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Neurocognitive Underpinnings of Aggressive
Predation in Economic Contests

Michael Rojek-Giffin1, Mael Lebreton2, H. Steven Scholte3, Frans van Winden3,
K. Richard Ridderinkhof 3, and Carsten K. W. De Dreu1,3

Abstract

■ Competitions are part and parcel of daily life and require peo-
ple to invest time and energy to gain advantage over others and to
avoid (the risk of ) falling behind. Whereas the behavioral mecha-
nisms underlying competition are well documented, its neurocog-
nitive underpinnings remain poorly understood.We addressed this
using neuroimaging and computational modeling of individual in-
vestment decisions aimed at exploiting one’s counterpart (“at-
tack”) or at protecting against exploitation by one’s counterpart
(“defense”). Analyses revealed that during attack relative to defense
(i) individuals invest less and are less successful; (ii) computations

of expected reward are strategically more sophisticated (reasoning
level k = 4 vs. k = 3 during defense); (iii) ventral striatum activity
tracks reward prediction errors; (iv) risk prediction errors were not
correlated with neural activity in either ROI or whole-brain analy-
ses; and (v) successful exploitation correlated with neural activity in
the bilateral ventral striatum, left OFC, left anterior insula, left TPJ,
and lateral occipital cortex. We conclude that, in economic con-
tests, coming out ahead (vs. not falling behind) involves sophisti-
cated strategic reasoning that engages both reward and value
computation areas and areas associated with theory of mind. ■

INTRODUCTION

In his Principles of Political Economy, John Stuart Mill
(1859) observed that “a great proportion of all efforts…
[are] spent by mankind in injuring one another, or in
protecting against injury.” Such appetite for “injuring
others” and to defend against being injured has recently
been documented in economic contest experiments in
which individuals invest to obtain a reward at a cost to their
competitor (henceforth attack) or to avoid losing their re-
sources to their antagonist (henceforth defense; De Dreu &
Gross, 2019; Chowdhury, Jeon, & Ramalingam, 2018; De
Dreu, Kret, & Sligte, 2016; Wittmann et al., 2016; Chen &
Bao, 2015; De Dreu, Scholte, van Winden, & Ridderinkhof,
2015; Zhu, Mathewson, & Hsu, 2012; Carter & Anderton,
2001; Grossman & Kim, 1996). These experiments showed
that humans invest in injuring others through attacks and in
protecting against injuring through defense, that invest-
ments in attack are typically less frequent and forceful than
investments in defense, and that attack decisions dispropor-
tionally often fail and defenders relatively often survive
(with ≈30% victories against ≈70% survivals; for a review,
see, e.g., De Dreu & Gross, 2019).

Resonating with the idea that competition can be costly,
participants during such attacker–defender contests typi-
cally waste about 40% of their wealth in fighting each other
(De Dreu & Gross, 2019). Yet why people invest in attack

and defense remains poorly understood. In fact, investing
in injuring others and in protecting against injury may re-
flect an array of subjective “desires” (Charpentier, Aylward,
Roiser, & Robinson, 2017; Delgado, Schotter, Ozbay, &
Phelps, 2008; Dorris & Glimcher, 2004). Perhaps humans
invest in attack and defense to maximize their personal
earnings, as is typically assumed in standard economic
theory (e.g., Ostrom, 1998). Relatedly, individuals may
invest in attack and defense because of “competitive
arousal” and rivalry (Delgado et al., 2008; Ku, Malhotra,
& Murnighan, 2005). Finally, investment in attack and de-
fense may be driven by a desire to minimize risk and un-
certainty (Delgado et al., 2008; Kahneman & Tversky,
1984). Indeed, decision-making in competitive contests
is inherently risky—investments are typically wasted and
may result in no return (among attackers), wasted re-
sources (when attacks were unexpectedly shallow and
one thus overinvested in defense), or costly defeat (when
attacks were unexpectedly tough). Humans factor in such
risks when making decisions and are typically risk-averse
(Tobler, O’Doherty, Dolan, & Schultz, 2007; Kuhnen &
Knutson, 2005; Loewenstein, Weber, Hsee, & Welch,
2001).
Humans may hold conflicting desires when investing in

attack and defense and may need to balance between max-
imizing reward and minimizing risk. What individuals aim
for and how possibly conflicting desires are regulated is
difficult to infer from behavioral decision-making alone.
To illustrate, consider a two-player contest in which one
participant can invest in attack and the other participant
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in defense. When the attacker invests more than its de-
fender, attackers obtain all what the defender did not in-
vest, and the defender would be left with 0. If attackers
invest equal or less than their defender, both sides earn
their noninvested resources (De Dreu & Gross, 2019;
Chowdhury et al., 2018; De Dreu, Gross, et al., 2016; De
Dreu, Kret, et al., 2016; De Dreu et al., 2015; Carter &
Anderton, 2001; Grossman & Kim, 1996).1 It follows that
investments can increase attacker earnings and their
competitive success and can prevent defenders from losing
their remaining endowment to their attacker. At the same
time, however, not investing resources eliminates the at-
tacker’s uncertainty about earnings from the contest, along-
side the possibility of losing money. Defenders, in contrast,
reduce such uncertainty and possibility of losing the
contest by investing resources (Chowdhury et al., 2018).
We solved this problem of inference using a two-

