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In low- and middle-income countries, management of patients with locally 
advanced non-small cell lung cancer (NSCLC) can be improved. Centers that are 
suitably equipped to provide nuclear medicine and radiation oncology services 
have minimal experience in the multidisciplinary use of a hybrid imaging 
technique called PET/CT for concurrent chemoradiotherapy, resulting in 
many patients receiving suboptimal therapy selection and treatment delivery. 
The work in this thesis focused on improved patient selection for concurrent 
chemoradiotherapy, and increased and standardized treatment accuracy 
using PET/CT applications, with the goal to improve survival in patients with 
NSCLC. Our work, which was in collaboration with the International Atomic 
Energy Agency, contributed to broader multidisciplinary use of PET/CT in 9 
centers from Brazil, Estonia, India, Jordan, Pakistan, Turkey, and Vietnam. We 
developed pragmatic standardized guidelines to accurately delineate tumor, 
provided practical and online training sessions on PET/CT based concurrent 
chemoradiotherapy over a year, and provided evidence on the effectiveness of 
PET/CT based concurrent chemoradiotherapy through a multi-center trial. 
Currently, the choice of treatment is largely dependent on the disease stage 
and patient condition, and this is not always accurate enough for optimal 
treatment selection in locally advanced NSCLC. This thesis also contributed to 
the debate of improving therapy selection in locally advanced NSCLC patients 
by studying the prognostic accuracy of quantitative imaging features from 
PET, called PET radiomics features. Future studies should investigate if the 
prognostic accuracy of current prognostic models can be further improved by 
combining imaging features from multiple imaging modalities with clinical 
and genomic data.
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Chapter 1 - General introduction and outline

1to low survival rates in these patients, and, in the case of advanced lung cancer, there is 
almost no chance of cure [11]. In HIC, preventive measures such as lung cancer screening 
are proposed to improve early detection and management of lung cancer [12]. However, in 
LMICs with insufficient treatment facilities these screening programs are less meaningful. 
Treatment options for lung cancer consists of surgery, radiotherapy (RT), chemotherapy, 
targeted drug therapy, immunotherapy, or a combination of these, although not all 
treatment options are available in LMIC.

Locally advanced non-small cell lung cancer
The most common type of lung cancer is non-small cell lung cancer (NSCLC) and accounts 
for 85% of lung cancer cases [13]. In this thesis, we focus on the management of patients 
with locally advanced NSCLC. Locally advanced means that tumor cells have spread to 
regional lymph nodes, but not yet to distant lymph nodes or other organs proven on 
imaging or by clinical examination. The 5-year overall survival rates range between 13% 
(IIIC) and 36% (IIIA), but these numbers are expected to be lower in LMIC [14, 15]. The 
current standard treatment with curative intent in HIC for locally advanced NSCLC is 
concurrent chemoradiotherapy (CRT). 

Non-invasive imaging in NSCLC
Non-invasive diagnostic techniques like computed tomography (CT) and positron 
emission tomography (PET) are used in almost any lung cancer treatment procedure for 
malignancy detection and accurate staging of NSCLC [16]. CT imaging provides anatomical 
information, used to localize and delineate target structures like the primary tumor, 
involved lymph nodes and organs at risk. However, the soft-tissue contrast is limited in 
CT, especially noticeable in the mediastinum. Hence, functional imaging such as PET is 
used in conjunction with CT to aid in detection of metastases and distinguishing between 
healthy tissue and lung cancer. 

PET imaging
PET imaging provides information on biochemical and functional processes in which 
radiolabeled molecular tracers are involved, also known as PET tracers. PET imaging relies 
on these PET tracers that emit positrons, and visualizes their estimated location within 
the patient. The most commonly used PET tracer in RT planning is 18F-fluorodeoxyglucose 
(FDG), an analogue for glucose. FDG is injected intravenously and distributed via the 
circulatory system throughout the body and accumulates in cells with high rates of 
metabolism, such as the brain or the heart. High rates of metabolism also occur in cancer 
cells as a result of proliferation or as an adaptation to hypoxia in cancer. As FDG enters the 
tumor cells, where it is phosphorylated and trapped intracellularly, positrons are emitted 
due to radioactive decay of the radionuclide 18F. A positron travels a short distance before it 

Lung cancer: not only a first world problem

Lung cancer is the most common cause of death from cancer worldwide (Figure 1) [1]. The 
incidence of lung cancer worldwide is expected to further increase in the next years, due 
to the rise in tobacco use in low and middle-income countries (LMIC) [2]. The expected 
increase of lung cancer cases is a major concern in LMIC as there are already insufficient 
treatment facilities to provide the necessary healthcare services [3]. In addition, the lack 
of expertise and insufficient resources has an impact on many aspects of diagnosis and 
treatment of lung cancer [4, 5]. As a result, patients may receive ineffective treatments, 
leading to poor treatment outcome. Hence, management of patients with lung cancer can 
be improved in LMIC. 

Estimated number of incident cases and deaths worldwide, both sexes, ages 20+
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Figure 1. Overview of the incidence and mortality of lung cancer and other cancers worldwide [1]. 

Diagnosis, treatment and survival
Rapid advancements are made in the development of new medical technology and 
treatment options for lung cancer in high-income countries (HIC). However, the 
accessibility of these new techniques and treatments remain poor in LMIC and are only 
limitedly available in a small number of treatment facilities. Despite these developments, 
globally, overall survival of patients with lung cancer has improved only gradually in the 
last decades [6-8]. Worldwide, more than 75% of patients with lung cancer are diagnosed 
with (locally) advanced lung cancer, i.e., cancer cells have spread to regional lymph nodes 
or to more distant lymph nodes and to other organs [9,10]. The late diagnosis contributes 
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1specific, i.e., FDG uptake can also be seen in inflammatory regions. This can complicate 
GTV delineation as illustrated in Figure 2. Previously published guidelines on PET/CT 
based contouring may not be sufficiently detailed for optimal TVD of lung cancer. 

Figure 2. Left image: transversal slice of a CT scan of a lung cancer patient showing in the right lung collapsed lung tissue 
(orange dashed contour), called atelectasis, hampering identification of tumor boundaries. Right image: transversal 
slice of the corresponding PET scan showing high FDG uptake in a primary tumor in the right lower lobe; GTV delineation 
is hampered by the presence of inflammation within atelectasis (blue arrows) and tumor boundaries remain unclear.

PET/CT based prognostic tumor characterization 
Information on tumor heterogeneity can be deployed to optimize the management of lung 
cancer. This information can be retrieved from biopsy based histopathologic examinations 
on the microscopic and molecular level. However, biopsy based assays comprise only 
a small area of an otherwise highly heterogeneous bulky tumor. This limits the use of 
histopathologic examinations, but in contrast gives a huge potential for PET/CT imaging. 
PET/CT imaging is able to rapidly assess the whole tumor volume. PET/CT could therefore 
complement histopathologic examination by imaging based characterization of tumor 
heterogeneity. 

Semiquantitative PET
Tumor heterogeneity can be evaluated through visual assessment of FDG uptake patterns 
on PET images [26] or by quantifying the uptake patterns of radiotracers. The uptake of 
radiotracers in a voxel or a larger volume of interest (VOI) in a PET image is commonly 
assessed using a semiquantitative metric, called the standardized uptake value (SUV). 
The SUV takes into account the weight of the patient and the injected tracer activity. It 
is called semiquantitative as SUV measurements will vary depending on many biological, 
technical, and physical factors [27, 28]. As a result of these dependencies, a patient that 

loses enough energy to annihilate on collision with a nearby electron. Annihilation produces 
two 511 keV gamma rays, moving in opposite direction, and these may be detected by the 
PET detector ring surrounding the patient. PET scanners are able to estimate the position 
of these annihilation events and generate a 3D volume showing the tracer distribution 
throughout the body.

FDG PET/CT applications in NSCLC
The treatment of locally advanced NSCLC is challenging due to the macroscopic extent 
of the disease, i.e., (bulky) tumors with extensive lymph node involvement. It is therefore 
of major importance to identify the exact location of the cancer cells to gain local tumor 
control and be able to reduce toxicity in healthy tissue. Another challenge in treating locally 
advanced NSCLC originates from the strong intra and interpatient tumor heterogeneity. 
Tumor heterogeneity includes differences in cellular morphology, gene expression, 
metabolism, proliferation, and metastatic potential. For tumors, this intra-patient 
heterogeneity increases the probability to adapt features such as treatment resistance and 
other survival mechanisms. The interpatient tumor heterogeneity requires the need for 
a more personalized treatment approach as patients can respond differently to the same 
treatment. The first challenge requires accurate and precise tumor and nodal delineation. 
The second challenge requires a better characterization of the tumor heterogeneity before 
treatment to avoid futile therapies. FDG PET/CT serves as a valuable tool for accurate 
and precise tumor delineation and may also play a role in improved prognostic tumor 
characterization.

Radiotherapy target volume definition
Target volume definition (TVD) starts with contouring of the  primary tumor and 
involved  lymph nodes visual on PET/CT imaging, and the resulting contour is named 
the gross target volume (GTV)  [17]. To account for microscopic disease surrounding the 
tumor that cannot be seen on the scans, a margin should be added, called the clinical target 
volume (CTV) [18]. Lastly, geometric uncertainties with regards to position and shape of 
the tumor between treatment planning and treatment as well as during treatment calls for 
an extra margin: the planning target volume (PTV) [19].

Observer variation
GTV delineation in NSCLC is subject to observer variation [20], hence in conjunction 
with a poorly defined PTV there is a potential risk of geographic miss of tumor and/or 
unnecessary inclusion of healthy tissue [21]. The use of CT alone for TVD is associated with 
poor reproducibility. A significant reduction in interobserver variability (IOV) has been 
noted when PET was used in conjunction with CT [22-25]. Even with the use of both PET 
and CT, uncertainty remains in TVD. A disadvantage of FDG PET is that it is not tumor 
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1PET and CT radiomics features in NSCLC
CT radiomics features have been associated with tumor phenotype and genotype, which 
strengthens the hypothesis of a potential link between radiomics features and tumor 
biology [48-50]. The assessment of tumor heterogeneity with PET radiomics features 
may further improve tumor characterization, as a tumor appearing homogeneous on CT 
can still exhibit heterogeneity on PET (Figure 3). Assessing the relationship between PET 
radiomics features and tumor biology has been proven difficult and still warrants further 
investigation [51-53]. Nonetheless, both PET and CT radiomics features have been associated 
with patient survival in NSCLC [54-57]. These studies are confounded by small sample size, 
suboptimal study design, and inappropriate statistical methods, and therefore there is no 
strong evidence yet that PET radiomics features do exhibit complementary value [58]. 

 
Figure 3. Axial view of two primary lung tumors visualized on registered images from CT (left) and PET (right). On the 
upper CT slice, the tumor looks like a solid homogeneous mass, but in contrast shows a highly heterogeneous pattern on 
PET. The CT slice on the bottom does show small photopenic areas centrally located in the tumor, however the extent of 
this heterogeneity is underestimated in CT when looking at PET. 

is scanned twice within a short timeframe will not have identical PET scans. This adds 
to the complexities of performing quantitative analysis on PET scans of the same patient 
and even more when performing quantitative analysis on PET scans acquired from 
patients in multiple centers. Namely, when PET/CT scans are not acquired and processed 
in a standardized manner, these variations in scanning protocol can lead to under and 
overestimation of SUV of ≥50% in SUV measurements [29]. It is therefore in our interest 
to harmonize PET/CT scanning protocols in order to establish SUV interchangeability 
across centers [30, 31]. SUV interchangeability across centers will open up the possibility 
to perform quantification studies on tumor heterogeneity in a multicenter setting. 
Subsequently, this can lead to more insight in prognostic tumor characterization that can 
possibly aid in treatment decision making. 

Prognostic factors to guide therapy in NSCLC
Currently, decisions on treatment strategy still heavily depend on TNM staging [32, 33] 
and Eastern Cooperative Oncology Group (ECOG) performance status [34, 35]. A number 
of other prognostic factors are known, however not routinely used to guide clinicians 
in making treatment decisions, such as weight loss [36], gender [37], histology [38], age 
[39], serum blood levels [40, 41], mutation status [42], and protein expression levels [43, 
44]. In locally advanced NSCLC, treatment selection based on TNM staging and other 
clinical variables may not be accurate enough to guide therapy with area under the curve 
(AUC) values up to 0.72 [45, 46]. Therefore, the search for additional prognostic factors is 
warranted to maximize therapeutic efficacy and to decrease the number of unnecessary 
treatments to non-responder patients.

Radiomics
A current field of interest is the prognostic value of quantitative image features and its 
complementary value to well-established clinical prognostic models. The field of research 
that studies a large number of quantitative image features extracted from medical 
images using data-characterization algorithms, is termed radiomics. Radiomics focuses 
on improved quantitative image analysis, capturing additional prognostic information 
currently not used by physicians. It is hypothesized that underlying tumor biology can be 
captured via the use of quantitative image features [47], also named radiomics features. 
Combining radiomics features with other prognostic information could improve treatment 
decision making. 
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1Objectives of this thesis

Management of patients with lung cancer is suboptimal in LMIC and reasons for this 
include lack of human resources and limited access to diagnostic and therapeutic 
techniques. Sites that do have implemented PET/CT in clinic have minimal experience 
in the multidisciplinary use of PET/CT imaging for concurrent CRT, resulting in many 
patients receiving suboptimal staging, therapy selection, and treatment. Therefore, the 
work in this thesis focuses on FDG PET/CT applications that can improve the management 
of patients with locally advanced NSCLC. 

The general aim of this thesis is to achieve accurate treatment delivery and improved 
prognostic tumor characterization with PET/CT in patients with locally advanced NSCLC 
treated with CRT. The following objectives are defined: 

•	 To develop pragmatic guidelines for TVD;
•	 To reduce the interobserver variability in TVD;
•	 To improve current prognostic models for patients with lung cancer.

Ultimately, the goal is to improve the survival of patients with locally advanced NSCLC. 

Outline of this thesis

Chapter 2 is devoted to describing the context of this research by reviewing the relevant 
literature. This chapter introduces the two main research topics and also describes the 
newest developments in – and future challenges of PET/CT imaging for radiotherapy TVD 
and prognostication. 

In Chapter 3 we described detailed guidelines for PET/CT-based TVD, dealing with the 
uncertainties of PET/CT for management of respiration motion, and introduce the PET/
CT-based respiration expanded GTV approach. Overall, the aim of the report was to provide 
comprehensive guidance on using PET/CT for radiotherapy planning in NSCLC, which had 
never been provided to this extent.

These guidelines were incorporated in a one-year training program on PET/CT-based TVD 
in lung cancer that extended on the interface between Nuclear Medicine and Radiation 
Oncology in LMIC. The aim of this training program was to reduce the IOV and results are 
discussed in Chapter 4.

FDG PET/CT applications for optimized lung cancer management in 
LMIC
In recent years, a limited number of healthcare facilities in LMIC have established nuclear 
medicine (NM) services in conjunction with modern radiation oncology (RO) facilities 
[3, 4]. According to the World Health Organization’s Global Atlas of Medical Devices, 
20% of LMIC have at least one single PET/CT unit installed compared to 65% of HIC 
[59]. The International Agency Energy Agency (IAEA) is committed to helping Member 
States improve the use of NM applications and RO services in healthcare. The IAEA is an 
independent intergovernmental, science and technology-based organization, in the United 
Nations family that has 171 Member States as of February 2019. The work in this thesis is 
also supported by the IAEA. 

The limited number of treatment facilities that are suitably equipped have yet to achieve 
widespread utilization of their NM and RO services in routine clinical practice. Patients 
with locally advanced NSCLC would benefit from the multidisciplinary use of PET/CT 
imaging for concurrent CRT, the current standard treatment in HIC. Concurrent CRT 
requires accurate treatment delivery as it is more radical than sequential CRT and comes 
with increased risk of adverse events and longer hospitalization [60, 61]. In LMIC, there 
is an increased demand for more expertise in RO and NM in these centers to apply the 
current treatment standards. In addition, investigating complementary prognostic factors 
to aid in decision making could avoid futile costly medical interventions thus optimizing 
use of resources. 
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In Chapter 5, the impact of optimized PET/CT-based TVD for radiotherapy planning on 
overall survival in patients with NSCLC in LMIC is assessed.

The research that is performed in Chapter 6 generates more insight in the prognostic 
potential of PET imaging by assessing PET-based radiomics features. We investigated 
the repeatability of PET radiomics features, and also assessed the relationship with 
established clinical variables. The rationale was to search for radiomics features derived 
from pre-treatment PET imaging that are robust, independent, and prognostic, hence, 
complementary to current clinical prognostic variables and use these to develop an 
improved prognostic model. 

Chapter 7 summarizes the most important findings from this thesis, and discusses the 
future role of PET/CT on radiotherapy TVD and prognostication.
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Introduction

Lung cancer is the most common cause of death from cancer worldwide (2). For patients 
with non-small cell lung cancer (NSCLC) who are being considered for curative intent 
treatment, 18F-fluorodeoxyglucose Positron Emission Tomography (FDG PET)/ Computed 
Tomography (CT) imaging has become the standard of care in baseline staging, and has 
also shown benefit for radiotherapy planning (RTP) (2-4).

The implementation and applications of FDG PET and CT for NSCLC have changed over 
time. FDG PET was initially acquired as a standalone modality, and was demonstrated 
to be superior to computed tomography (CT) alone in the staging of lung cancer (5,6). 
When PET was acquired in conjunction with a CT using an integrated scanner (PET/CT), 
the combined information has shown to have higher staging accuracy than PET imaging 
alone (7-12). Evaluation of combined PET/CT images has traditionally been based on visual 
interpretation, and was predominantly applied for tumor detection, staging and treatment 
selection. Subsequently, the value of FDG PET/CT in manual target volume delineation (TVD) 
for radiotherapy was also demonstrated (13). In the more recent years, PET tracers other 
than FDG have come available for evaluation of different biological tumor characteristics. 
Advancements in multimodal technology now create possibilities for PET/CT imaging in 
new applications, including (semi-)automatic definition of target volumes, quantitative 
response assessment, determining patient prognosis, and predicting treatment outcome 
in NSCLC (14-20).

Radiomics has been introduced as a sophisticated way to extract and mine a large number 
of quantitative image features believed to provide a comprehensive picture of tumor 
phenotypes, for example related to necrosis, angiogenesis and radioresistant cells (21). 
The assessment of biological processes with PET radiomics features may further improve 
tumor characterization (22). The relation between CT image texture patterns and tumor 
biology has provided further insights into tumor phenotype and genotype (19,23,24); such 
a relationship for PET still warrants extensive investigation (25-27). Meanwhile, studies 
already indicated that radiomics features contain prognostic information regarding 
response to therapy or treatment outcome in lung cancer studies (19,28-31). In addition, 
radiomics features may also contribute to visual or (semi-)automatic definition of gross 
tumor volume (GTV) (32). Ultimately, proper use of PET/CT imaging could contribute in all 
steps of the treatment procedure and optimal use may lead to better tumor characterization, 
treatment decision making, treatment guidance, tumor response assessment, and local 
tumor control.

Abstract

Advancements in functional imaging technology have allowed new possibilities in 
contouring of target volumes, monitoring therapy, and predicting treatment outcome in 
non-small lung cancer (NSCLC). Consequently, the role of 18F-fluorodeoxyglucose Positron 
Emission Tomography (FDG PET) has expanded in the last decades from a stand-alone 
diagnostic tool to a versatile instrument integrated with Computed Tomography (CT), 
with a prominent role in lung cancer radiotherapy. This review outlines the most recent 
literature on developments in FDG PET imaging for prognostication and radiotherapy 
target volume delineation in NSCLC. We also describe the challenges facing the clinical 
implementation of these developments and present new ideas for future research.
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Conventional evaluations
The value of many well-established prognostic factors, such as the distinction between stage 
IIIA, IIIB, and IIIC, performance status (PS), histology, and other clinical and therapeutic 
variables, have been confirmed in locally advanced NSCLC (37). Other studies have shown 
that basic imaging-derived features in pre-treatment and post-treatment scans provide 
clinically relevant prognostic information for patients with NSCLC of various stages. 
Examples include tumor size and volume on CT, and standardized uptake value (SUV) 
based metrics like SUVmax, SUVpeak, and SUVmean, or metabolic active tumor volume (MTV) 
on FDG PET (38-44). As a combined parameter, total lesion glycolysis (TLG) was shown to be 
more promising than MTV, and in combination with other parameters such as shape based 
features complementary prognostic information could be extracted from PET images 
(19,45,46). These metrics are all related to tumor burden and metabolic characterization. 
An overview of studies about image-based prognostication using PET in NSCLC together 
with their findings is given in table 1.

Table 1. Prognostication with conventional PET image features in NSCLC

Ref Subject Features No. of pts Results Conclusion 

(36) Tumor prognosis and 
response assessment 
with FDG PET

First order 51 SUV
max

, PS, and stage were 
significantly prognostic for 
disease-specific survival. 
SUV

max
 and performance 

were prognostic for OS.

SUV
max

 is an important 
prognostic factor for 
survival of inoperable 
NSCLC and predictive for 
treatment response.

(37) Response assessment 
with FDG PET

First order 40 >20% decrease in SUV
mean

 
predicted longer PFS (9.7 
versus 2.8 months)

PMR after 3 weeks 
significant prognostic 
factor for PFS; OS remained 
poor

(38) Response assessment 
with FLT and FDG PET

First order 51 >15% decrease in SUV
max 

after both 14 days and 
56 days associated with 
longer PFS

PMR significant prognostic 
factor for PFS; OS was only 
prognostic after 14 days

(39) Tumor prognosis with 
FDG PET

First order 309 MTV and TLG significantly 
associated with increased 
risk of death (HR =1.27; HR 
= 1.22, respectively)

Volume-based PET 
parameters are significant 
prognostic factors for OS

(40) Tumor prognosis with 
FDG PET

First order 52 Multivariate analysis 
demonstrated that TLG is 
significantly associated 
with OS (HR = 1.03) and 
PFS (HR = 1.04)

TLG is a significant 
independent prognostic 
factor of PFS and OS

PET, positron emission tomography; NSCLC, non-small cell lung cancer; PS, performance status; SUV, standardized 
uptake value; PMR, partial metabolic response; PFS, progression free survival; OS, overall survival; MTV, metabolic 
tumor volume; TLG, total lesion glycolysis; HR, hazard ratio.

Based on these factors, the use and role of PET imaging has expanded from a primarily 
diagnostic tool to a more central role in the context of personalized medicine. This review 
discusses the current state of art in applications of FDG PET/CT for prognostication and 
target volume delineation in NSCLC, and describes the challenges related to the clinical 
implementation of these new developments.

A literature research was conducted to assess recent advancements in the use of PET/
CT imaging for prognostication and radiotherapy TVD in NSCLC. A search query was 
undertaken at the PubMed database, using a combination of the following keywords: 
(“PET”) and (“non-small cell lung cancer” or “NSCLC”) and (“target volume delineation” or 
“segmentation” or “prognostic” or “prognostication” or “radiomics” or “textural features” or 
“precision medicine”). The search query yielded a total of 410 papers. Only studies written 
in English, related to PET/CT for prognostication and TVD in the treatment of NSCLC with 
radiotherapy and of relevance to this overview were included. To illustrate this, papers 
regarding PET guided patient examination, PET and particle therapy, surgery, PET/CT 
adapted RT, PET and dosimetric planning, PET and lung toxicity, PET and lung ventilation 
studies, drug assessment, or economic related were excluded. No limitations were set on 
the year of publication. However, in the case of review papers, solely the most recent ones 
for each topic were included. Other reasons for exclusion were inaccessibility, case reports, 
editorials or conference abstracts, resulting in 77 papers. In addition, references within 
retrieved articles were analyzed to expand the search. In the end, this led to 124 papers 
covering the relevant topics, which were studied and incorporated in the descriptive 
evaluations below. 

Prognostic factors in NSCLC

In the last decades, the overall survival (OS) of lung cancer patients has not improved 
tremendously (33). The selection of treatment strategies for NSCLC patients is mainly based 
on empirical models. The most important prognostic indicator is the disease stage, which 
is determined by the extent of the primary tumor, nodal involvement, and the presence 
of distant metastasis according to the TNM classification (34). Disease staging also plays 
an important part in guiding therapy (6). In locally advanced NSCLC, however, treatment 
selection based on TNM staging and other clinical variables may not be accurate enough 
for survival probability prediction (35,36). As technology improves and more treatment 
options become available, the search for more accurate prognostic factors is warranted in 
the context of personalized medicine. 



2928

Chapter 2 - FDG PET imaging for prognostication and TVD in NSCLC

2

Table 2. The prognostic value of PET textural features in NSCLC

Ref Subject Features No. of 
pts

Results Conclusion

(17) Tumor prognosis 
with FDG PET

First order 
and textural 
features

101 Entropy, MTV, and stage 
were significant prognostic 
factors for OS. The HR was 
3.81 between a low and 
high risk group based on 
the 3 features above

Entropy and MTV contain 
complimentary information 
next to TNM staging

(29) Tumor prognosis 
and response 
assessment to 
Erlotinib with  
FDG PET

First order 
and textural 
features

47 Contrast at 6 weeks (HR 
= 1.81) and % change in 
first-order entropy (HR 
= 1.14) were significantly 
prognostic for OS. 
Percentage change in 
first-order entropy was also 
associated with treatment 
response (OR = 0.30)

Contrast and % change in first-
order entropy are significantly 
prognostic for OS and the latter 
also associated with treatment 
response following RECIST

(52) Tumor prognosis 
and response 
assessment with 
FDG PET

First order 
and textural 
features

53 ROC curves for textural 
features to predict RECIST 
response ranged from 0.54 
to 0.82. High coarseness 
was an independent 
prognostic factor for 
OS (HR = 4.86); high 
coarseness, contrast, 
busyness, and complexity 
were significantly 
prognostic for PFS (HR = 
2.41; 0.60; 0.97; 0.87)

Textural features were 
highly predictive for RECIST 
responders compared to 
first order features and were 
prognostic for PFS

(53) Tumor prognosis 
with FDG PET

First order 
and textural 
features

45 Entropy was determined as 
a significant independent 
factor in multivariate 
analysis (HR = 7.48) for 
disease-specific survival

Tumor heterogeneity as 
described by FDG-PET texture 
is associated with response to 
radiation therapy in NSCLC

(54) Tumor prognosis 
in FDG PET

First order 
and textural 
features

201 Internally validated 
optimism-corrected 
C-statistic was 0.63 for a 
model which predicted OS 
with both high MTV and 
high SumMean included 

A textural feature was 
identified as prognostic for OS 
in large tumors only (>93.3 cc)

PET, positron emission tomography; NSCLC, non-small cell lung cancer; SUV, standardized uptake value; PMR, partial 
metabolic response; PFS, progression free survival; OS, overall survival; MTV, metabolic tumor volume; HR, hazard ratio; 
OR, odds ratio; CI, concordance index.

Even though basic PET metrics have been proclaimed to be of prognostic or predictive 
value, there are still contradictions found in the literature where certain SUV metrics do 
not show any prognostic value, when used with other prognostic factors (47). Paesmans 
et al. conducted a meta-analysis about the prognostic value of SUVmax in NSCLC and 
concluded that these contradictory findings could be due to influence of disease stage or 
tumor histology, or due to differences in assessment methods (11). These dependencies may 
not hold for all PET features, hence PET features still may play a role in prognostication.. 

Radiomics textural features for improved prognostication
PET radiomics represents the high-throughput mining of quantitative image features from 
PET imaging to characterize tumor phenotypes. Radiomics features include first order 
features, that are based on the gray level intensity and its distribution in the image, but do 
not consider the three dimensional (3D) distribution of gray levels. Examples are the max, 
mean, standard deviation, skewness, and kurtosis of SUV within a volume of interest. The 
prognostic value of these ‘simple’ features may be weaker in large well differentiated tumors 
that are known to exhibit higher hypoxia, necrosis, or anatomic and physiologic complexity, 
which translates to higher complexity in the spatial distribution of PET tracer uptake (11). 

Radiomics features also include second and higher order features, called textural features, 
which may cover this higher complexity by describing the relationship between the voxel 
intensity and their position within an image. This relationship can be calculated with 
various mathematical methods, such as the gray level co-occurrence matrix (GLCM) 
for pairwise arrangement of voxels (48), the gray level run-length matrix (GLRLM) for 
alignment of voxels with the same intensity (49), the gray level size-zone matrix (GLSZM) 
for characteristics of zones with identical voxel values (50), and the neighborhood grey 
tone difference matrix (NGTDM) for determining changes in neighboring voxel intensities 
(51). As an example, GLCM entropy measures the variability in neighborhood intensity 
values and may be useful to characterize necrotic cores, a factor that has been associated 
with worse prognosis. Higher entropy represents a more heterogeneous FDG PET activity 
within the tumor, as is depicted in. Another example includes GLSZM features that mostly 
relate to the size of subregions within a tumor with similar intensities, which hypothetically 
characterizes cell subpopulations with distinct clonogenic growth. Some of these textural 
features have shown prognostic value for clinical outcome and tumor response (17,29,52-
54). An overview of studies about the prognostic value of textural features in NSCLC 
together with their findings is given in table 2. 
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well in other patient cohorts. From the studies shown in Table 1, the issue of multiple-
hypothesis testing was solely addressed by Ohri et al. (54), but none of them had validated 
their results externally. Internal or external validation is lacking in most studies, but is 
required to strengthen results regarding model performance. In absence of an external 
validation cohort, it is advised to split the initial cohort into a training and a test set. We 
would like to emphasize that prognostic models should always be corrected for multiple 
hypothesis testing and should be validated, preferably with an external patient cohort.  

A.       B. 

C.        D.

Figure 4. FDG PET images showing primary tumors from different stage III NSCLC patients. (A) and (B) have a high 
entropy indicating that the variability is high in neighborhood intensity values. (C) and (D) have a more homogeneous 
distribution of SUV within the tumor, which corresponds to a low entropy value. PET, positron emission tomography; 
NSCLC, non-small cell lung cancer; SUV, standardized uptake value.

Even though many studies reported on the prognostic value of PET radiomics features, 
results are difficult to compare amongst studies, and convincing evidence remains poor (61). 
Many studies about PET radiomics features make the remark that a standardized approach 
is lacking, which influences generalizability and makes meta-analyses difficult. For 
radiomics studies, guidelines can be found in the literature that promotes standardization 
for designated terms, extraction and calculation of textural features (62), and statistical 
analysis (63). We agree that standardization is necessary and that studies should comply 
with best-practice procedures to move forward in the field of radiomics. In light of these 
demands, a Radiomics Quality Score was proposed to evaluate radiomics studies in 
literature following standardized criteria (64). These criteria can also aid in setting up 
future radiomics studies and check whether they comply with the written guidelines. The 

PET textural features are calculated on a group of voxels within a region-of-interest (ROI). A 
common ROI that is used for PET radiomics analysis is MTV. The relationship between MTV 
and radiomics textural features has been investigated and studies demonstrated that specific 
PET textural features are closely correlated to MTV (17,19,52,55). Therefore, in these cases 
prognostic textural features would rather act as a surrogate than as an independent variable. 
On the other hand, several studies demonstrated that this dependency is decreasing with 
increasing MTV (17,55), suggesting that for larger tumors these specific PET features may 
become of relevance. This is probably caused by the partial volume effect for small tumors, 
making it difficult to obtain reliable PET radiomics features for tumors smaller than 10 cc 
(56). For instance, to determine the GLCM entropy, tumors were required to be at least more 
than 10 cc to reduce correlations with MTV (17,55). Unfortunately, these findings were based 
on only four PET textural features and is not representative for all radiomics features, since 
this volume dependency differs amongst textural features.. A high GLCM entropy (see figure 
1 for an example) in combination with a large MTV (>35 cc) led to a worse prognosis in 101 
patients with stage I-III NSCLC receiving surgery, chemotherapy, chemoradiotherapy, or a 
combination (17). Ohri et al. performed PET radiomics analysis in 201 patients with locally 
advanced NSCLC and concluded that a feature called GLCM SumMean had prognostic value 
for tumors with an MTV larger than 93 cc (54). On the contrary, Pyka et al. concluded that 
GLCM entropy was predictive for disease-specific survival in 45 early stage NSCLC patients 
with mainly small tumors (mean MTV 34 cc, ranging from 1.74 to 178 cc) receiving primary 
stereotactic radiation therapy (53). However, only 12 patients were used to assess this specific 
endpoint and divided in two unbalanced groups (2 versus 10) for comparison, which is a 
serious limitation. These results point in the direction that for larger tumors, PET textural 
features contain complimentary information above a specific tumor volume. The volume 
threshold differs per textural feature. We suggest assessing volume dependencies in detail for 
each textural feature in large patient cohorts, when building prognostic models containing 
PET textural features.

