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Despite improved treatment, a large portion of patients with acute ischemic stroke

due to a large vessel occlusion have poor functional outcome. Further research

exploring novel treatments and better patient selection has therefore been initiated.

The feasibility of new treatments and optimized patient selection are commonly tested

in extensive and expensive randomized clinical trials. in-silico trials, computer-based

simulation of randomized clinical trials, have been proposed to aid clinical trials. In

this white paper, we present our vision and approach to set up in-silico trials focusing

on treatment and selection of patients with an acute ischemic stroke. The INSIST

project (IN-Silico trials for treatment of acute Ischemic STroke, www.insist-h2020.eu)

is a collaboration of multiple experts in computational science, cardiovascular biology,

biophysics, biomedical engineering, epidemiology, radiology, and neurology. INSIST will

generate virtual populations of acute ischemic stroke patients based on anonymized data

from the recent stroke trials and registry, and build on the existing and emerging in-silico

models for acute ischemic stroke, its treatment (thrombolysis and thrombectomy) and the

resulting perfusion changes. These models will be used to design a platform for in-silico

trials that will be validated with existing data and be used to provide a proof of concept of

the potential efficacy of this emerging technology. The platformwill be used for preliminary

evaluation of the potential suitability and safety of medication, new thrombectomy

device configurations and methods to select patient subpopulations for better treatment

outcome. This could allow generating, exploring and refining relavant hypotheses on

potential causal pathways (which may follow from the evidence obtained from clinical

trials) and improving clinical trial design. Importantly, the findings of the in-silico trials will

require validation under the controlled settings of randomized clinical trials.

Keywords: INSIST, in-silico clinical trials, acute ischemic stroke, in-silico modeling, virtual patients, virtual

populations, validation, simulation

INTRODUCTION

Endovascular treatment (EVT) has become the standard of care for patients with acute ischemic
stroke (AIS) after its benefit was demonstrated by multiple randomized clinical trials (RCTs) (1).
Despite improved functional outcome after EVT, up to 66% patients have an unfavorable outcome
and remain functionally dependent (1–3). Functional outcome, generally assessed 90 days after
stroke onset, predominantly depends on the patient’s baseline characteristics including but not
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limiting to age (4), previous comorbidities (5), stroke severity (4,
6), collateral capacity (7, 8), and thrombus characteristics (9, 10).
Delay to receive care strongly reduces the effect of treatment (11–
13). Furthermore, ischemic lesion characteristics like volume and
location, before and after treatment are also known to be strong
predictors of functional outcome after 90 days (14–19).

New AIS trials are focusing on testing new thrombolytics,
improved stent designs and testing the applicability of
thrombectomy to previously understudied patient sub-groups.
However, not more than 10% of the compounds that are tested
in clinical trials get launched in the market (20). By design,
RCTs do not serve the purpose of explaining the ineffectiveness
of treatments. However, this is a task that could be performed
with in-silico approaches (21). Further analysis to explain the
established efficacy of a treatment by in-silico methods may
allow for generation of potential hypotheses. Before these can be
introduced in clinical practice, valiation by RCTs is mandatory.
Computational or in-silico modeling is playing an increasing
role in research and development of biomedical products and
is acknowledged as an alternative to animal studies in some
preclinical trials by regulators (21–23). Statistical models that
accurately describe the most important patient characteristics
can generate “virtual patients.” Combining such virtual patient
populations with in-silicomodels (ISMs) of disease and treatment
will help to set up in-silico trials (ISTs). In such ISTs, virtual
patients receive virtual treatments and effect of treatment on
clinical outcome is estimated (21). This project aims to develop a
platform that enables the execution of ISTs for AIS. The proposed
IST platform aims to be a proof-of-concept to investigate the
extent to which in-silicomodeling can accurately simulate bench-
testing, animal testing, and clinical trial results. After validating
the proof-of-concept, some plausible hypothesesmay emerge due
to the hypotheses-generating nature of this approach. Although
ISTs will not allow for testing these hypotheses, they will be useful
in optimizing trial design, may provide potential explanation into
the causes of (un-) planned effects including less probable clinical
situations (21). We envision that developing such a platform can
considerably contribute towards a depper understanding of the
etiology and pathophysiology of AIS and its treatment effects at
the patient and population levels. In the following sections, we
describe a quantitative approach to develop a platform that can
execute, validate ISTs for AIS, generate and refine hypotheses on
the potential successfulness of new treatments, the suitability of
treatments for specific patient populations and to provide tools
for in-silico evaluation of trial design modeling.

METHODS

To develop and validate a platform to execute an IST, we
intend to implement a 3 fold approach. We want to generate

Abbreviations: INSIST, IN-Silico trials for treatment of acute Ischemic STroke;
MR CLEAN, Multicenter Randomized Clinical Trial of Endovascular Treatment
for Acute Ischemic Stroke in the Netherlands; EVT, Endovascular treatment; AIS,
Acute ischemic stroke; RCT, Randomized clinical trials; ISM, in-silico model; IST,
in-silico trial; VVUQ, Verification, Validation, and Uncertainty Quantification;
TAFIa, Thrombin-Activatable Fibrinolysis Inhibitor.

virtual populations of AIS patients and develop ISMs for (1)
thrombosis and thrombolysis, (2) intra-arterial thrombectomy
and (3) microvascular perfusion, cell death, and recovery of brain
tissue after reperfusion based on anonymized clinical, imaging,
and thrombus histopathological data from the Multicenter
Randomized Clinical Trial of Endovascular Treatment for Acute
Ischemic Stroke in the Netherlands (MR CLEAN) trial, the MR
CLEAN Registry and the HERMES collaboration (1, 2, 24).
We will validate these ISMs using laboratory experiments and
available anonymized clinical data. We aim to apply these ISMs
to virtual patient populations with AIS with the goal to generate
an IST platform, followed by validation and application of the
IST platform.

