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Abstract

The existence of variability in information processing is a key assumption in models

of human cognition, with variability being required to successfully account for a range of

human behaviour. Evidence accumulation models (EAMs) commonly assume two broad

variabilities in information processing: within-trial variability, which is thought to re-

flect moment-to-moment fluctuations in perceptual processes, and between-trial variabil-

ity, which is thought to reflect variability in slower-changing processes like attention, or

systematic variability between the stimuli on different trials. Recently, Ratcliff, Voskuilen,

and McKoon (2018) claimed to “provide direct evidence that external noise is, in fact,

required to explain the data from five simple two-choice decision tasks” (p. 33), suggesting

that at least some portion of the variability in between-trial information processing is due

to “noise”. We agree that Ratcliff et al. (2018) provided evidence that drift rate varies – in

at least some manner – between trials in an experiment. However, we argue that Ratcliff

et al. (2018) conflated two different potential sources of between-trial variability: random

(i.e., “external noise”) and systematic (e.g., item effects). We also argue that their analy-

ses failed to distinguish between these sources, meaning that their results could have been

due to “external noise” and/or item effects. Furthermore, we contend that the concept of

“noise” within cognitive models merely serves as a convenience parameter for sources of

variability that we know exist, but are unable to account for. Therefore, we question the

usefulness of experiments aimed at testing the general existence of “random” variability,

and instead suggest that future research should attempt to replace the random variability

terms within cognitive models with actual explanations of the process.



SYSTEMATIC AND RANDOM VARIABILITY IN DECISION-MAKING 3

Keywords:

diffusion model — between-trial variability — random variability — systematic vari-

ability



SYSTEMATIC AND RANDOM VARIABILITY IN DECISION-MAKING 4

The existence of variability in information processing is a key assumption in models

of human cognition, with variability being required to successfully account for a range of

human behaviour, such as in memory (Shiffrin & Steyvers, 1997; Osth & Dennis, 2015),

practice and learning (Wagenmakers & Brown, 2007; Evans, Brown, Mewhort, & Heath-

cote, 2018), automaticity (Logan, 1988, 1992), and decision-making (Ratcliff, 1978; Usher

& McClelland, 2001; Brown & Heathcote, 2005, 2008), among many others. Within the

decision-making literature, evidence accumulation models (EAMs; Stone, 1960) propose

that evidence (i.e., processed information) is accumulated for each decision alternative

at some rate (known as the “drift rate”), until the evidence for one alternative reaches

some threshold level, which triggers an overt response for that alternative (see Ratcliff,

Philiastides, & Sajda, 2009; Ratcliff & Smith, 2004; Tillman, Osth, van Ravenzwaaij, &

Heathcote, 2017; Brown, Marley, Donkin, & Heathcote, 2008; Hawkins, Forstmann, Wagen-

makers, Ratcliff, & Brown, 2015; Ratcliff, Van Zandt, & McKoon, 1999; Evans & Brown,

2017; Ratcliff, Thapar, & McKoon, 2001; Evans, Rae, Bushmakin, Rubin, & Brown, 2017;

Ratcliff, Thapar, & McKoon, 2011; Evans, Hawkins, Boehm, Wagenmakers, & Brown,

2017; Ratcliff, 2006; Evans, Steyvers, & Brown, 2018; Ratcliff & Starns, 2013; Ratcliff

& McKoon, 2008; Forstmann, Dutilh, Brown, Neumann, & von Cramon, 2008; Tillman,

Benders, Brown, & van Ravenzwaaij, 2017; Forstmann et al., 2011 for applications). Most

EAMs include two sources of variability in information processing (though see Usher &

McClelland, 2001; Brown & Heathcote, 2008). The first is within-trial variability, which

represents moment-to-moment fluctuations in our perceptual processing (Ratcliff, 1978).

Within-trial variability is ongoing during a single decision, and is implemented in EAMs

as a temporal sequence of random draws from a normal distribution with a mean of zero.

The second source of variability in information processing is between-trials, which may

reflect variability in processing for different items from the same category across trials,
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fluctuations in processes like attention, or sequential and/or time-based effects. Between-

trial variability is also commonly implemented in EAMs as random draws from a normal

distribution (related to the concept of signal detection theory, Ratcliff, 1978), though these

draws occur from one decision to the next, rather than within a single decision. The in-

clusion of between-trial variability in information processing allows EAMs to account for

key qualitative benchmarks observed in decision-making (Ratcliff, 1978; Brown & Heath-

cote, 2008; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008), and well-known behavioural

findings in related areas, such as sequential effects (Ratcliff et al., 1999) and differences in

electroencephalography (EEG) signals (Ratcliff et al., 2009).

A recent article by Ratcliff et al. (2018) assessed “whether current models can explain

accuracy and RT data with only internal noise or whether the external noise, or variation

between stimulus exemplars, is also required” (p.33). Here internal noise refers to ran-

dom within-trial variability in drift rate and external noise refers to random between-trial

variability in drift rate, where “random variability” is variability that cannot be modelled

deterministically and instead must be modelled as a random variable from a probability

distribution. Ratcliff et al. (2018) conducted five different double-pass experiments, where

a double-pass meant that the exact same stimulus was presented on two different trials

of the experiment. Ratcliff et al. (2018) assessed the level of agreement between these

identical trials as well as the accuracy over the entire experiment, and tested whether a

diffusion model (Ratcliff, 1978) could explain these data. Their findings indicated that only

a diffusion model with a non-zero η parameter – the standard deviation of a normal dis-

tribution for between-trial variability in drift rate – could generate the trends observed in

agreement and accuracy. Based on these findings, Ratcliff et al. (2018) claimed to “provide

direct evidence that external noise is, in fact, required to explain the data from five simple

two-choice decision tasks” (p. 33), which provided validation for the random between-trial
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variability parameter in drift rate within the diffusion model (i.e., η) proposed by Ratcliff

(1978).

There are several key points made by Ratcliff et al. (2018) that we agree with. First

and foremost, for reasons that will become clear later, we agree that Ratcliff et al. (2018)

provided evidence that drift rate varies – in at least some manner – between trials in an

experiment. This stands in contrast to recent neuroscientific proposals that drift rate re-

mains identical across decisions in an experiment (e.g., O’Connell, Shadlen, Wong-Lin, &

Kelly, 2018; Ditterich, 2006a, 2006b; Drugowitsch, Moreno-Bote, Churchland, Shadlen,

& Pouget, 2012; Churchland, Kiani, & Shadlen, 2008). We also agree that understanding

which sources of random variability are necessary to explain empirical data is an important

question for all fields that use computational models, which has been discussed for several

other classes of models within the decision-making literature (Regenwetter & Robinson,

2017, 2019; Kellen, Klauer, & Singmann, 2012, 2013; Bhatia & Loomes, 2017). For the

diffusion model, these questions involve determining whether or not random between-trial

variability parameters are necessary for explaining empirical trends in choice and response

time data, and whether they are useful for improving our understanding of decision-making

(see Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002 for proposals of

random between-trial variability in different parts of the process; though see van Raven-

zwaaij & Oberauer, 2009; van Ravenzwaaij, Donkin, & Vandekerckhove, 2017 for issues

regarding parameter recovery and statistical power). However, we believe it is important

to distinguish between the multiple types of between-trial variability, and that the lack of

distinction in Ratcliff et al. (2018) led to misleading conclusions. We argue that although

Ratcliff et al. (2018) did show that drift rate varies between trials, they did not provide

evidence that it was due to “external noise”, or in other words, random between-trial

variability.
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Our article aims to address three key points relating to the study of Ratcliff et al.

