicts
the counterfactual (7) to be false. Because the state of the lamp can be observed,
this state is fixed in the process of belief revision and the position of the second
switch (which can’t be observed) is varied. Thus, the approach predicts that if
switch 1 had been up, the light would still have been on, but the second switch
would have been down. Our approach still predicts the counterfactual to be
true. Again, the reason is the dominance of causal reasoning over epistemic
reasoning. A defender of the belief revision account could now argue that in
this case the counterfactual should get a causal reading instead of an epistemic
one. But then we are back at the point we already made in Section 3.3.2: why
should the sentence get a causal reading and not an epistemic one?

3.6.2 Backtracking

Another interesting test case for our approach is backtracking. Backtracking
conditionals, as we understand them here, reason from effect to cause.21 The
general position in the philosophical literature is that while backtracking is
completely fine for indicative conditionals, this is not the case for counterfac-
tuals. Lewis [1979] claims that backtracking counterfactuals can be acceptable,
but only with a lot of pushing from the context. A similar observation can be
found in Frank [1997] and many other papers. Backtracking also became an
important issue in the discussion of causal approaches to counterfactuals. A
causal approach based on intervention, like the one we discussed in Section 3.2
excludes backtracking counterfactuals. This prediction has been tested in a
number of experiments with different results. While the majority of studies
seem to confirm the predictions of the causal approach [Sloman and Lagnado,
2005, Gerstenberg et al., 2013], there where also some contradicting findings
[Rips, 2010, Rips and Edwards, 2013, Dehghani et al., 2012].

Our approach makes some rather specific predictions concerning backtrack-
ing. If all variables are observable, backtracking is not possible, just as in
standard causal approach to counterfactuals. If, however, the counterfactual
reasons from effect to cause and the cause is not observed, backtracking can
occur. This is, in fact, exactly what happens in the King Ludwig example. But
we can also illustrate this point with the following example.

21It is also possible to define backtracking as a temporal property of counterfactuals: the
eventuality described in the antecedent takes place after the eventuality described in the
consequent. We chose the causal definition, because causal dependencies are the focus of this
paper and it allows us to circumvent debates concerning the relation between temporal order
and causation that we would have to dive into otherwise.



62 Chapter 3. A Causal Account of Epistemic Counterfactuals

Figure 3.9: Interpreting (8)

8. Example. (Interview)
Susy and Mary both have a very important job interview today. Mary goes in first,
Suzy is waiting outside the interview room. When Mary comes out she looks rather
unhappy. Suzy thinks:

(8) If Mary had left the interview smiling, the interview would have gone well.

(8) is one of the few backtracking examples in the literature with unobservable
variables in the consequent. Our approach predicts the backtracker to be
acceptable in this context. The reasoning behind this prediction is basically the
same as in the King Ludwig example. Let S stand for Mary comes out smiling
and I for the interview went well. We assume a causal relation between I and
S such that I causes S to hold. Given the observation that Mary comes out
unhappy, the speaker believes that she is in a world where I and S both don’t
hold (see world w in Figure 3.9), because this is the most plausible world given
her observations. Intervention with [S = 1] will bring us to a world wS=1 where
the interview still went badly, but Mary came out smiling. But in this case the
agent would have believed that the interview went well, i.e. that the actual
world is w′ in Figure 3.9. Thus the counterfactual is predicted to be true.

Unfortunately, so far no experimental studies on backtracking have been
conducted that involve unobservable variables. So, there is no data that we can
test our approach against. This is something we hope to amend in future work.
These studies might report that people find the backtracker (8) unacceptable –
contradicting our approach. There are two possible explanations for such an
observation that are still consistent with our approach. First of all, we could
argue that I is a variable that should be counted among the observable variables
in this case. Taking the knowledge partition to be always based just on direct
observation is not plausible. There might be other sources of evidentiality that
speakers also take into account when differentiating between information that
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they take for granted and information that is less solidly grounded. One might
argue that this example uses a different categorisation for what counts for the
information partition and what counts for the plausibility order. But that won’t
be easy. Whatever story one might come up with here, this story also has to
explain why in the interview example the unobservable I should count for the
definition of the information partition, while the equally unobservable K in the
King Ludwig example should not.

A second solution could be to go back to an ambiguity approach to coun-
terfactuals and propose a second reading for counterfactuals. Concretely, the
second reading we would need to propose would be the original causal read-
ing, i.e. reading (5b) on page 54. But, as discussed above, if one chooses this
option, one needs to also have a story explaining how disambiguation between
the two readings works. The situation might be less dire in our case than for
the ambiguity approach discussed in Section 3.2. In our case the difference
between the two readings is smaller. We could say that disambiguation works
based on which question about the introduced hypothetical scenario we want
to see answered. But still some story about disambiguation needs to be told.
However, before we need to consider these options to save our approach, there
first has to be serious evidence that the approach as it is now is on the wrong
track.

3.6.3 Epistemic counterfactuals without causal information

To conclude this paper let us discuss an example that seems to pose a real
challenge for the approach we defend here: the Treasure Hunt example from
Edgington [2011].22

9. Example. (Treasure Hunt)
Ali and Bob are playing as a team in a treasure hunt, with on prize. A parent gives
them a hint: The prize is in the attic or the garden. Ali says to Bob: “You go check
the garden. I’ll search the attic." 10 minutes later Ali shouts: “I found the price in the
attic!" Bob asks Ali: “Well, then why did you tell me to search in the garden?" Ali
replies: “Because ...

(9) ... if the prize hadn’t been in the attic, it would have been in the garden."

This example bears the same structure as many other famous examples of coun-
terfactuals in the literature. We first get disjunctive information (the treasure
is either in the garden or in the attic). Later we find out which of the disjuncts
holds. Now, we are asked to consider counterfactual reasoning of the form
if it hadn’t been this disjunct that was true, it would have been the other. In some
of the cases discussed in the literature, like the famous example involving the

22Edgington borrowed and adapted the example from Grice [1975].
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assassination of Kennedy, there is strong consensus that the counterfactual is
not acceptable.23 In other examples, like the example involving a man eating
a Hamburger from Hansson [1989] the judgements have been less clear. But
in case of the Treasure Hunt the consensus in the literature is that the relevant
counterfactual (9) is acceptable in the given context (though this should be
confirmed in experimental work).

Accounting for such an observation is challenging for our approach. In
general, in a situation with three variables A, B and C, where A and B are
alternative, independent causes of C and we observe A and C to be the case,
while B is observed not the hold, we predict the counterfactual If A had not been
the case, then B would have been the case to be false. And that is also exactly the
prediction we want for the Kennedy example and many similar examples. But
in case of the Treasure Hunt example counterfactual reasoning from the falsity
of one disjunct to the truth of the other seems to be possible. The challenge
is not only to account for the acceptability of (9) in this case, but at the same
time to also explain why the same type of reasoning is not acceptable in these
other examples.24 There needs to be differences between the examples that the
proposed semantics for counterfactuals is sensible to. Indeed, the epistemic
structure we added to the causal approach to counterfactuals allows us to
model the Treasure Hunt example, but still explain what is special about this
example in contrast to all the other cases where this type of counterfactual
reasoning is not acceptable.

Let us have a look at how we can model the given context. There are at
least two endogenous variables in the relevant epistemic causal model: A for
the treasure is in the attic, G for the treasure is in the garden. These variables
are not causally dependent on each other. Given that Ali did find the treasure
in the attic, A is a variable that has been observed to be true. Bob did not find
the treasure in the garden. But he also didn’t observe the treasure to not be in
the garden, that is something he inferred from Ali finding the treasure in the
attic. Thus, G is not observable. This is a first important assumption we make
about the example: not everything is observed. This makes room for epistemic
reasoning to the place.

The second important assumption concerns the preference order and the
way we interpret the disjunctive information about the treasure being either
in the garden or in the attic. In this particular scenario, this is not just factual
information, but actually defines the game that Ali and Bob are playing with

23The duchess example from Veltman [2005] is a more neutral version of this example. Also
here the counterfactual is judged to be not acceptable.

24An approach in terms of belief revision would struggle with the second part. There is an
easy way to explain (9) in terms of belief revision, but what then about the Kennedy case or the
duchess example? We could, of course, fall back again on claiming that these counterfactuals
get a causal reading. But that brings us back to the point we made before: what decides which
counterfactual gets which reading?
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their parents, i.e. it informs the plausibility relation: worlds where the treasure
is in either of the two locations are preferred above all other worlds. This
results in the model given in Figure 3.10. Now, we can check the acceptability
of the counterfactual in (9). Intervention with its antecedent of will bring us to
a world wA=0 in which the treasure is neither in the attic nor in the garden. But
given that A is observable, the agent would have believed in this case that the
treasure is in the garden. Thus, the counterfactual is predicted to be acceptable
in the given context.

Figure 3.10: The interpretation of (9) in the context of the Treasure Hunt exam-
ple.

We think that this example illustrates nicely the value added by the epis-
temic component in our approach. What does the work here is the plausibility
relation (which does not only consider causal laws, but also all kinds of other
belief preferences we might have) and the distinction of observable and unob-
servable variables. Adding these epistemic components allows us now to see
differences between examples that so far have all been sorted into the same box.
It also allows us to account for differences between judgements of speakers.
What you take to be solid knowledge or defeasible belief might vary between
different agents in the same context. The same holds for what agents take to
inform their plausibility order. This might explain the variation in judgements
we often observe.

3.7 Conclusions

This paper focused on counterfactuals that seem to involve epistemic reason-
ing. We saw that that a standard causal approach to counterfactuals based on
intervention is not able to account for these examples. We also discussed an
approach distinguishing a second, epistemic reading for counterfactuals based
on belief revision. This approach struggles with explaining the disambigua-
tion between the two readings, but in later sections we also discussed empirical
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problems for this line of approach. Following these insights we then proposed
an account for counterfactuals that extends a causal, interventionist approach
with epistemic reasoning. Counterfactuals are described as reasoning about
what an agent would believe given some intervention. This approach allows us
to explain the acceptability of Kratzer’s King Ludwig example and also other
related epistemic counterfactuals. The main innovation of our approach is that
it allows us to account for causal and epistemic examples of counterfactual with
one single interpretation rule for counterfactuals; we do not need to distinguish
different readings.

We discussed how the approach deals with a number of key examples. But
there are many more examples in the literature that we did leave out to keep
the length of the paper manageable. There are also many possible extensions
and interpretations of the approach we still need to look into in future work.
One issue is, for instance, the way we distinguished here between knowledge
and belief. We based knowledge on observables and added belief based on
laws. But there could be other sources of information that we might want
to consider as contributing to knowledge or belief. Furthermore, it is worth
considering whether we really want to have this clear distinction between
either knowledge or belief, or whether we want to model the distinction more
gradually. Given the approach we proposed here, one might also wonder how
the the meaning of counterfactuals relates to the more general debate about the
distinction between knowledge and belief in the philosophical literature or the
linguistic debate concerning evidentiality. Another direction for future research
is the question how the approach proposed here fits with linguistic properties
of counterfactuals. For instance, can it be combined with a compositional
approach to their meaning? And how does the analysis proposed here relate
to an approach to indicative conditionals?

To formulate our approach to the meaning of counterfactuals, we intro-
duced an epistemic extension of causal models. Also with respect to this type
of combination of causal reasoning with epistemic reasoning there are still
many open questions. One possible direction of future research could be to
think about how to model causal dependence between facts and beliefs. An
application where this might become relevant is the semantic analysis of causal
verbs like made or cause. Nadathur and Lauer [to appear] recently made an
interesting proposal for the semantics of these verbs using causal models. But
this approach works entirely within a causal framework, without any epis-
temic component. This will be not sufficient if one also wants to account for
statements like you made me believe that ... or that caused me to think that ....
We see two possible ways to address this problem. We could use our indirect
model of the interaction between causal and epistemic reasoning and provide
a semantics for these verbs that goes beyond direct causal dependence, contra
to what Nadathur and Lauer [to appear] propose. Or we could enrich the
model with a representation of causal dependencies between certain variables
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and, for instance, the information partition. Then we could keep a completely
causal analysis of the semantics of these verbs. We leave it to future work to
decide between these two options.





Chapter 4

A Logical and Empirical Study of
Right-Nested Counterfactuals

4.1 Introduction

The meaning of counterfactual conditionals bears an intrinsic relation to a num-
ber of central scientific problems, like the nature of reasoning, the possibility of
knowledge, and the status of laws of nature. Therefore, this topic has fascinated
many thinkers from various disciplines, like philosophy, logic, psychology and
others. But, despite a lot of effort, no consensus has been reached yet about
how the meaning of these sentences needs to be approached.

One way to conceptualize the evaluation of counterfactuals, very common
in the literature, goes as follows. When evaluating a counterfactual, we select,
given the antecedent A and the context of evaluation, certain (hypothetical)
situations in which the antecedent is true, and then check whether they make
the consequent B true as well. The challenge of accounting for counterfactuals
then becomes to define the relevant selection function correctly. Following the
approach of Stalnaker and Lewis Lewis [1973], Stalnaker [1968], which still is
the dominant approach in the philosophical literature, the selection is based on
similarity: we take those hypothetical situations that are most similar to the ac-
tual world. But this proposal is known to be problematic: among other things,
it appears to be too flexible. In recent years, the interventionist approach to
counterfactuals became very popular (Pearl [2013], Schulz [2011], Kaufmann
[2013], Halpern [2016], Ciardelli et al. [2018] and others). This approach de-
scribes the truth conditions of counterfactuals with respect to a representation
of the relevant causal dependencies, building on Causal Models as introduced
in Pearl [2000], Spirtes et al. [2000]. The approach got its name from the way
it describes the selection function. In the selected hypothetical scenarios, the
antecedent has been made true by intervention on the actual causal dependen-
cies: it is cut off from its causal parents and stipulated to be true by law. Then,
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one checks in the resulting model whether the consequent holds.1

Recently, this approach has been criticized by Fisher Fisher [2017]. He
claims that interventionism makes incorrect predictions for right-nested coun-
terfactuals. According to Fisher, the problem is a particular property of the
interventionist approach, strict interventionism, which he argues needs to be
dropped in a proper account. We will argue, using the results of an empiri-
cal study, that Fisher is right in his critique. But this does not mean that the
interventionist approach needs to be given up in general. We will propose a
variation of the approach that drops strict interventionism and thus can account
for Fisher’s core-observations. We will also make precise how this new pro-
posal relates to the classical interventionist approach as spelled out in Halpern
[2016]. We will do so by providing an axiomatization of the new operator
for counterfactual reasoning that we introduce. As it will turn out, this new
operator can be already defined in terms of the classical intervention operator.
Furthermore: to a large extend, they both make the same counterfactuals true.
So our proposal, though formalizing a slightly different take on what inter-
vention means, is in terms of logical properties a conservative change of the
original interventionist approach.