Patient Population
Anonymized baseline (clinical and imaging) data, treatment
characteristics and outcome (clinical and imaging) data from
patients included in the MR CLEAN trial (2). MR CLEAN
Registry (24) and the HERMES collaboration (1), totaling
over 4,500 patients will be used to develop, execute, and
validate the ISMs and ISTs. Anonymized data from on-
going RCTs in AIS patients within the Collaboration for New
Treatments of Acute Ischemic Stroke (CONTRAST) consortium
(www.contrast-consortium.nl) comprising of ∼2,500 patients
will also be included in this project. The anonymized data from
the HERMES (1) and CONTRAST collaboration will be used to
validate the ISTs.

Design
The IST consists of four main software modules (Figure 1). The
first module generates virtual populations of AIS patients; the
second simulates treatment and brain tissue injury; the third
estimates outcome for each individual virtual AIS patient and the
final module assembles all results and reports the outcome.

Module I: Population Model to Generate Virtual

Populations of AIS Patients
We aim to generate virtual populations of AIS patients,
that are defined using probability density function(s) over all
relevant patient specific characteristics, including correlations,
and interactions between them, as required by the computational
models in Module II and statistical models in Module III. To
mitigate the effects of selection bias, the virtual population model
is based on anonymized data from the MR CLEAN Registry: a
nationwide registry that includes all patients with an AIS due to
a large vessel occlusion in the anterior circulation that received
endovascular treatment; and not on data from a trial population
with very strict inclusion and exclusion criteria.

The virtual population model is developed using 15
characteristics including, clinical (age, sex, systolic blood
pressure at admission, pre-interventional modified Rankin Scale,
NIH Stroke Scale, comorbidities like previous stroke, diabetes
mellitus, atrial fibrillation), workflow based (time from onset to
emergency room, time from emergency room to groin puncture),
imaging (occlusion location, collateral score, ASPECTS), and clot
characteristics (presence of a hyperdense artery sign on baseline
NCCT, percentage of fibrin/RBC based on histological analysis).
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FIGURE 1 | Schematic overview of the INSIST approach to implement an IST for AIS.

These characteristics have been selected based on prior clinical
knowledge of clinicians within the consortium, previously
validated stroke prediction platform (25) and requirements of the
ISMs of treatment. By mainly deriving the characteristics from
a previously validated prediction model and using a relatively
large dataset approximating over 4,500 patients, we limit the
effects of over-fitting. To improve the accuracy of estimating
the correlations of population characteristics (for example—
percentage of fibrin/RBC) that are only available for a subset of
the dataset, correlations of such characteristics are only estimated
with characteristics that are available for the entire population
and that they are most associated with to improve accuracy (for
example—occlusion location).

Furthermore, the virtual populations are developed using the
vine copula model. Compared to state of the art techniques like
conditional regression and imputation methods, the vine copula
model has several advantages including capturing interactions
between the characteristics describing the population as lower
levels of dependence structures (26–28).

Vessel geometry, clot atlas and ischemic core atlas
Validated (semi-) automated quantitative methods to extract
information from radiological images like collateral capacity
(29), early ischemic changes (30), thrombus characteristics
(10, 31), infarct (32), and hemorrhage (33) characteristics are
available to determine radiological characteristics of follow

up. We are creating a library of vessel geometries based
on the intracranial arteries segmented from baseline imaging
data. Segmentation of intracranial arteries is performed using
artificial intelligence based techniques. We are also identifying
and categorizing different phenotypes of aortic arch-types and
intracranial vascular anatomies. In addition, we are performing
analysis ofmultiple thrombus features [e.g., size (length, volume),
location, perviousness, etc.] obtained from baseline imaging data
(10). We are extending previous methods to create ischemic core
atlases to predict the size and location of the final infarct based
on the thrombus location, composition, and collateral score.
Furthermore, we are creating probability maps of infarcts that
indicate the chance of having an infarct in a specific region based
on prior clinical, imaging, and treatment information (34).

Relationship between clinical, imaging, and histological

characteristics of thrombi
We analyze the clots retrieved after EVT procedure for
patients within the MR CLEAN Registry (24) using routine
macroscopy, histology with various stainings and with immuno-
histochemistry using confocal microscopy and (immuno-)
scanning electron microscopy. We quantify the thrombus
components and their contribution to the thrombus. We also
perform electron microscopy of the stents to study the stent-
thrombus interaction and its dependence on clot composition
(35, 36). With these measurements we will create a clot database
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and use it to generate a clot population model after incorporating
clinical characteristics (such as age, sex, stroke etiology, and
prior IV-alteplase), procedural characteristics (time from onset
to alteplase, time from alteplase to intra-arterial thrombectomy),
and interventional characteristics (stent-retriever, aspiration).

Generation and validation of virtual patients

and populations
Based on the population models described in the previous
sections, virtual patients are created by randomly sampling
from the distributions, while accounting for inclusion criteria
that may be required in a specific IST. A virtual patient is
defined as a combination of characteristics including clinical,
anatomical data, and clot specifics, and is used as input to the
computational models in Module II. We will combine a large
number of individual virtual stroke patients to generate virtual
cohorts. Specific virtual cohorts can be generated by setting
characteristics, such as age, sex, and baseline NIH Stroke Scale,
like setting in- and exclusion criteria in RCTs (26–28).