(2018). Firstly, we attempt to clarify the exact definition of between-trial variability, and

argue that two separate factors could cause this change: random factors (i.e., noise) and

systematic factors (i.e., effects of specific variables). Secondly, we question whether these

potential sources of variability can be distinguished in the double-pass paradigm, and what

conclusions can actually be drawn from the findings of Ratcliff et al. (2018). We also explore

a range of additional analyses and an alternative paradigm, though each appears to fail at

distinguishing between systematic and random sources of variability in simulations. Lastly,

we provide a discussion about what “random” variability means, when we should attempt

to model variability as systematic vs. random, what implications these decisions have for

cognitive modelling and our understanding of decision-making, and how researchers might

go about replacing random variability parameters with systematic explanations in future

research.

What Factors Make Up “Variability”?

Ratcliff et al. (2018) showed that simulated data generated from the diffusion model

without between-trial variability in drift rate (i.e., η = 0) was qualitatively inconsistent

with their empirical data. However, this conclusion is not novel, with Ratcliff (1978)

showing that drift-rate variability in the diffusion model predicts error response times to

be slower than correct response times, which is often observed in empirical data (though

see O’Connell et al., 2018, who suggest that this trend is also predicted by thresholds

that decrease over the course of a trial). The novel claim of Ratcliff et al. (2018) was that

“external noise” was necessary to explain the data from the double-pass experiments. They

assumed that any between-trial variability is evidence for the presence of external noise.

However, is external noise the only factor underlying between-trial variability?
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Initially, Ratcliff et al. (2018) suggested that they aimed to assess “whether the

external noise, or variation between stimulus exemplars” was required to explain their

data, which implies there are multiple factors that could contribute to drift rate varying

between trials. However, from that point onwards, Ratcliff et al. (2018) use the words

“between-trial variability” and “external noise” interchangeably, suggesting that any type

of between-trial variability reflects external noise. We believe that Ratcliff et al. (2018)

conflated two different sources of potential between-trial variability throughout most of

their article: random sources of variability and systematic sources of variability. In general,

“variability” means that something changes from one moment to the next, and in the

context of between-trial variability in EAMs, from one trial to the next. For example, if

the drift rate on trial N is different to the drift rate on trial N+1 or N+2, then there is

between-trial variability in drift rate. However, the reason that drift rate changes from one

trial to the next could be due to a systematic source or a random source of variability.

Systematic variability is caused by factors that are known, such as experimental ma-

nipulations, and these factors could be explicitly modelled with different drift rates across

the levels of the factor. For example, an experimenter may make some stimuli in a task

more difficult than others. Although this manipulation would result in a difference in

drift rate between the items of different difficulty, the differences would not be considered

“random” or “noisy”, but would instead be measurable, systematic differences. In such a

case, researchers would expect the drift rate to systematically decrease as task difficulty

increased. In contrast, random variability is caused by factors that are unknown or are

known but not easily modelled. For example, rather than try to explicitly model a partic-

ipant’s fluctuations in attention or mind wandering from trial-to-trial, a researcher would

model the associated fluctuations in drift rate as draws from a probability distribution,

such as the normal distribution (Ratcliff, 1978).
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Although systematic and random sources of variability are theoretically different,

they can be easy to conflate, as systematic factors are often modelled as random factors

out of convenience. For example, in situations where there are a large number of factors and

data are relatively sparse, attempting to model all factors may compromise the properties

of the model (e.g., generalizability and identifiability; see our Appendix C for an example).

In addition, these types of variability are not mutually exclusive (i.e., both can occur in a

given task), making them even easier to conflate.

However, based on our definitions, and assuming that process models are intended to

provide explanations of cognitive phenomena, we believe that these sources of variability

should not be conflated. Attributing the variability to random sources provides less of

an explanation than modelling the variability as a function of systematic sources. Includ-

ing a random source of variability acknowledges that variability occurs, and assumptions

about the probability distribution of the random variables can even be guided by theory.

However, apart from potential distributional assumptions, attributing the variability to

random sources provides no precise explanation of how and why the variability occurs. In

contrast, attempting to model the variability as a function of a systematic factor provides

an explicit, precise explanation of how and why the variability occurs, which can be di-

rectly compared to other explanations of why the variability occurs. Therefore, systematic

sources of variability are more theoretically meaningful, and do more to further our under-

standing of the cognitive processes that we aim to explain. Ratcliff et al. (2018) found that

variability in drift rate between trials is necessary, but this is not sufficient to attribute

the variability to external noise. Their findings failed to show, as they claimed, “direct

evidence that external noise is, in fact, required”, because their results could have been

due to systematic variability in drift rate, which we argue is more theoretically meaningful,

and should be separated from random variability.
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The Double-Pass Paradigm Does Not Allow Systematic and

Random Sources of Variability To Be Distinguished

As mentioned earlier, Ratcliff et al. (2018) provided evidence for variability in drift

rate between trials through an elegant “double-pass” paradigm (Green, 1964; Burgess &

Colborne, 1988; Gold, Bennett, & Sekuler, 1999; Lu & Dosher, 2008; Cabrera, Lu, &

Dosher, 2015). The double-pass paradigm involves a participant viewing a large number

of unique stimuli, and having each unique stimuli repeated once at a different point in the

experiment. Specifically, the five experiments of Ratcliff et al. (2018) each contained 8-9

unique blocks of 90-96 stimuli (differing between experiments), where each unique block

was repeated once. This allowed Ratcliff et al. (2018) to assess the “agreement” in the

responses made on identical trials (i.e., how often the same response was made to the same

stimulus), which was used in combination with the overall accuracy to infer whether there

was variability between trials in drift rate.