pronged approach inspired by recent work in cognitive
neuroscience on learning from reward and risk prediction
(Olsson, FeldmanHall, Haaker, & Hensler, 2018;
Palminteri, Wyart, & Koechlin, 2017; Preuschoff, Quartz,
& Bossaerts, 2008; Preuschoff & Bossaerts, 2007). First,
from investments in attacker–defender contests, we com-
puted, using a k-level reasoning approach, estimates of ex-
pected reward and expected risk (Zhu et al., 2012; Ribas-
Fernandes et al., 2011; Botvinick, Niv, & Barto, 2009;
Camerer, Ho, & Chong, 2004; Nagel, 1995; Stahl & Wilson,
1995; Harsanyi, 1967). The computational approach in-
corporates the intuition that the formation of expecta-
tions and beliefs in strategic interactions are recursive
(i.e., [1] I think that [2] you think that [3] I think that
[4]…) and can be more or less sophisticated (i.e., the
number of recursions k). Using computational modeling
and model comparison, we estimated for each invest-
ment in attack and defense the expected reward and risk,
and concomitant reward and risk prediction errors. Our
modeling thus defines (expected) reward as the (ex-
pected) monetary payoff from investment in attack and
defense (e.g., Zhu et al., 2012) and (expected) risk as the (ex-
pected) variance of the reward prediction error (Preuschoff
et al., 2008; Preuschoff & Bossaerts, 2007).
Second, and next to an exploratory whole-brain analy-

sis potentially revealing currently unknown cues about
the neural foundations of exploitation and protection,
we linked prediction errors to a priori defined ROIs—
the ventral striatum (VS) and the amygdala. We chose
the VS because it has been extensively linked to reward
processing and competitive success (viz. reward maximiza-
tion; Metereau & Dreher, 2015; McNamee, Rangel, &
O’Doherty, 2013; Balodis et al., 2012; Rudorf, Preuschoff,
& Weber, 2012; Zhu et al., 2012; Xue et al., 2009;
Preuschoff & Bossaerts, 2007). We chose the amygdala be-
cause of its involvement in low-level affective processing
of threat to resources (viz. risk minimization; De Dreu
et al., 2015; Choi & Kim, 2010; Baumgartner, Heinrichs,
Vonlanthen, Fischbacher, & Fehr, 2008; Delgado et al.,
2008; Nelson & Trainor, 2007; Phelps & LeDoux, 2005).

METHODS

Participants and Ethics

Male participants (M = 25.31 years, n = 27) were re-
cruited via an online recruiting system for participating
in a neuroimaging study on human decision-making.
Exclusion criteria were significant neurological or psychi-
atric history, prescription-based medication, smoking
more than five cigarettes per day, and drug or alcohol
abuse.2 Eligible participants were assigned to a session
and instructed to refrain from smoking or drinking (ex-
cept water) for 2 hr before the experiment that lasted
approximately 1.5 hr. They received a show-up fee of
A30 in addition to the earnings from decision-making.
The experiment involved no deception and was incentivized
(see below), received ethics approval from the Psychology
Ethics Committee of the University of Amsterdam, and com-
plied with the guidelines from the American Psychological
Association (6th edition). Participants provided written
informed consent before the experiment and received a
full debriefing afterward.

Experimental Procedures

Experimental sessions were conducted between noon
and 4 p.m., and participants were tested individually (also
see De Dreu et al., 2015). Upon arrival, participants were
escorted to a private cubicle where they read and signed
an informed consent form. Participants received a book-
let with instructions for the attacker–defender game (la-
beled Investment Task), containing several examples of
investments and their consequences to both attacker (la-
beled Role A) and defender (labeled Role B) and several
questions to probe understanding of the game structure
and decision consequences. Neutral labeling was used
throughout.

Upon finishing the instructions for the contest, the ex-
perimenter prepared the participant for neuroimaging.
During the fMRI session, participants completed six func-
tional runs, each consisting of a 20-trial block played as
either attacker or defender. Participants thus alternated
between the role of attacker and defender every 20 trials,
with the starting order counterbalanced across partici-
pants. Importantly, we used a random partner matching
one-shot protocol, eliminating reputation concerns (Zhu
et al., 2012). In each session, participants made 60 invest-
ments as attacker and 60 as defender. For each invest-
ment trial, they received a prompt, randomly generated
between 0 (indicating no investment) and 10 (indicating
investment of the entire endowment) and used a button-
press to adjust the given number up or down to indicate
their desired investment. The duration of the selection pe-
riod was self-paced and had an average length of 4.27 sec
(SD = 3.43 sec; see Figure 1). After selecting their invest-
ments, participants waited an average of 6.08 sec (SD =
2.22 sec), at which point they received feedback about
their counterpart’s investment and were shown the
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respective payoffs to oneself and the other (who was ran-
domly chosen on each trial from a pool of 150 attacker
[defender] investments; for further detail, see De Dreu,
Giacomantonio, Giffin, & Vecchiato, 2019; De Dreu
et al., 2015). At the end of the experiment, participants re-
ceived their participation fee and earnings by bank transfer
(rangeA0–A8, with M=A5 for nonscanner participants,
and A0–A33, with M = A19 for scanner participants).

Accordingly, participant pay was private and conditioned
on their performance.

