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Research article 

Toward building recommender systems for the circular economy: Exploring 
the perils of the European Waste Catalogue 

Guido van Capelleveen a,*, Chintan Amrit b, Henk Zijm a, Devrim Murat Yazan a, Asad Abdi a 

a Department of Industrial Engineering and Business Information Systems, University of Twente, the Netherlands 
b Faculty of Economics and Business Section Operations Management, University of Amsterdam, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

The growth in the number of industries aiming at more sustainable business processes is driving the use of the 
European Waste Catalogue (EWC). For example, the identification of industrial symbiosis opportunities, in which 
a user-generated item description has to be annotated with exactly one EWC tag from an a priori defined tag 
ontology. This study aims to help researchers understand the perils of the EWC when building a recommender 
system based on natural language processing techniques. We experiment with semantic enhancement (an EWC 
thesaurus) and the linguistic contexts of words (learned by Word2vec) for detecting term vector similarity in 
addition to direct term matching algorithms, which often fail to detect an identical term in the short text 
generated by users. Our in-depth analysis provides an insight into why the different recommenders were unable 
to generate a correct annotation and motivates a discussion on the current design of the EWC system.   

1. Introduction 

One of the critical pathways to accelerate sustainable development is 
the reduction of waste emissions and primary resource use in resource- 
intensive industries. A mechanism contributing to this eco-innovation is 
industrial symbiosis, which is a cooperation between industries where 
the secondary outputs of one industry are utilized as (part of) primary 
inputs for the production processes of another industry (Chertow, 2000). 
The ontology used for annotating waste items in the European Union is 
the European Waste Catalogue (EWC) (“Commission Decision on the 
European List of Waste,” 2000). This EWC ontology supports, for 
example, the identification of new symbiotic relations in eco-park 
development (Genc et al., 2019) and is used in information systems to 
relate waste stream characterization to implications on shipping, pro
cessing and disposal of waste (Pires et al., 2011). Specifically, these class 
labels, or EWC tags, typically assist users in searching for items of in
terest and help match users with corresponding interests. There are two 
key constraints for tagging the use of EWC codes (Gatzioura et al., 2019; 
van Capelleveen et al., 2018): (1) the tag needs to be selected from a 
defined a priori tag ontology consisting of 841 EWC codes, and (2) each 
item needs to be annotated with exactly one EWC code. 

The tag recommender can be framed as a classical text-classification 
problem and therefore treated with supervised or unsupervised machine 

learning techniques (Khan et al., 2010), but the insufficient 
user-generated descriptions annotated with an EWC label at an initial 
stage makes it impossible to train any algorithm meaningfully (Gibert 
et al., 2018). To alleviate this common cold start problem, a 
content-based filtering approach that exploits the item description and 
EWC description is more suitable. The “noise” is the primary concern, 
omnipresent in many other tag systems, which needs to be dealt with in 
natural language (for example, ambiguity because of misspellings, 
synonymy, multilingualism, polysomy, hyponymy, hypernymy, idioms, 
etc.) (Golder and Huberman, 2006). To the best of our knowledge, issues 
related to the semantic matching of waste concepts are still poorly un
derstood. Therefore, we explore the design of a method for this context 
(a quite short descriptive, highly jargon-based text) that can understand 
the syntactic, semantic, and contextual text similarity between 
user-generated item attributes and the EWC description. In our analysis, 
we test different vector initialization methods that include context and 
semantics in short text similarity measures and compare them to a 
baseline model that is based on a syntactic matching process. Our lin
guistic context of words is achieved through various configurations of 
Word2vec model learning (Google, 2019) and the semantic alternative 
suggestion is derived from an EWC thesaurus (U.K. Environment 
Agency, 2006). Furthermore, we perform an in-depth analysis of rec
ommendations to find the root cause of success or failure of each 
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recommender. 
The remainder of the paper is organized as follows: Section 2 pro

vides a brief overview of tag recommendation and the previous methods 
used to identify the context and semantics in both classical text classi
fication and short text similarity measurements. In Section 3, we explain 
the methods that we tested in our experiment. Section 4 provides the 
results of the experiment, which includes a comparison of the method 
performance. Section 5 reflects on the effectiveness of the different 
recommender models and provides an interpretation of potential causes 
of recommender failure in addition to a discussion on the design of the 
EWC ontology for tag recommendation. Finally, Section 6 summarizes 
our findings and presents open issues for future work. 

2. Background 

2.1. Tag recommenders 

There exists a variety of tag recommenders, each tailored to a specific 
domain of application, enforcing different restrictions, or including ex
tensions, which make a tag recommender unique. Many of the design 
aspects that we are aware of in general recommender systems (van 
Capelleveen et al., 2019) can also be implemented in models for tag 
recommenders (e.g., personalization of tags (Hsu, 2013), context 
awareness of tags (Gao et al., 2019), and video content-based tags 
(Toderici et al., 2010)). A key aspect that makes the recommender 
problem unique is its composition and governance because the tag 
ontology structure and “language” is shaped by the way a tag set is 
governed. Because of the use of a fixed taxonomy in our tag recom
mender, its problem space shows close similarity with text classification. 
Methods, such as string similarity class prediction (Albitar et al., 2014), 
(large) scale text classification (Joulin et al., 2016; Partalas et al., 2015), 
or the most related, short text classification (Sriram et al., 2010) are the 
basis for building an EWC tag recommender algorithm. 

2.2. Enhancing data for tag recommendation 

Recently, tag recommendation has become an important subject of 
research as tags, among other textual features, have proven to be very 
effective in information retrieval tasks (Belém et al., 2017; Said and 
Bellogin, 2014). Several scholars have studied the methods of processing 
natural language and modeling the data that serves as an input for 
filtering algorithms with the main goal of improving the relevance of tag 
recommendation. Some studies indicate that incorporating item attri
butes from different categories improves the quality of tag suggestions 
(Hölbling et al., 2010; Zhao et al., 2010). In general, data such as ab
stract, keywords, and title (Ribeiro et al., 2015; Alepidou et al., 2011), 
and high-level concepts derived from various modalities such as 
geographical, visual, and textual information, complement each other. 
In combination, these attributes provide a richer context that can be 
used to improve tag relevance (Shah and Zimmermann, 2017). Another 
popular principle for alleviating tag noise is topic modeling. A topic 
model in a tagging context is a latent representation of a concept 
determined by the semantic relations between tags clustered around that 
concept (Zhong et al., 2017; Akther et al., 2012). External lexical da
tabases that contain semantic relations (i.e., WordNet, Wikipedia) sup
port the construction of these latent topic models. These databases allow 
us to create a contextual mapping between tags from a folksonomy, the 
existing taxonomy, and the latent concepts through the translation of 
syntactic representation by semantic relations (Qassimi et al., 2016; 
Zhang and Zeng, 2012; Wetzker et al., 2010; Subramaniyaswamy et al., 
2013). The case in (Godoy et al., 2014) shows that semantic enhance
ment can also be used independently to increase the level of retrieval 
(recall/hit rate), supported by other works exploiting semantic data
bases, for example, WordNet and Wikipedia (Cantador et al., 2011; 
Subramaniyaswamy and ChenthurPandian, 2012), DBpedia (Ben-Lha
chemi and Nfaoui, 2017; Mirizzi et al., 2010), classical search engine 

results and social tagging systems (Mirizzi et al., 2010). 

2.3. Measuring short-text semantic similarity 

The detection of similarity between short-text descriptions is found 
in various text-related similarity problems (e.g., conversational agents 
(Chakrabarti and Luger, 2015), linking questions with answers in Q&A 
systems (Wang and Varadharajan, 2007), plagiarism detection (Abdi 
et al., 2015), and text categorization (Ko et al., 2004)). These techniques 
are known as short-text semantic similarity (STSS) techniques and can 
be adapted to tag recommendation. STSS can be defined as a metric 
measuring the degree of similarity between pairs of small textual units, 
typically with a length of less than 20 words, ignoring the grammatical 
correctness of a sentence (O’Shea et al., 2008). Short contexts rarely 
have common words in the exact lexical composition: hence, the key 
challenge of STSS is to overcome the detection of the right semantics and 
context. Methods that can detect these short-text similarities are 
string-based, corpus-based, and knowledge-based similarity measures 
(Gomaa and Fahmy, 2013). 

