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1. INTRODUCTION

Let Z = G/H be a homogeneous space attached to a real reductive group G
and a closed subgroup H. A principal objective in the harmonic analysis of Z is
the understanding of the G-equivariant spectral decomposition of the space L?(Z7)
of square integrable half-densities. The irreducible components of L?(Z) are of
particular interest, they comprise the discrete series for Z. We will assume that Z
is unimodular, that is, it carries a positive G-invariant Radon measure. Then L*(Z)
is identified as the space of square integrable functions with respect to this measure.

Later on we shall restrict ourselves to the case where Z is real spherical, that
is, the action of a minimal parabolic subgroup P C G on Z admits an open orbit.
Symmetric spaces are real spherical, as well as real forms of complex spherical
spaces. We mention that a classification of real spherical spaces G/H with H
reductive became recently available, see [20] and [21].

For symmetric spaces it is known (see [5], [2]) that the spectral components of
L?(Z) are built by means of induction from certain parabolic subgroups of G. The
inducing representations belong to the discrete series of a symmetric space of the
Levi subgroup, twisted by unitary characters on its center. For real spherical spaces
the results on tempered representations obtained in [23] suggest similarly that the
spectral decomposition of L?(Z) will be built from the twisted discrete spectrum of
a certain finite set of satellites Z; = G/H; of Z, which are again unimodular real
spherical spaces. A first step towards obtaining a spectral decomposition is then to
obtain key properties of the twisted discrete series for all unimodular real spherical
spaces.

As usual we write G for the unitary dual of G and disregard the distinction
between equivalence classes [r] € G and their representatives 7. Representations
7 € G which occur in L*(Z) discretely will be called representations of the discrete
series for Z. This notion distinguishes a subset of G which we denote by G md. We
write @d for the discrete series of G, i.e., CA}’d = @{e}d' Note that in general there is

no relation between the sets CA}’d and G ma if H is non-trivial.

To explain the notion of being twisted we recall the automorphism group N¢(H)/H
of Z, where Ng(H) denotes the normalizer of H. It gives rise to a right action of
Ng(H)/H on L*(Z) commuting with the left regular action of G. For a real spher-
ical space Ng(H)/H is fairly well behaved: Ng(H)/H is a product of a compact
group and a non-compact torus [22]. It is easy to see that in this case there exists no
discrete spectrum unless Ng(H)/H is compact. Let A be a maximal non-compact
torus in Ng(H)/H. Hence if A is non-trivial, there exist no discrete series repre-
sentations for Z. In this case we generalize the notion of discrete series as follows.
We have an equivariant disintegration into G-modules

&
LX(7Z) ~ /A LA(Z;x) dx .

Here A denotes the set of unitary characters y of A, and L*(Z;x) denotes the
space of functions on Z, which transform by y (times a modular character) and
are square integrable modulo A (as half-densities, since in general G/Ng(H) is not

unimodular). The set of representations 7 € G which are in the discrete spectrum



DISCRETE SERIES 3

of L?(Z;x) is called the x-twisted discrete series and is denoted G H,x- The union
GH,td of these sets over all x € A is referred to as the twisted discrete series for Z.

Let P = M AN be a Langlands decomposition of the minimal parabolic subgroup
P. Denote by m and a the Lie algebras of M and A respectively. Choose a maximal
torus t € m and set ¢ := a + it. We note that c¢c is Cartan subalgebra of g¢
and denote by W, the Weyl group of the root system X(gc,¢) C ¢*. For every
7 € G we denote by Xx € ¢&/W, its infinitesimal character and recall a theorem of
Harish-Chandra ([I0, Thm. 7]), which asserts that the map

(1.1) %:CA}’—M(*C/WC, T Xn

has uniformly finite fibers. Note that X is continuous if G is endowed with the Fell
topology.

A priori it is not clear that X(Gya) or X(G H,) s a discrete subset of ¢f/W..
However, we believe this to be true for general real algebraic homogeneous spaces
Z. For real spherical spaces Z it is a consequence of the main theorem, Theorem
below, which slightly simplified can be phrased as follows.

Theorem 1.1. Let Z = G/H be a unimodular real spherical space. Assume that
the pair (G, H) is real algebraic. Then there exists a We-invariant lattice Ay C c*,
rational with respect to the root system in ¢, such that:

(i) 3€(@H,g) C Az/W,,
(7,7,) Re%(GHm) Q Az/Wc.

A few remarks related to this theorem are in order.

Remark 1.2.
(1) The statement in (i) implies that the infinitesimal characters y, are real and
discrete for m € Gy q. Furthermore (see Corollary below), these properties

of xr lead to the following. Let K C G be a maximal compact subgroup. For
all 7 € K and x € A the set

{m € aH,x | HomK(W}K,T) # 0}

is finite. In other words, there are only finitely many y-twisted discrete se-
ries representations containing a given K-type. For p-adic spherical spaces of
wavefront type this was shown by Sakellaridis and Venkatesh in [39, Theorem
9.2.1].

(2) There is a simple relation between the leading exponents of generalized ma-
trix coefficients attached to 7= € G mta and the infinitesimal character . of 7
(cf. Lemma B4]). Further, twisted discrete series can be described by inequal-
ities satisfied by the leading exponents (cf. [23] or (B3)-(B4) below). The
inclusion Re %(é mta) C Az /W, then implies that all real parts of leading ex-
ponents are uniformly bounded away from "rho”. Phrased differently, Theorem
[LI@) implies a spectral gap for twisted discrete series. In [39], Prop. 9.4.8, this
is called "uniform boundedness of exponents” and is a key fact for establishing
the Plancherel formula for p-adic spherical spaces of wavefront type.

(3) The lattice Az can be taken of the form +Y(ge, ¢), where N is an integer which
only depends on g. (We may use the integer N from Theorem R3] which is the
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product of the integers from Theorem [(.4] and Proposition Bl The latter two
integers only depend on g.)

Theorem [[.1lis the crucial ingredient for the uniform constant term approximation
for tempered eigenfunctions in [6]. Thus it lies at the heart of the Plancherel theorem
for L*(Z) in terms of Bernstein-morphisms, established in [7] and motivated by [39],
Section 11. Notice that the strategy of proof designed in [39] for the Plancherel
theorem differs from the earlier approach where the discrete spectrum is classified
first (see [11] for groups and [2], [5] for symmetric spaces). In [39] the discrete series
is taken as a black box which features a spectral gap, and the Plancherel theorem
is established without knowing the discrete spectrum explicitly.

For reductive groups an explicit parametrization of the discrete series @d was
obtained by Harish-Chandra [I2]. More generally, for symmetric spaces G/H dis-
crete series were constructed by Flensted-Jensen [§], and his work was completed by
Matsuki and Oshima [35] to a full classification of G 4. For a general real spherical
space such an explicit parameter description appears currently to be out of reach
and for non-symmetric spaces the existence or non-existence of discrete series is
known only in a few cases. See [26, Corollary 5.6] and in [I5, Corollary 4.5].

More importantly, the existence of discrete series can be characterized geometri-
cally by the existence of a compact Cartan subalgebra in the group case, and of a
compact Cartan subspace in h* in the more general case of symmetric spaces. One
can phrase this uniformly as:

(1.2) Gra#0 < int{X € b | X elliptic} £ 0,

where the interior int is taken in h+. We expect that (L2) is true for all algebraic
homogeneous spaces Z. A geometric characterization for the existence of twisted
discrete series is less clear; in the real spherical case we expect

(1.3) @H,td #0 < int{X € Ny(h)" | X weakly elliptic} #

with Ng(h) the normalizer of b in g.

A combination of the Bernstein decomposition of L*(Z) in [7] with soft tech-
niques from microlocal analysis [13] yields the implication ”<" in (L2), see [7, Th.
12.1]. Developing the techniques in [I3] a bit further would yield the more general
implication ”<" in ([[3)). Let us point out that we consider the implication ”="
in (L3) as one of the most interesting current problems in this area.

Representations of the discrete series feature interesting additional structures.
For instance, for a reductive group Schmid realized the discrete spectrum in L2-
Dolbeault cohomology [37]. This was the first of series of realizations of the discrete
series representations for reductive Lie groups. Vogan established that the repre-
sentations of the discrete series on a symmetric space are cohomologically induced
[41]. It would be interesting to know for non-symmetric spaces to which extent Gp 4
consists of cohomologically induced representations.

1.1. Methods. We first describe the idea of proof for Theorem [Tl in the case

Z = (G is a semisimple group. Let 7w € Gd be a discrete series. Let o € M and
A € ai be such that there is a quotient

=IndS(\®@0o) » 7
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of the principal series representation Ind$(A® o). Here induction is normalized and
from the left. Such a quotient exists for every irreducible representation 7 by the
subrepresentation theorem of Casselman.

Let now v € 757, be a smooth vector and let v be its image in 7°°. Further let 77
be any smooth vector in (7¥)> where 7" is the dual representation of 7. We view
7 as an element of (my ,)> = 7> ,v, denote it then by 7, and record the relation

mz7(9) = (,7(9)"'0) = (N, mao(g” V) = mu,(9) (g€ G).

We now use the non-compact model for 7)., i.e. o-valued functions on N (the
opposite of N), and let v be a o-valued a test function on N. Let g = a € A.
As v is compactly supported on N, the functions 7 + a~2?v(ama~!) form a Dirac
sequence on N for a € A~ tending to infinity along a regular ray, and a partial
Dirac sequence in case of a semi-regular ray. Here A~ = exp(a~) with a= C a
the closure of the negative Weyl chamber determined by N. Dirac approximation
and appropriate choices of ¥ and 7 then give a constant ¢ = ¢(7,7) # 0 and the
asymptotic behavior:

(1.4) Mgmp(a) ~c-a " (a€ A ,a— o0).

Strictly speaking, the constant ¢ above also depends on the ray along which we go
to infinity, in case it is not regular. The asymptotics (L4]) are motivated by a lemma
of Langlands [33] Lemma 3.12] which is at the core of the Langlands classification.
This lemma asserts for K-finite vectors v and n, and for )\ in the range of absolute
convergence of the long intertwining operator, say I, that

c(v,7) = (L(v)(e), n(e))s -

As our v is compactly supported on N the integral defining I(v) is in fact absolutely
convergent for every parameter \.

As 7 belongs to the discrete series, my 5 is square integrable on G. One then
derives from ([4]) and the integral formula for the Cartan decomposition G =
KA~ K that the parameter \ has to satisfy the strict inequality

(1.5) ReA[ 1 > 0.

There exists a number N(G) € N such that every rank one standard intertwiner
Iy - Ind$ (s, ® 540) = Ind% (A ® o)

is an isomorphism for A(a") ¢ ﬁz (see Proposition [B.] below). Suppose that
AMaY) & ﬁZ for some simple root a@ € ¥(n,a). Then we obtain an additional
quotient morphism 7, 5., — m. As above this implies

(1.6) Re s -\ gy > 0.

Motivated by (LL6) we define an equivalence relation on af in Section [Z1] as
follows: A\ ~ p provided p is obtained from A by a sequence A\ = pg, 1, ..., [y = p
such that
(a) pit1 = si(p;) for s; = s,, a simple reflection,

(b) i) ¢ wisZ.
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The equivalence class of A € af is denoted [A] and (by slight abuse of terminology
introduced in Section [[2) we say that A is strictly integral-negative provided all
elements of [\] satisfy (L6)). In particular we see that any parameter A, for which
there exists a discrete series representation (7, V) and a quotient 7y, — V, is
strictly integral-negative.

Using the geometry of the Euclidean apartment of the Weyl group we show in
Section [1 (Corollary [LH)) that there exists an N = N(g) € N such that for strictly
integral-negative parameters A € af one has

MaY) € %z (aex).

In particular strictly integral-negative parameters are real and discrete.

For a general real spherical space Z = (G/H we start with a twisted discrete series
representation 7 and consider it as a quotient 7y , = IndG(A®0c) — 7 of a principal
series representation. The role of 7 € (7¥)> above is now played by an element
7 € (7)1 where 77 refers to the dual of 7. We let 7 be the lift of 77 to an
element, of (73 5)".

The function

Mag(9) = T(m(g7)) = n(mro(9™")v) =t Muy(9)
descends to a smooth function on Z = G/H and is referred to as a generalized
matrix coefficient.

Now 7 is supported on various H-orbits on P\G and we pick one with maximal
dimension, say PxH for some x € (. Here one meets the first serious technical
obstruction: Unlike in the symmetric case (Matsuki [34], Rossmann [36]), there
is no explicit description of the P x H double cosets, but merely the information
that the number of double cosets is finite [29]. However, for computational purposes
related to asymptotic analysis it turns out that one can replace the unknown isotropy
algebra b, := Ad(x)h by its deformation

tad Xy (X € a” regular).

b x = lime
t—o0

There are only finitely many of those for regular X and they are all a-stable, i.e.
nicely lined up for arguments related to Dirac-compression. One is then interested
in the asymptotics of ¢ — m,, ,(exp(tX)x) for appropriately compactly supported
v. The main technical result of this paper is a generalization of (4] in terms of
natural geometric data related to b, x, see Theorem[b.Iland Corollary 5.3l As above
it leads to a variant of (LH) in Corollary and the final conclusion is derived via
our Weyl group techniques from Section [1

Acknowledgement: We would like to thank Patrick Delorme for posing the ques-
tion about the spectral gap for twisted discrete series representations, and for ex-
plaining to us how to adapt the work of Sakellaridis and Venkatesh for p-adic spher-
ical spaces to real spherical spaces.