Although Ratcliff et al. (2018) provided details on how they simulated from the

diffusion model, they provided no formal definitions of how the standard, univariate (i.e.,

single unique stimulus) diffusion model extends to the double-pass paradigm. However,

based on the descriptions of their simulation, we can infer that they defined the relationship

between the drift rates of the double-pass trials as a bivariate normal distribution. Formally,

this can be written as:

 vi,1

vi,2

 ∼ BN


 µv

µv

 , η2v
 1 ρv

ρv 1


 (1)

where vi is the drift rate for a specific stimulus i, vi,1 is the drift rate on the first presentation

of the stimulus (i.e., the first “pass”) and vi,2 is the drift rate on the second presentation,



SYSTEMATIC AND RANDOM VARIABILITY IN DECISION-MAKING 11

“∼” means “distributed as”, BN is the bivariate normal distribution, µv is the mean drift

rate for all trials, η2v is the between-trial variance in drift rate, and ρv is the correlation

in drift rate between double-pass trials. However, it should be noted that other formal

definitions could be used to represent the extension of the diffusion model to the double-

pass paradigm, such as:

vi,j ∼ N(µvi , η
2
v) (2)

where vi,j is the drift rate for a specific stimulus i on presentation (i.e., “pass”) j, µvi is the

mean drift rate for specific stimulus i, and N is the univariate normal distribution. Under

this definition ρv is no longer required, as the relationship between the two presentations is

reflected in the mean drift rate for each specific stimulus. However, throughout our article

we choose to use the formal definition in Equation 1, as we believe this provides the clearest

formalization for 1) understanding the analyses performed by Ratcliff et al. (2018), and 2)

contrasting systematic and random sources of variability. Using our definition in Equation

1, if there were no between-trial variability in drift rate, then every trial (regardless of

whether the stimulus was identical or not) would have an identical drift rate. Formally,

this would involve setting η2v to 0, meaning that the bivariate normal definition could be

simplified to:

 vi,1

vi,2

 =

 µv

µv

 (3)

as now the drift rate of every trial is simply the bivariate normal mean.

If there were only a single source of variability in drift rate between trials, which was
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systematically based on the precise identity of the stimulus, then the two presentations of

each unique stimulus would have identical drift rates, though this drift rate would differ

from other trials with different unique stimuli. Formally, this would involve setting ρv to

1, meaning that the bivariate normal definition could be simplified to:

 vi,1

vi,2

 ∼ BN


 µv

µv

 , η2v
1 1

1 1


 (4)

as the drift rate on each trial can be represented as a deterministic function of the stimulus

presented (i.e., vi = f(i) ).

If there were only random sources of variability in drift rate between trials (or sys-

tematic sources that were not related to the stimulus presented), then the drift rates on

each trial would be independent of one another. Formally, this would involve setting ρv to

0, meaning that the bivariate normal definition could be simplified to:

 vi,1

vi,2

 ∼ BN


 µv

µv

 , η2v
1 0

0 1


 (5)

as the drift rate on each trial is an independent random draw from the bivariate normal

distribution. This model represents pure random between-trial variability, and is the defi-

nition of between-trial variability used within the standard univariate diffusion model (i.e.,

vi,j ∼ N(µv, η
2
v) ).

Based on these formal definitions, when η2v = 0 there is no variability between trials

in drift rate. When η2v > 0, then the source of variability is determined by ρv: ρv = 0

means the variability is all random, ρv = 1 mean the variability is all systematically based
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on the stimulus, and 0 < ρv < 1 mean both sources of variability exists. Therefore, for

the bivariate normal drift rate distribution in the double-pass paradigm, the η2v parameter

determines whether or not between-trial variability in drift rate exists, and the ρv parameter

that determines what type of between-trial variability exists. Note that this differs from

the univariate normal drift rate distribution in standard paradigms – as shown in our

definitions above – where the η2v parameter determines whether or not random between-

trial variability exists.

Based on these formal definitions of systematic and random variability, what did the

analysis of Ratcliff et al. (2018) assess? As discussed above, Ratcliff et al. (2018) calculated

the agreement (how often participants made the same response to the two identical double-

pass trials) and accuracy (how often participants made the correct response across the entire

experiment) from the empirical data, and compared these to what would be predicted by

the diffusion model, with different potential parameters for µv and η2v . Specifically, Ratcliff

et al. (2018) found that η2v = 0 made a strong prediction about these agreement-accuracy

functions, where the agreement would always be lower for a fixed level of accuracy than

when η2v > 0, unless the mean drift rate was extremely high and both variables began

to asymptote (see Figure 1, the bottom-right panel). Importantly, this trend was not

supported by the empirical data, which were consistent with non-zero values of η2v , resulting

in a claim that there was external noise (i.e., random variability) between trials in drift rate

in their tasks. However, according to our definitions above, a non-zero η2v only determines

that some amount of between-trial variability exists, and the value of ρv determines whether

it is random, systematic, or both. Importantly, Ratcliff et al. (2018) simulated their data

with identical drift rates for the double-pass trials with identical stimuli, which is formally

equivalent to ρv = 1. Therefore, Ratcliff et al. (2018) did not attempt to distinguish

between the type of between-trial variability, which is of crucial importance for their main
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claim.
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Figure 1. The agreement (x-axis) and accuracy (y-axis) functions for different mean drift rates

(points on each line), variability in drift rates (different lines) and correlation in drift rates for

identical items (different panels). The bottom-right panel displays the predicted functions when

the correlation is fixed to 1, as in Ratcliff et al. (2018). The different mean drift rates used to

generate the different points on each line were 0 (lowest accuracy), 0.5, 1, 1.5, 2, and 2.5 (highest

accuracy). These simulations used the following fixed parameters: a (threshold) = 1.5; z (starting

point) = 0.75 (i.e., unbiased starting evidence); ter (non-decision time) = 0.3; s (the diffusion

coefficient) = 1. All simulations used the method of Evans (2019).
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Although we believe the analysis of Ratcliff et al. (2018) failed to distinguish between

systematic and random sources of between-trial variability in drift rate – as they fixed ρv

to 1 in all simulations – their general analysis method might still be able to distinguish

between these sources of variability by performing simulations where ρv is allowed to take

on different values. However, our simulations (Figure 1) appear to suggest that this is not

the case. The bottom right panel displays simulations with ρv = 1, as in the simulations of

Ratcliff et al. (2018). Interestingly, the strong prediction shown by Ratcliff et al. (2018) for

η2v = 0 (where the agreement would always be lower for a fixed level of accuracy than when

η2v > 0), which was inconsistent with the empirical data, also occurs in one other situation:

when ρv = 0. As shown in the top-left panel of Figure 1, when ρv = 0 the agreement-

accuracy function all resemble that of η2v = 0, with small agreement relative to accuracy,

regardless of the actual value of η2v = 0. Therefore, two conclusions follow from the data and

analysis method of Ratcliff et al. (2018): that between-trial variability exists in drift-rate

(i.e., η2v > 0), and that at least some of this variability is due to the systematic source of

item (i.e., ρv > 0; the between-trial variability cannot be purely “noise”). However, when

both η2v and ρv are non-zero, the parameters appear to have the same qualitative impact

on the agreement-accuracy functions, where increasing either parameter increases the level

of agreement. For example, Figure 2 (left panel) shows four different agreement-accuracy

functions, which look very similar to one another – in fact, each form pairs that appear

to overlap perfectly. However, these functions were generated with four very different

combinations of η2v and ρv values, with η2v ranging from 0.6 (green line) to 1.5 (purple

line), and ρv ranging from 0.4 (purple line) to 1 (green line). Importantly, this means that

we are unable to determine from the agreement-accuracy functions whether the between-

trial variability is purely systematic (i.e., ρv = 1) or a mixture of systematic and random

(0 < ρv < 1). Therefore, it appears virtually impossible to determine whether random
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sources of between-trial variability (i.e., “external noise”) exist by using the agreement

and accuracy of a double-pass paradigm, which is in direct contrast to the claim made by

Ratcliff et al. (2018).
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Figure 2. Left: The agreement (x-axis) and accuracy (y-axis) functions for different mean drift

rates (points on each line), for four selected different combinations of variability and correlation

that closely mimic one another, suggesting that the assessment of these summary statistics is of

limited value. Right: The correlation in (x-axis) and mean (y-axis) response time functions for

different mean drift rates (points on each line), for the same for combinations. Although there

appears to be one function (η = 1.5, ρ = 0.4) clearly distinguished from the others, this area of the

parameter space was still unidentifiable (see Appendix A).
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Are there other ways to make inferences about systematic and random sources of variability?