Although there is no unified method that applies best to every 
context, an appropriate method can be selected by evaluating the data in 
the context of the application. Testing the effect of including each aspect 
of a contextual or semantic relation leads to a better algorithm design for 
that context. There is extensive literature on what type of aspects and 
associated methods can be dealt with, (Khan et al., 2010; Pedersen, 
2008), including but not limited to boundary detection (e.g., sentence 
splitting, morphological segmentation, tokenization, topic segmenta
tion), grammar induction, lexical semantics (synonymy, multilin
gualism, polysomy, hyponymy, hypernymy, and idioms), text 
representation (nouns, adjectives), word sense disambiguation 
(contextual meaning), text sanitation (e.g., removing stopwords, 
spelling corrections, and noisy data), deriving a word to a common base 
form (stemming and lemmatization), recognition tasks (e.g., terminol
ogy extraction, named entity recognition), collocations, sentiment 
analysis, text enrichment (e.g., including a title or keywords), expanding 
to second order similarity (e.g., word expansion, context augmentation, 
fuzzy matching short-text replacements), and distributional semantics 
(e.g., word embeddings). 

3. Methodology 

The design of a novel approach to identify waste concepts in short- 
text waste descriptions to generate and evaluate tag recommendations 
follow the design science research approach (Hevner et al., 2004) and 
are guided by the principles of (Peffers et al., 2007). First, the problem 
definition is provided, followed by an explanation of the data charac
teristics. Then, we present the experimental setup and introduce our 
model. 

3.1. Problem definition 

The problem of EWC tag recommendation is formally defined as 
follows. There is a tuple F := (U,I,T,A), which describes the users U, the 
items I, the tags T, and the assignment of a tag by a ternary relation 
between them, that is, A⊆U× I× T. For a user u ∈ U and a given item 
i ∈ I, the problem, to be solved by a tag recommender system, is to find a 
tag t(u, i) ∈ T for the user to annotate the item (Godoy and Corbellini, 
2016; Belém et al., 2017). Each i ∈ I contains a short text string idesc 
(typically less than 20 words) describing a waste. This set of text strings 
for all items is denoted by Idesc = {idesc|i∈ I}. The tag vocabulary T 
consists of tags where each t ∈ T represents a unique EWC code (at the 
third level in the EWC ontology; see also Table 2) from the European 
Waste Catalogue (“Commission Decision on the European List of Waste,” 
2000). Each tag t has two components: the EWC code tewc and the EWC 
description tdesc. Another useful concept is the bag of words (BOW), 
which is a sequence of keywords extracted from a general text string. 
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Such a keyword representation bi for an item description using the BOW 
concept is derived from idesc. Similarly, a keyword-based representation 
for a tag description bt using the BOW is derived from tdesc. Finally, a 
keyword-based representation of term synonyms for tag description bsyn,t 

is derived from a thesaurus (described in Section 3.4). The collection of 
associated BOW pairs (each pair combining the keyword-based repre
sentations of an item and a tag) is denoted as (bi,bt). A restriction to our 
tag annotation problem is that there must be one and only one bt asso
ciated with a bi (i.e., an item is annotated by one and only one EWC tag). 
In contrast to other tag recommendation problems in which the asso
ciation can be expressed on a numerical scale (such as with ratings), the 
association between bt and bi is expressed as a binary value, which 
means that the assigned EWC label is either correct or incorrect. 

3.2. Data characteristics of the “waste” domain 

There are six data sources used in the experiment. The first three data 
sources are characteristics of the waste domain. These are (a) data for 
prediction and evaluation, (b) the EWC tag ontology, and (c) the EWC 
tag thesaurus. The other three sources are training corpora for Word2vec 
(see Section 4.1). 

First, we use data that consist of (1) waste descriptions specifying a 
waste item for which we intend to recommend the EWC tag and (2) the 
correct class label (i.e., the EWC tag) that can be used to evaluate the 
recommender algorithm. These data originate from industrial symbiotic 
workshops that were part of the EU-funded SHAREBOX project 
(Sharebox Project, 2017), providing a variety of waste items with 
associated resource interests from industry. Waste items are often 
described using short sentences, or only a few keywords, commonly with 
less than 10 words. These items have been annotated with an EWC tag. 
The EWC tag (i.e., the description at level 3 in the EWC ontology) can be 
seen as the class label that serves to test the prediction task of the 
recommender system. The evaluation data set is imbalanced, which 
means the classes are not represented equally in the test data. The 
example data are shown in Table 1. 

Next, we use the EWC ontology. This ontology is a statistical classi
fication system defined by the European Commission to be used in 
reporting waste statistics in the European Union in a concise manner 
(“Commission Decision on the European List of Waste,” 2000). Each 
EWC code represents a class that refers to a group of waste materials. 
The EWC code is the label of this class and is used to annotate items in 
the evaluation data. An example of such an EWC structure is shown in 
Table 2. 

Finally, we use EWC thesaurus data in two of the suggested methods 
(see Section 3.3) to enrich the descriptions from the EWC ontology. The 
selected thesaurus is derived from the guidance document on the “List of 
Wastes” composed by the UK Environmental Agency (see (U.K. Envi
ronment Agency, 2006), Annex 1). An example of the thesaurus data is 
shown in Table 3. 

3.3. Experiment setup 

To test the algorithm based on an already “tagged” item set, we 
attempt to assign a tag to each item using different methods and validate 
the correctness of this assignment. The research setup is illustrated in 
Fig. 1. A prerequisite for all text, the short texts from each of the eval
uation data, EWC ontology, and thesaurus data is that the natural lan
guage is pre-processed and converted into a BOW. This procedure 
consists of a sequence of steps, as follows:  

1. All the characters are converted to lowercase and all numbers and 
special characters are removed.  

2. All items are tokenized into the BOW.  
3. All terms that contain less than 4 characters are removed (this 

removes most non-words without much meaning, as well as 
abbreviations)  

4. All stop words “English” from the Natural Language Tool Kit (NLTK) 
are removed (Natural Language Tool Kit, 2019). A stop word refers to 
the most frequently used word (such as “the”, “a”, “about”, and 
“also”) that are filtered before or after the NLP. 

5. All words are stemmed using the empirically justified Porter algo
rithm (Porter, 1980) in NTLK (Natural Language Tool Kit, 2019). 
Stemming is the process of removing the inflectional forms and 
sometimes the derivations of the word, by identifying the morpho
logical root of a word (Manning et al., 2008).  

6. All common nonsignificant stemmed terminology used in industrial 
symbiosis are removed. These include “wast”, “process”, “consult”, 
“advic”, “train”, “servic”, “manag”, “management”, “recycl”, 
“industri”, “materi”, “quantiti”, “support”, “residu”, “organ”, 
“remaind”. 

Table 1 
Example of evaluation data (Sharebox) (Sharebox Project, 2017). The full test set 
contains 311 entries describing materials, each item description has a mean of 
4.945 terms per entry with a standard deviation of 3.040. There are 691 unique 
terms in the item descriptions before pre-processing, and 479 unique terms after 
pre-processing. The classes assigned to the entries are imbalanced over the data 
set.  

Item description EWC 
annotation 

Iron and steel slag: Concrete tiles can be taken as one of the main 
components 

15 01 04 

Sawmill dust and shavings 03 01 04 
Food and textile waste 02 02 03  

Table 2 
Sample illustrating the structure of the waste classification system EWC 
(ontology) (“Commission Decision on the European List of Waste,” 2000). The 
full data set contains 841 classes (at level 3), each EWC description has a mean of 
4.753 terms with a standard deviation of 2.038. There are 628 unique terms in 
the EWC descriptions before pre-processing, and 475 unique terms after 
pre-processing.  