2. NOTIONS AND (GENERALITIES

We write N = {1,2,3...} for the set of natural numbers and put Ny := NU{0}.
Throughout this paper we use upper case Latin letters A, B,C ... to denote Lie
groups and write a, b, ¢, ... for their corresponding Lie algebras. If A, B C G are
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Lie groups, then we write N4(B) := {a € A | aBa™! = B} for the normalizer of B
in A and likewise we denote by Z4(B) the centralizer of B in A. Correspondingly
if a,b C g are subalgebras, then we write N,(b) for the normalizer of b in a.

For a real vector space V we write Vi for the complexification V @ C of V.

If L is a real reductive Lie group, then we denote by L, the normal subgroup gen-
erated by all unipotent elements of L, or, phrased equivalently, L, is the connected
subgroup with Lie algebra equal to the direct sum of all non-compact simple ideals
of I.

Let G be an open subgroup of the real points G(R) of a reductive algebraic group
G defined over R. Let H be an algebraic subgroup of G defined over R and let H
be an open subgroup of H(R) N'G. Define the homogeneous space Z := G/H. We
assume that Z is unimodular, i.e., carries a G-invariant positive Radon measure.
Let zp :=e- H € Z be the standard base point.

Let P C G be a minimal parabolic subgroup. We assume that Z is real spherical,
that is, the action of P on Z admits an open orbit. After replacing P by a conjugate
we will assume that P-zg is open in Z. The local structure theorem (see [22]) asserts
the existence of a parabolic subgroup ) O P with Levi-decomposition () = L x U
such that:

P'zOIQ"Z()a
(2.1) QNH=LNH,
L. CLNH.

We emphasize that the choice of L has to be taken in accordance with the local
structure theorem, see [7, Remark 2.2].

Let now L = K; AN}, be any Iwasawa-decomposition of L and set Ay := AN H
and Ay := A/Ay. We note that Ay is connected. The number rankg Z := dim A,
is an invariant of Z and referred to as the real rank of Z.

We inflate K, to a maximal compact subgroup K C G and set M = Zg(a).
We denote by 6 the Cartan involution on g defined by K and set u := 6(u). We
may and will assume that A C P. Let P = M AN be the corresponding Langlands
decomposition of P and define n := 6(n).

2.1. Spherical roots and the compression cone. Let ¥ = (g, a) be the re-
stricted root system for the pair (g, a) and

g=admo @ g°
aeX

be the attached root space decomposition. Write ([N h)+ C [ for the orthogonal
complement of [N in [ with respect to a non-degenerate Ad(G)-invariant bilinear
form on g restricted to I. From g =q+h=u® (INh)L* @ bh and g = q & u we infer
the existence of a linear map 7' : u — u @ ([N )L such that h = [Nh D G(T) with
G(T) Cud®ud (INh)* the graph of T.

Set ¥, == X(u,a) C 3. Fora € ¥, and 8 € ¥,U{0} we denote by Tp, 5 : g~ — g”
the map obtained by restriction of T to g~ and projection to g”. Then

T|a= Y, Tus.

BexU{0}
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Let M C a*\{0} be the additive semi-group generated by
{a+B|aeX,,peX,U{0} such that T, s # 0} .

We recall from [19], Cor. 12.5 and Cor. 10.9, that the cone generated by M is
simplicial. We fix a set of generators S of this cone with the property M C Ny[S]
and refer to S as a set of (real) spherical roots. Note that all elements of M vanish
on ay so that we can view M and S as subsets of a7,.

We define the compression cone by

a, ={X €az| (VaeS)a(X) <0}
and write az g 1= a, N (—ay) for its edge. We note that
#S =dimay/azp.

For an a-fixed subspace s of g, we define
1
p@xx3;:§tﬂmﬂx3L) (X €a).

We write pp for p(p) and pg for p(q). Recall that the unimodularity of Z implies
that pgla, = 0, see 25, Lemma 4.2].

Let IT C 3T be the set of simple roots. We let a* := {X € a | (Va € IT) £a(X) >
0} and write a~~ for the interior (Weyl chamber) of a™.

We write p : @ — ay for the projection and set ag := p~!(az g) and Ag = exp(ag).

Set H = HAp and note that ﬁAnormalizes H. Obviously H is real spherical as
well. Finally, we define Z := G/H.

2.2. The normalizer of a real spherical subalgebra.

Lemma 2.1. Let h C g be a real spherical subalgebra. Then the following assertions

hold:
(1) Ny(bh) = b+ @ with @ C m, the sum not necessarily being direct.
(ii) b = b.

(1it) [Ng(h)]n = bn, i.e. every adg-nilpotent element in Ny(h) is contained in b.

Proof. For () see [24, (5.10)]. Lemma 4.1 in [22] implies (). Finally, (i) follows
from (). O

3. TWISTED DISCRETE SERIES AS QUOTIENTS OF PRINCIPAL SERIES

3.1. The spherical subrepresentation theorem. For a Harish-Chandra module
V', we denote by V> the unique smooth moderate growth Fréchet globalization and
by V¢ the continuous dual of V. If n € (V)7 \ {0}, then the pair (V,7) is
called a spherical pair. N

For a Harish-Chandra module V' we denote by V' its contragredient or dual Harish-
Chandra module, that is, V' consist of the K-finite vectors in the algebraic dual V*
of V. Further we denote by V the conjugate Harish-Chandra module, that is, V = V/
as R-vector space but with the conjugate complex multiplication. We recall that
V =V in case V is unitarizable. In particular if (V,7) is a spherical pair with V
unitarizable, then so is (V,7) with 7j(v) := n(v).
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Associated to n € (V=) and v € V°° we find the generalized matrix coefficient
on Z

Moy(2) =nlg~v)  (2=gH € Z),
which defines a smooth function on Z. If v € V then m,, admits a convergent
power series expansion (cf. [23], Sect. 6):

My, (ma - zo) Z Z o(m;log a)aht® (ae Ay,meM).

nEE aeNp[S]

Here £ C aj is a finite set of leading exponents only depending on (V,n); the
term "leading” refers to the following relation: for all u,u’ € £, u # p' one has
p & '+ No[S]. Further, for each p € €, o € No[S] and v € V, the assignment

o Mxaz—=C, (m,X)—c,, (m;X)

is polynomial in X and M-finite. Moreover, for each p € & there exists a v € V
such that c , # 0. The M-types which can occur are those obtained from branching
the K- module spanC{K v} to M. The degrees of the polynomials are uniformly
bounded and we set d, := max,cy deg CW € Np.

Let us set Aj := Z(L) N A. Then L = MpA; for a complementary reductive
subgroup My, C L. For a unitary representation (o,V,) of My and A\ € aj o we
denote by Ind%(A ® o) the normalized left induced representation. Note that the

elements v € Ind%()\ ® o) are K-finite functions v : G — V,, which satisfy

v(umag) = a* "0 (m)u(g)
forall g e G, a € A, we U and m € M;.
Note that A; Ay = A and that therefore there exists a natural inclusion a3, — a.
The representations Ind%()\ ® o) are related to spherical representation theory as
follows.

Lemma 3.1. Let (V,n) be a spherical pair with V irreducible and p € a3, C a} a
leading exponent. Then there exist an irreducible finite dimensional representation o
of My, with a (M N H)-fized vector, and an embedding of Harish-Chandra modules:

(3.1) V = Indg((—p + pg) ® 0).

Proof. This is implicitly contained in [29], Section 4. We confine ourselves with a
sketch of the argument.

Recall d,, and fix a basis X;,..., X, of az. Form € Njj, X = 2?21 z; X; € ay
we set X™ =" - ... -z Then

& (mX)= Y an(mX™  (meM)

v
lm|<d,

where ¢’ is an M-finite function. Fix now o € M and m € N§ with [m| = d,, such
that the o-isotypical part of ¢} ',(m) is non-zero. This gives rise to a non—trwlal
M-equivariant map

V=V, ve o]
It is easy to see that (INh+1u)V is in the kernel of this map. Note that M N M, is
a normal subgroup of M that is contained in M N H. From the fact that o admits a
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non-zero M N H-fixed vector it follows that cr‘ MAM, is trivial. We may thus extend

o to a representation of My ~ M x My, by setting U}M = 1. The assertion
MnMyp, ,, Ln

now follows from Frobenius reciprocity. O

3.2. Discrete series and twisted discrete series. For x € (H/b)fc >~ ay pc We
define the space of functions

Co(Z;x) = {¢ € C.(G) : (- ha) = aX¢ for alla € Ap,h € H} .
We call y € (/h\/f])(*C normalized unitary if
Re x|y, = —raly, -
Let Az be the modular function of Z. By [23, Lemma 8.4] we have
(3.2) A (ha) = a™?9 (he€ Hya € Ag).

For g € G, let I, denote left multiplication by g. Let Q € A“™7(g/h)* \ {0}. If

X € (H/ h)¢ is normalized unitary, then it follows that for all ¢, € C'C(Z\ ;X) the
density

Qs G g d(g)0(g)(Tyly—1)|Q

factors to a smooth density on Z , and the bilinear form
CZN X CZi) > (6.0) > [ [Ras
7

is an inner product. We write LQ(E ; X) for the Hilbert completion of CC(E ;X) with
respect to this inner product. NotAe that the inner product is invariant under the left
regular action of G and thus L*(Z; ) equipped with the left-regular representation
is a unitary representation of G.

Definition 3.2. If y € (6/ h)& is normalized unitary, then we say that the spher-
ical pair (V,n) belongs to the y-twisted discrete series for Z provided that V is
irreducible, 7 (Y)y = —x(Y)n for all Y € b, and m,,,, € L2(Z; ) for all v € V.
Furthermore, we say that (V,n) belongs to the twisted discrete series for Z if (V,n)
belongs to the y-twisted discrete series for some normalized unitary y. Finally we
say that (V,n) belongs to the discrete series for Z provided that V' is irreducible
and m,, € L*(Z) for all v € V.

Lemma 3.3. If there exits a spherical pair (V,n) belonging to the discrete series

for Z, then H = H= HApg. Hence b/t =0 and therefore the discrete series for Z
coincide with the O-twisted discrete series for Z.

Proof. Let (V,n) be a spherical pair belonging to the discrete series for Z. The
right-action of Ar commutes with the left-action of G on L?(Z), and thus induces
a natural action of Ag on (V~>°)7. By [27] and [30] the space (V~°°) is finite
dimensional. We may therefore assume that 7 is a joint-eigenvector for the right-
action of Ag, i.e., the generalized matrix coefficients of V' satisfy

mvm(gha) = a_XmM(g) (g€ G,he Hyaec Ag)
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for some normalized unitary y € (/b\/ h)e. Let Ay be a subgroup of A such that
Ay x Ap ~ A If g € G and m,,(g- 20) # 0, then, if the Haar measures are properly
normalized,

/ ‘mv7n<2>|2d2 2/ |mv,n<z)|2 dz
Z 9Q-20
R e
UJM J Ay JAg/(ANH)
UJM J Ao JAg/(ANH)

Clearly the last repeated integral can only be absolutely convergent if Ag/(AN H)
has finite volume, or equivalently if Ap = AN H. O

We recall from Section 8 in [23] that (V,7) belongs to the twisted discrete series
for Z only if the conditions

(3.3) (Re = )10y 0 < 0.
(34) (Re:u - pQ)|ﬂZ,E =0
hold for all leading exponents ;. Moreover,

(3.5) :u|aZ,E =X

when (V) 7) belongs to the y-twisted discrete series. Note that ([B.3) implies (3.4
unless az g = az.

3.3. Quotient morphisms. It is technically easier to work with representations
induced from the minimal parabolic P. Set pg = pp — pg and observe that there is
a natural inclusion

Ind$(A ® o) — Ind%((\ + p2) @ o).
In particular (B1)) yields
(36) V o ndG{(—pu+ pp) @ 7).

where we allowed ourselves to write o for o|y;.

For general Ind%(A@cr) we record that its dual representation is given by Ind%(—A@
0"). The natural pairing between these two representations is given as follows in
the non-compact picture:

vV (v) = /va(n)(v(n)) dn

for vV € Ind%(—A ® ¢V) and v € Ind%(\ ® o).

Let now (V,n) be an irreducible spherical pair belonging to the twisted discrete
series. Then i is a leading exponent for the dual pair (V7). By applying (3.8) to
V we embed

V — Ind%((—7i + pp) ®0") .

Dualizing this inclusion we obtain the quotient morphism

(3.7) Ind%((77 — pp) @ o) = V.
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In view of the P x H-geometry of G it is a bit inconvenient to work with repre-
sentations induced from the left by the opposite parabolic P. We can correct this
by employing the long Weyl group element wy € W = W (g, a), which maps P to
P. This gives us for every A € af and o € M an isomorphism

(3.8) Ind% (A ® o) = IndS%(wel @ weo); v = v(wp ),

where wyo := o owy € M. With proper choices of A and ¢ we obtain from (3.8])
and (B7) a quotient morphism of Ind5(\ ® o) onto V.