Attacker–Defender Contest

The attacker–defender contest (Figure 1B) consists of
two players: an attacker and a defender. Each player
was endowed with A10 from which they could invest

Figure 1. Experimental design. (A) Timeline of the entire experiment. (B) The attacker–defender contest: On each trial, both attacker and defender begin
with a A10 endowment with which to invest in the contest. Investments are nonrecoverable, yet if the defender invests equal or more than the attacker
(bottom), both attacker and defender keep their remaining endowments (i.e., whatever they did not invest in the contest). If the attacker invests more
than the defender (top), the attacker receives their remaining endowment plus that of the defender, who receives nothing. (C) Trial breakdown: For each
trial, participants received a prompt, randomly generated between 0 (indicating no investment) and 10 (indicating investment of the entire endowment) and
used a button-press to adjust the given number up or down to indicate their desired investment. The duration of the selection period was self-paced (M=
4.27 sec, SD = 3.43). After selecting their investments, participants waited an average of M= 6.08 sec (SD = 2.22) and then received feedback about their
counterpart’s investment and the payoffs to oneself and to the counterpart. This completed one trial.

1278 Journal of Cognitive Neuroscience Volume 32, Number 7



in the contest. Investments were always wasted, but if the in-
vestments by the attacker (x) exceeded that by the defender
( y), the attacker (x > y) obtains all of the defender’s nonin-
vested endowment (e − y). In this case, the attacker’s total
earning was 2e − x − y, and the defender earned 0. If, in
contrast, the defenders investmentmatched or exceeded that
by the attacker ( y ≥ x), both defender and attacker earned
what was left from their endowment (e− y and e− x, respec-
tively; DeDreu et al., 2015, 2019; DeDreu, Gross, et al., 2016;
De Dreu, Kret, et al., 2016).
The attacker–defender contest has a contest success func-

tion f = Xm/(Xm + Ym), where f is the probability that the
attacker wins,m→∞ for X ≠ Y and f= 0 if Y= X. Assuming
rational selfish play and risk neutrality, standard economic
theory predicts that attackers and defenders usemixed strat-
egies when investing. With e=A10 per trial (as used in the
current experiment), the mixed strategies for attack (with
probability of investing x denoted by p(x)) and defense
(with probability of investing y denoted by p( y)) define a
unique Nash equilibrium where expected investments in at-
tack are both lower (x = 2.62) than in defense ( y = 3.38)
and less frequent (probability of attack [defense] = 60%
[90%]). However, when attacks aremade, they are expected
to be more “forceful” (4.36 vs. 3.75 for defense).3

Modeling Investment Behavior with
k-level Sophistication

To compute individual estimates of expected reward and
concomitant reward and risk prediction errors, we
adapted the cognitive hierarchies framework developed
in behavioral economics (Botvinick et al., 2009; Camerer
et al., 2004; Nagel, 1995). The idea is that players hierarchi-
cally form beliefs about their opponents’ behavior up to a
certain level of cognitive sophistication (k-level). A k-0
player invests randomly. At k = 1, the individual assumes
that her opponent has k = 0 and finds an investment that
maximizes her expected reward under this assumption. At
k= 2, the individual assumes that her opponent has k= 1
and finds an investment that maximizes her own expected
reward under the assumption that the opponent seeks to
maximize his personal reward against a k-0 player. This
recursion can, in theory, continue infinitely, yet in our
computational modeling, we limited k ≤ 5. Specifically,
when Is represents a player’s own investment (s stands
for “self”) and Io as their representation of the other
player’s investment (o stands for “other”), we can for-
mally express:

k-level 0

k-level 0 play each strategy with equal probability. We
have

∀h 2 0;…; 10f g;P Is ¼ hð Þ ¼ 1
11

(1)

k-level 1

k-level 1 expect their opponent to play as k-level 0, such
that they expect

∀h 2 0;…; 10f g;P Io ¼ hð Þ ¼ 1
11

(2)

These expectations can be used to compute the prob-
ability of success S of a given investment h (P(S|h)) by
the attacker A and defender D, respectively

∀hA 2 0;…; 10f g;P SjhAð Þ ¼
XhA−1

i¼0

P Io ¼ ið Þ (3)

∀hD 2 0;…; 10f g;P SjhDð Þ ¼
XhD

i¼0

P Io ¼ ið Þ (4)

This can be used to compute an expected value, which
in this case in the expected reward ER for any potential
investment by the attacker and defender. We have, for
the attacker

ERA hAð Þ ¼ P SjhAð Þ � 10−E hDjhD < hA½ � þ 10−hAð Þ½ �
þ 1– SjhAð Þð Þ � 10−hAð Þ½ �

(5)

where the two square brackets represent cases where the
investment is successful or unsuccessful, respectively, and
E[hD|hD < hA] is the expected opponent’s investment in
case of success

E hDjhD < hA½ � ¼
XhA−1

i¼0

i� P Io ¼ ið Þ (6)

For the defender we have, likewise

ERD hDð Þ ¼ P SjhDð Þ � 10− hAtð Þ½ �
þ 1− P SjhDð Þð Þ � 0½ � (7)

The expected reward also has an associated prediction
error PE, which is simply the expected reward ER
subtracted from the actual reward R

PE ¼ R− ER (8)