The literature also reports on correlations between first order SUV metrics and higher 
order features (texture) (29,52). Additionally, PET textural features also depend on image 
segmentation and image reconstruction settings (57), SUV binning (58,59), and feature 
calculation method (17). And although it is clear how these choices influence relationships 
between PET textural features or their reproducibility, it is not always clear how these 
factors affect the prognostic value. In the search for independent prognostic PET textural 
features, some investigators find optimal cutoff values that result in prognostic variables, 
but do not validate their results (52). Fave et al. (60) argued that testing multiple cutoffs 
to find the best one without an independent validation dataset for testing, could yield 
overly optimistic results. In combination with the inclusion of multiple variables that have 
not been corrected for multiple hypothesis testing, the models will probably not perform 
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Target volume delineation in locally advanced NSCLC

The definition of target volumes for radiotherapy of NSCLC was traditionally based on 
anatomical imaging with CT, in combination with findings from e.g. physical examination, 
endoscopy and biopsies. Multiple advances in CT imaging have further improved its spatial 
and contrast resolution with benefit for tumor delineation, for example using multi-
slice detectors and respiratory motion correction techniques (73-76). In addition, it has 
been shown that CT images can be enhanced for discrimination of tumor and normal 
tissues, using e.g. intravenous contrast or dual-energy CT (77-79). However, despite these 
improvements, CT alone does not provide sufficiently clear information to reliably and 
consistently discriminate tumor and normal tissues in all situations (80-82).

After the introduction of integrated PET/CT, its additional value for target definition was 
rapidly acknowledged. The relevance of good and reproducible quality of the images and 
accurate anatomical registration with planning CT were acknowledged. This resulted in 
the standardization of PET/CT for radiotherapy TVD (2). Several studies confirmed the 
value of adding PET imaging to planning CT to reduce inter-observer variation in TVD 
in RTP in NSCLC patients, and is specifically helpful in TVD when the tumor boundaries 
are not easily distinguished from surrounding healthy tissue (81-84). Even with the use of 
PET imaging there is still variability amongst observers (85,86). The remaining question 
is how to derive the most optimal target volumes using the information gleaned from 
combinations of PET and CT. 

Visual interpretation
Most early clinical studies have used a visual interpretation technique for target definition 
from combined FDG PET and CT scans (83,84). As in any observer-dependent procedure, it 
is essential to standardize this interpretation where possible. In one study, the benefit of 
using strict protocols was shown (85). Another study demonstrated that interdisciplinary 
cooperation between the radiation oncologist and nuclear medicine specialist is beneficial 
for consistent contouring (87).

Automatic target volume delineation
Many groups have investigated the use of automated segmentation techniques to either 
guide or generate the relevant target volume (14,15,88-91). A previous International Atomic 
Energy Agency (IAEA) publication provided guidance on the use and role of PET/CT imaging 
for RTP in a range of tumor sites (92) and an update was given in 2015 with additional 
practical guidelines for the use of FDG PET/CT for the purposes of radiotherapy TVD in 
NSCLC (3). These guidelines state that target volumes generated following any automatic 
segmentation algorithm should always be verified, and edited where needed, by a trained 

Radiomics Quality Score will hopefully lead to comparable high quality radiomics studies, 
and would facilitate future meta-analyses. 

Other PET tracers
The majority of evidence on PET/CT for prognostication concerns the use of FDG. Although 
very sensitive for staging most tumor types, a disadvantage of FDG is that it is not tumor 
specific. FDG uptake can be seen in inflammatory lesions, increasing the chance of false-
positive findings. 

The tracer 3’-deoxy-3’-18F-fluorothymidine for PET imaging (FLT PET), which allows 
assessment of tumor proliferation, does not seem to accumulate in inflammatory processes. 
Therefore, FLT is considered a more specific oncological tracer than FDG, but sensitivity 
is lower (65). Its main role is currently envisioned in evaluating early treatment response 
(66-68). However, the combination of dual-tracer PET/CT may improve diagnostic accuracy 
(69) and may also contribute in early response assessment and prediction of clinical 
outcomes (70). One study on NSCLC compared the prognostic value of FLT PET to FDG PET 
first order features and showed that both FDG and FLT PET baseline maximum SUV were 
associated with overall survival. However, clinical studies proving the prognostic value of 
textural features in FLT PET imaging are scarce. Therefore, the additional value of FLT PET 
textural features next to well-established prognostic factors for evaluation of treatment 
response and predicting clinical outcomes in NSCLC has to be further studied (71). 

Other tracers which are currently under investigation cover different aspects of lung cancer 
biology that may enable better phenotypic characterization for improved prognostication. 
11C-methionine or l-3-18F-α-methyl tyrosine (18F-FAMT) characterizes amino acid transport 
and protein metabolism. These processes are upregulated in malignant cells as a consequence 
of increased cellular proliferation activity. In addition, 18F-fluoromisonidazole (18F-FMISO), 
18F-fluoroazomycin arabinozide (18F-FAZA), and 18F-flortanidazole (18F-HX4) are hypoxic 
tracers. Hypoxia is an important factor in oncology, because this increases radioresistance 
and chemoresistance, and is related to poor clinical outcome (72). Lastly, there are PET 
tracers targeting integrins expressed on tumor vasculature, which measure levels of 
angiogenesis growth factors, to characterize angiogenesis. The clinical usage of these PET 
tracers in lung cancer has been limited so far, and pre-clinical research is still dominating 
(67). These upcoming tracers have potential for tumor detection, characterization, 
prognostication, and response assessment, but efforts need to be made to ensure safety, 
optimal signal-to-noise, and reproducibility of measurements in order to move forward. 
Therefore, there is insufficient data on the use of these tracers for prognostication for 
NSCLC, either as a separate parameter or in combination with FDG PET.
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generate accurate and consistent delineations compared to other automatic and to manual 
delineations. Further studies using a larger sample size and with pathologic validation are 
necessary to determine its clinical value in thoracic diseases.

Interestingly, it is said that the more advanced deep learning method (100), also able 
to classify objects, outperforms these classical machine learning methods. A recent 
comparison, however, of lymph node metastasis classifications in NSCLC patients between 
classical machine learning methods and a deep learning approach showed comparable 
results (99). Nevertheless, a big advantage of deep learning is its ability to generate data 
driven features instead of relying on hand crafted features and is thus potentially more 
powerful (100). This comes with a higher risk of over-fitting if not appropriately trained and 
validated, and typically needs more data. Its use in medical image analysis is increasing as 
algorithms become more sophisticated and more data becomes available (101, 102), which 
might lead to new insights in tissue classification and delineation. 

Discussion

The literature presented in this review indicates that FDG PET/CT has a substantial role in 
prognostication and radiotherapy planning for NSCLC. First order metrics such as SUVmax 
and certain PET textural features were prognostic for survival and treatment response 
assessment. It is noted, however, that many publications about PET radiomics are based 
on relatively small datasets without robust internal and/or external validation which 
challenges clinical translation. Both prognostication and GTV definition should not rely on 
PET alone, but rather on its addition to and integration with other independently validated 
sources of information. The optimal implementation of such strategies is expected to 
continue to evolve over the coming years.

Current challenges 
Challenges in prognostication with PET imaging cover a broad range of topics including image 
acquisition and reconstruction settings, tumor segmentation, image feature calculation, and 
statistical methods. Standardization of these topics for PET radiomics studies would promote 
reproducibility of study results, which is typically lacking (103). This lack of standardization 
challenges prognostication as variations in all these topics may introduce changes that 
are not due to underlying biology. It is already shown that this may lead to false positive 
results (61), and therefore standardization of these topics is warranted to move further in 
the field. A challenge to overcome in image acquisition is in finding optimal image quality, 
hence preserving heterogeneity information. Respiratory motion during PET imaging 
causes lesion smearing (104,105), which reduces contrast in the image and therefore affects 

observer. The skepticism towards automatic contouring in general, demonstrates that there 
are still hurdles to overcome in automatic contouring before it is fully accepted in the clinic.

The most common application of automatic segmentation on PET imaging (PET-AS) is 
definition of the MTV, however studies tried to go even further and proposed methods for 
GTV definition. Many different PET-AS algorithms have been proposed to define the edge 
of the GTV for this purpose (14,93-94). It was thought that these algorithms would provide 
contours that are more consistent and better represent true tumor borders, when compared 
to visual interpretation by radiation oncologists. Unfortunately, none of these methods have 
been tested on large patient datasets and in the presence of a ground truth, probably because 
pathological correlation has proven difficult (95,96). On top of that, the different PET-AS 
algorithms all failed under specific circumstances, which prevented recommending a single 
algorithm (15). A possible solution for this variable performance of PET-AS methods was 
suggested in the form of a consensus algorithm that combines different PET-AS methods 
(97). Another difficulty with PET-AS is the variability of SUV values due to factors other 
than tumor activity alone, such as patient factors and technical factors (98). More recently, 
the AAPM task group has said to undertake steps to establish a standardized procedure for 
PET-AS algorithms, which could help with the acceptance and implementation of these 
delineation methods in the clinic (15). Perhaps the question is whether the focus should be 
solely on PET imaging for target volume delineation or should be more on the combination 
of multiple imaging modalities, if there are already many studies that show its shortcomings.

The most important factor is that PET-AS neglects all other available information, like 
anatomical information from CT and in some cases MRI, the locations of tumor-positive 
biopsies, and findings at endoscopic examinations. Therefore, the information obtained 
from PET should be considered complementary. Combining the information contained in the 
PET and CT scans may lead to more successful auto-contouring (95). Still, resulting contours 
should be checked visually and edited to other sources of information where needed. 

Radiomics for target definition
The application of textural features for use in target volume delineation has yet to garner 
attention, leading to a minimal number of published studies. Early attempts to automate 
tumor contouring using textural features were promising. For example Wang et al. (99) 
designed a radiomics based automatic contouring method by training a ROI-based 
decision-tree–based K-nearest neighbor (K-nn) classifier using 14 PET and 13 CT textural 
features. The K-nn classifier is a classical machine learning method, and here its purpose 
was to detect and classify image voxels in NSCLC. It was demonstrated that a combination 
of these textural features from PET and CT images could distinguish between abnormal 
and normal tissue in the head and neck and that their classifier method was able to 
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and tested for any kind of confounding as described before. It should be avoided that studies 
suffer from a poor design and result in the publication of overly optimistic results. Although 
quantitative studies about image heterogeneity in cancer have shown associations with 
aspects of tumor behavior, it is not fully understood how underlying biology is affecting the 
PET signal, and it is foreseen that answers to this will facilitate implementation in the clinic 
(112). Therefore, more studies should investigate the relationship of tumor biology and proven 
robust independent textural features.

Future perspectives for PET imaging in prognostication and 
TVD

Innovation in PET technology opens up more possibilities and holds perspective for the 
future, although not necessarily the solution for all above described issues. Examples 
include opportunities for PET/MR (113-116) and 4D PET/CT image reconstruction and 
partial volume correction methods for increased quantitative accuracy (106,117-118). New 
PET tracers might become available to improve tumor characterization, and potentially 
lead to new and improved prognostic biomarkers (67,119-122). Newer PET/CT scanners 
with improved sensitivity and spatial resolution could lead to better tumor detection 
and target volume definition (123). In addition, new digital PET technology will be used 
within hybrid PET/MR systems and could facilitate target volume definition by improved 
motion correction (124). Since almost every patient with lung cancer is scanned with PET/
CT, management of this valuable data for quantitative image analysis on a large scale is 
strongly desired. This allows for studies with larger sample sizes in the future, benefiting 
radiomics analysis in specific, but also demands proper data management.

Conclusions

PET/CT has an increasing role in prognostication and target volume definition of NSCLC. 
The implementation of new PET based applications will facilitate the shift from visual 
interpretation and manual delineation to (semi)automated target volume definition. In 
order to establish common ground in the clinic, studies about the prognostic value of 
quantitative PET imaging features will require external validation cohorts and pathological 
validation. The implementation of quantitative PET imaging features in a clinical setting 
would require substantial effort to standardize both imaging and methods for radiomics 
analysis. Current efforts to create larger databases, will hopefully lead to strong evidence 
in prognostication with PET/CT imaging in NSCLC. 

the quantification of heterogeneity. Use of partial volume and respiratory motion correction 
techniques may improve quantification accuracy (56,106). Also differences in matrix grid size 
can confound results, as larger voxel sizes tend to be more affected by the partial volume 
effect. This leads to a more uniform intensity distribution, which subsequently has an impact 
on most radiomics PET features (107), and study designs need to take this into account. 
Hence, it is known that differences in image quality or matrix grid size affect textural feature 
outcome, and further studies should focus on its impact on the prognostic value.

The effect of tumor segmentation on the prognostic and predictive value of imaging features 
is also not yet clear. PET-AS algorithms or manual delineation by radiation oncologists 
determine which voxels within an image will be analyzed, thus, the variability in segmentation 
affects reproducibility when extracting imaging parameters from PET and CT scans (108-
110). The accuracy and reproducibility of target volume delineation is important as it has an 
impact on imaging parameters that are used to determine patient prognosis and to predict 
and monitor response to therapy. Interestingly, in NSCLC it is not yet known whether the 
GTV used for treatment planning or the MTV results in higher prognostication. The inclusion 
of low metabolically active regions within a tumor could contain valuable information and 
also contribute to the heterogeneity in a tumor, whereas on the other side it also holds the 
risk of including non-pathological tissue. Further studies should assess the impact of these 
different volumes on prognostication in NSCLC patients.

Interchangeable SUV measurements across centers are very important in PET radiomics, but 
the methodology used to determine textural features also demonstrates lack of consistency. 
There are multiple methods to calculate textural features, which may have impact on the 
prognostic value of these quantitative PET imaging features. In addition, there are textural 
features that rely on image intensity resampling or SUV discretization. Discretization 
reduces the large number of intensity values (typically 16-bit in PET imaging (111)) to a smaller 
number, e.g. 32 or 64 bins. Each SUV discretization method results in a new set of features 
(58). Also, textural features can be calculated in 2D or 3D, in one direction or in multiple 
directions and so on. Hence, the number of textural features can easily reach to hundreds. 
Therefore sufficiently large patient cohorts need to be included combined with sophisticated 
statistical methods to prevent overfitting. With multiple possibilities to calculate features, it 
is often not clear how researchers achieved the final results. Hence, there is the urge to create 
guidelines for standardized PET radiomics analysis, and for reporting study results about 
prognostication with PET radiomics features in NSCLC. 

As more complex PET radiomics features are designed, and hundreds of these complex 
imaging features are included in PET radiomics studies, it is understandable that studies 
choose a hypothesis generating strategy. This is a legit strategy, as long as results are validated 
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Introduction

18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is recommended as a 
useful tool in helping staging accuracy and treatment planning [1]. FDG-PET is superior to 
computed tomography (CT) alone in the staging of lung cancer [2], [3]. It is now considered a 
routine investigation in the baseline staging evaluation of patients with non-small cell lung 
carcinoma (NSCLC) who are being considered for radical intent treatment [4]. When PET is 
acquired in conjunction with a CT (PET/CT), the combined PET/CT information has been 
shown to have greater staging accuracy than PET imaging alone [5], [6], [7], [8], [9], [10]. A 
combined PET/CT acquisition is now the standard method of acquiring FDG-PET images for 
the purposes of baseline staging and for radiotherapy treatment planning (RTP) [1].

The introduction of FDG-PET has been shown to have a significant impact in selecting 
patients for curative intent or “radical” radiotherapy [11], [12], [13], [14]. PET imaging 
also has been noted to reduce inter-observer variation when used to guide target volume 
delineation in RTP in NSCLC patients [15], [16], [17], [18]. Furthermore the acquisition of a 
dedicated PET/CT scan for the purposes of RTP in patients who have had a previous staging 
PET/CT has been shown to have further impact in reducing inter-observer variation [19].

A number of techniques have been used to generate RTP target volumes using the information 
gleaned from PET and CT. Most clinical studies have used a visual interpretation technique, 
while others have reported the use of automated segmentation techniques to either guide 
or generate the relevant target volume [1], [20], [21], [22], [23]. A previous International 
Atomic Energy Agency (IAEA) publication provided guidance on the use and role of PET/CT 
imaging for RTP in a range of tumor sites [24].

Methods

Following an IAEA Expert Meeting on the use of PET/CT imaging for RTP in Vienna in July 
2013 it was decided to update the previous IAEA report to provide clear guidance on target 
volume delineation (TVD) using PET/CT imaging, specifically for the applications in lung 
cancer and taking advantage of the considerable research activity that has occurred since 
the last reports. This publication focuses entirely on the use of FDG-PET/CT in defining the 
target for RTP in NSCLC and seeks to update the previous guidance in light of emerging 
evidence and consensus opinion.

Abstract

This document describes best practice and evidence based recommendations for the use of 
FDG-PET/CT for the purposes of radiotherapy target volume delineation (TVD) for curative 
intent treatment of non-small cell lung cancer (NSCLC). These recommendations have 
been written by an expert advisory group, convened by the International Atomic Energy 
Agency (IAEA) to facilitate a Coordinated Research Project (CRP) aiming to improve the 
applications of PET based radiation treatment planning (RTP) in low and middle income 
countries. These guidelines can be applied in routine clinical practice of radiotherapy 
TVD, for NSCLC patients treated with concurrent chemoradiation or radiotherapy 
alone, where FDG is used, and where a calibrated PET camera system equipped for RTP 
patient positioning is available. Recommendations are provided for PET and CT image 
visualization and interpretation, and for tumor delineation using planning CT with and 
without breathing motion compensation.
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not be coregistered in a treatment planning system for the purpose of tumor delineation. 
Deformable registration has been used in an effort to account for differences in patient 
positioning between imaging studies acquired in different positions. However, elastic 
registration is difficult due to the differences in acquisition technique between PET and CT, 
and deformation of PET images would compromise their inherently good representation 
of average tumor positions in case of breathing motion. The use of deformable registration 
to combine a diagnostic PET/CT scan with an RTP CT scan has not been consistently 
validated and at present is not recommended for this purpose [36]. In conclusion, there 
are no validated strategies available that would allow the use of a diagnostic PET/CT for 
reliable image fusion with an RTP CT.

Technically the best available option is to acquire a PET/CT scan exclusively for the purpose 
of RTP. This scan may be performed when a staging PET has already been acquired and 
the patient is deemed suitable for radical radiotherapy [37]. This approach requires two 
separate PET scans, which has as advantage that it removes any staging or patient selection 
issues. However, this approach is expensive and therefore may not be possible in all health 
care systems because of financial or logistical limitations. Another valid approach is to 
acquire a single PET/CT scan in radiotherapy treatment position to serve the dual purposes 
of staging and TVD. This approach avoids the costs, radiation dose and delay due to repeated 
imaging. It requires a complete RTP procedure on the PET/CT scanner for all potential 
candidates for radical irradiation despite the fact that a significant number of patients will 
be classified with stage IV disease after interpreting the PET images. It is imperative that 
the time interval between any imaging used for the purposes of radiotherapy target volume 
delineation and the radiotherapy treatment delivery should be as short as possible. Several 
studies examined the effect of radiotherapy field changes size and the effect of staging 
accuracy with different time scales from PET/CT scan acquisition [38], [39], [40], [41]. All of 
them demonstrate that PET/CT scan accuracy reduces with increasing time from the scan 
acquisition and that some patients may develop more advanced stage disease in the time 
to treatment, which will affect their chances of long-term survival. Long delays in time to 
treatment could result in a geographic miss if RT fields based on prior PET/CT scans no 
longer encompass the entire tumor or all involved lymph node stations. To avoid this issue, 
it is suggested that radiotherapy treatment should commence no later than 4 weeks after 
acquisition of the PET/CT scan.

Regardless of the selected approach, the PET/CT scanner has to be equipped with a flat RT 
table top, RT patient positioning devices and the CT component has to be calibrated to be 
safely used for RTP and RT dose calculation [42].

To ensure the inclusion of relevant publications the following search was undertaken. The 
terms “positron emission tomography”, “Non-Small Cell Lung Cancer”, “target volume 
delineation” and “Radiotherapy”, along with their derivatives were used to search PubMed. 
All studies relating to PET/CT for target volume delineation in the treatment of NSCLC 
with radiotherapy and of relevance to this overview were included in the preparation of the 
review. No limitations were placed on language or year of publication.

Background of PET based radiotherapy target volume delineation in 
NSCLC
The first human PET scanner was constructed in 1974, but it is only in the last 16 years 
that clinical studies have examined the impact of using FDG-PET for TVD in NSCLC [25], 
[26]. Early studies simply described the impact on the treatment volume, often without any 
quantification [26]. Several staging studies clearly demonstrated the superiority of PET/
CT over CT for identification of involved mediastinal lymph nodes [27], [28]. PET based 
TVD was also shown to improve the inclusion of truly involved mediastinal lymph nodes 
[29]. In patients with atelectasis, it was apparent from the earliest studies that PET could 
help discriminate collapsed lung from tumor [30]. This approach is now widely accepted 
and clinically applied, although few studies have undertaken a direct validation of imaging 
against pathological specimens due to the difficulties with correlation and processing 
artefacts [31], [32], [33]. A number of studies have sought to measure the impact of FDG-
PET/CT based TVD on inter-observer variation or against a ‘gold standard’. Besides the 
impact on staging, FDG-PET/CT imaging greatly reduces the undesirable impact of inter-
observer variation [19]. In addition, PET/CT based target volume delineations are on 
average smaller than their non-PET counterpoints, thereby reducing the dose to normal 
structures. This may open the possibility of dose escalation [34], [35].

Acquiring a PET/CT scan for the purposes of target volume delineation
FDG-PET/CT imaging for the purposes of baseline staging is now considered as ‘standard 
of care’ in patients with NSCLC being considered for treatment with radical intent [4]. 
Hence any patient considered for radical radiotherapy should have had a staging PET/CT. 
When used in its most basic form, without specific adaptations for RTP, images from a 
staging PET/CT scan can be visually correlated with the RTP CT to identify areas of disease 
for inclusion within the treatment volume. The accuracy of correlating a staging PET/CT 
scan and a planning CT will be improved by fusing both image sets. However, most staging 
scans are acquired on a curved top couch, possibly with the patient’s arms positioned 
down by their side, while an RTP CT is usually acquired on a flat top CT couch with arms 
immobilized above the patient’s head. The resulting differences in position between the 
two scans may make anatomical registration of these image sets difficult, leading to 
interpretation issues and potential inaccuracies in TVD. Therefore, these images should 
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The radiation oncologist should work together with the nuclear medicine physician to 
identify tissues that contain tumor and need to be included in the GTV.

Where a PET/CT scan is acquired in the RTP position, without 
respiration compensation
Standard CT for RTP is acquired during free breathing without specific measures for 
compensation of breathing motion, resulting in deformation and misplacement of tumor 
locations. In some cases a general impression of the breathing motion is identified 
using fluoroscopy or slow CT, but these approaches are considered insufficient for RTP 
procedures. Since PET is acquired during free breathing, the images are blurred according 
to the breathing motion and provide a good impression of the shape and average location of 
tumor sites [49], [50]. Therefore, in the most common scenario for RTP, where 3DCT and 3D 
PET scans are acquired, a reGTV approach is suggested. In this approach, the tumor should 
be delineated using the PET to guide both the location and the boundary of the reGTV. 
Where suspected disease is located outside the PET based target volume, for example on 
CT or based on clinical information such as positive biopsy locations, those areas should 
also be included in the reGTV [51]. When a margin for the CTV is added to this reGTV, 
an internal target volume (ITV) can be generated. Since PET has a poor resolution of 4–8 
mm, it should be noted that 3D PET/CT may not fully define the ITV of highly mobile lung 
tumors and tumors with low FDG uptake. Hence, in the absence of 4DCT, the approach 
of defining a reGTV using PET should be used with caution in these circumstances [52]. 
To compensate for underestimation of motion in these circumstances, larger expansion 
margins from CTV to PTV in the superior and inferior direction should be considered.

In summary, tumor delineation is a multidisciplinary procedure. The NMP should provide 
the RO with information about the shape and location of tumor sites from PET imaging 
during delineation of the GTV or reGTV. The RO should use his/her expertise to detect 
suspicious tissue outside the PET based target volume and include this in the GTV or reGTV.

Where a PET/CT scan is acquired in RTP position, with breathing 
compensation
Where adequate respiration compensation is used in the treatment planning CT, such 
as with 4DCT, the CT images may provide reliable information on the shape and location 
of tumor sites, except in cases where there is insufficient contrast between tumor and 
non-tumor tissues, for example where there is atelectasis or postobstructive pneumonia 
(Fig. 1). With 4DCT acquisition the GTV should be based on the 4DCT, with the PET being 
used to discriminate tumor and non-tumor sites to adapt the GTV where appropriate. 
It is important that where a RTP 3D PET/CT scan is registered to a RTP 4DCT scan, the 
limitations of this registration are appreciated. It is suggested that PET/CT images should 

It is essential that where PET/CT imaging is used for TVD, that each part of the process 
has undergone appropriate quality assurance testing and that the entirety of this process 
has been validated [43]. This includes patient preparation, scan acquisition, review of 
the images acquired, the alignment of the CT and PET components of the PET/CT scan, 
transfer of the images to the radiotherapy planning system and the final display of the PET/
CT images on the planning computer.

Guidance for PET/CT based visual target volume delineation
The combined procedure consisting of image interpretation, patient staging, treatment 
selection, and target volume definition requires many different aspects of multidisciplinary 
clinical expertise. It is recommended that a radiation oncologist (RO) and a nuclear medicine 
physician (NMP) / PET radiologist are both involved where PET is used for TVD [44], [45]. 
In any discussion regarding tumor volume delineation based on PET, emphasis should be 
given to the opinion of the NMP / PET physician in interpretation of the images and to the 
opinion of the RO in interpretation of all relevant clinical aspects. This also implies that the 
use of unmodified automated delineation of PET images for TVD is not recommended and 
that the final contour assessment should be made based on human visual interpretation of 
the images [24]. To ensure adequate and reproducible visual interpretation and application 
of PET images for RTP, this procedure should be standardized. The following principles are 
followed for visual TVD in using PET/CT imaging in NSCLC patients.

General approach of target volume delineation with PET and CT
Target volume definition involves the identification of all recognizable tumor locations, 
both the primary tumor and involved lymph nodes, to delineate a gross target volume (GTV) 
as a primary step and secondly the lymph nodes [46]. Depending on the applied strategy, 
this GTV may also include the full motion path of all tumor locations to create a respiration 
expanded GTV (reGTV). This volume, analogous to a respiration correlated GTV, contains 
the tumor at all times of its excursion and with suitable expansions is capable to form the 
basis for the clinical target volume (CTV) and the planning target volume (PTV) [47], [48]. 
How the combined information in the PET and CT scans contributes to the generation 
of a GTV or reGTV depends on the characteristics of both of the available image sets, as 
described here.

Where a PET/CT scan is not acquired in the RTP position
Where the PET/CT used for interpretation has not been acquired in the treatment planning 
position and is only visually compared with a 3D radiotherapy planning CT, PET should 
only be used to identify those tissues which contain tumor. The RTP CT should be used 
when delineating the edge of the GTV and lymph nodes [37].
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Standard delineation procedure for combined PET/CT imaging
When contouring is based on two image sets, discrepancies between the two scans may 
lead to uncertainty as where to draw the final contour. It is important to acknowledge these 
issues and to standardize solutions, in order to avoid observer variations and potential 
geographic miss.

Fig. 1. Area of atelectasis in the right upper lobe. CT images show insufficient contrast between tumor and non-tumor 
tissue where atelectasis is present, therefore delineation should be defined by PET FDG avid areas.

Fig. 2. Example of a standardized signal intensity based on the signal brightness of the liver. The PET signal is very 
intense in the right lower lobe. When the tumor is contiguous with a non-tumor structure that has a similar density and 
where no tumor boundary can be distinguished on CT (e.g., when the tumor is adjacent to the liver), the reGTV should 
be defined by the PET FDG avid areas.

be registered to the average intensity projection (Ave-IP) scan set using a rigid registration 
focusing on bony anatomy which is not affected by respiratory motion (e.g., spinal column). 
It is advised that this approach should not be used routinely for gated treatments.

Specific guidance for PET/CT based TVD
The FDG uptake of the primary tumor and any involved lymph node(s) may require evaluation 
with separate FDG-PET “window/level (W/L) settings.” It is important to standardize these 
settings, as variations in W/L settings will result in significant differences in the apparent 
tumor size on PET images and thus in the resulting target volumes. In addition, patients 
may have significant variations in biological factors, such as renal clearance of FDG, 
resulting in unpredictable background activity with impact on visual and quantitative 
strategies to discriminate tumor from physiological FDG uptake. There are no validated 
quantitative approaches for PET contouring that will result in ideal tumor delineation for 
all patients and tumor locations. However, the procedure can be standardized to some 
extent using visual calibration of the W/L settings, for example:

•	 Standardize signal intensity visually according to the biology of the patient (e.g., always 
start with a signal brightness of the liver (Fig. 2), vessels or other normal tissue which is 
familiar to the NMP/PET radiologist as normal background physiological uptake).

•	 Use a simple linear grayscale (e.g., black to white) for reviewing the PET images alone. 
For image fusion of PET with CT use a linear scale to one or at most two colors (e.g., black 
to red to yellow). Avoid polychromatic scales to avoid misleading color scaling contours.

Similarly, the W/L settings of CT images will influence the tumor delineation procedure. 
Depending on tumor localization, the appropriate CT window should be chosen. For 
example:

•	 Where the tumor is surrounded by lung tissue, lung window level settings should be 
used.

•	 For delineation of lymph nodes and where tumor invades the chest wall or mediastinum, 
soft tissue window settings should be used.

The nuclear medicine physician should assist the radiation oncologist in selecting 
standardized PET W/L settings in case of delineating the reGTV. Variations in W/L settings 
on PET images will result in significant differences in the apparent tumor size and thus in 
the resulting target volumes.
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other evidently pathological nodes or those which show progression (tumor growth) as 
determined from multiple (low dose) CT scans over a certain period of time.

Fig. 3. Example of a delineation of the reGTV based on PET in combination with a 3DCT. A primary tumor can be seen in 
the left upper lobe with high FDG uptake. The PET signal shows FDG uptake in air when the modalities are combined 
which is due to the movement of the tumor.

Fig. 4. Example of a histopathologically proven primary tumor with high FDG uptake in the apical segment of the right 
upper lobe with a diameter of more than 6 cm, and the adjacent pleural mass with extrathoracic growth and destruction 
of the dorsal third to sixth rib on the right. Difficulties arise when distinguishing between normal tissue and tumor in the 
thoracic wall using CT alone. In this case PET should be used to define the boundary of the tumor.

Automated delineation methods for PET/CT imaging
As discussed earlier the one source of error and potential miss in TVD is the accuracy of 
delineation of contours by the oncologist [56]. Given the nature of PET images a number of 
investigations have examined the use of automated methods to define the edge of the tumor 
[57], [58]. Auto contours may provide consistent contours, but have difficulty dealing with 

An important question is whether the GTV (or reGTV) may contain areas where PET is 
positive for tumor but CT shows normal lung tissue. When delineating a reGTV based on 
PET (e.g., when using 3DCT), all tumor locations should be defined primarily by the FDG 
avid signal including their full motion paths, and this may include areas at the surface 
where there is no tumor apparent on the non-respiration correlated CT (Fig. 3). However, 
when delineating a GTV based on CT (e.g., when using 4DCT), the primary tumor should be 
defined primarily by the structures as seen on CT and therefore not include air. However, 
as the PET scan may reveal a so-called “baseline shift” i.e., the change of the basic position 
of the tumor, in the case of perfect coregistration of bony structures, a clear deviation of 
the PET signal from the 4DCT created ITV should not be disregarded and might be used to 
further expand the ITV.

Another common issue is the distinction between tumor and adjacent soft tissues. In 
areas where the tumor is contiguous with a structure that has a similar density and where 
no tumor boundary can be distinguished on CT (e.g., in the presence of extrathoracic 
extensions, see Fig. 4), the reGTV should be defined by the FDG avid areas [30]. Where the 
PET scan is compromised by FDG uptake that is apparently not explained by tumor (e.g., 
physiological uptake in the heart, or active infection), the reGTV should be defined by the 
CT images.

For lymph nodes the same approaches for GTV and reGTV can be applied as for a primary 
tumor. An additional issue is the identification of the lymph nodes that need to be 
included in the delineation. A pathological lymph node is defined as a lymph node which 
is involved on FDG-PET in the opinion of a trained NMP/PET radiologist. Non FDG avid 
(negative) nodes that appear enlarged on CT and that have a low likelihood of containing 
macroscopic tumor, do not need to be included in the GTV under certain circumstances 
[34]. PET negative nodes may be included in the final GTV volume based on information 
obtained through bronchoscopy, mediastinoscopy, endoscopic ultrasound sampling (EUS), 
and endobronchial ultrasound sampling (EBUS). Any biopsy proven lymph node should 
be included in the GTV. Recently, an update of guidelines for preoperative mediastinal 
lymph node staging is published, recommending EBUS/EUS with fine needle aspiration 
as the first choice [53]. If EBUS/EUS findings are negative and if uncertainty regarding 
the involvement of mediastinal lymph nodes remains, video-assisted mediastinoscopy is 
preferred over mediastinoscopy as the next most appropriate staging procedure. It should 
be noted that patients with lymph nodes measuring >16 mm on CT and a negative FDG-PET 
result should undergo mediastinoscopy before possible thoracotomy [54]. Combination of 
endoscopic staging and surgical staging results in the highest accuracy [55]. In addition, 
clinical considerations may contribute to identification of suspect lymph nodes, e.g., small 
FDG-negative lymph nodes that are directly adjacent to the tumor or are located between 
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4D PET/CT imaging may overcome some of the inaccuracies associated with a free breathing 
PET/CT scan. One such factor is tumor motion. In 3D PET/CT imaging, the CT component is 
acquired as fast CT which may catch a mobile lung tumor at an extreme of the ITV or cause 
artefacts, while PET scans are acquired over a number of minutes. Hence the SUV for a given 
pixel is an average of the SUV over that time period. Furthermore, in integrated PET/CT 
acquisition the attenuation correction is based on the CT data and as mentioned above this 
may misrepresent the average density for a given pixel position. Hence, in essence, for mobile 
lung tumors the PET component is more akin to 4D imaging while the CT component is more 
akin to a 3D imaging technique. A number of studies have shown sizeable differences in SUV 
calculation between 3D PET/CT and 4D PET/CT imaging [63], [64]. Using 4D PET/CT imaging 
may provide more accurate SUV quantification for moving lung cancer and has implications 
for auto-contouring which may lead to new methods of PET based TVD.