We write now 7y, for Ind%(\ ® o) and record that functions v € 7, feature the
transformation property

(3.9) v(mang) = a7 (m)v(yg).
To summarize our discussion so far:

Lemma 3.4. Let (V,n) be a twisted discrete series representation for Z and p € af.

a leading exponent. Then there exists a o € M and a surjective quotient morphism
Tae = V with A = wop + pp.

We write 75, for the smooth Fréchet globalization of moderate growth. In the
sequel we will model 755, on all smooth functions which satisfy (5.9).

4. GENERALIZED VOLUME GROWTH

4.1. Limiting subalgebras. Define order-regular elements in a=~ by

U reg = {X €07 | a(X) # B(X), 0,8 € 5,0 7 5}

In this and the next section we will make heavy use of certain limits of subspaces of
g in the Grassmannian. In the following lemma we collect the important properties
of such limits.

Lemma 4.1. Let E be a subspace of g and let X € a. Then the limit
Ex := lim Ad (exp(tX))E,
t—o0

exists in the Grassmannian. If A\ < Ay < --- < A\, are the eigenvalues and py, ..., px
the corresponding projections onto the eigenspaces V; of ad(X), then Ex is given by

(4.1) EX:épi(EﬂéVj).

The following hold.

(i) If E is a Lie subalgebra of g, then Ex is a Lie subalgebra of g.
(i) If X € a=~, then (Ad(man)E) ., = Ad(ma)(Ex) for allm € M, a € A and
n € N. Moreover, if X is order-regular, then Ex is A-stable.
(iii) Let C be a connected component of a; ... Then (EX)Y = By forall X € C
and Y € C. In particular, if X,Y € C, then Ex = Ey.
(i) If X, X' € a~", thenaN Ex =an Ex.
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Proof. Let k = dim(E) and let ¢ : Gr(g, k) < P(A" g) be the Pliicker embedding,

i.e., ¢ is the map given by
(4.2) t(span(vi, ..., vp)) = R(vg A= Awy).

The map ¢ is a diffeomorphism onto a compact submanifold of P(A" g). The map
ad(X) acts diagonalizably on A" g, say with eigenvalues 1y < pig < -+ < fim. Let
€ e N g\ {0} be so that «(E) = RE. We decompose & into eigenvectors for ad(X)

as
g = Zglv
=1

where &; is an eigenvector of ad(X) with eigenvalue ;. Now

m

Ad (exp(tX))(RE) = R( Z eiE;) .

i=1

Let 1 < k < m be the largest number so that & # 0. Then Ad (exp(tX))(R¢)
converges for t — oo to RE,. Let Ex = ¢ 1(R&,). Since ¢ is a diffeomorphism,
Ad (exp(tX))E converges to Ex for t — oc.

We move on to prove ([AJ]). For 1 <i < n we define

Ei::Eﬂévj.
j=1

We will prove with induction that for every 1 <i <n

(4.3) (Ei), = épj () -

Clearly Ey = ENVj is stable under the adjoint action of X, and hence (E;)x = Fj.
This proves (43]) for i = 1. Assume that (4.3]) holds for some i. We claim that

i+1

(4.4) EBPJ (Ej) € (Bis1) -

In view of the induction hypothesis it suffices to prove that p; (YY) € (Ei+1) « for
every Y € E;q \ E;. We decompose Y as

i+1

YZZPJ‘(Y)-

Then p;11(Y) # 0 and thus

i+1
(RY)x = im R( Y e™p;(Y)) = Rpia(Y).
=1

This shows that p;11(Y) € (Fiy1)x. Therefore, the inclusion ([44]) holds. In fact,
equality holds because the dimensions agree. This proves (4.1]).
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Observe that [F, E] C E is a closed condition in the Grassmannian. Therefore,
the set of Lie subalgebras in the Grassmannian is a closed set. It follows that Ex
is a Lie subalgebra if E is a Lie subalgebra. This proves (f).

Assume that X € a=—. If n € N, then exp(tX)nexp(tX)~! converges to e for
t — oco. Now

(Ad(man)E) , = tlim Ad(ma) Ad (exp(tX)nexp(tX)™") Ad (exp(tX))E
= Ad(ma)(Ex).
If X € a,_,.,, then the eigenvalues {a(X) : @« € ¥ U {0}} of ad(X) are in bijection

with EU{O}.g Therefore, all projections p; in ([@1]) are projections onto a-eigenspaces,
namely the root spaces and m @ a. This implies that Ex is A-stable. This proves
().

We move on to prove (). It follows from (1)) that for every X € a~ the limit
Ex is spanned by the limits Ly of the lines L in E. Hence we may assume that
E is 1-dimensional. Let X € C and Y € C. For a € X U {0} we define p, to be
the projection g — g, along the root space decomposition. Let g € ¥ U {0} be
so that ap(Y) is maximal among the numbers a(Y') with a € ¥ U {0} for which
po(E) # {0}. By [@EI) we have Fy = po,(E). Since Y € C and X € C we have
a(X) > B(X) if a(Y) > B(Y). In particular the largest eigenvalue of ad(X) that
appears in E is equal to ag(X). The projection onto the eigenspace of ad(X) with

eigenvalue o (X) is given by
>, P

aeXU{0}
a(X)=ao(X)

Ex=( Y 1)),

aexU{0}
a(X)=ao(X)

Therefore,

and hence

= (X ) (E)) = pulE) = By
aeXU{0}
a(X)=ao(X)

If X,Y €C, then by () the space Ey is a-stable and therefore (Ex)y = Ex. This
proves (fl).

Finally we prove (iv]). Let X € a=~. Let pn, ps be the projections g — m and
g — a, respectively, along the Bruhat decomposition. Since X is regular, it follows

from (4.1)) that
M@ a)NEx = (pu+pa)(m@adn)NE).

Clearly ps((a®n)NE) C anEx. Moreover, if Y € aNEy and Y’ € (m@adn)NE
is so that (pm + pa)(Y’) =Y, then pu(Y’) = 0. Hence Y € po((a ®n) N E). It
follows that

pa((a®n)NE)=anEx.
The left-hand side is independent of X. ([
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Let C be a connected component of a; .. If X € C, then in view of (i) in

Lemma [T the space E'x does not deperf& rf)i the specific choice of X. Therefore
for every subspace E of g we may define

Ec .= Ex (X el).
Let z € G. We define the following spaces. First set

beo = (Ad(x)h)c.
Observe that by (i) in Lemma [A.T]
(4.5) bemanen = Ad(m)be,  (meM,a€ AneN,heH).
We define
ay :=bhe,Na.

In view of Lemma A TI([vl) this space does not depend on C. Note that (A3 implies
that a, only depends on the double coset PxH € P\G/H, not on the representative
x € G for that coset. We further define the a-stable subalgebras

ﬁc@ = bC,x nn, Ue z = hC,J: nn.
Since ¢, is a-stable, it follows that
(46) hC,x - ﬁc@ ) ((m ) a) N bC,x) ) Ue z -

Finally we choose n; and ug to be a-stable complementary subspaces to fi¢, in 1
and uc, in n, respectively, so that

(4.7) n=ne, dng, n=1uc, Dug.
Lemma 4.2. For every x € G
g = (Ad(z)h +p) @0g.
Proof. Let X € C. In view of (A1) and (6] we have
(4.8) g=Tc, DpDng = (hee +p) Dic.
If g # (Ad(x)h + p) + g, then also
g # Ad(a) (Ad(x)b +p +7¢) = (Ad(az)h + p) + g

for every a € A. This would imply that the limit of (Ad(exp(tX)z)h + p) + n¢ for
t — oo is a proper subspace of g. This in turn would contradict (A8]). Therefore,
g = (Ad(x)h + p) + ni. Moreover, it follows from ([@T]) that p N he, = p N Ad(x)b,
and hence

dim(be, + p) = dim(Ad(z)h +p).

Therefore, by comparing with (£8) we see that the sum (Ad(z)h+p)+ng is direct.
U
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4.2. Volume-weights. We recall the volume-weight function on 2
v(z) := volz(Bz) (z€Z2),

where B is some compact neighborhood of e in G. We refer to Appendix A for
the properties of volume-weights. The volume weight naturally shows up in the
treatment of twisted discrete series representations.

The following proposition is a direct corollary of the invariant Sobolev lemma in
Appendix A.

Proposition 4.3. Let (V,n) be a spherical pair corresponding to a twisted discrete
series representation. Then

(4.9) sup |mv,,7(z)\v(z)% < 00.
z2€Z

Moreover, if (z,)nen 1S a sequence in Z such that its image in 7 tends to nfinity,
then

(4.10) lm |y, (20)[v(20)% = 0.

n— o0

The basic asymptotic behavior of v on the compression cone is
(4.11) via-z)<a 22 (a€Ay).

See [25 Proposition 4.3]. We investigate now the growth of v with the base point
2o shifted by an element x € G, i.e., we investigate how v(ax - zg) grows for a € A™.

Recall the parabolic subgroup @) = LU from (21)). For z = e, we have he, =
(INh) @ u, and thus

P(hc,e) = —PqQ -

Hence the following proposition is a partial generalization of the lower bound in
(A1) for shifted base points.

Proposition 4.4. Let v € G and X € a~. Let C be a connected component of
0, oo Such that X € C. Then there exists a C' > 0 such that

o—reg
v(exp(tX)z - zp) > Ce?Plhe)X) (t>0).

Proof. Set N* = exp(n%). Since exp : @ — N is a polynomial isomorphism the group
N" is an affine subvariety of N. Define an affine subvariety of N by U® := exp(ud).
Let a” be the orthogonal complement of a, in a and set A” := exp(a”). Further let
Xi,..., X} be a basis of a subspace in m which is complementary to pm(he) in m,
where py, is the projection g — m along the Bruhat decomposition. We may assume
in addition that the X, are so that M; := exp(RX;) ~ R/Z. Now

k
adm=((m®a)Nbc,) ®a” ®EPRX;.

j=1

Further, we define the affine variety M := M; X ... X M. For m = (my,...,my) €
M we set ¢(m) :=my-...-my € M.
For ¢t € R define a; := exp(tX) and consider the algebraic map

P, U XN xA*x M x H— G: (u,m, a,m, h) — unap(m)axh .
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We have
k

g=uw o ea o PRX; &b,

J=1

Note that if Ad(az)h would not be transversal to uf @ ng @ a® & EB?ZI RX; for
some a € A, then it would not be transversal for any a € A since the space
ug dn; da’ @ EB?ZI RXj; is A-invariant. This would contradict the fact that ¢, is

transversal to ug © n; © a® O @le RX;. We thus conclude that for every a € A

k
g :ué@ﬁé@amea@RXj@Ad(ax)h.

J=1

In particular this holds for a = a;. This implies for generic ¢, and hence in particular
for t > 0, that the map ®, is dominant and as such has generically finite fibers,
with a fiber bound independent of ¢. See [9, Prop. 15.5.1(i)].

Let Ug, N%, A%, Mp and Hp be relatively compact, open neighborhoods of e in
U*, N°, A*, ¢(M) and H respectively. We choose these sets small enough so that
ULNpALMp C B. Then

(4.12) Viow ) 2 [ L atguen (2 45

Fory € G, let F, be the projection onto H of ®; ' ({y}). If yh € Uy Nz A M paxHp
then y € UENEA%MBatxHBh_l. Hence Hgh™' contains an element from F, and
h belongs to (F,) ' Hp. Therefore,

/HlUgNgAIBMBathB(yh) dhg/l;l(Fy)1HB(h)dh1U§N§A%M3atx-zo(y'ZO)
< #0; ({y}) volur(Hp)Lyaws, ag mpareno (Y * 20) -

Let ¢ = (n VolH(HB)) 71, where n is the generic fiber bound. Then for generic y € G
we have

1U§N§A%M3ata:~zo(y F20) = C/H 1U;§N§AIBMBatxHB(yh) dh.

By inserting this inequality into ({.I12) we obtain
v(ax - 2) > / c/ 1U§N§A%M3atxHB(yh) dhdyH
z Ju
= C/GlUgNIBAj‘BMBathBQ/) dy

= C/G 1U§N%A%M3athB:v_la_t <y> dy

For the last equality we used the invariance of the Haar measure on G.

We define = := U5 N A4 Mp and set
U, : ExcHpz ' = G; & y) — Eapya_y .
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The fibers of W; are bounded by the fibers of ®;, and hence are generically finite
with fiber bound independent of ¢ for ¢ > 0. Let we be the section of A" T*G
corresponding to the Haar measure on G. Then

C *
v(ax - z9) > z / / 1 Viwe ,
=JaxHgx—

where k is the fiber bound of W,.
We finish the proof by estimating V;wq. For g € G, let l, : G — G and r, : G —
G be left and right-multiplication by g, respectively. Let

€2, yecaHpa™, Y€ T:Z and Y; € Ty(xH:c’l).
Let v:R — ¢ = and § : R — 2Hpr 'y~ be smooth paths so that
(0) =0(0) =e, ~(0)=(Tule)"'Ys and §'(0) =Tyr,~1Ys.
Then
d
£7(s)at5(s)a_t’810 =7/'(0) + Ad(a;)d'(0) = (T.le) "Y1 + Ad(ay) (Tyry_lYg).
Now &7 is a smooth path in = with (£7)(0) = € and (£7)'(0) = Y;. Likewise, dy is
a smooth path in zHpz~! satisfying (6y)(0) = y and (dy)'(0) = Ya.
The tangent map of ¥, is determined by the following identity of elements in T:G

d
Tie) (Taty—la_t © \I’t) (Yla Y2) = s v, <§7(5)> 5(8)y> aytay ’3:0

= %fv(s)aﬁ(s)a_t }5:0 =T.l; (%v(s)aﬁ(s)a_t L:O)
(4.13) — Yy + Tule Ad(ay) (Tyry,%) .