4.2 The interventionist approach to counterfactuals

Our presentation of the interventionist approach to counterfactuals is based on
the one proposed by Briggs in Briggs [2012]. Still, we will only introduce the
parts that are relevant for the discussion at hand. The two central ingredients
of the approach are (i) the causal model, which contains information about
the relevant causal dependencies, and (ii) the operation of intervention, which
defines the selection function by mapping a given causal model onto a class of
models that make the antecedent of the relevant counterfactual true.

Causal models represent the causal dependencies between a given finite
set of variables. For each variable X we fix its range R(X), the set of possible
values the variable can take. The variables are sorted into the setU of exogenous
variables (those whose value is independent from the value of other variables
in the system) and the setV of endogenous variables (those whose value causally
depends on the value of other variables in the system). Based on this distinction,
a causal model can be defined as given in Definition 18.

18. Definition (Causal model). LetU = {U1, . . . ,Um} be the set of exogenous vari-
ables, andV = {V1, ...,Vn} be the set of exogenous variables. A causal model overU
andV is a tuple 〈S,A〉, defined as follow.

1It turns out that for recursive causal models the interventionist selection function can be
understood as just one particular way to make similarity precise Halpern [2013], Marti and
Pinosio [2014b].
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• The first component, S, is a set { fV j | V j ∈ V} assigning to each endogenous
variable V j a map(
R(U1)×· · ·×R(Um)×R(V1)×· · ·×R(V j−1)×R(V j+1)×· · ·×R(Vn)

)
→ R(V j).

• The second component, A, is the valuation function, assigning to every X ∈
(U ∪V) a value A(X) ∈ R(X) that complies with the structural functions
in S: for all endogenous variables V j ∈ V, we have

A(V j) = fV j

(
A(U1), . . . ,A(Um),A(V1), . . . ,A(V j−1),A(V j+1), . . . ,A(Vn)

)
.

In a causal model, the set S fixes the causal dependencies among the variables.
Each map FV, sometimes called V’s structural function, describes how the value
of V causally depends on that of other variables. The function A defines the
value of all variables in the model. It does so in a way that is consistent with
the causal laws fixed by S. Here are two causality-related concepts that will be
important in the rest of the text.

19. Definition (Dependency). Let 〈S,A〉 be a causal model overU = {U1, ...,Um}

andV = {V1, ...,Vn}. Given an endogenous variable V j ∈ V, let 〈X1, . . . ,Xm+n−1〉 be
the (m+n-1)-tuple 〈U1, . . . ,Um,V1, . . . ,V j−1,V j+1, . . . ,Vn〉.

We say that the endogenous variable V j ∈ V is directly dependent on a variable
Xi ∈ (U ∪ V) \ {V j} (in symbols, Xi ↪→S V j) if and only if there is x1 ∈ R(X1),
. . . , xi−1 ∈ R(Xi−1), xi+1 ∈ R(Xi+1), . . . , xm+n−1 ∈ R(Xm+n−1)) and there are x′i ,
x′′i ∈ R(Xi) such that FV j(x1, . . . , x′i , . . . , xm+n−1) , FV j(x1, . . . , x′′i , . . . , xm+n−1). When
Xi ↪→S V j, we will also say that Xi is a parent of V j.

We say that V j ∈ V is causally dependent on Xi ∈ (U∪V) \ {V j} if and only if
Xi ↪→+

S
V j, with ↪→+

S
the transitive closure of ↪→S.

20. Definition (Recursive causal models). A causal model is said to be recursive
if and only if ↪→+

S
is a strict partial order (so there are no circular dependencies between

the variables).

A recursive model is a model in which no circular causal dependencies occur.
In a recursive causal model 〈S,A〉, if the values of all exogenous variables are
fixed, the value of every endogenous variable V is uniquely determined (from
the values of the exogenous variables and the causal dependencies as described
by S). In the rest of the paper we will only consider recursive causal models,
which from now on will be called simply causal models.

We use a simple propositional language extended with an operator for
counterfactual conditionals to talk about causal models.
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21. Definition (Language L[ ]). The set of formulas φ of the language L[ ] over
U ∪V is defined by

φ ::= X=x | ¬φ | φ ∧ φ | [
−→
X=−→x ]φ for X ∈ U ∪ V, x ∈ R(X),

−→
X = (X1, . . . ,Xk) ∈

(U ∪ V)k, k ∈ N, Xi , X j for i , j, −→x =
(x1, . . . , xk) with xi ∈ R(Xi)

Thus, L[ ] extends the basic causal language of Halpern [2016] by allowing
right-nested counterfactuals. Still, it is only a fragment of the language used
in Briggs [2012], as it does not allow Boolean combinations of atoms in the
antecedent (which are not relevant to the discussion here). Sentences of the
form [

−→
X=−→x ]φ should be read as “if the variables in

−→
X were to be set to −→x , then

φ would hold”, with the variables in
−→
X called the intervened variables. These

kind of formulas are taken to represent counterfactuals. In contrast to most
literature on causal models, our definition allows for exogenous variables in
the antecedent of a counterfactual.

The second important ingredient of the interventionist approach is the no-
tion of intervention involved in the interpretation rule for formulas of the form
[
−→
X=−→x ]φ. This is the way the selection function is defined in the case of this par-

ticular approach to counterfactual conditionals. Given a causal model 〈S,A〉
and a counterfactual sentence [

−→
X=−→x ]φ, intervention provides a set of models

satisfying the antecedent
−→
X=−→x . For these models we will then check whether

the consequent φ holds as well. The models are constructed in two steps. First,
the variables in

−→
X are forced to the values assigned by the antecedent

−→
X=−→x .

In the case of exogenous variables, this is done by simply changing their value
indicated by A; in the case of endogenous ones, this is done by turning the
variable’s structural function in S into a constant function. These variables
become effectively exogenous variables.2 Then, the values of the endogenous
variables are calculated using the new structural functions.

22. Definition (Intervention). Let 〈S,A〉 be a causal model. When evaluating
formulas in L[ ], the semantic interpretation of Boolean operators is as usual; for the
rest,

〈S,A〉 |= X = x iffdef A(X) = x

〈S,A〉 |= [
−→
X=−→x ]φ iffdef 〈S−→X=−→x ,A

S−→
X=−→x 〉 |= φ

with 〈S−→X=−→x ,A
S−→

X=−→x 〉 the causal model where

2In a setting that allows for disjunction in the antecedent of counterfactuals (e.g., Briggs
[2012]), the previous steps might produce more than one causal model. However, for the
possible antecedents considered in our language, the resulting model is uniquely defined.
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(i) S−→X=−→x is as S except that, for each endogenous variable Xi in
−→
X, the function fXi

is replaced by a ‘constant’ function f ′Xi
that assigns to Xi the value xi regardless

of the values of all other variables.

(ii) AS−→X=−→x is the unique assignment to causal variables that is identical to A with
respect to exogenous variables not in

−→
X, assigns to each exogenous variable Xi

in
−→
X the indicated value xi, and complies with the causal dependencies in S−→X=−→x

for the endogenous ones.3

Thus, according to the interventionist approach, the selection function f dis-
cussed in the introduction should be defined as

f
(
〈S,A〉,

−→
X=−→x

)
:= 〈S−→X=−→x ,A

S−→
X=−→x 〉.

It is worthwhile to emphasise that, in the intervened model 〈S−→X=−→x ,A
S−→

X=−→x 〉,
the valuation AS−→X=−→x complies with the model’s causal dependencies, S−→X=−→x :
for every V ∈ V, the value AS−→X=−→x (V) is given by the variable’s structural
function as provided by S−→X=−→x . So, intervention happens at the level of causal
dependencies, and this change affects the valuation AS−→X=−→x . In Section 4.5 we
will introduce a notion of intervention that, working on a more general class of
models, changes values directly, leaving causal dependencies unaffected.

4.3 Fisher’s criticism

Fisher (Fisher [2017]) criticizes the approach described above. He claims that
it makes incorrect predictions for right-nested counterfactuals. Concretely, he
discusses the examples (10) and (11) below.4

• Match. I hold up a match and strike it, but it does not light. I say

(10) If the match had lit, then (even) if it had not been struck, it would
have lit.

3Note: the assignment is unique, not only because the values of exogenous variables is
determined, but also because, if 〈S,A〉 is recursive, so is 〈S−→X=−→x ,A

S−→X=−→x 〉. This is because the
intervention operation only removes causal dependencies, and thus no circular dependencies
are added.

4Fisher also considers another example, involving the counterfactual “If the match were
struck and it lit, then if it hadn’t been struck, it would have lit”. This is not a good example to
make his point, as it contains a conjunction of cause (striking the match) and effect (the match
lights) in the antecedent. For the counterexample to work, Fisher needs this conjunction to be
interpreted as two independent interventions. However, it could be that “and” is interpreted
causally in this case: “If the match were struck and because of that it lit, ...”. But then the fact that
the match lights would be introduced as a causal consequent of the striking of the match and
not as an independent intervention.
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• Headlamp. I hold up a headlamp in good working condition. I say

(11) If the headlamp were emitting light, then if it had had no batteries,
the headlamp would be emitting light.

Both examples involve a model of the form shown in Figure 4.1 left side, where
A1 stands for the variable the first antecedent talks about and A2 for the variable
of the second antecedent.5

Figure 4.1: A causal model for Match and Headlamp, before (let side) and after
(right side) interpreting the counterfactuals.

Following the interventionist approach, the evaluation of the first antecedent
produces a causal model where A1 is forced to a particular value, and where the
causal connection between A2 and A1 has been erased. Evaluating the second
antecedent forces A2 to a particular value too, but this will no longer affect A1.
Hence, the counterfactuals (10) and (11) are predicted to be true, but intuitively,
according to Fisher, they should be false. Fisher traces the problem back to the
property of strict interventionism (SI).

(SI) “When a variable V is intervened on so that it is made to take
a value v, V remains set to v unless it is intervened upon again
per an iterated application of the interventionist recipe.” (Fisher
[2017]:4939).

Interventionist approaches have this property because their selection function
maps a given causal model M and an antecedent A to a new causal model in
which a causal variable V occurring in the antecedent A has lost all connections
to its causal parents. Any later intervention that might affect V’s (former) causal
parents will no longer affect V itself. So, as long as ψ does not assign a new
value to V, the counterfactual [

−→
V=−→v ][ψ](Vi = vi) will always come out as true.

To solve this problem, Fisher proposes that we have to give up strict inter-
ventionism. More concretely, he proposes the following adequacy condition
for approaches to the meaning of counterfactuals: “A causal model semantics
for counterfactuals should admit cases in which the variables implicated in
the antecedent of a counterfactual remain causally sensitive to their parents
throughout the evaluation procedure.” (Fisher [2017]:4942). However, he does

5We ignore other possible variables, as they will not affect the relevant predictions made.
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not propose an alternative approach that has this property.6 In the rest of
the paper we will do the following. First of all, we need to confirm Fishers
judgements concerning the target examples (10) and (11) with an actual sur-
vey. These are not your every day examples of counterfactuals and we should
make sure that the intuitions Fisher reports are generally shared and that they
really concern truth conditions, not the assertability of this type of right-nested
counterfactuals. This is the subject of Section 4.4. In Section 4.5 we will de-
velop an alternative interventionist approach to the meaning of counterfactual
conditionals that is not strictly interventionist. Finally, in Section 4.6 we will
extend the discussion with some additional examples and investigate whether
giving up strict interventionalism is sufficient to account for right-nested coun-
terfactuals in general.

4.4 An empirical study on Fisher’s counterexamples

A possible objection against Fisher’s observations and the conclusions he de-
rives from them is that he confuses judging a sentence false with rejecting it
as not well-formed. Maybe we are inclined to say “No” to the counterfactuals
in (10) and (11), because they are very strange counterfactual sentences. To
exclude this interpretation of the observations, we conducted a small empirical
study in which we asked the participants to judge not only the counterfactuals
(10) and (11), but also their counterparts (12a) and (12b) in which the final
consequent has been negated. If participants judge the sentences (10) and (11)
false because they consider them defective, they should judge (12a) and (12b)
to be defective (and hence false) as well.

(12) a. If the match had lit, then if it had not been struck, it would not have
lit.

b. If the headlamp were emitting light, then if it had had no batteries, the
headlamp would not have been emitting light.

4.4.1 Method & Participants

We used the scenarios Match and Headlamp from page 73 and a third scenario
containing a counterfactual [ϕ][ψ]ξ with ξ talking about a causal effect of ϕ.
For each scenario we asked the participants to judge 3 counterfactuals: the
target right-nested counterfactual, the counterfactual with the opposite final
consequent and a filler item to check whether the participants where paying

6Fisher discusses in Fisher [2017] an alternative definition of intervention, dubbed “side-
constrained intervention”, but admits that this variation is not really targeting the root of the
problem.
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attention and understood the presented scenario correctly. This resulted in
9 questions that the participants had to answer. The order of question was
randomized. The participants had to judge the truth value of the counterfactual
using a slider bar with five values, from 0 to 4. They were told that 0 means the
sentence is false, 4 it is true and 2 that the truth value is unclear. The values 1
and 3 allowed them to indicate that they find a sentence weakly false or true.

The study was implemented in Qualtrics, a web-based survey tool. Partic-
ipants were recruited via Prolific.ac, an online platform aimed at connecting
researchers and participants willing to fill in surveys and questionnaires in ex-
change for compensation for their time (Palan and Schitter [2018]). We recruited
native English speakers (British and American English). Fifty-two participants
completed the task. Eight participants were excluded. Two participants did
not answer the filler question for the match scenario correctly, seven partici-
pants did not answer the filler question for the headlamp scenario correctly,
one also failed the match scenario. Thus, forty-four responses were included in
the analyses reported below. Thirteen participants failed the control question
for the third scenario we used. Because of the high number we concluded that
there was a problem with the material used and excluded this scenario from
the evaluations.