CTV and PTV expansions to a PET derived GTV
These guidelines have focused on the delineation of standardized GTV or reGTV contours. 
Subsequently, these volumes need to be expanded to a CTV and to a PTV. The CTV 
expansion is based on pathological tumor characteristics, and therefore not dependent on 
the imaging technique or GTV delineation strategy. Clinically applied expansions from the 
GTV to CTV are generally in the range of 5–8 mm [65]. The PTV expansion can be calculated 
in a probabilistic approach by considering all systematic uncertainties, all random 
uncertainties and also the width of treatment beam penumbra [66]. This may also include 
patient characteristics such as breathing motion, if this has not already been incorporated 
in the GTV definition. A more basic approach can be used when a PET based respiration 
expanded GTV has been created, and the PTV expansion is applied to compensate for setup 
variations alone (e.g., 1 cm in all directions). When a GTV based on 4DCT has been created, 
PTV expansions are primarily based on the characteristics derived from CT and other 
systematic errors (e.g., errors from image fusion and target volume delineation) of which 
all can be taken into account with the van Herk formula [66].

PET combined with MR imaging
When envisioning the future, it is interesting to follow the recent advances in hybrid imaging 
systems which made it possible to combine PET and (functional) MR information. With the 
combination of functional MR and PET information new possibilities in functional cancer 
imaging are emerging [67]. However, one of the first few studies reported no significant 
difference in diagnostic performance when PET/MR was compared to PET/CT [68], [69]. 
Interestingly, a recent study showed that PET/MR imaging could have an advantage in 
lymph node detection [70]. No study yet exists about the use of PET/MR in tumor volume 
delineation but further research is awaited.

normal tissue adjacent to the tumor with high SUV uptake such as the heart. There is also 
no clear consensus on which method most closely approximates to the tumor position and 
tumor edge and pathological correlation has proven difficult [59]. Another difficulty with PET 
based auto-contouring is the variability of SUV values due to factors other than tumor activity 
such as patient biological factors and technical factors [60]. When delineating a reGTV to 
include the full motion path of all tumor locations, the value of auto contours is without 
any supporting evidence. Furthermore the information obtained from the PET component of 
the scan is complementary to that contained within the CT scan and the use of information 
from both may lead to more successful auto-contouring [49]. Automated PET based contours 
can be useful as a starting point for PET based TVD and are worthy of further investigation, 
particularly in the era of 4D PET/CT imaging. At present the IAEA panel recommendation 
remains that, outside of a clinical trial context, target volumes generated with the use of PET 
should be delineated using visual interpretation alone or should be visually edited following 
any automated target volume delineation [24].

The use of PET to define a respiration expanded GTV for mobile lung 
tumors
As PET images are acquired over a number of minutes at each table position, it has been 
suggested that PET could define the entire motion trajectory of a lung tumor. Tumors 
identified as low risk of macroscopic disease extension (MDE) show lower rates of disease 
around the GTV than do high-risk tumors. Both PET and CT accurately visualize the CTV(path) 
in low-risk tumors, but underestimate MDE in high-risk tumors [59]. When a suitable margin 
is added for microscopic extensions of a moving lung tumor, this volume is also known as the 
internal target volume (ITV). According to ICRU 62, the ITV is defined as the “internal margin” 
plus a CTV expansion [47]. Phantom studies have demonstrated that the PET target volume 
may contain all of the respiratory motion (respiration expanded GTV) of a moving lung tumor 
[50], [61]. Hence, in the absence of other respiration motion compensation techniques (e.g., 
respiratory gating or real-time tracking), PET based target volumes may be used to approach 
a PET based ITV approach, namely the respiration expanded GTV. Unfortunately clinical 
investigations using 3D PET/CT imaging have not shown consistently that a PET based ITV is 
identical to a 4DCT based ITV for small tumors [52]. A recent study using 4D PET/CT imaging 
has demonstrated that a 4D PET based ITV closely approximates to a 4DCT [62]. Using 4D PET/
CT imaging may lead to better quantification of tumor motion during prolonged radiotherapy 
treatment times but further investigation and clinical validation are required.

Four dimensional PET/CT imaging
With a 4D PET/CT the 4DCT and 4D PET scan are retrospectively binned into a number of 
respiratory phases correlated with the breathing cycle using a respiratory tracking system. 
Each phase of the 4D PET is corrected for attenuation with the respective phase of the 4DCT. 
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Summary of recommendations for PET based Radiation 
Treatment Planning (RTP)

• Applicability of the guidelines

•	 These guidelines apply to patients with NSCLC. The process of TVD is different for 
other tumor entities; these recommendations should not be applied to e.g. the head/
neck or abdominal areas. 

•	 The presented strategies apply to patients planned for curative intent treatment with 
concurrent chemoradiation or with radiotherapy alone. If neo-adjuvant (sequential) 
chemotherapy has been applied before radiotherapy, it is not possible to acquire a 
timely and reliable PET scan for RTP purposes.

•	 These guidelines apply to FDG avid tumors and lymph nodes. For tumors with no FDG 
uptake current locally accepted standard CT scan based procedures should be applied. 

•	 This document discusses the use of FDG-PET. There currently is no definitive evidence 
for the use of other PET tracers in routine TVD.

•	 The guidelines assume a properly calibrated PET/CT system (according to the 
EANM Research 4 Life (EARL) accreditation specifications) with capabilities for RTP 
positioning and adequate delineation software capable of image fusion of PET and 
planning CT.

• Image acquisition recommendations

•	 These guidelines apply to PET/CT scans which are acquired in radiotherapy treatment 
position. An RTP PET/CT is usually acquired on flat top CT couch with arms immobilized 
above the patient’s head. Any differences in patient positioning between two scans 
make anatomical registration of these image sets difficult, leading to interpretation 
issues and potential inaccuracies in TVD.

•	 Image fusion of a staging PET/CT scan and a planning CT is only recommended when 
both scans are acquired in radiotherapy treatment position. 

• General visualization recommendations

•	 CT window / level: Standardize according to the anatomical location. Use a soft tissue 
setting for tumor parts adjacent to mediastinum and thoracic wall, and lung window 
setting for tumor parts adjacent to lung tissue.

•	 PET window / level: Standardize visually according to the biology of the patient (e.g. 
always start with a reproducible signal brightness for normal structures such as the 
liver or mediastinal structures e.g. great vessels).
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(4DCT) and for an un-gated treatment delivery, expansions from CTV and PTV do not 
need to account for respiratory motion. 

• Other recommendations

•	 Complex cases of GTV delineation in lung cancer patients should always be discussed 
in a multi-disciplinary quality control meeting. 

•	 The time interval between staging procedure and start of treatment delivery should be 
as short as possible, preferably not more than 4 weeks. 

•	 EUS/EBUS with needle aspiration should be used as a first choice in primary 
mediastinal staging if local expertise in these minimal invasive techniques is available. 
Video assisted mediastinoscopy is used as a second choice, in case EUS/EBUS findings 
are negative.

•	 PET visualization: Use a simple linear grayscale (e.g. black to white) for reviewing. For 
image fusion of PET with CT use a linear scale to one or at most two colors (e.g. black to 
red to yellow). Avoid polychromatic scales to avoid misleading color scaling contours.

• Tumor delineation approach for 3D free breathing CT

•	 In this case PET provides the best estimation of the location, shape and motion path 
of tumor lesions. Contour a GTV around all suspect areas of the PET signal, to create a 
respiration expanded GTV (reGTV) that includes the tumor locations in all parts of the 
respiratory cycle.

•	 Adapt the PET based contour according to CT and clinical data as appropriate (e.g. 
include FDG-negative tumor parts in case of suspicion on CT and positive biopsy 
areas).

• Tumor delineation for motion compensated or 4DCT

•	 4DCT can provide an adequate estimation of the location and motion path of tumor. 
Contour a GTV using all CT information.

•	 Adapt the CT based GTV contour according to PET and clinical data as appropriate (e.g. 
exclude FDG-negative areas of atelectasis or include positive biopsy areas).

• Tumor identification and inclusion in GTV

•	 Include all tissues considered having a high probability for tumor involvement, either 
on CT or PET, to avoid geographic miss.

•	 Include all FDG avid lymph nodes that are considered positive in the opinion of a 
nuclear medicine physician / PET radiologist. This may include small lymph nodes 
with relatively low FDG avidity and may exclude enlarged lymph nodes that are not 
FDG avid.

•	 Include non FDG avid lymph nodes after cytological/histological confirmation of 
lymphadenopathy. 

• Derivation of the CTV and PTV

•	 CTV expansions do not depend on PET images, and can remain unchanged.
•	 PTV expansion depends on the GTV delineation strategy. When a reGTV was created 

using PET and 3DCT, breathing motion has been largely included within the reGTV 
and the PTV expansion for respiratory motion may be limited to reflect this (e.g. 1 
cm in all directions). When a GTV has been created using a motion compensated CT 
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Introduction

Lung cancer is the most common cause of death from cancer worldwide, estimated to be 
responsible for nearly 17% of the total [1] and it is estimated that more than 80% of patients 
in low and middle income countries are diagnosed with lung cancer in an advanced stage 
(III and IV) [2, 3]. The use of fused 18F-fluorodeoxyglucose Positron Emission Tomography/ 
Computed Tomography (FDG-PET/CT) imaging is now the standard method of acquiring 
FDG-PET images for the purpose of baseline staging and RT treatment preparation [4], 
since it has been shown to be superior to either PET or CT alone [5, 6]. The number of PET/
CT scanners has increased in low and middle income countries in the last decade [7] and 
additional training in the use of PET/CT in radiotherapy planning (RTP) is vital to ensure 
appropriate interpretation of PET/CT with the hope, that the use of PET/CT will improve 
outcomes for patients treated with radiotherapy. 

Due to advancements in radiotherapy techniques, accuracy in treatment delivery is 
improving and precise target volume definition has become more important, particularly 
in the era of dose escalation [8, 9]. However, gross tumor volume (GTV) delineation is very 
sensitive to observer variation [10] and hence there is a potential risk of geographic miss 
of tumor [11]. PET has been shown to have a significant impact when used in the radiation 
treatment planning process and in particular when used for target volume delineation 
(TVD), where a significant reduction in interobserver variability (IOV) has been noted [11-
15]. It is recommended that a radiation oncologist (RO) and a nuclear medicine physician 
(NMP) / PET radiologist should be both involved where PET is used for TVD [16,17]. Complex 
cases of GTV delineation in lung cancer patients should always be discussed in a multi-
disciplinary quality control meeting. Most clinical studies have used a visual interpretation 
technique, while others have reported the use of a range of automated segmentation 
techniques to either guide or generate the relevant target volume [18-21]. There is no clear 
consensus on which method most closely approximates to the tumor position and tumor 
edge, and pathological correlation has proven difficult [22]. Preoperative PET imaging 
shows a remarkably good correlation with resected pathological specimens [23], although 
it is acknowledged that those specimens are affected by processing artefacts. Most recent 
guidance advises the use of visual interpretation of the PET signal when drawing the 
final contour, even in cases where auto-contouring is used to generate an initial draft for 
editing, if PET is to be used to inform the target volume [17]. 

Factors causing IOV in TVD are variable interpretation of guidelines, lack of differentiation 
between normal structures and tumor, incorrect interpretation of radiological images, 
lack of knowledge in cross sectional radiological anatomy, and suboptimal imaging 
techniques e.g. lack of IV contrast [24-26]. The use of a rigorous contouring protocol in 

Abstract

Background and purpose
To assess the impact of a standardized delineation protocol and training interventions on 
PET/CT-based target volume delineation (TVD) in NSCLC in a multicenter setting.

Material and methods
Over a one-year period, 11 pairs, comprised each of a radiation oncologist and nuclear 
medicine physician with limited experience in PET/CT-based TVD for NSCLC from nine 
different countries took part in a training program through an International Atomic 
Energy Agency (IAEA) study (NCT02247713). Teams delineated gross tumor volume of 
the primary tumor, during and after training interventions, according to a provided 
delineation protocol. In-house developed software recorded the performed delineations, 
to allow visual inspection of strategies and to assess delineation accuracy. 

Results
Following the first training, overall concordance indices for 3 repetitive cases increased 
from 0.57±0.07 to 0.66±0.07. The overall mean surface distance between observer and 
expert contours decreased from -0.40±0.03 cm to -0.01±0.33 cm. After further training 
overall concordance indices for another 3 repetitive cases further increased from 0.64±0.06 
to 0.80±0.05 (p=0.01). Mean surface distances decreased from -0.34±0.16 cm to -0.05±0.20 
cm (p=0.01).

Conclusion
Multiple training interventions improve PET/CT-based TVD delineation accuracy in 
NSCLC and reduces interobserver variation.
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Table 1. Sequence of events and characteristics of the included patients. Abbreviations: T = Primary tumor, N = Regional 
Lymph Nodes according to the 7th edition TNM classification. 

Case Number T N M Stage Lymph nodes

Contouring Assignment 1 1 2 1 0 IIB 11L

2 2 2 0 IIIA 10R, 7, 8, 4R 

Contouring Assignment 2 3 3 0 0 IIB

4 2 0 0 IIA

5 4 2 0 IIIB 7, 4R, 2R

Training 1 6 3 2 0 IIIA 4R, 2R

7 3 0 0 IIB

8 1 2 0 IIIA 10R, 4R

Contouring Assignment 3 Consisting of case 3, 4 and 5 (repeat assignment)
Practice 9 2 2 0 IIIA 10R, 7, 4R

10 2 2 0 IIIA 10R, 7

11 2 2 0 IIIA 7, 4R

Training 2 Webinar / feedback reports

Contouring Assignment 4 Consisting of case 1, 6 and 7 (repeat assignment)

Target Volume Delineation Training program
The training program consisted of four contouring assignments, two training events and 
three additional clinical cases for practice (see figure 1). Contouring assignment 1 and 2 
were performed before the first training event without the use of a standardized delineation 
protocol and were used as a baseline measurement. The first training event was face-to-
face over a three-day period and included various lectures about relevant topics in nuclear 
medicine and radiation oncology and a delineation workshop on the use of PET/CT for RTP 
in NSCLC. The delineation workshop contained three more clinical cases which were again 
performed without the IAEA delineation protocol. The delineation protocol as described in 
the IAEA consensus document was introduced during the workshop [17]. The differences 
between the results and the IAEA protocol constituted the basis for a teaching discussion, 
consequentially clarifying protocol ambiguities. More contouring assignments followed 
after this training to evaluate its impact on delineation accuracy and IOV. Contouring 
assignment 3 was performed three months after contouring assignment 2 and contained 
the same clinical cases. To allow the participants to practice more with the delineation 
protocol three additional clinical cases were added.

which clinicians follow a detailed set of instructions and the use of a teaching intervention 
may help in minimizing IOV [21, 31, 32, 34, 35]. To ensure adequate and reproducible 
visual interpretation and application of PET images for RTP, this procedure should be 
standardized. A recent publication provided guidance on the use and role of PET/CT 
imaging for RTP in NSCLC patient [17]. This study evaluates the impact on the use of 
these practical guidelines through active teaching using multiple training interventions 
involving multiple centers with minimal experience in PET/CT-based TVD.

Methods

Target Volume Delineation Assignments
PET/CT-based TVD was assessed through the use of repeated delineation assignments. In all 
contouring assignments a team consisting of a RO and a NMP were asked to delineate tumor 
volumes of primary tumor (GTV). Before the training, participants were asked to delineate 
as per their local delineation protocol and then again after the first training intervention 
according to a standardized delineation protocol [17]. Fully anonymized patient cases 
were used, including three dimensional FDG-PET and CT image data sets acquired for the 
purpose of radiotherapy planning. No intravenous contrast agent was used. Comprehensive 
case specific medical reports were included in all assignments to avoid bias due to incorrect 
diagnosis. An overview of the patient cases used during this training program is given in 
table 1. In each case two senior ROs and a senior NMP delineated one reference ‘expert’ 
contour (GTVexp) in agreement in the absence of a histopathologically proven gold standard. 

Participants
The participants in this study were from eleven medical centers from nine different 
countries (Brazil, Estonia, India, Jordan, Pakistan, Poland, Turkey, Uruguay, and Vietnam). 
Each center was represented by a RO and a NMP. Before the training program centers were 
asked if they already performed PET/CT-based RTP. Five out of eleven centers already had 
limited experience in TVD with PET/CT. Other centers used PET/CT imaging for diagnostic 
and staging purposes only. Participants were not able to see delineations of other centers.

Big Brother target volume delineation software
Software developed in the Netherlands Cancer Institute, called Big Brother, was used 
throughout this multicenter study as platform for image viewing and analysis, and TVD 
in FDG PET/CT imaging [10]. As soon as the observer starts the Big Brother software and 
initiates TVD, any interaction with the software is recorded such as mouse motion, window/
level and use of delineation tools. This feature allows visual inspection of strategies and 
comparison with expert contours to assess delineation accuracy.
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Data analysis
To examine the impact of the training interventions the contours from the participants were 
analyzed. Various parameters such as the GTV size, miss of GTVexp, Concordance Index (CI) 
and surface mean distance were calculated, and also volumetric and 3-dimensional analysis 
was performed as described by Deurloo et al. [27]. The CI is defined as the intersection of 
two delineated volumes divided by their union: 

CI = 	
(A	 ∩ 	B)
A	 ∪ 	B

 

 

The CI can vary between 0 and 1 whereas 0 means there is a complete disagreement 
between the observers and a CI of 1 indicates a perfect agreement [28]. It was calculated 
for measuring the delineation accuracy relative to the expert contour (CIexpert). Intragroup 
agreement (CIgroup) was also calculated using the surface median as a reference. The surface 
median was obtained as described by Rasch et al. [29]. The mean (absolute) surface distance 
between the observers’ GTV and expert GTV and the distance between each observers’ GTV 
and surface median were both calculated. For all parameters, the mean ± SD are reported 
unless stated otherwise. Wilcoxon signed rank tests were used to estimate the significance 
of any differences after the training events and p-values of 0.05 or less were considered 
significant. 

Results

In all contouring assignments, teams were asked to delineate GTV of the primary 
tumor as per study protocol. One of the pairs with a RO, who was not board certified at 
the time of the training, was excluded from the analysis. After the first training event 
the overall CIexpert slightly increased from 0.57±0.07 to 0.66±0.07. The mean CIexpert and 
CIgroup per case are given in figure 2. Observer volumes were larger after the training 
and miss of GTVexp was significantly reduced from 127.32±42.43 cc to 59.94±48.94 cc.  
A detailed summary with p-values is given in table 2. The overall mean surface distance 
and mean absolute surface distance compared to the reference contour decreased from  
-0.40±0.03 cm to -0.01±0.33 cm and from 0.47±0.08 cm to 0.45±0.17 cm respectively.  
The overall CIgroup decreased from 0.81±0.07 to 0.75±0.10. 

After results were obtained from the above described assignments, an interim analysis was 
performed with the aim of identifying difficult areas in TVD and to ensure delineation 
occurred following the standardized approach. Detailed personal feedback reports were 
written with the aim of correcting misinterpretations of the delineation protocol and to 
advise on specific areas prone to deviation from the IAEA expert contour. This served as 
a preliminary to the webinar which was held as a second training event. An update on 
PET/CT-based TVD in RTP and general feedback was given in the webinar. Afterwards the 
content was discussed with the group. As a final step participants performed contouring 
assignment 4 with three clinical cases, which they had performed earlier during the 
training program, eight months after the first training event.

Figure 5. Schematic view of the training program. Over a one year period, 11 pairs of a radiation oncologist and a nuclear 
medicine physician performed four contouring assignments and three more cases for practice, and also attended two 
training events. Assessment 1, 2 and cases in Training 1 functioned as baseline measurements. Assessment 2 and 3 
contained the same cases and results were compared to assess the impact of the first training event. Assessment 4 
contained one case from Assessment 1 and two from Training 1 and the results were compared to assess the impact of the 
complete training.
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Figure 6. Delineation accuracy relative to expert versus intragroup with 95%-CI before and after Training 1 using a 
standardized delineation protocol. CIgroup = median concordance index between the observers’ GTV and the median 
surface contour. CIexpert = median concordance index between the observers’ GTV and expert GTV.

Figure 7. Delineation accuracy relative to expert versus intragroup with 95%-CI before (blue bar) and after (red bar) a 
complete training in the use of a standardized delineation protocol. CIgroup = median concordance index between the 
observers’ GTV and the median surface contour. CIexpert = median concordance index between the observers’ GTV and 
expert GTV.

Table 2. Comparison of results from contouring the GTV before and after the first training event, and before and after 
a complete training in the use of a standardized delineation protocol. CIexpert = median concordance index between the 
observers’ GTV and expert GTV. Mean distance = mean surface distance between the observers’ GTV and expert GTV. 
Mean |distance| = mean absolute surface distance.

Case 
No.

Expert 
Volume (cc)

Observer 
Volume (cc ± SD)

Miss 
(cc ± SD)

CIexpert 

(± SD)
Mean distance  

(cm ± SD)
Mean |distance| 

(cm ± SD)

Results per case before and after Training 1 (contouring assignment 2 versus 3)

Before
After 

3 388.38 282.75 ± 46.28
409.48 ± 115.12

(p=0.03)

127.32 ± 42.43
59.94 ± 48.94

(p=0.03)

0.67 ± 0.10
0.70 ± 0.07

(p=0.34)

-0.41 ± 0.14
0.05 ± 0.40

(p=0.03)

0.44 ± 0.13
0.37 ± 0.23

(p=0.92)
Before
After

4 50.86 30.58 ± 6.99
51.35 ± 20.94

(p=0.03)

20.43 ± 6.09
8.88 ± 9.34

(p=0.03)

0.59 ± 0.11
0.65 ± 0.10

(p=0.06)

-0.27 ± 0.18
-0.11 ± 0.29

(p=0.17)

0.33 ± 0.10
0.30 ± 0.10

(p=0.14)
Before
After

5 164.46 84.93 ± 11.67
108.49 ± 41.23

(p=0.05)

84.26 ± 11.66
62.18 ± 23.14

(p=0.05)

0.49 ± 0.07
0.58 ± 0.12

(p=0.08)

-0.64 ± 0.11
-0.43 ± 0.64

(p=0.05)

0.66 ± 0.12
0.50 ± 0.45

(p=0.46)

Overall results for 3 repeated cases (contouring assignment 2 versus 3)

Before 
After

123.96 ± 18.35
191.38 ± 57.29

(p=0.03)

79.01 ± 17.04
42.86 ± 25.02

(p=0.05)

0.57 ± 0.07
0.66 ± 0.07

(p=0.12)

-0.40 ± 0.03
-0.01 ± 0.33

(p=0.03)

0.47 ± 0.08
0.45 ± 0.17

(p=0.75)

Results per case before and after the complete training program (contouring assignment 1 versus 4)

Before
After

6 377.99 280.39 ± 92.41
370.78 ± 37.06

(p=0.07)

115.45 ± 52.16
26.73 ± 18.34

(p=0.01)

0.68 ± 0.11
0.85 ± 0.03

(p=0.01)

-0.41 ± 0.35
-0.01 ± 0.16

(p=0.07)

0.43 ± 0.19
0.20 ± 0.09

(p=0.02)
Before
After

7 254.68 157.99 ± 80.15
220.24 ± 81.53

(p=0.04)

103.70 ± 43.86
39.72 ± 25.87

(p=0.04)

0.59 ± 0.10
0.82 ± 0.10

(p=0. 05)

-0.55 ± 0.40
-0.18 ± 0.34

(p=0.07)

0.60 ± 0.16
0.24 ± 0.18

(p=0.07)
Before*
After*

1 134.07 78.08 ± 17.60
110.20 ± 14.51

(p=0.08)

55.66 ± 9.58
26.23 ± 9.68

(p=0.03)

0.56 ± 0.05
0.80 ± 0.04

(p=0.05)

-0.44 ± 0.17
-0.19 ± 0.11

(p=0.08)

0.50 ± 0.06
0.21 ± 0.04

(p=0.05)

Overall results for 3 repeated cases (contouring assignment 1 versus 4)

Before 
After

190.82 ± 38.07
246.32 ± 43.11

(p=0.01)

78.89±22.95
42.86±25.01

(p=0.01)

0.64 ± 0.06
0.80 ± 0.05

(p=0.01)

-0.34 ± 0.16
-0.05 ± 0.20

(p=0.01)

0.49 ± 0.10
0.27 ± 0.09

(p=0.01)

*For this case (before and after) two observers were excluded from analysis, because PET positive lymph nodes adjacent 
to the tumor were included in the GTV of the primary tumor.
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Discussion

Many studies have reported on the effect of guidelines or protocols and testing of the effect 
of specific teaching and measured contouring variability before and after an intervention 
[30]. This study is the first to report on the impact of a training program about the use of 
the recently published IAEA guidelines for PET/CT-based radiotherapy planning in lung 
cancer patients in an international multicenter trial. To the best of our knowledge this is 
the first study about the use of multiple teaching interventions using not only face-to-face 
training, but also providing an online learning platform in the form of a webinar which 
showed to play an effective role in harmonizing the delineation process globally. In terms 
of practicalities of delivering this type of training, the use of innovative technology such as 
the delivery of live webinars may significantly reduce cost without significantly reducing 
educational quality. 

Before any training was given, centers delineated their GTV based on local delineation 
protocols and thus a variety of approaches were observed. Results after the first training 
suggest that the use of a delineation protocol increased delineation accuracy, however 
a significant reduction in IOV and better adherence of the outlining protocol was only 
achieved through additional extended training. 

A major contribution in reducing IOV may have been feedback participants received from 
the interim analysis that was performed before the second training intervention. Whilst 
it is acknowledged that the cases selected for the practice case (see table 1) may have been 
more challenging to delineate than the test cases, the use of these helped identify several 
areas that caused difficulty in TVD for the participants. These areas of variation included 
atelectasis, PET window level settings, nearby normal structures (e.g. pulmonary veins 
or arteries) that were seen as tumor, and/or suspicious areas on CT showing low FDG 
uptake. These areas of variation were documented in the individual feedback reports, 
and were also included in the general feedback and discussed during the webinar. This 
may have contributed to the significant impact on delineation accuracy seen in the last 
assignment. This emphasizes the importance of additional training events to correct 
errors in delineation still occurring after the first training. Schimek-Jasch et al. found 
out that the use of a dummy-run and study group meetings as part of Quality Assurance 
(QA) in multicenter clinical trials helps to identify misinterpretations of a standardized 
delineation method which helped in reducing IOV [32]. However, the outcome of that 
study did not show a significant effect which may underline the take-home message of 
our study that changing behavior requires multiple and multi-faceted interventions. Lack 
of other studies investigating the impact of multiple training interventions in TVD makes 
comparison of outcomes difficult. Further studies with more observers would be needed to 

After the second teaching event overall CIexpert for another 3 repetitive cases increased from 
0.64±0.06 to 0.80±0.05 (see figure 3 for more details). A reduction of GTVexp miss from 
78.89±22.95 cc to 42.86±25.01 cc was observed, next to an increase in observer volume. 
Overall mean surface distances between observers and the expert contour decreased from 
-0.34±0.16 cm to -0.05±0.20 cm. A decrease from 0.49±0.10 cm to 0.27±0.09 cm in overall 
mean absolute surface distance was observed. The overall CIgroup increased from 0.80±0.08 
to 0.85±0.08. Examples of improvement in IOV and delineation accuracy before and after 
the training program are given in figure 4 and in supplementary figure 1. 

Figure 4. Results from contouring the GTV in case 6 before (top images) and after (bottom images) the complete training. 
From left to right an image slice in the axial plane from CT, PET, and a 3D model of the expert contour with mean surface 
distance errors projected (from blue to red, corresponding with a mean absolute surface distance of 0 to >1 cm). The bold 
red line represents the GTVexp.
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When observers delineate the same tumor repeatedly this creates systematic errors and 
contributes to intra-observer variability, since it is unlikely that any manual contour would 
be reproduced identically at different time points. In this study we did not examine what 
contribution this effect had on intra-observer variability when repeating the same case in a 
short timeframe. However it is hypothesized this effect is negligible compared to learning 
effects over a longer timeframe.

There have been a number of studies which have examined IOV in TVD using PET based 
delineation with a number of these studies focusing on the comparison of automatic 
delineation methods with manual delineation [17-21]. Doll et al. used one patient case 
and found overall concordance indices between experts, interdisciplinary pairs and single 
field specialists ranging from 0.49 to 0.67 which is similar to our results after the first 
training [16]. The experts showed the highest intragroup concordance of 0.67 and if that 
is representative then the outcome of our training program could be seen as successful. 
However, since the expert group in Doll et al. only performed one case and the study did not 
use a standardized delineation protocol this comparison is not valid. This study used only 
one expert contour per case as reference, which limited the conclusion whether an observer 
met a certain minimum level of quality in TVD. An intragroup expert concordance value 
could help in determining such a minimum required level of quality. Further research has 
to determine which deviation from the intragroup concordance value would be acceptable. 

Another limitation was the amount of cases available for the repeated assignments. Not 
all cases in Training 1 were suitable for inclusion in Assessment 4 due to the small tumor 
size in case 8 and therefore one case of the first assignment (case 1) had to be included. 
It is acknowledged that observers were less familiar with the software in the beginning 
than later in the training program, however the delineation software is similar to any other 
delineation tool used in clinic and it is hypothesized that if there is any learning effect 
present, this only has an impact on the delineation speed. Above that, a similar increase 
is seen in all cases after the complete training suggesting that the learning effect of the 
delineation software was negligible (see figure 3).

Spoelstra et al. had seen that a significant IOV in contouring confounded interpretation 
of post-operative radiotherapy and concluded that quality assurance (QA) procedures 
would need to be incorporated to tackle this problem [34]. A German multicenter PET 
study also covered a similar interesting topic i.e. harmonization of diagnostic viewing and 
reporting and also outlined the importance of QA [35]. They concluded that a structured 
interventional harmonization process significantly improved the IOV in their expert panel. 
However, no focus had been given on target volume delineation. In our study, additional 
training led to an increased delineation accuracy and decreased the IOV. In clinic, the IOV 

validate the results in this study. Currently the IAEA conducts a multicenter international 
study investigating the impact of blended distance learning (with additional training 
interventions) in the field of RT contouring on quality of delineation (CRP E33040).

Several studies concluded that the use of a standardized delineation protocol helps in 
decreasing IOV [31, 32, 34] and our results concur with that. There was a non-significant 
increase of IOV seen after the first training event, however a decrease was noted after 
the complete training program. In spite of the first training, visual inspection with Big 
Brother showed that some observers misinterpreted or did not comply with the guidelines 
thus their contours did not more closely resemble the CIexpert contour. Due to the fact that 
some observers drew contours more similar to that of the expert in contrary to others in 
the group, the CIexpert still increased slightly. This increase in variation between observers 
reduced the CIgroup (see figure 2). The second training event was necessary to correct any 
misinterpretations of practical guidelines and this approach of having training interventions 
may seem more effective than a single event training program. This again highlights the 
difficulty of changing behavior in order to obtain reproducibility and underlines the 
importance of teaching through multiple interventions to improve adherence to contouring 
guidelines. However, participants still had difficulties in determining the tumor boundary 
in cases with suspicious areas showing FDG uptake comparable to background activity. 
Decisions, as to whether or not to include these suspect areas within the GTV, are namely 
based on experience and expertise and this contributes to a degree of IOV. This emphasizes 
the importance of multidisciplinary meetings in case the RO experiences difficulties in 
contouring. 

In contrary to the delineation accuracy, GTV size did increase significantly among the 
observers after the first training. This was mainly due to specific training in standardization 
of PET window level settings [17], which is possible in most commercially available 
radiotherapy planning and contouring systems. The difficulty with manual delineation 
in PET/CT imaging is that the apparent boundaries of the FDG avid tumor are highly 
dependent on the chosen PET window level settings. Tumors will appear larger when 
delineation occurs using a high window setting and smaller with a low window setting on 
the PET display. Observers were trained in using standardized PET level window settings 
consequently showing an apparently larger tumor than before and this contributed to an 
increase in GTV size. Before the 1st training intervention most delineations were drawn too 
tightly around the tumor, which may possibly lead to geographical tumor miss. Caution 
has to be taken in circumstances where, in the absence of respiration correlated CT, PET/
CT may be substantially less accurate in defining the motion pathway of highly mobile lung 
tumors and in tumors with low FDG uptake [33]. 
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should also be assessed in order to see if it is necessary to provide more training in order 
to achieve reproducible results among ROs. Therefore it is recommended that assessment 
of IOV should be performed frequently next to having multi-disciplinary quality control 
meetings as part of the QA on TVD. The impact of repeated IOV assessment and its optimal 
frequency in a clinical setting should be further investigated.

A study examining the influence of experience and qualification in PET based TVD 
concluded that IOV may be dependent on qualification, but not on years of experience [16]. 
It is known that some centers already had minimal experience in PET/CT-based TVD and 
that there were centers with no experience in this field. However, no significant difference 
in performance was seen after comparison of inexperienced versus minimal experienced 
participants. 