These values also allow for the calculation of risk pre-
diction RP and accompanying risk prediction errors
PERisk. We defined risk prediction as the expected size-
squared of the reward prediction error (Preuschoff
et al., 2008; Preuschoff & Bossaerts, 2007). More specif-
ically, risk prediction is defined as the sum across all the
possible rewards (R) of (R − ER)2 multiplied by the prob-
ability P(R) that R is obtained. More formally,

RP ¼ E R− ERð Þ2� � ¼
X

R

P Rð Þ � R− ERð Þ2 (9)
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which means that the risk prediction error PERisk is the risk
prediction RP subtracted from the actual size-squared of
the reward prediction error

PERisk ¼ R− ERð Þ2 − RP (10)

Following standard practices in the field, we assume
that participants select the investment Is that (soft)maxi-
mizes their expected reward. This is modeled with a mul-
tinomial softmax function with free parameter β, which
indexes the exploration/exploitation trade-off (choice
temperature),

P Is ¼ hið Þ ¼ exp β1 � EV hið Þð Þ
P10

j¼1 exp β1 � EV xj
� �� � (11)

This choice temperature defines the likelihood of invest-
ments Is, that is, the probability of observing investment
Is under the considered model and parameter values.

k-levels 2 → n

For each k-level, k ≥ 2, the above procedure is iterated
k-times, with k-level predictions of investments—needed
to compute probabilities of success, expected rewards,
and choice probabilities—being generated by the soft-
max at the preceding level (see Figure 2). Hence, each
k-level model has k-free parameters, which constitutes
the choice temperature at each level βk.

Model Fitting

For each model M, the parameters θM (θM = {β1, β2, …
βk}) were optimized by minimizing the negative loga-
rithm of the posterior probability (LPP) over the free
parameters

LPP ¼ − log P θM jD;Mð Þð Þ∝− log P DjM; θMð Þð Þ
− log P θM jMð Þð Þ

(12)

Here, P(D|M, θM) is the likelihood of the data D (i.e., the
observed choice) given the considered model M and

Figure 2. Computational
framework. Players
hierarchically form beliefs about
their opponents’ behavior, up
to a certain level of cognitive
sophistication (k-level; Column 1).
The expected frequencies of the
opponents investment are then
used to calculated expected
probability of success for each
investment (Column 2), which
can then be used to calculated
expected reward (Column 3).
Based on the expected reward,
we calculate the frequency that a
player should make each
investment (Column 4). A k-2
player (Row 2) will assume that
her opponent is k − 1 and
adjust her behavior accordingly,
and so on. We developed
computational models for
hierarchies 1 up to 5.
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parameter values θM, and P(θM|M) is the prior probability
of the parameters. Following Daw (2011), the prior prob-
ability distributions were defined as a gamma distribution
(gampdf(β, 1.2, 5)) for the choice temperature. This pro-
cedure was conducted using MATLAB’s (The MathWorks,
Inc.) fmincon function with different initialized starting
points of the parameter space (i.e., 0 < β < Infinite;
Palminteri, Khamassi, Joffily, & Coricelli, 2015). We com-
puted the Laplace approximation to model evidence
(ME). It measures the ability of each model to explain
the experimental data by trading off their goodness-of-
fit and complexity. Defining θM as the model parameters
identified in the optimization procedure and n as the
number of data points (i.e., trials), ME was computed as
follows (where |H| is the determinant of the Hessian
matrix)

ME ¼ log P DjM; θMð Þð Þ þ log P θM jMð Þð Þ
þ df

2
log 2πð Þ− 1

2
log Hj j (13)

Bayesian Model Comparison

To identify the model most likely to have generated a
certain data set, ME was computed at the individual level
for each model in the respective model space and fed to
random effects Bayesian model comparison using the
mbb-vb-toolbox (mbb-team.github.io/VBA-toolbox/;
Daunizeau, Adam, & Rigoux, 2014). This procedure esti-
mates the expected frequencies (denoted PP) and the ex-
ceedance probability (denoted XP) for each model within
a set of models, given the data gathered from all partici-
pants. PP quantifies the posterior probability that the
model generated the data for any randomly selected par-
ticipant. XP quantifies the belief that the model is more
likely than all the other models of the model space. An
XP > 95% for one model within a set is typically consid-
ered as significant evidence in favor of this model being
the most likely.

Model Identifiability

To assess the reliability of our modeling approach, we
performed model identifiability simulations (see Correa
et al., 2018, for a similar approach). Choices from syn-
thetic participants were generated for each task and
each model by running our computational models, with
model parameters sampled in their prior distribution:
softmax temperature β were drawn from gamma distri-
bution (random(“Gamma,” 1.2, 3)). For each model, we
ran 10 simulations including 27 synthetic participants
(n = 270), playing both attacker and defender for three
blocks of 20 trials. Model identifiability was assessed
by running the Bayesian model comparison on the syn-
thetic data.

MRI Data Acquisition, Preprocessing,
and Data Analysis

Scanning was performed on a 3T Philips Achieva TX MRI
scanner using a 32-channel head coil. Each participant
played six blocks of the attacker–defender game in which
functional data were acquired using a gradient-echo, echo-
planar pulse sequence (repetition time = 2000 msec, echo
time = 27.63 msec, flip angle = 76.18, 280 volumes, field
of view = 1922 mm, matrix size = 642, 38 ascending slices,
slice thickness = 3 mm, slice gap = 0.3 mm) covering the
whole brain. For each participant, we also recorded a
3DT1 recording (3D T1 TFE, repetition time = 8.2 msec,
echo time = 3.8 msec, flip angle = 88, field of view =
2562 mm, matrix size = 2562, 160 slices, slice thickness =
1 mm) as well as respiration, pulse oximetry signal, and
breath rate. Stimuli were back-projected onto a screen that
was viewed through a mirror attached to the head coil.