4.4.2 Results & Discussion

The table in Figure 4.2 states the results of the study. We counted both values 3
and 4 on the scale as judging the sentence true and 0 an 1 as judging the sentence
false. The graph in Figure 4.2 plots the percentages of the different answers
first for both scenario’s separately and then combined. The results show, first
of all, that a majority of the participants agree with the intuitions reported by
Fisher Fisher [2017]. Furthermore, the results for the opposite counterfactuals
(12a) and (12b) support the conclusion that the judgements are for the most
part judgements about truth values and not well-formedness of the sentences
under consideration.

Hence, we conclude with Fisher that these nested counterfactuals present
a problem for the interventionist approach to their meaning. Fisher discussed
the possibility to defend the approach by arguing that the conditionals un-
der discussion are interpreted according to a different (epistemic) reading of
counterfactuals and eventually dismisses it. We agree with Fisher. Notice the
particularity of the situation. Normally, the possibility of an epistemic reading
is considered in case a counterfactual intuitively appears to be true, but the
account under discussion cannot predict this.7 Here we would have to explain

7A good example are backtracking counterfactuals: counterfactuals reasoning backward
in time. The interventionist approach predicts all backtracking to be impossible. However,
sometimes backtracking seems to be possible. This is occasionally explained by discussing a
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Sentence True False Unclear

(10) 4% 80% 16%

(12a) 64% 13% 23%

(11) 7% 84% 9%

(12b) 77% 9% 14%

(10)+(11) 6% 82% 12%

(12a)+(12b) 71% 11% 18%

Figure 4.2: Results of the 1st study.

why certain counterfactuals are intuitively false, while the approach predicts
them to be true. In order to make this work, we would first have to argue
that an intervention-based reading of these particular counterfactuals is not
possible.

To sum up, the results of this study support Fisher’s argumentation against
the interventionist approach. But does that mean that we need to give up
the interventionist approach to counterfactuals? We don’t think so. We can
give up the property of strict interventionism responsible for the problematic
predictions, but still keep the general idea and all the strong predictions of the
interventionist approach. The big conceptual step that needs to be taken is
to apply intervention to the valuation A instead of the representation of the
causal dependencies S. In the next section we develop this idea in detail.

4.5 Non-strict interventions

The goal is, then, to find a notion of intervention that coincides with Pearl
[2000]’s proposal for non-nested cases (thus ‘inheriting’ the good behaviour of
the strict interventionism approach in those situations), but also accounts for the
results of the empirical study. The idea on which we will build our alternative
proposal is that, although counterfactual assumptions might modify the value
of some causal variables, they will not affect causal relationships. This way,
the framework can satisfy Fisher’s adequacy condition for approaches to the
meaning of counterfactuals (see p. 74): even after intervention on a particular
variable, it remains connected to its causal parents.

If an intervention can change assignments without modifying causal rela-
tionships, we might end up with models in which the values of variables (as
defined by the assignment) do not comply with the laws (as defined by the

possible epistemic reading that allows for backtracking.
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causal dependencies).8 The notion of a causal model introduced in Section 4.2
doesn’t allow for this. We need a more general notion of causal model, one that
does not require the assignment A to comply with the structural functions in
S.

23. Definition (General causal model). A general causal model overU ∪V is a
tuple 〈S,A〉 in which S is defined as in Definition 18 andA is defined as a function
assigning to every X ∈ (U ∪V) a valueA(X) ∈ R(X).

With this generalized notion of a causal model at hand, we can now introduce a
new notion of intervention that captures the idea described above: it modifies
the value of causal variables, but leaves causal relationships unaffected. This
new mode of intervention will be expressed by a different type of sentence in
the formal language we use.

24. Definition. Formulas φ of the language L[ ],� overU ∪V are given by

φ ::= X=x | ¬φ | φ ∧ φ | [
−→
X=−→x ]φ | (

−→
X=−→x )�φ

for X ∈ U ∪V, x ∈ R(X),
−→
X = (X1, . . . ,Xk) ∈ (U ∪V)k, k ∈ N, Xi , X j for i , j,

−→x = (x1, . . . , xk) with xi ∈ R(Xi).

We have now two counterfactual formulas: [
−→
X=−→x ]φ and (

−→
X=−→x )�φ. The

former will be semantically interpreted using the well-known notion of inter-
vention described in Definition 22. We will refer to this notion of intervention
as strict intervention. The latter will be semantically interpreted using our new
notion of non-strict intervention. This notion captures the following intuition:
a non-strict intervention affects only the value of the variables that are causally
dependent on the intervened ones; their values should be set according to the
causal laws. The rest of the variables, those causally independent of the in-
tervened ones, should remain untouched. This idea is formally spelled out in
Definition 25.

25. Definition. Let 〈S,A〉 be a general causal model. When evaluating formulas in
L[ ],� , the semantic interpretation of formulas also in L[ ] is as in Definition 22. For

formulas of the form (
−→
X=−→x )�φ,

〈S,A〉 |= (
−→
X=−→x )�φ iffdef 〈S,A

−→
X=−→x
〉 |= φ

with 〈S,A
−→
X=−→x
〉 the general causal model whose assignment,A

−→
X=−→x , is obtained in the

following way. Let
−→
Xd be a vector containing the variables in

−→
X whose current value

(as given byA) is different from their intended new value (as indicated by −→x ).
8Namely, there might be variables whose values is different from the one obtained by using

their structural function with the values of all other variables.
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(i) The value of variables in
−→
X becomes −→x (as indicated by the intervention).

(ii) For each variable Y not in
−→
X,

(a) if Y is not causally dependent on any variable in
−→
Xd (i.e., if there is no

Xd ∈
−→
Xd such that Xd ↪→+

S
Y), keep its value as inA.

(b) if Y is causally dependent on some variables in
−→
Xd (i.e., if Xd ↪→+

S
Y for

some Xd ∈
−→
Xd), its value is calculated according to the causal laws in S

from the values already inA
−→
X=−→x .9

The notions of strict (Definition 22) and non-strict intervention (Definition 25)
differ in two crucial points. The first difference is in the structural functions
of the resulting models. In the model resulting from a strict intervention, the
intervened variables have been cut off from their causal parents; however,
the model resulting from the just defined non-strict intervention preserves the
previous causal information.10 The second difference concerns the way the new
assignment is defined for endogenous variables. In the strict interventionist
case, the values of all endogenous variables are recalculated according to the
(recall: modified) structural functions. In the non-strict case, recalculation
(recall: with respect to the original structural functions) takes place only for
endogenous variables causally dependent on the variables intervened on.11

The following observation will be useful: in a model where the valuation
complies with the structural functions, the model that results from a non-strict
intervention can be equivalently defined in the following way.

4.5.1. Proposition. Let 〈S,A〉 be a causal model (i.e., a general causal model where
A complies with S); let

−→
X=−→x be the antecedent of a counterfactual formula. Let

•
−→
Xd be as before: the variables in

−→
X whose value (as given byA) differs from their

intended new value (as indicated by −→x );

•
−→
Y be the endogenous variables not occurring in

−→
X that are not causally dependent

on variables in
−→
Xd, with −→y their values according toA.

9Recall: we work only with recursive models. Thus, from S’s induced causal graph 〈U ∪
V, ↪→〉 and the antecedent

−→
X=−→x , one can create a chain of sets of variables S0 ⊆ · · · ⊆ Sn where

S0 =
−→
X ∪ (U \

−→
X), Sn = U ∪ V and, for any Si and Si+1, the value of variables in Si+1 \ Si

can be calculated from the causal dependencies and the value of variables in Si. The values
the valuation A

−→
X=−→x assigns to variables in S0 are fixed from the initial valuation A and the

antecedent
−→
X=−→x , so the values of the rest can be properly obtained.

10Thus, in the latter, the valuationA
−→
X=−→x may not comply with S’s structural functions.

11Note: when the original assignment A complies with the causal dependencies in S, both
strategies produce the same result.
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Then, the assignmentA
−→
X=−→x (Definition 25) can be equivalently defined as the (unique)

assignment that is identical with A with respect to exogenous variables not in
−→
X,

assigns to exogenous variables in
−→
X their respective value in −→x , and complies with the

causal dependencies in S(
−→
X=−→x ,

−→
Y=−→y ) (see Definition 22).12

If 〈S,A〉 is a model without causal violations (i.e., A complies with S), then
the assignment created by a non-strict intervention (A

−→
V=−→v ) coincides with the

one created by a strict intervention (AS−→V=−→v ).

4.5.1 Fisher’s counter-examples revisited

The semantics for counterfactuals proposed here can deal with the examples
Match and Headlamp discussed in Section 4.3 and 4.4. For reasons of space
we will only discuss Match (Headlamp works analogously).

• Match. I hold up a match and strike it, but it does not light. I say

(13) If the match had lit, then (even) if it had not been struck, it would
have lit.

Figure 4.3: The evaluation of the Match example with the selection function f

First, we need to define the causal model M1 = 〈S,A〉 with respect to which
the counterfactual (13) is interpreted. We defineV = {S,L} andU = {U}, with
S indicating whether the match has been struck (1:yes, 0:no) and L indicating
whether the match has lit (1:yes, 0:no). The exogenous variable U represents
external factors causally responsible for S.13

The sentence contains nested counterfactuals, so we need to intervene twice:
first, with L=1 (the antecedent of the main counterfactual), and then, with S=0
(the antecedent of the embedded counterfactual). On the resulting model, we
should check whether L=1 (the consequent of the embedded counterfactual) is

12The proof of this proposition can be found in the appendix of Chapter 4
13Note: our setting allows intervention on exogenous variables, so S can be take to be

exogenous, thus making U superfluous. Still, U is kept, in line with the common modelling
strategy of representing external factors by means of exogenous variables.
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true. The first intervention, L=1, produces model M2 in Figure 4.3 (Definition
25), affecting the original assignment but preserving the original causal depen-
dencies. For evaluating the embedded counterfactual (S=0)� L = 1, we apply
the second intervention, S=0, to M2. This results in the model M3 in Figure 4.3,
with S = 0 as the intervention requires, and L = 0, as L’s value is still causally
sensitive to S. In this final model, the innermost consequent L = 1 fails; thus,

M1 6|= (L=1)� ((S=0)� L = 1).

We correctly predict that the counterfactual (13) is false in the given context.

4.5.2 The Import/Export Principle

There is an interesting connection between the core examples discussed in this
paper and the famous Import-Export Principle (IEP): if A and B share none
of their variables, then (A ∧ B)�C is equivalent to A�(B�C).14 This
principle got a lot of attention in the literature on the logic of conditional
sentences, in particular in connection to indicative conditionals (Lewis [1973]
, Skyrms [1980] among many others). But while for indicative conditionals
it is generally accepted that the principle should be valid, this is less clear
for counterfactuals. Because the similarity approach predicts the principle to
fail15, people have been looking for examples confirming this prediction(Etlin
[2008], Kaufmann [2005], Starr [2019]). Interestingly, these examples are often
identical or very similar to the core examples of Fisher that we are trying to
account for here. A rare exception is (14a), brought forward in Skyrms [1980].
Skyrms considers this sentence to be true and the related counterfactual (14b)
where both antecedent of (14a) are combined in one antecedent false.

(14) a. If this sample were burning green (say it was barium) then it would
still be true that had it been sodium it would have burned yellow.

b. If the sample were burning green and had been sodium, it would have
burn yellow.

Another example can be found in Lange [1999].

Suppose that you and I have just run a race, and I have won. I
believe that I would always win if I really tried. Then I am willing
to assert: "Suppose that you had won the race. Then I must not have

14I.e. ((A ∧ B)�C) ↔ (A�(B�C) is valid. This principle is sometimes also called
the Weak Import-Export Principle, while the principle without the restriction of non-common
variables is called Import-Export Principle.

15But see Starr [2014] for a dynamic semantic implementation of the similarity analysis that
does validate the Import-Export Principle.
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been trying; had I tried, I would have won." This is p > (q > r). I am
not willing to assert the corresponding (p ∧ q) > r: Had you won
and I really tried, I would have won. There is no logically possible
world in which you and I both win the race. (Lange [1999], p.259)

However, all the examples brought forward as violations of IEP share the causal
structure of the core examples discussed in our paper: IEP is observed to fail
in case the first antecedent in a right-nested counterfactual causally depends
on the second, embedded antecedent. In this situation the second antecedent
can overwrite the truth of the first antecedent. But if the counterfactual is
reformulated in conjunctive form this overruling of the first antecedent is not
possible anymore.

While the similarity approach does predict that IEP fails, it cannot explain
the specific circumstances in which the principle breaks down and why it seems
to hold in so many other cases. Now, one would expect an interventionist
account to outperform the similarity approach here, because of the central
role causality plays in the interventionist picture. But a strict interventionalist
approach like the one introduced in Section 4.2 validates IEP.16 Recall that in
strict interventionism the variables that are intervened on are cut off from their
causal parents and forced to a particular value. Then all endogenous variables
are calculated again from the values of the exogenous variables and the new
causal dependencies. The order in which interventions are executed has no
effect on the result: once a variable is intervened on, no later intervention on
different variables can change its value. So, the particular observation that we
are considering here, where a later intervention overrules an earlier one, cannot
be modeled.

Our account, however, is made exactly to deal with these causal exceptions
to the IEP (see Section 4.5.1). We allow for later interventions to overwrite
the effect of earlier ones. This occurs exactly in the case the later intervention
affects causes of the earlier intervention. If the antecedents of a right nested
counterfactual are causally independent of each other, our approach will predict
that IEP is valid.17 But in general IEP is not valid. Our approach improves on
the similarity approach, because it puts the finger much more precisely on the
point were IEP fails.

