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Abstract We introduce the notion of a regime switching affine process. Informally
this is a Markov process that behaves conditionally on each regime as an affine pro-
cess with specific parameters. To facilitate our analysis, specific restrictions are im-
posed on these parameters. The regime switches are driven by a Markov chain. We
prove that the joint process of the Markov chain and the conditionally affine part is a
process with an affine structure on an enlarged state space, conditionally on the start-
ing state of the Markov chain. Like for affine processes, the characteristic function can
be expressed in a set of ordinary differential equations that can sometimes be solved
analytically. This result unifies several semi-analytical solutions found in the liter-
ature for pricing derivatives of specific regime switching processes on smaller state
spaces. It also provides a unifying theory that allows us to introduce regime switching
to the pricing of many derivatives within the broad class of affine processes. Exam-
ples include European options and term structure derivatives with stochastic volatility
and default. Essentially, whenever there is a pricing solution based on an affine pro-
cess, we can extend this to a regime switching affine process without sacrificing the
analytical tractability of the affine process.
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1 Introduction

The economic literature has shown that the behaviour of economic quantities varies
with the state of the world; see Hamilton [27]. Such a state of the world is usually
referred to as a regime. The most common example is the distinction between a bull
and a bear market, in which stock prices are believed to follow different dynamics.
Models incorporating such states are called regime switching models.

In a few cases, there are analytically tractable solutions to selected derivatives with
regime switching underlying processes. These include the zero-coupon bond price in
a Vasiček short rate model with a regime switching mean reversion level and volatil-
ity, see Landén [37], or a Cox–Ingersoll–Ross short rate model with regime switching
mean reversion level as in Elliott and Siu [19], the price of European options where
the underlying stock price process is the exponential of a specific regime switching
pure jump process, see Elliott and Osakwe [18], and derivatives pricing with regime
switching in a Heston-type stochastic volatility setting; see Elliott et al. [20], Elliott
and Lian [16] and Elliott et al. [17].

Apart from these specific cases, there is no overarching theory that allows us to
introduce regime switching to more general processes and derivatives, including mul-
tivariate extensions. There is also no explanation as to why analytically tractable so-
lutions exist in these and not in other cases. The scope of this paper is to tackle these
two points by introducing the class of multivariate regime switching affine processes.

This paper is related to some earlier ideas discussed briefly in van Beek et al.
[43] on introducing regime switching to affine processes. However, we take a far
more general approach here in assuming a generator-based perspective to define the
class of regime switching processes, we do not limit ourselves to pure diffusions on
the canonical state space, and we extend the results beyond regimes driven by the
classical Markov chains.

Regime switching affine processes encapsulate all special cases from the litera-
ture mentioned above, but include many more possible extensions. We give a non-
exhaustive list of the classes that can now be extended to include regime switching.
A set of applications that already includes regime switching follows later.

(1) Multivariate affine term structure models are used throughout finance as the
gold standard for yield curve analysis and the valuation of interest rate derivatives
such as bills, notes, bonds, strips, caps, floors, swaps and swaptions. See Dai and
Singleton [9] and Christensen et al. [4] for examples.

(2) The Heston model is a bivariate affine process that is used ubiquitously in
finance for the pricing of European options on equity under the assumption that
volatility is stochastic; see Heston [30], Van der Stoep et al. [44] and Fouque and
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Saporito [23]. The theory of regime switching affine processes also applies to Heston
extensions that include an affine model for rates, such as described in Grzelak and
Oosterlee [26].

(3) Next, credit risky securities including corporate bonds are often modelled using
an affine model for rates and a CIR-type process for the instantaneous hazard rate of
default; see Duffie and Singleton [15], Maboulou and Mashele [39] and White [46].
Together these processes form a multivariate affine process.

(4) Finally, affine processes on generalised state spaces such as the space of posi-
tive semidefinite matrices can include stochastic covariances between variables. The
processes can be useful in the valuation of options on multiple underlying assets and
fixed income products with stochastic correlation between factors and default inten-
sities; see Cuchiero et al. [5]. The Wishart process is an example of such a process
that lives on the cone of symmetric positive semidefinite (covariance) matrices. It is
used for pricing options with multiple underlying assets in Muhle-Karbe et al. [40],
range notes in Chiarella et al. [3] and volatility-equity options in Da Fonseca et al.
[8].

There are a myriad of practical applications thinkable with our generalisation of
the existing literature. Affine processes are generally multivariate so that we can im-
mediately generalise the literature to multivariate processes with regime switching
parameters, as suggested above. One example is in pricing a credit default swap
(CDS) with a credit valuation adjustment (CVA). This case has multiple hazard rates
for the different involved parties that need to be modelled jointly, possibly together
with a short rate. Regime switching affine processes can capture this multivariate as-
pect, and at the same time introduce regime switching. Giesecke et al. [25] and Frey
and Backhaus [24] show that default events exhibit clustering in regimes, supporting
this feature. Second, regime switching affine processes enable the pricing of deriva-
tives where the payoff function is regime dependent. This happens when the regimes
are the credit rating of some entity, as proposed by Jarrow et al. [31], and when the
payoff deviates in the case of a default rating. Third, in the portfolio optimisation
space, the mean returns on assets can be modelled as an unobservable Markov chain.
Rieder and Bäuerle [41] and Bäuerle and Rieder [2] derive optimal investment strate-
gies in such a setup. Also, Vostrikova and Dong [45] analyse utility maximisation on
regime switching Lévy processes. In Sect. 9, we derive the analytical formula for the
characteristic function that they consider. Fourth, we can think of specific calibrations
of yield curve models as regimes, as in Harms et al. [29]. This allows pricing with fu-
ture recalibration embedded. A perspective on regime switching different from ours
(and the above cited literature) is the Bayesian one in Cuchiero et al. [6], Duemb-
gen and Rogers [12]. These regimes have the interpretation of multiple competing
(nested) models, and the probability estimate of each regime represents a Bayesian
model averaging weight.