Analyses were conducted with FSL (Oxford Centre for
Functional MRI of the Brain Software Library; www.fmrib.
ox.ac.uk/fsl) and custom scripts written in MATLAB. All
fMRI data were prewhitened, slice-time corrected, spatially
smoothed with a 5-mm FWHM gaussian kernel, motion
corrected, and high-pass filtered. Functional images were
registered to each participant’s high-resolution T1 scan
and subsequently registered to Montreal Neurological
Institute (MNI) space.

Our primary goal was to determine if neural activity
was modulated by the expected values and/or prediction
errors from our reinforcement learning model. The
entire fMRI analysis consisted of a three-level analysis:
Level 1 was averaging within runs within participants,
Level 2 was averaging across runs within participants,
and Level 3 was testing for significance at the group level.
We constructed three different general linear models
(GLMs) to test for significant neural differences between
attack and defense behavior as well as to see if attack and
defense behavior correlated with our variables of interest.
GLM-1 was meant to test for simple model-free differ-
ences between attacker and defender neural activity
and consisted only of the selection and feedback epochs.
GLM-2 was meant to determine if neural activity signifi-
cantly correlated with investment magnitude during the
selection time-phase and whether wins/losses signifi-
cantly correlated with neural activity during feedback.
To this end, it consisted of the following regressors: se-
lection, selection modulated by investment (orthogonal-
ized with respect to selection), feedback, and feedback
modulated by wins/losses (z-scored and orthogonalized
with respect to feedback). GLM-3 was meant to deter-
mine whether any neural activity correlated with the
parameters calculated from our k-level model and con-
tained the following regressors: selection, selection modu-
lated by expected value (orthogonalized with respect to
selection), selection delayed by 4 sec to capture the delayed
nature of risk prediction (Preuschoff et al., 2008), delayed
selection modulated by risk prediction (orthogonalized
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with respect to delayed selection), feedback, feedback
modulated by the prediction error (z-scored and orthogo-
nalized with respect to feedback), and feedback modulated
by the risk prediction error (z-scored orthogonalized with
respect to feedback). To mitigate spurious results from
asymmetric parameter value ranges (Lebreton, Bavard,
Daunizeau, & Palminteri, 2019), each parametric regressor
was z-scored within each role, meaning both attacker and
defender parametric regressors had identical variance.

We checked for multicollinearity by calculating the var-
iance inflation factors (VIFs) for each regressor of interest
(Mumford, Poline, & Poldrack, 2015) and found none to
be problematic (all VIFs < 2.3). However, four partici-
pants made identical investments on every trial, which re-
sulted in rank deficient models (four participants for
GLM-2 and GLM-3). Specifically, two individuals made
the exact same investment on all attack decisions, one in-
dividual made the exact same investment on all defense
decisions, and one individual made the exact same in-
vestment during attack and defense. These participants
had to be removed from the analysis. We tested for an
interaction effect between role and each variable of inter-
est by contrasting the relevant parameter estimates for
attack and defense in a second-level within-participant
fixed-effects analysis. Finally, we tested for group-level sig-
nificance and corrected for multiple comparisons using
FSL’s FLAME 1 with the standard cluster forming threshold
of Z > 3.1 and clusters significant at p = .05. We ran ad-
ditional control analyses with FSL’s randomized threshold-
free cluster enhancement (Winkler, Ridgway, Webster,
Smith, & Nichols, 2014; Smith & Nichols, 2009), and re-
sults were virtually identical.

We also conducted analyses within an a priori selected
anatomical VS and within an a priori selected anatomical

amygdala ROI. Both masks were obtained from the meta-
analytic tool Neurosynth (Yarkoni, Poldrack, Nichols, Van
Essen, & Wager, 2011). We used the terms “ventral stria-
tum” and “amygdala” in our search of Neurosynth, instead
of using “reward” or “fear.” Avoiding psychological con-
structs such as reward or fear reduced possible bias in
our ROIs in favor of a particular psychological construct.
For our ROI analyses, we took the average value across ev-
ery voxel within each ROI for each participant within the
contrast of interest (e.g., attacker–reward prediction error)
and then tested for significance with a paired-sample t test.

RESULTS

All codes used to produce analyses and plots can be
found at 10.6084/m9.figshare.11877699. And all unthre-
sholded statistical brain maps can be found at https://
neurovault.org/collections/6740/.