Conventional 3-dimensional PET/CT imaging was chosen as the modality for TVD, since 
not all participants in the study had experience in PET/CT-based radiotherapy planning 
in NSCLC patients. The impact of 4-dimensional PET/CT has not been investigated and 
may be of interest to further increase accuracy. Furthermore, if a PET/CT acquired for 
diagnostic or staging purposes is used to inform the TVD process, care must be taken 
when registering a diagnostic PET/CT with a planning CT. Guidance regarding this has 
been described in the IAEA study protocol [17]. 

Conclusion

ROs and NMPs with limited experience in PET/CT-based TVD for lung cancer benefit 
significantly from receiving multiple training interventions with a standardized 
delineation protocol. Future research within a larger population should validate the results 
in this study to provide more evidence on the impact of multiple training interventions 
about PET/CT-based TVD for NSCLC. 
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Supplementary data

Supplementary figure 1. Three dimensional model of the expert contour (frontal view) for cases 1, 6 and 7 with mean 
surface distance errors projected (from blue to red, corresponding with a mean absolute surface distance of 0 to >1 cm).
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Introduction

Worldwide, lung cancer is the most commonly diagnosed cancer (2.1 million new cases 
in 2018) and the leading cause of cancer death (1.8 million deaths estimated in 2018) [1]. 
Five-year survival of lung cancer was 20–33% in countries such as Japan, Canada, USA, 
China, Korea, Israel, Sweden, Switzerland and Austria. However, most other countries had 
a 5-year survival ranging between 10% and 20%. Survival was less than 10% in countries 
such as Brazil, India and Thailand. Globally, lung cancer survival rates between 1995 and 
1999 and between 2000 and 2014 indicate no improvement with time, but in high-income 
countries 5-year overall survival (OS) has increased by 5–10% in absolute terms over the 
same time period [2].

Currently, 18F-fluorodeoxyglucose positron emission tomography/computed tomography 
(FDG PET/CT) is widely used for staging patients with non-small-cell lung cancer (NSCLC) 
and to a lesser extent for radiotherapy (RT) target volume delineation (TVD) [3, 4]. PET/CT 
scanners have also become available in several low- and middle-income countries (LMIC), 
although FDG PET/CT is mainly used for staging purposes rather than as a part of treatment 
planning in NSCLC [5]. The International Atomic Energy Agency (IAEA) convened an expert 
panel to appraise the clinical utility of FDG PET/CT for staging and RT planning (RTP) in 
patients with lung cancer. This coordinated research programme resulted in the design of 
the international PET/CT in RTP (PERTAIN) study (NCT02247713) to assess the feasibility 
of including FDG PET/CT in the RTP process in patients with stage III NSCLC in LMIC.

The current standard treatment for stage III NSCLC is concurrent chemoradiotherapy 
(CRT) [6]. In order to take advantage of the recent developments in RT techniques which 
have improved the accuracy of treatment delivery, it is essential to ensure TVD is as accurate 
as possible to avoid geographic miss of disease. Advanced RT techniques have improved 
local tumour control and have reduced treatment toxicity by enabling the delivery of higher 
radiation doses to the tumour while sparing adjacent normal tissue [7]. Examples include 
intensity-modulated RT (IMRT) [8], and image-guided RT, which improves the precision of 
treatment delivery and allows the use of smaller expansion margins [9].

TVD involves contouring the gross tumour volume (GTV), as specified in ICRU report 50 
[10]. GTV delineation is sensitive to interobserver variability (IOV) [11, 12]. A significant 
reduction in IOV can be achieved with information from both PET and CT [12, 13, 14, 15]. 
Automatic PET segmentation methods have also been proposed to reduce IOV [16], but 
always need verification by a radiation oncologist (RO) [17]. PET is specifically helpful 
in TVD when the tumour is not easily distinguished from surrounding healthy tissue on 
CT images, due to its higher soft tissue contrast [18]. Even with the use of PET imaging 

Abstract

Purpose
Patients with stage III non-small-cell lung cancer (NSCLC) treated with chemoradiotherapy 
(CRT) in low- and middle-income countries (LMIC) continue to have a poor prognosis. 
It is known that FDG PET/CT improves staging, treatment selection and target volume 
delineation (TVD), and although its use has grown rapidly, it is still not widely available in 
LMIC. CRT is often used as sequential treatment, but is known to be more effective when 
given concurrently. The aim of the PERTAIN study was to assess the impact of introducing 
FDG PET/CT-guided concurrent CRT, supported by training and quality control (QC), 
on the overall survival (OS) and progression-free survival (PFS) of patients with stage III 
NSCLC.

Methods
The study included patients with stage III NSCLC from nine medical centres in seven 
countries. A retrospective cohort was managed according to local practices between January 
2010 and July 2014, which involved only optional diagnostic FDG PET/CT for staging (not 
for TVD), followed by sequential or concurrent CRT. A prospective cohort between August 
2015 and October 2018 was treated according to the study protocol including FDG PET/
CT in treatment position for staging and multimodal TVD followed by concurrent CRT by 
specialists trained in protocol-specific TVD and with TVD QC. Kaplan–Meier analysis was 
used to assess OS and PFS in the retrospective and prospective cohorts.

Results
Guidelines for FDG PET/CT image acquisition and TVD were developed and published. All 
specialists involved in the PERTAIN study received training between June 2014 and May 
2016. The PET/CT scanners used received EARL accreditation. In November 2018 a planned 
interim analysis was performed including 230 patients in the retrospective cohort with a 
median follow-up of 14 months and 128 patients in the prospective cohort, of whom 69 had 
a follow-up of at least 1 year. Using the Kaplan–Meier method, OS was significantly longer 
in the prospective cohort than in the retrospective cohort (23 vs. 14 months, p = 0.012). 
In addition, median PFS was significantly longer in the prospective cohort than in the 
retrospective cohort (17 vs. 11 months, p = 0.012).

Conclusion
In the PERTAIN study, the preliminary results indicate that introducing FDG PET/CT-
guided concurrent CRT for patients with stage III NSCLC in LMIC resulted in a significant 
improvement in OS and PFS. The final study results based on complete data are expected 
in 2020. 
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pairs of trainees each including a RO and a NMP with limited experience in PET/CT-based 
TVD in NSCLC from seven different countries took part in multiple training interventions. 
Teams were given hands-on training in delineating the primary tumour according to IAEA 
protocol guidelines. An online webinar training session was held on TVD in NSCLC, and 
lectures for ROs and NMPs on current best practice in NSCLC were given [19]. All PET/CT 
scanners received annual European Association of Nuclear Medicine (EANM) Research Ltd. 
(EARL) FDG PET/CT accreditation. After the training intervention and scanner calibration, 
patients with stage III NSCLC were included in the prospective cohort between August 
2015 and October 2018. The study entry criteria are summarized in the Supplementary 
material S1 (Form 1). Patients who did not meet the study entry criteria were excluded from 
the study.

Case report forms
Patient data were collected using electronic case report forms (eCRFs). Five different eCRFs 
were designed to collect information on patient eligibility, before and after treatment, and 
follow-up. More details on eCRFs and their format can be found in the Supplementary 
material S1.

Clinical endpoints
The primary endpoint was OS, defined as the time between the start of treatment and date 
of death or loss to follow-up. The secondary endpoint was progression-free survival (PFS). 
PFS was defined as the time from the start of treatment to local failure, time to regional 
failure, and/or time to distant failure. Local failure was defined as progression in the 
primary tumour, and regional failure as progression in involved lymph nodes as assessed 
on follow-up scans. Distant failure was defined according to the 8th edition of the TNM 
classification for NSCLC [27]. The intervals for the follow-up assessments and imaging 
were as per local follow-up guidelines.

Chemotherapy and radiotherapy details
Patients in the retrospective cohort were treated according to respective institutional 
practice with sequential concurrent CRT, neoadjuvant chemotherapy or RT alone, but with 
curative intent. In the prospective cohort, patients were treated with concurrent CRT to 
a total dose of at least 60 Gy in fractions of 2 Gy over 6 weeks. Centres were free to select 
chemotherapy regimens according to local practice.

PET/CT image acquisition
Patients underwent whole-body FDG PET/CT using one of the following scanners: 
Discovery ST, Discovery 710, Discovery STE (GE Medical Systems, Chicago, IL, USA), 
Biograph 40 mCT, and Biograph 64 mCT (Siemens Medical Solutions, Erlangen, Germany). 

there is still IOV due to differences in the TVD method and to FDG uptake in normal 
structures adjacent to the tumour [19, 20]. The use of a rigorous contouring protocol in 
which a multidisciplinary team including a RO and a nuclear medicine physician (NMP) 
follow a detailed set of instructions has been shown to help minimize IOV [21]. A recent 
IAEA publication has provided guidance on the use and role of FDG PET/CT imaging for 
RTP in NSCLC patients [17]. The impact of the use of the IAEA study protocol on TVD 
accuracy and reproducibility has been evaluated in multiple centres in LMIC. Multiple 
training interventions on PET/CT-based TVD in NSCLC improves delineation accuracy 
and reduces IOV [16]. Hence, we hypothesized that TVD following the IAEA study protocol 
would increase accuracy and reproducibility of TVD in the clinic, leading to improvement 
in local control.

There are many reports describing IOV within and outside the context of clinical trials, but 
few studies have investigated the impact of IOV on clinical outcome [20, 22, 23] or methods 
that could minimize IOV by means of training [16, 24, 25, 26]. The clinical impact of such 
training remains unknown. Hence, we hypothesized that TVD following the IAEA study 
protocol would increase the accuracy and reproducibility of TVD and lead to improvement 
in local control and thus OS. We present the preliminary results of the PERTAIN study. The 
aim of this study was to assess the impact of introducing FDG PET/CT-guided concurrent 
CRT, supported by training and quality control (QC), on the OS and PFS in patients with 
stage III NSCLC.

Materials and methods

Ethical aspects
The PERTAIN study was approved by the medical ethics committee of Netherlands Cancer 
Institute/Antoni van Leeuwenhoek Hospital (ref. M14PRI). In addition, each centre received 
ethical clearance from their local medical research ethics committee. Written informed 
consent was obtained from all patients included in the prospective phase.

Study framework
Nine medical centres in seven countries met the technical requirements to participate 
in the PERTAIN study, including six middle-income countries: Brazil, India, Jordan, 
Pakistan, Turkey and Vietnam. The seventh country, Estonia, is classified as a high-income 
country by the World Bank, but did not routinely use PET/CT for RTP. The first component 
of the study was data collection from a retrospective cohort, which included consecutive 
patients with stage III NSCLC who had been treated in the participating centres between 
January 2010 and July 2014 according to existing local protocols. Over a 1-year period, nine 
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Statistical analysis
Any differences in continuous variables between the retrospective and prospective cohorts 
were assessed using the independent t test. Any differences in categorical variables were 
assessed using the chi-squared test. Strong prognostic factors were identified using 
univariate Cox regression analysis. Kaplan–Meier analysis was performed to assess OS 
and PFS in the retrospective and prospective groups. The log-rank statistic was used to 
assess the significance of any differences. Statistical analysis was performed using IBM 
SPSS statistics for Windows, version 22.0 (IBM Corp., Armonk, NY). Values of p less than 
0.05 were considered significant.

Results

Patient inclusion
The retrospective cohort included 230 patients with stage III NSCLC treated with sequential 
or concurrent CRT or RT alone. The prospective cohort included 69 patients with stage III 
NSCLC. In all centres, a high percentage of patients (up to 51%) were upstaged to stage IV 
after staging with PET/CT became the standard. Overall, five patients did not meet the 
study inclusion criteria, and were therefore excluded. Reasons for exclusion were inability 
to provide informed consent (one patient), unable to start treatment within 4 weeks of PET/
CT (two patients), and an ECOG performance status (PS) of 2 (two patients). An overview of 
the patient and tumour characteristics is given in Table 2.

Quality control of target volume delineation
All participating centres completed the first step of the QC procedure, in which the first 
three patients were accepted in the PERTAIN study. In total, 35 patients were submitted for 
TVD QC. Nine patients (26%) were excluded after evaluation. The reasons for not accepting 
the TVD as acceptable were: incorrect staging (two patients), involved lymph nodes not 
included (two patients), tumours too large to treat radically (≥60 Gy) without exceeding 
dose constraints (three patients), and noncompliance with IAEA study guidelines (two 
patients). All other patients in the prospective cohort were accepted for inclusion and 
treatment with concurrent CRT.

The reconstruction voxel size of the PET data varied from 2.0 × 2.0 × 3.3 mm to 5.5 × 5.5 × 3.3 
mm. Patients fasted for at least 8 h to ensure low levels of serum glucose. The total injected 
dose ranged between 226 MBq and 441 MBq (data not available for all patients). Patients 
were scanned approximately 60 min after injection of 18F-FDG according to EANM 
guidelines [28]. The acquisition times of the PET/CT scanners were in the range 2–5 min 
per bed position.

Assessment of the retrospective and prospective cohort
To assess the overall impact of the multiple training interventions and the routine use of 
FDG PET/CT-based concurrent CRT, survival outcomes in the retrospective cohort were 
compared with those in the prospective cohort. Although the training programme focused 
mainly on standardized PET/CT-based TVD, in general, the whole RTP procedure was also 
standardized to ensure the use of current treatment standards. Differences in the RTP 
procedures between the retrospective and prospective cohorts are summarized in Table 1.

Quality control of target volume delineation
To ensure that participating centres in the prospective study complied with the IAEA study 
protocol, central QC review of TVD was performed for the first three patients included 
per centre, and thereafter as needed. In the QC process anonymized PET/CT data and 
RT structure sets were made available through a secure online storage service and were 
reviewed by at least two members of the study trial management group.

Table 1. Differences in staging, radiotherapy planning, treatment and target volume delineation procedures between 
the retrospective and prospective cohorts.

Comparison Retrospective cohort Prospective cohort

Staging With or without PET/CT With PET/CT

RTP With or without PET/CT PET/CT in RTP-position
Time interval Per local protocol, delays of >1 month 

possible
Within 4 weeks of last PET/CT

Delivered dose Per local protocol ≥60 Gy

Treatment RT, sequential CRT, CCRT CCRT only

TVD Per local protocol Per IAEA study protocol (PET/CT-based)

PET/CT quality assurance EARL accreditation not compulsory EARL accreditation compulsory

Nodal irradiation Both elective and involved nodal RT Involved nodal RT

All procedures in the prospective cohort were standardized in all centers in accordance with the IAEA study guidelines 
[17]. (C)CRT = (concurrent) chemoradiotherapy, RT radiotherapy, RTP radiotherapy planning, TVD tumour volume 
delineation. 
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using three-dimensional conformal RT (3DCT). By comparison, of the 69 patients in the 
prospective cohort, 29 (42%) were treated with IMRT, 2 (3%) with volumetric modulated arc 
therapy (VMAT), and 38 (55%) with 3DCT. The prescribed dose fractionation scheme varied 
between 50 Gy in 30 fractions and 70 Gy in 35 fractions in the retrospective cohort, with 
a mean prescribed dose of 61.4 ± 2.8 Gy. In the prospective cohort the dose fractionation 
scheme varied between 60 Gy in 30 fractions and 66 Gy in 33 fractions, with a mean 
prescribed dose of 60.7 ± 1.7 Gy.

Impact on survival
Prognostic factors were evaluated in the retrospective and prospective cohorts separately. 
In the retrospective cohort, age and ECOG PS were significant prognostic factors (p = 0.039 
and 0.024, respectively), and T stage demonstrated borderline significance (p = 0.053). In 
the prospective cohort, univariate Cox regression analysis showed no significant prognostic 
factors. No significant differences between the retrospective and the prospective cohorts in 
any of these prognostic variables were found, and therefore these variables were considered 
balanced. However, TNM staging was significantly higher in the prospective cohort than 
in the retrospective cohort (p = 0.021), and histological subtype was significantly different 
between the cohorts (p = 0.013) The difference in histological subtype was due to the 
absence of large-cell and lack of not otherwise specified types in the prospective cohort 
(see Table 2).

Table 2. Patient and tumour characteristics.

Retrospective cohort Prospective cohort p valuea

No. of patients 230 69 –
Mean age (range) 61 (31–86) 64 (43–86) 0.136
Gender
  Male 191 (83%) 57 (83%) 0.831
  Female 39 (17%) 12 (17%)
Smoker 182 (79%) 67 (97%) <0.001
COPD 75 (33%) 47 (68%) <0.001
ECOG performance status
  0 72 (31%) 21 (30%) 0.841
  1 158 (69%) 48 (70%)
Disease stage
  IIIA 145 (63%) 29 (42%) 0.021
  IIIB 53 (23%) 27 (39%)
  IIIC 32 (14%) 13 (19%)
T stage
  1 4 (2%) 3 (4%) 0.369
  2 43 (19%) 11 (16%)
  3 87 (38%) 21 (30%)
  4 96 (42%) 34 (49%)
N stage
  0 16 (7%) 4 (6%) 0.082
  1 39 (17%) 4 (6%)
  2 135 (59%) 42 (61%)
  3 40 (17%) 19 (27%)
Histology
  Squamous cell carcinoma 90 (39%) 32 (46%) 0.013
  Adenocarcinoma 97 (42%) 35 (51%)
  Large cell carcinoma 15 (7%) 0 (0%)
  Not otherwise specified 28 (12%) 2 (3%)

COPD chronic obstructive pulmonary disease, ECOG Eastern Cooperative Oncology Group
aCalculated using the independent t test for continuous variables or the chi-squared test for categorical variables

Treatment parameters
In the retrospective cohort, 18 patients were treated with RT only (8%), 65 patients received 
sequential CRT (28%), and 147 patients (64%) received concurrent CRT. In contrast, all 
patients in the prospective cohort received concurrent CRT with curative intent. In both the 
retrospective and prospective cohorts various chemotherapy regimens were intravenously 
administered weekly: either carboplatin-based or cisplatin-based in combination with 
paclitaxel, etoposide, docetaxel, pemetrexed or gemcitabine. Of the 230 patients in 
the retrospective cohort, 32 (14%) were treated using an IMRT technique and 198 (86%) 
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in overall survival (p = 0.867) or progression-free survival (p = 0.304)
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In the retrospective cohort, Kaplan–Meier analysis showed no significant differences in 
OS or PFS between patients who were and were not PET/CT-staged (p = 0.867 and 0.304, 
respectively; Fig. 1). Only 18.1% of the retrospective data were censored; in contrast, 52.2% of 
the prospective data were censored. Median survival was 14 months (95% CI 12–15 months) 
in the retrospective cohort and 23 months (95% CI 15–30 months) in the prospective cohort 
(p = 0.012, log-rank test). Two-year OS was 27% in the retrospective cohort and 47% in the 
prospective cohort. The corresponding Kaplan–Meier analysis is shown in Fig. 2. Two-year 
PFS was 22% in the retrospective cohort and 45% in the prospective cohort.

Kaplan–Meier analysis of PFS in the retrospective and the prospective cohorts is shown in 
Fig. 3. Median time to progression was 11 months (95% CI 9–12 months) in the retrospective 
cohort and 17 months (95% CI 10–23 months) in the prospective cohort (p = 0.012, log-rank 
test). Two-year PFS was 22% in the retrospective cohort and 45% in the prospective cohort.

Discussion

This study investigated the impact of introducing FDG PET/CT-guided concurrent CRT, 
supported by training and QC, on the OS in patients with stage III NSCLC. Preliminary 
results demonstrated a positive trend in a cohort comparison towards improved OS and 
PFS in the prospective cohort, suggesting a benefit from implementing FDG PET/CT-
guided concurrent CRT in patients with stage III NSCLC in centres in LMIC with limited 
experience with PET/CT. TVD QC showed that IAEA study guidelines were implemented 
successfully in the clinic in 74% of patients. This demonstrates compliance with the study 
guidelines in the clinic, but also emphasizes the importance of QC in multi-centre trials 
to ensure compliance with the study protocol. Using TVD QC we were therefore able to 
confirm compliance with IAEA study guidelines in the clinic. This procedure led to the 
removal of five patients ineligible for curative CCRT who could otherwise have influenced 
the outcome of this study. Four issues were observed in TVD QC: incorrect staging, involved 
lymph nodes not included, tumours too large to treat radically without exceeding dose 
constraints, and tumours not delineated following the reGTV approach. The QC reviews 
continued to inform study participants during patient accrual and served as educational 
material when these issues occurred, which emphasizes once more the importance of QC 
during clinical studies.

Significant differences in TNM stage were observed between the retrospective and 
prospective cohorts. The retrospective cohort included predominantly stage IIIA patients, 
whereas the prospective cohort had a more balanced distribution of patients with 
stages IIIA, B and C. Despite a survival benefit of stage IIIA over IIIB and IIIC, results 
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explain the worse survival seen in the first months in the prospective cohort. Five patients 
died during RT in the prospective cohort after being included in the analysis, and patients 
who died during treatment were not selected for the retrospective cohort. However, this 
would have had the effect of reducing the apparent survival difference between the two 
arms of the study. Another influence that may have contributed to worse survival in the 
first months may have been the higher incidence of smokers and patients with COPD in 
the prospective cohort.

Conclusion

The initial analysis of the PERTAIN study showed that a combined package of FDG PET/
CT-planned RT, the routine use of concurrent CRT with training support, and a robust QC 
process led to improved OS and PFS in patients with stage III NSCLC patients in low- and 
middle-income countries.
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demonstrated better survival in the prospective cohort. Nevertheless, 48% of the patients in 
the retrospective cohort were not PET/CT-staged, and could have been incorrectly staged. 
Indeed, in all centres, a high percentage (up to 51%) of patients were upstaged to stage IV 
after staging with PET/CT became the standard.

The improved OS and PFS were possibly due to several factors. Besides the introduction 
of PET/CT for TVD and improved patient selection with FDG PET/CT, patients in the 
prospective cohort all received CCRT (64% in the retrospective cohort; 100% in the prospective 
cohort) and were also treated with more advanced RT techniques such as IMRT and VMAT 
(14% in the retrospective cohort; 45% in the prospective cohort), which could also have led 
to survival benefits [6]. Even so, there was no significant difference in the prescribed doses 
between the cohorts, and evidence is lacking on the survival benefit of IMRT/VMAT versus 
3DCT in lung cancer patients [29]. On the other hand, more confidence was gained in PET/
CT-based contouring, increasing delineation accuracy which hopefully resulted in reduced 
geographic miss of tumour. This may explain the improved local control seen in Fig. 2. In 
addition, the PERTAIN trial improved or reaffirmed collaborative working relationships 
between nuclear medicine and radiation oncology departments in the participating 
centres. This collaboration may not only have led to improved delineation, but also may 
have improved patient management by streamlining the patient pathway from diagnosis 
to treatment. Evaluation of the impact of this collaboration on outcome was beyond the 
scope of this study, and further research is required to obtain definitive evidence [30, 31].

In the PERTAIN trial there was a heterogeneous group of participating centres with different 
levels of experience in PET/CT scan acquisition. Furthermore, the training interventions 
were limited to RO and NMP chief scientific investigators. A train-the-trainers approach 
was used to disseminate the knowledge further in the departments involved in the 
PERTAIN study. The improvement in survival outcomes shown in this analysis suggests 
that this training approach had a clinically meaningful impact in the participating centres. 
We suggest that it is feasible to disseminate education regarding new radiation oncology 
techniques using the multiple intervention method we used [17].

One potential confounding impact in the comparison of outcomes between the cohorts 
may have been the impact of PET/CT staging alone. It is interesting to note that in the 
retrospective cohort, no significant difference in OS was observed between patients who 
were and were not PET/CT-staged (Fig. 1), and hence this confounding effect may have been 
negligible in this cohort, but it is acknowledged that because of the size of these groups, the 
study may not have been powered to detect a true difference. Another potential confounding 
factor was the selection bias that may have been present between the retrospective cohort 
and prospective cohort with regard to patients who died during treatment. This may 
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Supplementary Material S1

In the retrospective study, a total of four different eCRFs were used to collect patient data 
(Table 1). In Form 1, eligibility criteria of each patient were checks whereas Form 2 consisted 
of detailed information on delivered treatment. Form 3 was used in case the patient was 
alive and did not finish two-year follow up, and provided data on survival status. Otherwise, 
Form 4 was filled in and consisted of information on survival and cause of death. As for 
the prospective part, Form 2 was filled in before - and Form 3 after treatment, to check 
for possible discrepancies between prescribed and delivered treatment. Form 4 contained 
survival data on follow-up moments (3, 6, 9, 12, 24 months). Form 5 was filled in if the 
patient went off-study for any reason or if the patient completed 24 months of follow-up.

Table 1. Overview of the electronic case report forms used to collect patient data. 
Retrospective Prospective

Form 1 Checking for eligibility: inclusion/exclusion 
criteria

Checking for eligibility: inclusion/exclusion 
criteria

Form 2 Treatment data Pre-treatment data

Form 3 Follow up data Treatment data

Form 4 Off-study data Follow-up data

Form 5 n/a Off-study data
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Introduction

Despite the emergence of new technologies and treatment options such as tyrosine kinase 
inhibitors targeted towards mutations, and immune checkpoint inhibitors, the global 
survival of lung cancer patients has improved only gradually in the last decades [1-4]. 
Locally advanced non-small cell lung cancer (NSCLC) is a highly heterogeneous disease 
where only modest improvements in survival have been observed, with the exception of 
chemoradiotherapy (CRT) patients treated with the anti-PD-L1 antibody Durvalumab 
whose overall and progression-free survival significantly improved compared to those 
receiving CRT alone [5]. New approaches are urgently needed for the selection of treatment 
strategies for NSCLC patients, which are currently determined mainly by TNM staging 
[6, 7]. In addition to TNM staging, other well-established, reproducible, independent 
prognostic factors are used to guide clinicians in making treatment decisions, such 
as Eastern Cooperative Oncology Group (ECOG) performance status [8, 9], weight loss 
[10], and gender [11]. Numerous other biomarkers have been investigated, although less 
reproducible, such as histology [12], age [13], serum blood levels [14, 15], mutation status 
[16], and protein expression levels [17, 18]. In locally advanced NSCLC, treatment selection 
based on TNM staging and other clinical variables may not be accurate enough for survival 
probability prediction [19, 20]. Therefore, the search for more accurate reproducible 
independent prognostic factors is warranted in the context of personalized medicine.

A current field of interest is the assessment of quantitative image features and its 
complementary value to well-established clinical prognostic models. Radiomics has been 
introduced as a sophisticated way to extract and mine a large number of quantitative 
image features, primarily using anatomical CT information [21]. The basic assumption of 
radiomics is that underlying tumour biology could be captured [22]. This information may 
actually be better characterized with functional imaging such as 18F-fluorodeoxyglucose 
Positron Emission Tomography (FDG PET), the gold standard in NSCLC diagnosis and 
staging, which is able to characterize molecular heterogeneity in lung cancer [23,24]. It 
is therefore worthwhile to investigate the prognostic performance of radiomics features 
from functional imaging such as PET.

Basic PET radiomics features have provided clinically relevant prognostic information for 
NSCLC patients. Examples include standardized uptake value (SUV) based metrics like 
maximum, peak, and mean SUV (SUVmax, SUVpeak, and SUVmean, respectively), metabolic 
tumour volume (MTV), and total lesion glycolysis (TLG) [25-32]. The more advanced PET 
texture features employed for quantification of tumour heterogeneity, have also been 
reported to be of prognostic value 33-41]. However, the variable nature of PET imaging 
makes it difficult to reproduce these results [42,43].

Abstract

In locally advanced lung cancer, established baseline clinical variables show limited 
prognostic accuracy and 18F-fluorodeoxyglucose positron emission tomography (FDG PET) 
radiomics features may increase accuracy for optimal treatment selection. Their robustness 
and added value relative to current clinical factors are unknown. Hence, we identify robust 
and independent PET radiomics features that may have complementary value in predicting 
survival endpoints. A 4D PET dataset (n=70) was used for assessing the repeatability (Bland-
Altman analysis) and independence of PET radiomics features (Spearman rank: |ρ|<0.5). 
Two 3D PET datasets combined (n=252) were used for training and validation of an elastic 
net regularized generalized logistic regression model (GLM) based on a selection of clinical 
and robust independent PET radiomics features (GLMall). The fitted model performance 
was externally validated (n=40). The performance of GLMall (measured with area under 
the receiver operating characteristic curve, AUC) was highest in predicting 2-year overall 
survival (0.66±0.07). No significant improvement was observed for GLMall compared to 
a model containing only PET radiomics features or only clinical variables for any clinical 
endpoint. External validation of GLMall led to AUC values no higher than 0.55 for any clinical 
endpoint. Robust independent FDG PET radiomics features did not have complementary 
value in predicting survival endpoints in lung cancer patients. Improving risk stratification 
and clinical decision making based on clinical variables and PET radiomics features has still 
been proven difficult in locally advanced lung cancer patients.
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Table 1. Overview of the four patient cohorts used in the study. Unless otherwise stated, values represent 
the median with the range in parentheses. 

4D PET lung NKI lung 1 NKI lung 2 PMCC lung 1
No. of patients 70 228 24 40

Age (year) n/a 64 (36-87) 63 (39-82) 68 (53-86)
Gender

Male
Female

n/a 142
86

13
11

29
11

Disease stage
IA
IB
IIA
IIB
IIIA
IIIB
IIIC

n/a

IA-IIIC
1
4
0
16

102
82
23

IIB-IIIC
0
0
0
2
7

13
2

IB-IIIC
0
1
3
5

15
12
4

T stage
1
2
3
4

n/a
6

78
63
81

1
4
7

12

5
24
9
2

N stage
0
1
2
3

n/a
42
20
130
36

4
2
13
5

5
5

17
13

Histology
Adeno

Squamous cell
Large cell

Nos or other

n/a
80
83
8

57

12
7
1
4

16
13
5
6

GTV (cc) n/a 118 (15-906) 84 (10-351) 49 (12-544)
MTV2.5 (cc) 62 cc (10-545) 72 (10-693) 91 (11-337) 51 (8-478)
MTV40 (cc) 27 cc (4-169) 31 (3-394) 34 (5-289) 31 (4-378)

SUVmax 11.5 (4.3-55.1) 14.6 (5.9-44.8) 15.7 (6.9-28.3) 16.5 (6.3-33.2)
Median follow-up time 

(months)
n/a 17 22 24

2-year OS n/a 40% 46% 54%
2-year PFS n/a 29% 21% 20%
1-year PFS n/a 50% 54% 35%
1-year LRS n/a 58% 71% 47%

1-year DMS n/a 54% 54% 45%

MTV2.5, metabolic tumour volume obtained using a SUV threshold of 2.5; MTV40, metabolic tumour volume 
obtained using a threshold of 40% of the maximum intensity; SUVmax, maximum SUV uptake; OS, overall 
survival; PFS, progression-free survival; LRS, local recurrence-free survival; DMS, distant metastases-free 
survival; Nos, not otherwise specified.

Furthermore, PET texture features can also be subject to differences in reconstruction 
settings and delineation methods [44], SUV binning methods [45,46], and feature 
calculation methods [47]. It is not yet clear which PET radiomics features are insensitive to 
all of these factors, and also to what degree.

Regardless of the issues with variability, complementary PET radiomics features should 
be independent from well-known prognostic SUV metrics, such as MTV and SUVmax. 
Some investigators reported specific PET texture features that were associated with MTV 
[37,39,47-49]. In these cases, prognostic texture features would rather act as a surrogate 
than as an independent variable. Such an association is also not warranted for clinical 
variables. Hence, the relationship of PET texture features with well-known prognostic 
factors has to be thoroughly studied too.

With all the confounding factors described above, in combination with the high number 
of possible radiomics features, it is not surprising that false discovery rates are high 
amongst FDG PET and CT studies on texture features [18]. Without proven, robust, and 
independent prognostic PET texture features, it will be challenging to move further in the 
field. Therefore, this study aims to investigate the repeatability of PET radiomics features, 
and also assesses the relationship with well-known prognostic factors in PET, such as 
MTV and SUVmax. The rationale is to identify a group of radiomics features derived from 
pre-treatment PET imaging that are robust, independent, and prognostic, with possible 
additional value to current clinical prognostic variables.

Materials and methods

Patient data
Three NSCLC patient cohorts from the Netherlands Cancer Institute (NKI) and one 
from the Peter MacCallum Cancer Centre (PMCC) were included in this study to develop 
and validate a radiomics signature. Peter MacCallum Cancer Centre Ethics and Clinical 
Research Committees approval was granted and all research was performed in accordance 
with relevant guidelines/regulations. Patient’s written, informed consent was obtained. 
An overview of the datasets is given in Table 1. Patients were excluded if the primary 
tumour was smaller than 10 cc or if the patient had stage IV NSCLC at baseline. To detect 
brain metastases at baseline, the NKI patients were scanned with MR imaging and the 
PMCC performed FLT baseline scans before treatment.
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For the 4D PET lung dataset, scans were acquired on a Gemini TF scanner (Philips Medical 
Systems, Cleveland, OH). The reconstruction voxel size of the PET data was 4 × 4 × 4 mm3. 
The 4D PET/CT data were reconstructed in 10 phases, and the attenuation in each frame of 
the 4D PET data was corrected with the corresponding 4D CT frame. The acquisition time 
of the 4D PET was kept the same as that used for 3D PET [53].