Chapter 
(Level 1) 

Sub Chapter 
(Level 2) 

Full Code 
(Level 3) 

Description 

03   Wastes from wood processing and the 
production of panels and furniture, 
pulp, paper and cardboard  

03 01  Wastes from wood processing and the 
production of panels and furniture   

03 01 01 Waste bark and cork  

Table 3 
Example of thesaurus data (U.K. Environment Agency, 2006). The full data set 
contains 691 classes (at level 3), which means there are several EWC codes that 
do not have a thesaurus description, each EWC thesaurus description has a mean 
of 8.794 terms with a standard deviation of 6.452. There are 1503 unique terms 
in the EWC thesaurus description before pre-processing, and 1232 unique terms 
after pre-processing.  

EWC Thesaurus entry 

15 01 04 Cans - aluminium, Cans - metal, Metal containers - used, 
Aluminium, Aluminium cans, Aerosol containers - empty, Drums 
- steel, Steel drums, Aluminium foil, Containers (metal) - used, 
Containers - aerosol - empty, Containers - metal (contaminated), 
Contain 

03 01 04 Chipboard, Sawdust, Sawdust - contaminated, Shavings - wood, 
Timber - treated, Dust - sander, Hardboard, Wood, Wood 
cuttings 

02 02 03 Food - condemned, Condemned food, Food processing waste, 
Animal fat, Fish - processing waste, Fish carcasses, Kitchen 
waste, Meat - unfit for consumption, Poultry waste, Shellfish 
processing waste, Pigs, Cows, Sheep  

G. van Capelleveen et al.                                                                                                                                                                                                                      



Journal of Environmental Management 277 (2021) 111430

4

7. All duplicate terms were removed from the BOW. 

After this set of pre-processing steps, the remainders of the BOW 
form the terms that are adopted in the term vector. This works as fol
lows. We first replace the now pre-processed BOW’s bi and bt by 
numerically valued vectors vi and vt with length equal to the total 
number of unique terms appearing in either bi or bt, and set its elements 
vi,j(vt,j) equal to one if the j-th term appears in bi(bt), and zero otherwise 
(this is called the term vector initialization). Note that a basic short-text 
similarity technique that relies on term vector initialization (Method A), 
as in the example above, cannot detect similarity if there are no shared 
terms. To mitigate this problem, we propose different term vector 
initialization methods (Methods B, C, and D), which use pseudo- 
semantic similarity of the terms (described in Section 3.4). 

Before calculating the similarity score between the vectors vi and vt 
we normalize the vectors vi and vt , using feature scaling (see Zheng and 
Casari (2018)), that is, scaling back the magnitudes of the vectors to the 
range [0,1] without changing the direction of the vector. Then, a simi
larity score is calculated to predict the classification tag bt. We selected 
the classic cosine similarity measure (see Equation (1)) for measuring 
the term similarity in all four methods, as it is a robust similarity mea
sure (Huang, 2008). 

si,t =CosSim(vi, vt)=

∑
jvi,jvt,j

̅̅̅̅̅̅̅̅̅̅̅̅∑
jv2

i,j

√ ̅̅̅̅̅̅̅̅̅̅̅̅∑
jv2

t,j

√ (1) 

Equation (1) defines the similarity score si,t which is calculated by the 
cosine similarity measure CosSim between two vectors vi and vt of equal 
length, where vi,j and vt,j denotes the elements of the term vectors vi and 
vt, respectively. A tag prediction task on item i results in a ranked list 
consisting of a similarity score for each tag for that item i, denoted as 
Ri = {ri,1, ri,2,…, ri,|T|}, where |T| is the cardinality of T, and ri,t = (t, si,t)

with t a specific tag and si,t the similarity score of that tag on item i. The 
list is cut off for evaluation by taking the top k results from Ri by ranking 

si in a descending order. 

3.4. Proposed methods 

3.4.1. Method A (base): basic term matching 
In this method we simply create the binary-valued vectors vi and vt 

from the corresponding pre-processed BOW bi and bt as discussed above 
(see example Table 4). 

3.4.2. Method B (thesaurus): basic term matching, enriched with a 
thesaurus (adding semantics) 

The second method applies in-direct term matching with the support 
of a semantic enhancement technique, that is, a thesaurus. The EWC 
thesaurus E is exploited to increase the number of semantic links be
tween the waste item description idesc and the correct tag description 
tdesc. These semantically equivalent terms for the purposes of informa
tion retrieval are called synsets. The EWC thesaurus consists of a refer
ence dataset E = {(t, esyn,t)} where t is an EWC tag, and esyn,t is the 
associated synset. These synsets are derived from the ‘List of Wastes’ (U. 
K. Environment Agency, 2006). For each tag t, the associated synset esyn,t 

is also pre-processed using the steps previously described, to compose 
BOW bsyn,t. For each tag t, we expand the BOW bt with the BOW bsyn,t. 

Fig. 1. Design methodology.  

Table 4 
Example term vectors (Method A).   

bi  bt  

food textil unsuit consumpt 

vi  1 1 0 0 
vt  0 0 1 1 

Item entry idesc: “Food and textile waste”. Tag entry tdesc: “materials unsuitable for 
consumption or processing” (02 02 03). Note: the terms “for, or, and” (stop words), 
and “materials, waste, processing” (non-significant terminology) are removed in 
pre-processing. 
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Then, similar to the basic term matching technique (Method A), each 
BOW bi is converted to a vector vi and, similarly, each BOW bt is con
verted to a vector vt (see Table 5). 

3.4.3. Method C (Word2vec): using Word2vec models (adding context) 
The third method is based on Word2vec. Word2vec (W2V) (Google, 

2019) is a two-layer neural net that processes text in order to produce 
word embeddings, which are vector representations of a particular word 
that captures the context of a word in a text. This technique can be used 
to calculate the similarity between words based on the context as an 
alternative or as an addition to syntactic or semantic matching tech
niques. In order to train how similar terms are in that context, Word2vec 
requires a large text corpus. Three configurations are tested, from which 
the best one is selected (see Section 4.1). The purpose of testing different 
configurations is to find a well-performing configuration that can lead to 
a better understanding of the use of the Word2vec approach in retrieving 
more or alternative, albeit correct tags for EWC tag recommendation. 
The three configurations are differentiated by the corpus used to train 
Word2vec, which essentially determines which associations can be 
retrieved. A heuristic set of hyper-parameter settings, each tailored to 
that corpus, is used (and explained in Section 4.1). The three configu
rations are as follows:  

• W2V Configuration “Google News”: The first configuration is based 
on the well-known pre-trained Google News Word2vec file (Google, 
2019).  

• W2V Configuration “Common Crawl”:: The second configuration 
uses a pre-trained Word2vec file on one of the largest text corpora 
existing today, the Common Crawl (2019), which is offered by the 
fastText library of Facebook (Facebook Inc., 2019).  

• W2V Configuration “Elsevier”: The third configuration is based on 
a “waste” data corpus manually constructed by scraping the “ab
stract” and the “introduction” section from the available academic 
papers indexed by Elsevier Scopus (Elsevier, 2019) retrieved through 
the search query “waste”. Then, the Word2vec model is trained using 
the Word2vec implementation in the Gensim library (Řehůřek, 
2019). 

After training the model, we can assign Word2vec similarities to the 
dimensions of the term vector. To do that, we first create a direct term 
vector using the vector creation procedure as described above, where 
each non-zero element is multiplied with a so-called term weight value to 
determine the balance between the direct term matching and the 
context-based Word2vec similarity scores. The latter scores are calcu
lated by Word2vec to indicate the degree of similarity between two 
terms that appear in bi and bt, respectively. Two approaches are tested to 
represent the context-based term similarity created by the Word2vec 
similarity score(s), which are named the “Average W2V Similarity” and 
the “Maximum W2V Similarity”. Both methods are illustrated with an 
example in Table 6.  

• Term vector configuration: ‘Average W2V Similarity’: The 
“Average W2V Similarity” is an adaptation of the similarity measure 

in (Croft et al., 2013). This approach replaces each zero in the direct 
term vector with the average of all the Word2vec similarity values 
between the term of that dimension and each of the initially non-zero 
terms of the other vector.  