Decision-making

Earlier reports of the attacker–defender contest game
analyzed investments in terms of the overall investment
(range 0–10), the frequency of investment (all trials in
which x or y > 0; range 0–60), and the force of invest-
ment (the amount invested on nonzero investment trials;
range 1–10). For these measures, we find, consistent with
earlier work, that individuals invested less often in attack
than in defense, t(26) = −4.12, p = .0003; invested in
attack less overall, t(26) =−8.56, p< .0001; and invested
less forcefully in attack than in defense, t(26) = −7.81,
p < .0001 (Figure 3B). Although individuals earned more
from attack (noninvested resources + spoils of winning)
than defense trials (noninvested resources in case of

Figure 3. Behavioral results.
(A) Nash equilibrium
predictions (bars) plotted
against empirical distribution of
participants’ investments (dots
with error bars aremeans± 1 SE)
for attacker (top row, red) and
defenders (bottom row, blue).
(B) Attacker (red) and defender
(blue) investments, force of
investment, and mean earnings
(shown are means ± 1 SE).
(C) Frequency of investment and
success rate (shown are means ±
1 SE). Contrasts are significant
at *p < .05, **p < .01, and
***p < .001.
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survival), t(26) = 43.91, p< .0001, they were less success-
ful during attack than defense trials, t(26) = −7.22, p <
.0001: As defender they “survived” more often than that
they “killed” as attacker (Figure 3C).
In addition to the contrast between attack and defense,

we examined investments in relation to predictions
derived from standard economic theory that assumes ra-
tional self-interest and risk neutrality. Relative to mixed-
strategy equilibrium predictions (see Methods), individuals
invest more and more forcefully in defense (t(26) = 20.40,
p < .0001, and t(26) = 18.467, p < .0001, respectively),
but not more and not more forcefully in attack (t(26) =
1.46, p = .157, and t(26) = −0.78, p = .441, respectively;
Figure 3A). Still, however, both attack and defense returned
less earnings than predicted by standard economic theory
(t(26) = −4.19, p = .00028, and t(26) = −40.56, p <
.0001), and the frequency of both attacks and defense ex-
ceeded expectations based on rational selfish play (t(26)
= 3.04, p= .0054, and t(26)= 30.26, p< .0001, respectively).
Conversely, success rates for attacks (victories) and de-
fense (survival) did not deviate from Nash equilibrium

predictions (t(26) = −0.25, p = .804, and t(26) =
−0.98, p = .336, respectively).

Neural Correlates of Attack and Defense

To examine the neural foundations of decision-making dur-
ing attack and defense, we performed whole-brain analyses
on the selection phase (when participants decided whether
and how much to invest in attack or defense) and on the
feedback phase (when participants received information
about their opponent’s investment and the resulting out-
comes to oneself ). Whereas no significant differences
between attacker and defender were observed during selec-
tion, whole-brain analyses did show significant attacker–
defender contrasts for the feedback phase. Specifically,
during feedback, participants exhibited higher BOLD
response during attack relative to defense in a cluster
within the left anterior insula and inferior frontal gyrus
(IFG; Figure 4: MNI coordinates: x = −40, y = 10, z =
16, Z = 4.88, cluster size = 1657, p = .0151, family-wise
error [FWE]-whole brain).

Figure 4. Brain imaging results.
Whole-brain analysis testing for
attacker neural activity
correlated to wins and losses
(A) and feedback differences
between attacker and defender
(B). (A) Wins and losses as an
attacker correlated with neural
activity in the TPJ, IFG, VS,
anterior insula (AI), thalamus
(THA), and lateral occipital
cortex (LOC). (B) Processing
feedback as an attacker
associated with more neural
activation in the left IFG, left AI,
and left OFC. All contrasts are
FWE-corrected at p < .05 for
the whole brain.

Table 1. Regions Exhibiting Significant Correlation between Neural Activity and Win/Loss Feedback during Attack

Region

Peak

Cluster Size z Value p (FWE-corr)x y z

Attacker Win/Loss

VS/OFC/insula/thalamus −8 4 −4 5329 4.27 <.001

Lateral occipital cortex −22 −74 −8 1686 4.75 .002

Occipital pole 8 −84 4 1603 4.45 .002

TPJ/lateral occipital cortex −26 −84 46 1577 4.1 .003

All statistics are corrected for multiple comparison with FSL’s FLAME 1.
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In a follow-up analysis, we examined whether partici-
pants exhibited a correlation between neural activity
and investments (during decision-making) and outcome
(win/loss) during feedback. As before, no significant cor-
relations were found between neural activity and invest-
ments during attack or defense, nor did the correlation
differ between the two roles. During feedback, however,
neural activity during attack covaried with wins and losses
in clusters that included the bilateral VS, left OFC, left an-
terior insula, left TPJ, and lateral occipital cortex (Table 1
and Figure 4B). Activity in these same areas also correlated
with wins/losses more during attack than defense but did
not survive cluster-based multiple comparison correction
(with p < .05, uncorrected). When participants processed
feedback as defenders, there were no clusters that signif-
icantly covaried with wins and losses.

Model-based Analyses of Decision-making and
Neural Activity

As noted in Methods section, we captured the computa-
tions at hand in attack and defense behavior using the
cognitive hierarchies framework developed in behavioral
economics (Botvinick et al., 2009; Camerer et al., 2004;
Nagel, 1995). The idea is that players hierarchically form
beliefs about their opponents’ behavior, up to a certain
level of cognitive sophistication (k-level; see Figure 2).
We developed such computational models for hierar-
chies 1 up to 5 (see Methods section), and first verified
that the behavior predicted by different levels of the cog-
nitive hierarchies could be discriminated (see Methods/

Model Identifiability section and Figure 5). We then fitted
those models to our participants’ investment data and
ran a Bayesian model comparison to identify the hierar-
chy most likely to generate attacker- and defender-like be-
havior. Our results show that attackers are best described
by a model with four levels of recursion (model K4, ex-
ceedance probability = 67.20%), whereas defenders are
best described by a model with three levels of recursion
(model K3, exceedance probability = 87.41%; Figure 5).
From these models, we estimated, for each participant
and each investment in attack and defense, the expected
reward, risk prediction, and concomitant reward and risk
prediction errors. These reward and risk prediction errors
were then related to neural activity, using both whole-
brain and ROI-based analyses.