We write hx, for the limit for ¢ — oo of Ad(a;) Ad(x)h in the Grassmannian.
Let Y be a non-zero eigenvector of ad(X) in by, and let « € X U {0} be such that
a(X) is the eigenvalue. It follows from (A1l with £ = Ad(x)b, that there exists an
element

e+ > g’)nAd@)p.
BeTU{0}
B(X)<a(X)

Let Y be a right-invariant vector field on zHz~! such that Y(e) = Y”. Then
lim e T ) (Tary-1a_, © ) (0, ?(y)) = lim et (Telg o Ad(at)) (Ty'r’y—dﬁ;(y))

t—o00 t—o00

= lim e~ (Tez£ 0 Ad(at)) (Y.

t—o00

For # € ¥ U {0} with (X) < a(X), let Y} € g” be so that

Y=Y+ Y Y
BexU{0}
B(X)<a(X)
Then
e X Ad(a)Y' =Y + Z af_aYﬁ'.

BEXU{0}
B(X)<a(X)
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Therefore,

lim e_ta(X)T(g,y) (raty’laft © \IIt) (0’ ?(y))

t—00
- . B—a !’
= Teng -+ tliglo E Ay Telfyﬁ = Telgy .

BEXU{0}
BX)<a(X)

The convergence is uniform in y and uniform on compact sets in £. Combining this
with ([AI3)) yields that for every Y; € T¢= and Y as before we have
tlgglo eita(X)T(é,y) (Taty‘la—t © \I’t) (Yb Y(Q)) =Y+ TelY,

where again the convergence is uniform in y and uniform on compact sets in &.
Define py , := 3 tr (ad(X)‘hX ). It follows that

— — *
e 2th,xq];ka — ¢ 2Px (Taty_la_t o \I’t) we

—_

. . . dim G
converges for t — oo to a nowhere vanishing continuous section of A“™~ T* (: X

- 1

xH B:c_l). The proposition now follows from the facts that = and xHgxz™" are
relatively compact and that p(he.)(X) = px.a- O

4.3. Escaping to infinity on /\2 . Recall H = b+ ag. For a connected component
C of a;",., and Y € C, define b, = lim;_,, Ad(exp(tY)x)h. Obviously we have

o—reg
bex <ben and that be, is a-invariant. We define
a :=he,Nada,.

It follows from Lemma FETI[v]) that the space aZ does not depend on the connected

component C of a," .. Furthermore, it is independent of the representative z € G
of the double coset PrH € P\G/H, cf. (&H). Note that a? = ap.

Proposition 4.5. Let X € a” \aZ. Then {exp(tX)x}AI | t > 0} is unbounded in 7.

Proof. Set a; := exp(tX). We argue by contradiction and assume that {atxﬁ |t >
0} is relatively compact in Z. Then there exists a compact set C' C G such that
(4.14) wzeCzH  (£>0).
Let
ht = (Ad(az)h)x :
With d := dimg we notice that the natural map
Z = Gryle), gH ~ Ad(9)h

is continuous and thus (LI4) implies that there exists a ¢ € C such that 61 =
Ad(cx)h. Since Ad(ay)h' = b for all ¢ € R we thus obtain that Ad(c 'ascx)h =

Ad(z)h and in particular Ad(c)™'X € Ny(Ad(z)h) = Ad(z)Ny(h). Recall from

Lemma 1] ({ B that Ny(h) = b + @ for some subalgebra i C m. Hence it follows
that

(4.15) X € b + Ad(cz)@ =: b'.
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We claim that X € i)\l. To see this, assume that X ¢ Hl. Since X is hyperbolic
and the elements in Ad(cz)m are elliptic, X ¢ Ad(cz)m. Let X, € Ad(cx)m be so
that X € Hl + X Let H' and H! be the connected algebraic subgroups with Lie
algebra equal to h! and Hl, respectively. The map RX — RX,,; tX — tX,, induces
a non-trivial algebraic homomorphism from R* to the compact group H! / H'. This
leads to a contradiction as such algebraic homomorphisms do not exist. This proves
the claim.

Let C be a connected component of a,~,., so that X € C and let Y € C. Then
by Lemma (.1 (i)

(bl)Y = (Ad(z)b)y = be,q-
Therefore,
Xebhna= (Blﬂa)y C()yNa=he,Na=a”,

which is the desired contradiction. O

5. PRINCIPAL ASYMPTOTICS

In this section we analyze the asymptotic behavior of generalized matrix coeffi-
cients m,,, where n € (W;;O)H . Before we state the main theorem, we introduce
some notation.

Let 0 € M and A € ag. We identify 757, with the space of smooth sections of the
vector-bundle V, ® Cy xp G — P\G. The support of a section or a functional is
defined in the usual way as a closed subset of P\G. For an open subset U of P\G
we define 73° (U) to be the space of all v € 73°, with compact support contained in
U. We write m, *(U) for the continuous dual of 73° (U).

For z € G we define [z] € P\G to be the coset Pz.

It follows from Lemma EIIE) that hnAd(z—')n C h. Moreover, for every Y € a”
there exists a Y, € n such that Y + Y, € Ad(z)h. (See equation () in Lemma
A1) Therefore for x € (H/h)(*c and r € G we may define x, € (aZ)% to be given by
the singleton

(5.1) Pe)} = x([Ad@)(¥ +m]nb) (v eal).

Note that XI’a = 0 and that y, only depends on the H-orbit P\PxH, not on the
representative z € G of the orbit.

Theorem 5.1. Let n € (1, 5)" and let v € G. Assume that there exists an open
neighborhood Y of [x] in P\G such that

(5.2) suppnNY = P\PzHNT.

oreg- For every X € C there exists a neigh-
borhood Q2 of [e] in Yx=' and a unique pair of a constant rx > 0 and a non-zero
functional nx , € 7, °°(2), satisfying

Let C be a connected component of a

(5.3) i ot (A Hop(X)420(Re, ) (X)-7x )
t—o00

o (exp(tX)z)n = nx, -

Here the limit is with respect to weak-x topology on my *(€2).
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For X € C outside of a finite set of hyperplanes He, there exists a w € —Ny[II],
so that w(X) = rx, and so that nx . satisfies

(5.4) WX,a(hC,m)nX,:v = {0},
(55  mMYV)nxe=(=A=pp—2p(c.) +0)(YV)nx. (Y €a).
Moreover, if x € (/h\/f])(*C and n satisfy

(5.6) o(Y)n=—xY)n (Y e€b),
then
(57) 71-;\/,o(Yan,:z: = _Xm(Y)nX,m (Y € af) :

Remark 5.2. For every non-zero H-invariant functional n € m, ** there exist an
x € G and an open neighborhood T of [z] in P\G such that (5.2)) holds. Indeed,
let Oy be an H-orbit in supp(n) of maximal dimension and let x € Oy. The action
of H on P\G admits finitely many orbits. (See [4] and [29].) Since H is a real
algebraic group, and P\G is a real algebraic variety, and the action of H on P\G
is real algebraic, the closure of any H-orbit O in P\G consists of O and H-orbits
of strictly smaller dimension. See [16, Proposition 8.3]. Therefore,

T :=0O,U U 0.

OeP\G/H
dim(0)>dim(Op)

is an open neighborhood of [z] and supp(n) NT = Oy.

Before we prove the theorem we list some direct implications, which will be crucial
in the following sections.

Corollary 5.3. Letn € (W;?)H and let x € G. Assume that there exists an open
neighborhood Y of [x] in P\G such that (52) holds. Let C be a connected component

Of 85 reg-
(i) For every X € C there exists a rx > 0 and a v € 75, such that

mvm(exp(tX)x . ZO) -~ et(*A(X)*PP(X)*Qﬂ(ﬁc,x)(X)Jrrx) (t = 0).

(i1) There exists a w € —N[II] such that
Mo = (=pp = 2p(fc,) +w)|

(iii) Let x € (E/b):& and assume that (2.6) is satisfied. Then there exists a w €
—No[II] such that

)\‘af = (_pP_2p(ﬁC,x) +w)‘af +Xx
Here x, is given by ([51).

Proof. Ad (@): The functional 7y, is non-zero, hence there exists a v € 73° (2) for
which 1y ,(v) = 1. The claim now follows from (5.3).
Ad (izd): Let X € C\ He. Since aZ = e, N a, the identity follows from (5.5) and

G.1).
Ad ([z): The identity follows from (i) since Xx} = 0. O

Qg

az ag
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In the remainder of this section we give the proof of Theorem (.11

We fix an element € G and a connected component C of a,".,. Recall that

n; C nis an a-invariant vector complement of n¢ ,, so that n = n¢ , ®nz. By Lemma
we have
g=(Ad(z)h+p) ®7g.
Choose a subspace p’ of p so that g = Ad(x)h &0 @ p’. Let
w : ﬁC,x — ﬁg + p

be minus the restriction of the projection g — ng @ p’ along this decomposition.
Then

Y +9(Y) e Ad(x)y (Y €Te,) .
For every Y € n¢ ,
Y=>014+¢)(Y)—-¢Y)elm(l+v)+ns+p.
Combining this with a dimension count yields
(5.8) g=1Im(l+¢)dngdp.
For the proof of Theorem [5.1] we need the following lemma.
Lemma 5.4. Let X € C and let ¢ : i, — Ws + p as above. The limit
Yx = tlggl() Ad (exp(tX)) oo Ad (exp(—tX))
exists in the space of linear maps n¢ , — 0; + p. Moreover, if X € C, then ¢x = 0.

Proof. Let Xy € C. If F is aline in the set Ad(x)h\ (Ad(x)hNp), then in view of (A1)
in Lemma [£.1] the limit Ex, is a line in n. Since this limit is also contained in h¢ ,, it
is in fact contained in he N = e .. In particular, if Y € ne .\ {0}, then Y +4(Y) €
Ad(z)h \ (Ad(z)hNp) by (E), and hence the limit of Ad (exp(tXo))R(Y +(Y))
is a line in n¢ ,. Since n; @ p is stable under the adjoint action of A, the eigenvalues
of ad(Xj) occurring in the decomposition of ¥ (Y") into eigenvectors must be smaller
than the largest eigenvalue occurring in the decomposition of Y into eigenvectors.
Therefore, it follows that

A (exp(tX0) ()|
(5.9) M A (exp(EX0)) Y]

=0 (Y en\{0}).

For a € ¥ U {0} let p, be the projection onto g* with respect to the root space
decomposition. Here g° = m @ a. Let a, 8 € X U {0}. Tt follows from (5.9) that
pg o1 op, # 0 implies that a(Xy) — F(Xp) > 0. Since this holds for every X, € C,
it follows that

TP - Z Ps© w O Pa -

a,BeXU{0}
(a=B)lc>0

Now

Ad (exp(tX)) oo Ad (exp(—tX)) = Z et(B(X)_“(X))pﬁ 0 1) 0 Py

a,feXU{0}
(a=B)le>0



DISCRETE SERIES 23
If X €C, then (o — 6)}6 > 0 implies that a(X) > B(X). Therefore,

tlirgoAd(eXp(tX))owoAd(eXp(—tX)): Z P oY op,.

a,feXU{0}
(a=PB)|c>0
a(X)=B(X)
The first claim in the lemma now follows with
(5.10) Ux= Y, pgotop..
a,BeXU{0}
(a=P)|c>0
a(X)=B(X)
If X € C then the sum in (B.I0) is over the empty set, and hence ©¥x = 0. This
proves the second assertion in the lemma. O

It follows from (B.8) and the inverse function theorem that for sufficiently small
neighborhoods V; of 0 in n¢ ,, and V5 of 0 in ng, the map

:Vix Vo= P\G;  (Y1,Y3) = Pexp(Ya)exp (Y1 + (V1))
is a diffeomorphism onto an open neighborhood of [z]. Moreover,
ViaY — ®(Y,0)

is a diffeomorphism onto a submanifold of P\G contained in P\ Pz H. Because the
dimension of the image equals the dimension of P\PzH, it in fact covers an open
neighborhood of [z| in P\PxH.

We view T\ v and C>° (V] x V4, V) as spaces of smooth sections of vector-bundles
and write ®* for the pull-back along ®, i.e., ®* is the map 7 v — C®(Vy x V3, V)
given by ®*v = v o ®. This map has a continuous extension to a map ®* : 7, * —
D'(Vi x Vo) @ V. Similarly we have a pull-back map 7%° — C°(V} x V4, V) which
we also denote by ®*. We note that there exists a strict’ly positive smooth function

J on V; x V5, such that

(5.11) p(¢) = D*p(JP"9)
for every ¢ € m, ° and ¢ € 755, with supp ¢ C ®(V; x V3).
Let n = dim(V5) and let ey, ..., e, a basis of n§ of joint eigenvectors for the action

of ad(a). We write 0; for the partial derivative in the direction e;, and whenever p
is an n-dimensional multi-index we write O* for 9} ... k.