We also tested two other potential analysis methods through simulation, which we

believed could have allowed an assessment of whether or not ρv was less than 1. Firstly,

although agreement and accuracy were unable to identify the values of η2v and ρv (other

than that they were non-zero), the equivalent analyses with response time may be able to

distinguish their predictions. The “agreement” (i.e., correlation) between the log response

time of the identical double-pass trials, and the overall mean response time, is shown in

Figure 3. Unfortunately, this analysis seems to suffer from the same issue as its choice-

based counterpart: increases in the response time correlation can be created by either

increasing η2v , or increasing ρv.

However, it is also possible that the joint information from both of these types of data

may provide adequate constraint to separately identify η2v and ρv; something that is difficult

to accurately assess from the separate functions. For example, in Figure 2 (right panel),

it appears that the functions do not perfectly overlap in all cases, though the imperfect

overlap may be due to poor hand-tuning of parameter values. To more rigorously assess

the identifiability of η2v and ρv when constrained to jointly account for response agreement,

response accuracy, response time correlation, and response time mean, we fit the bivari-

ate diffusion model to these variables through pseudo-likelihood methods (e.g., Turner &

Sederberg, 2014; Holmes, 2015), where the simulated response choices and response times

from the bivariate diffusion model provided the parameters for (1) a multinomial distri-

bution governing the response choice combinations across both presentations, and (2) a

bivariate normal distribution governing the natural logarithm of the response times across

both presentations (see Appendix A for a more detailed description and formal definition

of the analysis). However, the parameters remained unidentifiable (see Appendix A), and

formal comparison using the Bayesian Information Criterion (BIC; Schwarz, 1978) showed
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evidence in favour of a model with ρv fixed at 1 over a model with a freely estimated ρv

parameters, as both models produced near-identical likelihoods with very different param-

eter sets, meaning that ρv fixed at 1 model was slightly preferred based on parsimony (see

Appendix B). It should also be noted that these analyses appear to show that other param-

eters may also be involved in the tradeoff, such as µv, which is incorrectly and inconsistency

estimated in all cases.

Although these problematic tradeoffs could theoretically be solved by first fitting

the standard univariate diffusion model to estimate the µv and η2v parameters, and then

performing the agreement-accuracy analyses with the µv and η2v values constrained, the

robustness of this assessment would be completely reliant on the correct point estimate

being found for η2v , which is difficult to reliably obtain (Ratcliff & Tuerlinckx, 2002; Lerche

& Voss, 2016) regardless of method (Boehm et al., 2018). Overall, these analyses suggest

that summary statistics contain inadequate information for inferences on the parameters

of the drift rate distribution.

Secondly, we attempted to fit a diffusion model with a different drift rate estimated for

each trial, and with these drift rates constrained to follow the bivariate normal distribution

defined in Equation 1 (i.e., a hierarchical model). Although it seems unlikely that the drift

rate used to generate each trial could be recovered, it is possible that the small pieces

of information about the overall drift rate distribution contained within each trial would

allow the bivariate normal parameters, and most importantly ρv, to be recovered. However,

we were unable to recover the values of ρv (the full details can be seen in Appendix C),

suggesting that there are pragmatic difficulties in making inferences about random sources

of between-trial variability with the double-pass paradigm.



SYSTEMATIC AND RANDOM VARIABILITY IN DECISION-MAKING 21

−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=0
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

M
ea

n 
RT

−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=0.2
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=0.4
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

M
ea

n 
RT

−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=0.6
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=0.8
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

M
ea

n 
RT

RT correlation
−1.0 −0.5 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

stuffToPlot[, 7][stuffToPlot[, 3] == i & stuffToPlot[, 2] == 
    use.v.sd[1]]st

uf
fT

oP
lo

t[,
 6

][s
tu

ffT
oP

lo
t[,

 3
] =

= 
i &

 s
tu

ffT
oP

lo
t[,

 2
] =

= 
   

 u
se

.v
.s

d[
1]

]

η=0
η=0.3
η=0.6
η=0.9
η=1.2
η=1.5

ρ=1
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

RT correlation

Figure 3. The correlation in (x-axis) and mean (y-axis) response time functions for different mean

drift rates (points on each line), variability in drift rates (different lines) and correlation in drift

rates for identical items (different panels).

As discussed previously, Ratcliff et al. (2018) used simulations where only system-

atical variability was present (ρ = 1) to argue for the presence of random variability

(ρ < 1). Based on our definitions and analyses, it appears that Ratcliff et al. (2018) could

not logically conclude in favour of the existence of random between-trial variability using
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the double-pass paradigm that they implemented. However, we also considered whether

the concept of the double-pass experiment could still be useful for distinguishing between

systematic and random variability in the form of a “multi-pass” extension (Burgess & Col-

borne, 1988; Green, 1964; Lu & Dosher, 2008; Cabrera et al., 2015). For example, the

double-pass concept could be integrated into a standard experimental paradigm, where the

majority of stimuli presented are standard trials, which are not repeated, and mostly serve

as “filler” trials. However, some specified, relatively small (e.g., 5 or 6) number of stimuli

are repeated a large number of times (e.g., 30+), in order to allow adequate estimation of

drift rates for these specific stimuli. Within this paradigm, the different potential sources

of between-trial variability in drift rate could be represented in four discrete models: a

no-variability model, where the drift rate of all trials is fixed to the same value; a random-

only variability model, which is identical to the no-variability model, but with the Ratcliff

(1978) η parameter added to the model; a systematic-only variability model, which is iden-

tical to the no-variability model, but with different drift rates for each of the different

multi-pass stimuli (i.e.., different identical stimuli have different identical drift rates); and

a systematic-and-random variability model, which is identical to the systematic-only vari-

ability model, but with the Ratcliff (1978) η parameter added to the model. These models

could then be compared using formal model comparison (e.g., Bayes factors; Gronau et al.,

2017; Evans & Brown, 2018; Annis, Evans, Miller, & Palmeri, 2019; Evans & Annis, 2019;

see Evans, Bennett, & Brown, 2018 for an application of Bayes factors using the diffusion

model) to determine the sources of between-trial variability in drift rate.