Mid-position scans from 4D PET lung dataset for repeatability testing
The 4D PET/CT data were reconstructed in 10 phases, and from these phases two new mid-
position scans were derived [53]. The first mid-position scan was created from the even 
phases (0, 2, 4, 6, and 8) and is named ‘Mid-P even’, and the odd phases (1, 3, 5, 7, and 9) 
were used to create the second mid-position scan ‘Mid-P odd’. The even and odd number of 
frames were selected to keep the amount of tumour motion balanced in both scans. Figure 
1 gives an overview of the workflow. 

The source of variability was different in these two mid-position scans compared to a test–
retest setting, since the biological tumour variability has been eliminated. In this case, 
the variability was mostly caused by minor differences in noise-levels and tumour motion, 
hence robust quantitative features should not differ substantially in outcome. 

Load 4D PET data  
Select odd / even 

number of 
frames 

Apply DVF to 
Mid-P 

Take the mean of 
5 frames 

Mid-P – 10 frames 

Mid-P – 5 frames (even) 

Mid-P – 5 frames (odd) 

Frame 0 

Frame 1 

Frame 2 

Frame 9 

… 

 
Figure 1. Workflow of the PET mid-position scans. A 4D PET scan was loaded for each patient consisting of 10 frames, 
where the odd or even number of frames were selected. A 4D deformation vector field (DVF) was applied to these frames 
to deform them to the mid-position. Lastly, the mean of the 5 deformed frames was calculated to obtain the PET mid-
position scan. For comparison, the PET mid-position scan obtained from 10 frames has been included in the image too. 
Mid-P = PET mid-position scan. 

The repeatability and independence of PET radiomics features was assessed using a 4D 
PET/CT dataset (4D PET lung) consisting of 70 stage III NSCLC patients. No clinical data 
was collected for these patients. The second cohort (NKI lung 1) contained 228 patients 
treated with concurrent chemoradiotherapy (CCRT) for stage IA-IIIC NSCLC in the NKI 
between 2007 and 2011 as described earlier [51]. The third cohort, also from the NKI (NKI 
lung 2), consisted of 24 patients with stage IIB-IIIC NSCLC treated between 2013 and 2016, 
similar as NKI lung 1. The fourth cohort was from the PMCC (PMCC lung 1) and involved 40 
stage IB-IIIC NSCLC patients treated with CCRT as previously reported [32]. 

Clinical endpoints for prognostic model
The primary endpoint used for the prognostic model was two-year overall survival (2-year 
OS). Overall survival was defined as the time between the start of treatment and date of 
death. In addition, two-year progression-free survival (2-year PFS), one-year PFS (1-year 
PFS), one-year local recurrence-free survival (1-year LRS), and one-year distant metastases-
free survival (1-year DMS) were also studied. Progression was defined as growth of tumour 
cells in the primary tumour or involved lymph nodes, or metastases to other organs, or 
death. LRS was defined as progression in the primary tumour and/or involved lymph nodes 
as assessed on follow-up scans. DMS was described according to the 8th edition of the TNM 
classification for NSCLC [52] as evaluated on follow-up scans. 

Data acquisition and image reconstruction
Patients from the NKI lung 1 and 2 dataset both underwent a whole-body FDG PET/CT 
using a Gemini TF or Gemini TF Big Bore scanner (Philips Medical Systems, Cleveland, 
OH). The reconstruction voxel size of the PET data was 4 × 4 × 4 mm3. Patients fasted for at 
least 8 h to ensure low levels of serum glucose. Patients with a Body Mass Index (BMI)≤28 
were intravenously injected with 190 MBq 18F-FDG, or 240 MBq in case of a BMI>28. 
Patients were scanned 60 minutes after injection of 18F-FDG. The acquisition time of the 
PET/CT scanner was 2 minutes per bed position.

In the PMCC lung 1 cohort, whole-body FDG PET/CT scans were acquired on a GE STE 
(GE Medical Systems, Milwaukee, WI) or Biograph (Siemens Medical Solutions, Erlangen, 
Germany) scanner. The reconstructed voxel size of the PET data was 4.3 × 4.3 × 3.3 mm3 for 
the GE STE scanner, and 4.1 × 4.1 × 3.0 mm3 for the Siemens Biograph scanner. Patients 
fasted for more than 6 hours before 18F-FDG scans. Patients were intravenously injected 
with 4.2 MBq/kg 18F-FDG. Baseline emission scans were initiated 60 minutes after injection. 
The acquisition time of the PET/CT scanner was 3 minutes per bed position.
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Repeatability
The repeatability assessment was performed within the same patient comparing two 
different PET mid-position scans. For each patient, the PET mid-position scan obtained 
from the even numbered frames (Mid-P even) was compared with the PET mid-position 
scan from the odd numbered frames (Mid-P odd). This resulted in four comparisons: 2 SUV 
binning methods and 2 thresholding methods were applied.

The repeatability of each PET radiomics feature was assessed with the Coefficient of 
Repeatability (CR) [61]. See Supplementary material S3 for more details. The CR was 
reported as a percentage: 
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feature value within the patient cohort. The threshold for poor repeatability was set to a 
value of 30%, corresponding to PET Response Criteria in Solid Tumours (PERCIST) [62]. 

Independence testing
To determine whether the features were correlated with the two commonly reported prognostic 
PET features MTV and SUVmax, the Spearman’s rank correlation coefficient (ρ) was calculated on 
one of the Mid-P scans, using the same set-up as for the repeatability testing. PET radiomics 
features that had a |ρ|≥0.5 were considered to have a correlation with MTV or SUVmax, and 
were discarded from further analysis. The choice of |ρ|<0.5 as limit for independent features 
was validated with the ‘elbow method’ using hierarchical clustering [63]. An overview of the 
radiomics workflow and feature selection procedure is given in Figure 2.

Model training
An elastic net regularized generalized logistic regression model (GLM) was built with PET 
radiomics features derived from pre-treatment PET imaging (GLMrad). To increase the 
sample size in the training and test sets, for the purpose of building a GLM, NKI lung 1 
and lung 2 were combined. In this study, 80% of the NKI data was used for training the 
model, and 20% for validation. Different ratios of training/validation were also tested, 
but were not reported as there was no major differences seen in the results. Elastic net 
regression analysis using the R package ‘glmnet’ was performed on the training set [64]. 
With 20-fold cross validation (CV), the most optimal fitted GLMrad with minimal CV error 
was determined and selected for model validation.

Model validation
To validate the fitted model of the training set, the area under the receiver operating 
characteristic curve (AUC) was calculated between the predicted outcome and the observed 
outcome in the validation set. To reduce randomness introduced by selecting a random 
subset of the complete data for training and validation, the procedure for model training 
and validation was repeated 100 times. This yields a better estimate of the true validation set 

Tumour segmentation
For each patient in the NKI lung 1, NKI lung 2, and PMCC lung 1 cohort, a volume-of-interest 
(VOI) enveloping the primary tumour was manually drawn by radiation oncologists using 
information from both PET and CT imaging. From this VOI, the MTV was auto-segmented 
on the FDG PET scan. Two auto-segmentation methods were applied: a metabolic tumour 
region delineation that included all voxel intensities above 2.5 (SUV2.5), and a high intensity 
delineation that included all voxel intensities that were at least 40% of the SUVmax (SUV40). 
Auto-segmentation was performed with in-house developed software named Match42 
(version 1.0.0) using a Python plug-in. The metabolic tumour volume obtained from SUV2.5 

and SUV40 were named MTV2.5 and MTV40, respectively. In the 4D PET lung dataset, a VOI 
was manually drawn around the primary tumour in one PET mid-position scan, and copied 
to the second PET mid-position scan. The auto-segmentation was performed on both PET 
mid-position scans independently. 

PET radiomics features
The Pyradiomics toolkit was used for radiomics feature extraction [54]. With this toolkit 
a total of 105 features were available for feature calculations. These were divided into 
18 first-order features, 13 shape features, and 74 texture features describing the spatial 
distribution of voxel intensities. The texture features were derived from the gray level 
co-occurrence matrix (GLCM; 23 features) [55], gray level run-length matrix (GLRLM; 16 
features) [56], gray level size-zone matrix (GLSZM; 16 features) [57], gray level dependence 
matrix (GLDM; 14 features) [58], and neighbourhood gray tone difference matrix (NGTDM; 
5 features) [59]. The mathematical definitions of these features were in compliance with 
feature definitions as described by the Imaging Biomarker Standardization Initiative 
(IBSI) [60]. 

SUV discretization and matrix calculation
Before texture features were extracted, pre-processing steps were required in the form of 
SUV binning and matrix definition. SUV discretization is an intensity-resampling step, 
before building the texture matrices on which texture features rely. SUV discretization 
or binning was applied with the fixed bin count method (e.g. 64 bins) and an alternative 
method using a fixed bin width (e.g. 0.25 SUV). All texture features were calculated from 
a single matrix taking into account all 13 directions simultaneously. A more detailed 
description on SUV binning and matrix calculation can be found in Supplementary 
material S1 and S2, respectively. 
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complementary value of PET radiomics features with clinical variables, the mean AUC 
was calculated from 100 iterations for each model and compared. The Mann Whitney U 
Test was used to assess any significant differences between the predictive performance of 
GLMall, GLMclin, and GLMrad, and p-values below 0.05 were seen as significant.

Results

Repeatability
Results of the repeatability test were based on the 4D PET lung dataset and an overview of 
notable PET radiomics features and their corresponding CR is given in Table 2. All first-
order features were repeatable when extracted from MTV2.5 irrespective of SUV binning 
method. In contrast, 13 out of 18 first-order features were repeatable when extracted from 
MTV40. Furthermore, around 50 texture features were repeatable when extracted from 
MTV2.5 regardless of SUV discretization method, versus 28 repeatable texture features 
extracted from MTV40. With regards to shape features, only MTV40 was not repeatable. 

Amongst the four comparisons, 211 out of 360 PET radiomics features were repeatable. 
An overview of all PET radiomics features and their corresponding CR are given in 
Supplementary Table 1 and Supplementary Table 2. The impact of large delineation 
inaccuracies on repeatability was studied between contours generated by the two different 
SUV thresholds, though only reported as supplementary data (Supplementary material S4).

Relationship of PET radiomics features with MTV and SUVmax
The Spearman’s Rank correlation coefficient was calculated to assess the relationship of 211 
repeatable PET radiomics features with MTV and SUVmax. Four assessments were performed 
in total on one of the mid-position scans, with groups consisting of a combination of 
either one of the SUV binning methods and one of the tumour volumes (MTV2.5 or MTV40). 
Not all repeatable PET radiomics features were found to be independent from MTV and 
SUVmax. From the first-order features, only Kurtosis and Skewness extracted from MTV2.5 

were independent from MTV and SUVmax. There were no independent repeatable first-
order features for MTV40. Regarding the fixed bin count method, 17 out of 50 texture 
features extracted from MTV2.5 were not strongly associated with MTV and SUVmax. This 
also counted for 5 texture features extracted from MTV40. With regards to the fixed bin 
width method, there were no texture features independent from either SUVmax or MTV. 
Elongation, Flatness, and Sphericity were the only independent shape features when 
extracted from MTV2.5, though only Elongation and Flatness remained independent for 
MTV40. A complete overview of independence testing for all PET radiomics features are 
given in Supplementary Table 4-6. 

performance by randomly simulating many scenarios with varying training and validation set 
compositions [65]. From the 100-times-repeated training/validation procedure, results were 
averaged, and the best performing GLMrad was externally validated for each clinical endpoint 
on PMCC lung 1.

Image segmentation Feature extraction 

SUV discretization 
fixed bin width 
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SUV40 
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V
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Figure 8. Radiomics feature selection workflow: from PET image segmentation to selected features. Features from 
MTV2.5 and MTV40 were seen as a separate set of features, doubling the amount of features in the analysis. This also 
counts for features calculated with fixed bin width and fixed bin count, except for most intensity and shape features that 
were not affected by SUV discretization. An exception was observed for first-order features Uniformity and Entropy. A 
total of 360 PET radiomics features were entered into the analysis, including SUVmax, MTV2.5, and MTV40. PET radiomics 
features were selected for further analysis when two criteria were met: high repeatability and low association with MTV 
and SUVmax. SUV2.5 = SUV threshold of 2.5; SUV40 = SUV threshold of 40% of maximum SUV; MTV2.5 = metabolic tumour 
volume obtained from use of SUV2.5; MTV40 = metabolic tumour volume obtained from use of SUV40. GLCM = gray level 
co-occurrence matrix; GLRLM = gray level run-length matrix; GLSZM = gray level size-zone matrix; GLDM = gray level 
dependence matrix; NGTDM = neighbourhood gray tone difference matrix; CR = coefficient of repeatability.

During 100-times-repeated training/validation procedure, per iteration, the fitted model 
was stored to keep track of the PET radiomics features that were selected by elastic net in 
the fitted model [66]. PET radiomics features and clinical variables were ranked based on 
the frequency of inclusion in the fitted model. 

Model comparison
Clinical variables such as PET/CT-based GTV, TNM staging, histology, gender, and age 
were also introduced into the radiomics signature to create a prognostic model containing 
PET radiomics features and clinical variables (GLMall). In addition, a model based on only 
the clinical variables was calculated using elastic net regression (GLMclin). To assess the 
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Figure 9. Correlation coefficients of the robust independent PET radiomics features and clinical variables. Positive 
correlation coefficients are displayed in blue and negative correlation coefficients in red color. Color intensity and the 
size of the circle are proportional to the correlation coefficients. A distinction was made between features calculated 
from MTV2.5 and MTV40.

Building the radiomics signature
Based on the feature selection criteria, 31 PET radiomics features were selected for the next 
steps (see Figure 3). Three elastic net regularized GLMs were built per endpoint: GLMrad, 
GLMclin, and GLMall. Results of the model performances are shown in Figure 4, showing that 
GLMrad does not significantly outperform GLMclin for any clinical endpoints. The GLMclin has 
a significantly better predictive performance compared to GLMrad in 2-year OS (p<0.0001), 
and in 1-year LRS (p<0.001). GLMall did not show a significantly better performance to both 

Table 2. An overview of categorized notable PET radiomics features that are commonly reported in literature with their 
coefficient of repeatability (CR, %). 

CR (%) Fixed bin width Fixed bin count

Notable features MTV2.5 MTV40 MTV2.5 MTV40

First-order features 18/18 13/18 18/18 13/18

Entropy* 3.4 5.5 3.8 6.0

Kurtosis 26.8 34.7 26.8 34.8

Skewness 23.1 50.4 23.1 51.3

SUVmax* 13.2 13.2 13.2 13.2

SUVmean* 6.0 12.9 6.0 12.7

Uniformity 17.9 41.9 21.1 37.0

Texture features 49/74 28/74 50/74 28/74

GLCM Contrast* 23.2 28.1 28.8 29.9

GLCM Correlation* 2.6 11.9 2.7 11.2

GLCM DifferenceAverage* 9.9 13.1 14.1 17.2

GLCM JointEntropy* 2.8 4.5 3.3 5.7

GLCM SumEntropy* 2.7 4.5 2.8 4.2

GLRLM GrayLevelNonUniformity 13.7 59.1 18.7 55.4

NGTDM Busyness 75.5 91.3 33.0 81.9

NGTDM Coarseness 12.0 41.5 16.8 35.2

NGTDM Contrast 23.3 68.5 31.9 64.9
Shape features 13/13 12/13 13/13 12/13

Elongation* 4.7 10.8 4.7 10.7
Flatness* 7.1 15.0 7.1 13.7

MetabolicTumourVolume 5.9 45.5 5.9 45.3
Sphericity* 3.2 8.9 3.2 8.7

The asterisk (*) represents features that were repeatable in all four different settings. Per category, the total number of 
PET radiomics features that met the study repeatability criterion is added.

An overview of correlations amongst the selected robust independent PET radiomics 
features and clinical variables is given in Figure 3. More details on robust and independent 
PET radiomics features can be viewed in Supplementary Table 7. The robust independent 
PET radiomics features did not show any strong correlation with the other clinical 
variables, such as age, ECOG PS, gender, histology, and TNM stage. However, there were 
associations present amongst the PET texture features.
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Table 3. The most selected features in the model by elastic net, ranked by the number of times selected in the generalized 
linear model. 

Endpoint GLMall selected features by elastic net Frequency

2-year OS Age
GTV
Shape_Sphericity
MTV2.5

glcm_ClusterTendency
SUVmax

Gender
glcm_JointEntropy 
glrlm_GrayLevelNonUniformityNormalized
glrlm_GrayLevelVariance

100
100
100
78
56
39
34
34
33
29

2-year PFS Age
SUVmax

glrlm_GrayLevelNonUniformityNormalized
shape_Sphericity
Histology
MTV2.5

glcm_ClusterTendency
N_status
T_status
shape_Elongation_MTV40

50
50
49
47
42
38
30
28
25
20

1-year PFS GTV
glcm_ClusterTendency
shape_Sphericity
Age
T_status
MTV2.5

glcm_SumEntropy_MTV40
shape_Elongation
SUVmax

Histology

99
95
76
63
49
40
39
37
31
29

1-year LRS GTV
Age
glcm_ClusterTendency
glcm_SumEntropy_MTV40
shape_Sphericity
Gender
gldm_GrayLevelVariance
N_status
Stage
glrlm_GrayLevelVariance

83
82
65
63
57
48
47
27
25
24

GLMrad and GLMclin simultaneously in any endpoint. External validation of GLMall led to 
AUC values ranging from 0.51 to 0.59 for any clinical endpoint. When GLMclin was externally 
validated, the highest predictive performance was 0.60 for 2 year OS. For GLMrad, the 
highest predictive performance was 0.71 for 2-year PFS. 

Promising features
Table 3 shows selected features for each fitted GLM, and how frequent these features were 
chosen in the fitted model over 100 iterations. The feature shape Sphericity was present 
in 100% of the iterations for 2-year OS. From the 100 repetitions, GLCM ClusterTendency 
was selected in more than 95% for predicting 1-year PFS and 1-year DMS. Clinical variables 
such as age and GTV were prominent in predicting 2-year OS and 1-year LRS, next to shape 
Sphericity. As can be seen in Table 3, age, shape Sphericity, and GLCM ClusterTendency are 
present amongst the most selected features for all clinical endpoints. 

Figure 10. Model performance for the PET radiomics model (GLMrad), the model containing clinical variables (GLMclin), 
and a combination of radiomics and clinical variables (GLMall). The median AUC values from 100-times-repeated 
training/validation are depicted per model, per clinical endpoint. The lower and upper hinges correspond to the 25th 
and 75th percentiles. The whiskers depict the 1.5*IQR from the lower and upper hinge. Data beyond the end of the 
whiskers are shown as outlier points. AUC values corresponding to the external validation set are shown as a black 
diamond. Significance levels, **p<0.001, ***p<0.0001.
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ClusterTendency (CR=21.9%), GLRLM GrayLevelNonUniformityNormalized (CR=18.4%), 
and MTV2.5 (CR=5.9%) as seen in Table 3. This shows that repeatable PET radiomics features 
with a CR>15% are also frequently present in the fitted models. Even though there is 
literature reporting on stability of PET radiomics features in a test-retest setting 45,46], 
there is no objective limit for the level of repeatability for each PET radiomics feature. 
Determining such an objective limit is only relevant if the studied PET radiomics feature 
contains clinically useful information. Hence, in the absence of an objective limit for each 
PET radiomics feature, the 30%-limit of PERCIST was applied to all. 

Another step of the feature selection procedure was to assess the independence of PET 
radiomics features, to identify possible prognostic features that could complement basic 
SUV metrics and volumetric features. In this context, changes in PET radiomics features 
would be independent from changes in basic SUV metrics and volume, increasing their 
utility in longitudinal studies. Therefore, the use of a fixed bin width for SUV binning 
should be avoided as this method resulted in PET radiomics features that were all strongly 
correlated to either maximum SUV or MTV. While the choice of |ρ|<0.5 for independence 
testing may seem arbitrary, a |ρ|<0.7 was also studied and did not improve results (see 
Supplementary material S7 for more details). Independence testing had the most impact 
in the feature pre-selection procedure as it resulted in a substantial decrease of PET 
radiomics features. Unfortunately, results demonstrated that independence testing could 
not guarantee that remaining robust independent PET radiomics features exhibited 
complementary value next to clinical variables. Even so, we strongly advise assessing the 
relationship of radiomics features with current established prognostic factors in any study 
considering PET radiomics features for prognostication as this is the first important step 
in showing their potential added value in the clinic.

A final selection of features in the GLM was performed by elastic net regression, robust 
to collinearity amongst features [66]. More feature selection/classification methods exist 
[68], though comparing multiple methods was beyond the scope of this study. However, in 
literature, elastic net regression yielded one of the highest discriminative performances 
in chemoradiotherapy outcome prediction in 12 patient datasets containing in total 1053 
lung cancer patients [65]. Interestingly, elastic net regression could also be used as a 
standalone feature selection method. A comparison of the feature selection method based 
on repeatability, independence, and elastic net regression (GLMall), and a method using 
only elastic net regression (GLMelnet) was performed, see Supplementary material S8. Pre-
selection of PET radiomics features is worthwhile, because the number of PET radiomics 
features in GLMelnet was often high (>20 features) and many were highly correlated to 
volume or SUVmax. In contrast, the average number of features in GLMall was 9. Even so, it 
was observed that elastic net tends to keep all of the correlated and presumably prognostic 

1-year DMS GTV
glcm_ClusterTendency
shape_Sphericity
MTV2.5

Histology
T_status
Age
glcm_SumEntropy_MTV40
shape_Elongation
SUVmax

99
96
57
52
34
33
32
32
29
23

Only the top 10 most selected PET radiomics are shown. The features written in italic bold are present in all endpoints.

Discussion

The rationale of this study was to identify a group of FDG PET radiomics features for 
NSCLC patients that are robust, independent, prognostic, and complementary to well-
established clinical variables. We found PET radiomics features that met the study criteria 
of robustness and independence, and that also exhibited prognostic value. However, 
results demonstrated that PET radiomics features are not complementary to clinical 
variables for predicting clinical endpoints in NSCLC patients that were treated with CCRT. 
This indicates that clinical variables provide more prognostic information than robust 
independent PET radiomics features, and that the prognostic value in PET radiomics 
features is minimal. This study did take into account shortcomings of other studies on PET 
radiomics features [50] with the use of a feature selection method that reduces overfitting 
and external validation of results.

Feature selection based on the repeatability of PET radiomics features was feasible with the 
use of different phases from 4D PET imaging, in the absence of test-retest data. Larue et al. 
showed that in 4D CT, the majority of the features have a high agreement between radiomics 
feature stability based on 4D CT and test–retest data in lung cancer [67]. It was therefore 
hypothesized that 4D PET scans could also be used for repeatability testing. To determine 
robust PET radiomics features, a CR of 30% was chosen as limit for repeatability, based on 
PERCIST. However, a limitation of using 4D PET for repeatability testing is the absence of 
biological tumour variability, and PERCIST takes this variability into account. Hence, the 
use of a 30%-limit could be seen as too tolerant, and 15%, as commonly used in phantom 
studies, could be more appropriate. Even under these stricter circumstances, 12 first-order 
features, 24 out of 74 texture features, and all shape features would still meet that criterion 
as can be seen in Supplementary Table 2. Besides that, the most prominent PET radiomics 
features in the fitted GLMs were SUVmax (CR=13.2%), shape Sphericity (CR=3.2%), GLCM 
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Grootjans et al. showed that there are specific PET radiomics features whose prognostic 
accuracy was not affected by respiratory motion and varying noise-levels [29]. 

To overcome the limitations of this study, and to be certain that there is no complimentary 
information in PET radiomics features, future studies need to set up large scale multi-
centre cohorts to allow for multiple independent validation datasets. To further improve 
predictive performance, studies could investigate elastic net-Cox proportional hazard 
models [77], non-linear relationships by applying data transformation on PET radiomics 
features [21,78,79], or assess computer engineered features with neural networks or deep 
learning networks [80, 81]. Currently, deep learning is under investigation for use in lung 
nodule detection, tumour segmentation, and tumour classification with histopathology 
images [82]. Its use in medical image analysis is increasing as algorithms become more 
sophisticated and more data becomes available, which might lead to new insights in survival 
prediction. A step further would be to combine radiomics features from multimodal 
imaging such as PET, CT and MRI [83,84], where the combination of anatomical and 
biological features may of added value for providing a personalized treatment strategy.

Conclusion

In conclusion, robust independent PET radiomics features, identified with 4D PET imaging, 
did not have complementary value in predicting overall survival and progression-free survival 
in NSCLC patients treated with concurrent chemoradiotherapy. Improving risk stratification 
and clinical decision making based on clinical variables and PET radiomics features has still 
been proven difficult in locally advanced lung cancer patients. New approaches should be 
investigated in large scale multi-centre studies to deal with current challenges in the field of 
radiomics before translation to the clinic becomes realistic.
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features in the fitted model or shrinks all to zero, whereby increasing the number of 
(correlated) features resulted in a decrease of the predictive performance. This decrease of 
predictive performance seen in the validation set suggests that overfitting, although reduced, 
may still be present. This shows the value of dimensionality reduction in order to optimize 
predictive performance in rather small sample sizes.

The predictive performance of PET texture features in NSCLC has been studied widely, but 
clear evidence that PET texture features are complementary to clinical variables is lacking 
[69]. This study has extensively studied PET texture features and did not find any evidence for 
added value next to current clinical variables. Supplementary material S9 provides a complete 
overview of all assessed model performances, including additional investigations with TLG. 
In literature, typically, only one or two PET texture features have been significantly associated 
with predicting various survival endpoints [39-41, 47, 70-72]. However, of all the prognostic 
PET texture features from those studies, such as GLCM Joint Entropy, Correlation, Contrast, 
Dissimilarity (or Difference Average), NGTDM Coarseness, Busyness, and Contrast, only 
GLCM Joint Entropy was both repeatable and independent from SUVmax or volume in our 
dataset. In this study, GLCM Joint Entropy was selected 34 times out of 100 by elastic net 
regression for predicting 2-year OS, and its value in overall survival was also previously shown 
[47]. Nonetheless, in our study the average predictive performance for GLMall in all clinical 
endpoints ranged from 0.50 to 0.66. For comparison, other studies predicting outcome with 
both PET radiomics and clinical variables in NSCLC found predictive performances of 0.63 
for predicting OS [41], 0.72 for local recurrence [71], and 0.71 for distant metastases [72]. 
Even with those results, neglecting any limitations of those studies, there is still no strong 
evidence that PET texture features exhibit complementary information.

Results from the external validation demonstrated even lower AUC values in most cases 
than the internal validation set. Besides the limitation of the use of a small external dataset, 
differences were observed between institutes regarding patients, treatment, and image 
acquisition and reconstruction settings, that also can influence outcome [44,73], and could 
have resulted in poor generalizability. To overcome the issue of poor generalizability, a 
prognostic model should be trained on a combination of well-balanced patient cohorts from 
multiple institutes, and PET acquisition and reconstruction protocols should be harmonized 
across centers in multi-centre studies. Alternatively, a post-reconstruction harmonization 
method proposed by Orlhac et al. may also aid in removing the multicenter effect for textural 
features and SUV [74].

Furthermore, limitations of this paper include the relatively small sample size for machine 
learning methods that could have affected the predictive performance [75], and the impact of 
tumour motion on PET radiomics features, especially in lower lobe tumours [76]. Although 
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S2. Matrix calculation
All texture features were calculated in a single matrix taking into account all 13 directions 
simultaneously. Features were then calculated on the resultant matrix. 

The gray level co-occurrence matrices were weighted by weighting factor W and then 
summed and normalized. Weighting factor W is calculated for the distance between 
neighboring voxels by:
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where d is the Euclidean distance for the associated direction. 

In addition, GLCM and GLRLM features were calculated according to another method: 
using 13 matrices, one for each spatial direction, followed by averaging the values calculated 
separately in each matrix [3]. No weighting was applied for this method. 

In this paper, we only presented results from feature calculations based on 1 matrix, as 
each GLCM and GLRLM feature calculated with the average of 13 matrices did strongly 
correlate (mean ρ = 0.98) with the corresponding GLCM and GLRLM feature calculated 
with all spatial directions in 1 matrix simultaneously.

Supplementary Material

S1. SUV discretization
SUV discretization was applied to the image as an intensity-resampling step, before 
building the texture matrices on which texture features rely. These matrix dimensions 
were determined by the number of discrete intensity values (bins) obtained after this 
resampling. SUV discretization or binning was achieved with the fixed bin count method 
using the following equation, as suggested in literature [1]:
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where Imax and Imin denote the maximum and minimum SUV intensities and B, the number 
of bins. 

It has been suggested that an alternative SUV binning method using a fixed bin width (e.g. 
0.5 SUV) would allow for a better inter- and intra-patient comparison. The fixed bin width 
method was calculated following the equation below as previously described by Desseroit 
et al. [2]:
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where W is the bin width. 

While we showed only results using a fixed bin count of 64, we do not believe changing the 
number of bins to 32 would impact our results as we found a strong correlation (mean ρ > 
0.95) between features calculated with a fixed bin count of 32 and 64. 
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Supplementary Table 1. Results from the repeatability test comparing two mid-position (Mid-P even versus Mid-P odd) 
scans from the same patient. The values given are the Coefficient of Repeatability in percentage (CR%). Values in green 
are defined as highly repeatable.