• Term vector configuration: “Maximum W2V Similarity”: The 
“Maximum W2V Similarity” is an adaptation of the similarity measure 
in (Crockett et al., 2006). This approach replaces each zero in the 
direct term vector with the maximum Word2vec similarity value 
between the term of that dimension and each of the initially nonzero 
terms of the other vector. 

In case Word2vec fails to provide a similarity score for some terms, 
we use the score of Ratcliff/Obershelp pattern recognition (Ratcliff and 
Metzener, 1988). Ratcliff/Obershelp computes the similarity between 
two terms based on the number of matching characters divided by the 
total number of characters in the two terms. 

3.4.4. Method D (Word2vec thesaurus): using Word2vec models (adding 
context), enriched with a thesaurus (adding semantics) 

Method D is a combination of Method B and Method C. It employs the 
thesaurus as used in the Method B, thereby, enriching the dataset with a 
larger variety of terms. After obtaining the term vectors vi and vt using 
method B, we apply Method C to include the Word2vec values in the 
term vector which together create the weighed vectors vi and vt. 

Table 5 
Example term vectors (Method B).   

bi  bt  

food textil unsuit consumpt condemn anim fish carcass kitchen meat unfit poultri shellfish pig cow sheep 

vi  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
vt  1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Item entry idesc: “Food and textile waste”. Tag entry tdesc: “materials unsuitable for consumption or processing” (02 02 03). Thesaurus entry eewc: “Food - condemned, 
Condemned food, Food processing waste, Animal fat, Fish - processing waste, Fish carcasses, Kitchen waste, Meat - unfit for consumption, Poultry waste, Shellfish processing 
waste, Pigs, Cows, Sheep” Note: the terms “for, or, and” (stop words), “materials, waste, processing” (non-significant terminology), and “fat” (less than 4 characters before 
stemming) are removed during pre-processing. 

Table 6 
Examples term vectors (Method C).   

bi  bt  

powder coat paint varnish mention 

Direct Term Vector: 
Term vector vi  2 2 0 0 0 
Term vector vt  0 0 2 2 2 
W2V values: 
W2V weight “powder” X X .355 .379 .076 
W2V weight “coat” X X .452 .491 .105 
W2V weight “paint” .355 .452 X X X 
W2V weight “varnish” .379 .491 X X X 
W2V weight “mention” .065 .058 X X X 
Term Vector Config.: 
Average value .266 .334 .404 .435 .091 
Maximum value .379 .491 .452 .491 .105 
Weighted Term Vector: 
Weighted vi using Average  2 2 .404 .435 .091 
Weighted vt using Average  .266 .334 2 2 2 
Weighted vi using Maximum  2 2 .452 .491 .105 
Weighted vt using Maximum  .379 .491 2 2 2 

Item entry idesc: “Powder coating waste”. Tag entry tdesc: “Waste paint and var
nish other than those mentioned in 08 01 11” (08 01 12). Term weight 
term weight: 2. Note: the terms “and, in, other, than, those” (stop word), “waste” 
(non-significant terminology), and “08 01 11” (numbers) are removed during pre- 
processing. 
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4. Algorithm performance test 

To assess the performance of the proposed set of methods and to 
provide comparative measures, an experiment was conducted. First, the 
configuration settings for training the Word2vec models are explained. 
This is followed by a set of definitions of the evaluation metrics and the 
optimization process for the parameters of the tag recommender. 
Finally, the methods are compared given their optimal parameter 
configurations. 

4.1. Word2vec model and hyperparameters 

Three different configurations (see Table 7) were tested to find a 
strong Word2vec model to represent our proposed context-based ap
proaches (Methods C and D). 

The first configuration is based on the “Google News” data set which 
is a well-known baseline for Word2vec experiments, but not optimized 
for jargon. To align with the semantic use of rare terms and jargon, we 
created two other configurations: that is, the “Common Crawl” and the 
“Elsevier” configuration. The “Common Crawl” configuration is based 
on one of the largest data sets on which Word2vec has been globally 
trained, and it uses the latest continuous bag of word techniques 
implemented by Facebook. The pre-trained Word2vec model uses fast
Text which exploits enriched word vectors with subword information to 
optimize the performance of rare words. This is because fastText can 
compute word representations for words that did not appear in the 
training data (Bojanowski et al., 2017). The “Elsevier” configuration was 
created from scratch. The key is to construct a more jargon containing 
data set to train Word2vec. We collected data from Elsevier Scopus 
through a search of abstracts and introductions of academic papers that 
are related to the search query “waste”. Of the more than 8e+5 indexed 
documents, we were able to retrieve 3.57e+5 documents, for which the 
raw text content was downloaded through the Scopus API. We removed 
the numbers, links, citations, and page formatting hyphenations so that 
only the clean sentences remain. We trained the Word2vec using this 
data and the configuration settings as noted in Table 7. Because the 
Elsevier dataset is targeted to maximize the retrieval of jargon used in 
the waste domain, we configured the parameters to support this 
accordingly. The number of dimensions of learning word embeddings is 
set to 1000 (where the rule of thumb is 50–300 for a good balance in 
performance), and the minimal term count is lowered to 1, which should 
favor learning word embeddings for rare terms (Patel and Bhattachar
yya, 2017; Mikolov et al., 2013). We use the heuristic of 10 (pos/neg) for 
the window size (based on (Pennington et al., 2014)). The window size 
determines how many words before and after a given word are included 
in the context that Word2vec uses to learn relationships. A larger win
dow size typically tends to capture more domain context terms whereas 

a smaller window size captures more dependency-based embeddings (e. 
g., the words that are most similar, synonyms or direct replacements of 
the originated term). 

4.2. Evaluation metrics 

A series of commonly applied evaluation metrics are used to evaluate 
and compare the performance of our proposed methods for tag recom
mendation (Said and Bellogín, 2018; Ekstrand et al., 2011). All the ex
periments were conducted in an off-line setting. Our EWC tag problem is 
a multi-class classification problem in which the EWC code acts as the 
class label. A multi-class classification problem is a classification task 
with more than two classes under the assumption that each item is 
assigned one and only one class label. Multi-class data, such as ours, are 
often imbalanced, which means that the classes are not represented 
equally. Therefore, the evaluation uses metrics at both the micro and 
macro levels (Scikit-learn developers, 2020). We measured the preci
sion, recall, accuracy, F-measure (or F1), mean reciprocal rank (MRR), 
and discounted cumulative gain (DCG). We measure precision, recall, 
accuracy, and F1 at the micro-level because micro-averaging treats all 
classes by their relative size, which better reflects imbalanced data 
subsets. Furthermore, we measure the balanced accuracy at the macro 
level. The Greek letters μ, M, and γ indicate micro-, macro-, and 
balanced-averaging, respectively. The other metrics MRR and DCG are 
rank-based metrics. Rank-based metrics measure a ranked list using a 
function that discounts a correct tag when found at a lower position in 
the list. 

First, we create a matrix P with a prediction si,t, obtained from the 
similarity measure CosSim() in Equation (1), between each item i and 
each EWC tag t. From P, we can obtain the ranked list of predictions Ri 
(see Section 3.3). The precision, recall, accuracy, and F-measure are 
metrics measured at the list level. A metric at the list level measures a list 
at a particular k, meaning that if the correct tag is among the first k 
ranked tags, it is considered as a correct list of tags and thus a correct 
recommendation (Baeza-Yates and Ribeiro-Neto, 2011). The relevance 
of tag prediction is evaluated in a binary fashion; that is, a list of tag 
predictions can only be classified as correct or incorrect recommenda
tion. This means that, for every i, the recommendation is a list of the k 
highest predictions (si,t1 , si,t2 ,…, si,tk ) in Ri, where k is the maximum 
number of ranked tags. First, we define the class-level metrics, and then 
we show how the list-level metrics at the micro and macro levels are 
defined, and finally, we present the rank-based metrics. 