Now ®*n is a V*-valued distribution on Vi x V5. From the condition (5.2) on the
support of 7 it follows that the support of ®*n is contained in V; x {0}. It follows
from [38, p. 102] that there exist a minimal k£ € N and for every multi-index p with
\p| <k a V-valued distribution 7, on V4 such that

(5.12) o= 1, ®.
lul<k
Here 0 is the Dirac delta distribution at 0 on ng. Note that this decomposition of
®*n is unique.
Lemma 5.5.

(1) For each multi-index p, the distribution 0, is given by a real analytic function
Ju Vi = VY de n, = f,dY; where dY; is the Lebesgue measure on V.
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(it) For each Yy € Vi there exists a pu of length |p] = k so that f,(Y1) # 0.

Proof. In the first part of the proof we follow the analysis of Bruhat as it is described
in [42] Section 5.2.3]. For h € H we write Uy, = <I>_1(<I>(V1 X VQ)h_l) and define the
real analytic map
o Up = Vi x Vo v @ (D(v)h) .
Note that p, maps U, N (V4 x {0}) to Vi x {0}. We further write
Upp:={veVi:(v,0) € Uy}

and we define the map &, : U1 — V4 to be given by pp,(v,0) = (§4(v),0) for v € V.

For all multi-indices p and v with ||, |[v| < k there exists a real analytic function

Muw {(h,v) e HXx Vi :v e Uy} = R
such that
Py ®0"6) = > Aulh, ) ©08°6  (heH).
[v|<k

(The domain of definition of A, , is equal to the inverse image of ®(V;, V) under
the smooth map V; x H — P\G; (v, h) — ®(v,0)h~!, and hence it is open.) Note
that pulling back along p, does not increase the order of the transversal derivatives,
hence A, ,, = 0 whenever |v| > |u|. We apply this identity to (B.I2) and obtain

@) = 5 Y AulhJein, © 75

<k |v|<|ul
= Z ( Z )\u v fhnu> ® 0"9.
lul<k  k=|v|=|u|

Since 7 is an H-invariant functional we have pj (®*n) = ®*n on Uj,. Together with
the uniqueness of the decomposition (5I2]) this implies for each p that

nu}Uhl Z A (s )Ermy (he H).
[v1=]ul

We now apply the pull-back along &, to this identity with h replaced by h~' and
thus obtain

(5.13) =Y AL &)l -
[v[=]ul

Here we used that f}:l(Uh_lJ) = Up1.

Let n = dim(ng) and let S be the set of multi-indices p € Njj with || < k. We
write p,, for the projection of (V*)* onto the u'" component and define ¢ to be the
(V¥)9-valued distribution on V; which for a multi-index y is given by

puC =Ny -
For h € H and v € Uy, let A(h,v) € End ((V})®) be given by
pu o Alh,v) op, = N (7 €4(0))
Then
610 = A, )l -
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We will finish the proof of the lemma by invoking the elliptic regularity theorem
to show that ( is locally given by a real analytic (V*)%-valued function. To this end,
let D be a real analytic elliptic differential operator of order d > 0 on the trivial
vector bundle Vi x (V)% — V. (Such differential operators exist, e.g. A® 1 where
A is the Laplacian on V; and 1 the identity operator on (V)%.) Let u,...,u; be
a basis of Uy(h). Since H acts transitively on P\PxH, there exist real analytic
functions ¢; : Vi — End ((V;)®) such that for ¢ € C>(V4, (V;)%)

l
Do(v) =D c;(0)u;(§A) )], (vEW).
j=1
Let vy € V4. Since D is elliptic of order d > 0, there exists a neighborhood U of v
such that the operator D', which for ¢ € C*(U, (V;)%) is given by

l

= ci(wo)u; (&6 — Alh, )o)(v)|,_, (weU),

Jj=1

is a real analytic elliptic differential operator on the vector bundle U x (V)% — U.
Note that D'C = 0 on U. By the elliptic regularity theorem, there exists a real
analytic function f : U — (V) such that ( = fdY; on U. (See for example
[43, Theorem IV.4.9] for the smoothness of the solutions and [I7, p. 144] for the
analyticity.) Since vy was chosen arbitrarily, it follows that f extends to an analytic
function on V; and that ¢ = fdY; on Vi. Let f, = p,f. Then f, is real analytic
and 7, = f,dY;. This proves (i).
By (BI3]) we have for every u of length |u| = &

Fu(@ () = D N (B 6 (0NM) (Y1) (b€ H, Y1 € Uny).
lvl=Fk

Let Y7 € Vi be such that f,(Y7) = 0 for all v of length |v| = k, then the right-hand
side vanishes at the point Y; for all h € H such that Y; € U, ;. This implies that the
left-hand side vanishes on an open neighborhood of Y;. Since the f, are analytic,
it follows that all f, for p of length |u| = k vanish on V;. Assertion (i) now follows
from the definition of k. O

Proof of Theorem[51l. Let ® be as before. Recall that Wi‘fa(lm(q))) is the space
of all v € 7}, with compact support contained in the image Im(®) of ®. Let
v eme (Im(®)). It follows from (51T, (EI2) and Lemma G5 that

n(v) = <1>*?7(J<1>*(v))

= >0 3 [T Y 00 (v exp(Ya) exp (Vi +0(V)a) )| | ani.
lul <k -
By the Leibniz rule the integrand on the right-hand side is equal to
S (4) o amw]|_ 0 [oro etz enp (v wtvi)a) |

v<p

Note that the Jacobian J is a real analytic function. By Lemma [B.0I({) also the
functions f, are real analytic. Let €,...,¢, be a basis of n¢, consisting of joint
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eigenvectors for the action of ad(a) on ne,. For a multi-index x and Y € n¢, define
Y" € R in the usual manner with respect to the basis €y, ..., ¢€,. By shrinking
Vi and V5 we may assume that the Taylor series of J and the f, are absolutely
convergent on Vi X V5 and Vi, respectively. Let

(514 0 (1) B8 03,V o FulT2) = Sovi,

be the Taylor expansion of the function on the left-hand side Here for every multi-
index r the coefficient ¢}, , is an element of V7. Since the series on the right-hand
side of (BI4) is absolutely convergent on V; and since v has compact support in
Im(®), we can apply Lebesgue’s dominated convergence theorem to interchange the
integral and the sums, and obtain

5.15 YrC™ a“ Y, Y 4+ (Y, )} e
o ¥k;/ nt exp( Jexp (Vi + (1)) Vom0
where
Cp= > i, eV
lu|<k,p>v
Recall that ey, ..., e, is a basis of nj; consisting of joint eigenvectors for the action of

ad(a) on ng. For a multi-index v, let wy,, € —Ng[II] be the a-weight of e} --- el €
U(n), where U(n) denotes the universal enveloping algebra of n. Further, for a
multi-index xk we define w;,, € —Ny[II] to be the a-weight of €' ---€» € U(m).

Define

={(v,r) : CF #0}.

Let X € C be fixed. The set {wy,,(X) —w; «(X) : (v,k) € Z} is discrete. Moreover,
it is bounded from above as there exists only finitely many multi-indices v of length
at most k and wy ,,(X) > 0 for every k. Define

(5.16) rx = max{ws,(X) — w 4(X) : (r,k) € E}

and

(11

Ex ={(,k) EE:wo (X) —wi(X)=rx}.
By Lemma B[ there exists a multi-index g of length k& such that f,,(0) # 0.
If we take i = v = po then the left-hand side of (5.I4) is non-zero in Y; = 0.
Therefore, the coefficient Cgo = cH0 1w 7 0, and hence (u,0) € =. Since w; g = 0,
we have rx > ws (X)) > 0.
We will now specify the domain €2 that appears in the theorem. For this we first
introduce a family of diffeomorphisms. For ¢t € R, let a; := exp(tX). We define

U, - Ad(a)Vi x Ad(an)Va — P\G;  (Y1,Ya) @(Ad( YY;, Ad(a; )YQ) v la;t

Observe that U, is a diffeomorphism onto its image for every ¢t € R. For every

(Y1,Y5) € Ad(ay)Vh x Ad(ay)V; we have
(Y1, Y2) = Pexp (Ad(a; )Y ) exp ((Ad(a; )i + v ( Ad(a; Y1) )a;!

— Pexp(Ya) exp (Y1 + Ad(at)w(Ad(agl)Y1)> .
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Let Gx be the graph of ¢x. Then g = p & Gx @ ng, and thus there exist open
neighborhoods W, and W of 0 in n¢ , and n; respectively such that the map

\I/OOZW1XW2—)P\G,
given by
U (Y1,Ys) = Pexp(Ys) exp (Yl + Q/JX(YD) ;
is a diffecomorphism onto an open neighborhood of [e] in P\G. The map W is
a limit of the maps W, in the following sense. Since Ad(a;) acts with eigenvalues

larger or equal than 1 on n¢, and ng, there exist bounded open neighborhoods U;
and U; of 0 in n¢, and ng, respectively, satisfying

U, CW, N ﬂ Ad(a,)V; and U, CWyonN ﬂ Ad(a;)Vs.

>0 >0
It follows from Lemma [5.4] that
(517> tli>r£o \Ilt(}/h 1/'2) - ‘;[100(3/17 1/'2) ((}/17 1/'2) S Ul X UQ) )

where the limit takes place in the space of smooth maps U; x Uy — P\G. We claim
that for sufficiently large R > 0 there exists an open neighborhood € of [e] in P\G
such that

(5.18) QC Uoo(Uy x Ua) N[ Wi(U1 X U) .
t>R

Indeed, the constructive proof of the inverse function theorem (see for example
Lemma 1.3 in [32]) gives a lower bound on the size of the open neighborhood of
le] € P\G that is contained in W;(U; x Us) in terms of the tangent map of U, at
(0,0). The claim therefore follows immediately from (G17).

For (v, k) € E, let n" € m, °(2) be the functional which for v € 7%, () is given
by

519) )= [ [ (om0 e (4 + 05 (1))

We claim that (5.3]) holds with rx given by (5.16) and 7y, by the sum

ayy .

Yo=0

(520) Nxaz = ngéli )

(Vvﬁ)eEX
where the sum is convergent in ﬂ;f;o(Q) with respect to the weak-*x-topology.
To prove the claim, let ¢ > R and consider v € 73", (€2). For every Y, € ng and
Y eg.
[0 (7 a; 1)) (exp(Yg) exp(Y)a:) = a[)‘fppv(exp (Ad(at)Yg) exp (Ad(at)Y)> )
From (B.I5) it follows that
(5.21)

a7 (mola o))

_ Z Z/ YrCs av eXp (Ad(a;)Ys) exp <Ad(at)(Y1 + w(Yl))>)}

v|<k K

ayy .

Yo=0
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If 1 <i<nand «is the root so that e; € g%, then Ad(a;)e; = ae;, and hence
%U < exp (Ad(a)(se;)) exp (Ad(at)Y)> = af‘%v < exp(se;) exp (Ad(at)Y)> :
Applying the previous identity repeatedly yields
Oy, v ( exp (Ad(a;)Ys) exp (Ad(at)Y)> ’YFO
= a0y, v < exp(Ys) exp (Ad(at)Y)> ‘YFO :
Combining this identity with (.21]), we obtain

ag\+ppn(7r,\,a(x_1a;1)v)

=3 S /U YO [%ﬂ(exp(Yz)exp (Ad(at)(yl +¢(Y1)))>]

visk ®

dyy .

Y2=0

By definition of w; 4
(Ad(at—l)yl)“ =a, ""YY (Y1 €mney).

We now perform a substitution of variables and obtain that

/U1 Yrer [6§2v(exp(Yg) exp <Ad(at)(Y1 + w(yﬂ)))} 4y,

Y2=0

_ at_Qp(ﬁc,z)—wm / YOl [Uu,t(Yi)] Yy,
Ad(at)Ur

where

v, (Y1) = 8§QU<eXp(§/2) exp (Yl + Ad(at)@D(Ad(a;l)Yl))) e
-
for Y1 € Ad(a;)U;. It follows from (5.I8) and the fact that v is supported in €2, that
supp(vy,) € Ut

Now

7](71')\70(1‘_101;1)1))

(5.22) = 37 Sl [y, (v ani.
|

v|<k & U

(A 40 (X) 20 (e ) (X) 7 )

Since U; is bounded, the support of the functions v,; is bounded uniformly in
t > 0. Therefore, v,; converges for ¢ — oo in the space C2°(Uy, V,) to the function

i o (0 (1 +0x00)|

and thus we obtain,

lim [ YO [u,.(Y1)] dYy

t—o00 U,

_ / vrCs o, (ep(v) exp (Vi + vx (1) )] |

2

=y (v).