Fixed bin width Fixed bin count

Name MTV2.5 MTV40 MTV2.5 MTV40

First-order features

10Percentile 4.5 19.4 4.5 19.0

90Percentile 9.7 10.0 9.7 10.6

Energy 14.2 27.5 14.2 27.0

Entropy 3.4 5.5 3.8 6.0

InterquartileRange 9.7 19.5 9.7 19.8

Kurtosis 26.8 34.7 26.8 34.8

Maximum 13.2 13.3 13.2 13.2

Mean 6.0 12.9 6.0 12.7

MeanAbsoluteDeviation 10.5 15.4 10.5 15.7

Median 5.3 13.9 5.3 14.0

Minimum 19.2 45.5 19.2 43.4

Range 15.8 21.1 15.8 20.6

RobustMeanAbsoluteDeviation 11.0 17.8 11.0 18.1

RootMeanSquared 6.9 12.1 6.9 12.0

Skewness 23.1 50.4 23.1 51.3

TotalEnergy 14.2 27.5 14.2 27.0

Uniformity 17.9 41.9 21.1 37.0

Variance 22.1 30.2 22.1 30.4

Texture features

Gray Level Co-occurrence Matrix (GLCM)

Autocorrelation 29.0 91.5 27.4 37.8

ClusterProminence 50.1 64.6 36.3 52.4

ClusterShade 50.2 137.6 32.3 64.2

ClusterTendency 23.5 34.6 21.9 32.6

Contrast 23.2 28.1 28.8 29.9

Correlation 2.6 11.9 2.7 11.2

DifferenceAverage 9.9 13.1 14.1 17.2

DifferenceEntropy 3.5 4.4 4.3 5.4

DifferenceVariance 25.4 33.5 27.2 30.3

Id 8.7 13.5 11.9 18.1

Idm 14.2 21.8 19.3 30.8

Idmn 0.5 1.0 0.5 0.9

Idn 1.2 2.0 1.2 2.0

S3. Repeatability testing
The repeatability assessment was performed within the same patient, using two different 
mid-position scans, using slightly different delineations due to random variations. For 
each patient, the PET mid-position scan obtained from the even number of frames (Mid-P 
even) was compared with the PET mid-position scan including the odd number of frames 
(Mid-P odd). This resulted in four comparisons, since also either one of the SUV binning 
methods and one of the delineation methods were applied (see Supplementary Figure 
1). The repeatability of each PET radiomics feature was assessed with the Coefficient of 
Repeatability (CR): 

𝐼𝐼" = 	𝐵𝐵	 ×
𝐼𝐼 − 𝐼𝐼()*
𝐼𝐼(+, − 𝐼𝐼()*
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where the CR was calculated as 1.96 times the standard deviation of the differences 
between the two measurements (d2 and d1) [4]. The CR was directly related to the 95% limits 
of agreement proposed by Bland and Altman that contain 95% of differences between 
repeated measurements on same subjects. The CR was preferred over intraclass correlation 
coefficients as this measures reliability, not repeatability [5]. The CR was reported as a 
percentage: 

𝐼𝐼" = 	𝐵𝐵	 ×
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100%	 ×
𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , where mean is the average of the PET radiomics feature value 

within the patient cohort. The threshold for poor repeatability was set to a value of 30%, 
corresponding to PERCIST [6].

repeatability testrepeatability test

Mid-P even
MTV2.5

Fixed Bin Width

Mid-P odd
MTV2.5

Fixed Bin Width

Mid-P odd
MTV40

Fixed Bin Width

Mid-P even
MTV40

Fixed Bin Width

Mid-P even
MTV2.5

Fixed Bin Count

Mid-P odd
MTV2.5

Fixed Bin Count

Mid-P odd
MTV40

Fixed Bin Count

Mid-P even
MTV40

Fixed Bin Count

Supplementary Figure 1. Four assessments that assess repeatability of PET radiomics features. The blue arrows link the 
groups that are used for repeatability testing. 
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RunVariance 23.5 34.9 40.4 41.2

ShortRunEmphasis 0.6 0.8 0.7 0.7

ShortRunHighGrayLevelEmphasis 28.9 93.4 27.4 37.8

ShortRunLowGrayLevelEmphasis 58.1 65.7 61.5 82.0

Gray Level Size-Zone Matrix (GLSZM)

GrayLevelNonUniformity 12.6 27.8 11.1 41.6

GrayLevelNonUniformityNormalized 32.4 31.1 15.9 26.5

GrayLevelVariance 24.5 28.6 21.2 29.7

HighGrayLevelZoneEmphasis 31.7 93.2 25.9 37.0

LargeAreaEmphasis 234.2 150.7 144.2 59.7

LargeAreaHighGrayLevelEmphasis 53.5 123.5 40.9 89.4

LargeAreaLowGrayLevelEmphasis 444.7 231.4 454.2 214.8

LowGrayLevelZoneEmphasis 72.4 73.2 54.8 84.7

SizeZoneNonUniformity 14.9 37.8 19.6 45.0

SizeZoneNonUniformityNormalized 15.3 21.2 12.6 16.6

SmallAreaEmphasis 9.9 12.1 6.2 7.7

SmallAreaHighGrayLevelEmphasis 37.0 91.2 30.3 35.9

SmallAreaLowGrayLevelEmphasis 100.9 94.4 65.4 100.4

ZoneEntropy 3.8 7.1 2.4 5.1

ZonePercentage 9.3 14.6 11.2 12.2

ZoneVariance 295.3 195.9 198.0 138.6
Neighborhood Gray Tone Difference Matrix 
(NGTDM)

Busyness 75.5 91.3 33.0 81.9

Coarseness 12.0 41.5 16.8 35.2

Complexity 46.0 64.7 27.2 34.3

Contrast 23.3 68.5 31.9 64.9

Strength 33.3 45.7 19.3 28.6

Shape features

Elongation 4.7 10.8 4.7 10.7

Flatness 7.1 15.0 7.1 13.7

LeastAxis 3.4 14.2 3.4 14.2

MajorAxis 3.1 11.8 3.1 11.7

Maximum2DDiameterColumn 6.1 16.1 6.1 16.2

Maximum2DDiameterRow 7.0 13.0 7.0 13.0

Maximum2DDiameterSlice 6.9 14.2 6.9 14.1

Maximum3DDiameter 6.7 14.8 6.7 14.8

MinorAxis 2.8 10.4 2.8 10.4

Sphericity 3.2 8.9 3.2 8.7

Imc1 8.7 19.8 10.2 17.0

Imc2 2.5 4.6 1.1 2.0

InverseVariance 12.9 20.9 19.4 34.2

JointAverage 14.5 41.4 15.6 21.6

JointEnergy 39.7 102.4 61.1 61.8

JointEntropy 2.8 4.5 3.3 5.7

MaximumProbability 53.1 126.7 108.1 86.4

SumAverage 14.5 41.4 15.6 21.6

SumEntropy 2.7 4.5 2.8 4.2

SumSquares 23.3 31.4 22.2 30.2

Gray Level Dependence Matrix (GLDM)

DependenceEntropy 2.7 5.1 2.2 5.2

DependenceNonUniformity 8.7 39.7 11.7 42.1

DependenceNonUniformityNormaliz ed 11.6 25.0 17.1 26.1

DependenceVariance 51.7 84.3 89.5 55.8

GrayLevelNonUniformity 15.6 62.1 22.0 56.7

GrayLevelVariance 22.1 30.0 22.9 31.2

HighGrayLevelEmphasis 28.4 93.8 27.3 38.3

LargeDependenceEmphasis 29.3 41.2 43.9 33.7

LargeDependenceHighGrayLevelEmphasis 41.8 117.4 47.9 76.9

LargeDependenceLowGrayLevelEmphasis 161.2 174.6 285.3 172.4

LowGrayLevelEmphasis 61.8 67.5 69.9 83.1

SmallDependenceEmphasis 10.7 18.8 12.4 15.5

SmallDependenceHighGrayLevelEmphasis 36.8 86.2 35.3 36.7

SmallDependenceLowGrayLevelEmphasis 59.5 76.3 52.9 92.0

Gray Level Run-Length Matrix (GLRLM)

GrayLevelNonUniformity 13.7 59.1 18.7 55.4

GrayLevelNonUniformityNormalized 18.0 36.9 18.4 36.1

GrayLevelVariance 22.2 29.8 22.6 31.0

HighGrayLevelRunEmphasis 28.5 93.8 27.1 38.2

LongRunEmphasis 2.9 3.7 3.7 2.7

LongRunHighGrayLevelEmphasis 27.5 95.4 26.3 40.1

LongRunLowGrayLevelEmphasis 69.4 72.3 88.5 86.6

LowGrayLevelRunEmphasis 59.9 66.9 65.2 82.6

RunEntropy 3.0 4.8 3.1 5.4

RunLengthNonUniformity 6.8 42.0 6.0 43.8

RunLengthNonUniformityNormalized 1.5 2.1 1.7 1.7

RunPercentage 0.8 1.1 1.0 0.9
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GLRLM RunEntropy 3.1   MinorAxis 2.8

GLCM JointEntropy 3.3   MajorAxis 3.1

GLRLM LongRunEmphasis 3.7   Sphericity 3.2

GLCM DifferenceEntropy 4.3   LeastAxis 3.4

GLRLM RunLengthNonUniformity 6.0   SurfaceVolumeRatio 4.2

GLSZM SmallAreaEmphasis 6.2   SurfaceArea 4.6

GLCM Imc1 10.2   Elongation 4.7

GLSZM GrayLevelNonUniformity 11.1   MetabolicTumorVolume (MTV2.5) 5.9

GLSZM ZonePercentage 11.2   Maximum2DDiameterColumn 6.1

GLDM DependenceNonUniformity 11.7   Maximum3DDiameter 6.7

GLCM Id 11.9   Maximum2DDiameterSlice 6.9

GLDM SmallDependenceEmphasis 12.4   Maximum2DDiameterRow 7.0

      Flatness 7.1

SurfaceArea 4.6 28.5 4.6 28.4

SurfaceVolumeRatio 4.2 17.8 4.2 18.3

MetabolicTumorVolume 5.9 45.5 5.9 45.3

Supplementary Table 2. Overview of PET radiomics features that met the study repeatability criterion. PET radiomics 
were categorized and ordered by increasing Coefficient of Repeatability in percentage (CR%). The values shown were 
based on calculations with a fixed bin count and the use of MTV2.5. PET radiomics features with a CR% > 30 were 
discarded, and were not shown in the table.

First-order features (18/18) CR% Texture features (continued) CR%

Entropy 3.8   GLSZM SizeZoneNonUniformityNormalized 12.6

10Percentile 4.5   GLCM DifferenceAverage 14.1

Median 5.3   GLCM JointAverage 15.6

Mean 6.0   GLCM SumAverage 15.6

RootMeanSquared 6.9   GLSZM GrayLevelNonUniformityNormalized 15.9

90Percentile 9.7   NGTDM Coarseness 16.8

InterquartileRange 9.7   GLDM DependenceNonUniformityNormalized 17.1

MeanAbsoluteDeviation 10.5   GLRLM GrayLevelNonUniformityNormalized 18.4

RobustMeanAbsoluteDeviation 11.0   GLRLM GrayLevelNonUniformity 18.7

Maximum (SUVmax) 13.2   GLCM Idm 19.3

Energy 14.2   NGTDM Strength 19.3

TotalEnergy 14.2   GLCM InverseVariance 19.4

Range 15.8   GLSZM SizeZoneNonUniformity 19.6

Minimum 19.2   GLSZM GrayLevelVariance 21.2

Uniformity 21.1   GLCM ClusterTendency 21.9

Variance 22.1   GLDM GrayLevelNonUniformity 22.0

Skewness 23.1   GLCM SumSquares 22.2

Kurtosis 26.8   GLRLM GrayLevelVariance 22.6

Texture features (50/74) CR%   GLDM GrayLevelVariance 22.9

GLCM Idmn 0.5   GLSZM HighGrayLevelZoneEmphasis 25.9

GLRLM ShortRunEmphasis 0.7   GLRLM LongRunHighGrayLevelEmphasis 26.3

GLRLM RunPercentage 1.0   GLRLM HighGrayLevelRunEmphasis 27.1

GLCM Imc2 1.1   GLCM DifferenceVariance 27.2

GLCM Idn 1.2   NGTDM Complexity 27.2

GLRLM RunLengthNonUniformityNormalized 1.7   GLDM HighGrayLevelEmphasis 27.3

GLDM DependenceEntropy 2.2   GLCM Autocorrelation 27.4

GLSZM ZoneEntropy 2.4   GLRLM ShortRunHighGrayLevelEmphasis 27.4

GLCM Correlation 2.7   NGTDM Contrast 28.8

GLCM SumEntropy 2.8   Shape features (13/13) CR%
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Supplementary Table 3. Results from the sensitivity test regarding delineation methods. Two different delineation 
methods were compared using either one of the SUV binning methods and either the Mid-P even or Mid-P odd. The 
values given are the Coefficient of Repeatability in percentage. Values in green are defined as highly repeatable.

Fixed bin width Fixed bin count

Name Mid-P Even Mid-P Odd Mid-P Even Mid-P Odd

First-order features

10Percentile 256.2 253.6 256.2 253.6

90Percentile 55.6 53.8 55.6 53.8

Energy 97.2 90.9 97.2 90.9

Entropy 13.3 12.7 8.5 7.5

InterquartileRange 81.7 82.1 81.7 82.1

Kurtosis 59.9 49.8 59.9 49.8

Maximum 0.0 0.0 0.0 0.0

Mean 135.8 134.3 135.8 134.3

MeanAbsoluteDeviation 81.3 82.4 81.3 82.4

Median 172.6 173.9 172.6 173.9

Minimum 284.7 284.4 284.7 284.4

Range 77.7 78.0 77.7 78.0

RobustMeanAbsoluteDeviation 83.6 84.7 83.6 84.7

RootMeanSquared 104.4 102.9 104.4 102.9

Skewness 88.9 88.6 88.9 88.6

TotalEnergy 97.2 90.9 97.2 90.9

Uniformity 59.1 39.9 69.5 63.1

Variance 257.1 260.6 257.1 260.6

Texture features

Autocorrelation 112.1 112.8 79.0 74.1

ClusterProminence 1405.2 1355.7 82.0 79.4

ClusterShade 1107.1 1111.9 137.4 145.2

ClusterTendency 319.0 321.5 56.8 53.1

Contrast 108.3 98.0 153.4 146.2

Correlation 47.0 47.0 46.8 46.8

DifferenceAverage 45.9 41.4 78.6 74.9

DifferenceEntropy 9.0 8.6 21.8 21.8

DifferenceVariance 59.4 55.2 138.0 137.6

Id 24.1 21.7 59.4 57.5

Idm 34.6 31.4 90.0 87.6

Idmn 3.5 3.4 3.5 3.4

Idn 7.6 7.2 7.6 7.3

Imc1 45.9 43.3 52.6 52.5

S4. Sensitivity of PET radiomics features regarding different 
delineation methods
The impact of large delineation inaccuracies on repeatability was studied between contours 
generated by the two different SUV thresholds (see Supplementary Figure 2). While most 
PET radiomics features were not influenced by small delineation inaccuracies, in our study, 
large delineation inaccuracies (between MTV2.5 and MTV40) did have a strong influence 
on the repeatability of PET radiomics features (see Supplementary Table 3). Comparing 
PET radiomics features calculated on MTV2.5 and MTV40 could be hypothetically seen as 
comparing two sets of independent features in specific cases, and therefore, no features 
were discarded based on the sensitivity regarding delineation methods. Further studies 
are warranted to test this hypothesis.

sensitivity test regarding delineation inaccuracies

Mid-P even
MTV2.5

Fixed Bin Width

Mid-P odd
MTV2.5

Fixed Bin Width

Mid-P odd
MTV40

Fixed Bin Width

Mid-P even
MTV40

Fixed Bin Width

Mid-P even
MTV2.5

Fixed Bin Count

Mid-P odd
MTV2.5

Fixed Bin Count

Mid-P odd
MTV40

Fixed Bin Count

Mid-P even
MTV40

Fixed Bin Count

Supplementary Figure 2. Four assessments that assess the sensitivity of PET radiomics features towards large delineation 
inaccuracies. The blue dotted arrows link the groups that are used for testing the sensitivity towards variations caused 
by different delineation methods. For each group, it was investigated if PET radiomics features were independent from 
metabolic tumor volume and maximum SUV. 
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ShortRunLowGrayLevelEmphasis 127.2 115.5 168.5 164.8

GrayLevelNonUniformity 149.4 148.6 167.4 166.3

GrayLevelNonUniformityNormalized 57.5 47.9 28.4 25.6

GrayLevelVariance 263.2 266.0 42.3 39.5

HighGrayLevelZoneEmphasis 142.2 141.8 61.5 57.8

LargeAreaEmphasis 253.7 276.2 573.1 489.5

LargeAreaHighGrayLevelEmphasis 161.2 152.4 118.0 119.5

LargeAreaLowGrayLevelEmphasis 455.9 444.0 1554.0 1227.4

LowGrayLevelZoneEmphasis 124.8 107.9 116.3 125.3

SizeZoneNonUniformity 260.0 252.8 123.2 125.7

SizeZoneNonUniformityNormalized 30.8 28.6 45.8 41.2

SmallAreaEmphasis 13.8 13.2 22.3 20.7

SmallAreaHighGrayLevelEmphasis 151.4 153.8 63.7 61.6

SmallAreaLowGrayLevelEmphasis 120.6 124.3 115.2 132.7

ZoneEntropy 21.2 21.0 16.4 15.9

ZonePercentage 33.7 31.7 48.8 45.8

ZoneVariance 295.9 330.1 858.8 722.7

Busyness 175.7 141.5 199.0 194.4

Coarseness 147.4 141.1 139.1 135.3

Complexity 283.6 279.9 68.9 63.1

Contrast 257.7 272.8 241.9 224.4

Strength 223.3 233.1 46.4 44.6

Shape features

Elongation 23.3 22.4 23.3 22.4

Flatness 24.9 26.1 24.9 26.1

LeastAxis 61.8 62.9 61.8 62.9

MajorAxis 46.3 45.0 46.3 45.0

Maximum2DDiameterColumn 55.6 57.7 55.6 57.7

Maximum2DDiameterRow 57.8 57.6 57.8 57.6

Maximum2DDiameterSlice 54.2 56.9 54.2 56.9

Maximum3DDiameter 51.5 52.8 51.5 52.8

MinorAxis 55.3 55.6 55.3 55.6

Sphericity 25.4 24.4 25.4 24.4

SurfaceArea 123.8 127.1 123.8 127.1

SurfaceVolumeRatio 77.2 77.0 77.2 77.0

MetabolicTumorVolume 266.235 266.791 266.2 266.8

Imc2 8.5 8.1 5.8 5.5

InverseVariance 32.4 30.5 78.6 79.3

JointAverage 51.4 50.1 55.6 53.1

JointEnergy 123.4 64.1 155.4 130.9

JointEntropy 14.7 14.1 9.1 8.8

MaximumProbability 121.0 79.2 271.1 219.8

SumAverage 51.4 50.1 55.6 53.1

SumEntropy 13.4 12.8 6.3 5.9

SumSquares 273.4 277.3 54.6 49.1

DependenceEntropy 19.5 19.4 15.4 14.7

DependenceNonUniformity 249.1 242.3 173.0 170.1

DependenceNonUniformityNormalized 57.2 51.4 74.3 63.2

DependenceVariance 97.5 109.3 280.9 248.8

GrayLevelNonUniformity 171.7 186.5 291.6 300.8

GrayLevelVariance 256.9 260.6 53.9 47.7

HighGrayLevelEmphasis 115.6 115.0 78.9 74.2

LargeDependenceEmphasis 57.9 65.0 168.3 158.0

LargeDependenceHighGrayLevelEmphasis 117.6 117.4 86.6 87.2

LargeDependenceLowGrayLevelEmphasis 180.5 234.9 734.1 550.7

LowGrayLevelEmphasis 129.4 119.0 185.8 177.4

SmallDependenceEmphasis 38.1 35.0 54.8 50.4

SmallDependenceHighGrayLevelEmphasis 119.9 124.9 90.6 85.1

SmallDependenceLowGrayLevelEmphasis 121.9 135.6 115.6 132.4

GrayLevelNonUniformity 169.3 181.9 280.5 289.8

GrayLevelNonUniformityNormalized 55.5 39.7 61.3 55.9

GrayLevelVariance 258.1 261.5 52.9 47.0

HighGrayLevelRunEmphasis 117.3 116.5 77.6 72.8

LongRunEmphasis 7.5 7.7 14.3 13.5

LongRunHighGrayLevelEmphasis 116.5 115.5 76.4 72.0

LongRunLowGrayLevelEmphasis 135.0 125.5 231.1 208.5

LowGrayLevelRunEmphasis 128.5 116.9 176.9 171.1

RunEntropy 13.7 13.5 6.3 5.6

RunLengthNonUniformity 265.9 264.2 247.1 246.9

RunLengthNonUniformityNormalized 4.2 4.2 7.3 7.0

RunPercentage 2.4 2.4 4.3 4.1

RunVariance 63.2 66.1 182.8 169.4

ShortRunEmphasis 1.7 1.7 2.9 2.8

ShortRunHighGrayLevelEmphasis 117.5 116.8 78.0 73.1
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Supplementary Table 5. Overview of Spearman Rank Correlation Coefficients of PET texture features calculated with a 
fixed bin width. Values in green are defined as features independent from MTV or SUVmax. Bold values are correspond to 
a feature who is independent from both MTV and SUVmax. Only one of the PET texture features calculated with a fixed bin 
width was independent from MTV2.5 and SUVmax. Group 1: mid-p even MTV2.5; group 2: mid-p even MTV40; group 3: mid-p 
odd MTV2.5; group 4: mid-p odd MTV40. MTV = metabolic tumor volume; SUVmax = maximum SUV. 

even_mtv25 even_mtv40 odd_mtv25 odd_mtv40
group 1 group 2 group 3 group 4

Name MTV SUVmax MTV SUVmax MTV SUVmax MTV SUVmax
MetabolicTumorVolume 1 0.43 1 -0.015 1 0.464 1 0.053

Maximum SUV 0.43 1 -0.015 1 0.464 1 0.053 1

Autocorrelation 0.442 0.944 0.126 0.888 0.46 0.95 0.172 0.908

ClusterProminence 0.363 0.983 -0.036 0.982 0.397 0.986 0.04 0.986

ClusterShade 0.302 0.94 -0.135 0.776 0.35 0.946 -0.112 0.72

ClusterTendency 0.353 0.956 -0.051 0.968 0.386 0.962 0.02 0.978

Contrast 0.112 0.897 -0.32 0.914 0.14 0.893 -0.25 0.913

Correlation 0.835 0.586 0.783 -0.21 0.85 0.606 0.803 -0.112

DifferenceAverage 0.085 0.87 -0.336 0.898 0.103 0.861 -0.271 0.897

DifferenceEntropy 0.122 0.898 -0.272 0.928 0.149 0.894 -0.207 0.929

DifferenceVariance 0.143 0.924 -0.281 0.937 0.185 0.923 -0.215 0.934

Id -0.02 -0.804 0.38 -0.851 -0.035 -0.796 0.287 -0.864

Idm -0.002 -0.785 0.384 -0.843 -0.021 -0.772 0.289 -0.851

Idmn 0.85 0.474 0.855 -0.141 0.855 0.483 0.874 -0.034

Idn 0.82 0.45 0.832 -0.128 0.829 0.48 0.858 -0.015

Imc1 -0.043 -0.643 0.59 -0.457 -0.05 -0.645 0.544 -0.515

Imc2 0.157 0.859 -0.442 0.726 0.184 0.858 -0.384 0.759

InverseVariance 0.008 -0.79 0.376 -0.837 -0.016 -0.777 0.35 -0.833

JointAverage 0.445 0.924 0.139 0.87 0.47 0.928 0.18 0.888

JointEnergy -0.473 -0.856 -0.316 -0.832 -0.493 -0.849 -0.382 -0.828

JointEntropy 0.545 0.917 0.381 0.81 0.56 0.913 0.446 0.812

MaximumProbability -0.396 -0.654 -0.267 -0.815 -0.452 -0.655 -0.366 -0.781

SumAverage 0.445 0.924 0.139 0.87 0.47 0.928 0.18 0.888

SumEntropy 0.446 0.945 0.112 0.938 0.452 0.946 0.151 0.95

SumSquares 0.33 0.956 -0.101 0.967 0.367 0.958 -0.033 0.976

DependenceEntropy 0.889 0.736 0.839 0.401 0.903 0.75 0.845 0.447

DependenceNonUniformity 0.946 0.636 0.895 0.369 0.951 0.658 0.908 0.399

DependenceNonUniformityNormalized -0.128 0.698 -0.475 0.796 -0.139 0.672 -0.397 0.801

DependenceVariance 0.34 -0.437 0.528 -0.71 0.312 -0.419 0.453 -0.731

GrayLevelNonUniformity 0.825 -0.041 0.857 -0.424 0.815 -0.024 0.846 -0.398

GrayLevelVariance 0.345 0.952 -0.088 0.963 0.378 0.954 -0.026 0.972

HighGrayLevelEmphasis 0.452 0.945 0.139 0.882 0.47 0.949 0.182 0.901

LargeDependenceEmphasis 0.171 -0.653 0.477 -0.786 0.162 -0.627 0.391 -0.808

LargeDependenceHighGrayLevelEmphasis 0.709 0.778 0.516 0.631 0.687 0.82 0.476 0.711

LargeDependenceLowGrayLevelEmphasis -0.382 -0.514 -0.292 -0.732 -0.389 -0.561 -0.321 -0.756

S5. Independence testing
Supplementary Table 4. Overview of Spearman Rank Correlation Coefficients of first-order and shape features. First-
order features are not influenced by SUV binning methods. Values in green are defined as features independent from 
MTV or SUVmax. Bold values are correspond to a feature who is independent from both MTV and SUVmax. Group 1: mid-p 
even MTV2.5; group 2: mid-p even MTV40; group 3: mid-p odd MTV2.5; group 4: mid-p odd MTV40. MTV = metabolic tumor 
volume; SUVmax = maximum SUV. 

even_mtv25 even_mtv40 odd_mtv25 odd_mtv40
group 1 group 2 group 3 group 4

MTV SUVmax MTV SUVmax MTV SUVmax MTV SUVmax
MetabolicTumor Volume 1 0.43 1 -0.015 1 0.464 1 0.053

Maximum SUV 0.43 1 -0.015 1 0.464 1 0.053 1

10Percentile 0.457 0.598 -0.007 0.988 0.465 0.576 0.04 0.985

90Percentile 0.361 0.934 -0.046 0.982 0.381 0.938 0.01 0.985

Energy 0.845 0.792 0.585 0.765 0.859 0.801 0.612 0.783

Entropy 0.492 0.93 0.11 0.922 0.508 0.931 0.196 0.914

InterquartileRange 0.372 0.896 -0.097 0.893 0.389 0.892 -0.01 0.903

Kurtosis -0.084 0.058 0.021 -0.058 -0.087 0.044 0.039 -0.051

Mean 0.422 0.915 -0.024 0.979 0.435 0.913 0.029 0.98

MeanAbsoluteDeviation 0.355 0.939 -0.11 0.942 0.379 0.938 -0.039 0.954

Median 0.502 0.826 -0.002 0.972 0.515 0.822 0.052 0.973

Minimum -0.629 -0.118 -0.29 0.838 -0.576 -0.283 -0.243 0.807

Range 0.449 0.999 0.111 0.972 0.48 0.999 0.164 0.977

RobustMeanAbsoluteDeviation 0.354 0.907 -0.098 0.912 0.382 0.903 -0.029 0.92

RootMeanSquared 0.407 0.931 -0.029 0.979 0.424 0.932 0.028 0.981

Skewness -0.16 0.146 -0.228 -0.118 -0.153 0.149 -0.202 -0.131

TotalEnergy 0.845 0.792 0.585 0.765 0.859 0.801 0.612 0.783

Uniformity -0.526 -0.869 -0.12 -0.888 -0.541 -0.867 -0.183 -0.879

Variance 0.345 0.952 -0.088 0.962 0.378 0.954 -0.021 0.972

Elongation -0.045 0.162 -0.024 0.19 -0.037 0.185 -0.102 0.15

Flatness -0.138 0.195 -0.104 0.12 -0.159 0.164 -0.182 0.076

LeastAxis 0.954 0.448 0.95 0.02 0.957 0.472 0.947 0.069

MajorAxis 0.865 0.279 0.789 0.011 0.869 0.314 0.791 0.077

Maximum2DDiameterColumn 0.911 0.358 0.852 0.061 0.91 0.391 0.855 0.109

Maximum2DDiameterRow 0.941 0.31 0.923 -0.004 0.938 0.331 0.916 0.046

Maximum2DDiameterSlice 0.931 0.312 0.887 0.013 0.932 0.345 0.889 0.062

Maximum3DDiameter 0.919 0.298 0.851 0.021 0.91 0.327 0.844 0.072

MinorAxis 0.977 0.417 0.951 0.086 0.98 0.458 0.942 0.145

Sphericity -0.447 0.094 -0.63 0.006 -0.457 0.042 -0.631 -0.035

SurfaceArea 0.98 0.373 0.977 -0.019 0.981 0.409 0.974 0.063

SurfaceVolumeRatio -0.919 -0.536 -0.768 0.035 -0.927 -0.539 -0.754 -0.001
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Supplementary Table 6. Overview of Spearman Rank Correlation Coefficients of PET texture features calculated with a 
fixed bin count. Values in green are defined as features independent from MTV or SUVmax. Bold values are correspond to 
a feature who is independent from both MTV and SUVmax. More PET texture features calculated with a fixed bin count 
did show independent behavior, namely 15 out of 76 texture features. Group 1: mid-p even MTV2.5; group 2: mid-p even 
MTV40; group 3: mid-p odd MTV2.5; group 4: mid-p odd MTV40. MTV = metabolic tumor volume; SUVmax = maximum SUV.

even_mtv25 even_mtv40 odd_mtv25 odd_mtv40
group 1 group 2 group 3 group 4

Name MTV SUVmax MTV SUVmax MTV SUVmax MTV SUVmax
MetabolicTumorVolume 1 0.43 1 -0.015 1 0.464 1 0.053

Maximum SUV 0.43 1 -0.015 1 0.464 1 0.053 1

Autocorrelation -0.118 -0.267 0.123 0.109 -0.113 -0.262 0.108 0.116

ClusterProminence -0.42 0.091 -0.608 -0.135 -0.506 0.035 -0.651 -0.23

ClusterShade -0.399 0.136 -0.432 -0.181 -0.447 0.106 -0.393 -0.23

ClusterTendency -0.265 0.061 -0.549 -0.098 -0.29 0.013 -0.592 -0.165

Contrast -0.853 -0.479 -0.86 0.136 -0.857 -0.497 -0.879 0.021

Correlation 0.84 0.577 0.781 -0.218 0.848 0.598 0.791 -0.135

DifferenceAverage -0.832 -0.486 -0.842 0.11 -0.834 -0.51 -0.861 -0.008

DifferenceEntropy -0.831 -0.465 -0.82 0.146 -0.841 -0.5 -0.848 0.026

DifferenceVariance -0.888 -0.46 -0.868 0.18 -0.882 -0.469 -0.868 0.095

Id 0.784 0.543 0.808 -0.09 0.792 0.572 0.814 0.07

Idm 0.761 0.56 0.794 -0.073 0.782 0.571 0.774 0.094

Idmn 0.852 0.478 0.86 -0.125 0.855 0.498 0.88 -0.011

Idn 0.827 0.482 0.836 -0.107 0.83 0.51 0.855 0.019

Imc1 0.613 -0.018 0.935 0.006 0.612 0.012 0.949 0.066

Imc2 -0.6 -0.053 -0.891 -0.011 -0.629 -0.116 -0.92 -0.079

InverseVariance 0.769 0.482 0.759 -0.094 0.797 0.552 0.784 0.114

JointAverage -0.107 -0.356 0.146 0.149 -0.112 -0.353 0.136 0.152

JointEnergy -0.061 0.396 -0.675 0.068 -0.061 0.356 -0.652 0.055

JointEntropy 0.318 -0.158 0.778 -0.077 0.284 -0.138 0.772 -0.016

MaximumProbability 0.074 0.641 -0.603 0.135 0.089 0.568 -0.577 0.115

SumAverage -0.107 -0.356 0.146 0.149 -0.112 -0.353 0.136 0.152

SumEntropy -0.003 -0.164 0.148 -0.168 0.028 -0.162 0.148 -0.159

SumSquares -0.412 -0.037 -0.667 -0.049 -0.446 -0.101 -0.723 -0.11

DependenceEntropy 0.962 0.409 0.94 -0.046 0.962 0.412 0.94 0.032

DependenceNonUniformity 0.974 0.34 0.987 0.004 0.971 0.373 0.986 0.037

DependenceNonUniformityNormalized -0.791 -0.636 -0.829 0.054 -0.807 -0.642 -0.825 -0.062

DependenceVariance 0.779 0.657 0.811 -0.01 0.786 0.634 0.81 0.094

GrayLevelNonUniformity 0.95 0.556 0.956 -0.029 0.954 0.576 0.964 0.054

GrayLevelVariance -0.342 -0.042 -0.602 -0.045 -0.345 -0.08 -0.637 -0.116

HighGrayLevelEmphasis -0.073 -0.255 0.138 0.118 -0.063 -0.242 0.146 0.115

LargeDependenceEmphasis 0.791 0.664 0.83 -0.039 0.806 0.64 0.82 0.097

LargeDependenceHighGrayLevelEmphasis 0.667 0.145 0.63 0.098 0.615 0.163 0.564 0.144

LargeDependenceLowGrayLevelEmphasis 0.185 0.66 -0.401 -0.327 0.279 0.666 -0.456 -0.2

LowGrayLevelEmphasis -0.74 -0.578 -0.451 -0.619 -0.7 -0.643 -0.502 -0.658

SmallDependenceEmphasis -0.021 0.794 -0.42 0.838 -0.004 0.78 -0.324 0.842

SmallDependenceHighGrayLevelEmphasis 0.337 0.955 -0.006 0.927 0.377 0.957 0.074 0.935

SmallDependenceLowGrayLevelEmphasis -0.854 -0.373 -0.71 -0.255 -0.84 -0.427 -0.679 -0.379

GrayLevelNonUniformity 0.844 -0.016 0.872 -0.405 0.832 -0.004 0.855 -0.382

GrayLevelNonUniformityNormalized -0.524 -0.876 -0.119 -0.888 -0.548 -0.873 -0.179 -0.884

GrayLevelVariance 0.344 0.951 -0.091 0.963 0.379 0.954 -0.019 0.973

HighGrayLevelRunEmphasis 0.451 0.945 0.138 0.883 0.468 0.953 0.181 0.903

LongRunEmphasis 0.147 -0.687 0.462 -0.804 0.112 -0.688 0.396 -0.806

LongRunHighGrayLevelEmphasis 0.469 0.939 0.167 0.871 0.487 0.947 0.216 0.894

LongRunLowGrayLevelEmphasis -0.699 -0.586 -0.425 -0.654 -0.667 -0.655 -0.471 -0.681

LowGrayLevelRunEmphasis -0.748 -0.591 -0.451 -0.622 -0.711 -0.655 -0.5 -0.662

RunEntropy 0.556 0.934 0.199 0.903 0.578 0.934 0.26 0.904

RunLengthNonUniformity 0.992 0.504 0.996 0.048 0.994 0.522 0.995 0.114

RunLengthNonUniformityNormalized -0.087 0.732 -0.436 0.816 -0.06 0.723 -0.368 0.818

RunPercentage -0.119 0.707 -0.451 0.807 -0.101 0.694 -0.385 0.81

RunVariance 0.191 -0.656 0.476 -0.795 0.168 -0.651 0.408 -0.805

ShortRunEmphasis -0.091 0.729 -0.438 0.815 -0.071 0.714 -0.371 0.817

ShortRunHighGrayLevelEmphasis 0.449 0.947 0.128 0.886 0.466 0.953 0.17 0.906

ShortRunLowGrayLevelEmphasis -0.756 -0.591 -0.458 -0.617 -0.719 -0.655 -0.505 -0.654

GrayLevelNonUniformity 0.951 0.27 0.956 -0.12 0.959 0.334 0.947 -0.081

GrayLevelNonUniformityNormalized -0.519 -0.937 -0.101 -0.917 -0.549 -0.934 -0.171 -0.917

GrayLevelVariance 0.343 0.97 -0.099 0.968 0.382 0.973 -0.019 0.978

HighGrayLevelZoneEmphasis 0.438 0.961 0.118 0.896 0.479 0.965 0.174 0.922

LargeAreaEmphasis 0.204 -0.636 0.465 -0.797 0.143 -0.641 0.4 -0.803

LargeAreaHighGrayLevelEmphasis 0.744 0.374 0.703 0.229 0.749 0.444 0.685 0.316

LargeAreaLowGrayLevelEmphasis -0.182 -0.603 -0.242 -0.764 -0.25 -0.631 -0.257 -0.794

LowGrayLevelZoneEmphasis -0.771 -0.7 -0.416 -0.68 -0.747 -0.745 -0.487 -0.71

SizeZoneNonUniformity 0.833 0.787 0.676 0.643 0.848 0.787 0.706 0.639

SizeZoneNonUniformityNormalized 0.035 0.836 -0.379 0.863 0.09 0.837 -0.289 0.847

SmallAreaEmphasis 0.045 0.839 -0.374 0.865 0.1 0.84 -0.272 0.851

SmallAreaHighGrayLevelEmphasis 0.397 0.968 0.056 0.921 0.433 0.969 0.123 0.937

SmallAreaLowGrayLevelEmphasis -0.805 -0.617 -0.515 -0.575 -0.781 -0.671 -0.547 -0.602

ZoneEntropy 0.839 0.792 0.757 0.515 0.868 0.796 0.788 0.536

ZonePercentage -0.043 0.779 -0.437 0.827 -0.02 0.764 -0.346 0.832

ZoneVariance 0.246 -0.587 0.496 -0.76 0.179 -0.591 0.431 -0.777

Busyness -0.024 -0.835 0.297 -0.803 -0.039 -0.826 0.23 -0.809

Coarseness -0.962 -0.555 -0.956 -0.095 -0.966 -0.58 -0.966 -0.171

Complexity 0.318 0.977 -0.031 0.975 0.36 0.976 0.058 0.978

Contrast -0.221 0.598 -0.601 0.683 -0.181 0.621 -0.572 0.68

Strength -0.108 0.8 -0.571 0.78 -0.06 0.817 -0.483 0.807
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S6. An overview of all robust independent PET radiomics features
Supplementary Table 7. An overview of robust independent PET radiomics features per cohort. A distinction was made 
between features that were calculated from MTV2.5 and MTV40. Note that the texture features were all calculated with the 
fixed bin count method, unless otherwise stated. FBW = fixed bin width.