Module II: Simulate Treatment and Brain Tissue Injury
We intend to simulate brain perfusion and growth of an ischemic
lesion after AIS (pre- and post-treatment) for every virtual patient
generated in Module I. Thus, the output of this Module will
include an estimate of the lesion characteristics like location and
volume, and status of recanalization and reperfusion for every
virtual AIS patient.

The onset of AIS serves as a starting point of the simulations
in this Module. Clot characteristics like location and size and
time from onset to treatment are derived from the population
model. We then simulate the flow adjustment in response to
the occlusion of artery in 1-D models for the large blood
vessels that are coupled to simulations of brain tissue perfusion.
Treatment, modeled as the (partial) opening of the arterial
segment, mimics the details of thrombolysis, and thrombectomy.
We also incorporate the possible spray of micro-emboli in the
treatment models. The redistribution of the blood flow in the
brain is then fed to a 3-D homogenized tissue level perfusion
model that describes the (lack of) perfusion of the brain over
time, which is the input for the homogenized 3-D brain level
stroke model. Figure 2 shows a schematic overview of this
multiscale model of AIS and its treatment.

In-silico models for simulation of thrombosis

and thrombolysis
Within INSIST, we develop numerical mathematical models,
based on bio-physical principles, in order to explain and predict
the processes of thrombosis and thrombolysis relevant to stroke
events. The main goal is to understand the formation of
the clot, as well as its 3D structure (porosity, composition,
inhomogeneity) and what makes some patients resistant to
thrombolysis. The proposed models include the most relevant
blood factors, nature of treatment, vessel geometry, and flow
properties to simulate various patient specific scenarios. The
mathematical models include two levels of description: first a 1D
macroscopic approach, based on a system of partial differential
equations, with validated bio-physical reaction constants, but

limited to simple geometries and second, a 3Dmesoscopic model
able to consider arbitrary flow situations and an explicit structure
of the clot. The second model implements the thrombosis
and thrombolysis processes as dynamics of idealized particles,
transported by a Lattice Boltzmann fluid. These two models
typically return lysis time and lysed volume for different
situations (depending on flow condition, clot structure, blood
composition, etc.). They are being validated with in-vitro
experiments, performed by INSIST partners.

In-silico models of mechanical thrombectomy
We are developing ISMs of the stent-retriever, stent placement
and stent-thrombus interaction that are driven by in vitro and ex-
vivo experiments with and without thrombolysis treatment. The
developed models generate measures of recanalization and clot
fragmentation. We are also incorporating the biomechanics of
thrombus-vessel adhesion into these models. By simulating the
interaction between the stent-retrievers and the vessel wall, we
will be able to assess the potential for tissue damage associated
with the forces applied by the retriever during deployment and
shear stress induced during the retrieving operation. These ISMs
are be based on the established techniques of finite element
modeling of stent-retrievers (37, 38).

Blood flow, perfusion, and microcirculation modeling
With the vessel models, we can generate virtual patient specific
1D blood flow models for the large conductance vessels in the
brain (39–43). We are extending these models toward the smaller
pial vessels, covering the leptomeningeal collateral network (44,
45). Since there are hundreds of millions of arterial and arteriolar
segments in the human brain, modeling individual segments
below a certain branching level is neither feasible nor required.
We, therefore, use homogenized models for the distribution of
number and size of penetrating vessels over the cortex and for
the downstream microvascular beds. Such homogenized models
are based on porous media physics and include a description of
perfusion in terms of Darcy’s law, considering the anisotropic
nature of the vascular bed (46, 47). Essentially all arteries, but
notably the arterioles have significant resistance for perfusion.
Control of arteriolar diameter by smooth muscle contractile
activity is a core process in autoregulation of brain perfusion, and
this process is strongly affected in AIS and during reperfusion
(48). The models will be validated in individual subjects through
angiographic imaging and perfusion mapping and will be
used to assess the robustness of the circulatory pathways to
alterations in supply or to changes in individual vessels (for
example micro-emboli).

In-silico ischemia models
We will couple models of the cell response to hypoxia with
models of hypo-perfusion injury (49–51). Using homogenization
techniques, the models of the microvasculature can be scaled
across multiple length scales, which will result in a full advection-
convection-diffusion equation, to be performed in the context
of both a response to a large clot in a large supply vessel
and to micro-emboli in multiple vessels. The resulting 3D
model of hypo-perfusion injury will consider the whole cycle of
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FIGURE 2 | Schematic overview of the multiscale model that simulates AIS and its treatment.

hypo-perfusion, tissue damage and reperfusion within a single,
dynamically varying, model for the first time. We will combine
models of cerebral blood flow with those of cerebral metabolism,
using multi-scale techniques to develop models that incorporate
the behavior at both the cellular level and the tissue level.

Module III: Outcome Estimation at Patient Level
Characteristics of the final lesion like location and volume
are known to be important indicators of patient outcome (15,
19). In this Module, a statistical model that correlates the
output of Module II in combination with clinical parameters to
patient outcome is developed. Specifically, we will statistically
estimate early neurologic deficit as a primary outcome measure.
Adverse events, including intracranial hemorrhages, will not be
modeled by the in-silicomodels, but will be statistically estimated.
Modified Rankin Scale after 90 days is then predicted based
on the estimated treatment success, early neurological deficit
and adverse events. By executing Modules II and III for each
virtual stroke patient in the virtual population, we generate an
output dataset that includes the recanalization and reperfusion
status, infarct characteristics and functional outcome for each
virtual patient.