Regime switching affine processes are defined in terms of a continuous-time
Markov chain on a specific state space that switches between states, the regimes,
and a part with different affine dynamics conditionally on each regime. For example,
let the Markov chain switch between the bull and bear market states. Let the short
rate follow a Vasiček model reverting to one mean in the bull market, and to another
mean in the bear market. Then the joint process of the Markov chain and the short
rate is a regime switching affine process.
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The literature allows those parameters to vary across regimes that do not multiply
with the process. For example, in the drift θ(μ− rt ) of the Vasiček model of the short
rate rt , μ may vary across regimes whereas θ may not, because it multiplies with
the process (rt ) in the sense that in the expanded affine form θμ − θrt , θ and rt are
multiplied. Our definition of regime switching affine processes also allows exactly
those parameters to vary across regimes that do not multiply with the process, but in
a more general and multivariate setup.

The primary result of this paper is that the characteristic function of our regime
switching affine process can be expressed as the solution to ordinary differential equa-
tions (ODEs), just like in the purely affine case. Because of the similar (but regime-
dependent) exponential affine form of the characteristic function, they are condition-
ally affine. This result extends the techniques available for the class of affine pro-
cesses to regime switching affine processes. Hence pricing equations based on affine
processes can now be extended to include regime switching on the previously men-
tioned subset of parameters. This also explains the tractability of the special cases
dealt with in the literature, because these can now be seen as specific regime switch-
ing affine processes.

The power of this result lies in part in the diversity of affine processes, as ex-
plained above. In general, affine processes are use to (jointly) model log-stock prices
(with jumps), stochastic volatility, short rates and short rate factors, default intensi-
ties, see Duffie et al. [13], and stochastic covariance matrices. Affine processes also
include all Lévy processes. Informally, a process X on a state space D is affine if its
characteristic function can be written as

E[eiu�Xt ] = eφ(t,u)+ψ(t,u)�X0

for some complex-valued functions φ and ψ . The functions φ and ψ solve a system
of ODEs. Typical examples of the quantities that are (jointly) enumerated in X are
short rates, hazard rates of default, log-stock prices and stochastic volatility. In our
regime switching extension, φ may depend on the current regime, whereas ψ may
not. This restriction directly dictates that the process parameters that determine ψ

cannot be different across regimes. Because φ and ψ depend on mutually exclusive
parameters, all parameters in φ may vary across regimes. Naturally, the state space
D is not allowed to depend on the regime, to prevent jumping from a regime with
a larger state space to a regime with a smaller state space that does not include the
current value of the process. For example, if we jump from a negative short rate in a
Vasiček model regime with state space R to a Cox–Ingersoll–Ross short rate model
regime with a nonnegative state space R+, we no longer have a well-defined process.

The result that regime switching affine processes are conditionally affine makes
the powerful pricing techniques for affine processes available to regime switching
affine processes. The most common technique is transform pricing. Using this tech-
nique, we can solve complex expectations in terms of φ and ψ , such as

Et

[
exp

(∫ T

t

(� + L�Xs)ds

)
f (XT )

]
,

with � scalar and L a vector representing discounting, and f a payoff function on D

that satisfies some requirements related to Fourier transformation. For an overview of
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examples, see Duffie et al. [14]. In a handful of cases, φ and ψ can be solved from the
ODEs analytically. If not, then they result from numerically solving the ODEs. Solv-
ing such equations is often preferred over numerically solving the partial differential
equations (PDEs) that more general processes entail. The ODEs in transform pricing
are generally faster to solve than PDEs, and suffer less from numerical instability.

This paper is organised as follows. After the notational setup in Sect. 2 and a brief
overview of results on affine processes in Sect. 3, Sect. 4 introduces the (general)
regime switching process in terms of its infinitesimal generator. Section 5 defines
regime switching affine processes and gives the most important result of the pa-
per, namely a system of ODEs for the characteristic function that is an analogue
of the Riccati equations for affine processes. Section 6 extends the validity of this
result beyond the standard domain of the characteristic function. Section 7 shows
how our analysis in terms of semigroups relates to stochastic differential equations
(SDEs). Section 8 discusses discounting and how this affects the ODEs in the pre-
vious sections. Finally, Sect. 9 links these techniques to the existing literature on
regime switching by viewing a number of special instances from the literature as
special cases of the theory developed here.