16For discussion and a proof see Briggs [2012].
17In this case the order in which the interventions are performed has no effect on the resulting

model. This follows immediately from the fact that an intervention, as the notion is defined
here, will only affect the value of the variables intervened on and variables causally dependent
on these variables.
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A0 Propositional tautologies MP From φ and φ→ ψ infer ψ

A1 [
−→
X=−→x ](Y = y)→ ¬[

−→
X=−→x ](Y = y′) for y, y′ ∈ R(Y) with y , y′

A2
∨

y∈R(Y)[
−→
X=−→x ](Y = y)

A3
(
[
−→
X=−→x ](Y = y) ∧ [

−→
X=−→x ](Z = z)

)
→ [
−→
X=−→x ,Y=y](Z = z)

A4 [
−→
X=−→x ,Y=y](Y = y)

A5
(
[
−→
X=−→x ,Y=y](Z = z) ∧ [

−→
X=−→x ,Z=z](Y = y)

)
→ [
−→
X=−→x ](Z = z) for Y , Z

A6 (X0  X1 ∧ · · · ∧ Xk−1  Xk)→ ¬(Xk  X0)

A7 [
−→
X=−→x ](φ ∧ ψ)↔ ([

−→
X=−→x ]φ ∧ [

−→
X=−→x ]ψ)

A8 [
−→
X=−→x ]¬φ↔ ¬[

−→
X=−→x ]φ

A9 [
−→
X=−→x ][

−→
Y=−→y ]ψ↔ [

−→
X′=
−→
x′][
−→
Y=−→y ]ψ for

−→
X′ =

−→
X \
−→
Y

A10 (Y = y)→ ¬(Y = y′) for y, y′ ∈ R(Y) and y , y′

A11
∨

y∈R(Y)(Y = y)

A12 (
−→
X = −→x )�

∨
y∈R(Y)(Y = y)

A13
∧



∧
Xi∈
−→
X∩
−→
Xd

(Xi , xi),∧
Xi∈
−→
X\
−→
Xd

(Xi = xi),∧
Z∈
−→
Z
¬

∨
Xd∈
−→
Xd

(Xd  
+ Z),∧

Z′∈V\
−→
Z

∨
Xd∈
−→
Xd

(Xd  
+ Z′)


→

(
((
−→
X = −→x )�Y = y)↔ [

−→
X=−→x ,

−→
Z=−→z ]Y = y

)

A14 ((
−→
X=−→x )� [

−→
Y=−→y ]φ)↔ ([

−→
X′=
−→
x′][
−→
Y=−→y ]φ) for

−→
X′ =

−→
X \ V

A15
(
(
−→
X=−→x )� (φ ∧ ψ)

)
↔

(
(
−→
X=−→x )�φ ∧ (

−→
X = −→x )�ψ

)
A16 ((

−→
X = −→x )�¬φ)↔ ¬((

−→
X = −→x )�φ)

Table 4.1: Axiom system for L[ ],� w.r.t. causal models.

4.5.3 The Axiomatization for the logic

Note how direct dependency (Definition 19) is syntactically definable in
terms of strict intervention. Recall that V ∈ V is directly dependent on X ∈
U ∪V (notation: X ↪→ V) if and only if there is an assignment −→z of values for
all variables in

−→
Z =U∪V\{X,V} and two different values x1, x2 of X such that

the value V gets by setting (
−→
Z ,X) to (−→z , x1) is different from the value it gets by

setting the same variables to (−→z , x2). This can be expressed by the formula∨
−→z ∈ R(U ∪V \ {X,V}),
{x1, x2} ⊆ R(X), x1 , x2,

{v1, v2} ∈ R(V), v1 , v2

[
−→
Z=−→z ,X=x1](V = v1) ∧ [

−→
Z=−→z ,X=x2](V = v2),

which will be abbreviated as X V (cf. with the syntactic definition of causal
dependency in Halpern [2000]). Moreover: thanks to the finiteness of the sets
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of variables, the notion of causal dependency (the transitive closure of direct
dependency, ↪→+) is also syntactically definable. Indeed, given that |U| = m
and |V| = n, the fact that V is causally dependent on X can expressed by the
formula

(X V) ∨
m+n−2∨

k=1

∨
{
〈X1,...,Xk〉|Xi∈(U∪V\{X,V})

}
(
(X X1) ∧

k−1∧
j=1

(X j X j+1)∧ (Xk V)
)

which will be abbreviated as X + V.18

With this syntactic abbreviation, and thanks to Proposition 4.5.1, it is pos-
sible to axiomatise the modified notion of intervention, with the system pre-
sented in Table 4.1. The first block deals with propositional validities. The
second axiomatises the strict intervention [ ] taking advantage of the fact that
our proposal is a conservative extension of the original causal modelling seman-
tics Pearl [2000].19 Axioms A1-A8 characterise its basic (non-nested) behaviour
Halpern [2000]. Then, axiom A9 specifies the way a nested strict intervention
works Briggs [2012], ?: if a model is strictly intervened first on

−→
X and on the

disjoint set of variables
−→
Y , then the former intervention will be overwritten by

the latter.
The third block characterise the behaviour of our non-strict intervention

� . Axioms A10-A11 indicate that every variable has exactly one value.20

Then, axiom A12 states that our modified version of intervention assigns proper
values. Axioms A13 and A14 are the crucial ones, as they describe the relation-
ship between the two forms of intervention. Axiom A13 relies on Proposition
4.5.1 to describe the assignment after a non-strict intervention � in terms
of the assignment after a (different) strict intervention [ ]. It states that, if
−→
Xd contains exactly the variables in

−→
X whose value would change (conjuncts

1 and 2 in the antecedent), and
−→
Z contains exactly the variables that are not

causally dependent on those in
−→
Xd (conjuncts 3 and 4 in the antecedent), then

a non-strict-intervention with
−→
X=−→x coincides with a strict intervention with

−→
X=−→x ,

−→
Z=−→z . Axiom A14 states that non-strict intervention on endogenous

variables does not affect the truth of formulas within the scope of strict inter-
vention, since causal relationships are invariant under non-strict interventions.

18In the formula, k runs over the number of needed intermediate variables (at least 1, and at
most m + n − 2). Then, the intermediate disjunct runs over all possible tuples of k variables.

19The semantic interpretation of atoms, Boolean operators and the strict intervention are as
in Pearl [2000]. The class of models do changes, but this affects neither atoms (variables still
have exactly one of their allowed values) nor Boolean operators. Crucially, strict-interventions
force the assignment to agree with the structural functions, so formulas occurring under their
scope behave just as under the original causal models.

20In Halpern [2000], X = x is equivalent to [ ](X = x); thus, axioms A1 and A2 suffice. This
is not the case in our setting, as interventions cannot be empty; hence the need of A10-A11.
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Finally, axioms A15-A16 are the rules for Boolean operators: given a certain
causal model, there is exactly one causal model results from a certain non-strict
intervention, so Boolean operators can be distributed or pushed into � .

4.5.2. Theorem. This axiom system is sound and strongly complete with respect to
recursive causal models. 21

4.6 Discussion and conclusions

In this paper we proposed a new approach to the semantics of counterfactual
conditionals. Our proposal builds on the well-known interventionist approach,
but uses a different approach to intervention. There are two separate steps that
we took in defining our proposal. First, we made a substantial conceptual
shift in what we understand to be the target of intervention. We propose
that intervention does not take place at the level of structural dependencies,
but at the level of the (incidental) valuations of the variables. Conceptually,
this means that we see intervention not as a hypothetical modification of the
underlying laws of nature, but as the hypothetical assumption of exceptions to
the laws (see Schulz [2011, 2014] for a similar move). As a consequence, after
intervention, no information on causal dependencies in the actual world is lost.
The second part of the proposal lies in how exactly we define the valuation
resulting from intervention. We propose, on the one hand, that the value of
variables not causally affected by the intervened variables remains unchanged
and, on the other hand, that the value of the causally dependent variables is
recalculated according to the laws, the new value of the intervened variables
and the old values of the causally independent variables (see Definition 25).
This approach allows us to satisfy our objectives: (i) the predictions made
for the truth conditions of counterfactuals that are not right-nested are the
same as made in Briggs [2012], and (ii) the approach correctly deals with the
counterexamples brought forward in Fisher [2017].

The change we propose for the concept of intervention, though minor in
terms of predictions, is conceptually quite substantial. In future work we hope
to provide more evidence showing that such a radical change is needed. For
instance, we should look for other counterfactuals for which both notions of
intervention make different predictions, and then test which approach better
matches the intuitions of speakers. Remember that Fisher only discusses exam-
ples of the form (i) B� (¬A� B), where A is a cause of B, while he claims that
the observation extends to arbitrary right-nested counterfactuals. One way to
test our approach would be to look at other types of right-nested counterfactu-
als, for instance examples of the form (iii) B� (¬A�C), where C is a direct
cause of B. In a scenario where A causes B and B causes C, if in the actual

21Proofs can be found in the appendix of Chapter 4.
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Figure 4.4: Overview of the results of the second study; the sentences (i)-(iv)
are those that we asked participants to judge in the two scenarios.

context A = 1,B = C = 0 the strong interventionist approach would predict
that both (i) and (iii) should be true, while according to our approach these
counterfactuals should be false. We performed a second preliminary study to
test these predictions (see the two scenarios in Figure 4.4). While we could
confirm, using the same method as before22, that still the majority of the partic-
ipants consider counterfactual of the form (i) false (left diagram in Figure 4.4),
this effect becomes weaker for counterfactuals of type (iii) and basically disap-
pears in combination with scenario 2 (right diagram in Figure 4.4). Notice, that
additional variables don’t mean a simple increase in uncertainty in the given
answers. People still feel that they have intuitions about the truth values of
these sentences; it’s just that their opinions differ.

These results are problematic for strict interventionism as well as the alter-
native we proposed here. But one should be careful with over-interpreting the
experiments we report on here. Future work will have to show whether the
results obtained are stable. And only when we have a clear picture of the phe-
nomenon that we need to account for does it make sense continue modifying
the approach. Still we think that our proposal makes an important step in the
right direction. Fisher’s examples clearly show that sometimes we need to be
able to recall causal dependencies after an intervention has violated them. This
means that the structural information about these dependencies should not be

22The scripts and data are available at http://projects.illc.uva.nl/cil/.
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the locus of the intervention. So, what we certainly want to defend here is the
proposed step from intervention on the causal dependencies to intervention on
the valuation of the variables. Whether the exact form we gave to intervention
on the valuation is correct needs to be studied in future work.

4.7 Appendix

Proof of Proposition 4.5.1. Let 〈S,A〉 be a causal model. Let
−→
X=−→x be a

counterfactual antecedent, with (i)
−→
Xd the variables in

−→
X whoseA-value differs

from the intended −→x , and (ii)
−→
Y the endogenous variables not occurring in

−→
X

that are not causally dependent on variables in
−→
Xd, with −→y their A-values.23

AbbreviateA
−→
X=−→x (Definition 25) asA1, and letA2 be the (unique) assignment

that is identical withAwith respect to exogenous variables not in
−→
X , assign to

exogenous variables in
−→
X their respective value in −→x , and complies with the

structural functions in S(
−→
X=−→x ,

−→
Y=−→y ). Take any Z ∈ U ∪V; it will be shown that

A1(Z) = A2(Z).
First, for exogenous variables. (1) If Z is not in

−→
X , then bothA1 andA2 agree

with A, the first because Z is not causally dependent on any other variable,
and the second by definition. (2) If Z is in

−→
X , bothA1 andA2 give it the value

indicated by −→x .
Now, for endogenous variables. (1) If Z is in

−→
X , then A1 gives it the value

indicated by −→x (by definition), and so doesA2 (as it complies withS(
−→
X=−→x ,

−→
Y=−→y )).

(2) If Z is in
−→
Y then,A1 uses the value inA (by definition), and so doesA2 (via

the values −→y , taken from A). (3) Finally, suppose Z is neither in
−→
X nor in

−→
Y ;

then, the structural functions used byA1 andA2 to calculate Z’s value are the
same: from S for the first, and from S(

−→
X=−→x ,

−→
Y=−→y ) for the second). On its own,

this does not guarantee that Z’s value under both 〈S,A1〉 and 〈S(
−→
X=−→x ,

−→
Y=−→y ),A2〉

is the same: there is a unique fZ, and yet the values of its parameters (all
other variables) might be different. But, according to the previous items, the
only variables in which A1 and A2 might differ are precisely the endogenous
variables in neither

−→
X nor in

−→
Y . Then, relying on the recursiveness of the model,

one can use an inductive argument to show that, when the process that assigns
values to variables calculates the value of such a Z, the values of all its parents
will be the same in bothA1 andA2. The step #0 in the process assigns values to
the variables in the set S0 := {Z ∈ V\(

−→
X∪
−→
Y ) | the parents of Z are inU∪

−→
X∪
−→
Y }.

The valuationsA1 and A2 coincide in the values of the variables inU∪
−→
X ∪
−→
Y ,

23Thus,
−→
X and

−→
Y are disjoint.
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so they will coincide in the values of variables in S0. Crucially, the model is
recursive, so S0 , ∅. Then, each step #k+1 assigns values to the variables in the
set Sk+1 := {Z ∈ V \ (

−→
X ∪

−→
Y ) | the parents of Z are inU ∪

−→
X ∪

−→
Y ∪

⋃
0≤i≤k Si}.

Now,A1 and A2 coincide in the values of the variables inU∪
−→
X ∪
−→
Y ∪

⋃
0≤i≤k Si,

so they will coincide in the values of variables in Sk+1. Crucially again, the
model is recursive, so Sk+1 , ∅. Thus, eventually the values of all variables in
V \ (

−→
X ∪
−→
Y ) will be calculated, and the values will be the same in both A1 and

A2.
Sketch of proof for Theorem 4.5.2. The proof follows the reduction axioms
strategy frequently used in dynamic epistemic logic Baltag et al. [1998], van Dit-
marsch et al. [2008], van Benthem [2011]. In our case, the strategy relies on
a sound and complete axiom system for the � -less fragment of L[ ],� . For
the remaining formulas, those involving � , the strategy uses ‘reduction ax-
ioms’: valid formulas and validity-preserving rules indicating how to translate
a formula with occurrences of � into a provably equivalent one without
them. Soundness follows from the validity and validity-preserving properties
of the new axioms and rules (so a formula and its translation are semantically
equivalent); completeness follows from the completeness of the axiom system
for the � -less fragment, as the recursion axioms define a recursive validity-
preserving translation from the fullL[ ],� into the latter. The reader is referred
to [van Ditmarsch et al., 2008, Chapter 7] for a detailed explanation of this
technique.

For the underlying system, propositional calculus and axioms A1-A11 con-
stitute a sound and complete axiomatization for L[ ] over general causal mod-
els.24 For dealing with � , axiom A12 states that our modified version of
intervention still assigns variables a proper value.

Axioms A13-A16 define the recursive translation that takes any formula in
L[ ],� and returns a logically equivalent one without � . Axiom A13 is the
basic case for the translation, as it eliminates � by showing how the assign-
ment that results from a non-strict intervention is equivalent to an assignment
that results from a strict intervention (its validity follows from Proposition
4.5.1). Axiom A14 eliminates a non-strict intervention that precedes a strict
one.25 Finally, A15 and A16 indicate how to deal with negations (commute �

24Note: as proved in Halpern [2000], A1-A9 constitute a sound and complete axiom system
for L[ ] over causal models (where the assignment agrees with causal dependencies). The
additional axioms A10-A12, clearly sound, make this work also for the cases in which the
assignment does not align with causal dependencies, which might occur as a result of our
non-strict intervention.