Neural Correlates of Reward Prediction Errors

Within our VS ROI, there was a significant correlation be-
tween reward prediction errors and VS neural activity
during attack, t(22) = 2.645, p = .0148, but not during
defense, t(22) =−0.330, p= .745. Furthermore, this cor-
relation between reward prediction errors and VS activity
was stronger in attackers than in defenders, t(22) =
2.189, p = .0395 (see Figure 6A). Within our amygdala
ROI, there was no significant correlation between neural
activity and reward prediction errors during either attack,
t(22) = 1.785, p = .088, or defense, t(22) = −1.507, p =
.146, but there was a significant difference in correlations
between the two roles, t(22) = 2.405, p = .025.

Figure 5. Computational results. (A) Model identifiability, true model used to generate the simulated data ( y axis), and the model estimated as most
likely based on our Bayesian model comparison (x axis) for both attacker (top row) and defender (bottom row). (B) Exceedance probability (bars)
and estimated model frequencies (diamonds) for both attacker (top row) and defenders (bottom row) of each model fit to participant data. (C)
Estimates of each model shown in comparison to true behavioral data for both attacker (top row) and defender (bottom row).
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At the whole-brain level, we found a cluster in the right
IFG that significantly correlated with reward prediction
errors during attack (MNI coordinates: x = 48, y = 32,
z = 12, Z = 4.55, cluster size = 681, p = .0391, FWE-
whole brain; see Figure 6B). We note that this cluster is
similar in location to regions found to covary with RTs,
but in the present case the correlation between RT and
reward prediction errors was not significant (r = −.0079,
p = .654). Because all the contrasts reported were con-
ducted at the feedback time-phase, with the selection
time-phase as a covariate RT was at least partially captured
by our GLM. Accordingly, because RT reward prediction
error is nonsignificant here and RT is captured in the du-
ration of the selection-phase decision-making, we can con-
clude that RT is not of relevance here.
There were no clusters at the whole-brain level that cor-

related with reward prediction errors during defense, nor
were there any clusters that showed a significant differ-
ence in correlation between attacker and defender trials.

Neural Correlates of Risk Prediction Errors

We found that, within our VS ROI, there was no signifi-
cant correlation between neural activity and risk pre-
diction errors during either attack, t(22) = −1.622, p =
.117, or defense, t(22) = 0.164, p = .871, nor was there a
significant difference in correlations between the two
roles, t(22) = −1.505, p = .145. The same was true in
our amygdala ROI (attacker: t(22) = −0.588, p = .562;
defender: t(22) = 0.363, p = .720; attacker vs. defender:
t(22) = −0.647, p = .523) and at a the whole-brain level.

DISCUSSION

Competition requires that people expend resources to
win from other contestants and to expend resources to

prevent losing from other contestants. These two core
motives operating during competition—coming out
ahead versus not falling behind—were examined here
in a simple attacker–defender contest in which opposing
individuals simultaneously invested, out of a personal
endowment, into exploitative attacks and protective de-
fense. As shown by others already, we find here too that
individuals invest less frequently and less intensely in
economically “injuring others” than they invest in defend-
ing themselves against the threat of being economically
injured (De Dreu & Gross, 2019, for a review). Compu-
tationally, we found that during attack individuals tend to
utilize a higher level of cognitive recursion than during
defense. We furthermore found attack behavior relative
to defense behavior to be preferentially associated with
neural regions associated with theory of mind and, within
the VS, to be preferentially correlated with reward predic-
tion errors.

What remained poorly understood is why and how
people design their strategies of attack and defense.
We argued that, in addition to reward maximization, in-
vestments in attack and defense may be driven by the de-
sire to out-compete the protagonists as well as by the
desire to minimize risk. We approached this issue with
a computational framework modeling reward and risk
prediction errors based on k-level reasoning in belief for-
mation (Zhu et al., 2012; Camerer et al., 2004; Nagel,
1995). Our results at the neural level revealed no evi-
dence for risk minimization. Instead and in line with ear-
lier work (e.g., Zhu et al., 2012), we find good evidence
that contestants aimed to maximize reward both during
attack and defense. At the same time, however, we ob-
served significant differences in the computation of ex-
pected reward and in the underlying neural activation
during attack versus defense. Specifically, we found re-
ward prediction errors during attack (more than during

Figure 6. Reward prediction
errors differentially relate to
attacker and defender neural
activity. (A) ROI analysis reveals
prediction errors during attack
significantly correlate with VS
activity in attackers but not in
defenders. (B) Whole-brain
analysis reveals that prediction
errors during attack significantly
correlate with IFG neural activity.
Contrast is FWE-corrected at
p < .05 for the whole brain.
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defense) to robustly correlate with neural activity in the
VS and, using whole-brain analyses, the IFG.