2 General notation

This section introduces notation and the mathematical context. We consider processes
on a general state space S. Throughout this paper, we work with various forms of S,
either S = D, S = E or S = D × E, where D and E are specified as follows. We
consider processes on D in the setup of Keller-Ressel et al. [34]. That is, these pro-
cesses live on the state space D ⊆ R

d such that the affine hull of D is R
d . We also

consider the one-point compactification D∞ := D ∪ {∞} and extend all functions f

on D by assuming f (∞) = 0 unless stated otherwise. This compactification is used
to describe a point at infinity, i.e., a cemetery where killed or exploded processes go.1

The state space E can be chosen almost arbitrarily as long as it is locally compact.
See Remark 5.2, 1) for a practically relevant setting. Write Cb(S) for the class of
bounded continuous complex-valued functions on S, and C0(S) for the subclass of
functions that are real-valued and vanishing at infinity; Cb(S) and C0(S) are Banach
spaces equipped with the norm ‖f ‖ = supx∈S |f (x)|.

Central in this paper are time-homogeneous continuous-time Markov processes,
denoted by (X, (Px)x∈S), where Px denotes the law of the process starting in x ∈ S

so that Px[X0 = x] = 1. This context implies the existence of an associated filtered
probability space (�,F ,F), where X is Markov with respect to F. To further aid
notation, let (Pt ) be the associated semigroup, Ptf (x) := Ex[f (Xt )] for f ∈ Cb(S),
with Ex the expectation under Px . For general and possibly unbounded functions, we
use the same notation, although the expectation need not be defined for all t ≥ 0.

When we use the term process in the remainder of this paper, we mean a process
with the properties defined in this section unless stated otherwise.

1Intuitively, the killing of a process is a jump to the cemetery state, and explosion means the process
wanders off to infinity in finite time. Although such a state may represent default in a bond, there are
easier ways to incorporate defaults using discounting. We include the cemetery state nonetheless to remain
consistent with the literature.
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3 Affine processes

To build the definition of regime switching affine processes, some knowledge of affine
processes is necessary. This section gives the relevant setup of affine semigroups; it
largely follows Keller-Ressel et al. [34].

We begin with a definition of affine processes. Consider for u ∈ U the functions
fu(x) := exp (〈u,x〉) on D, with U ⊆ C

d being the set of complex vectors such that
fu is bounded, i.e., fu ∈ Cb(D). Also introduce Uk := {u ∈ C

d : supx∈D �〈u,x〉 ≤ k}
for k ∈N, so that

⋃
k∈N Uk = U .

Definition 3.1 A semigroup (Pt ) is an affine semigroup if it is stochastically contin-
uous (in the sense of Duffie et al. [13, Definition 2.4]) and there exist two functions
� :R+ × U →C and ψ :R+ × U →C

d such that for all t ≥ 0, x ∈ D and u ∈ U ,

Ptfu(x) = �(t,u) exp
(〈ψ(t, u), x〉).

Remark 3.2 1) Since iRd ⊆ U , the definition implies a specification of the form of
the characteristic function of Xt with respect to the law Px .

2) Cuchiero and Teichmann [7] show that every affine process has an affine càdlàg
version. We assume throughout the rest of this paper that this is the version we are
working with.

3) Since there is a one-to-one correspondence between semigroups and processes
in the present setup, we call the associated process of affine semigroups affine as well.
In the remainder of this paper, we do the same with other properties.

As long as �(t,u) �= 0, we can write �(t,u) = exp(φ(t, u)); so when we write
Ptfu(x) = exp(φ(t, u) + 〈x,ψ(t, u)〉), we implicitly assume that �(t,u) �= 0. To
explain the deeper relation between � and φ, introduce for any u ∈ U the quan-
tity σ(u) := inf{t ≥ 0 : �(t,u) = 0} and define Qk := {(t, u) ∈ R+ × Uk : t < σ(u)}.
Then φ is a function on Q := ⋃

k∈NQk . In general, there are multiple choices of φ

and ψ that describe the same semigroup. Throughout this paper, we assume that φ

and ψ are jointly continuous on Qk for k ∈ N, that φ(0,0) = 0 and that ψ(0,0) = 0.
Keller-Ressel et al. [34, Proposition 2.4 (ii)] prove that these assumptions make ψ

and φ unique on Q.
An important property of affine semigroups is regularity.

Definition 3.3 An affine semigroup is called regular if the derivatives

F(u) := ∂t�(t, u)|t=0+ , R(u) := ∂tψ(t, u)|t=0+

exist for all u ∈ U and are continuous on Uk for each k ∈ N.

Note that F is scalar whereas R, whose elements are denoted Ri , is vector-valued.
Keller-Ressel et al. [34] prove that every affine semigroup is regular and that these
derivatives can be written as
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F(u) = 1

2
〈u,au〉 + 〈b,u〉 − c +

∫
Rd\{0}

(
fu(ξ) − 1 − 〈u,h(ξ)〉)m(dξ),

Ri(u) = 1

2
〈u,αiu〉 + 〈βi, u〉 − γ i +

∫
Rd\{0}

(
fu(ξ) − 1 − 〈h(ξ), u〉)μi(dξ),

where a,α1, . . . , αd are R
d×d matrices, b,β1, . . . , βd are R

d vectors, c, γ 1, . . . , γ d

are scalars and m,μ1, . . . ,μd are signed Borel measures, and h(x) = x1{|x|≤1} is a
truncation function based on the Euclidean norm.