4.2.1. Tag- or class-level metrics 
The set of tags T (i.e., level 3 EWC descriptions) represents the classes 

for evaluating our multi-class tag assignment problem. In the evaluation 
of a binary classification, tp denotes the number of true positives, fp is 
the number of false positives, tn is the number of true negatives, and fn is 
the number of false negatives. In multi-class evaluation, we use a class- 
based definition of true positives tp, false positives fp, false negatives fn, 
and true negatives tn. We use t to indicate that the counts of tp,fp, fn, and 
tn are measured for a specific class (i.e., tag). A true positive tpt for a tag t 
is when the correct tag label is class t and the list of predicted tag labels 
contains the correct tag label. A false positive fpt for a tag t is when the 
correct tag label is not class t and a list of predicted tags contains the 
correct tag label. A false negative fnt for a tag t is when the correct tag 
label is class t, and the list of predicted tag labels does not contain the 
correct tag label. A true negative tnt for a tag t is when the correct tag 
label is not class t, and a list of predicted tags does not contain the correct 
tag label. 

The precision related to tag t (Equation (2)) is the number of 
correctly recommended tags t divided by all instances in which tag t has 
been recommended. 

Precisiont =
tpt

tpt + fpt
(2) 

Table 7 
Description of the data, and the Word2vec model hyperparameter settings.   

Google ( 
Google, 2019) 

Common Crawl ( 
Grave et al., 2018) 

Elsevier ( 
Elsevier, 2019) 

No. terms/pag. 100E9 words 1.5E11 pages 3.57E5 docs 
File Size NA 234 TiB 2.41 GB 
Training Platform: 
Framework Word2vec 

(Google) 
Word2vec 
(fastText) 

Word2vec 
(Gensim) 

Model configuration: 
Architecture Continuous 

Skip-gram 
CBOW Continuous 

Skip-gram 
File size 3.6 GB 7.1 GB 4.9 GB 
Word embedding 

(Dimension size) 
300 300 1000 

Epochs NA 5 5 
Minimal term count 5 NA 1 
Window size 5pos/15 neg 5 pos/10 neg 10pos/10neg 
N-gram – 5 –  
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The recall related to tag t (Equation (3)) is the number of instances 
that are correctly tagged with t divided by the total number of instances 
for which tag t would be the correct label. 

Recallt =
tpt

tpt + fnt
(3) 

The F-measure (or F1 score) (Equation (4)) is a different measure of a 
test’s accuracy that evaluates the precision and recall in a harmonic 
mean. 

F − measuret = 2⋅
Precisiont⋅Recallt

Precisiont + Recallt
(4) 

Accuracy (Equation (5)) is the fraction of measurements of correctly 
identified tags as either truly positive or truly negative out of the total 
number of items. 

Accuracyt =
tpt + tnt

tpt + tnt + fpt + fnt
(5)  

4.2.2. Micro-level metrics 
When we evaluate the classes at a micro level, we count all tpt, tnt, fpt 

and tnt globally, that is, summing the values in the numerator and de
nominator prior to division. Equation (6) denotes the micro precision as 
used for multi-class classification, that is, a generalization of the preci
sion for multiple classes t. 

Precisionμ =

∑
t∈T tpt

∑
t∈T (tpt + fpt)

(6) 

Equation (7) denotes the micro-recall, as used for multi-class clas
sification, that is, a generalization of the recall for multiple classes t. 

Recallμ =

∑
t∈T tpt

∑
t∈T (tpt + fnt)

(7) 

Equation (8) denotes the micro F-measure (or micro F1 score) as used 
for multi-class classification, that is, a generalization of the F-measure 
for multiple classes t. 

F − measureμ = 2⋅
Precisionμ⋅Recallμ

Precisionμ + Recallμ
(8) 

Equation (9) denotes the micro accuracy as used for multi-class 
classification, that is, a generalization of the accuracy, defined over all 
tags. The micro accuracy is the fraction of correct predictions over the 
total number of predictions (regardless of the positive or negative label). 

Accuracyμ =

∑
t∈T (tpt + tnt)

∑
t∈T (tpt + tnt + fpt + fnt)

(9) 

As the tnt inflates the accuracy when there are many classes T, we 
typically measure (see (Scikit-learn developers, 2020)) the test result 
from the perspective of the correct class t for a multi-class evaluation. 
Therefore, the modified micro accuracy is the fraction of correct pre
dictions for a class t over the number of predictions for items for which 
the correct tag label is t, as denoted in Equation (10), which is similar to 
micro recall. 

ModifiedAccuracyμ =

∑
t∈T tpt

∑
t∈T (tpt + fnt)

=Recallμ (10)  

4.2.3. Macro-level metrics 
When we evaluate all classes at a macro level, we calculate the 

metrics for each class t, and then calculate the (unweighted or weighted) 
mean. Equation (11) denotes the unweighted macro accuracy (Sokolova 
and Lapalme, 2009). 

AccuracyM =
1
|T|

∑

t∈T

tpt + tnt

tpt + fnt + fpt + tnt
(11) 

In practice, as the tnt inflates the accuracy when there are many 

classes T, we typically measure a balanced score instead. Equation (12) 
denotes balanced accuracy (Scikit-learn developers, 2020), as used for 
multi-class classification which avoids inflated performance estimates 
on imbalanced datasets. Balanced accuracy is the macro-average of the 
recall scores. 

BalancedAccuracyγ =
1
|T|

∑

t∈T
Recallt = RecallM (12) 

However, in the implementation of sklearn (Scikit-learn developers, 
2020), the balanced accuracy (see Equation (13)) does not count the 
scores for classes that did not receive predictions. Let X denote the set of 
all tags that have been predicted at least once, with |X| the cardinality of 
X. Then we have: 

ModifiedBalancedAccuracyγ =
1
|X|

∑

t∈X
Recallt (13)  

4.2.4. Rank-based Metrics 
Finally, we define rank-based evaluation metrics. The MRR (see 

Equation (14)) is a rank measure appropriate for evaluating a rank in 
which there is only one relevant result, as it only uses the single highest- 
ranked relevant item (Baeza-Yates and Ribeiro-Neto, 2011). This metric 
is similar to the average reciprocal hit-rank (ARHR), defined in (Desh
pande and Karypis, 2004). Let R be the set of all recommended lists, and 
let Z denote the set of all items for which the recommended list of tags 
contains at least one correct tag in the top k tags. Define ranki as the 
position of the correct tag in Z. Then, the MRR is defined as 

MRR=
1
|R|

∑

i∈Z

1
ranki

(14) 

Another useful evaluation metric is the DCG (Järvelin and 
Kekäläinen, 2002). In recommender systems, relevance levels can be 
binary (indicating whether a tag is relevant or irrelevant for an item) or 
graded on a scale (indicating a tag has a varying degree of relevance 
with an item, e.g., 4 out of 5). In our evaluation, the relevance score on 
an item is a binary graded relevance score of a tag (i.e., a tag is either 
correct or incorrect). The DCGi (Equation (15)) is a cumulation of all 
binary graded relevance scores from position 1 to k in the ranked list of 
tags for an item i, with reli,p the binary graded relevance score at position 
p, which is discounted by a log function in the denominator that pro
gressively reduces the impact of a correctly ranked tag when found at a 
lower ranked position. 

DCGi =
∑k

p=1

2reli,p − 1
log2(p + 1)

(15) 

In our case each recommended list contains at most one correct tag, 
which reduces to the following (see Equation (16)): 

DCGi =

⎧
⎪⎨

⎪⎩

0, if ​ the ​ recommended ​ list ​ contains ​ no ​ correct ​ tag
1

log2(p + 1)
, if ​ the ​ correct ​ tag ​ is ​ found ​ at ​ position ​ p

(16) 

The DCG (Equation (17)) is the mean of the DCGi of all recommended 
lists in R. 

nDCG=
1
|R|

∑

i∈Z
DCGi (17) 

While in many recommender evaluations it is common to provide a 
normalized discounted cumulative gain (nDCG), this does not apply to 
binary graded multi-class evaluation. This is because the DCGi would be 
normalized over the same ideal ranking. Let the ideal discounted cu
mulative gain IDCGi (Equation (18)) represent the maximum possible 
DCGi. This IDCGi is calculated as DCGi for the sorted list with a 
maximum length of positions k of all relevant tags ordered by their 
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binary graded relevance score, with k as the number of predicted tags 
and reli,p as the binary graded relevance score of the tag at position p. 