However, the multi-pass approach has two key limitations in identifying sources of

between-trial variability in drift rate. Firstly, although this approach breaks down the

previous parameter identification problem into a comparison between four discrete models,

these models still may not be recoverable; that is, even when the true data generating model
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is one of these four models, the correct model may not be able to be identified. Indeed, our

recovery simulation (see Appendix D) found that even with 6 multi-pass stimuli that each

had 50 trials (i.e., 300 trials dedicated to non-filler trials), the Bayes factor between the true

data generating model and the closest competing model was often small (i.e., the evidence

was ambiguous), and the true generating model was not always correctly identified. This

situation also becomes more complicated in situations with multiple participants, as these

item effects should not be thought of as item random-effects (e.g., in the context of mixed-

effect modelling methods), meaning that hierarchical modelling techniques are required to

capture differences between participants in item effects, with hierarchical modelling often

increasing the approximation error in Bayes factor estimation (Annis et al., 2019; Evans

& Annis, 2019). Therefore, the multi-pass paradigm may not provide a robust solution

to the limitations of the double-pass paradigm, especially within a reasonable number of

trials. Finally, and perhaps most importantly, there may generally be limited usefulness

in experiments aimed at testing the existence of “random” variability. As we argue in the

next section, the concept of “noise” within cognitive models merely serves as a convenience

parameter for sources of variability that we know exist, but are unable to account for.

What Is “Random” Variability, and When Is It Useful?

Although Ratcliff et al. (2018) emphasized the importance of “external noise” (i.e.,

random variability), there was little discussion regarding what exactly is meant by “noise”,

whether the concept is general or context dependent, or what the exact purpose of noise is.

We believe that “noise” (or “randomness”), especially in the case of psychological models,

simply serves as a convenient parameter that allows the absorption of variability from

sources that are difficult to explicitly incorporate into the model. These sources might

be completely unknown, difficult to measure, or their inclusion might negatively influence
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the usefulness of the model (e.g., making the model computationally taxing, reducing

generalizability, or causing problems with parameter identifiability). This same concept of

“randomness” is used within statistical models, where the “noise” (i.e., ε) is simply the

unexplained variance within the model (De Boeck & Wilson, 2004).

Given the definition above, the concept of “noise” appears to be highly context

dependent, rather than a general phenomenon that does/does not exist. Specifically, we

believe that this random variability is highly dependent both on the specific experiment

used, as different experiments may have different sources and amounts of variability, and the

model defined, as with complete information about all sources of variability the randomness

could be completely eliminated. For example, in experimental designs where there are

greater chances of variability being caused by factors that are difficult to measure, such

as attention (e.g., online experiments), there is greater chances of “random” variability

occurring. In addition, when factors that are known to cause variability are ignored and

not explicitly included within the model, such as different items, then there is likely to be

random variability. Therefore, we are uncertain how useful general questions about the

existence of random variability in specific parameters – such as those posed by Ratcliff et

al. (2018) – actually are, as these question may not be answerable at this general level, and

instead may be completely dependent on each experimental data set and model defined.

However, we also believe that the incorporation of random variability within models

can be extremely useful, regardless of whether the variability is truly “noise”, or just

unaccounted for as we suggest above. Previous research has shown that cognitive models

– most notably the diffusion model – are able to capture key patterns of data with the

incorporation of random variability parameters, without the difficulty of having to try and

identify the many potential sources of systematic variability (Ratcliff, 1978; Ratcliff &

Rouder, 1998; Ratcliff & Tuerlinckx, 2002). In fact, a similar logic was used by Ratcliff
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(1978) to justify to incorporation of random between-trial variability in drift rate (i.e.,

the “external noise” discussed within this paper) into the diffusion model, suggesting that

different items within a memory task have different drift rates, though attempting to

model each of these different drift rates may prove impossible. Although it is clear that

item effects will causes trial-to-trial variability in drift rate, and that this variability is not

from a “random” source as theoretically each item could be modelled with a different drift

rate, the use of the random variability parameter allows the model to still provide a good

account of the data while avoiding the difficulty of modelling the drift rate for each item.

Having said this, adding too much unnecessary random variability into cognitive

models can dilute our understanding of the cognitive processes they aim to explain. As

mentioned previously, we believe that the goal of cognitive modelling should be to under-

stand as many causes of variability as possible, meaning that we should be attempting to

find factors that causes systematic variability in the parameters within our models, and

explicitly including them within our model definitions. Merely labelling all variability as

random and including random between-trial variability for all parameters does not allow us

to gain any additional understanding of the underlying process causing these variabilities,

and in some cases can result in models becoming unfalsifiable (Jones & Dzhafarov, 2014);

though it should be noted that practically these models can remain quite constrained with

reasonable distributional assumptions (Ratcliff, 2002; Smith, Ratcliff, & McKoon, 2014;

Heathcote, Wagenmakers, & Brown, 2014). Furthermore, in the separate issue of using

cognitive models as measurement tools for estimating latent parameters, recent research

has drawn into question the measurement properties of the diffusion model with variability

parameters, as the addition of these variability parameters can lead to poorer parameter

recovery (Lerche & Voss, 2016) and lower power in detecting effects of interest (van Raven-

zwaaij et al., 2017). Therefore, although the random between-trial variability parameters
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within EAMs can serve as a convenient placeholders, which allow the models to account

for phenomena that it otherwise could not, future research should aim to identify these

sources of between-trial variability, and explicitly model them.

How can we replace random distributions with systematic explanations?

Throughout our article we have argued for the importance of identifying and mod-

elling systematic sources of variability, as they provide more complete explanations of

psychological processes than attributing the variability to random draws from a probabil-

ity distribution. However, random variability is a fundamental basis of several cognitive

models (though see Regenwetter & Robinson, 2017, 2019; Kellen et al., 2012, 2013; Bhatia

& Loomes, 2017 for assessments of which sources of variability are necessary in different

cognitive models) – particularly the “full” diffusion model – and replacing these random

distributions with systematic explanations may seem like a difficult task to researchers.

Here, we attempt to provide some recommendations on how researchers could begin iden-

tifying and modelling systematic sources of variability, which may be able to replace some

of the random sources of variability contained within some models.

One method for identifying different sources of variability, or comparing models that

make different proposals about the psychological process underlying the variability, is to

use experimental design to tightly constrain the predictions of the models (e.g., Ludwig

& Davies, 2011; Teodorescu & Usher, 2013; Servant, White, Montagnini, & Burle, 2015;

Evans, Dutilh, Wagenmakers, & van der Maas, 2019). This method is in line with the

efforts of Ratcliff et al. (2018), though as we argue within the current article, their ex-

perimental design did not provide adequate constraint to test their claims. However, the

double-pass paradigm can be combined with other experimental manipulations to pro-

vide valuable insight about how evidence accumulation may operate, and types of noise

may be present within drift rate. For example, Ludwig and Davies (2011) combined the
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double-pass paradigm with manipulations of stimulus strength and the time of a response

signal, which allowed them to discriminate between different observer models that pro-

posed different processes for how accumulated evidence changes over time. Additionally,

recent studies have attempted to constrain EAMs with additional sources of data instead

of experimental manipulations. For example, Evans et al. (2019) was able to compare

a range of different EAM variants, which strongly mimic one another in choice response

time data, by constraining the models to also account for the secondary responses made

by participants (something they termed “double responding”). Another example is the

study of Servant et al. (2015), who provided further constraint on the diffusion model

by making it account for electromyography (EMG) recordings (specifically, partial EMG

bursts). These studies showcase that further insight into systematic sources of variability

can be provided by further constraining models through either experimental manipulations,

additional behavioural data, or psychophysiological data.