Fast-forwarding to the application of regime switching, we note that F may be
regime dependent, whereas R may not. This implies that only the F -specific param-
eters a, b, c and m(dξ) may vary across regimes. Without this restriction, the char-
acteristic function of such a regime switching affine process loses its conditionally
affine structure.

Additionally, for any u ∈ U , t, s ≥ 0 with (t + s, u) ∈ Q and (s,ψ(t, u)) ∈ Q, the
functions φ and ψ satisfy the flow properties

�(t + s, u) = �(t,u)�
(
s,ψ(t, u)

)
, �(0, u) = 1,

ψ(t + s, u) = ψ
(
s,ψ(t, u)

)
, ψ(0, u) = u. (3.1)

These can be differentiated into a system of ordinary differential equations for u ∈ U
and t ∈ [0, σ (u)), called the generalised Riccati equations and given by

∂t�(t, u) = �(t,u)F
(
ψ(t, u)

)
, �(0, u) = 1,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u. (3.2)

This system is used to find Ptfu(x), although there are boundary cases, when the
solutions to this system are not unique, that require extra care, as described by Keller-
Ressel and Mayerhofer [32].

Finally, if the affine semigroup is Feller, then its generator A is given by

Af (x) = 1

2
tr

(
a(x)∂xxf (x)

) + 〈b(x), ∂xf (x)〉 + c(x)f (x)

+
∫

D\{0}
(
f (x + ξ) − f (x) − 〈h(ξ), ∂xf (x)〉)m(x,dξ),

for all functions f ∈D(A), the domain of A, and with

a(x) = a + α1x1 + · · · + αdxd,

b(x) = b + β1x1 + · · · + βdxd,

c(x) = c + γ 1x1 + · · · + γ dxd,

m(x,dξ) = m(dξ) + μ1(dξ)x1 + · · · + μd(dξ)xd .
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4 Regime switching processes

This section introduces regime switching processes, which are defined in terms of
generators of Feller semigroups. Although these regime switching processes are not
the focus of the present paper, they are essential to the definition of regime switching
affine processes. Informally, regime switching affine processes are regime switching
processes defined in terms of generators of affine Feller semigroups. We start with
some notation and continue with a proof that regime switching processes also satisfy
the Feller property. This is important in later sections.

Consider two state spaces D and E as defined in Sect. 2. Consider a function
f : D × E → R. We define f y : D → R by f y(x) = f (x, y) for all (x, y) ∈ D × E.
We define f x similarly.

Definition 4.1 For all y ∈ E, let Ay and B be generators of Feller semigroups on
C0(D) and C0(E), respectively, and also assume that B is bounded. Introduce the
linear operator A∗ on C0(D × E) through

A∗f (x, y) := Ayf y(x) + Bf x(y).

Then A∗ is called a regime switching linear operator.

Remark 4.2 1) In this definition, we say that the linear operator A∗ is switched by the
driving generator B and that E contains the regimes. We call the generators Ay the
regime specific generators and D the state space of the switched process. The driving
process is denoted by Y , or (Yt ) if the time index is relevant. The switched process is
denoted by X, or (Xt ) with time index.

2) The restriction to Feller semigroups is weak. For many specific state spaces
including the canonical state space, it is known that affine semigroups are Feller, and
for the general case it is hypothesised; see Cuchiero and Teichmann [7].

3) The requirement that B is bounded restricts the associated process to pure
jumps; see Kolokoltsov [36, Proposition 3.7.1]. This corresponds to the intuition that
a process must remain in a state at least for some time to be naturally interpreted as a
regime. Examples of pure jump processes are Markov chains and compound Poisson
processes. The states that these processes take can be interpreted as regimes because
they last for some time.

4) In the above setup, the dynamics of the driving process are independent from the
starting point x of the switched process. Indeed, if f (x, y) = g(y) for all x ∈ D, then
A∗f (x, y) = Ayf y(x) + Bf x(y) = limt↓0

1
t
(Ex[f y] − f y) + Bg(y) = Bg(y) be-

cause f y is here a constant. Therefore, A∗ is bounded on these functions and
P ∗

t f (x, y) = exp(tB)g(y), which is independent of x.

For the sake of brevity and readability, in the remainder of this paper, we often
do not introduce superscript functions f y and f x every time we consider an operator
on a function with additional variables. So when we write Bf (x, y), it is implicit that
the operator acts only on the variable y, i.e., this is equivalent to (Bf (x, ·))(y).

Although it is not directly implied by the definition, A∗ is the generator of a Feller
semigroup. The following theorem states this and thereby shows that we can think of
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A∗ as a generator with an associated Feller semigroup and process. The proof relies
mostly on results from perturbation theory.

Theorem 4.3 Every regime switching linear operator A∗ on C0(D × E) is the gen-
erator of a Feller semigroup.