For the last equality we used (B.19).
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Let r = supy, ¢, [|Ya]|. Since Uy is bounded, we have r < oco. Moreover, since

U, C V4, we also have that r is strictly smaller than the convergency radius of the
Taylor series in (5.14]), and hence

(5.23) > e < oo

As v, is bounded uniformly in ¢ > 0 and v, and e (“’2’”(X)7““’“(X)7TX) < 1 for all
t >0 and (v,k) € Z, it follows from (5.23)) that the series in (.22)) is absolutely

convergent uniformly in ¢ > 0. Therefore,

lim ot (A +op (O+20(Fe ) () —rx
t—o0

)n(ﬁ,\,a(x_lat_l)v)

= Z Z hm ( t wQV X) w1 H(X) TX)/ Ylncg[vy,t(y'ﬁ] dYrI)
t—o00 U

v|<k K 1
= > ().
(v,k)EEX
This proves the claim that (5.3]) holds with rx given by (5.16) and 7x. by the
convergent sum (5.20)).

We claim that nx, # 0. Let v € 73, (€2). Since v is compactly supported, it
follows from (5.23) and Lebesgue’s dominated convergence theorem, that we may
interchange the sum and the integral, so that

)= 3 [ (oo (ewen (i ex )| avi
(v,k)EEX U =
(5.24) - Z/U Fy,x(ifl)[agv(exp(}@)exp (Y1+z/;X(Y1))ﬂ L
i<k’ U

where F, x : Uy — V! is given by the absolutely convergent series
(5.25) F,x(Wi):= > YFCr.

{r:(vm)eEx}
If {k: (v,k) € Ex} # 0, then F, x is not identically equal to 0 since it is given by
an absolutely convergent power series with at least one non-zero coefficient. Since
Ex # () there exists at least one multi-index 14 so that F,, x is not identically equal
to 0.

Let v, € V, and let ¢y € C°(U;) and ¢o € C°(Usz). We now take v to be the
element of 73° (€2) that is determined by

v(eXP(Y2) exp (Y1 + Q/JX(Yl))) = ¢1(Y1)da2(Y2)v, (Y, €Uy, Y2 € Us).
(Recall that W, is a diffeomorphism, and hence v is well defined.) Then
wealt) = 3 #0a00) [ (Fux(1)(00)o () di.
lv|<k

We assume that v,, ¢1 and ¢9 satisfy
(a) 0"¢2(0) =
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(b) If v # vy, then 0”¢2(0) =0
(¢) Y1 — F,, x(Y1)(v,) is not identically equal to 0,

@ [ (Baxtie)e0m v =1

Ui
Under these assumptions we have nx ,(v) = 1, and hence nx_, # 0.

We move on to show (5.4) for X € C. Let o € ¥U{0} and let Y € (heNg*)\{0}.
For Y’ € g, we write
> Vi

BeXU{0}
with Y/ ; € g° for every § € ¥ U{0}. In view of () in Lemma E.T] there exists an
element Y € b such that Y, , =Y and « is the unique element of XU {0} satisfying

o(X) = max{B(X) : B € SU{0}, Y/, #0}.

For every v € 7%°, we have

_ Z eHB=a)(X) v (Y’ 5)[e (>\+pP+2p(nc 2)—wx)(X) - Yo (exp(tX)z)n]
BexU{0}

— WE\/J(YJ,{,Q)T]X,I = W;\/,0'<Y>TIX,33 (t - OO) :
Here the limit is taken with respect to the weak-* topology. Since Y’ € b, we have
7, (Y")n = 0, hence 7y ,(Y)nx, = 0. This proves (5.4).

For X € C, we have ¢x = 0 by Lemma 54l Let N¢_, be the connected subgroup

of G with Lie algebra ¢, and let dn denote the Haar measure on N¢ . Then the
expression (0.24)) for 1y, simplifies to

mav) = Y [ Fux03) 08,0 (exp(ta) exp(1) |

lv|<k ne,x

dY;

Y2=0

dn (vens, ().

Yo=0

-y /_ Fyx (los(m) [0 (exp(va)m) |
vk New

Since n¢, C be, it follows from (B.4]) that WX,J(EC,x)TIX,x = {0}. Because of the
invariance of the Haar measure on Wc@, this implies that F), x is constant for every
v. Therefore, only terms with x = 0 can contribute to F, y in the series in (5.23]).
In particular it follows that (v, k) € Zx implies that x = 0. Moreover, rx in (G.16])
is equal to wy ,,,(X) for some multi-index 1o with the property that f,,(0) # 0 and
f1(0) = 0 for every pu > po. Let w := wy,, € —Np[II]. Then =y consists of pairs
(v,0) with wy,(X) = w(X). The formula for nx , simplifies further to

(5.26)

Ma() = | eftto(enom)
|u|<k New
wa,u (X)=w(X)
with ¢, :== (=1)1.J(0,0)£,(0) € V* \ {0}.
If we further impose on X € C the condition that x(X) # x'(X) whenever
X, X' € —Np[II] are two different elements, each of which being a sum of at most

dn, (v e W;OU(Q)) ,

Yo=0
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k roots in —X, then ws ,(X) = w(X) if and only if wy,, = w. Equation (5.5) then
follows directly from (5.26]).

It remains to prove that (5.6) implies (£.7). Let Y € aZ. Then Ad(:fl)(Y+n)ﬂH
is non-empty, see (1)) in Lemma Il Let Y’ € Ad(x~1)(Y +n) Nb. Then for every
vE T,

ot OFpp+2p(ic o) —wx ) (X) - (exp(tX) )WXO(Y’)n
ol OFpp+2p(ic.o)— wx)(X ( Ad(exp(tX)x )Y’)ﬁl\”a (exp(tX)z)n

converges to my (Y)nx. for t — oco. Moreover, it follows from (B.6) that it also
converges to —x(Y')nx. for ¢ — oco. Here again the limits are taken with respect
to the weak-* topology. It thus follows that

W;\/,U<Y)TIX,I = _X<Y,)TIX,$ .
Now (5.7) follows as x(Y”) = x.(Y). O

6. INTEGRALITY AND NEGATIVITY CONDITIONS

Let us denote by (-,-) the Euclidean structure on a*. For a € a*\{0} we define
oV € a by o = 2.2 o) € (a*)* = a. Recall that if @ € ¥ then " is called the

co-root of a and ZV( —) {a¥ | @ € ¥} is a root system on a, called the dual root
system.

For a connected component C of a,~,., and x € G, define l¢ , := bhe . NOhc .. Note
that l¢, is a reductive a-stable subalgebra of h¢, and l¢, Na = a,. Moreover, it
follows from ([dA]) that I menen = Ad(m)le, forme M, a € A,ne N and h € H.

For A € ag we set
Y\ ={aeX|\a") e Z}.

Lemma 6.1. Let (V,n) be a spherical pair belonging to the twisted discrete series
and assume that there is a quotient m\, — V. Consider n as an H-fized element
of m % and let x € G satisfy the support condition ([52). (See Remark[52.) Then

the f(;llowing assertions hold.

(i) Al,, € (=pp +Z[O])|

(i1) Let x € (H/b)(}é be normalized unitary. If (V,n) belongs to the x-twisted discrete
series, then

1 :

oz € §Z[HHa§ +iIm x, .

Let C be a connected component of a_

(111) X(a,lc.) C 3E(N). B

() Re M X) < 2p(le. N0)(X) for all X € —C C a*. The inequality is strict for
X e—-C\al.

Proof. Assertion (fl) is immediate from Corollary B3|[]) for any choice of C. We
move on to (). By (B.2]) we have

| det Ad(ha)| /h a*he (he HaecAyzp).

Then the following hold.

o—reg”
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We thus see that Re x(Y') = —%traud(Y’)’g/h for every Y € h. Let Y € a. It

follows from (ZI)) in Lemma @I that there exists an element Y” in Ad(z~1)(Y -+n)Nb.
Now

1 1
Rex,(Y) =Rex(Y') = —3 tr ad(Y’)}g/h € iZSpec(ad(Y’)) :

The eigenvalues of ad(Y”) are equal to the eigenvalues of ad(Y’). Therefore,

Rex, € %Z[H]

Since (V,n) is x-twisted, assertion () now follows from Corollary B3|[) for any
choice of C.

Assertion (i) is a consequence of () since Iz, Na = a, and hence a” € a, for all
a € E(a, [Cﬂﬂ)'

Moving on to ([vl) we first observe that if (V) n) is a spherical pair of the twisted
discrete series and 7, , — V, then Corollary 5.3 (fl) combined with the bound (£.9)
and Proposition @4 results for X € —C C at in the inequality

( —ReA - PP — QP(ﬁc,x)) (_X) +rx < —P(bc,x)(—X) :

al *

Hence

for all X € —C. If X € —C \ af, then instead of ([LJ) we may use ([AI0) in
conjunction with Proposition and conclude that in that case the inequality is
strict.

Let ve , be an a-stable complement of ¢, in he . Note that

2p(Mez) — p(bee) = —2p(le M) + p(oc NT) — p(ocz Nn).
Since ve , N O(ve ) = 0, it follows that

_ 1
pr +2p(c.) = plbes) € =2p(lea N n) + SNo[E7].
Now (i) follows from (G.1]). O

Corollary 6.2.

(i) Let x € (f]\/h)(*C be normalized unitary. There exists a finite set S, of pairs
(b,v), where b is a subspace of a and v € b*, with the following property. If
(V,n) is a spherical pair belonging to the x-twisted discrete series of representa-
tions, and there is a quotient my , — V', then there exists an w € spang (Z()\))
and a pair (b,v) € S, such that

A, € %Z[H]]b +iv,
ReMX) <w(X) (X eah),
ReA(X) <w(X) (Xe€at\b).
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(1) If (V,n) is a spherical pair belonging to the discrete series of representations,
and there is a quotient my, — V', then there exists an w € spang (E()\)) and
a subspace b of a such that
+z[M)|, € 5

A’b ( 2 H}b’

ReA(X) <w(X) (X eah),
ReA(X) <w(X) (Xe€at\b).

1

Proof. Ad (i): Let S, be the set of pairs (a, x,) where = runs over a set of rep-
resentatives in G of H-orbits in P\G. Consider 1 as an H-fixed element of 7,
Then there exists an H-orbit in P\G so that the support condition (5.2]) is satisfied.
See Remark Let © € GG be the representative of the orbit. The assertions now
follow from (i), () and () in Lemma G.I with w = ", 2p(lc, Nn), b = af and
v =1Imy,.

Ad (ii): It V belongs to a discrete series representation, then H = b by Lemma [3.3]
and therefore a? = a,. We set b = a, and use () in Lemma B instead of (). O

7. NEGATIVITY VERSUS INTEGRALITY IN ROOT SYSTEMS

In this section we develop some general theory which is independent of the results
in previous sections.

7.1. Equivalence relations. Let X be a (possibly non-reduced) root system span-
ning the Euclidean space a*. We denote by W the corresponding Weyl group. Let
IT C X be a basis, X" the corresponding positive system and C' C a = (a*)* be the
closure of the corresponding positive Weyl chamber, i.e.

C={reca|(Vaell) a(z) > 0}.

Further we use the notation C* = C'\{0}.
We define an equivalence relation on ag by A ~ p provided that p is obtained
from A via a sequence

A = Hos s - o5 HE = [y
where for all 7:
(a) piv1 = si(p;) with s; = s,, the simple reflection associated to «; € II,
(b) pioi) & Z.
The equivalence class of \ is denoted by [)].
A root subsystem Y° of the root system ¥ is a subset of ¥ that satisfies:

(a) X0 is a root system in the subspace it spans,
(b) if o, B are in X%, and v = a + 3 € 3, then v € X°.
A root subsystem XY C ¥ has a unique system of positive roots ¥%* contained in
X,
Given now \ € af we define
Y(A)Y = {a" e ZY|\a") € Z}
Y(A) ={aeX|\a") e Z}.
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Clearly ¥(\)Y is a root subsystem of ¥V, but observe that ¥(\) might not be a root
subsystem of ¥. We call an element p € a* a weight of X(\) if u(a") € Z for every
a € X(A). The set of weights of ¥(\) forms a lattice in a* which contains Re(\).

Next we define an equivalence relation on W by u ~, v provided that uC and
vC' are connected by a gallery of chambers (uC' = Cy, (1, ..., C; = vC) such that for
each i, C; and C;1; are separated by Hg, with f; € ¥\X(\) an indivisible root for
each 1.

Let (AT = X(\) N X*. We denote the closure of the corresponding positive
chamber by C(\) C a.

Lemma 7.1. Let A € ai.. Then the following assertions hold:

(i) C(N) equals the union of the sets w(C') where w runs over [e]y, the equivalence
class of e € W.

(ii) Let p € af. Then X\ ~ p if and only if there exists a w € W with w™" € [e]
such that p = w.

Proof. We start with the proof of (fl). Let D be the union of the sets w(C) where
w runs over [e],. By definition C'()\) is the closure of a connected component of
the complement of the union of the hyperplanes H, with o € ¥(\), namely the
connected component which contains int(C').

Clearly C'(\) is the closure of the union of the open chambers it contains. These
are of the form w(int(C')), where w varies over a subset of [e]y; indeed, the latter
follows since the hyperplanes intersecting int (C ()\)) are hyperplanes of roots which
are not in X(\). Hence C'(\) C D, since D is closed. But clearly we can not
extend any further beyond C'(\) while staying in D, since all the walls of C'(\) are
hyperplanes of roots in (). Hence the equality is clear and (i) is established.