Another method for integrating systematic sources of variability into existing mod-

els is the use of front-end models (e.g., Nosofsky & Palmeri, 1997; Roe, Busemeyer, &

Townsend, 2001; Usher & McClelland, 2004; Brown et al., 2008; Purcell et al., 2010; Ratcliff

& Starns, 2013; Trueblood, Brown, & Heathcote, 2014; Servant, Tillman, Schall, Logan,

& Palmeri, 2019). In the context of EAMs, front-end models directly constrain the drift

rate in each experimental condition, where a front-end function transforms the stimulus

information into a drift rate, which is then fed into the back-end EAM. Front-end models

have been a useful method for creating detailed models of specific tasks, as researchers only

need to design the task-specific function to transform the stimulus information into drift

rates, rather than building a complete model from the ground up. For example, in the

area of multi-attribute choice, where choices are made between alternatives that each have

different values of the same explicit attributes, several of the dominant models are direct
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front-end extensions of common EAMs: multi-alternative decision field theory (MDFT;

Roe et al., 2001) is a front-end extension of the Ornstein-Uhlenbeck process (Busemeyer &

Townsend, 1992, 1993), the multi-attribute leaky competing accumulator (mLCA; Usher

& McClelland, 2004) is a front-end extension of the LCA (Usher & McClelland, 2001),

and the multi-attribute linear ballistic accumulator (mLBA; Trueblood et al., 2014) is a

front-end extension of the LBA (Brown & Heathcote, 2008). These models each provide

a specific account of multi-attribute choice tasks, where the attribute values for all alter-

natives are transformed into drift rates for each alternative, meaning that a single set of

parameter values can generalize to all possible combinations of attribute values. Front-end

models can also involve constraining the drift rate to be a function of some source of data

that is thought the reflect incoming sensory information. For example, Purcell et al. (2010)

placed a neural front-end on an extension of the LCA, constraining the drift rate at each

point in time to be a function of the current visual neuron activity, which was measured

in non-human primates via single-cell recordings. These studies showcase that systematic

explanations of variability in drift rate can be created with front-end models, either as

task-specific models with front-end functions that constrain the drift rate based on the

stimulus information, or general models with front-end functions that constrain the drift

rate based on another source of data thought to reflect incoming sensory information.

One final method for providing systematic explanations for random variability is

through creating new models, where the seemingly random variability is a natural by-

product of the underlying process. This is probably the most difficult method to practically

implement, as it requires a complete model development process, but it can also provide the

greatest theoretical insights, as more detailed explanations of the underlying process can

be compared. One inspiration for developing several EAMs – and their specific underlying

processes – has been the concept of neural plausibility : that is, designing models with pro-
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cesses that are high-level reflections of actual neural processes (Usher & McClelland, 2001,

2004; Verdonck & Tuerlinckx, 2014). For example, Usher and McClelland (2001) used the

concept of neural plausibility to develop the LCA, a model that contains several compo-

nents that reflect the behaviour of neurons. The LCA contains components such as lateral

inhibition, where decision alternatives inhibit the future accumulation of one another based

on their current accumulated evidence, leaky accumulation, where accumulated evidence

decays over time, and an evidence truncation at 0, where evidence for an alternative cannot

be negative. By including these additional, neurally plausible components, the LCA only

requires a single sources of random variability, which is within-trial (i.e., “internal noise”)

variability in drift rate, while still being able to meet several of the key qualitative bench-

marks in choice and response time data. Furthermore, previous research has found models

with lateral inhibition to out-perform other variants of EAMs when constraining the mod-

els with experimental design (Teodorescu & Usher, 2013) or additional data (Evans et al.,

2019), suggesting that the development of models through neurally plausible mechanisms

can lead to superior explanations. In a more recent example, the Ising decision maker

(IDM; Verdonck & Tuerlinckx, 2014) uses the dynamic Ising model to represent pools of

binary neurons that feed into an accumulation process, which involves within-pool excita-

tion, between-pool inhibition, and external (i.e., stimulus-based) excitation. Interestingly,

the IDM does not require between-trial in drift rate, and the neurally plausible dynamics

of the model naturally produce between-trial variability in starting point, meaning that

the model replaces one sources of random variability with a systematic explanation, and

provides a clear process for how the other occurs. These studies showcase how new models

can be developed that replace random distributions with systematic explanations, or have

the random distributions naturally fall out of their dynamics, and that neural plausibility

can be a useful principle for developing these more explanation-focused models.
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Conclusion

Based on a double-pass paradigm for five different tasks, Ratcliff et al. (2018) at-

tempted to assess “whether current models can explain accuracy and RT data with only

internal noise or whether the external noise, or variation between stimulus exemplars, is

also required” (p.33). From the assessment of agreement-accuracy functions, Ratcliff et al.

(2018) claimed that they “provide direct evidence that external noise is, in fact, required

to explain the data from five simple two-choice decision tasks” (p. 33). However, we argue

that Ratcliff et al. (2018) conflated two different types of external, between-trial variability

– systematic variability and random (i.e., noise) variability – and further show that their

analysis methods were insufficient to determine the existence of random between-trial vari-

ability in drift rate, suggesting that they failed to provide any evidence for “external noise”

in drift rate. Furthermore, we contend that “noise” terms within cognitive models are not

necessarily indicative of true “randomness”, and that instead noise terms represent vari-

ance in the process that exists, but that we cannot currently explain. Therefore, although

we agree that noise terms, such as the between-trial variability parameters in the diffusion

model (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002), provide a use-

ful placeholder within cognitive models that have greatly aided the ability of the models

to explain empirical data trends, we believe that future research should aim to eventually

discard these terms, and replace them with actual explanations of the process.
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Appendix A

Parameter Recovery of the Bivariate Diffusion Model Through

Jointly Fitting To Response Choice and Response Time

In order to provide a more rigorous assessment (i.e., beyond visual inspection of the

functions in Figures 1, 2, and 3) of whether the η2v and ρv parameters are identifiable when

jointly constrained by the choice agreement-accuracy and response time correlation-mean

functions, we estimated the bivariate diffusion model parameters by directly fitting the

model to these functions. Specifically, these fits involved the use of pseudo-likelihoods (e.g.,

Turner & Sederberg, 2014; Holmes, 2015), where the likelihood function for response choice

and response time were created using simulations from the bivariate diffusion model. For

simplicity, we assumed that response choice combinations across both presentations were

governed by a multinomial distribution, which can be formally expressed as:

Nc,c, Nc,e, Ne,c, Ne,e ∼ M(pc,c, pc,e, pe,c, pe,e) (A1)

where M is the multinomial distribution, N is the number of response combinations that

fall into the category, the subscripts c and e reflect correct and error responses respectively,

the first subscript refers to the response for the first presentation, and the second subscript

refers to the response for the second presentation (e.g., Nc,e in the number of trials where

a correct response was given on the first presentation, and an error response was given

on the second presentation). The p parameters of the multinomial distribution are the

probability of these events occurring, and were obtained through simulating the bivariate

diffusion model. We also assumed that the natural logarithm of response time (as response

time distributions are typically positively skewed) across both presentations were governed
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by a bivariate normal distribution, which can be formally expressed as:

 ti,1

ti,2

 ∼ BN


 µt

µt

 , η2t
 1 ρt

ρt 1


 (A2)

where ti,j is the natural logarithm of the response time for item i on presentation j. The

µt, η
2
t , and ρt parameters of the bivariate normal distribution are the mean, variance,

and correlation of the natural logarithm of response times, and were obtained through

simulating the bivariate diffusion model. We estimated 5 parameters from the bivariate

diffusion model – µv, η2v , ρv, a (threshold), and ter (non-decision time) – with the starting

point (z) fixed to a
2 , in order to try and make the model as simple as possible to maximize

the chances of recovery.

We performed three parameters recoveries with three different generating values of

ρv: 0, 0.5, and 1. The synthetic data generated for each recovery contained 1,000 pairs of

simulated trials, each generated using the following parameters: a = 1.5, ter = 0.3, µv =

3, η2v = 0.5. We fit the models with Differential Evolution Markov chain Monte Carlo (DE-

MCMC; Ter Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2013) with 3k (where k is

equal to the number of free parameters in the model) parallel chains and 1,000 iterations of

sampling, where the maximum likelihood estimate was the sampled parameter set with the

highest likelihood. We also used two estimation runs per model to 1) help ensure that we

had reached the global maxima, and 2) assess whether the estimated parameters appeared

to be consistent, or alternatively, show signs of unidentifiable trade-offs.

The results of the recovery can be seen in Table A1. In all cases the generated ρv

values are not recovered, and in several cases the estimated values greatly vary from the

generated values. Furthermore, although the maximum log-likelihood from each estimation



SYSTEMATIC AND RANDOM VARIABILITY IN DECISION-MAKING 40

run is near-identical, the estimated parameter values differ substantially, suggesting that 1)

both η2v and ρv are unidentifiable from the joint agreement-accuracy and correlation-mean

functions, and 2) other parameters – most noticeably µv, but also a to some extent – also

appear to be involved in this trade-off, varying greatly between estimation runs.

Table A1: Displays the parameter values and log-likelihood for the maximum likelihood estimate of

the first recovery assessment in Appendix A. “Data” refers to the data set, defined by the generating

ρv value, and “Run” refers to the estimation run (either the first or second of two total runs).

Data Run a ter µv η2v ρv log[p(D|θ)]

0 1 1.49 0.31 3.53 1.21 0.08 -279.21

0 2 1.36 0.3 2.84 0.44 0.2 -279.35

0.5 1 1.44 0.31 3.42 1.1 0.34 -245.83

0.5 2 1.47 0.3 3.24 0.9 0.41 -245.67

1 1 1.5 0.31 3.72 1.32 0.53 -228.54

1 2 1.4 0.31 3.22 0.87 0.47 -228.3

One limitation of our previous parameter recovery is that it only used a single set

of parameter values (outside of varying ρv), and it could be argued that the parameters

may be identifiable in different regions of the parameter space. Specifically, in Figure 2

one function appears as though it may be distinguishable from the others when jointly

assessing the agreement-accuracy and correlation-mean functions (µv = [0, 0.5, 1, 1.5, 2,

2.5]; η2v = 1.52; ρv = 0.4), suggesting that this may be a region of the parameter space

where the η2v and ρv parameters could be identifiable. To ensure that the unidentifiability

of η2v and ρv still held for this region of the parameter space, we generated 6 data sets

with these parameter values, each using a different µv parameter from the function. The
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results of this recovery can be seen in Table A2. As in the previous recovery, the generated

ρv values are not recovered, and the estimated parameter values different substantially

between estimation runs despite the near-identical maximum log-likelihoods. This further

suggests that the η2v and ρv parameter values of the bivariate drift rate distribution are not

recoverable based on these summary statistics.

Table A2: Displays the parameter values and log-likelihood for the maximum likelihood estimate

of the second recovery assessment in Appendix A. “Data” refers to the data set, defined by the

generating µv value, and “Run” refers to the estimation run (either the first or second of two total

runs).

Data Run a ter µv η2v ρv p(D|θ)

0 1 1.31 0.29 0.09 1.11 0.49 -1052.38

0 2 1.3 0.3 0.13 1.16 0.67 -1056.64

0.5 1 1.25 0.31 0.33 0.75 0.71 -1008.96

0.5 2 1.38 0.32 0.49 1.84 0.23 -1009.54

1 1 1.5 0.3 1.16 1.93 0.41 -1080.48

1 2 1.7 0.34 1.7 3.31 0.3 -1080.8

1.5 1 1.56 0.33 2.29 2.87 0.25 -967.47

1.5 2 1.48 0.32 1.85 2.22 0.29 -967.45

2 1 1.29 0.29 1.52 0.78 0.63 -882.76

2 2 1.4 0.31 2.12 1.71 0.15 -883.15

2.5 1 1.31 0.3 2.13 1.07 0.82 -738.88

2.5 2 1.62 0.33 3.86 2.63 0.28 -740.58
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Appendix B

Model Recovery in the Bivariate Diffusion Model Through Jointly

Fitting To Response Choice and Response Time

In order to provide a more statistically robust test between the different between-

trial variability hypotheses, we used BIC to compare the three formal models that reflect

these hypotheses: random-only variability (ρv = 0), systematic-only variability (ρv = 1),

and systematic and random variability (0 < ρv < 1). The fitting method was identical to

that in Appendix A, and we performed the model recovery using the three simulated data

sets from Appendix A with different ρv values; a = 1.5, ter = 0.3, µv = 3, η2v = 0.5, ρv =

[0, 0.5, 1].

The results of the model recovery can be seen in Table B1. Firstly, and most impor-

tantly, for all three data sets the systematic-only variability (ρv fixed at 1) and systematic

and random variability (ρv freely estimated) models have near-identical log-likelihoods

for the maximum likelihood estimates, despite the systematic-only variability model being

largely misspecified in two of these cases, showing the perfectly mimicry between the models

based on the unidentifiability of η2v and ρv. Importantly, this results in the systematic-only

variability model being preferred on BIC, due to the log-likelihoods being identical between

models, and the systematic-only variability model being more parsimonious. Secondly, the

random-only variability model shows near-identical log-likelihoods for the maximum like-

lihood estimates to the other models when the data are generated with a ρv of 0 or 0.5,

though this is not the case when the data are generated with a ρv of 1 (i.e., systematic-

only variability). These results again show the inability to distinguish between systematic

and random between-trial variability in drift rate in the double-pass paradigm of Ratcliff

et al. (2018), and that the findings of Ratcliff et al. (2018) only rule out a random-only

variability model, and show no evidence for random variability being required in addition
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to systematic variability.