Proof Construct the operator A′ on C0(D ×E) through A′f (x, y) = Ayf y(x) for all
x ∈ D and y ∈ E. This is possible since f ∈ C0(D × E) implies that f y ∈ C0(D) for
all y ∈ E.2 Also extend B in this way to B ′ on C0(D × E). Clearly, A′ and B ′ are
both generators of Feller semigroups and A∗ = A′ + B ′. Also, B ′ is bounded so that
its semigroup can be written as exp(tB ′) and this implies that D(B ′) = C0(D × E).

Denote by Rλ the resolvent on the space of linear operators and choose λ > ‖B ′‖.
Then λ belongs to the resolvent set of A′, called ρ(A′) ⊇ R++ (see Ethier and Kurtz
[22, Proposition 1.2.1]), where R++ is the set of strictly positive real numbers. Then
‖Rλ(A

′)‖ ≤ λ−1 yields ‖B ′Rλ(A
′)‖ < 1, and thus (B ′Rλ(A

′))n → 0 as n → ∞.
This limit implies the same limit in Cesàro means, and so B ′Rλ(A

′) is uniformly
ergodic. By Tyran-Kaminska [42, Theorem 1.1], A∗ is a closed operator that gener-
ates a strongly continuous contraction semigroup. By [22, Theorem 1.2.6], D(A∗) is
dense in C0(D × E) and the range of λ − A∗ equals C0(D × E). Also, by [22, The-
orem 2.2.2], A′ and B ′ satisfy the positive maximum principle. It follows easily that
A∗ does so, too. Again by [22, Theorem 2.2.2], the closure of A∗ is a generator. The
result follows from the fact that A∗ was already proved to be closed. �

Remark 4.4 The result in Theorem 4.3 may be generalised for definitions that relax
the bounded nature of B . Related results exist for strongly continuous semigroups,
see e.g. Engel and Nagel [21, Chap. III], but it is unclear whether the same can
be done under the more restrictive Feller property. In the present paper, we do not
attempt such a generalisation as doing so would move us away from the present,
finance-oriented scope (involving regime switching processes) for which B is natu-
rally bounded.

5 Regime switching affine processes and properties

This section introduces the regime switching affine processes that are central to this
paper. These are regime switching processes driven by a bounded operator such as a
Markov chain, and with affine regime specific generators subject to specific parameter
restrictions. For this process, we derive a system of ODEs analogous to the Riccati
equations for the affine process.

Definition 5.1 Consider a regime switching generator A∗ with regimes E and state
space D for the switched process. The generator A∗ is regime switching affine if

1) the regime specific generators Ay are generators of affine Feller semigroups, and

2Intuitively, we have constructed the generator of a process that has extra variables Y that do not vary
stochastically, but remain in their starting position y that dictates the behaviour of X.
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2) the regime specific semigroups have P
y
t fu(x) = �y(y,u) exp (〈ψ(t, u), x〉) for

some functions �y and ψ for all t ≥ 0, x ∈ D and u ∈ U .

Remark 5.2 1) In the practically important special case when B is the generator of a
Markov chain on a state space of standard basis vectors, i.e., E = {e1, . . . , ep} ⊆ R

p ,
a p × p generator matrix Q exists. With qk� for k, � = 1, . . . , p denoting the entries
of Q, it holds that

Bf x(ek) =
p∑

�=1

qk�f
x(e�), k = 1, . . . , p.

2) Requiring Ay to generate Feller semigroups is a minor restriction, as explained
in Remark 4.2, 2).

An important aspect of the definition of regime switching affine processes is that
ψ does not depend on the regime y. We call this independence regime invariance,
and we use it throughout this paper to ensure parameters or functions do not vary
with the regimes.

The associated derivatives of �y and ψ are Fy and R (see Definition 3.3). The
function R is regime invariant as a consequence of the regime invariance of ψ . The
functional forms of Fy and R (see directly below Definition 3.3) imply that the pa-
rameters ay , by , cy and my may be different per regime, whereas αi , βi , γ i and μi

for i = 1, . . . , d must be regime invariant.
The primary result of this paper is the functional form of the characteristic function

of regime switching affine processes. We consider dual variables u ∈ U and v ∈ V , the
set of continuous mappings v : E → C such that y �→ exp (〈v, y〉) is bounded, where
we write 〈v, y〉 for v(y) for homogeneity of notation. When E is a general Banach
space, we usually take v ∈ E∗, and when E is finite-dimensional, we take v ∈ C

p

and 〈v, y〉 is the usual inner product. In what follows, let X̃ := (X,Y ), x̃ := (x, y),
ξ̃ := (ξ, ζ ), ũ := (u, v) and F ∗(u, y) := Fy(u), and extend the definition of fu before
Definition 3.1 from S = D to S = D × E via fũ(x̃) = exp (〈u,x〉 + 〈v, y〉).

Theorem 5.3 Consider a regime switching affine semigroup (P ∗
t ) and Ũ = U ×C

p .
Then there exists a function �∗ :R+ × Ũ × E → C such that for ũ ∈ Ũ ,

P ∗
t fũ(x̃) = �∗(t, ũ, y) exp

(〈ψ(t, u), x〉)

for all x ∈ D, y ∈ E and t ≥ 0, where �∗ solves the PDE

∂t�
∗(t, ũ, y) = F ∗(ψ(t, u), y

)
�∗(t, ũ, y) + B�∗(t, ũ, y),

�∗(0, ũ, y) = exp (〈v, y〉),
where v ∈ C

p and ψ is as in Definition 5.1.