IDCGi =
∑k

p=1

2reli,p − 1
log2(p + 1)

= 1 (18) 

The nDCGi (see Equation (19)) for a single ranked list of tags for item 
i is denoted as the fraction of DCGi over the IDCGi. 

nDCGi =
DCGi

IDCGi
=

DCGi

1
= DCGi (19) 

Because the gain is only achieved at the correct tag, which is the first 
position in a ranked list of tags, normalization is irrelevant as the IDCG is 
then equal to 1. Therefore, we adopted the DCG instead of nDCG in our 
experiment. 

4.3. Parameter setting of the recommenders 

A few selection criteria are applied as a prerequisite for our com
parison in Section 4.4. First we need to find the optimal initialization for 
two parameters. Parameter (1) determines the term weight assigned to 
the position in a term vector for which a term is present in the BOW. This 
can increase or decrease the importance of Word2vec similarity values 
that are assigned to positions in the vector for which the term is not 
present in the BOW. This balances the effect of exact term matches in 
relation to Word2vec similarity scores. Parameter (2) determines the 
minimum vector similarity (which we refer to as min vec sim). Next, we 
need to select the optimal W2V configuration upon which Word2vec is 
trained to calculate similarities for our “waste” domain, that is, 
comparing, the “Google News” configuration, the “Common Crawl” 
configuration, and the “Elsevier” configuration. Finally, we need to 
select the better of the two approaches proposed to represent the 
context-based term similarity created by the Word2vec similarity score 
resulting in the term vector configuration: “Average W2V Similarity” or 
“Maximum W2V Similarity”. 

4.3.1. Parameter setting 
To determine the optimal term weight, we test the sensitivity of 

term weight for all recommenders using method C or D to detect where 
the best modified balanced accuracy is achieved. The term weight de
termines whether the CosSim-based match (see Section 3) puts more 
emphasis on a term that exists in both the BOW biand bt or on a term that 
exists only in one BOW; thus, a match is created using a representation of 

term similarity based on the Word2vec similarity score(s). Fig. 2 ex
plains the initialization of the term weight parameters. After some noise 
at 0–0.5, most of the recommenders show an increasing modified 
balanced accuracy with a decreasing slope between 0.5 and 2.0 followed 
by a slight decrease (2.0–5.0), resulting in a concave function with a 
maximum around term-weight equal to 2. Therefore, we selected 2 as 
the term weight parameter value for our experiment, as this seems to 
provide close to the best results for all recommenders. 

We also perform a sensitivity analysis with respect to the minimum 
vector similarity min vec sim. Two important aspects should be consid
ered here. First, it concerns a multi-class recommender problem with 
many tags (each tag forms a class). In addition, a term match between 
two short-text descriptions cannot always be established (see Fig. 4; the 
number of list recommendations generated is lower than 311, which is 
the number of items for which recommendation is required). Hence, 
when the vector similarity is increased to favor better recommendations, 
it may, unfortunately, also cut off the number of correct recommenda
tions. As can be observed in Fig. 3 the modified balanced accuracy drops 
almost immediately, (as opposed to recommender systems in which a 
multi-fold of recommendations can be correct). This explains the 
initialization of the minimum vector similarity parameter to a value of 
0.08 (just before the decreasing slope of the first recommender). 

4.3.2. Configuration selection 
To support the selection of the Word2vec data configuration Fig. 5 

shows the result of a sensitivity analysis between the number of rec
ommendations caused by adjusting the min vec sim parameter (2) (see 
Fig. 4), and the effect on the modified balanced accuracy. This analysis 
highlights the three Word2vec configurations with different line styles 
and colors. The preferred setting for our recommender would be to 
provide a recommendation in as many scenarios as possible while sus
taining a satisfactory modified balanced accuracy. Consistent with the 
previous modified balanced accuracy results, it seems that the best 
representations of phrases are learned by a model with the “Common 
Crawl” configuration (dotted lines), reflected by the higher accuracy 
results over the curve by all recommenders using this configuration. 

The term vector configuration “Maximum W2V Similarity” is selected 
for two reasons. First, the lower sensitivity of the configuration provides 
a more reliable modified balanced accuracy (see Fig. 2). Second, in Fig. 6 
the sensitivity analysis between the number of recommendations as a 
result of adjusting Parameter (2), the min vec sim, and the modified 
balanced accuracy shows that the “Maximum W2V Similarity” 

Fig. 2. Influence of parameter (1) term weight on the modified balanced accuracy. Spearman’s Rank values range from ρ = − 0.04 to 0.98 indicating that for some 
algorithms, there seems to be an positive underlying fitting monotonic relationship between the parameter variables (ρ > 0.9), but most algorithms are affected by 
the noise in [0–1] or the downwards slope in [2.0–5.0]. 
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configuration (dashed lines) mostly outperforms the modified balanced 
accuracy of the “Average W2V Similarity” configuration (dotted lines). 

4.4. Comparison of methods 

To compare the methods we use the optimal configuration as 
explained in Section 4.3. These are (A) base-line method, (B) thesaurus, 
(C) Word2vec in the configuration “Common Crawl” using the context- 
based term similarity “Maximum W2V Similarity”, and (D) Word2vec +
thesaurus in the configuration “Common Crawl” using the context-based 
term similarity “Maximum W2V Similarity”. The prediction task was 
evaluated with k = 10 using a min vec sim of 0.08 and a term weight of 2. 
Fig. 7 shows the performance of these four methods reporting the scores 
for each of the evaluation metrics defined in Section 4.2. The detailed 
data underlying Fig. 7 are presented in Table 8. 

As it concerns an evaluation of recommender systems on a multi- 
class classification problem, we measured a recommendation (a list of 
tags) at the micro level, at the macro level and by using rank-based 

metrics. The micro and macro evaluation metrics (e.g., micro preci
sion, modified balanced accuracy) measure at a list level, implying that 
if the correct tag is among the first k ranked tags, it is considered as a 
correct list of tags and thus a correct recommendation. These list-level 
metrics show a noticeable decrease in performance for recommender 
methods B and C, while the recommender method D shows an increase 
(all in comparison with method A). The micro results, that is, the micro 
precision, micro recall, micro accuracy, and micro F1 scores are all 
equal, as can be observed in Table 8. This can be explained as follows. 
First, a fpfor tag t is also a fn for (correct) t′ , as denoted in Equation (20) 
where t′ ∕= t. 

fpt = fnt′ (20) 

Similarly, a fn for tag t is also a fp for tag t′ (i.e., the tag that is pre
sumed to be the correct tag). 

fnt = fpt′ (21) 

From this, it follows that the sum of all fpt is equal to the sum of all fnt 

Fig. 3. Influence of parameter (2) “Minimum Vector similarity” on the modified balanced accuracy achieved by a recommender. Spearman’s Rank values range from 
ρ = − 0.94 to − 0.99 indicating that for all algorithms, there seems to be an underlying fitting negative monotonic relationship between the parameter variables 
(ρ > 0.9). 

Fig. 4. Influence of parameter (2) “Minimum Vector similarity” on the number of recommendations generated by the recommender. Spearman’s Rank values range 
from ρ = − 0.95 to − 0.99 indicating that for all algorithms, there seems to be an underlying fitting negative monotonic relationship between the parameter variables 
(ρ > 0.9). 
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(see Equation (22)), which gives identical results for precisionμ, recallμ, 
F − measureμ, and accuracyμ. 
∑

t∈T
fpt =

∑

t∈T
fnt (22) 

On the other hand, the rank-based evaluation DCG, which assigns a 
score based on the position where a correct tag is found in the list, shows 
a decreasing rank for Method B, whereas the rank of Method C and D are 
almost similar to that of A. The MRR in our context assigns a higher score 
to a lower-ranked correct tag than DCG, as reflected in the MRR results 
that show a greater difference. Although an increase in micro precision 
for method D benefits the support that can be provided during the EWC 
classification task in online waste exchange platforms, the results are 
only marginal. Concerning the number of recommendations provided, 
we notice an increase (282–305) for methods using the thesaurus and 
Word2vec. 