25For its validity, take a causal model 〈S,A〉, with −→u the assignment of A to exogenous
variables. (i) By semantic interpretation, 〈S,A〉 |= [

−→
X=−→x ]φholds if and only if 〈S−→X=−→x ,A

S−→X=−→x 〉 |=

φ holds, withAS−→X=−→x the unique solution to S−→X=−→x whose assignment to exogenous variables is
−→u . (ii) Also from semantic interpretation, 〈S,A〉 |= (

−→
V = −→v )� [

−→
X=−→x ]φ holds if and only if
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and ¬) and conjunctions (distribute � over ∧).26

f (〈S,A〉,
−→
V = −→v ) = 〈S,A′〉 |= [

−→
X=−→x ]φ, which in turn holds if and only if 〈S−→X=−→x ,A

′S−→X=−→x 〉 |= φ,
withA′S−→X=−→x the unique solution toS−→X=−→x whose assignment to exogenous variables is−→u . Then,
〈S−→X=−→x ,A

S−→X=−→x 〉 and 〈S−→X=−→x ,A
′S−→X=−→x 〉 are identical, hence satisfying the same formulas.

26Their validity comes from the fact that the non-strict intervention is deterministic.





Chapter 5

A Causal Analysis of Modal Syllogisms

5.1 Introduction

In his Prior Analytics Aritstotle made a distinction between assertoric and
modal syllogistics. The crucial difference between the two syllogistics is that
only the latter makes use of two different types of predicative relations: acci-
dental versus essential predication. ‘Animal’ is essentially predicated of ‘men”,
but ‘walking’ is not. Although both (a) ‘Every man walks’ and (b) ‘Every man
is an animal’ can be true, it is natural to say that the ‘reasons’ for their respective
truths are different. Sentence (a) is true by accident, just because every actual
man happens to (be able to) walk. The sentence (b), on the other hand, is true
because manhood necessarily involves being animate. In traditional terms it is
said that (b) is true by definition, although this notion of ‘definition’ should not
be thought of nominalistically: it is the real definition. A natural way to account
for accidental predication is to say that a sentence of the form ‘Every S is P’ is
true just in case every actual S-individual is also a P-individual. But how should
we account for essential predication? The answer to this question is important
for logic, because it is by now generally assumed that (e.g. Malink [2013],
Van Rijen [2012], Thom [1991], Vecchio [2016]) that Aristotle’s system of modal
syllogisms, which is almost impossible to understand from a modern point of
view, should be understood in terms of the difference between accidental and
essential predication.

In this paper we will argue for a causal analysis of essential predication.
We will argue that this fits well with Aristotle’s analysis of real definition in
the Posterior Analytics, and that in this way we can account in a relatively
straightforward way for several puzzling aspects of Aritotle’s system of modal
syllogisms presented in his Prior Analytics.

91
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5.2 Standard and Modal Syllogistics

Syllogisms are arguments in which a categorical sentence is derived as con-
clusion from two categorical sentences as premisses. A categorical sentence is
always one of four kinds:

(i) a-type: Universal and affirmative (‘All men are mortal’)

(ii) i-type: Particular and affirmative (‘Some men are philosophers’)

(iii) e-type: Universal and negative (‘No philosophers are rich’)

(iv) o-type: Particular and negative (‘Some men are not philosophers’).

SaP

SiP SoP

SePContrair

Subcontrair

Contradictoir

Su
ba

lt
er

n Subaltern

A categorical sentence always contains two terms. In the a-sentence, for
instance, the terms are ‘men’ and ‘mortal’, while in the e-sentence they are
‘philosopher’ and ‘rich’. Thus, the syntax of categorical sentences can be for-
mulated as follows: If S and P are terms, SaP, SiP, SeP, and SoP are categorical
sentences. Because a syllogism has two categorical sentences as premisses and
one as the conclusion, every syllogism involves only three terms, each of which
appears in two of the statements. The first term of the conclusion is called the
subject term, or minor term, the last term, the predicate term, or major term, and
the term that does not occur in the conclusion is called the middle term. The
premiss in which the major term occurs together with the middle term is called
the major premiss, the other one the minor premiss. The quality of a proposition
is whether it is affirmative (in a- and i- sentences, the predicate is affirmed of
the subject), or negative (in e and o-sentences, the predicate is denied of the sub-
ject). Thus ‘every man is a mortal’ is affirmative, since ‘mortal’ is affirmed of
‘man’. ‘No men are immortal’ is negative, since ‘immortal’ is denied of ‘man’.
The quantity of a proposition is whether it is universal (in a- and e-sentences
the predicate is affirmed or denied of "the whole" of the subject) or particular
(in i and o-sentences, the predicate is affirmed or denied of only ‘part of’ the
subject).

Medieval logicians used the letters ‘a’, ‘i’, ‘e’, and ‘o’ for coding the various
forms of syllogisms. The mood of a syllogism was given by a triple of letters
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like aeo. This triple, for instance, indicates that the major premiss is of type
a, the minor premiss of type e, and the conclusion of type o. But apart from
the mood, what is important as well is the figure. The figure of a syllogism
says whether the major and minor terms occur as subject or predicate in their
respective premisses. This gives rise to four possibilities, i.e., four figures:

1st 2nd 3rd 4th
MP PM MP PM
SM SM MS MS
SP SP SP SP

A valid syllogism is a syllogism that cannot lead from true premisses to a
false conclusion. It is well-known that by a set theoretic semantic analysis,
we can account for syllogistic reasoning. For now we will interpret terms just
as sets of individuals and equate for simplicity the interpretation of a term
with the term itself. Then we say that SaP is true iff S ⊆ P, SiP is true iff
S ∩ P , ∅, SeP is true iff S ∩ P = ∅, and SoP is true iff S * P.1 This seman-
tic interpretation accounts for many valid syllogisms, but not all of them. In
particular, not for the valid syllogisms for which it is required that SaP entails
SiP. This can be easily accounted for by assuming that for the truth of SaP it
is not only required that S ⊆ P, but also that S , ∅. It is well-known that with
such an interpretation of categorical sentences, all and only all of the following
syllogisms are predicted to be valid that Aristotle considered to be valid as well.

Barbara1 Barocco2 Bocardo3 Camenes4

Celarent1 Festino2 Disamis3 (Fesapo4)
Darii1 Camestres2 Ferison3 Dimaris4

Ferio1 Cesare2 Datisi3 Fresison4

(Barbari1) (Camestrop2) (Felapton3) (Bramantip4)
(Celaront1) (Cesaro2) (Darapti3) (Camenop4)

The syllogisms between brackets are only valid in case one assumes exis-
tential import. The above semantic analysis of categorical sentences is nice,
because with the help of Venn-diagrams, one can now easily check the validity
of any syllogistic argument.2 For later in the paper, note that we could interpret
Aristotle’s standard categorical sentences probabilistically as well with equiv-
alent predictions: SaP is true iff the conditional probability of P given S is 1,
P(P|S) = 1, SeP is true iff P(S∩P) = 0, SiP is true iff P(S∩P) , 0 and SoP is true iff
P(P|S) , 1. Notice that on this probabilistic interpretation SaP presupposes that

1Warning: in the literature categorical sentences of the form XaY and XiY are read many
times in the converse order as we read them and mean that all/some Y belong to X.

2On the other hand, it is well-known that we don’t need the full power of Boolean algebra
to account for Syllogistic validity; semi-lattices will do.
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P(S) > 1, which immediatelly accounts for Aristotle’s subalternation inference:
SaP |= SiP.

Let us now come back to the question what is the natural interpretation of
Aristotle’s modal syllogistics. Let us assume that Ba�C means that all Bs are
necessary/essentially C. Aristotle claims that the following modal syllogisms
are valid and invalid, respectively:

(i) Ba�C,Aa�B ∴ Aa�C Valid Barbara LLL

(ii) Ba�C,AaB ∴ Aa�C Valid Barbara LXL

(iii) BaC,Aa�B ∴ Aa�C Invalid Barbara XLL

Although Aristotle had intuitions about which modal syllogistic inferences
are valid and which not, he did not base that on a standard semantics. As it
turns out, it is already hard enough to account semantically for the intuitions
concerning (i)-(iii). But what makes the task especially challenging is that
Aristotle also claims that not only conversion inference 4 is valid, but that the
same holds for the modal conversion inferences 5 and 6:

4. BeC ∴ CeB Valid

5. Be�C ∴ Ce�B Valid

6. Bi�C ∴ Ci�B Valid

Of course, it is easy to account for inferences 5 and 6 if we assume that the
modal should be interpreted in a de dicto way. But it is equally easy to see that
on such an analysis inference (ii) is not predicted to be valid. A de re analysis
of sentences like Ba�C, on the other hand, would make inference 2 valid, but
such an analysis cannot account for the modal conversion inferences 5 and 6.
So neither a standard de dicto nor a de re analysis of modal statements would
work to account for Aristotle’s intuitions.

Some commentators (e.g. Lukasiewicz, 1967; Patzig, 1968; Hintikka, 1973)
concluded that the combination of these statements just doesn’t make any sense
and that Aristotle must have been confused. Others, however, tried to account
for these claims by looking for a consistent semantics of Aristotle’s system (e.g.
Thomason, 1993; Uckelman & Johnston, 2010). The most interesting of these
latter accounts build on the idea that Aristotle’s modal syllogistics was based
on his metaphysics and philosophy of science (e.g. Rescher [1964], Van Rijen
[2012], Patterson [2002], Malink [2013], Vecchio [2016])3 Unfortunately, most of
these authors have difficulty making many predictions of valid modal syllo-
gistic reasoning that correspond with Artstotle’s intuitions. Recently, however,

3Some (Van Rijen [2012]) have claimed that Ba�C can hold only if ‘B’ is a substance term.
This won’t quite be enough (cf. Rini et al. [1998], Malink [2013]. Malink [2013] demands on
top that a substance term can only be predicated of another substance term. We take this to
follow naturally from a causal view.
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Malink [2013] has shown that it is actually possible to come up with a system-
atic analysis of modal syllogistic sentences such that it gives rise to predictions
almost exactly in accordance with Aristotle’s claims.4 His analysis, however,
is quite involved. One wonders whether a simpler analysis is not possible. As
mentioned earlier, we think such a simpler analysis is possible, if we make use
of a causal analysis of modal categorical statements.

In this paper we will argue for a causal analysis of Aristotle’s modal claims.
We will argue that this fits well with Aristotle’s analysis of demonstrative
inferences in the Posterior Analytics, and that in this way we can account in a
relatively straightforward way for several puzzling aspects of Aritotle’s system
of modal syllogisms presented in his Prior Analytics.

5.3 Causal analysis and Aristotelian demonstrations

5.3.1 Causal dependence and causal models

Consider the following two sentences:

(15) a. Aspirin causes headaches to diminish.

b. Aspirin relieves headaches.

Intuitively, (15a) says that there exists a causal connexion between Aspirin
and diminishing headaches: the intake of Aspirin tends to diminish headaches.
Remarkably, (15a) seems to express the same content as the generic sentence
(15b). This strongly suggests that also the generic sentence (15b) should be
given a causal analysis. Thus, not only (15a), but also (15b) expresses the fact
that particular intakes of Aspirin tend to cause particular states of headache to
go away, because of what it is to be Aspirin. Or, as we will say, because of the
causal power of Aspirin to relieve headaches.

Causality is a kind of dependence. A number of authors have recently
argued for a dependency analysis of conditionals, which is most straightfor-
wardly done using probabilities: C depends on A iff P(C|A) > P(C).5 However,
Douven (2008) has argued that dependence is not enough, ‘If A, then C’ is
acceptable only if both P(C|A) > P(C) and P(C|A) are high.

We can implement Douven’s proposal by requiring that P(C|A) − P(C|¬A)
is close to 1 − P(C|¬A). Since P(C|A) > P(C) iff P(C|A) > P(C|¬A), we can
demand that the conditional is acceptable iff P(C|A)−P(C|¬A)

1−P(C|¬A) is high. This can only
be the case if both P(C|A)−P(C|¬A) and P(C|A) are high, so it derives Douven’s
demands.

4Vecchio [2016], building on Malink [2013], even slightly improves on Malink’s predictions.
5For a discussion of some qualitative variants, see Spohn (2013) and Rott (ms).
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The measure P(C|A)−P(C|¬A)
1−P(C|¬A) is interesting from a causal perspective. Especially

among philosophers dissatisfied with a Humean metaphysics, causal powers
have recently become en vogue (again). Indeed, a growing number of philoso-
phers (Harré & Madden, 1975; Cartwright, 1989; Shoemaker 1980; Bird 2007)
have argued that causal powers, capacities or dispositions are the truth-makers
of laws and other non-accidental generalities. Cheng (1997) hypothesises the
existence of stable, but unobservable causal powers (Pearl [2000] calls them
‘causal mechanisms’) pac of (objects or events of kind) A to produce C. Cheng
then derives a way how this objective but unobservable power can be estimated
by an observable quantity, making use of standard probability theory and as-
suming certain natural independence conditions. It turns out that this quantity
is exactly the above measure: pac = P(C|A)−P(C|¬A)

1−P(C|¬A) . Cheng’s notion has been used
for the analysis of conditionals, generics and disposition statements, in Schulz
and Rooij [2019], van Rooij and Schulz [2019].

Dispositions and causal powers are things that (kinds of) objects have, in-
dependently of whether they show them. It is standardly assumed, though,
that these (kinds of) objects would show them, if they were triggered suffi-
ciently. Thus, there should be a relation with counterfactuals. Pearl (2000)
provides a causal analysis of counterfactuals. He shows, however, that his
(intervention-based) notion of ‘probability of causal sufficiency of A to pro-
duce C’, abbreviated by PSC

A, can be estimated under natural conditions by the
same observable quantity P(C|A)−P(C|¬A)

1−P(C|¬A) as Cheng’s notion of causal power.
To see how he derives this quantity, we need to introduce causal models.