4D PET lung (odd and even mid-position scans)

Feature types MTV2.5 MTV40

First-order Kurtosis

Skewness

SUVmax

Shape Elongation Elongation

Flatness Flatness

Sphericity 

Texture GLCM Autocorrelation

GLCM ClusterTendency

GLCM JointAverage GLCM JointAverage

GLCM JointEntropy

GLCM SumAverage GLCM SumAverage

GLCM SumEntropy GLCM SumEntropy

GLCM SumSquares

GLDM GrayLevelVariance

GLDM HighGrayLevelEmphasis

GLRLM GrayLevelNonUniformityNormalized

GLRLM GrayLevelVariance

GLRLM HighGrayLevelRunEmphasis

GLRLM LongRunHighGrayLevelEmphasis

GLRLM RunEntropy GLRLM RunEntropy

GLRLM ShortRunHighGrayLevelEmphasis

GLSZM GrayLevelNonUniformityNormalized GLSZM GrayLevelNonUniformityNormalized

GLSZM HighGrayLevelZoneEmphasis

NKI lung 1 and 2 (3D whole-body FDG PET scan)

Feature types MTV2.5 MTV40

First-order 10Percentile

Entropy Entropy

Kurtosis

Skewness

SUVmax

Uniformity

Shape Elongation Elongation

LowGrayLevelEmphasis -0.372 0.33 -0.603 -0.219 -0.299 0.321 -0.616 -0.237

SmallDependenceEmphasis -0.794 -0.625 -0.823 0.055 -0.83 -0.611 -0.82 -0.038

SmallDependenceHighGrayLevelEmphasis -0.527 -0.411 -0.294 0.122 -0.521 -0.434 -0.239 0.034

SmallDependenceLowGrayLevelEmphasis -0.837 -0.357 -0.738 -0.078 -0.781 -0.365 -0.668 -0.187

GrayLevelNonUniformity 0.956 0.544 0.958 -0.027 0.959 0.568 0.966 0.056

GrayLevelNonUniformityNormalized -0.165 0.326 -0.233 0.026 -0.125 0.311 -0.207 0.069

GrayLevelVariance -0.345 -0.037 -0.606 -0.045 -0.356 -0.084 -0.642 -0.115

HighGrayLevelRunEmphasis -0.063 -0.239 0.135 0.117 -0.062 -0.234 0.146 0.118

LongRunEmphasis 0.797 0.657 0.83 -0.048 0.805 0.644 0.835 0.081

LongRunHighGrayLevelEmphasis 0.043 -0.179 0.193 0.131 0.037 -0.184 0.216 0.13

LongRunLowGrayLevelEmphasis -0.265 0.411 -0.591 -0.234 -0.197 0.391 -0.602 -0.239

LowGrayLevelRunEmphasis -0.384 0.321 -0.603 -0.214 -0.317 0.309 -0.617 -0.235

RunEntropy 0.396 -0.064 0.42 -0.056 0.352 -0.076 0.369 -0.086

RunLengthNonUniformity 0.998 0.421 1 -0.006 0.999 0.452 1 0.055

RunLengthNonUniformityNormalized -0.793 -0.643 -0.828 0.055 -0.809 -0.632 -0.827 -0.073

RunPercentage -0.797 -0.65 -0.831 0.052 -0.806 -0.638 -0.832 -0.072

RunVariance 0.804 0.66 0.83 -0.041 0.806 0.661 0.832 0.077

ShortRunEmphasis -0.792 -0.644 -0.83 0.054 -0.809 -0.632 -0.828 -0.075

ShortRunHighGrayLevelEmphasis -0.082 -0.251 0.127 0.116 -0.078 -0.236 0.128 0.118

ShortRunLowGrayLevelEmphasis -0.403 0.304 -0.61 -0.209 -0.34 0.288 -0.616 -0.239

GrayLevelNonUniformity 0.986 0.375 0.977 -0.025 0.986 0.409 0.978 0.05

GrayLevelNonUniformityNormalized -0.316 -0.012 -0.2 0.068 -0.281 0.003 -0.154 0.111

GrayLevelVariance -0.478 -0.049 -0.655 -0.046 -0.51 -0.139 -0.679 -0.141

HighGrayLevelZoneEmphasis -0.03 -0.066 0.114 0.111 -0.016 -0.097 0.105 0.09

LargeAreaEmphasis 0.798 0.677 0.828 -0.027 0.787 0.692 0.831 0.102

LargeAreaHighGrayLevelEmphasis 0.848 0.358 0.686 0.1 0.845 0.405 0.606 0.186

LargeAreaLowGrayLevelEmphasis 0.354 0.726 -0.389 -0.305 0.41 0.726 -0.448 -0.229

LowGrayLevelZoneEmphasis -0.641 -0.136 -0.629 -0.171 -0.56 -0.17 -0.599 -0.234

SizeZoneNonUniformity 0.941 0.287 0.976 0.019 0.938 0.335 0.979 0.037

SizeZoneNonUniformityNormalized -0.816 -0.569 -0.818 0.062 -0.849 -0.536 -0.812 -0.024

SmallAreaEmphasis -0.816 -0.57 -0.818 0.063 -0.847 -0.535 -0.809 -0.023

SmallAreaHighGrayLevelEmphasis -0.36 -0.184 -0.089 0.104 -0.341 -0.242 -0.066 0.057

SmallAreaLowGrayLevelEmphasis -0.73 -0.414 -0.686 -0.091 -0.672 -0.42 -0.607 -0.199

ZoneEntropy 0.965 0.499 0.921 -0.046 0.97 0.488 0.919 0.003

ZonePercentage -0.802 -0.636 -0.822 0.047 -0.819 -0.639 -0.826 -0.068

ZoneVariance 0.794 0.68 0.825 -0.016 0.781 0.684 0.824 0.097

Busyness 0.789 0.656 0.556 -0.037 0.807 0.655 0.617 -0.008

Coarseness -0.966 -0.527 -0.958 -0.039 -0.969 -0.547 -0.967 -0.093

Complexity -0.737 -0.396 -0.471 0.05 -0.719 -0.395 -0.469 -0.082

Contrast -0.817 -0.422 -0.893 0.072 -0.826 -0.444 -0.909 -0.03

Strength -0.899 -0.191 -0.947 -0.081 -0.914 -0.243 -0.951 -0.149
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  GLCM Correlation GLCM Correlation

  GLCM DifferenceVariance  

  GLCM JointAverage GLCM JointAverage

  GLCM JointEntropy  

  GLCM SumAverage GLCM SumAverage

  GLCM SumSquares  

  GLDM GrayLevelVariance  

  GLDM HighGrayLevelEmphasis GLDM HighGrayLevelEmphasis

  GLRLM GrayLevelNonUniformityNormalized  

  GLRLM GrayLevelVariance  

  GLRLM HighGrayLevelRunEmphasis  

  GLRLM LongRunHighGrayLevelEmphasis  

  GLRLM RunEntropy GLRLM RunEntropy

  GLRLM RunPercentage (FBW) GLRLM RunPercentage (FBW)

  GLRLM ShortRunHighGrayLevel-Emphasis  

  GLSZM GrayLevelNonUniformityNormalized GLSZM GrayLevelNonUniformityNormalized

  GLSZM HighGrayLevelZoneEmphasis  

  GLSZM GrayLevelVariance  

  GLSZM HighGrayLevelZoneEmphasis  

  NGTDM Complexity  

Flatness Flatness

Sphericity Sphericity

Texture GLCM Autocorrelation

GLCM ClusterTendency

GLCM Correlation

GLCM Correlation (FBW)

GLCM Imc1 (FBW)

GLCM JointAverage GLCM JointAverage

GLCM JointEntropy

GLCM SumAverage GLCM SumAverage

GLCM SumEntropy GLCM SumEntropy

GLCM SumSquares

GLDM GrayLevelVariance

GLDM HighGrayLevelEmphasis

GLDM LargeDependenceEmphasis (FBW)

GLRLM GrayLevelNonUniformityNormalized

GLRLM GrayLevelVariance

GLRLM HighGrayLevelRunEmphasis

GLRLM LongRunHighGrayLevelEmphasis

GLRLM RunEntropy GLRLM RunEntropy

GLRLM RunPercentage GLRLM RunPercentage

GLRLM RunPercentage (FBW) GLRLM RunPercentage (FBW)

GLRLM ShortRunHighGrayLevel-Emphasis

GLSZM GrayLevelNonUniformityNormalized GLSZM GrayLevelNonUniformityNormalized

GLSZM HighGrayLevelZoneEmphasis
PMCC lung 1 (3D whole-body FDG PET scan)

Feature types MTV2.5 MTV40

First-order Entropy Entropy

  Kurtosis  

  Minimum  

  Skewness  

  SUVmax  

  Uniformity  

 Shape Elongation Elongation

Flatness Flatness

  Sphericity  

 Texture GLCM Autocorrelation  

GLCM ClusterTendency  
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S8. Elastic Net Regression for feature selection
As stated before, elastic net regression could also be used as a standalone feature selection 
method [7]. A comparison of the feature selection method based on repeatability, 
independence, and elastic net regression (GLMall), and a method using only elastic net 
regression (GLMelnet) was performed, see Supplementary Figure 3, and Supplementary 
Table 9 and 10 for more information. As an example, 2-year overall survival was used as 
clinical outcome.

As a first step, any difference in predictive performance between both feature selection 
methods was tested. As a second step, a sensitivity study was performed to assess the 
impact of sample size on predictive performance for both methods.

In Supplementary Table 9, the predictive performance is shown for GLMall and GLMelnet, and 
a marginal benefit was observed in this study for pre-selection of PET radiomics features 
before applying elastic net regression. 

Supplementary Table 9. Model performance for a combination of PET radiomics features and clinical variables chosen 
by the pre-selection procedure (GLMall) compared to the model performance of a set-up using elastic net regression only 
(GLMelnet). The AUC values are depicted per clinical endpoint, per model. Values below Validation 1 represent the average 
of 100 AUC values with standard deviation. Below Validation 2 is the AUC calculated on the external validation set using 
the best performing fitted model from Validation 1.

Pre-selection (GLMall) Without pre-selection (GLMelnet)

Endpoint Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.66±0.07 0.55 0.64±0.07 0.48

2 year PFS 0.50±0.06 0.52 0.53±0.06 0.63

1 year PFS 0.57±0.06 0.51 0.56±0.07 0.59

1 year LR 0.57±0.07 0.55 0.53±0.05 0.54

1 year DM 0.58±0.06 0.52 0.58±0.08 0.54

S7. Testing a different level of independence
An argument for choosing |ρ|<0.7 for the level of independence could be that the variance 
explained is approximately 50%, instead of 25% for |ρ|<0.5. With |ρ|<0.7 more features 
met the criterion for independence. With this new selection of repeatable independent 
PET radiomics features, elastic net regression was applied and results are summarized in 
Supplementary Table 8. Marginal differences are observed between the two assessments, 
with a slight benefit seen for |ρ|<0.5. 

Supplementary Table 8. Predictive performance of GLMall and GLMrad with varying level of independence. The top results 
are median AUC values (+-SD) resulting from an independence level of |ρ|<0.7. The results at the bottom are from 
an independence level of |ρ|<0.5, and marginal differences are observed. Validation 1 represents the average of the 
100-times repeated training/validation procedure. Below Validation 2 is the AUC calculated on the external validation 
set using the best performing fitted model from Validation 1.

|ρ|<0.7 GLMall GLMrad

Endpoint Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.64±0.08 0.52 0.50±0.05 0.50

2 year PFS 0.50±0.04 0.50 0.50±0.04 0.50

1 year PFS 0.56±0.06 0.61 0.57±0.06 0.59

1 year LR 0.53±0.06 0.57 0.51±0.05 0.54

1 year DM 0.58±0.07 0.54 0.60±0.07 0.56

|ρ|<0.5 GLMall GLMrad

Endpoint Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.66±0.07 0.55 0.57±0.07 0.55

2 year PFS 0.50±0.06 0.52 0.50±0.05 0.50

1 year PFS 0.57±0.06 0.51 0.58±0.07 0.51

1 year LR 0.57±0.07 0.55 0.52±0.05 0.50

1 year DM 0.58±0.06 0.52 0.60±0.07 0.52
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1-year DM glrlm_GrayLevelNonUniformity_MTV25_FBW
glcm_Imc2_MTV40_FBW
ngtdm_Busyness_MTV40_FBW
glcm_MaximumProbability_MTV40_FBC
glcm_ClusterTendency_MTV25_FBC
shape_SurfaceArea_MTV25_FBW
shape_SurfaceArea_MTV25_FBC
glszm_GrayLevelNonUniformity_MTV25_FBW
gldm_GrayLevelNonUniformity_MTV25_FBW
shape_Maximum2DDiameterColumn_MTV40_FBW

94
86
62
59
44
41
40
39
33
29

Supplementary Figure 3 demonstrates that GLMall performs slightly better than GLMelnet 
and reaches a ‘plateau’ when 80% of the data is used for training. The percentage data 
used for training started at 20% in order to minimize the occurrence that one of the folds 
for cross validation contained 0 events. GLMelnet may require a larger dataset to obtain a 
similar predictive performance as GLMall. The middle graph shows a variance plot, where 
the variance is plotted against the percentage data used for training. Both feature selection 
methods show the same trend for variance with an increasing number of patients used 
for training. The graph at the bottom displays the number of times that zero prognostic 
features were found with elastic net regression. Elastic net regression is able to find more 
prognostic features when the number of patients used for training is increasing, and this is 
also correlated to predictive performance. GLMall is able to find prognostic features in 100% 
of the iterations when using 100% of the dataset, in contrast to GLMelnet. 

Supplementary Table 10. The most selected features in the model using only elastic net regression for feature selection 
(GLMelnet). Features are ranked by the number of times selected in the fitted model. Only the top 10 most selected PET 
radiomics are shown. FBW = fixed bin width, FBC = fixed bin count. A distinction was made between features calculated 
from MTV2.5 and MTV40.

Endpoint Selected features by elastic net Frequency

2-year OS Age
glrlm_GrayLevelNonUniformity_MTV25_FBW
glszm_GrayLevelNonUniformity_MTV25_FBW
shape_Sphericity_MTV25_FBC
shape_Sphericity_MTV25_FBW
shape_Maximum3DDiameter_MTV40_FBC
shape_Maximum3DDiameter_MTV40_FBW
glcm_MaximumProbability_MTV25_FBC
glcm_Imc2_MTV40_FBW
gldm_GrayLevelNonUniformity_MTV25_FBW

96
90
80
64
64
61
61
42
37
30

2-year PFS glcm_MaximumProbability_MTV25_FBC
glcm_Imc2_MTV40_FBW
glrlm_RunPercentage_MTV40_FBW
Age
glcm_DifferenceEntropy_MTV40_FBW
shape_Maximum3DDiameter_MTV40_FBC
shape_Maximum3DDiameter_MTV40_FBW
gldm_DependenceVariance_MTV40_FBW
firstorder_10Percentile_MTV25_FBC
firstorder_10Percentile_MTV25_FBW

24
21
20
19
18
14
14
11
9
9

1-year PFS glrlm_GrayLevelNonUniformity_MTV25_FBW
ngtdm_Busyness_MTV40_FBW
glcm_Imc2_MTV40_FBW
gldm_GrayLevelNonUniformity_MTV25_FBW
glcm_ClusterTendency_MTV25_FBC
glcm_MaximumProbability_MTV40_FBC
shape_SurfaceArea_MTV25_FBC
shape_SurfaceArea_MTV25_FBW
Age
firstorder_Minimum_MTV25_FBW

87
78
59
46
45
41
39
39
37
35

1-year LR Age
glcm_Imc2_MTV40_FBW
glszm_GrayLevelNonUniformity_MTV25_FBW
firstorder_Minimum_MTV25_FBC
firstorder_Minimum_MTV25_FBW
glcm_MaximumProbability_MTV40_FBC
Gender
GTV
glrlm_RunPercentage_MTV25_FBW
glszm_GrayLevelNonUniformity_MTV40_FBW

52
34
31
20
20
18
16
16
15
15
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S9. Overview of the predictive performance of different assessed models 
Besides GLMall, GLMrad, and GLMclin, also other more simplistic models were assessed, such 
as a model that could only select SUVmax and GTV. In addition, also the effect of adding solely 
SUVmax to the clinical variables was investigated. Similar assessments were performed with 
total lesion glycolysis (TLG), a prognostic feature in NSCLC used to describe tumor burden 
[8]. The effect of TLG was investigated by adding it to GLMall, GLMclin, and GLMrad, but 
results did not improve significantly. Results are summarized in Supplementary Table 11.

Supplementary Table 11. An overview of 9 different assessments on predictive performance using elastic net regression. 
The AUC values are depicted per clinical endpoint, per model. Values below Validation 1 represent the average of 100 
AUC values with standard deviation. Below Validation 2 is the AUC calculated on the external validation set using the 
best performing fitted model from Validation 1.

GLMall GLMclin GLMrad

Endpoint Validation 1 Validation 2 Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.66±0.07 0.55 0.67±0.06 0.59 0.57±0.07 0.45

2 year PFS 0.50±0.06 0.52 0.50±0.05 0.50 0.50±0.05 0.71

1 year PFS 0.57±0.06 0.51 0.59±0.07 0.54 0.58±0.07 0.54

1 year LR 0.57±0.07 0.55 0.64±0.08 0.58 0.52±0.05 0.50

1 year DM 0.58±0.06 0.52 0.59±0.08 0.52 0.60±0.07 0.50

GLMelnet SUVmax + GTV GLMclin + SUVmax

Endpoint Validation 1 Validation 2 Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.64±0.07 0.48 0.55±0.07 0.55 0.67±0.08 0.60

2 year PFS 0.53±0.06 0.63 0.50±0.01 0.50 0.50±0.07 0.50

1 year PFS 0.56±0.07 0.59 0.59±0.07 0.62 0.59±0.06 0.55

1 year LR 0.53±0.05 0.54 0.52±0.06 0.51 0.62±0.06 0.58

1 year DM 0.58±0.08 0.54 0.60±0.07 0.57 0.60±0.07 0.52

GLMall + TLG GLMclin + TLG GLMrad + TLG

Endpoint Validation 1 Validation 2 Validation 1 Validation 2 Validation 1 Validation 2

2 year OS 0.65±0.08 0.59 0.67±0.08 0.62 0.55±0.07 0.57

2 year PFS 0.50±0.06 0.52 0.50±0.04 0.53 0.50±0.06 0.69

1 year PFS 0.57±0.06 0.58 0.59±0.07 0.52 0.59±0.06 0.51

1 year LR 0.57±0.07 0.58 0.61±0.07 0.60 0.52±0.05 0.50

1 year DM 0.60±0.07 0.58 0.59±0.07 0.51 0.61±0.07 0.52

Supplementary Figure 3. A comparison of the feature selection method based on repeatability, independence, and 
elastic net regression (GLMall), and a method using only elastic net regression (GLMelnet) was performed in predicting 
2-year overall survival. The upper graph shows a sensitivity study of the predictive performance against the percentage 
data used for training of the model. The middle graph shows a variance plot, where the variance is plotted against the 
percentage data used for training. The graph at the bottom displays the number of times that zero prognostic features 
were found with elastic net regression. 
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Interobserver variability in tumor volume delineation

Delineation of the tumor volume is of prime importance for lung cancer treatment. 
Inadequate TVD introduces a systematic error that could potentially result in a decrease of 
the dose delivered to the tumor, reduced local control and/or increased patient morbidity. 
TVD represents the largest uncertainty in the radiotherapy process compared to patient 
set-up error, inter- and intra-fraction organ movement, and patient movement [1]. IOV 
is a result of uncertainties in TVD and can be reduced by optimization of current imaging 
techniques [2], use of multi-modality imaging [3], implementation of standardized 
protocols and delineation guidelines including training [4-6] and semi-automated 
delineation methods [7]. We have chosen to investigate methods to decrease IOV using a 
pragmatic approach taking into account the limited resources in LMIC.

Many guidelines on PET/CT based TVD were published prior to our work, but were not 
addressing practicalities such as contouring of tumors in specific situations and to what 
extend to use information from PET and CT [8,9]. A comprehensive set of guidelines covering 
standardized PET/CT guided TVD practicalities in lung cancer was developed in this thesis 
with the aim to reduce IOV in delineation of lung cancer. Chapter 4 demonstrates that our 
pragmatic guidelines contributed to reduced IOV. In the absence of 4D CT techniques in 
most LMIC, a different delineation approach to take into account motion was proposed 
in Chapter 2: the respiration expanded Gross Tumour Volume (reGTV). This served as 
alternative for the International Committee on Radiation Units and Measurements’ (ICRU) 
defined internal target volume (ITV). The suggested 3D PET/CT based reGTV in our study 
guidelines is quite similar to the ITV, however, ITV relies on information from 4D CT to 
account for different tumor positions during the respiratory cycle [10]. LMIC have limited 
access to 4D CT. Alternatively, LMIC could use slow or fast 3D CT scanning techniques, 
although these techniques are subject to motion-induced artefacts [11]. Therefore, the 
PET/CT based reGTV approach seems the best pragmatic alternative to take into account 
motion and avoid geographic tumor miss [12].

While the use of our IAEA study guidelines reduced IOV, it is not known if the IOV could 
be further reduced with even more additional training. It is common knowledge that 
the learning of new methods is subject to a learning curve. The shape and impact of this 
learning curve on IOV was not studied in this thesis. It is worthwhile to investigate when 
a ‘plateau’ is reached during training. The plateau resembles the remaining uncertainty 
that cannot be solved with additional training. Subsequently, our guidelines need to be 
improved or alternative methods as described in Chapter 2 and below should be studied to 
deal with remaining uncertainty. 

General discussion and future perspectives

Hospitals in low- and middle-income countries (LMIC) slowly start to gain more access to 
18F-fluorodeoxyglucose positron emission tomography / computed tomography (FDG PET/
CT) technology. FDG PET/CT plays an essential role in the management of patients with 
non-small cell lung cancer (NSCLC) and became the standard in high-income countries 
for patient selection for radical therapy and radiotherapy tumor volume delineation 
(TVD). We investigated methods to reduce inter-observer variability (IOV) in FDG PET/
CT based TVD of NSCLC. As a first step we developed pragmatic guidelines to standardize 
contouring of primary lung carcinoma and involved lymph nodes in patients with NSCLC. 
Secondly, these guidelines were introduced to radiation oncologists (ROs) and nuclear 
medicine physicians (NMPs) from LMIC with minimal experience in utilizing FDG PET/CT 
for radiotherapy planning purposes. Our guidelines contributed to increased delineation 
accuracy and reduced IOV in TVD. Together with other factors such as patient selection with 
FDG PET/CT, treating patients with concurrent chemoradiotherapy (CRT), and improved 
collaboration between departments, our standardized TVD approach showed in a cohort 
comparison a positive trend towards improved overall survival (OS) and progression-free 
survival (PFS) in patients with locally advanced NSCLC. Next to improving TVD, there is 
wide interest in improving prognostic models in locally advanced NSCLC that can aid in 
treatment decision making. Locally advanced NSCLC is a highly heterogeneous disease 
and requires a more individualized treatment strategy to avoid ineffective therapy. Such 
a strategy demands the use of more accurate prognostic factors than that are currently 
used in clinic. Despite some studies claiming to have found these accurate prognostic 
factors through PET radiomics analysis, our findings indicate that these quantitative 
features from FDG PET imaging contain no complementary prognostic information next 
to well-known clinical variables. This suggests that the addition of PET radiomics features 
in prognostic models do not improve treatment decision making in patients with locally 
advanced NSCLC, although this claim is limited by sample size. The work in this thesis 
underlines the difficulty of reproducing results in PET radiomics studies, and emphasizes 
the need for extensive evaluation of patient cohorts and validation datasets. 

This thesis demonstrated the implications of introducing FDG PET/CT guided TVD 
in clinical practice in LMIC and provided more insight in the prognostic value of FDG 
PET radiomics features. The next paragraphs will elaborate on several other approaches 
reported in literature that focused on reducing IOV in TVD and improving prognostication 
in lung cancer. Our methods will be weighed against those approaches with regards to 
applicability in LMIC and in addition, future perspectives are discussed. 
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PET guided prognostication in lung cancer

Accurate definition of target volumes forms the basis of an effective treatment. However, 
even if we can define the exact location of the tumor in all lung cancer patients, this does 
not mean each patient will cure from receiving a given treatment. For example, locally 
advanced NSCLC is highly heterogeneous meaning each tumor has its own characteristics 
and responds differently to concurrent CRT. To treat locally advanced NSCLC more 
effectively, prognostic factors should be discovered that could describe these tumor 
characteristics and predict response to treatments. Subsequently, these features could 
increase the accuracy of current prognostic models that would improve treatment decision 
making and avoid giving patients ineffective treatments.

We investigated the prognostic value of PET radiomics features to improve the current 
prognostic model in lung cancer management. The rationale of the work described in 
Chapter 6 was to identify FDG PET radiomics features for NSCLC patients that were robust, 
independent, prognostic, and complementary to well-established clinical variables. We 
found PET radiomics features that were robust and prognostic, and did not show any 
association with well-known prognostic clinical variables. However, results were not 
convincing that PET radiomics features provided complementary prognostic information 
next to clinical variables in patients with NSCLC treated with concurrent CRT. Consequently, 
there is no clear clinical benefit in the use of PET radiomics features as described in this 
thesis for prognostication.

There are differences between tumors of the same type in different patients, and between 
cancer cells within a tumor of the same patient, called tumor heterogeneity. Both can lead to 
different responses to therapy. In PET radiomics we want to measure FDG uptake patterns 
describing tumor heterogeneity. However, in Chapter 6 we observed that the majority of 
PET radiomics features are highly correlated to volume and basic SUV metrics and may 
therefore not be suitable to provide us the information that we wish to capture. While 
volumetric properties and SUV metrics are indeed clinically useful, they do not represent 
the FDG uptake patterns capturing underlying tumor biology as supposedly sought with 
PET radiomics analysis. Brooks et al. also observed the association with volume on a 
limited number of PET radiomics features and placed a critical note that assessment of 
underlying tumor biology with PET radiomics features may be impossible [19]. Namely, the 
magnitudes for PET radiomics feature differences were so small in comparison to those 
resulting from differences in e.g. volume, that it would be possible that tumor would exhibit 
distinctly different tumor biology without capturing this with PET radiomics analysis [20]. 
This assumes that all PET radiomics features are associated in a way to volume and SUV 
metrics, although this is not in line with our findings in Chapter 6 where independent PET 

As observed in Chapter 4 and Chapter 5, the IOV in manual PET/CT based TVD stems from 
differences in window/level (W/L) settings, non-tumor specific FDG uptake adjacent 
to tumor, and tissue with low to zero FDG uptake though highly suspicious for being 
malignant (in the opinion of the NMP or RO). One could argue whether the latter deviates 
from the definition of GTV: the demonstrable extent seen or felt with standard examination 
techniques. In reality, not only the demonstrable extent, but also the likeliness of the extent 
of the disease has impact on TVD. As a result, the experience from the observer is contributing 
to IOV in clinic as observers also include tissue with a high likelihood of containing tumor 
in their opinion [13]. Measures to counteract on this subjectivity are to 1) validate PET/
CT based contours using histopathology results of excised lesions, or 2) to use intelligent 
computer techniques that can automatically generate contours, also known as Artificial 
Intelligence (AI). The first approach gives us insight in the ‘ground truth’ that could not 
only eliminate uncertainties in TVD, but also opens up opportunities to gain more insight 
in subpopulations within the tumor useful for ‘dose painting’ [14]. Many research groups 
have shown that specimen handling techniques used to obtain a histopathology-derived 
ground truth are subject to geometrical uncertainties due to specimen deformation or 
shrinkage [15]. In addition, locally advanced NSCLC is seldom treated with surgery, hence, 
in our patient cohorts the number of PET image datasets accompanied with histopathology 
information is limited. Validating PET images and their corresponding contours against 
tumor pathology remains challenging due to the significant difficulties in performing 
these studies and robust methods to provide the ground truth are still awaited. A second 
approach that is commonly studied is the use of AI applications for TVD. AI applications, 
such as deep learning networks, are in theory better than humans in solving the statistically 
raised questions stated by the ROs and NMPs e.g. on the likelihood of tumor presence in 
suspicious areas on PET/CT scans during TVD. Deep learning networks can automatically 
learn feature representations from a given dataset and have been shown to match and even 
surpass human performance in task-specific applications [16]. To match or even surpass 
human performance, AI methods are dependent on sufficient and high-quality data and 
their models need to be further optimized to achieve clinically relevant results in TVD and 
treatment decision making. Despite suggesting manual delineation in Chapter 2 and Chapter 
3 instead of using automatic delineation due to its current inaccuracies, it is expected that 
using AI for TVD will be at the same level as a human expert in the near future [17]. AI for 
TVD has the potential to reduce efforts significantly as manual TVD is a time-consuming 
task and could even aid in malignancy detection [18]. I believe it is rather the question of 
when instead of which of the uncertainties mentioned above in TVD will be solved using an 
(affordable) technical solution. Hence, I foresee that multi-disciplinary meetings on TVD 
will be on reaching a consensus on a highly standardized automatically generated contour 
instead of discussing a highly subjective manually drawn contour.
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serum of lung cancer patients is possible by sensitive molecular biology techniques [24]. 
The use of so called liquid biopsies to assess ctDNA could enhance the understanding of 
disease progression, and has already been shown to carry prognostic information [25-27]. 
Limited data has been published regarding cfDNA and ctDNA in locally advanced NSCLC 
and its ability to correlate with treatment outcomes. Hence, outcomes of future studies 
on prognostic value of ctDNA in patients with locally advanced NSCLC must be awaited 
to validate promising early results. With regards to LMIC, the highly sensitive techniques 
required to analyze cfDNA and ctDNA in combination with the use of targeted drug 
therapies may be too costly at the moment for clinical use. 

Other studies indicate that, when radiomics features are combined with clinical and 
genomic features, radiomics could help optimize treatment decision making [23]. 
Ultimately, the search for more of these prognostic factors in conjunction with radiomics 
features could contribute to improved patient selection to avoid ineffective therapy and 
improve quality of life.

Recommendations for PET/CT in radiotherapy TVD and 
prognostication

The work performed in this thesis helped to establish a key role for FDG PET/CT in the 
management of patients with NSCLC in LMIC. Also in these countries PET/CT is now 
becoming the standard for patient selection for radical therapy and radiotherapy TVD. 
The various approaches described in this chapter are promising tools for reducing 
uncertainties in TVD and could contribute to improved patient selection for radical 
therapy. Further studies are necessary to deal with uncertainties in TVD and improve 
accuracy of prognostic models to aid in treatment decision making. In LMIC, the other 
approaches presented in this chapter are not ready to be implemented yet in clinic as they 
are still in the validation phase. Therefore we suggest to first continue disseminating 
expertise on recent advancements in radiation treatment planning in LMIC using hands-
on training and webinars as provided by IAEA [28]. The training program focused mainly 
on delineation of primary lung cancers, but as a next step, could also be extended to lymph 
node delineation and towards other disease sites such as head and neck cancer. More 
recent guidelines from ESTRO and ACROP covered the topic on lymph node management 
in more detail [29]. Including these detailed and clear guidelines in future IAEA guidelines 
may result in improved lymph node management and delineation, which may also benefit 
survival of patients with NSCLC. 

features were observed. However, further investigations should assess any relationship of 
these independent PET features with underlying tumor biology in detail..

Although we have shown that improving risk stratification and clinical decision making 
based on clinical variables and PET radiomics features has still been proven difficult, we 
believe there is more to gain from (pre-treatment) PET imaging than its current use that 
could improve prognostication in patients with NSCLC. Several other approaches could be 
studied to assess the prognostic value of PET imaging. 

The use of “human engineered” PET radiomics features is highly debatable due to many 
confounding factors, such as tumor volume and simple SUV metrics that can influence 
their outcome as described previously. These confounding factors make results hard to 
reproduce and moreover difficult to compare amongst institutions. Another way to 
assess the added value of PET imaging in prognostication is to study the prognostic value 
of features found by deep learning networks. As noted before, deep learning networks 
require a large sample size of high quality, but do have the potential to quickly process 
large amounts of data and identify independent prognostic features. Recently, methods 
have been proposed to use a small set of medical images to fine-tune the deep network 
learned from a large natural image set, which could solve the problem of insufficient 
medical training data [21]. It has not been studied if such a method would work with PET 
images. Even so, this study demonstrated that their deep learning features were more 
discriminative than the radiomics texture features, mainly because this method seems to 
be more robust to small volumes. Further studies should investigate the prognostic value 
of deep learning features from PET imaging.