Table B1: Displays the log-likelihood for the maximum likelihood estimate and the associated BIC

values of the model recovery assessment in Appendix B. “Data” refers to the data set, defined by the

generating ρv value, and “Model” refers to the model fit to the data, defined by the ρv constraints

in the model, being either freely estimated, fixed at 0 or fixed at 1.

Data Model log[p(D|θ)] BIC

0 Free -279.21 596.42

0 0 -279.87 590.15

0 1 -279.35 589.11

0.5 Free -245.83 529.66

0.5 0 -247.72 525.84

0.5 1 -245.69 521.78

1 Free -228.54 495.08

1 0 -263 556.4

1 1 -227.52 485.45
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Appendix C

Parameter Recovery of the Bivariate Drift Rate Distribution

Through Direct Fitting

Due to the inability to distinguish between the effects of the η2v and ρv bivariate

diffusion model parameters based purely on summary statistics, we attempted to provide

a model-based estimation of these parameters from the full response time distributions of

the data. Importantly, we could not directly estimate the ρv parameter (as is commonly

done for the η parameter in the univariate diffusion model), as no analytic solution cur-

rently exists for the likelihood function of a bivariate diffusion model, and attempting to

numerically integrate or simulate this likelihood function proved too computationally tax-

ing to implement. Specifically, we attempted to estimate a drift rate for each trial, and

then constrained the estimated trial drift rates to follow a bivariate normal distribution:

 vi,1

vi,2

 ∼ BN


 µv

µv

 , η2v
 1 ρv

ρv 1


 (C1)

with the same definition as Equation 1 in the main text. The threshold (a) and non-

decision time (ter) were fixed to have the same values for all trials, and the starting point

(z) was fixed to a
2 , in order to try and make the model as simple as possible to maximize

the chances of recovery.

Although it seems unlikely that a single trial – even with all other parameters con-

strained – would provide adequate information to properly constrain a drift rate parameter

and allow it to be recoverable, it is still possible that the pieces of information contained

within the drift rate estimated for each trial could provide adequate constraint for estimat-

ing the hierarchical parameters of the bivariate drift rate distribution.
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The simulated data sets were identical to those in Appendix A and Appendix B (i.e.,

three simulated data sets with different ρv values; a = 1.5, ter = 0.3, µv = 3, η2v = 0.5, ρv

= [0, 0.5, 1]). The model was estimated using a Bayesian framework with a hierarchical

structure for the drift rate distribution, using DE-MCMC with 12 chains and 3,000 sampling

iterations, with the first 1,000 iterations discarded as burn-in. However, the information

from the drift rates of each trial appeared to do little to inform the hierarchical structure,

with the model estimating poorly (i.e., non-converging posterior distributions), and the

average posterior values for all three generating ρv values being close to 0.5 (0.42-0.66).
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Appendix D

Model Recovery in the Multi-Pass Paradigm

Due to the inability to distinguish between the effects of the η2v and ρv bivariate

diffusion model parameters within the double-pass paradigm, we proposed that a multi-

pass paradigm – where some relatively small number of stimuli are repeated a large number

of times, in amongst a larger number of “filler” trials – may be able to distinguish between

the effects of systematic and random variability. Specifically, we proposed that systematic

and random effects could be distinguished using formal model comparison between four

discrete models: a no-variability model, a random-only variability model, a systematic-

only variability model, and a systematic-and-random variability model. Formally, the

no-variability model can be defined as:

vi = µv (D1)

where vi is the drift rate for stimulus i, and µv is the mean drift rate for all trials. The

random-only variability model can be defined as:

vi ∼ N(µv, η
2
v) (D2)

where η2v is the variance in drift rate for all trials. The systematic-only variability model

can be defined as:

vi = µvi (D3)
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where µvi is the mean drift rate for stimulus i. The systematic-and-random variability

model can be defined as:

vi ∼ N(µvi , η
2
v) (D4)

To gain some insight into whether these different discrete models – representing

different explanations for the sources of between-trial variability in drift rate – can be dis-

tinguished within a multi-pass paradigm with a reasonable number of trials, we performed

a model recovery simulation. Specifically, we compared each of these four models on four

data sets – one data set generated by each of the four models – using Bayes factors cal-

culated via bridge sampling (Gronau et al., 2017). Each data set consisted of 300 trials

equally split among 6 stimuli, generated with a = 1.5 and ter = 0.3. Data sets with no

systematic variability were generated with µv = 3, whereas data sets with systematic vari-

ability were generated with µv1 = 4.75; µv2 = 4; µv3 = 3.25; µv4 = 2.5; µv5 = 1.75; µv6 = 1.

Data sets with no random variability were generated with η2v = 0, where data sets with

systematic variability were generated with η2v = 1.

The results of this model recovery simulation can be seen in Table D1 in the form of

log-marginal likelihoods, which show several important trends. When the data were gener-

ated with systematic variability, then the systematic variability models provided a strong

advantage over the models without systematic variability, suggesting that systematic vari-

ability is easy to detect in a multi-pass paradigm when it is present. However, this does

no appear to be the case for the other situations. When the data were generated without

systematic variability, models both with and without systematic variability provided sim-

ilar log-marginal likelihoods, suggesting a difficulty in detecting an absence of systematic

variability. Furthermore, random variability appeared to be difficult to identify in most
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situations, and even resulted in the selection of the incorrect model in one instance, where

a model with random variability included is selected, despite the data being generated

without random variability.

These results suggest that the comparison of discrete models in a multi-pass paradigm

may not be able to solve the identifiability issue that we observed within the double-pass

paradigm for the η2v and ρv parameters. However, it should be noted that our recovery

results are dependent on fairly arbitrary decisions in generating parameter values and prior

distributions, and therefore, this model recovery analysis should not be used to completely

rule out the use of multi-pass paradigms for identifying systematic and random sources

of variability in drift rate. However, we also believe that our recovery displays potential

issues with the approach, and that a detailed recovery assessment showing the potential

success of the approach would be required before the assessment would become tenable.

Table D1: Displays the log-marginal likelihoods for the model recovery in Appendix D. Rows

display the models being fit, and columns display the generating model. “Syst” refers to the model

with only systematic between-trial variability, and “Rand” refers to the model with only random

between-trial variability. The winning model for each generated data set is displayed in bold.

None Syst Rand Both

None 198.1 79.98 121.62 112.39

Syst 196.61 125.86 118.34 148.68

Rand 197.92 82.86 125.65 116.07

Both 196.33 126.63 124.38 150.17