We will use causal models to represent causal and counterfactual relationships.
With Pearl [2000] we assume that such models represent a collection of ‘mecha-
nisms’, a set of stable and autonomous relationships, represented by equations.
A causal model,M, is a triple, 〈U,V,R〉, whereU andV are disjoint finite sets
of exogenous and endogenous variables. Let the members ofU andV can be
listed as U1, ...,Un (written as

−→
U for short) and V1, ...,Vm (written as

−→
V for short)

respectively. F is a set of mappings: each fi ∈ F is a mapping which gives the
value of Vi given the values of all other variables inU ∪V. While the values
of the exogenous variablesU are determined by factors outside the model, the
values of the endogenous variablesV are determined by the values of variables
in the model, i.e., byU∪V. WhatU represents depends on the application of
the causal model. It can represent a set of situations, but also, for instance, a set
of objects. Depending on the application, an assignment toU, namely

−→
U = −→u ,

can thus represent, for instance, a particular situation, or object (or vector of
situations or objects). Such an assignment ofU uniquely determines the values
of all the endogenous variables. Thus, if X is an endogenous variable, X(−→u )
gives the value of X if

−→
U = −→u . The set of mappings F , finally, represent the

mechanisms, or causal dependencies. More particularly, each function fi can
be written as an equation
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(16) vi = fi(pai,ui)

where pai denotes the values of the endogenous variables that are the parents
of Vi, and where the ui are the set of exogenous variables on which fi depends.

For the representation of hypothetical changes, or interventions, Pearl (2000)
makes use of submodels. A submodelMx ofM is the causal model 〈U,V,Fx〉,
where x is a particular value of endogenous variable(s) X, and where Fx is just
like F, except that all functions fx that correspond to members of X are replaced
by constant function X = x. Intuitively, Mx represents the minimal change
fromM required to make X = x true for any u ∈ U. If X and Y are variables in
V, the counterfactual ‘The value that Y would have obtained, had X been x’ is
interpreted as denoting Yx(u). Intuitively, this will just be fy(x,u), in case X is
the only parent of Y.

In this paper we will make use of a probabilistic causal model. This is a pair
〈M,P(u)〉, whereM is a causal model, and P(u) is a probability function defined
over the domain U. Because each endogenous variable is a function of U, P(u)
completely defines the probability distribution over the endogenous variables
as well. If Y is a variable in V, we will abbreviate P(Y = y) from now on by
P(y). The latter is determined as follows:

(17) P(y) :=
∑

u

P(u) ×

 1, if Y(u) = y

0, otherwise.

Similarly, if X is also a variable in V, we will abbreviate P(Yx = y) by P(yx).
The latter is determined as follows:6

(18) P(yx) :=
∑

u

P(u) ×

 1, if Yx(u) = y

0, otherwise.

One of the most appealing features of calculating P(yx) as proposed by Pearl
is that in this way we can also determine the probability Y = y would have
after an invention that would make x true, if x and y are, in fact, not true. Thus,
on Pearl’s analysis one can easily determine P(yx | ¬x,¬y). This latter notion is
calculated as follows:7

(19) P(yx | ¬x,¬y) :=
P(yx,¬x,¬y)

P(¬x,¬y)
=

∑
u

P(u | ¬x,¬y) ×

 1, if Yx(u) = y

0, otherwise.

6For those who are not familiar with causal models, it might help to think of P(yx) as the
probability of y after imaging P by x, as proposed by Lewis (1976), if X and Y correspond to
variables associated with propositions.

7For convenience, we will sometimes use a comma, instead of logical ‘∧’ below.
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The probability of causal sufficiency of A to produce C, abbreviated by PSC
A,

is thus determined as P(CA | ¬C,¬A) = P(CA,¬C,¬A)
P(¬C,¬A) .

We will now show (following Pearl, 2000, chapter 9) that under natural
conditions this reduces to P(C|A)−P(C|¬A)

1−P(C|¬A) , i.e., to Cheng’s notion of causal power. To
do so, we will first assume (i), a consistency assumption used for counterfactuals,

(i) A⇒ (CA = C).

This assumption is natural: if A already holds, an intervention to make A true
leaves everything as is.8 Pearl also assumes a notion of exogeneity, i.e., that CA

is independent of learning A (and thus also that ¬C¬A is independent of ¬A).

(ii) A variable A is said to be exogenous relative C in model M iff P(CA ∧

C¬A|A) = P(CA ∧ C¬A).

Pearl’s assumption that A is exogenous to C is very similar to Cheng’s (1997)
assumption that the potential causes of C are independent of one another (the
Noisy-OR assumption). It rules out that learning A influences the probability
of C via an indirect way, for instance that if B is another potential cause of C,
there is a common cause of A and B.

Making use of these two assumptions, we can make the following deriva-
tion:

P(CA,¬A,¬C)
P(¬A,¬C)

=
P(CA,¬A,¬C¬A)

P(¬A,¬C)
by (i)

=
P(CA,¬C¬A) × P(¬A)

P(¬A,¬C)
by (ii)

=
P(CA ∧ ¬C¬A) × P(¬A)

P(¬C ∧ ¬A)

=
P(CA ∧ ¬C¬A)

P(¬C/¬A)
because P(B ∧ A) = P(B/A) × P(A)

PSC
A =

P(CA ∧ ¬C¬A)
1 − P(C/¬A)

Next, we will derive that P(CA ∧ ¬C¬A) = P(CA) − P(C¬A), on the additional
assumption of monotonicity:

(iii) C is monotonic relative to A iff for all u: CA(u) ≥ C¬A(u).

Notice that because of monotonicity, if C¬A is true, then CA is also true, and
thus ¬CA is false. Thus, C¬A ∧ ¬CA cannot be true.

8If we would analyse the counterfactual A �→ C by CA, this consistency rule would validate
the inference A,C ∴ A �→ C. This inference rule is accepted by almost everyone working on
counterfactuals, although, to be honest, not by everyone.
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CA = CA ∧ (C¬A ∨ ¬C¬A) because C¬A ∨ ¬C¬A = >

= (CA ∧ C¬A) ∨ (CA ∧ ¬C¬A)
C¬A = C¬A ∧ (CA ∨ ¬CA)

= (C¬A ∧ CA) ∨ (C¬A ∧ ¬CA)
= C¬A ∧ CA because C¬A ∧ ¬CA is false (monotonicity)

By substituting C¬A for C¬A ∧ CA in the elaboration of CA, we get CA = C¬A ∨

(CA∧¬C¬A). Because C¬A is incompatible with ¬C¬A, and thus with CA∧¬C¬A,
it follows that P(CA) = P(C¬A) + P(CA∧¬C¬A), and thus P(CA∧¬C¬A) = P(CA)−
P(C¬A). Thus, following Pearl we have derived that

(20) PSC
A = P(CA)−P(C¬A)

1−P(C/¬A) .

By using the rule A⇒ (CA = C) (and thus also ¬A⇒ (C¬A = C)), we can de-
rive with exogeneity that P(CA) = P(CA|A) = P(C|A) and P(C¬A) = P(C¬A|¬A) =
P(C|¬A). But this means that under the natural conditions of (i) consistency,
(ii) exogeneity and (iii) monotonicity, we have established that

(21) PSC
A = P(C|A)−P(C|¬A)

1−P(C/¬A) .

Thus, PSC
A can be thought of as the causal power of A to produce C, i.e.,

pac. Notice that if all involved causal powers have value 1, a sequence of such
causal powers is transitively closed: if PSB

A = 1 and PSC
B = 1, then also PSC

A = 1.
Obviously, also PSA

A = 1, meaning that causal power is reflexive, and that de-
manding PS to be 1 gives rise to a pre-order. Interesting about the probabilistic
measure P(C|A)−P(C|¬A)

1−P(C|¬A) is that it has its maximal value 1 just in case P(C|A) = 1
and P(C|¬A) , 1.9 Similarly, we predict that PS¬C

A = 1 and pa¬c = 1 holds only
if P(C|A) = 0 and P(C|¬A) , 0. Interestingly, pa¬c corresponds with Cheng’s
(1997) notion of causal power of A to prevent C. We propose that these notions
might help us to provide a natural semantics for Aristotle’s modal categorical
sentences in order to illuminate Aristotle’s hard to understand system of modal
syllogisms.

5.3.2 A causal analysis of Aristotelian demonstrations

Many dialogues of Plato focus on questions of the form ‘What is X?’, where
X is typically some moral property like virtue or courage, a natural kind of

9Of course, the causal notions PSC
A and pac demands this as well in case their values are 1,

but in addition they demand that A is a cause of C, and not that A is uniquely caused by C. If
we limit ourselves to values that are 1 or not, the probabilistic measure is antisymmetric, and
thus gives rise to a partial order.
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thing like human, or water, or a mathematical object like a triangle. A good
answer to this kind of question must consist of a set of features all and only
all individuals of type X have. Aristotle, a pupil of Plato, was interested in the
same kind of questions. But he also was more ambitious. If all (and only all)
individuals or objects of type X share certain features, Aristotle also wanted to
know why. Indeed, for Aristotle, scientific inquiry is an attempt to answer ‘why’
questions. A scientific explanation of a fact about the world consists of a valid
syllogistic argument with some fundamental true claims as its premises and
this fact as the conclusion. But not any old valid syllogism would do, for the
premises must express fundamental true claims. A valid syllogism that satisfies
this extra requirement Aristotle calls a demonstration. A typical Aristotelian
demonstration is the following:

(22) a. All humans are animals.

b. All animals are living things.

c. Therefore, all humans are living things.

In this demonstration, the two premisses are taken to express essential fea-
tures of humans and animals, respectively. They follow from Aristotle’s theory
of real definitions of objects of type X in terms of (i) an immediately higher type
Y, and a differentia Z. If X is ‘human’, for instance, then Y would be ‘animal’,
and Z would be ‘rational’: a man is a rational animal. Thus, in ‘All humans
are animals’, ‘being animal’ is essentially predicated of humans, and the first
premise of the above syllogisms can be expressed by Sa�P. However, not all
true sentences of the form Sa�P can be read off directly from Aristotle’s theory
of real definitions. Some have to be indirectly derived. This is what happens
in the above syllogism. In the above syllogistic argument, the premisses can
be directly read off from Aristotle’s theory of definition, but to reach the con-
clusion an additional argument is needed. This is provided by the syllogism,
that can be stated as being of the form Aa�B,Ba�C ∴ Aa�C. For Aristotle, this
argument explains why humans are living things. The argument turns a fact
into a reasoned fact.10

What has this all to do with causality? Well, Aristotle had a somewhat
wider notion of causality than many moderns have. For him, it is necessary for
humans to be able to learn grammar. But being able to learn grammar is not
an essential property of humans or of any higher kind. It just causally follows
by necessity from being rational (according to Aristotle). Thus, even though all
and only all objects of type X have feature f and g, it can be that one of the
features is still only a derived feature, causally derived.

10For much more detailed and sophisticated analyses of Aristotelian demonstration see
Crager (2015) and Vecchio (2016).
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So far, it seems that scientific demonstrations must consist of two premisses
that are both necessary. But this is not exactly what Aristotle seems to assume.
In fact, in his Posterior Analytics Aristotle discusses the following two valid
syllogisms:

(23) a. All (the) planets are near the earth

b. All objects that are near the earth do not twinkle

c. Therefore, (all) the planets do not twinkle.

and

(24) a. All (the) planets do not twinkle.

b. All objects that do not twinkle are near the earth.

c. Therefore, (all) the planets are near the earth.

In these arguments, the premises (23a) and (24b) are not taken to express
necessary truths. Although the second syllogism is not taken to be a scientific
demonstration, Aristotle claims that the first syllogistic inference is. It leads
to a ‘reasoned fact’, because the middle term ‘being near the earth’ causally
explains the conclusion, something that is not the case for the middle term
in the other inference ‘objects that do not twinkle’. If we would translate
the above arguments in modal syllogistic terms, they would be of the forms
AaB,Ba�C ∴ Aa�C and Aa�B,BaC ∴ Aa�C, respectively. Note that they are thus
of types Barabara LXL and Barbara XLL, respectively.11 Note also that in his
Prior Analytics, Aristotle took only the first type of argument valid. So, there
seems to be a close relation between what Aristotle claims in his two Analytics.

5.4 Causality and modal syllogisms

Causal links need not only connect propositions, they can connect properties,
or features, as well. In fact, Danks [2014] argues that all prominent theories
of concepts could be represented by graphical causal models. Although not
explicitly discussed, the essentialists’ version is one:: features of birds are
connected (and thus caused) in various strengths to the essence of the kind, i.e.,
by what it is to be a bird.

Let us now come back to the question what the natural interpretation of
Aristotle’s modal syllogistics is.

Recall that Ba�C means that all Bs are necessary/essentially C and that Aristotle
claimed that the following modal syllogisms are valid and invalid, respectively:

11According to Vlecchio (2016), the argument in (9) explains why planets do not twinkle,
by using a fact is which part of the nominal definition of a planet (‘being near the earth’), but
which is not a part of its real definition.
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(i) Ba�C,Aa�B ∴ Aa�C Valid Barbara LLL

(ii) Ba�C,AaB ∴ Aa�C Valid Barbara LXL

(iii) BaC,Aa�B ∴ Aa�C Invalid Barbara XLL

Similarly, Aristotle claims that the following modal syllogism is valid, where
Be�C means that by (de re) necessity no B is a C:

4. Be�C,AaB ∴ Ae�C Valid Celarent LXL

Moreover, Aristotle claims that not only conversion inference 5 is valid, but
that the same holds for the modal conversion inferences 6 and 7:

5. BeC ∴ CeB Valid

6. Be�C ∴ Ce�B Valid

7. Ba�C ∴ Bi�C Valid

We claim that Aristotle’s claims make perfect sense once we understand
Ba�C as causally explaining why C. More in particular, we would like to say
that Ba�C just means that B has complete causal power to make C to hold, i.e.,
PSC

B = 1 (or pbc = 1) and that Be�C just means that B and C have complete causal
powers to prevent each other to hold, i.e., PS¬C

B = 1 and PS¬B
C = 1 (or pb¬c = 1

and pc¬b = 1).12 So we argue that Aristotle’s modal syllogisms are based on
causal principles. As noted above, for PSC

B = 1 (or pbc = 1) to hold, it must
be that (i) P(C|B) = 1 and (ii) P(C|¬B) , 1. We will assume the probabilistic
analysis of non-modal categorical sentences as mentioned in section 2. Thus,
BaC will be true iff P(C|B) = 1.