Module IV: Report Outcome at Population Level
In this Module, we will translate and aggregate the results
obtained from the previous Module for each individual virtual
stroke patients and report results on the population level, such
that comparison with real RCTs becomes possible. The Modules
mentioned above are implemented as standardized and stand-
alone software packages. The overall IST is then implemented
as a standard workflow, for which we will be using the Kepler
system (see https://kepler-project.org) to enable easy plug-and-
play features.

Validation
Evaluating the credibility of an IST requires careful and complete
validation of all separate components that constitute the trial, and
the validation of the complete integrated IST.We will validate the
integrated ISMs that are applied to the virtual populations of AIS
patients using the anonymized data from the associated trials.

We will simulate the trial population and treatment as performed
in each of the 7 RCTs, with the IST platform developed in this
project using anonymized data from only 6 RCTs (1, 2). We
will also perform blinded comparison with the recently started
CONTRAST trials (www.contrast-consortium.nl). Specifically,
we will compare the distributions and correlations of this
virtual cohort to the baseline characteristics of the population
enrolled in simulated trial and provide measures of model
performance such as calibration and discrimination. Our
validation will follow the formal Verification, Validation, and
Uncertainty Quantification (VVUQ) procedures as outlined by
the ASME V&V40 subcommittee on verification and validation
in computational modeling of medical devices, which was
published in early 2017 (52) and which FDA has adopted for
computational models used for clinical decision support for
introduction of new devices.

ANTICIPATED RESULTS

We believe that accurate tailoring of the above-mentioned
Modules will help to build a platform that can be used to execute
and conduct ISTs. We have identified three key hypotheses that
would be of interest to healthcare professionals, modelers, and
pharmaceutical and device industry to explore and refine using
the validated IST platform:

i Alternative configurations of stent-retrievers, local distal
access catheters, aspiration devices, and balloon guide
aspiration devices that can reduce thrombus fragmentation
will result in improved treatment outcome.

ii Drugs that reduce active Thrombin-Activatable Fibrinolysis
Inhibitor (TAFIa) can improve recanalization by tissue
plasminogen activator and provide better microvascular
reperfusion after thrombectomy.

iii Patients with AIS due to large vessel occlusion benefit from
an early start of thrombectomy, before the administration
of thrombolysis.

We will focus on the optimization of medication administration
(pharma industry), use of medical devices (device industry) to
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improve procedural and peri-procedural aspects of therapy and
improved patient stratification for personalized thrombolytic
and/or thrombectomy treatment (clinicians).

DISCUSSION

In this white paper, we describe a methodology that should
enable an initial assessment of the added value of ISTs and
provide insights into the best practices in setting up such ISTs.
We believe that the results of the in-silico platform may provide
information at a population level given the cohort characteristics,
and not on the individual patient level for clinical decision
making. Nevertheless, the results of the in-silico platform can
provide insight on the efficacy of new treatments. The ISTs can
be performed for different virtual populations. In all cases, one of
our end goals will be to optimize the design of a real-life clinical
trial. Hence, we will develop and implement protocols that will
enable us to run all ISTs multiple times sweeping over parameters
that need to be optimized in a(n) (computationally) efficient way.
By the end of the project we will have obtained a much deeper
understanding of the pathophysiology of AIS and reasons for
failure of current treatments, have delivered and assessed ISMs
that explain treatment efficacy. Moreover, the accuracy of ISTs
will be assessed by comparing their results with the findings from
running and recently completed clinical trials.

We envision that an integrated approach of multiple ISMs in
combination with accurate virtual populations of stroke patients
will provide valuable insights for the design of relavant trials and
thus, contribute to improved biomedical products and treatment
success. Nevertheless, ISTs cannot replace clinical trials as ISMs
and ISTs are based on data generated from the controlled settings
of clinical trials. However, as advertised now by the FDA and
EMA, ISTs have value to improve clinical trial design and enhance
the level of evidence so that less clinical trials are required before
approval from the regulatory bodies.

There are various foreseeable limitations to this study. We
must acknowledge that modeling brain tissue infarction, and the
complex chain of events that all play a role in brain perfusion
andmetabolism is very challenging.We still lack basic knowledge
of the underlying physiology, as well as sufficiently detailed
experimental data that would allow detailed modeling of these
processes. However, by reporting outcomes at a population
level and by combining a statistically driven component to the
modeling chain (as in Module III), the outcome of the IST can
become robust to modeling errors of the individual components
of an IST. Detailed validation studies will shed light on this for
AIS ISTs and for ISTs in general.

CONCLUSION

ISTs have the potential to lead to a more effective human clinical
trial design, reduce animal testing, lower development costs, and
shorten time to market for new medical products. ISTs also allow
improved prediction of human risk for new biomedical products.
In addition, there is the potential to reuse the developed ISMs
for drug repositioning. Through this project, we aim to show the

credibility of ISTs and work toward the regulatory acceptance
of in-silico computational modeling for decision-making and
pre-market submissions.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.insist-h2020.eu.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

All authors contributed to the researched the literature and to
the first version of the manuscript. The manuscript has been
reviewed and edited by all the other INSIST investigators, and
the final version accepted by all authors.

FUNDING

This project was supported by the European Union’s Horizon
2020 research and innovation program (Grant No. 777072).