Moving on to (@), let A = po, pt1,..., 4 = p be a sequence connecting A and
i = wA such that p; 11 = s;(p;), with s; a reflection in a simple root «;, and
pi(e)) € 7 for all i. Let wy = e and w;;; = s;w;. Furthermore, let 8; = w; *(ay),
so that w; 411 = w;sg,. Then 3; is an indivisible root and

AB) = wiM) () = pilaf’) € Z,
that is, 5; € X\X(A). We may assume that w; = w. Therefore, the gallery

C,w N (C), w1 (C), ..., w HO)

yields an equivalence w=! ~, e. The converse is also true. If the gallery (Cy =

C,Ch,...,Cr=w C)) defines an equivalence e ~y w™"', then Cjy1 = s5,(C;) with
B; € ¥\X()\) an indivisible root for all i. Let w; € W so that C; = w; 'C, and
w; := w;(A). Since Hg, is a common face of C; and C;1; (by definition of gallery),
we have sg,w; ' = w; 's,, for some simple root a; = w;3; € II. Note that

pi(ey) = wiMey) = A(B)) ¢ Z.

This implies that A\ and w(\) are equivalent and finishes the proof of (). O
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7.2. Integral-negative parameters. Let us call A € ap weakly integral-negative
provided that there exists a wy € spang(X(A)) and a subspace a, C a such that

(Re)\—w)\)‘c <0,

(Re X — wy <0.

”C’\a,\

Further, we call A € af. integral-negative provided that there exists a wy € spang(3(\))
and a subspace a, C a such that

Al =Re)}|

ay ay

(ReX —wy)|, <0,
(Re)\—w)\)}c\aA <0.

Finally, we call A € af. strictly integral-negative if there exists a wy € spang(X(\))
such that

(Re X — wy <0.

)}C\{O}

Remark 7.2. These definitions are motivated by our results from the previous
section. Let a C g and X(g,a) be as introduced in Section 2, and let X be the
positive system determined by the minimal parabolic subgroup P. Let (V,n) be a
spherical pair and assume that there exists a quotient morphism 7, — V' for some

A€afand o € M. Then from Corollary we derive the following.

(i) 2) is weakly integral-negative if V' belongs to the twisted discrete series for Z.
In fact we may take a, and w) to be equal to b and w as in Corollary [G2().
(i) A is integral-negative if V' belongs to the discrete series for Z.

Remark 7.3. Sometimes more is true for parameters of the discrete series and A
is actually strictly integral-negative. This for example happens in the group case

Z=GxG/G~G.
Let us define the edge of A by
e:=¢N):={X €a|(VaeX()N) a(X)=0},

i.e., ¢ is the intersection of all faces of C'()).
Notice the orthogonal decomposition

(7.1) a=e®spang 2(A\)".

Theorem 7.4. Let A € ai.. Then the following assertions hold:

(i) Suppose that [\ consists of weakly integral-negative parameters. Then there
exists a w € W with w™ ~ e such that ¢ C w™ ayx. Moreover, Re M| = 0.
Finally, there exists an N € N only depending on ¥ such that Re A\(a") € ~Z
for all a € 3.

(i1) If [\] consists of integral-negative parameters, then )\‘e = 0. In particular,
A= Rel.

(111) If [A] consists of strictly integral-negative parameters, then ¢ = {0}. In partic-
ular, X2(N)Y has full rank.
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Proof. We start with (). Let u € [A], that is 4 = w for some w € W with w™! ~y e
by Lemma [CTI[). Since p is weakly integral-negative there exists a subspace a,
of a and an w,, € spang X(x) such that (Rep — w < 0 and (Rep —w,)
1

o <
< 0 and

/‘)}C\au
0. The latter conditions are equivalent to (ReA — w™ wu)}wﬂc\wﬂa
(Re X — wilwu)’wﬂc < 0. Now define a function f :a — R by
f(X) == max W wyn (X) (X €a).
G

w i~

By Lemma [ZTI) we have C'(A) = U,-1.,, w™'C, and thus

(7.2) (Re>‘ - f) ’C(A)\Uw71N/\ew*1awA <0,
(7.3) (ReA=f)gp 0.

Recall that e is the intersection of all faces of C(\). Since w¥(A\)Y = X(wA)Y for
every w € W, we have wlw,) € spang (Z()\)) It follows that wilww,\}e =0 and
thus f} = 0. Since ¢\ U1,
follows from (C2) that e C |,,- Loye wla,y. Hence ¢ C w'a,, for some w € W

with w™ ~, e. It now follows from (Z.3)) that Re)\’ = 0.

We call a root subsystem Y’ of 3 parabolic if ¥/ is the intersection of ¥ with a
subspace. Let ¥p(A) C 3 be the parabolic closure of ¥(\) C ¥, i.e., the smallest
parabolic root subsystem of 3 containing X(\). Then ¥p(A\) = ¢t N, and L(\)Y
Yp(A)Y is a root subsystem of maximal rank of the corresponding dual parabolic
subsystem Xp(\)Y of 3V, By the above, Re()\) € et, and by definition of $()),
Re()) is a weight of 3(\).

Let N be the index of the root lattice of Xp()) in the weight lattice of 3(\)
(which is a lattice containing the weight lattice of ¥p(\)). Then N Re(A) is in the
root lattice of ¥p(\) and thus, a fortiori, in the root lattice of ¥. In particular,
N Re()) is integral for 3 (i.e., as a functional on XV).

Since there are only finitely many root subsystems of maximal rank in any given
root system, and only finitely many parabolic root subsystems, we see that we can
choose the bound N € N independent of A (only depending on ¥). This completes
the proof of ().

We move on to (Iﬁ]) From (i) it follows that there exists a w € W with w™" ~, e
such that ¢ C w™a,y. Now A(e) € Mw ™ ayn) = wA(aus) € R. It follows that A|
is real and thus )\’e =0 by ([@). It then follows from (I]) that A = Re A.

Finally for () we observe that [A] being strictly integral-negative implies, as
above, Re A(X) < f(X) for all X € C(A)\ {0} and therefore ReA| , < 0. The
latter forces ¢* =0, i.e., e = {0}. O

w~ta,, is invariant under multiplication by —1, it

7.3. Additional results. The assertions in this subsection are of independent in-
terest, but not needed in the remainder of this article.

Given a full rank subsystem (X°)Y of ¥V we note that Z[(X?)¥] has finite index
in the full co-root lattice Z[¥"] and thus

Z[2V])Z](2°)Y @Z/d 7
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for d; € N. Set N(X°) := lem{dy,...,d,} and note that N(X°)a" € Z[(X°)Y] for all
a € X

The following corollary is particularly relevant for the group case Z = G x G/G.
See Remark [[.3

Corollary 7.5. Let A € af. be such that [\ consist of strictly integral-negative
parameters. Then

MNaY) € —=—Z (aeX).

Note that
Ny = lem{N(Z") | (2°)Y is full rank subsystem of ¥V} .

is finite as there are only finitely many full rank subsystems of 3V. Therefore, Ny
is an upper bound for the indices N(X()\)) which only depends on X.

Remark 7.6. Full rank subsystems can be described by repeated applications of
the ”Borel-de Siebenthal” theorem. That is: The maximal such subsystems are
obtained by removing a node from the affine extended root system (and we can
repeat this procedure to obtain the non maximal cases).

In type A,,, there are no proper subsystems of this type, since the affine extension
is a cycle, so removing a node will again yield A,. Hence if ¥ is of type A,,, then
the condition that [A] consists of strictly integral-negative parameters implies that
[A] = {\}, and X is integral on all coroots.

8. INTEGRALITY PROPERTIES OF LEADING EXPONENTS OF TWISTED DISCRETE
SERIES

For every a € Il and A € af. we set A, := s,(\) and 0, := 0 0 s,. Further we
let Io(A) @ 7%0 . — 71X, be the rank one intertwining operator. If we identify the
space of smooth vectors of 7y, with C°(K xj; V) then the assignment

ar — End(C™(K %3 Vy)), A= I,(N)
is meromorphic. In the appendix we prove:

Lemma 8.1. There exists a constant N € N only depending on G with the following
property: If Na¥) & +Z, then 1,()\) is an isomorphism.

Combining Lemma R1] with Remark [7.2] we obtain:

Corollary 8.2. Let N € N be as in Lemma 81l Let (V,n) be a representation of
the twisted discrete series and my, — V a quotient morphism. Then the equiva-
lence class [2N )] consists of weakly integral-negative parameters. If moreover (V,n)
belongs to the discrete series, then 2N\ consists of integral-negative parameters.

Proof. If a € 1l and o ¢ X(2N\), then I,(\) is an isomorphism by Lemma Rl
Therefore the composition of 1,(\) with the quotient morphism 7, — V' gives a
quotient morphism 7y, ,, — V. It then follows from Remark [2({) that 2), and
thus also 2N )\, is weakly integral-negative. By repeating this argument we obtain

that the equivalence class [2N)] consists of weakly integral-negative elements. If
(V,n) belongs to the discrete series, then we use (i) in Remark [[.2 instead of ({l). [
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Recall the set of spherical roots S C a3 and recall that S C Z[X]. Let x € (/h\/h)(’&
be normalized unitary and let p € a}, be a leading exponent of a y-twisted discrete
series representation (V,7). Then we know from (3.3]), (8.4]), and (3.3]) that we may
expand p as

(8.1) u:pQ+ana+i1/ (ca €ER).
acs

with

(a) co >0 forall a € S,

(b) v € aj;, with V}GZE = Im y|

az g

Theorem 8.3. Let Z = G/H be a unimodular real spherical space. There exists
an N € N and for every normalized unitary x € (E/b)(}é a finite set Y, C a* with
the following property. Let (V,n) be a spherical pair corresponding to a x-twisted
discrete series representation and let v be any leading exponent of (V,n), which we
expand as 1 = pg + Y eg Ca +iv as in (81). Then the following hold.

(i) co € %N for alla € S and v € Q.
(i) If in addition (V,n) belongs to the discrete series, then v =0, i.e., p € a3,. In
particular, the infinitesimal character of V' is real.

Proof. We let A := woii + pp and recall from Lemma [B.4] that there exists a o € M
such that 7, , — V. By Corollary B2l there exists a constant N(G) € N, depending
only on G, such that the equivalence class [2N(G)\| consists of weakly integral-
negative elements. By Theorem [Tl (fl) there exists an N’ € N, only depending on
G, such that
Re (") € %Z (aeX).

This implies that Re A € 7 Z(II) for some N” € N depending only on G. Since the
spherical roots are integral linear combinations of simple roots, it follows that there
exists a N € N (only depending on Z) such that ¢, € %N. Moreover, it follows
from Corollary B.2) and Theorem [TAH) (cf. Remark [T.2]) that the imaginary part
of X is contained in a finite subset of a* depending only on x. This proves (i). For
the second assertion we use () in Theorem [4] instead of (). The infinitesimal
character of V' is equal to the infinitesimal character of 7y ,, which is real since A is
real. O

Theorem () implies the following.

Corollary 8.4. Fiz a normalized unitary x € (f]\/h)(*c and a K-type 7. There are
only finitely many x-twisted discrete series representations V- for Z such that the
T-isotypical component V[t| of V' is non-zero.

Proof. (cf. [12, Lemma 70, p. 84]) Let t C m be a Cartan subalgebra of m. Set
¢ := a+ it and note that cc is a Cartan subalgebra of gc. We inflate X7 = X (g, a)
to a positive system X7 (gc, ¢) and write pp for the corresponding half sum. Observe
that pg = pp + par € ¢*. We identify o with its highest weight in it* and write (-)?
for the quadratic form on c¢¢ obtained from the Cartan-Killing form. Let Cy be the
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Casimir element of g. Note that Cy acts on 7y, with A € af as the scalar

A+ 0+ pu)? = (pB)*.

Let t; O t be a Cartan subalgebra of £ and p, € ity be the Weyl half sum with respect

to a fixed positive system of 3(€c,t;) C ite«. As before we identify 7 € K with its
highest weight in it;. We write (-)7 for the quadratic form on t;c obtained from
the Cartan-Killing form. Further we let C, denote the Casimir element of €. The
element A := Cy + 2C; is a Laplace element and thus (Av,v) < 0 for all K-finite
vectors in a unitarizable Harish-Chandra module V.

Let now V be a x-twisted discrete series representation and 7, — V' a quotient
morphism. For 0 # v € V[r] we obtain

0> (Av,v) = ((Cy + 2C)v,v)

= (A0 + o) = () = 2(( + po)} = (pe)}) ) (v, ).
This forces
A+ 0+ pa)? = (p)” <2((7 + po)i — (pe)§)
and in particular
(Re\)? — (Im\)? — (p)* < 2((7 + pe)§ — (pe)i) -

By Theorem (@) Re A is discrete and Im A is contained in a finite set that only
depends on Z. The assertion now follows from the fact that the map X from (LI
has finite fibers. O

APPENDIX A: INVARIANT SOBOLEV LEMMA

The aim of this appendix is an invariant Sobolev lemma for functions on Z that
transform under the right action of Az by a unitary character.