Proof The proof can be found in Appendix A. �
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Remark 5.2, 1) introduced the special case that B generates a Markov chain. The-
orem 5.3 simplifies if this is the case, as the following corollary shows. We adopt the
notation that diag(a) or diag(a1, . . . , ap) is the p × p diagonal matrix with p-vector
a on its diagonal. In the remainder of this paper, it often holds that y = ek for some
k = 1, . . . , p. In such cases, we simply write Fk instead of Fy , and similarly for other
semigroups and functions with superscript y.

Corollary 5.4 Suppose that B is the generator of a Markov chain with the state
space E = {e1, . . . , ep} and the generator matrix Q. Then there exists a function
θ : R+ × Ũ → C

p such that

P ∗
t fũ(x̃) = 〈θ(t, ũ), y〉 exp

(〈ψ(t, u), x〉)
for all x ∈ D, y = ek ∈ E and t ≥ 0, where θ is the unique solution to the linear ODE

∂t θ(t, ũ) = diag
(
F 1(ψ(t, u)

)
, . . . ,Fp

(
ψ(t, u)

))
θ(t, ũ) + Qθ(t, ũ).

Proof Due to the nature of the state space, it is always possible to define the vector-
valued function θ from �∗ such that 〈θ(t, ũ), y〉 = �∗(t, y, ũ). Similarly, we can
write F ∗(t, y,u) = 〈(F 1(u), . . . ,Fp(u)), y〉. Then the ODE for 〈θ(t, ũ), y〉 is known
from Theorem 5.3 as

〈∂t θ(t, ũ), y〉 = ∂t 〈θ(t, ũ), y〉
=

〈(
F 1(ψ(t, u)

)
, . . . ,Fp

(
ψ(t, u)

))
, y

〉
〈θ(t, ũ), y〉 + B〈θ(t, ũ), y〉

=
〈
diag

(
F 1(ψ(t, u)

)
, . . . ,Fp

(
ψ(t, u)

))
θ(t, ũ), y

〉
+ 〈Qθ(t, ũ), y〉.

Since this holds for every standard basis vector y, the time derivative of θ exists and
the ODE follows.

Finally, we need to prove that the ODE has a unique solution. This is true if
F ∗(ψ(t, u)) is continuous in t ; see Knobloch and Kappel [35, Satz II.1.1 and Satz
II.6.1]. Observe that ψ(t, u) is continuous in t by virtue of its generalised Riccati
equation, and has domain U by the contraction property of Feller semigroups. More-
over, F(u) is continuous on Uk for all k ∈ N, hence continuous on U , and so the
composition F ∗(ψ(t, u)) is continuous in t . �

The remainder of this paper focuses on the setup as in Corollary 5.4. We refer to
this setup as a regime switching affine process driven by a Markov chain. One might
intuitively expect that this case gives analytically tractable results because X and Y

can be viewed as jointly affine on a state space D × E. However, it turns out that this
is not possible as Markov chains are not affine processes to begin with.

The question arises whether the regime invariance restrictions of ψ (or, equiva-
lently, R or αi , βi , γ i and μi ) in Theorem 5.3 can be relaxed. It appears that this is
not straightforward and perhaps not possible. We conjecture that the restriction here
is that ∂tP

∗
t fũ(x̃)|t=0+ = (G(ũ) + 〈H(ũ), x̃〉)fũ(x̃) for some functions G and H , as

is the case for affine processes; see Duffie et al. [13, Remark 2.8, where G(u) = F(u)
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and H(u) = R(u)]. It is easy to show that this equation holds for regime switching
affine processes driven by a Markov chain by taking derivatives, to get

∂tP
∗
t fũ(x̃)|t=0+ = 〈∂+

t θ(t, ũ)|t=0, y〉 exp (〈u,x〉)
+ 〈(

exp (v1), . . . , exp (vp)
)
, y

〉〈R(u), x〉 exp (〈u,x〉)
= 〈

diag
(

exp (−v1), . . . , exp (−vp)
)
∂+
t θ(t, ũ)|t=0, y

〉
fũ(x̃)

+ 〈R(u), x〉fũ(x̃),

and by setting H(ũ) = (R(u),diag(exp (−v1), . . . , exp (−vp))∂+
t θ(t, ũ)|t=0) and

G(ũ) = 0. In the second equality, the above derivation depends on the property that
exp (〈v, y〉) = 〈(exp (v1), . . . , exp (vp)), y〉, which is only possible because the ele-
ments of E can be written as y = ek for some k, regardless of the form of the ODE
for θ . This step also clearly breaks down when R is regime dependent.

6 Enlarging the domain of the characteristic function

So far, we have generally required that u ∈ U . In financial applications of affine pro-
cesses, option prices are usually expressed as functions of Ptfu, where (Pt ) is an
affine semigroup and u ∈ C

d ⊇ U . For most applications, U is too small a set to work
with, and this carries over to the application of regime switching affine processes.
Even for relatively standard univariate diffusion processes, specific parameters lead
to explosions in the exponential moments, i.e., P

y
t fu(x) does not exist. However, for

any u ∈ C, �y and ψ exist up to some time T . This time naturally depends on u. This
section extends the validity of Theorem 5.3 to u beyond U , yet up to a time T ≤ ∞.