To understand the significance of the results, we apply a significance 
test. Our data are non-normally distributed, indicated by the Shapiro- 
Wilk (Shapiro and Wilk, 1965) test results that report p-values of <

2.2e-16 for all data. Therefore, to statistically compare the performance 
we use two non-parametric statistical significance tests (see Table 9). For 
the list-based metrics, we use McNemar’s test (McNemar, 1947), which 
is a non-parametric test for paired nominal data. For the rank-based 
metrics, we use the Wilcoxon’s signed rank test (Wilcoxon and Wilcox, 
1964), which is a non-parametric test for paired ordinal and continuous 
data. 

The Wilcoxon test compares the alternative versions of the proposed 
algorithms (B,C,D) to the baseline algorithm (A) based on the paired 
results (i.e., between binary evaluation values of recommendations) 
without making distributional assumptions on the differences (Shani 
and Gunawardana, 2011). Such a hypothesis is non-directional, and 
therefore the two-sided test is applied. We tested by using an α of 0.05, 
implying a 95% confidence interval. The resulting Wilcoxon Critical T 
values for each sample size n (reported in Table 9) were obtained from 
the qsignrank function in R (Dutang and Kiener, 2019). The Wilcoxon 
test is configured to adjust for the ranking in the case of ties. Further
more, it is initialized with the setting that accounts for the likely bino
mial distribution in a small data set by applying continuity correction. 

Fig. 5. Influence of different Word2vec configurations for learning word embeddings that affect the modified balanced accuracy of the recommenders. Spearman’s 
Rank values range from ρ = 0.97 to 0.99 indicating that for all algorithms, there seems to be an underlying fitting positive monotonic relationship between the 
parameter variables (ρ > 0.9). 

Fig. 6. Influence of term vector configuration “Average” or “Max” on the modified balanced accuracy of recommenders. This is a pivot of Fig. 5, hence identical 
ρ values. 
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As is evident from Table 9, only the test comparing Method A-B has a 
T lower than the Critical T; hence, the difference between Method A and 
Method B is significant at p ≤ 0.05 (also reflected in the p-value of the 
test A-B, which is 0.0476 this value is less than the significance level α =

0.05). We can conclude that the median weight of Method B is signifi
cantly different from the median weight of Method A. However, both the 
McNemar Test and the Wilcoxon rank test comparing Method A-C and 
Method A-D report p-values lower than the significance level α = 0.05. 
However, for methods C and D n < 30 which indicates that there is only 
marginal performance change. McNemar’s test (McNemar, 1947) is 
typically valid when the number of discordant pairs exceeds 30 
(Rotondi, 2019). Therefore, we cannot confirm or disprove the statistical 
validity of the list-based metrics for C and D. To investigate whether all 
the results are significant, a larger data set is required. A positive remark 
on the significance of the results is that combining a thesaurus with the 
contextualized Word2vec approach does not significantly worsen the 
ranking, but does increase the number of items that can be recom
mended. This is a positive characteristic that is helpful in content-based 
algorithms, which are built with the aim of bootstrap recommendation. 

5. Discussion 

5.1. Causes for incorrect EWC tag recommendations 

To identify the causes behind the relatively low performance of the 
tag recommenders, we analyze how each of the ranked lists of EWC tags 
for a waste item is generated. The analysis considers all recommenda
tions produced by the four compared recommenders (see Section 4.4), 
for all the 311 waste items. Table 10 provides a list of causes found, 
ranked by the frequency of observation, which explains why a filtering 
algorithm failed to retrieve the correct EWC tag. For an identical item, 
several causes may be registered for every recommendation generated 
by a different method. However, only one unique cause is counted for 
each item for which all recommenders attempt to suggest a tag. 

Suggestions are provided in three areas to increase the performance 
of NLP-based EWC tag recommendation. First, the analysis of natural 
language may be improved by adding descriptions from the higher levels 
in the EWC hierarchy. These contain the originating industry specifics, 
which may help to distinguish between many similar types of EWC code 

Fig. 7. Evaluation metrics.  

Table 8 
Comparison of recommenders on top-k tag prediction task. Method C and D use configuration “Common Crawl”, and method “Maximum Vector Similarity”, term_
weight = 2, min_vec_sim = 0.08, evaluation k@10.  

Method #Recommended Items 
(list) 

Micro Precision 
(list) 

Micro Recall 
(list) 

Micro F1 
(list) 

Modified Micro 
Accuracy (list) 

Modified Balanced 
Accuracy (list) 

MRR 
(rank) 

DCG 
(rank) 

A: baseline 282 0.3569 0.3569 0.3569 0.3569 0.3952 0.1683 0.2120 
B: thesaurus 294 0.3344 0.3344 0.3344 0.3344 0.3378 0.1473 0.1906 
C: Word2vec 305 0.3408 0.3408 0.3408 0.3408 0.3765 0.1769 0.2155 
[l]D: Word2vec +

thesaurus 
305 0.3859 0.3859 0.3859 0.3859 0.4332 0.1563 0.2100  

Table 9 
Statistical significance of recommender comparison: McNemar test and Wilcoxon signed rank test.  

Test Compared Method Metric Type n X2  Critical T T α p 

McNemar two-sided A-B List 60 1.067 – – 0.05 0.3017 
McNemar two-sided A-C List 21 1.191 – – 0.05 0.2752 
McNemar two-sided A-D List 21 1.191 – – 0.05 0.2752 
Wilcoxon two-sided A-B Rank 117 – 2732 2724.5 0.05 0.0476 
Wilcoxon two-sided A-C Rank 72 – 965 1093 0.05 0.2089 
Wilcoxon two-sided A-D Rank 131 – 3471 4519 0.05 0.6518  
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descriptions. In addition, creating higher quality source data (e.g., 
improving the data cleaning of the natural language and enriching the 
thesaurus) could solve a number of problems from the list. Finally, 
designing a prioritization mechanism of important terms is considered 
to improve the performance of the recommender. For example, one 
might integrate a weighted terms approach in the Word2vec analysis, 
such as the classic term-frequency inverse document frequency. Another 
approach is to assign a weight to terms that determine a known material 
by deriving these from material databases. 

The causes behind the poor functioning of the algorithms suggest a 
redesign of the proposed NLP-based filtering algorithm. However, 
careful consideration is necessary, as including new techniques in the 
filtering algorithm may, on the one hand, improve one set of recom
mendations, while simultaneously impairing other recommendations. A 
candidate identified is the design of a hybrid filtering algorithm based 
on a similarity match of natural language in combination with a support 
vector machine approach, learning the use of language associated with 
EWC codes. However, the prerequisite is a substantially larger number 
of classified EWC descriptions that can be used for training the 
algorithm. 

5.2. EWC tag ontologies 

The EWC system, as experienced in this study and supported by 
others (Sander et al., 2008), has its inefficiencies (e.g., hierarchical 
reporting structures), incapabilities (e.g., missing codes) and classifica
tion issues (for example, overlap between codes). In the current state, 
the system still suffers from the unsolved problems addressed in (Sander 
et al., 2008) and would benefit from a major update or redesign. 
Furthermore, we propose the need for a critical discussion on the use of 
EWC codes in all applications of waste registration, particularly, in tag 
recommendation. The initial design of the EWC was developed to 
facilitate statistical reporting. However, with developments and the use 
of the EWC in the waste domain, this is no longer the sole purpose of the 
EWC. Therefore, it could be argued that other types of structures for 
different purposes and another governing strategy may better apply 
waste item annotation. 