INSIST INVESTIGATORS

Charles Majoie1, Ed van Bavel2, Henk Marquering1,2,
Nerea Arrarte-Terreros1,2, Praneeta Konduri1,2, Sissy
Georgakopoulou2, Yvo Roos3, Alfons Hoekstra4, Raymond
Padmos4, Victor Azizi4, Aad van der Lugt5, Diederik
W.J. Dippel6, Hester L. Lingsma7, Nikki Boodt5,6,7, Noor
Samuels5,6,7, Stephen Payne8, Tamas Jozsa8, Wahbi K. El-
Bouri8, Michael Gilvarry9, Ray McCarthy9, Sharon Duffy9,
Behrooz Fereidoonnezhad10, Kevin Moerman10, Patrick Mc
Garry10, Senna Staessens11, Simon de Meyer11, Francesco
Migliavacca12, Gabriele Dubini12, Giulia Luraghi12, Jose Felix
Rodriguez Matas12, Bastien Chopard13, Franck Raynaud13,
Remy Petkantchin13, Vanessa Blanc-Guillemaud14, Mikhail
Panteleev15,16, Alexey Shibeko15, Karim Zouaoui Boudjeltia17.

1Department of Radiology andNuclearMedicine, Amsterdam
UMC, location AMC, Amsterdam, the Netherlands; 2Biomedical
Engineering and Physics, Amsterdam UMC, location AMC,
Amsterdam, the Netherlands; 3Department of Neurology,
Amsterdam UMC, location AMC, Amsterdam, the Netherlands;
4Computational Science Lab, Faculty of Science, Institute
for Informatics, University of Amsterdam, Amsterdam, the
Netherlands; 5Department of Radiology & Nuclear Medicine,
Erasmus MC University Medical Center, PO Box 2040, 3000
CA Rotterdam, the Netherlands; 6Department of Neurology,
Erasmus MC University Medical Center, PO Box 2040, 3000
CA Rotterdam, the Netherlands; 7Department of Public
Health, Erasmus MC University Medical Center, PO Box

Frontiers in Neurology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 558125

https://www.insist-h2020.eu
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Konduri et al. INSIST: In-Silico Trials for Stroke

2040, 3000 CA Rotterdam, the Netherlands; 8Institute of
Biomedical Engineering, Department of Engineering Science,
University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
9Cerenovus, Galway Neuro Technology Center, Galway,
Ireland; 10College of Engineering and Informatics, National
University of Ireland Galway, Ireland; National Center for
Biomedical Engineering Science, National University of Ireland
Galway, Ireland; 11Laboratory for Thrombosis Research,
KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium;
12Laboratory of Biological Structure Mechanics, Department
of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Politecnico di Milano, Piazza Leonardo da Vinci

32, 20133 Milano, Italy; 13Computer Science Department,
University of Geneva, CUI, 7 route de Drize, 1227 Carouge,
Switzerland; 14Institut de Recherches Internationales Servier,
Coubevoie Cedex, France; 15Center for Theoretical Problems
of Physicochemical Pharmacology RAS, Moscow, Russia;
16Dmitry Rogachev National Research Center of Pediatric
Hematology, Oncology and Immunology, Moscow, Russia;
Faculty of Physics, Lomonosov Moscow State University,
Moscow, Russia; 17Laboratory of Experimental Medicine (ULB
222 Unit), Université Libre de Bruxelles (ULB), CHU de
Charleroi, Belgium.

REFERENCES

1. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk
AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a
meta-analysis of individual patient data from five randomised trials. Lancet.
(2016) 387:1723–31. doi: 10.1016/S0140-6736(16)00163-X

2. Berkhemer OA, Fransen PSS, Beumer D, van den Berg LA, Lingsma HF, Yoo
AJ, et al. A randomized trial of intraarterial treatment for acute ischemic
stroke. N Engl J Med. (2015) 372:11–20. doi: 10.1056/NEJMoa1411587

3. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al.
Endovascular therapy for ischemic stroke with perfusion-imaging selection.N
Engl J Med. (2015) 372:1009–18. doi: 10.1056/NEJMoa1414792

4. Weimar C, König IR, Kraywinkel K, Ziegler A, Diener HC. Age and
national institutes of health stroke scale score within 6 hours after onset
are accurate predictors of outcome after cerebral ischemia. Stroke. (2003)
35:158–62. doi: 10.1161/01.STR.0000106761.94985.8B

5. Saposnik G, Kapral MK, Liu Y, Hall R, O’Donnell M,
Raptis S, et al. IScore. Circulation. (2011) 123:739–
49. doi: 10.1161/CIRCULATIONAHA.110.983353

6. Rost NS, Bottle A, Lee J, Randall M, Middleton S, Shaw L, et al. Stroke severity
is a crucial predictor of outcome: an international prospective validation
study. J Am Heart Assoc. (2016) 5:1–7. doi: 10.1161/JAHA.115.002433

7. Tan IYL, Demchuk AM, Hopyan J, Zhang L, Gladstone D, Wong K, et al.
CT angiography clot burden score and collateral score: correlation with
clinical and radiologic outcomes in acute middle cerebral artery infarct. Am
J Neuroradiol. (2009) 30:525–31. doi: 10.3174/ajnr.A1408

8. Jansen IGH, Berkhemer OA, Yoo AJ, Vos JA, Nijeholt GJL, Sprengers MES,
et al. Comparison of CTA-And DSA-based collateral flow assessment in
patients with anterior circulation stroke. Am J Neuroradiol. (2016) 37:2037–
42. doi: 10.3174/ajnr.A4878