In the world of affine processes, Duffie et al. [13] provide a toolset to determine
if a solution �(t,u), ψ(t, u) to the generalised Riccati equations up to some T > 0
for u ∈ C

d satisfies Definition 3.1. The steps usually involve checking that F and
Ri , i = 1, . . . , d , are analytic on some open domain, concluding from this that �

and ψ must therefore also be analytic, and finally using regularity properties of char-
acteristic functions to expand the domain on which the solutions of the generalised
Riccati equations describe the exponential moments of the affine process. Our case
is roughly equivalent so that we can extend the most important results for affine pro-
cesses to regime switching affine processes. We start with the analytic nature of the
Riccati solutions. Lemma 6.1 can be viewed as the regime switching affine general-
isation of [13, Lemma 6.5 ii] for the setup in Corollary 5.4, i.e., driven by a Markov
chain. Its proof closely follows [13].

Lemma 6.1 Consider a regime switching affine semigroup (P ∗
t ) driven by a Markov

chain. Suppose that all Fk and R are analytic on some open set U in C
d . Let T ≤ ∞

be such that a local U -valued solution ψ to the generalised Riccati equations exists
on (0, T ) for all u ∈ U . Then:

(i) For all v ∈ C
p , there also exists a solution θ to the ODE in Theorem 5.3 on

(0, T ) that is unique given ψ .
(ii) ψ and θ have unique analytic extensions on (0, T ) × U and (0, T ) × U ×C

p ,
respectively.
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Proof Consider first the existence of θ . That ψ has a unique analytic extension
on (0, T ) × U follows directly from Dieudonné [11, Theorem 10.8.2]. The func-
tion ψ is U -valued; so since Fk is analytic on U , the vector-valued composition
(F 1(ψ(t, u)), . . . ,F 1(ψ(t, u))) is analytic on (0, T ) for every u ∈ U and therefore
continuous. Using the linearity of the ODE in Theorem 5.3, it follows from Knobloch
and Kappel [35, Satz II.1.1 and Satz II.6.1] that this ODE has a unique solution χu

on (0, T ) for every starting point w ∈ C
p , not only those that can be written as an

exponent of v. Defining θ(t, ũ) = χu(t,w) for w ∈ (C\{0})p , where wk = exp (vk),
gives the existence of a unique solution θ given ψ .

To prove the final statement of the lemma, consider the composite system

∂t

(
ψ(t, u)

θ(t, u,w)

)
= G

(
ψ(t, u),χ(t, u,w)

)
, ψ(0, u) = u,χ(0, u,w) = w,

G(u,w) =
(

R(u)

(diag(F ∗(u)) + Q)w

)
.

Then G is analytic on the open domain U × C
p , and there exists a U × C

p-valued
local solution on (0, T ) for every (u,w) ∈ U × C

p . Using Dieudonné [11, Theo-
rem 10.8.2] again, ψ and χ have a unique analytic extension on (0, t) × U and
(0, t) × U ×C

p , respectively. The result for θ follows by changing the domain as
above. �

With the analytic nature of ψ and θ established, Theorem 6.2 below provides the
necessary conditions to conclude that the ODE solutions describe the exponential
moments of regime switching affine processes. This theorem is the regime switching
affine generalisation of Duffie et al. [13, Theorem 2.16 ii].

Theorem 6.2 Consider a regime switching affine semigroup (P ∗
t ) driven by a

Markov chain. Let t ≥ 0 and let U be an open convex neighbourhood of 0 in C
d .

Suppose that ψ(t, ·) and θ(t, ·) have analytic extensions on U and U × C
p , respec-

tively. Then:
(i) The exponential moments P ∗

t fũ(x̃) are finite for all u ∈ U ∩R
d , v ∈ R

p , x ∈ D

and y ∈ E.
(ii) P ∗

t fũ(x̃) = 〈θ(t, ũ), y〉 exp (〈ψ(t, u), x〉) holds for all u ∈ U such that
�(u) ∈ U ∩R

d , v ∈C
p , x ∈ D and y ∈ E.

Proof The proof of [13, Theorem 2.16 ii] is sufficient here as it relies in no way on
the form of the characteristic function or the state space, only on its analytic nature
which is satisfied by assumption. The only difference is that we do not require the
process to be conservative. This is allowed because the proof works for any bounded
measure (ν in [13, Appendix A]), not only probability measures. For a killed process,
we have fu(∞) = 0 by assumption; so for the purpose of computing exponential
moments, we might as well adjust that the measure value is zero on jumps to this
point at infinity. This means that whenever a process includes killing, the exponential
moments deflate due to strict subadditivity of the measure rather than the definition
fu(∞) = 0, with the exact same effect. �
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A deeper analysis of analytical extensions in the context of affine processes can be
found in Keller-Ressel and Mayerhofer [32].

7 SDE characterisation

We have given a definition of regime switching affine processes driven by a Markov
chain in terms of the generator. For many applications, SDEs are more intuitive. Also,
practitioners more often think in terms of SDEs than semigroups. This section gives
an SDE formulation using the existing link for affine processes. For completeness,
we state the result for affine processes without regime switching first.