Recall that a weight on Z is a locally bounded function w : Z — R<( with the
property that for every compact subset {2 C G there exists a constant C' > 0 such
that

w(gz) < Cw(z) (z€Z,g€9).
Further recall that there is a natural identification between the space of smooth
densities on Z and the space of functions

C(G: Ag) ={f € C™(G): f(+h) = A (h)f for h € H},
where Az is the modular character
Agzﬁ]—ﬂ&w; ha — a=%2 (a€ Azp,he H).
See Sections 8.1 and 8.2 in [23]. Note that smooth functions f : G — C satisfying
f(-ha)=a™f (h€ Ha€ Ayp)

for some v € a7 5, are in the same way identified with smooth half-densities on Z.
Let B be a ball in G, i.e., a compact symmetric neighborhood of e in GG. Recall
that the corresponding volume-weight vg is defined by

vp(z) := volz(Bz) (z€2).



40 KROTZ, KUIT, OPDAM, AND SCHLICHTKRULL

Note that if B’ is another ball in GG, then there exists ¢ > 0 such that

1
~Vp S VB S CVp .
c
In the following we drop the index and write v instead of vp.
The following lemma is a generalization of the invariant Sobolev lemma of Bern-

stein. See the key lemma in [3] on p. 686 and [31, Lemma 4.2].

Lemma A.1. For every k > dim G there exists a constant C' > 0 with the following
property. Let v € ay p and let f € C®(Z) be a smooth function which transforms
as f(z-a) = f(2)a?e™ for alla € Az g, and let Qf be the attached half-density on
7=a / H. Then

[F) < Cv(z) 219 ]lBzox (2 € 2).
Here % € Z is the image of = € Z and | | Bz.2:k is the k’th L?-Sobolev norm on BZ.

Let Ay be a closed subgroup of A such that the multiplication map Ay x A — A
is a diffeomorphism. Let A; be the cone such that AjAp/Ap = A%. By taking

inverse images of the projection Ay = A/(ANH) = A; = A/Ap we get

(A.1) AgAg/(ANH)=A,.

We recall from [23] Section 3.4] that there exists a finite sets £,V C G such that
(A.2) WAz g C Az pWH
and

7 = FEAW-%.
For the proof of the invariant Sobolev lemma we need the following lemma.

Lemma A.2. There exists an a; € A and a constant ¢ > 0, depending only on
the normalization of the Haar measures on K and Az, such that for all compactly

supported measurable non-negative densities f on Z we have
/ f>c Z / f(kayaw)a™?? da dk .
z wew VK A;

Proof. Let f be a compactly supported measurable non-negative density on 7 and
let ¢ : Z — R5( be a compactly supported continuous function such that

/ pap)ay™ day = f3) (2 € 2).
Ap/ANH

Here 2 € Z denotes the image of z € Z. Then by the Fubini theorem for densities

(see [T, Theorem A.8))
/2 f= /Z p(2) dz.

We will use Lemma 3.3 (1) in [28] to obtain a lower bound for this integral. The
estimate in that lemma involves the integration over the conjugate of the maximal
compact subgroup by some element in A, which we shall denote by a;. We apply
the lemma to the function z +— ¢(a; - 2) on Z, and write the estimate in terms of
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the original maximal compact subgroup K. By this we obtain a constant ¢ > 0
such that

/(p(al 2)dz > ¢ / / (kayaw)a™ 2’2 da dk .
4 wew z

Using that the measure on Z is G-invariant and (A), we obtain

/ 2)dz > ¢ Z / / / kalaaEw)a;an_QpQ dagdadk .
AE/AﬂH

In view of (A.2]) we now have

/ dz>cZ/ fkalawa deadk—cZ/ fk:alaw ~20Q da dk .

weWw weWw
O

Proof of Lemma[A 1. We will prove that there exists a constant C' > 0 such that
for every non-negative smooth density ¢ on Z and every z € G

1

A. <C—— :

(A3 [owag<o= [ o

On the left-hand side ¢ is considered as a function on G that transforms under the
right-action of H with the modular character. Before giving the proof of (A3) we
derive the lemma from it. By the local Sobolev lemma, applied to the function
f(-2) on G, we obtain the following bound by the k-th Sobolev norm of f( - z) over
the neighborhood B of e € G:

[f () < CIFC-2)] 3.2k

The constant C'is independent of f and z. Choose x € G such that z = xH. Using
(A.3) for the square of each derivative up to k of €2, we also have

1f( )||sz<c ()H f“BxHQk

The lemma follows from these inequalities.
For a measurable function x : Z — Rx¢, let ¢, : G — R, be such that

= [ wnan.

Then for every a € Az we have

/@/)X(xa)dx://wx(gha)dhdgH: }detAd(a)} }/X(z-a)dz.

Since ‘det Ad(a ‘ ‘ = a2, and by the invariance of the Haar measure the left-
hand side is 1ndependent of a, it follows that

/Z X(z - a) dz = a*e@ /Z X(2)dz .

We may apply this to y = 1p, and obtain
v(-a) = a v (a€Azp).

We conclude that % may be considered as a density on Z.
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Let B C (G be a ball and define wpg : 7 — R<o by
~ 1 ~_ B
wp(Z2) ::/ — (zeZ).
Bz

A%

If B’ is another ball in G, then we may cover B’ by a finite number of sets of the
form gB. Since v is a weight, it follows that there exists a ¢ > 0 such that

(A4) —Wpr S WpR S CWp.
C

Let Q be a compact subset of G. Let B’ = {g~'bg: g € Q,b € B}. Then
. 1 1 ~ - =
WB(gz):/ —§/ — =wp(2) (zeZ,geQ).
Bgz v gB'Z v
From (A.4) it follows that there exits a ¢ > 0 such that
wp(g2) <ewp(3)  (F€Z,g€Q).

We thus see that wp is a weight.
We claim that there exists a ¢; > 0 such that for every z € Z

(A5) WB(/Z\) >C.
Since wp is a weight, it suffices to show that inf, .-, o, Wg(aowo - 20) > 0 to
Z7

prove this claim.
Let ag € A7 and wo € W. 1t follows from the inequality (3.6) in [28] and Lemma
that there exists a an element a; € A and a constant C' > 0 such that,

WB((I()U}O . /Z\()) Z C Z / / 1Ba0w0.30(ka1aw . /Z\Q) da dk
ew /KA
Z C/ / 1Ba0w0.30(ka1awo . /Z\()) da dk
K -
Z

> C/ / 1 Baguwo 2o (kawy - Zp) da dk .
K a1A§

For the last equality we used the invariance of the measure on Az;. Let A. be
a compact subset of A with non-empty interior and A.Az p/Azr C alAé. By
enlarging B, we may assume that B is invariant under left translations by elements
from K on the left and A. C B. Since fK dk =1, we have

/ / 1 Bagwe =z (kawy - Zo) da dk = / 1 Baguwg-zo (GWo * Z0) da .
K alAé alA%

If a € apAcAz r/AzE, then awg - 2y € Acaowy - 2o € Bagwy - zp. Therefore,
/ 1 Bagwo-20 (awo ’ /Z\O) da > / 1aoAcAZ,E/AZ,E (a’) da.
a1 A= a1 A=
Z Z
Since ag € A% and A%A% - Aé, the set agA.Az /Az E is contained in alAé and
thus

/ e 1a0AcAz,E/Az,E (a) da = /A 1a0AcAZ,E/AZ,E (a) da = /A 1AcAZ,E/AZ,E (a) da,
a1A> _

Z Z



DISCRETE SERIES 43

and hence

wi(aowo - 20) =2 C' | 1a.ayp/a,,(a)da.
Az

The claim ([A.8) now follows as the right-hand side is independent of ag and strictly
positive.

Let ¢ be a non-negative smooth density on Z and let z € G. To prove ([A3]) we
may assume that supp ¢ C BzH and that B! = B. Since v is a weight, there

exists a constant co > 0 such that v(z) < eyv(y) for every y € Bz, If y = bx with
b € B, then

0 [ olgn)dy < exty) [ olab)dg < ewvty) [ olan) do

Note that v¢ is right H -invariant, hence

r) /B o(gz)dg < exv(y) | dgy)dg  (y € Be).

BQ

/ Hlow) dg /yEBmH % : E ) /yeBxﬁ { B2 #lo) dg} .

Let ¢; > 0 be as in ([A.5). Then

Jotondo< - [ oanag [ St [ [ stonas].

Now we use Fubini’s theorem to change the order of integration. We thus get

/cb gr)dg < Clv(x) /32 [/yemﬁ ¢(gy)] dg

Therefore,

< / / o( gy
01V
¢y vol(B?)
=2 [
avi@) Sz
This implies (A.3) as by assumption supp ¢ C Bz H. O

APPENDIX B: INTERTWINING OPERATORS

The main result of this appendix is the following proposition.

Proposition B.1. There exists a N € N such that for every a € I, o € M and
A € af with Ma) & +Z, the standard intertwining operator Io(X,0) : T 00 —
Tae 18 defined and an isomorphism.

Before we prove the proposition, we first prove a lemma.

Lemma B.2. Assume that the split rank of G' is equal to 1 and let o be the simple

root of (g,a). There exists a N € N such that for every o € M andv € ag with
v(aV) ¢ ~Z, the representation T, , is irreducible.
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Proof. Let t be a maximal torus in m. Let h = a @ it. Then h¢ is a Cartan
subalgebra of gc. We define X(h) C h* to be the set of roots of (gc, hc), choose a
positive system Y1 (h) and define

1
pM =g > dim(g”)s.
BET*(h)
Bla=0

Let £ € ¢ be the Harish-Chandra parameter of some constituent oy of the restriction
of o to the connected component of M. Then & — p,, is the highest weight of oy.

We view . and af. as subspaces of hi by extending the functionals trivially with
respect to the decomposition he = tc @ ac. We write p, and p¢ for the restrictions
ac and t¢ respectively. Let 6 be the involutive automorphism on h¢ that is 1 on t¢
and —1 on ac. We denote the adjoint of 6 by 6 as well.

Now assume that 7, , is not irreducible. We write v = (£, v) € t& @ af.. By [40,
Theorem 1.1] there exists a 5 € X(h) such that y(5Y) € Z and either

(a) 7(8Y) > 0, 1(08") < 0 and 68 # —B, or

(b) 08 = —p.

Note that in both cases (@) and (b)) p,S is non-zero and is in fact a root of (g, a).
Therefore, p,S € {+a,+2a}. Let k € {£1,42} be such that p,8 = ka. Then

o KIBIE 2mpaB) KIS o 2EpBN KIS ) 2(Epd)
— = — 7 — .
Yo') = L 15T~ ToedlE O~ ) € Tz G~ o)

Let d be the determinant of the Cartan matrix of the root system Xy (tc) of me
in tc. The lattice Ay (tc) of integral weights of me in t¢ is contained in Z[Sq (tc)].
Note that p3, & € An(tc). Let [ be the square of the length of the shortest root in
3(h). Then [|S(h)||* C {1,21,3(} and (S(h),3(h)) € LZ. Therefore,

(An(te), An(tc)) € (5(t0), Slt)) € 552,

and since pf3, € € Ay (te),
2<£7pt/8> 1
>l e T
18]~ 6d?

Since 0 € ¥(h) and by the Cauchy-Schwartz inequality
2(3.65)

18112
Taking into account that 0 < ||p.S||* < ||3]|* we obtain

[T ] A,
I~ T8 — 13,08 < 324

€ {0,+1,+2}.

and thus

v(a’) e

BIBIZ o 2 pd)y 1
i &™) € el
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Proof of Proposition[B1l. Let N € N be as in Lemma[B.2l For a € Il let G, be the
connected subgroup of G with Lie algebra generated by the subspace g=2* ® g~ ®
g% @ g?@ of g. Note that the real rank of G, is equal to 1. We define the subgroups

A, =AnG,, My, =MnG,, P,=PNnG,.

Write o, and A, for o| . and )\‘a respectively. Let I9(\,,0,) be the standard
intertwining operator

12Ny 00) : IndS* (Sada ® $00a) — Ind3e (A, ® 04) -
By equation (17.8) in [I8] we have
(B.1) L)) = 20w o) (fls )(e) (fenhnn).

The poles of the meromorphic family I2()\,,0,) are located at the A\, € a’ such
that \,(a¥) € —Ny. See [I8, Theorem 3|. It follows from (B.I) that I,(), o) is
defined for A(a") ¢ —Ny.

Now assume that A(aV) & Z. Let ¢ € C>°(N,V,) be such that Sy @o(7) din #

0. Define ¢ € 7%, sq0 by setting ‘b}ﬁ = ¢9. Then the integral

/NmsaN o(m) dn

is absolutely convergent and non-zero. Hence I,(\, 0)¢(e) is non-zero. In particular
this shows that both I,(\, o) and I2(\,, 04) are non-zero.
If I,(X\, o) is not injective, then there exists a ¢ € 7° such that I,(\,0)¢ =0

Sa\,Sa0
and ¢(e) # 0. It then follows from (B that I2()\,, 0,) is not injective either. Since
I°(A\,, 04) is non-zero, Indgof‘(sa)\a ® Sa04) is not irreducible. Similarly, if 7, (), o)
is not surjective, then its adjoint I, (A, 0)* = I,(—sa A, $40") is not injective, hence
it follows that Indg;‘(—)\a ® o)) is not irreducible. It now follows from Lemma [B.2]
that if I,(\, o) is not an isomorphism then A(a¥) € +Z. O
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