Other studies have investigated multi-modality radiomics features instead of processing 
the radiomics features per imaging modality separately to improve prognostic models. 
Zhou et al. observed that their multi-modality deep learning approach fusing PET/CT and 
clinical parameters could predict high risk NSCLC patients for early-stage distant failure 
with an AUC value of 0.83 [22]. A few other research groups have shown that multimodality-
based prognostic biomarkers can be used to predict disease recurrence and survival in the 
context of NSCLC, but most of them do not provide sufficient evidence, because of limited 
sample size and absence of validation cohorts [23]. 

As can be learned from this thesis, improving healthcare requires a multidisciplinary 
approach, hence for prognostication it is interesting to also look further than radiomics. 
Researchers outside the field of radiomics have investigated the prognostic value of 
circulating cell-free DNA (cfDNA) and/or circulating tumor DNA (ctDNA) in the blood of 
patients with NSCLC. Non-invasive assessment of cfDNA and/or ctDNA in plasma and 



175174

Chapter 7 - General discussion and future perspectives

7

prognostic accuracy in locally advanced NSCLC patients with the use of PET radiomics 
features, and further research is warranted in the field of prognostication. In order to 
establish common ground in the clinic, future studies should investigate if the prognostic 
accuracy can be further improved by combining or fusing imaging features from multiple 
imaging modalities with clinical and genomic features. A prognostic model that integrates 
features using a multidisciplinary approach is needed to fully address the challenges of 
radiomics toward practical applications. Current efforts to create larger databases will 
pave the way for AI applications in TVD and prognostication for improved lung cancer 
management improving patients’ quality of life worldwide.

For most potential solutions for improved target volume definition and prognostication, 
researchers would benefit if there was a vast amount of data publicly available on request 
to increase the number of patients in their study. Brooks et al. suggested to overcome 
challenges in PET radiomics analysis by creating homogeneous patient cohorts with 
equivalent tumor volumes [20]. This requires great efforts in data collection and data 
management, which is currently insufficient in most centers. We believe it is the most 
pragmatic and economic solution on the long run, and centers should be encouraged to start 
standardizing ways of gathering imaging data and sharing data with other investigators. 
The creation of a large imaging database including other clinical information such as 
treatment outcome and radiotherapy plans would enable the next step in medical image 
analysis for TVD and prognostication, and could thus lead to improved local control and 
treatment decision making. In the case of target volume delineation, building an ‘atlas’ or 
database with a wide variety of delineation examples could also provide tools for education. 
A database with clinical cases would move us in the direction of creating a database for 
use of training deep learning networks. Currently, a limited number of medical imaging 
datasets is already available online (e.g. Cancer Imaging Archive and Quantitative Imaging 
Network), although limited to certain imaging modalities, not always ready-for-use and 
often of suboptimal quality. On the other hand, these first available datasets are highly 
appreciated and will encourage other investigators to share data as well.

Institutions may be limited in their data, but are not limited in asking for collaborations. 
Hospitals in LMIC should be encouraged to look outside their institute when it comes to 
collecting data. Recommendations are to set up a large network of researchers within their 
country or between countries, where IAEA can serve as coordinator, that share the same 
vision, and are open to share data on similar topics of interest. Hospitals in LMIC would 
be wise to start preparing their IT infrastructure as a first step. It seems that collection 
of a vast amount of high quality data is necessary to overcome current hurdles in target 
volume delineation and prognostication. Therefore, the most pragmatic way to be part of 
this evolution is to contribute with supportive high-quality data.

Conclusions

The work in this thesis focused on improved patient selection for concurrent CRT, and 
increased and standardized treatment accuracy using PET/CT applications, with the goal 
to improve survival in patients with NSCLC. Our work contributed to a broader use of 
PET/CT in LMIC by providing 1) pragmatic standardized guidelines for TVD, 2) training 
on PET/CT based concurrent CRT and 3) evidence on the effectiveness of PET/CT guided 
concurrent CRT in their centers. This thesis also contributed to the debate of improving 
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one year. Our participants were given contouring assignments which were performed before 
and after training events to investigate the impact of the IAEA guidelines on delineation 
accuracy and interobserver variability. In the absence of a histopathological proven gold 
standard, two senior ROs and a senior NM physician delineated one reference ‘expert’ 
contour per assignment and this was compared with the contours from the participants. 
From our results we observed that PET/CT based contouring following IAEA protocol 
established a 25% increase in delineation accuracy and a 45% reduction in interobserver 
variability after multiple training interventions. As a next step, we investigated whether 
the training interventions on PET/CT based TVD in lung cancer had any impact on local 
control and patient survival. The assessment of the clinical impact of the multiple training 
interventions included the comparison of the overall survival (OS) and progression-
free survival (PFS) between a retrospective cohort of patients who were treated prior to 
the trainings, and a prospective cohort of patients who were treated after the trainings 
following IAEA protocol. A planned interim analysis showed a significant improvement in 
the prospective cohort: OS increased from 14 to 23 months and PFS increased from 11 to 
17 months.

To further improve survival in patients with locally advanced NSCLC, we investigated 
whether FDG PET could provide prognostic information to aid in therapy selection. In this 
thesis we looked at whether quantitative imaging features from PET, called PET radiomics 
features, would exhibit prognostic information. PET radiomics features could potentially 
complement biopsy based histopathologic examination by characterization of interpatient 
tumor heterogeneity, which could aid in treatment decision making. Currently, the choice 
of treatment is largely dependent on the disease stage and patient condition, and this has 
not always been accurate enough when selecting the optimal treatment. Patients with the 
same disease stage and condition can still respond differently to the same treatment due to 
interpatient tumor heterogeneity. Therefore, the search for additional prognostic factors is 
warranted in order to strive for maximum therapeutic efficacy and to reduce the number 
of futile treatments, thus optimizing use of resources. Unfortunately, we observed that 
most PET radiomics features in our study were strongly correlated to well-established 
prognostic factors. On the other hand, we did find PET radiomics features that were robust, 
independent, and that also exhibited prognostic value. However, there was no significant 
difference observed between the prognostic value of combined PET radiomics features and 
clinical variables and clinical variables alone when predicting clinical endpoints in NSCLC 
patients treated with concurrent CRT. Hence, we were unable to increase the accuracy of 
current prognostic models in locally advanced NSCLC by adding PET radiomics features. 
Improving risk stratification and clinical decision making based on clinical variables and 
PET radiomics features has still been proven difficult in locally advanced lung cancer 
patients and further investigation in the area of ​​prognostication is warranted.

Summary
Towards worldwide use of FDG PET/CT applications for optimal 
treatment of lung cancer
In low- and middle-income countries (LMIC), an expected increase in lung cancer 
cases in the coming years is a major concern. Currently, there are already insufficient 
treatment facilities to provide the necessary healthcare services. Sites that are suitably 
equipped to provide nuclear medicine (NM) and radiation oncology (RO) services have 
minimal experience in the multidisciplinary use of PET/CT imaging for concurrent 
chemoradiotherapy (CRT), resulting in many patients receiving suboptimal staging, 
therapy selection, and treatment. The work in this thesis was performed in collaboration 
with the International Atomic Energy Agency (IAEA). Our aim was to achieve accurate 
treatment delivery and improved prognostic tumor characterization for optimized lung 
cancer management with PET/CT in patients with locally advanced NSCLC treated with 
CRT. Ultimately, the goal was to improve the survival of patients with locally advanced 
NSCLC. The following objectives were defined:

•	 To develop pragmatic guidelines for TVD;
•	 To reduce the interobserver variability in TVD;
•	 To improve the current prognostic models for patients with lung cancer.

Our work focused on introducing FDG PET/CT applications for patients with locally 
advanced non-small cell lung cancer (NSCLC). Patients with locally advanced NSCLC 
would benefit from the multidisciplinary use of FDG PET/CT imaging for concurrent 
CRT, the current standard treatment in high-income countries (HIC). In LMIC, there is an 
increased demand for more expertise in RO and NM in these centers to be able to provide 
the current standard treatment. Concurrent CRT requires accurate treatment delivery as 
it is more intensive than sequential CRT and comes with increased risk of adverse events 
and longer hospitalization. FDG PET/CT serves as a valuable tool in radiotherapy planning 
to accurately and precisely delineate tumor. Hence, nuclear medicine physicians and 
radiation oncologists from Brazil, India, Jordan, Pakistan, Turkey, Vietnam, and Estonia, 
were trained in delineating target volumes using combined PET and CT images. Pragmatic 
IAEA guidelines for PET/CT-based tumor volume delineation (TVD) were developed, 
dealing with the uncertainties of PET/CT for management of respiration motion, and 
the PET/CT-based respiration expanded GTV approach was introduced. This delineation 
protocol served as comprehensive guidance on using PET/CT for radiotherapy planning in 
NSCLC, which had never been provided to this extent. These guidelines were incorporated 
in training events on PET/CT-based TVD in lung cancer, which were given over a period of 
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The work in this thesis focused on improved patient selection for concurrent CRT, and 
increased and standardized treatment accuracy using PET/CT applications, with the goal 
to improve survival in patients with NSCLC. Our work contributed to a broader use of 
PET/CT in LMIC by providing 1) pragmatic standardized guidelines for TVD, 2) training 
on PET/CT based concurrent CRT and 3) evidence on the effectiveness of PET/CT guided 
concurrent CRT in their centers. This thesis also contributed to the debate of improving 
prognostic accuracy in locally advanced NSCLC patients with the use of PET radiomics 
features, and further research is warranted in the field of prognostication. Future studies 
should investigate if the prognostic accuracy can be further improved by using imaging 
features from multiple imaging modalities with clinical and genomic data.

Appendices - Summary
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dient als een waardevol instrument bij de voorbereiding van radiotherapie, aangezien men 
hiermee de doelgebieden nauwkeurig kan bepalen en intekenen. Daarom werden nucleair 
geneeskundigen en radiotherapeuten uit Brazilië, India, Jordanië, Pakistan, Turkije, 
Vietnam en Estland getraind in het intekenen van doelgebieden met behulp van gefuseerde 
PET/CT scans. Er werden pragmatische IAEA richtlijnen geschreven voor het intekenen 
van tumoren gebaseerd op PET/CT. Het IAEA protocol diende als uitgebreide leidraad 
bij het gebruik van PET/CT voor radiotherapie planning bij NSCLC, dat nog nooit in deze 
mate was verstrekt. Deze richtlijnen zijn opgenomen in een trainingsprogramma over een 
periode van een jaar. De deelnemers kregen intekenopdrachten voor en na trainingssessies 
om de impact te onderzoeken van de IAEA richtlijnen op de nauwkeurigheid van het 
intekenen en de variatie tussen de clinici. Bij gebrek aan een histopathologisch bewezen 
gouden standaard, hebben twee ervaren radiotherapeuten en een ervaren nucleair 
geneeskundige per intekenopdracht één referentie ‘expert’-contour getekend en dit werd 
vergeleken met de contouren van de deelnemers. De overeenkomst van de intekeningen 
van doelgebieden met de referentie bleek na afronding van het trainingsprogramma 
significant te zijn toegenomen met 25% en de variatie tussen de ingetekende doelgebieden 
van de deelnemers was verkleind met 45%. Als volgende stap onderzochten we of de 
trainingssessies over PET/CT applicaties bij de behandeling van longkanker enige invloed 
hadden op de lokale tumorcontrole en de overleving van de patiënt. Hiervoor werd een 
vergelijking uitgevoerd tussen een retrospectieve groep patiënten die voorafgaand aan 
de trainingen is behandeld in de betreffende centra, en een prospectieve groep die na de 
training met verbeterde technieken en volgens IAEA protocol werd behandeld. Resultaten 
uit dit onderzoek tonen een significante verbetering van de overleving aan: de algehele 
overleving steeg van 14 naar 23 maanden, en de progressie-vrije overleving steeg van 11 
naar 17 maanden.

Om de overleving bij patiënten met lokaal gevorderde NSCLC verder te verbeteren, 
hebben we onderzocht of PET/CT scans over prognostische informatie beschikken die een 
behandeling op maat mogelijk maakt. In dit promotieonderzoek hebben we gekeken of 
zogenaamde radiomics features uit PET scans over deze prognostische informatie zouden 
beschikken. PET radiomics features vertegenwoordigen distributiepatronen te zien op 
PET beelden, die weer gelinkt kunnen worden aan de tumorheterogeniteit. Daarom 
onderzochten we of er prognostische PET radiomics features bestonden ter aanvulling 
van de klinische besluitvorming. Helaas bleken de meeste PET radiomics features sterk 
gecorreleerd te zijn met bekende prognostische factoren en hierdoor waren ze niet van 
toegevoegde waarde. Anderzijds vonden we een aantal PET radiomics features die robuust 
en onafhankelijk waren en ook prognostische waarde vertoonden. Er werd echter geen 
significant verschil waargenomen in prognostische waarde tussen PET radiomics features 
en klinische variabelen bij het voorspellen van de overlevingskans van patiënten met 

Samenvatting

Wereldwijde inzet van FDG PET/CT applicaties voor optimale 
behandeling van longkanker 
In de meeste landen met een laag of midden inkomen (LMIC) is de zorg voor longkanker 
niet op het niveau van landen met een hoog inkomen (HIC), en is de overleving bij lokaal 
gevorderde niet-kleincellig longcarcinoom (NSCLC) met kliermetastasen erg slecht. Een 
gebrek aan kennis, kunde, en resources spelen een rol bij vrijwel alle aspecten van diagnostiek 
tot therapie. Er zijn in het bijzonder problemen bij het innovatieve en multidisciplinaire 
gebruik van PET-scans voor radiotherapie, een medische afbeeldingstechniek waarmee 
het mogelijk is om moleculaire processen (bijvoorbeeld metabolisme) in het lichaam 
kwantitatief af te beelden. Dit heeft als gevolg dat patiënten in LMIC vaak niet het juiste 
stadium en behandelplan krijgen of een suboptimaal uitgevoerde behandeling ondergaan. 
Het werk in dit proefschrift is uitgevoerd in samenwerking met het internationaal 
atoomenergie agentschap (IAEA). Ons gezamenlijke doel is de nauwkeurigheid te 
verbeteren van radiotherapie met behulp van PET/CT bij patiënten met lokaal gevorderde 
NSCLC in LMIC. Daarnaast streven we ernaar om karakteristieke tumor eigenschappen 
met een prognostische waarde te kunnen meten met behulp van PET scans. Deze meetbare 
prognostische eigenschappen kunnen worden ingezet ter verbetering van het huidige 
prognostische model, waar momenteel de behandelkeuze op gebaseerd is. Het huidige 
prognostische model blijkt nochtans onnauwkeurig voor patiënten met lokaal gevorderde 
NSCLC. De prognostische eigenschappen afkomstig van PET scans kunnen mogelijk 
dienen als extra ondersteuning voor de clinici bij het maken van een behandeling op maat. 
Uiteindelijk is het hogere doel om de overleving van patiënten met lokaal geavanceerde 
NSCLC te verbeteren. De volgende doelstellingen zijn gedefinieerd:

•	 Het ontwikkelen van pragmatische richtlijnen voor intekenen van tumoren tijdens het 
maken van een bestralingsplan;

•	 Het verminderen van de variatie van ingetekende doelgebieden tussen de clinici;
•	 Het verbeteren van het huidige prognostische modellen voor patiënten met longkanker.

Ons werk richtte zich op de introductie van PET/CT toepassingen voor de behandeling van 
patiënten met lokaal gevorderde NSCLC. Patiënten met lokaal gevorderde NSCLC hebben 
baat bij het multidisciplinaire gebruik van PET/CT voor gecombineerde chemoradiotherapie 
(CRT), de standaard aanbevolen behandeling in HIC. Bij medische centra in LMIC is er 
een toenemende vraag naar meer expertise op de afdeling radiotherapie en nucleaire 
geneeskunde om gecombineerde CRT te kunnen bieden. Gecombineerde CRT vereist 
een nauwkeurige behandeling, omdat het intensiever is dan sequentiële CRT waardoor 
het risico hierdoor op bijwerkingen en een langere ziekenhuisopname groter is. PET/CT 
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lokaal gevorderde NSCLC behandeld met gecombineerde CRT. We hebben het huidige 
prognostische model dus niet kunnen verbeteren door toevoeging van PET radiomics 
features.

Het werk in dit proefschrift heeft bijgedragen aan een intensiever gebruik van PET/
CT in LMIC door 1) het bieden van pragmatische gestandaardiseerde richtlijnen voor 
het intekenen van longtumoren, 2) het geven van training in PET/CT applicaties voor 
gecombineerde CRT en 3) het leveren van bewijs over de effectiviteit van multidisciplinaire 
gebruik van PET/CT voor gecombineerde CRT. Dit proefschrift heeft ook bijgedragen aan 
onderzoek naar verbeteringen van de prognostische nauwkeurigheid bij patiënten met 
lokaal gevorderde NSCLC en de waarde hierin van PET radiomics features. Toekomstige 
studies zullen gaan uitwijzen of prognostische modellen verder kunnen worden verbeterd 
door radiomics features van meerdere afbeeldingstechnieken te combineren met genomics 
en andere klinische variabelen.

Appendices - Samenvatting
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Geachte leden van de leescommissie, uiteraard wil ik jullie graag bedanken dat jullie de tijd 
hebben genomen om mijn proefschrijft kritisch onder de loep te nemen. Ik kijk ernaar uit 
om met jullie van gedachten te wisselen over dit proefschrift. 

Dr. Jeroen van de Kamer. Beste Jeroen, dit avontuur heb ik ook grotendeels onder 
jouw vleugels gemaakt. Net als Wouter gaan wij al een lange tijd terug. Dank voor je 
betrokkenheid, je humor, en co-promotorwaardige begeleiding. 

PERTAIN management committee. Dear Diana, Elena, and Alfredo, a standing ovation 
would be appropriate for all the work you put in organizing and hosting meetings in 
Vienna and for bringing together a wonderful group of people that share the same vision 
towards a better future for cancer patients worldwide. Because of you, coming to Vienna 
felt like coming home. Dear Gerry, Daniela, and Michael, we shared memorable moments 
together over plenty of coffee, beers, wines and even some shots of strong liquor. I am truly 
grateful to have been amongst such bright and inspiring people like you. Your presence 
was sufficient to make people smile. Many thanks for sharing your valuable knowledge 
and experience. It was an honor to work with you. Dear Arturo, Vincent, Ursula, and José, 
unfortunately I have not been able to meet two of you in person. However, I would still like 
to thank you all for your willingness to provide data and feedback whenever requested.

Participants of the PERTAIN trial, friends from abroad. Dearest Heloisa, Paulo, Antonio, 
Allan, Darja, Liina, Rakesh, Ashwani, Jamal, Akram, Younis, Shahid, Çiğdem, Tuğçe, 
Tuan Anh, Nguyen Xuan, Bui Quang, Le Ngoc, and all the other colleagues from your 
departments that supported the work in this thesis. You deserve a round of applause for 
being the backbone of the PERTAIN trial. I have enjoyed working together with you despite 
the distance between us most of the time. It is a pity we did not share more time with each 
other face-to-face, because I believe our fruitful meetings in Vienna boosted our spirit. 
It was incredible to see you progress year after year, to see you gain more confidence in 
putting newly gained knowledge and skills into practice, and how that also had a positive 
impact on the collaboration between your departments. You can be proud of yourselves! 

Dr. Sarah Everitt. Dear Sarah, thank-you for making me feel at home and for guiding me 
around during my time at the PeterMac. You made sure I was integrating well with the 
Australian way of life and made this research trip truly worthwhile. It was a pleasure to 
work with such a cheerful and optimistic person and I hope our paths will cross again in the 
future. Of course I would also like to thank all the other colleagues at the PeterMac for their 
hospitality during my stay and their contributions to this thesis. I enjoyed experiencing 
your laid-back, welcoming, curious attitudes and your serious love for nature, sports, food 
and coffee (what else)! 

Dankwoord

Voor menig lezer zal dit het leukste deel zijn van mijn proefschrijft. Zelf ben ik zeer verheugd 
op het moment van schrijven, aangezien het schrijven van het dankwoord betekent dat er een 
eind zit te komen aan dit wetenschappelijke avontuur. Mijn promotietraject was een reis om 
de wereld met vele uitdagende bergen die ik moest overwinnen, maar ook dalen waar ik weer 
moest uitklimmen. Ik maak graag van deze gelegenheid gebruik om mijn dankbaarheid te 
uiten aan alle personen die mij op deze reis gegidst hebben en/of gezelschap hebben gehouden. 
Een reis maken als deze, doe je nooit alleen.

Prof. dr. Jan-Jakob Sonke. Beste JJ, jouw supervisie en sturing hebben het proefschrift gemaakt 
tot wat het nu is. Na een tweetal voortvarende jaren dreigde mijn onderzoek te stagneren, 
echter was het voor mij een geruststelling dat ik kon terugvallen op iemand met veel ‘brainpower’ 
die mij altijd weer in beweging kon brengen met briljante suggesties en oplossingen. Ik heb 
daarnaast veel gehad aan je kritische houding die vaak tot nieuwe inzichten leidden en het 
werk naar een hoger niveau heeft getild. Naast het serieus bedrijven van wetenschap, was 
er ook ruimte voor ontspanning en humor. De borrels en congressen die we hebben beleefd 
zullen mij dan ook altijd bijblijven, waarbij jij altijd mijn voorbeeld was van “’s avonds een 
man, ’s ochtends een man”. Hartelijk dank voor de plezierige samenwerking. 

Mijn co-promotores Dr. Wouter Vogel en Dr. Marcel Stokkel. Beste Wouter, na mijn afstuderen 
heb je mij het vertrouwen gegeven om het internationale onderzoek met de IAEA voort te 
zetten. Vanaf het begin hebben wij altijd prettig en efficiënt kunnen samenwerken en zat je 
vol goede ideëen voor vervolgonderzoeken. Ik was ook erg onder de indruk van je taalkundige 
oplossingen als ik zoekende was naar de juiste woorden in mijn manuscripten. Ook ben ik je 
dankbaar voor je tijd als klinische begeleider op de afdeling nucleaire geneeskunde waar ik veel 
van je heb mogen leren tijdens het meedraaien in de kliniek. Gedurende mijn promotie hebben 
we vele memorabele uitstapjes gemaakt naar Wenen, waarbij ik nooit meer zal vergeten hoe 
we al rondstruinend per ongeluk ongezien binnen wandelden bij een feestelijke gelegenheid 
van een Oostenrijkse regeringspartij en we er het beste van hebben gemaakt. Het laatste jaar 
van mijn promotie was je helaas minder betrokken doordat het onderwerp wat verder van je af 
stond, maar nog steeds was je bereid om mijn manuscripten te reviseren. Veel dank dat je er 
altijd voor me was. Beste Marcel, de afdeling nucleaire geneeskunde heeft een zeer positieve 
ontwikkeling doorgemaakt door jouw inspanningen. Het was fijn daar onderdeel van te zijn, 
ondanks dat mijn werkplek zich bevond op de afdeling radiotherapie. Dank voor de vrijheid en 
vertrouwen die je me hebt gegeven om mijn eigen weg te bepalen. Ook ben ik je zeer dankbaar 
dat je een onvergetelijke reis naar Down Under mogelijk hebt gemaakt, zodat ik onderzoek 
kon doen in het Peter MacCallum Cancer Center in Melbourne. 
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voor de ESTRO begon in Turijn (het was een erg gezellige Koningsdag zullen we zeggen!) en 
jullie begripvol hebben meegedacht aan oplossingen en de juiste mensen op de hoogte stelden 
dat ik iets later zou verschijnen. Jullie zorgen ervoor dat iedereen vlekkeloos zijn weg vindt op 
de afdeling en ook makkelijk over allerlei logistische en administratieve hobbels heen komt. 
Mijn dank is groot, ga astublieft zo door! 

Ik dank ook mijn vrienden voor het leven. Mijn middelbare schoolvrienden, van losbandige 
pubers naar ‘volwassen’ burgers, wij hebben elkaar zien opgroeien en samen de wereld 
ontdekt, waarbij ieder op zijn eigen unieke wijze iets toevoegt aan de groep en dat voor 
een onlosmakelijke band heeft gezorgd. Dat de toekomst nog veel moois voor ons in petto 
heeft. AKFST-ers, shit is about to get real! Jullie zijn de meest ongerijmde en tegelijk meest 
wijze mensen bij elkaar en daarom hou ik ook zo van jullie. Zoals één van julliie zo prachtig 
verwoorde tijdens één van de vele memorabele weekenden weg: “it is one of the blessings of old 
friends that you can afford to be stupid with them”. De cultuursnuivende Paratrippers en tevens 
oude studievrienden, mijn oud-huisgenoten van Huize Rynstroom (ik ga zeker onze 
restaurant roulette en avondjes Ozark missen), de altijd relaxte doch ambitieuze Pythianen, 
en de levensgenieters van Heeren Zeeven, bedankt dat jullie voor gezelligheid en ontspanning 
zorgden tijdens deze wetenschappelijke reis.

Mijn broers, aanhang, en mijn grootse warme familie. Maarten, Jan en Anne. We zien 
elkaar niet altijd even vaak door de afstand, maar de momenten dat we compleet zijn geniet 
ik volop. Ik kijk uit naar nog meer mooie vakanties samen met het hele gezin om toch weer 
die oude tijden te herleven. Kiko, ook jij verdient lof voor de gezelligheid die je ons gezin 
brengt met je vrolijke gefluit. Ik hoop dat je nog heel lang in ons midden kan zijn. Lieve 
ooms en tantes, neven en nichten (in het bijzonder Judith), neefjes en nichtjes, wat een 
geweldig lieve mensen zijn jullie bij elkaar en het is bijzonder om te zien dat we ondanks de 
toenemende grote, toch nog steeds goed op de hoogte zijn van elkaars leven en in het geval 
van de Veldmannen, elkaar nog jaarlijks zien door het familieweekend. Het was dan ook 
een groot gemis dat het familieweekend niet doorging dit jaar door COVID-19 toestanden. 
Dank voor jullie support, warmte en gastvrijheid.

Mijn lieve ouders. “Wie je bent en wat je doet daar ben je zelf verantwoordelijk voor, maar je ouders 
zorgen voor de basis waarmee je het volwassen leven instapt.” Lieve pap en mam, met die basis 
zat het wel goed en daar ben ik jullie zeer dankbaar voor. Ik wil jullie enorm bedanken dat 
ik in zo’n vrij, warm en reislustig gezin ben opgegroeid, en dat jullie altijd alles hebben 
gegeven voor mij en mijn broers. Ook al was het misschien niet altijd even duidelijk waar 
ik mee bezig was in Enschede, Nijmegen, Utrecht, Amsterdam, Pisa, en Melbourne, jullie 
onvoorwaardelijke steun heeft mij altijd kracht en heel veel rust gegeven. Ik zeg het veel te 
weinig voor mijn gevoel, maar ik hou onwijs van julie. 

Mijn paranimfen en vriendinnen voor het leven. Lieve Merel en Susanne, als ex-roomies van 
Huize Gedûld hebben we elkaar door de jaren heen zowel leren kennen in meest sobere 
toestand, alsook elk denkbare andere toestand. Alsof dat niet genoeg was, bleven we elkaar 
door de jaren heen opzoeken, ondanks dat we allang niet meer elkaars gekke, vrolijke, actieve, 
ondernemende huisgenoten waren. Het was wellicht al duidelijk, maar toch, jullie zijn die 
zusjes die ik nooit heb gehad, en daarom ben ik erg aan jullie gehecht. Ondanks dat mijn 
sociale leven op en neer golft en zeker in de laatste fase van mijn PhD op een lager pitje 
stond, zijn jullie een constante factor in mijn leven. Ik ben jullie onwijs dankbaar voor jullie 
vriendschap en blijf uitkijken naar de komende reünietjes, en wie weet wanneer impulsieve 
daadkracht ons weer een mooie trip zal opleveren.

Alle oud collega’s van de afdeling radiotherapie. Het zijn er teveel om op allemaal op te noemen, 
maar toch bedankt dat ik zoveel mooie en speciale momenten met jullie heb mogen delen. Een 
aantal wil ik graag in het speciaal bedanken. My office buddies Artem and Matthew, many 
thanks for the heated discussions, whether it was about sexism in the words ‘handsome’ and 
‘pretty’ or about American politics, we often ended saying “how did that escalate so quickly?”. 
I also enjoyed how we changed our office into a game room each Friday afternoon before the 
borrel started. Thank-you for reminding me frequently that we should appreciate a proper 
work-life balance. Natasja en Sander, veel dank voor de gezellige etentjes samen en de 
koffiepauzes op werk, de hardloop sessies en de drankjes erna (Natasja), en het bekijken van 
spannende Europese wedstrijden van Ajax in de kroeg (Sander). Zeno, Tessa, Iban, Bruno, 
Kleopatra, Catarina, Roel, Cris, Celia, Uros, Lukas, Vineet, Takahiro, Anja, Jonas, Barbara 
and Simon, many thanks for being a bunch of great personalities all together and making my 
PhD more fun than my accelerated imagination could think of. To all of the above, I will always 
cherish the moments we shared, whether hilarious or dead-serious, at conferences, dinners, 
borrels and afterparties, doing karaoke on Japanese nights, playing poker, sailing on various 
lakes, and so on. I am grateful to have known you not only as colleagues, but also as friends.

Alle oud collega’s van de afdeling nucleaire geneeskunde. Graag wil ik Daan, Linda, Else, 
Daphne, Judith, Bas, en Suzana in het zonnetje zetten, en verder is mijn dank groot aan alle 
nucleair geneeskundigen en laboranten, in het bijzonder Natascha, voor hun ondersteuning 
en feedback tijdens de klinische activiteiten, onderzoeken en de journal clubs. Maar ook 
bedankt voor de gezelligheid tijdens de vrimibo’s, de Sinterklaas-vieringen, en de pubquiz-
avonden.

Diedie en Patricia. Lieve dames, dank voor jullie onvoorwaardelijke steun en gezellige 
afleidingen in de vorm van een praatje, de meest actuele roddels, of het plagen van Artem. 
Volgens mij hebben jullie al zoveel meegemaakt op de afdeling door de jaren heen dat niets 
meer te gek voor jullie is. Zo ook niet toen ik mijn paspoort was kwijtgeraakt een paar dagen 
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Lieve Silvie, wat voel ik me toch een ontzettende bofkont met jou aan mij zij. Het toeval wil 
zijn dat je er al vanaf het begin was, ware het op de achtergrond werkzaam in de kliniek, en 
af toe zagen we elkaar op de borrels. Nadat ik het AvL verliet voor een vroegtijdig avontuur 
in het bedrijfsleven, kwamen we elkaar tegen op een festival, en een korte tijd later tijdens 
een koffiedate sloeg de vonk pardoes over. Dit boekje moest toen nog wel worden afgerond 
en dat ging niet als vanzelf, maar gelukkig zorgde jij dat ik optimaal kon presteren. Ik ben 
je zeer dankbaar voor je hartverwarmende, attente zorgzaamheid wat mij altijd motiveert 
om verder te gaan. Daarnaast is jouw liefdevolle kalmte een goede remedie tegen frustratie 
en stress, en laat je mij altijd weer stralen met je lieve lach. Nu we samen een heerlijke 
thuisbasis hebben gecreëerd, kan ik niet wachten om samen met jou nieuwe avonturen te 
beginnen. Mijn allerliefste, ik ook van jou.
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Curriculum Vitae

Tom Konert werd op 2 juni 1988 geboren te Seria, Brunei. Op zijn 
zesde verhuisde hij naar Nederland na een buitenlands avontuur 
in Brunei en Oman. Na het behalen van zijn VWO diploma aan het 
Oranje Nassau College in Zoetermeer in 2006, begon hij aan de 
opleiding Technische Geneeskunde aan de Universiteit Twente. 
Gedurende zijn driejarige Master programma specialiseerde hij 
in ‘Robotics and Imaging’ en verrichtte hij (klinisch) onderzoek 
naar medisch technische toepassingen in het Radboud UMC, 
het Universitair Medisch Centrum Utrecht, en The BioRobotics 
Institute in Pontedera, Italië. 

Tussen de Master stages door deed hij drie maanden vrijwilligerswerk in Nepal waar hij een 
arts assisteerde op een medische post. Ook gaf hij voorlichting op verschillende scholen 
over overdraagbare ziektes en (orale) hygiëne. 

Afstuderen deed hij in het Nederlands Kanker Instituut op de afdeling Nucleaire 
Geneeskunde. Het wetenschappelijk onderzoek dat hij daar verrichtte werd afgerond op 
november 2014 en vormde een fundering voor dit promotieonderzoek. In 2017 deed hij 
twee maanden onderzoek naar de kwantificatie van FDG en FLT PET tracers in het Peter 
MacCallum Cancer Center in Melbourne onder begeleiding van Sarah Everitt en Michael 
MacManus. 

Sinds 1 april 2019 werkt hij bij Microsure, een Nederlands medtech bedrijf die robots 
ontwikkelt voor microchirurgische toepassingen. Hier is hij onderdeel van het klinisch 
team die de brug vormt tussen de kliniek en product ontwikkeling.