There are three common approaches for governing and structuring 
tags. First, there is the use of an a priori defined tag ontology (also 
referred to as a “fixed” taxonomy (Nie et al., 2014; Gupta et al., 2010)) 
that restricts users to annotate items only with tags from this ontology. 
These are usually constructed by experts and have emerged because of 
the standardization of practices, or through legislation mandating the 
use of a particular taxonomy (Ciccarese et al., 2011). Furthermore, a set 
can be governed using folksonomy, which is typically found in social 
tagging systems. A folksonomy is an unstructured knowledge classifi
cation created to allow users to choose arbitrary tags for assignment to 
items (Dattolo et al., 2012). Finally, there is ontology governance 
through the extraction of concepts from a large text corpus using 
dimensionality reduction techniques. In these techniques, an artificial 
intelligence algorithm rather than an expert or common folk, is 
responsible for defining the latent ontology (Zhong et al., 2017). There 
are both positive and negative aspects of using a fixed taxonomy, a 
folksonomy, or a latent ontology approach. The advantages of a fixed 
taxonomy are that they are considered rigid, structured, conservative, 
and centralized, and work well in environments that require a 

Table 10 
Semantic challenges as reasons for why a filtering algorithm did not retrieve the 
correct EWC tag.  

Code Challenge Description Count 

C1 The description at level 1 or level 2 in the EWC hierarchy specifies 
the term required for term matching. 

54 

C2 The EWC tag description is “waste not other specified” or “other 
waste resulting from industry sector X”. This is inconclusive about 
what material it addresses. 

42 

C3 The thesaurus is incomplete and requires an update for a specific 
material (e.g., plastic to big bags, inert to concrete, glass to 
glazing). Some EWC tags use descriptions as “mixed waste”, where 
the thesaurus is expected to list the exact materials. 

27 

C4 A term match is realized on terms that are in general irrelevant. 
These could better be filtered or devalued (e.g., “use”, “bag”, 
“specify”, “product”, “treatment”, “contain”, “manufactur”, 
“organics”). 

24 

C5 The item description is vague, or too general (e.g., “home trash”, 
“solid waste”, “debris-demolition waste”). 

19 

C6 Terms with less than three characters are filtered. Therefore 
important materials were missed (e.g., oil). 

17 

C7 There are too many EWC tags addressing the same class of 
materials (e.g., there are codes for “general” metals in any forms, 
while there are also codes for specific metals such as iron). In the 
case of metals and plastics the thesaurus widens to an infinite 
number of options. 

17 

C8 The third level part of an EWC code uses the number 99 or a 
number equal to 1 plus the number of the EWC level-3 code of the 
highest classified leaf node. Typically this is used to indicate non- 
classifiable materials belonging to an EWC at level 2. However, the 
code 99 is also used in instances where there is no official EWC 
code ending at 99, thus these instances result in incorrectly 
classified items. 

9 

C9 The nouns (usually describing the material) are not prioritized 
over other terms. Adjectives or adverbs are perceived less 
important (e.g., water-based paint, hydrolic oil), the adjectives are 
a second specifier in case different EWC codes already contain that 
material noun. 

9 

C10 The item description does not mention the materials, but describes 
the class of materials (e.g., powder, slag, packaging), the state of 
the material (e.g., solid), and/or identifiers (contaminated, 
contains, hazardous). 

8 

C11 The item is tagged using a code indicating what the waste can 
become rather than where it originates from (e.g., sawmill dusts as 
paper packaging). 

8 

C12 There are two or more products in the description (e.g., there was 
metal and wood in one description). 

8 

C13 A potential mis-classification of the EWC tag. Either the tag was (1) 
wrong, or (2) there might be a better alternative tag. 

7 

C14 Sludge can contain particles (aluminum), the EWC tag refers to 
what can be extracted rather than what it is (there are also many 
sludge related EWC codes). 

5 

C15 A misspelling, or the use of a dialect form of a term (e.g., American 
and Canadian English (aluminum) vs British English (aluminium), 
misspellings “aerosolss” instead of “aerosoles”). 

5 

C16 The material was mentioned more than once, yet the algorithm 
focused on different terms. 

4 

C17 Some materials can result from different sectors, but in fact address 
the same materials; therefore, there are too many EWC tags for this 
material. 

4 

C18 The thesaurus is too broad, too many different types of material are 
listed (e.g., mixed waste lists all kinds of metals, plastic metal, 
wood, etc.). 

4 

C19 The adjective and noun form of a material are not recognized to be 
similar (wooden v.s. wood). 

4 

C20 Abbreviations are not captured (e.g., Waste PP-PE-PP). 3 
C21 Term matching is focused on describing the classes of materials (e. 

g., powder) or states of the materials (e.g., solid). 
2 

C22 A material is addressed in two terms, which should be interpreted 
as one. (e.g., a big bag (which is a “Flexible intermediate bulk 
container”) or non-hazardous vs hazardous (negative specifier)). 

2 

C23 The product is meant for reuse, not for recycling. Therefore, the 
waste was listed with an EWC tag “Other”. 

2 

C24 The EWC tag is used to annotate the production process that 
produces the waste, while there exist tags to label the material 

2 

C25 Some relations are just difficult (e.g., to understand tank sludge 
hydro carbon is dixi waste and onsite effluent). 

2  

Table 10 (continued ) 

Code Challenge Description Count 

C26 One needs to differentiate between the production process terms 
and the material (e.g., glazed (process) tiles (material)). 

1 

C27 A non-significant term that was filtered in the pre-processing steps 
was found likely to be essential for creating a match. 

1 

C28 The link between an item description and the EWC description is 
the use of mentioned production equipment for certain materials. 

1  
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standardized format that is consistent over time (Gupta et al., 2010). A 
folksonomy functions better than a fixed taxonomy when addressable 
concepts are time-dynamic or user-specific. Because folksonomy does 
not require a taxonomy custodian it may be managed in a decentralized 
manner (Nie et al., 2014). The latent ontology approach may be viewed 
as an evolved approach to govern a folksonomy, addressing the issue of 
overlap in concepts caused by the user-specific language (Zhong et al., 
2017). This initiates a discussion on the development of a waste folk
sonomy instead of using the EWC. 

6. Conclusion 

There is a growing concern for the development of recommender 
systems to facilitate symbiotic development. This study addresses the 
problem of waste item classification using EWC tags. The contributions 
of this study are as follows: (i) we provide a performance comparison of 
recommender models that experiment with semantic enhancement (an 
EWC thesaurus) and the linguistic contexts of words (learned by 
Word2vec) in detecting term vector similarity in addition to direct term 
matching algorithms; (ii) we present an in-depth analysis providing in
sights into why the different recommenders were unable to generate a 
correct annotation that motivates a discussion on the current design of 
the EWC system. 

The proposed models show that waste item annotation could be 
supported by recommenders; in addition, these technologies could also 
be adopted in a practical context. Our findings indicate several problems 
that need to be resolved before we achieve a fully optimized EWC tag 
recommender. To bootstrap the initial EWC tag recommendation, we 
focus our investigations on models that use short-text natural language 
processing. We propose a new model for tag recommendation that is 
based on term vector similarity matching derived from short-text de
scriptions and enriched with semantics and context. The results show 
that using both thesaurus and Word2vec could improve the accuracy of 
the term analogy task compared to the baseline term-matching model. 

The three most prominent areas to improve are: (1) including upper- 
level descriptions in the EWC hierarchy for an EWC description, to 
distinguish between similar EWC codes that originate from different 
industries, (2) improving the data quality (for example, by filtering 
jargon-based stopwords and a revision of the thesaurus in general 
(which was observed to be incomplete)), and (3) designing a method for 
semantic weighting of terms (e.g., material-related terms, adjectives, 
and term-frequency). 

Unfortunately, the domain of EWC recommendation is immature, 
and efforts are required to build a larger sample set to test tag recom
mendation algorithms. In view of these results, our work should be 
considered as a first attempt to guide the building of recommenders for 
the circular economy domain, wherein the EWC coding system plays a 
predominant role. Future studies may provide more substantial data 
support and test the generalizability of the claim that a combined effort 
of a thesaurus and Word2vec leads to improved accuracy in other do
mains. Furthermore, the numerous data problems mentioned in this 
paper provide directions for the improvement of algorithm design con
cerning EWC tag recommendation. These types of algorithms may be 
applied in industrial symbiosis platforms, public waste registers (e.g., 
the European Pollutant Release and Transfer Register (E-PRTR)), waste 
permit and certificate registers (e.g., those operated by the Environ
mental Protection Agencies), and other private systems, facilitating the 
daily operations of waste carriers, brokers, and dealers. 
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