Inference 1 is valid on this interpretation, because if the premisses are true
the following will hold (i) P(C|B) = 1, (ii) P(C|¬B) , 1, (iii) P(B|A) = 1 and (iv)
P(B|¬A) , 1. Obviously, by (i) and (iii) it follows that P(C|A) = 1. From (ii) and
(iv) it follows that (a) there are some ¬Cs among the ¬Bs, and (b) that there are
some ¬Bs among the ¬As. By (a) and (b) this means that P(C|¬A) , 1. Thus,
P(C|A) = 1 and P(C|¬A) , 1 which means that Aa�C.

Inference 2 is also valid on this interpretation, because if the premisses are
true it means that the following will hold (i) P(C|B) = 1, (ii) P(C|¬B) , 1 and (iii)
P(B|A) = 1. Obviously, by (i) and (iii) it follows again that P(C|A) = 1. From (ii)
it follows that there are some ¬Cs among the ¬Bs. But because AaB, it holds
that all ¬Bs are ¬As, and thus there must also be some ¬Cs among the ¬As.
Thus, P(C|A) = 1 and P(C|¬A) , 1 which means that Aa�C.

12Aristotle’s (hyperintensional) distinction between necessity and essentiality suggests that
the analysis of Ba�C as pbc = 1 is still too coarse-grained. Notice, however, that even if B and
C are necessary co-extensive, it will typically be (causally speaking) that either pbc = 1 and
pcb = 0, or pbc = 0 and pcb = 1. We take the former to be the case if B is a substantive term and
C an adjectival one. We assume, however, that B and C can prevent each other (to account for
Be�C ∴ Ce�B).
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Inference 3, however, is not valid. The important thing to observe is that
this is just an instance of right weakening,13 an inference which should (and
does) not hold on our causal analysis. In particular, the inference has a coun-
terexample, in case the domain consists only of C individuals.

Similarly, we can account for Aristotle’s intuition that inference 4 is valid.
Using the above interpretation of non-modal statements, we account for infer-
ence 5. As for the validity of inference 6, notice that Be�C holds iff (i) P(C|B) = 0
and (ii) P(C|¬B) , 0. From (i) it immediately follows that also (a) P(B|C) = 0,
if ^C. But that ^C follows immediately from (ii). But from (i) it also follows
that (b) there is a B that is ¬C (for otherwise P(C|Ba) would not be defined).
From (a) and (b) it immediately follows that Ce�B holds. (Actually, we have to
consider P(B|¬C) , 0 as well, but that is analogue to the other case.)14 As for
inference 7, this immediately follows from the semantic analysis of statements
like Ci�B to be given in a minute.

Our predictions agree with all Aristotle’s claims of (in)validities of universal
modal syllogisms with modality�. For instance, we correctly predict Aristotle’s
claimed validity of Cesare LXL, Camestres XLL, and his claim of invalidity of
Camester LXL. The latter one – Ba�A,CeA 6|= Be�C – is particularly interesting.
It is easy to see that this inference would be predicted as valid, if we analysed
CeA as true iff P(A|C) = 0, which presupposes that P(C) , 0. However, we have
analysed CeA as true iff P(C∩A) = 0, and on this interpretation Camestres LXL
is not predicted to be valid, in accordance with Aristotle’s intuitions. More in
particular, our analysis makes the right predictions for the modal Barbara and
Celarent syllogisms of the first figure.

As for the second figure, and limiting ourselves to universal statements, we
have to explain why (according to Aristotle)

(25) a. Ae�B,CaB |= Ce�A Cesare LXL

b. AeB,Ca�B 6|= Ce�A Cesare XLL

and

(26) a. Aa�B,CeB 6|= Ce�A Camestres LXL

b. AaB,Ce�B |= Ce�A Camestres XLL

As for (25a), this follows immediately from our semantics, assuming that
Ae�B holds if pa¬b = 1 and pb¬a = 1. For (25b) this follows because BeA is true
P(B∩C) = 0. As for (26a). This doesn’t follow, because it is not guaranteed that
P(C|¬A) , 0, which makes the conclusion false. Inference (26b) is immediately
verified. There are no other modal syllogisms with only universal statements of

13In condidtional terms, right weakening means that if A⇒ B and B |= C, then also A⇒ C.
14Perhaps it is better to interpret Be�C as ¬(Bi�C).
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the second figure to be checked, and we don’t know about Aristotle’s intuitions
on only ‘universal’ modal syllogisms of the fourth figure (Cameses4), so these
are all predicted in accordance with Aristotle’s intuition.

As for modal syllogisms with non-universal sentences, Aristotle claims (27a)
(of the first figure) to be valid, but (27b) not to be so:

(27) a. Ba�A,CiB |= Ci�A Darii LXL

b. BaA,Ci�B 6|= Ci�A Darii XLL

To account for this, we first need to know what makes Ci�B true. In coun-
terfactual terms, we propose that this is true iff ∃x : xaC,∃D : xa�D and
P(BD|¬B,¬D) = 1,15 where xaC is the singular categorical sentence that (all)
x is C, and xa�D the singular categorical sentence that (all) x is necessary D.
This is enough to make Darii LXL valid. However, this meaning rule makes
Darii XLL invalid, as desired. Notice that in non-counterfactual terms, the
symmetric version of our interpretation of Ci�B comes down to the following:
Ci�B is true iff ∃x ∈ C ∩ B and P(B|¬x) , 1 or P(C|¬x) , 1. Similarly, Co�B is
true iff ∃x, y : xaC, yeC and P(B|x) , 1 and P(B|y) = 1.16 This latter more specific
interpretation rule for Co�B (using y such that yeC instead of ¬x) is required to
account, for instance, for Aristotle’s claimed invalidity of Barocco XLL.17

Aristotle also claims a distinction between the following syllogisms also of
the first figure:

(28) a. Be�A,CiB |= Co�A Ferio LXL

b. BeA,Ci�B 6|= Co�A Ferio XLL

Inference (28a) follows immediately if we analyse Co�A as true iff ∃x :
xaC,∃D : xa�D and P(¬AD|B,¬D) = 1. There is an easy counterexample to
(28b), again due to the fact that the conclusion Co�A demands that there is at
least one A, while premise BeA can be true without there being such an A.

Aristotle didn’t give his opinion on every possible syllogism which involves
sentences with necessity modals. In fact, he limited himself to syllogisms that
(i) have a necessity modal in the conclusion, (ii) are of the first three figures and
(ii) that are valid without any modal. Still, there are 6 valid syllogisms in each
figure, and 3 possible combinations where at least one of the premises has a
necessity modal. Of those 54 syllogisms, Aristotle expressed his opinion on 42
of those modal syllogisms.18 23 of those syllogisms he counted valid, and the

15Or better, the following symmetric version to account for conversion Ci�B |= Bi�C, Ci�B is
true iff ∃x,∃D : xa�D and (i) xaC and P(BD|¬B,¬D) = 1 or (ii) xaB and P(CD|¬C,¬D) = 1.

16Formulated more sophisticated: Ci�B is true iff ∃x : xaC and xaB and (pxb = 1 or pxc = 1).
17To be clear, a much simpler interpretation rule for Co�B is possible, if AaB would be

interpreted as true iff A ⊆ B. Then we could just say that Co�B is true iff ∃X : xaC and px¬b = 1.
18We base ourselves here completely on appendix A of Malink [2013]
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others non-valid. He looked at 14 syllogisms where all categorical sentences
involved had a necessity modal, such as Barbara LLL, and he counted all of
them as valid. We can check that all such modal syllogisms are valid on our
analysis as well. Let us go to one of the more challenging ones to explain: Darii
LLL, Ba�A,Ci�B |= Ci�A. The first premise means that PSA

B = 1. According
to the second premise, ∃x : xaC,∃D : xa�D and PSB

D = 1. Because if PSA
B = 1

and PSB
D = 1, it follows by transitivity that also PSA

D = 1. It follows that thus
∃x : xaC,∃D : xa�D and PSA

D = 1, which means that conclusion Ci�A is true.
As for the other 30 modal syllogisms of this type that Aristotle considered,

we checked them as well, and our analysis predicts in accordance with Aris-
totle’s intuitions. Thus, our analysis makes predictions exactly in accordance
with Aristotle’s claims of (in)validity for every modal syllogism Aristotle’s
explicitly discussed! We think this is quite remarkable.

We haven’t checked our predictions for all 16.384 modal syllogisms, though.
In fact, we didn’t check any syllogism with the possibility and contingency
modals that Aristotle also discussed. In this paper we did not even propose
meanings of such sentences. Of course, for the standard possibility modal, a
natural analysis suggests itself:

(29) Aa^B ≡ ¬(Ao�B) Ae^B ≡ ¬(Ai�B)

Ai^B ≡ ¬(Ae�B) Ao^B ≡ ¬(Aa�B)

But it remains to be seen whether this analysis gives rise to predictions that
accords with Aristotle’s intuitions. It is even less clear whether we can account
for Aristotle’s claims involving the contingency modal, ∆, a task that is perhaps
the most challenging. Striker (1985) argues, though, that sentences like Aa∆B
should be interpreted basically as generic sentences, where B applies by nature,
or for the most part, to A. Interestingly, this suggestion would be quite in line
with van Rooij & Schulz (2020), according to which generic sentences of the
form ‘As are B’ are interpreted as having high causal power, i.e. pab ≈ 1. But
it is more natural to interpret Aa∆B as ∀x ∈ A : ¬∃D : xa�D and (Da�B or
De�B) and Ai∆B as ¬∃x ∈ A : ∃D : xa�D and (Da�B or De�B) to account for
Aristotle’s claims that Aa∆B is equivalent with Ae∆B and Ai∆B with Ao∆B, and
that not only Ai∆B is equivalent with Bi∆A, but also that Ao∆B is equivalent with
Bo∆A. We don’t know whether with this interpretation we can account for all of
Aristotle’s intuitions w.r.t. modal syllogisms involving ∆. But the smoothness
of our explanation of Aritotle’s above intuitions makes one optimistic.

But there is further ground for optimism. Malink [2013] and Vecchio [2016]
have recently shown how to account for most (if not all) of the Aristotle’s claims
about modal syllogisms making use of essences. Ba�C is true iff all Bs are C in
virtue of what it is to be a B. But that is exactly how we think of our own
proposal as well.
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5.5 A challenge: counterexamples to Barbara LXL?

We have shown in the previous section that our causal power analysis can
account for why the modal syllogism Barbara LXL, Ba�C,AaB ∴ Aa�C is valid,
although Barbara XLL, BaC,Aa�B ∴ Aa�C, is not. We have seen that this can be
shown if we analyse statements like Ba�C = 1 by P(C|B)−P(C|¬B)

1−P(C|¬B) = 1 and AaB = 1
by P(B|A) = 1. We have also seen that the causal notions of causal power and
PSC

A come down to this probabilistic notion under certain circumstances.
Although Aristotle claimed that Barbara LXL is valid, very soon (putative)

counterexamples to this modal syllogisms were offered:19

(30) a. All litererats necessarily have knowledge, all men are litarate, thus all
men necessarily have knowledge.

b. Ba�C,AaB ∴ Aa�C Barbara LXL

In fact, Aristotle himself provided a (putative) counterexample to Celarent
LXL himself.

(31) a. All ill people are necessarily not healthy, all men are ill, thus all men
are necessarily not healthy.

b. Be�C,AaB ∴ Ae�C Celarent LXL

Malink [2013] and Crager [2015] argue that these counterexamples can be
explained away if we take seriously Aristotle’s analysis of ‘genuine predication’
from Aristotle’s Categories. The idea is that terms can denote sets of different
ontological types: some denote substances, while others denote qualities. Just as
each substance has an essence, this is also the case for each quality. However,
denotations of the same type can only stand in a limited number of extensional
relations with each other. For instance, for any two substances A and B, it
cannot be that A∩B , ∅without either A ⊂ B or B ⊂ A. Beyond this extensional
constraint, there lays a more important intensional constraint: if A and B are of
the same ontological type, then, if A ⊂ B, then Aa�B. Malink [2013] and Crager
(2015) argue that Aristotle took Barbara LXL and Celarent LXL to be valid
because he demanded that in a demonstration with a necessary conclusion,
also the seemingly nonmodal premise (in our cases, the minor premise AaB)
should be a case of genuine predication.

If Malink [2013] and Crager [2015] are correct, it means that valid modal
syllogisms with a necessity modal in the conclusion should, in the end, all be of
the form LLL. It also suggests that our explanation in the previous section of the
validity of Barbara LXL and Celarent LXL will not be correct, for otherwise the

19For modern discussion, see van Rijen (1989),Rini et al. [1998], Van Rijen [2012], Malink
[2013], Crager [2015].
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(putative) counterexamples above would likely be genuine counterexamples.
If we want to stick to our causal analysis, this suggests that instead of looking
at the extensional notion P(C|B)−P(C|¬B)

1−P(C|¬B) = 1 for the analysis of Ba�C we should look

at the intensional counterpart, P(CB)−P(C¬B)
1−P(C|¬B) = 1, where intervention still plays an

important role, and the counterfactual probabiltiy P(BA) is not reduced to the
conditional probability P(B|A). Indeed, on such an intensional analysis Barbara
LXL, Ba�C,AaB ∴ Aa�C, would not be valid, because from P(CB)−P(C¬B)

1−P(C|¬B) = 1 and

P(B|A) = 1, we cannot conclude that P(CA)−P(C¬A)
1−P(C|¬A) = 1.

We don’t know, though, whether Malink’s (2013) and Crager’s (2015) inter-
pretation of Aristotle is correct. For one thing, Malink [2013] himself already
notes that Aristotle explicitly discusses modal syllogisms that he takes to be
valid even though the nonmodal premise does not seem to involve genuine
predication. But, of course, if Malink and Crager are not correct, we would
have to explain away the above ‘putative’ counterexamples in another way.
In fact, Vecchio (2016, chapter 1) argues that Aristotle himself explained away
the (putative) counterexamples to Barbara LXL and the like in a more straight-
forward way than was suggested by Malink (2013): by demanding that the
terms are interpreted in an omnitemporal way, which makes the non-modal
premise false. Vecchio (2016, chapter 3) also argues explicitly that Aristotle
used syllogisms of the form Barbara LXL in his analysis of scientific demon-
strations in the Posterior Analytics, just as we suggested in section 3.2. Vecchio
argues that Barbara LXL can be used to turn a nominal definition, ‘Thunder is a
noise in the clouds’ (of form AaB) to a real definition ‘Thunder is (necessarily)
the extinguishing of fire in the clouds’ (of form Aa�C) via the essential major
premise ‘A noise in the clouds is (by necessity) the extinguishing of fire in the
clouds’ (of form Ba�C).20 Note that if Vecchio is right, our ‘extensional’ causal
analysis might be on the right track after all.