Our computational modeling demonstrated that in-
vestments in attack are best fitted by a model containing
four levels of recursion whereas investments in defense
are best fitted by a model containing three levels of recur-
sion. This suggests that individuals engage in more so-
phisticated reasoning about their protagonist’s strategy
during attack than defense. Indeed, our neuroimaging re-
sults revealed significant attack–defense contrasts in neu-
ral activation in regions often associated with perspective
taking and “theory of mind”—the lateral occipital cortex,
the IFG, and the TPJ (Engelmann, Schmid, De Dreu,
Chumbley, & Fehr, 2019; Prochazkova et al., 2018; Van
Overwalle, 2009). These results resonate with earlier
work showing that temporarily dysregulating the IFG
through theta burst stimulation affected investment
behavior during attack but not defense (De Dreu, Kret,
et al., 2016) and that reducing cognitive capacity before
decision-making influenced attackers but not defenders
(De Dreu et al., 2019). Combined, these results suggest
that individuals engage neural regions for perspective
taking and theory of mind during economic contests to
out-smart and exploit their protagonist.

Results for neural activity were specific to the feedback
phase, when contest outcomes were presented, and not
observed during the selection phase, when investment
decisions were implemented. Possibly, different neuro-
cognitive operations govern implementation and pro-
cessing of feedback. During implementation, controlled
deliberation may be more or less active, and this may re-
late to activity in prefrontal regions involved in executive
control. Perhaps, the extent to which cognitive control
and deliberation during selection is engaged is not con-
ditioned by the specific role decision-makers perform.
During feedback, learning and updating operations may
be active, and this may relate to neural activation in re-
gions involved in value computation and emotion pro-
cessing (Behrens, Hunt, & Rushworth, 2009; Yacubian
et al., 2006). Indeed, we found neural activity in the VS
to be meaningfully related to reward prediction errors
(also see Stallen et al., 2018; Zhu et al., 2012; Yacubian
et al., 2006; O’Doherty et al., 2004). In contrast to expec-
tations, however, we did not find differential activity in
the amygdala, nor amygdala activity to be related to be-
havioral indicators processed during feedback. Possibly,
contestants process feedback in an emotionally detached
and rather cognitive manner aimed at revising and updat-
ing their (future) strategy for attack and defense.

Our study design included male participants, and ex-
trapolating conclusions to female participants may be
nontrivial. Intuitively competitive success and reward
maximization may fit an (evolved) male psychology,
whereas risk minimization fits an (evolved) female psy-
chology (Niederle & Vesterlund, 2011; Croson &
Gneezy, 2009; Spreckelmeyer et al., 2009). At the same
time, however, male and female participants tend to

perform similarly in the attacker–defender contest stud-
ied here (De Dreu et al., 2019). Future work is needed to
test whether the neurocognitive mechanisms are similar
as well, which would further contradict the intuitive hy-
pothesis derived from evolutionary psychology.
Competitions are part and parcel of human life and can

be wasteful. In the current contest, participants destroyed
roughly 40% of their wealth in attempts at “injuring others
and protecting against being injured” (viz. Mill, 1859). Our
neurocomputational approach suggested that injuring
others is done through rather sophisticated cognitive rea-
soning, with the key aim to understand the protagonist’s
strategy selection such that personal rewards can be opti-
mized. When investing in attack more than in defense,
people engage more sophisticated cognitive recursion.
Furthermore, neural structures associated with theory of
mind and reward processing are recruited more during at-
tack than defense decisions. Perhaps, mentalizing not only
serves empathy and prosocial decision-making, but also
the strategic goal of reward maximization through exploi-
tation and subordination.
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Notes

1. The attack–defense contest belongs to a class of asymmet-
ric conflict games in which one player competes to maximize
personal gain and the counterpart competes to prevent ex-
ploitation (De Dreu & Gross, 2019; Dechenaux, Kovenock, &
Sheremeta, 2015). Including in this class of asymmetric games
are the hide-and-seek game (Bar-Hillel, 2015; Flood, 1972), the
matching pennies game (Goeree, Holt, & Palfrey, 2003), the in-
spection game (Nosenzo, Offerman, Sefton, & van der Veen,
2014), and the best shot/weakest link game (Chowdhury &
Topolyan, 2016; Clark & Konrad, 2007). Across these games,
humans invest to maximize wealth and/or to minimize risk of
losing.
2. The sample was the same as used in De Dreu et al. (2015),
which used a crossover design to examine the behavioral and
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neural effects of oxytocin (vs. placebo) administration. Here, we
only analyze investments made under placebo. Moreover, our
earlier report only considered trials in which participant deci-
sions affected themselves only and did not include those deci-
sion trials in which decisions also affected two other individuals
within their group. Here, we include also those previously un-
analyzed trials. Because this manipulation revealed no differ-
ences, we collapsed across these two conditions. In short, the
current study shares 25% of its analyzed data with the previous
one, asks a different research question, and uses distinctly dif-
ferent analytic techniques.
3. Specifically, the mixed-strategy equilibrium is computed as
follows: Attack: p(x = 1) = 2/45, p(x) = p(x − 1)[(12 − x)/
(10 − x)] for 2 ≤ x ≤ 6, p(x = 0) = 1 − [p(x = 1) + … +
p(x = 6)] = 0.4, and p(x) = 0 for x ≥ 7; Defense: p( y) =
1/(10 − y) for 0 ≤ y ≤ 5, p( y = 6) = 1 − [p( y = 0) + … +
p( y = 5)] = 0.15, and p( y) = 0 for y ≥ 7 (also see De Dreu
et al., 2015).
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