9. Santos EMM, Marquering HA, Den Blanken MD, Berkhemer OA, Boers
AMM, Yoo AJ, et al. Thrombus permeability is associated with improved
functional outcome and recanalization in patients with ischemic stroke.
Stroke. (2016) 47:732–41. doi: 10.1161/STROKEAHA.115.011187

10. Dutra BG, Tolhuisen ML, Alves HCBR, Treurniet KM, Kappelhof M, Yoo
AJ, et al. Thrombus imaging characteristics and outcomes in acute ischemic
stroke patients undergoing endovascular treatment. Stroke. (2019) 50:2057–
64. doi: 10.1161/STROKEAHA.118.024247

11. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez
S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by
perfusion imaging. N Engl J Med. (2018) 378:708–18. doi: 10.1056/NEJMoa17
13973

12. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al.
Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit
and infarct. N Engl J Med. (2017) 378:11–21. doi: 10.1056/NEJMoa1706442

13. Saver JL. Time is brain - quantified. Stroke. (2006) 37:263–
6. doi: 10.1161/01.STR.0000196957.55928.ab

14. Schröder J, Thomalla G. A critical review of alberta stroke program early
CT score for evaluation of acute stroke imaging. Front Neurol. (2017)
7:245. doi: 10.3389/fneur.2016.00245

15. Boers AMM, Jansen IGH, Beenen LFM, Devlin TG, Roman LS, Heo JH, et al.
Association of follow-up infarct volume with functional outcome in acute
ischemic stroke: a pooled analysis of seven randomized trials. J Neurointerv
Surg. (2018) 10:1137–42. doi: 10.1136/neurintsurg-2017-013724

16. Zaidi SF, Aghaebrahim A, Urra X, Jumaa MA, Jankowitz B, Hammer
M, et al. Final infarct volume is a stronger predictor of outcome
than recanalization in patients with proximal middle cerebral artery
occlusion treated with endovascular therapy. Stroke. (2012) 43:3238–
44. doi: 10.1161/STROKEAHA.112.671594

17. Yoo AJ, Chaudhry ZA, Nogueira RG, Lev MH, Schaefer PW, Schwamm LH,
et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy.
Stroke. (2012) 43:1323–30. doi: 10.1161/STROKEAHA.111.639401

18. Compagne KCJ, Boers AMM, Marquering HA, Berkhemer OA, Yoo AJ,
Beenen LFM, et al. Follow-up infarct volume as a mediator of endovascular
treatment effect on functional outcome in ischaemic stroke. Eur Radiol. (2019)
29:736–44. doi: 10.1007/s00330-018-5578-9

19. Ernst M, Boers AMM, Forkert ND, Berkhemer OA, Roos YB, Dippel DWJ,
et al. Impact of ischemic lesion location on the MRS score in patients with
ischemic stroke: a voxel-based approach. Am J Neuroradiol. (2018) 39:1989–
94. doi: 10.3174/ajnr.A5821

20. Manolis E, Rohou S, Hemmings R, Salmonson T, Karlsson M, Milligan PA.
The role of modeling and simulation in development and registration
of medicinal products: output from the efpia/ema modeling and
simulation workshop. CPT Pharmacometrics Syst Pharmacol. (2013)
2:e31. doi: 10.1038/psp.2013.7

21. Viceconti M, Henney A, Morley-Fletcher E. In silico clinical trials: how
computer simulation will transform the biomedical industry. Int J Clin Trials.
(2016) 3:37–46. doi: 10.18203/2349-3259.ijct20161408

22. Kovatchev BP, Breton M, Dalla Man C, Cobelli C. In silico preclinical trials:
a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci
Technol. (2009) 3:44–55. doi: 10.1177/193229680900300106

23. Hunter P, Coveney PV, De Bono B, Diaz V, Fenner J, Frangi AF, et al.
A vision and strategy for the virtual physiological human in 2010 and
beyond. Philos Trans R Soc A Math Phys Eng Sci. (2010) 368:2595–
614. doi: 10.1098/rsta.2010.0048

24. Jansen IGH,MulderMJHL, Goldhoorn RJB. Endovascular treatment for acute
ischaemic stroke in routine clinical practice: prospective, observational cohort
study (MR CLEAN Registry). BMJ. (2018) 360:k949. doi: 10.1136/bmj.k949

25. Venema E, Mulder MJHL, Roozenbeek B, Broderick JP, Yeatts SD, Khatri
P, et al. Selection of patients for intra-arterial treatment for acute ischaemic
stroke: development and validation of a clinical decision tool in two
randomised trials. BMJ. (2017) 357:j1710. doi: 10.1136/bmj.j1710

26. Teutonico D, Musuamba F, Maas HJ, Facius A, Yang S, Danhof M,
et al. Generating virtual patients by multivariate and discrete re-sampling
techniques. Pharm Res. (2015) 32:3228–37. doi: 10.1007/s11095-015-1699-x

27. Zhang M, Bedford T. Vine copula approximation: a generic method
for coping with conditional dependence. Stat Comput. (2018) 28:219–
37. doi: 10.1007/s11222-017-9727-9

28. Kimko HHC, Peck CC. Clinical trial simulations: applications and trends.
AAPS Adv Pharm Sci Ser. (2011) 1:506–26. doi: 10.1007/978-1-4419-7415-0