20There exists an interesting analogue between this and the way natural kind terms receive
their content according to the causal theory of reference: first a set of superficial properties is
used to identify a set of things, and later having these superficial properties is explained by
some essential properties all the things in the set have in common.





Chapter 6

Conclusions

6.1 Taking stock

The goal of the intellectual journey we took in this dissertation was to advance
our understanding of causal relations, especially the way we talk and reason
about them. Let us take stock and review how far we got with answering the
concrete research questions formulated in the introduction. For this we will
build on the conclusion sections of the four papers that form the core of the
thesis: Barbero et al. [N.D] , Schulz and Xie [N.D], Schulz et al. [2019] and van
Rooij and Xie [N.D].

The first question we set out to answer was “Can we build a qualitative
formal system that can handle both causal and epistemic reasoning together?”
In chapter 2 we made a first step towards integrating causal and epistemic
reasoning. We developed an extension of causal models that is able to represent
the epistemic state of an agent and talk about this epistemic state in its object
language. The goal was to allow reasoning about causal knowledge. The model
we presented in this chapter can express knowledge and knowledge update via
a dynamic operator. In addition, we provide an axiomatization for the formal
framework and prove that the system of inference is sound and complete. So,
even though many questions are still open when it comes to integrating causal
and epistemic reasoning, we made a first step in the right direction and laid
down a sound foundation for future work.

Chapter 3 focused on the meaning of conditional sentences, in particular
counterfactual conditionals. The goal of this chapter was to provide an account
for the meaning of a particular group of counterfactual conditionals that turns
out to be problematic for the standard interventionist approach to counterfac-
tuals. These are counterfactuals that seem to allow for an epistemic reading.
Just as in Chapter 2 we approached this problem by combining causal models
with a representation of the epistemic state of the speaker. But in contrast to the
framework in the previous chapter, we additionally added a representation of
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belief. Based on this new notion of model we proposed a semantics for coun-
terfactuals that still operates along the lines of the interventionist approach,
but additionally takes into account how an intervention affects the beliefs of an
agent. We show that this approach allows us to keep all the nice predictions of
the interventionist approach, but can also account for epistemic counterfactu-
als. And in contrast to other solutions proposed in the literature our approach
does not have to postulate a second, epistemic reading for these sentences.

In chapter 4 we focused on a different limitation of the interventionist ap-
proach to counterfactuals: they appear to predict wrong truth conditions for
right-nested counterfactuals. According to a recent diagnosis of this problem
made by Fisher the problem is caused by a particular feature of the interven-
tionist approach, which he calls strict interventionism. To solve this problem we
define a new notion of intervention that does not have the property of strict
interventionism. This new notion of intervention does not change structural
dependencies encoded in the causal model (i.e. the laws), but only affects the
valuation of the relevant variables (the facts of the world or point of evaluation).
We show that this way we can account for the problematic observations. In
other words, also this question formulated in the introduction received a first
answer.

The goal of the fifth chapter was to study the question of whether a causal
analysis of conditionals can shed some light on Aristotle’s modal syllogisms. In
contrast to the previous two chapters, the focus moved now from counterfactual
conditionals to indicative conditionals. By using the notion of causal power
introduced by [Cheng, 1997], we defined a semantics for indicative conditionals
that we then applied to their use in modal syllogisms. It turns out that the
predictions our approach makes for modal syllogisms fit well with Aristotle’s
judgements concerning their validity. So, it seems that also here a causal
approach to the meaning of conditionals – and more specifically the approach
that we chose here – is very fruitful, now in advancing our understanding of
Aristotle’s writings.

Summing up, based on these results we can say that indeed combining work
on causality, conditionals and epistemology proves very useful to address
open issues at the intersection of these research areas. But, of course, the
investigations reported on in this thesis can only be the beginning. As indicated
in the different chapters there are various interesting questions and further
connections that should be explored in future work. We will highlight some
of them in the next section, building again on the discussion provided in the
papers Barbero et al. [N.D], Schulz and Xie [N.D], Schulz et al. [2019] and van
Rooij and Xie [N.D].
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6.2 Questions for future work

There are still many open questions for future work. For instance, the formal
frameworks that we developed in the chapters 2 and 3 do not yet allow us
to study the interaction of multiple agents. The reason is that the symbolic
language that was introduced is not able to express the epistemic states of
different agents. But, of course, there exist languages in dynamic epistemic
logic that have been designed to model multi-agent scenarios, allowing for
higher-order reasoning and the representation of group attitudes. Building
on this work it would be very natural to extend our language and models in
Chapter 2 and Chapter 3 to a multi-agent setting. This should allow the formal
system to represent the interaction of epistemic attitudes in groups of agents
with respect to causal reasoning.

There are also some aspects of the way we formalised causal reasoning
and causal knowledge that are not completely convincing. For instance, a
central property of the notion of causal knowledge that we implemented is the
following validity: if after making X = x true, the agent knows Y = y, then
an agent knows that forcing X = x will lead to Y = y (i.e. K([X = x]Y = y)).
However, several natural examples indicate that this validity does not hold in
general. The reason why the notion of causal knowledge we have implemented
gives rise to this validity is that in our system an agent cannot gain any new
information as a consequence of an intervention. This is certainly a premise that
should be given up in the future. One solution that we are currently working
on is to specify a set of “observables”, which represent variables that an agent
is able to observe during a change that happens in the external world. Thus
observables allow agents to learn about interventions.

There were also some issues with the conceptual choices we made in Chap-
ter 3. The epistemic causal models defined in this chapter represent not only
knowledge but also belief. When we applied this notion of model to concrete
examples we categorized all the information the agent has due to direct ob-
servation as knowledge and modelled expectations the agent has because of
causal laws that she endorses as beliefs. But there could be other sources of
information contributing to the knowledge or beliefs of an agent. What, for
instance, about analytical laws? Shouldn’t they affect what an agent knows?
Furthermore, the causal laws and observations usually affect beliefs in complex
ways. For example, if two facts are causally independent from each other and
there are no facts observed by the agent, then the two facts should be epistem-
ically independent as well (and additional observations about one of the facts
should not change the belief concerning the other). This type of interaction
between observation, causality and belief should be reflected in our formal
account. We leave this as well for future work.

Our proposal in Chapter 4 made an important step forward in the direction
of understanding right nested counterfactuals. We showed that by switching
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from interventions on the causal dependencies to interventions on the valua-
tion of the involved variables observations that have so far been unaccounted
for can be explained. However, this does not mean that our account makes cor-
rect predictions for all right-nested counterfactuals. As pointed out in Chapter
4, some experimental results can neither be explained by the standard inter-
ventionist approach nor by our semantics. Also accounting for these more
complex examples is left for future work.

And to mention an open end left in chapter 5, we have only checked the
predictions of the proposed causal analysis for modal syllogisms without pos-
sibility and contingency operators. The semantics for sentences with a contin-
gency modality still needs to be spelled out. Also this is a direction we would
like to explore in future research.

While the interaction between epistemology, causality and conditionals may
well have been a bit oversimplified in our account, the analysis in the chapters
of this thesis does show that it is the right direction forward to solve many
open problems.
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Samenvatting

Dit proefschrift neemt de lezer mee op een intellectuele reis langs een reeks
onderwerpen op het kruisvlak van het onderzoek naar conditionele zinnen,
causaliteit en epistemologie. De focus gaat uit naar een aantal centrale proble-
men die op dit snijvlak liggen en die in de recente literatuur bijzonder veel aan-
dacht hebben gekregen. Ik zal laten zien hoe, met behulp van een combinatie
van kennis en gereedschap uit alle drie onderzoeksgebieden, wij substantieel
vooruitgang kunnen boeken bij het oplossen van deze problemen. Ook zal ik
duidelijk maken dat een aanpak die kennis uit alle drie gebieden integreert,
ons een dieper inzicht geeft in de rijke connecties tussen conditionele zinnen,
causaliteit en epistemologie.

Het centrale innovatief ingrediënt van mijn proefschrift ligt in de formele
modellen die ik zal voorstellen om te komen tot een geïntegreerde represen-
tatie van causale en epistemische informatie. In deze modellen combineer ik de
structureel functionele modellen, die gebruikt worden om causale verbanden
formeel te representeren, met de (dynamisch) epistemische logica, een logica
die epistemisch redeneren kan beschrijven. Het gebrek aan een goede expli-
ciete weergave van epistemische informatie in causale modellen en adequate
uitdrukkingen in de object-taal om over deze informatie te communiceren, is
volgens mij op dit moment een groot struikelblok voor het onderzoek op het
snijvlak tussen causaliteit, epistemologie en conditionele zinnen. Ik zal in het
tweede en het derde hoofdstuk van mijn proefschrift twee verschillende mod-
ellen introduceren die causale en epistemische informatie combineren. Ik zal
laten zien dat deze modellen ons helpen om centrale problemen uit de recente
literatuur aan te pakken. Laat ik hierbij wel opmerken dat ik mijn resultaten
slechts als een eerste stap zie, er is nog veel te doen om een volledige integratie
van beide types informatie te bereiken. Ook op het gebied van toepassingen
van deze modellen zijn er nog talloze mogelijkheden voor toekomstig onder-
zoek.

In de hoofdstukken 3 en 4 komen een aantal tekortkomingen van de zeer
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populaire interventionistische aanpak voor counterfactuele zinnen aan bod.
Deze causale benadering van hun betekenis is buitengewoon succesvol in het
beschrijven van hoe wij counterfactuele zinnen begrijpen en ermee kunnen
redeneren. Echter, de interventionistische aanpak kent ook een aantal proble-
men. Ten eerste kan deze theorie voor de betekenis van counterfactuele zinnen
niet worden toegepast op voorbeelden die een epistemische lezing toelaten.
Bouwend op resultaten uit het tweede hoofdstuk zal ik in hoofdstuk 3 laten
zien dat een rijkere notie van een causaal model ons toestaat om de interven-
tionistische aanpak uit te breiden naar dit type van zinnen. In dit nieuwe model
staat opnieuw de weergave centraal van de epistemische toestand van de agent
die de counterfactuele zin overweegt.

Hoofdstuk 4 richt zich op een ander probleem. De interventionistische
benadering heeft ook moeite om de betekenis van verweven counterfactuele
zinnen correct te beschrijven. In het bijzonder kijken wij in dit hoofdstuk naar
counterfactuele zinnen die in hun consequent weer een counterfactuele zin
hebben staan. In hoofdstuk 4 zal ik laten zien hoe we door een aanpassing te
maken in de notie van interventie, die standaard wordt gebruikt, dit probleem
kunnen oplossen. Het centrale idee achter deze nieuwe notie van interventie is
dat ze geen wetten oplegt, maar slechts singuliere feiten van de actuele wereld
aanpast.

Voor beide problemen die centraal staan in hoofdstuk 3 en 4 (de interpre-
tatie van epistemische counterfactuele zinnen en de interpretatie van verweven
counterfactuele zinnen) lukt het mij om een oplossing te presenteren waarbij
we nog steeds het centrale onderliggende idee van interventionisme omar-
men. Interventionisme blijft dus met haar hoofd boven het water. In het vijfde
hoofdstuk van het proefschrift breng ik op een andere manier de kracht van de
interventionistische benadering naar voren. Ik beargumenteer dat een dergeli-
jke causale benadering van conditionele zinnen, nu in het bijzonder toegepast
op indicatieve conditionele zinnen, ons ook kan helpen om Aristoteles’ visie
op modale syllogismen te begrijpen. Ik zal laten zien dat met behulp van zo’n
benadering, een interpretatie van modale syllogismen mogelijk is die overeen
komt met Aristoteles’ oordeel over de geldigheid van deze redeneringen.



Abstract

This dissertation is an intellectual journey along topics at the intersection of the
study of conditionals, causality and epistemology. It will focus on a couple of
problems at this intersection pointed out in recent research. I will demonstrate
how by combining knowledge and tools from all three fields we can make
substantial progress on solving these issues. I will also show that this integrated
approach provides us with a better understanding of the relation between
conditionals, causality and epistemology.

The most important innovation proposed in this thesis is the integration
of structural functional models, used to represent causal dependencies, and
(dynamic) epistemic logic used to represent the epistemic states of reasoning
agents. The lack of a good explicit representation of epistemological informa-
tion in causal models and the means to talk about this information in the object
language is in my eyes a central limitation hindering progress in research at
the intersection of causality, epistemology and conditionals. I will introduce
two different versions of such integrated models, in chapter 2 and chapter 3,
and show that they can be very helpful to answer open questions in the field.
Though it needs to be said that this thesis only lays the ground work for such
an integration between both formal models. Much more is possible and many
questions still need to be answered in future work.

In the chapters 3 and 4 I will focus on limitations of the very popular in-
tervetionist approach to counterfactuals. This causal approach to the meaning
of these sentences has been shown to be very successful in capturing the way
we interpret and reason with counterfactuals. However, the interventionist
approach is also known to give rise to a number of mispredictions. First of
all, this approach cannot handle examples in which a counterfactual seems to
get an epistemic reading. Building on the results of chapter 2, we will show in
chapter 3 that this problem can be addressed a richer notion of causal model
that also allows us to represent the epistemic state of the agent engaged in
counterfactual thinking.
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Chapter 4 addresses a different problem: the interventionist approach also
has a hard time accounting for right-nested counterfactuals, i.e. counterfactuals
whose consequent contains another conditional sentence. In chapter 4 we will
show that by modifying the notion of intervention used in the approach we
can also deal with this problem. The central idea behind the new notion of
intervention we propose is that instead of causal laws, it only changes particular
facts in the world of evaluation.

Notice that in both cases, concerning the problem with epistemic counterfac-
tuals and with regards to right-nested counterfactuals, I am able to overcome
the limitations of the interventionist approach without giving up its central
ideas. Thus even in these stormy waters the general approach perseveres.
A different form of evidence for this approach to conditionals is provided in
the fifth chapter of the thesis. Here I show that such a causal approach to
conditionals, now extended to indicative conditionals, can help us to under-
stand Aristoteles’ view on modal syllogisms. I will demonstrate that with such
an approach at hand one can give an interpretation of modal syllogisms that
confirms Aristotle’s validity judgements.
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