Frontiers in Neurology | www.frontiersin.org 7 September 2020 | Volume 11 | Article 558125

https://doi.org/10.1016/S0140-6736(16)00163-X
https://doi.org/10.1056/NEJMoa1411587
https://doi.org/10.1056/NEJMoa1414792
https://doi.org/10.1161/01.STR.0000106761.94985.8B
https://doi.org/10.1161/CIRCULATIONAHA.110.983353
https://doi.org/10.1161/JAHA.115.002433
https://doi.org/10.3174/ajnr.A1408
https://doi.org/10.3174/ajnr.A4878
https://doi.org/10.1161/STROKEAHA.115.011187
https://doi.org/10.1161/STROKEAHA.118.024247
https://doi.org/10.1056/NEJMoa1713973
https://doi.org/10.1056/NEJMoa1706442
https://doi.org/10.1161/01.STR.0000196957.55928.ab
https://doi.org/10.3389/fneur.2016.00245
https://doi.org/10.1136/neurintsurg-2017-013724
https://doi.org/10.1161/STROKEAHA.112.671594
https://doi.org/10.1161/STROKEAHA.111.639401
https://doi.org/10.1007/s00330-018-5578-9
https://doi.org/10.3174/ajnr.A5821
https://doi.org/10.1038/psp.2013.7
https://doi.org/10.18203/2349-3259.ijct20161408
https://doi.org/10.1177/193229680900300106
https://doi.org/10.1098/rsta.2010.0048
https://doi.org/10.1136/bmj.k949
https://doi.org/10.1136/bmj.j1710
https://doi.org/10.1007/s11095-015-1699-x
https://doi.org/10.1007/s11222-017-9727-9
https://doi.org/10.1007/978-1-4419-7415-0
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Konduri et al. INSIST: In-Silico Trials for Stroke

29. Boers AMM, Sales Barros R, Jansen IGH, Berkhemer OA, Beenen LFM,
Menon BK, et al. Value of quantitative collateral scoring on CT angiography
in patients with acute ischemic stroke. Am J Neuroradiol. (2018) 39:1074–
82. doi: 10.3174/ajnr.A5623

30. Stoel BC, Marquering HA, Staring M, Beenen LF, Slump CH, Roos
YB, et al. Automated brain computed tomographic densitometry
of early ischemic changes in acute stroke. J Med Imaging. (2015)
2:014004. doi: 10.1117/1.JMI.2.1.014004

31. Santos EMM,Marquering HA, Berkhemer OA, Van ZwamWH, Van Der Lugt
A, Majoie CB, et al. Development and validation of intracranial thrombus
segmentation on CT angiography in patients with acute ischemic stroke. PLoS
ONE. (2014) 9:e0101985. doi: 10.1371/journal.pone.0101985

32. Boers AM, Marquering HA, Jochem JJ, Besselink NJ, Berkhemer OA, Van Der
Lugt A, et al. Automated cerebral infarct volume measurement in follow-
up noncontrast CT scans of patients with acute ischemic stroke. Am J

Neuroradiol. (2013) 34:1522–7. doi: 10.3174/ajnr.A3463
33. Boers AM, Zijlstra IA, Gathier CS, Van Den Berg R, Slump CH,

Marquering HA, et al. Automatic quantification of subarachnoid
hemorrhage on noncontrast CT. Am J Neuroradiol. (2014)
35:2279–86. doi: 10.3174/ajnr.A4042

34. Boers AMM, Berkhemer OA, Slump CH, Van ZwamWH, Roos YBWEM, Van
Der Lugt A, et al. Topographic distribution of cerebral infarct probability in
patients with acute ischemic stroke: mapping of intra-arterial treatment effect.
J Neurointerv Surg. (2017) 9:431–6. doi: 10.1136/neurintsurg-2016-012387

35. De Meyer SF, Andersson T, Baxter B, Bendszus M, Brouwer P, Brinjikji W,
et al. Analyses of thrombi in acute ischemic stroke: a consensus statement
on current knowledge and future directions. Int J Stroke. (2017) 12:606–
14. doi: 10.1177/1747493017709671

36. Staessens S, Denorme F, François O, Desender L, Dewaele T,
Vanacker P, et al. Structural analysis of ischemic stroke thrombi:
histological indications for therapy resistance. Haematologica. (2020)
105:498–507. doi: 10.3324/haematol.2019.219881

37. Luraghi G,Migliavacca F, García-González A, Chiastra C, Rossi A, CaoD, et al.
On the modeling of patient-specific transcatheter aortic valve replacement: a
fluid–structure interaction approach. Cardiovasc Eng Technol. (2019) 10:437–
55. doi: 10.1007/s13239-019-00427-0

38. WuW, Pott D,Mazza B, Sironi T, Dordoni E, Chiastra C, et al. Fluid–structure
interaction model of a percutaneous aortic valve: comparison with an in vitro

test and feasibility study in a patient-specific case. Ann Biomed Eng. (2016)
44:590–603. doi: 10.1007/s10439-015-1429-x

39. Alastruey J, Parker KH, Sherwin SJ. Arterial pulse wave haemodynamics. In
Anderson S, editor. 11th International Conference on Pressure Surges. Lisbon:
Virtual PiE Led t/a BHR Group (2012). p. 401–42.

40. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of
a one-dimensional model of the systemic arterial tree. Am J Physiol Hear Circ

Physiol. (2009) 297:208–22. doi: 10.1152/ajpheart.00037.2009
41. Blanco PJ, Watanabe SM, Passos MARF, Lemos PA, Feijóo RA. An

anatomically detailed arterial network model for one-dimensional
computational hemodynamics. IEEE Trans Biomed Eng. (2015)
62:736–53. doi: 10.1109/TBME.2014.2364522

42. Sherwin SJ, Franke V, Peiró J, Parker K. One-dimensional modelling of
a vascular network in space-time variables. J Eng Math. (2003) 47:217–
50. doi: 10.1023/B:ENGI.0000007979.32871.e2

43. van de Vosse FN, Stergiopulos N. Pulse wave propagation
in the arterial tree. Annu Rev Fluid Mech. (2011) 43:467–
99. doi: 10.1146/annurev-fluid-122109-160730

44. Liebeskind DS. Collateral circulation. Stroke. (2003) 34:2279–
84. doi: 10.1161/01.STR.0000086465.41263.06

45. Tariq N, Khatri R. Leptomeningeal collaterals in acute ischemic stroke. J Vasc
Interv Neurol. (2008) 1:91–5.

46. Michler C, Cookson AN, Chabiniok R, Hyde E, Lee J, Sinclair M,
et al. A computationally efficient framework for the simulation of
cardiac perfusion using a multi-compartment darcy porous-media flow
model. Int J Numer Method Biomed Eng. (2013) 29:217–32. doi: 10.1002/
cnm.2520

47. Hodneland E, Hanson E, Sævareid O, Nævdal G, Lundervold A,
Šoltészová V, et al. A new framework for assessing subject-specific
whole brain circulation and perfusion using mri-based measurements
and a multiscale continuous flow model. PLoS Comput Biol. (2019).
15:e1007073. doi: 10.1371/journal.pcbi.1007073

48. Cipolla MJ. The Cerebral Circulation. San Rafael, CA: morgan & claypool life
sciences (2009).

49. Dronne MA, Boissel JP, Grenier E, Gilquin H, Cucherat M, Hommel M, et al.
Mathematical modelling of an ischemic stroke: an integrative approach. Acta
Biotheor. (2004) 52:255–72. doi: 10.1023/B:ACBI.0000046597.53669.ff

50. Chapuisat G, Dronne MA, Grenier E, Hommel M, Boissel JP. In

silico study of the influence of intensity and duration of blood flow
reduction on cell death through necrosis or apoptosis during acute
ischemic stroke. Acta Biotheor. (2010) 58:171–90. doi: 10.1007/s10441-
010-9100-2

51. Orlowski P, O’Neill D, Grau V, Ventikos Y, Payne S. Modelling of the
physiological response of the brain to ischaemic stroke. Interface Focus. (2013)
3:20120079. doi: 10.1098/rsfs.2012.0079

52. Pathmanathan P, Gray RA, RomeroVJMT. Applicability analysis of validation
evidence for biomedical computational models. ASME J Verif Valid Uncert.
(2017) 2:021005. doi: 10.1115/1.4037671

Conflict of Interest: PK was funded by INSIST (www.insist-h2020.eu) a
European Union’s Horizon 2020 research programme under grant agreement
No. 777072. HM reports co-founder and shareholder of Nico.lab. CM reports
grants from European Commission, during the conduct of the study; grants from
CVON/Dutch Heart Foundation, grants from TWIN Foundation, grants from
Stryker, outside the submitted work, and owns stock in Nico.lab, a company that
focuses on the use of artificial intelligence for medical image analysis.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Konduri, Marquering, van Bavel, Hoekstra, Majoie and the

INSIST Investigators. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 558125

https://doi.org/10.3174/ajnr.A5623
https://doi.org/10.1117/1.JMI.2.1.014004
https://doi.org/10.1371/journal.pone.0101985
https://doi.org/10.3174/ajnr.A3463
https://doi.org/10.3174/ajnr.A4042
https://doi.org/10.1136/neurintsurg-2016-012387
https://doi.org/10.1177/1747493017709671
https://doi.org/10.3324/haematol.2019.219881
https://doi.org/10.1007/s13239-019-00427-0
https://doi.org/10.1007/s10439-015-1429-x
https://doi.org/10.1152/ajpheart.00037.2009
https://doi.org/10.1109/TBME.2014.2364522
https://doi.org/10.1023/B:ENGI.0000007979.32871.e2
https://doi.org/10.1146/annurev-fluid-122109-160730
https://doi.org/10.1161/01.STR.0000086465.41263.06
https://doi.org/10.1002/cnm.2520
https://doi.org/10.1371/journal.pcbi.1007073
https://doi.org/10.1023/B:ACBI.0000046597.53669.ff
https://doi.org/10.1007/s10441-010-9100-2
https://doi.org/10.1098/rsfs.2012.0079
https://doi.org/10.1115/1.4037671
www.insist-h2020.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	In-Silico Trials for Treatment of Acute Ischemic Stroke
	Introduction
	Methods
	Patient Population
	Design
	Module I: Population Model to Generate Virtual Populations of AIS Patients
	Vessel geometry, clot atlas and ischemic core atlas
	Relationship between clinical, imaging, and histological characteristics of thrombi
	Generation and validation of virtual patients and populations

	Module II: Simulate Treatment and Brain Tissue Injury
	In-silico models for simulation of thrombosis and thrombolysis
	In-silico models of mechanical thrombectomy
	Blood flow, perfusion, and microcirculation modeling
	In-silico ischemia models

	Module III: Outcome Estimation at Patient Level
	Module IV: Report Outcome at Population Level
	Validation


	Anticipated Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Insist Investigators
	References