For any Markov process, consider the sequence τn = inf{t ≥ 0 : ‖Xt − X0‖ > n}
and define the explosion time τ∞ := limn→∞ τn. Recall the definitions of a, b and m

from the end of Sect. 3. The following proposition is adapted from Keller-Ressel et
al. [33, Corollary 3.11].

Proposition 7.1 Let X be an affine process and suppose that the killing terms vanish,
i.e., c = 0 and γ = 0. Then under every Px , x ∈ D, the process X is a D-valued
semimartingale on [[0, τ∞[[ with canonical semimartingale representation

dXt = b(Xt )dt + √
a(Xt )dWt

+
∫
Rd

h(ξ)
(
νX(ω;dt,dξ) − m(Xt−,dξ)

) +
∫
Rd

(
ξ − h(ξ)

)
νX(ω;dt,dξ),

where
√· indicates the Cholesky decomposition, (Wt) is a d-dimensional Brownian

motion, νX is the random measure associated with the jumps of X, h is a truncation
function and a, b and m are as defined in Sect. 3.

The following proposition is the regime switching counterpart to Proposition 7.1
for the Markov chain case. Recall that we can write Y = eK for K ∈ {0, . . . , p} in
this particular case.

Proposition 7.2 Let X̃ = (X,Y ) = (X, eK) be a regime switching affine process and
suppose that the killing terms vanish, i.e., ck = 0 for k = 1, . . . , p and γ = 0. Then
under every P(x,y), x ∈ D, y ∈ E, the process (X,Y ) is a D-valued semimartingale
on [[0, τ∞[[ with canonical semimartingale representation

dXt = bKt (Xt )dt +
√

aKt (Xt )dWt

+
∫
Rd

h(ξ)
(
νX(ω;dt,dξ) − mKt (Xt ,dξ)

) +
∫
Rd

(
ξ − h(ξ)

)
νX(ω;dt,dξ),

dYt =
p∑

k=1

Yk,t

∑
��=k

(e� − ek)dN
qk�
t ,

where ak , bk and mk are the regime specific parameters corresponding to Ak and
(N

qk�
t ) are independent Poisson processes with intensity qk� that count the transitions

from ek to e� up to time t .
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Proof We prove the statement by letting (X,Y ) follow the canonical representation
in the statement, and showing that its semigroup has the correct parameters.

Let u ∈ U be such that ψ and θ exist for all t ≥ 0 by Theorem 5.3. Based on this,
let T ≥ 0 and define MX

t := exp (〈ψ(T − t, u),Xt 〉) and MY
t := 〈θ(T − t, ũ), Yt 〉.

Then let Mt := MX
t MY

t . With the ansatz that M is a martingale, we find

P ∗
T fũ(x, y) = E(x,y)[exp (〈u,XT 〉 + 〈v,YT 〉)]

= E(x,y)

[〈(
exp (v1), . . . , exp (vp)

)
, YT

〉
exp (〈u,XT 〉)]

= E(x,y)

[〈θ(0, ũ), YT 〉 exp
(〈ψ(0, u),XT 〉)]

= E(x,y)[MT ]
= M0

= 〈θ(T , ũ), y〉 exp
(〈ψ(T ,u), x〉).

This means that if M is a martingale, then the semigroup (P ∗
t ) of (X,Y ) has the

correct form. We now show that M is indeed a martingale.
By Itô’s lemma and the definitions of Fk and R, we have that

dMX
t = MX

t−
(

− 〈∂T ψ(T − t, u),Xt−〉 + 〈ψ(T − t, u), bKt−(Xt−)〉

+ 1

2
〈aKt−(Xt−)ψ(T − t, u),ψ(T − t, u)〉

+
∫
Rd

(
exp

(〈ψ(T − t, u), ξ 〉) − 1 − 〈ψ(T − t, u), h(ξ)〉
)

× mKt−(Xt−,dξ)

)
dt + dM̃X

t

= MX
t−FKt−(

ψ(T − t, u)
)
dt + dM̃X

t ,

where M̃X stands for the local martingale part of MX . By Elliott and Osakwe [18,
(7)], we can write dYt = Q�Yt−dt + dỸt , where Ỹ is a p-dimensional martingale. So
with the martingale M̃Y

t = ∫ t

0 〈θ(T − s, ũ),dỸs〉, we get

dMY
t = ( − 〈∂T θ(T − t, ũ), Yt−〉 + 〈θ(T − t, ũ),Q�Yt−〉)dt + dM̃Y

t

=
(

−
〈(

diag
(
F ∗(ψ(T − t, u)

)) + Q

)
θ(T − t, ũ), Yt−

〉

+ 〈θ(T − t, ũ),Q�Yt−〉
)

dt + dM̃Y
t

= −
〈
diag

(
F ∗(ψ(T − t, u)

))
θ(T − t, ũ), Yt−

〉
dt + dM̃Y

t

= −MY
t FKt−(

ψ(T − t, u)
)
dt + dM̃Y

t ,
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and by independence of the jump measures of Y and X,

dMt = MX
t−dMY

t + MY
t−dMX

t

= −MX
t−MY

t FKt−(
ψ(T − t, u)

)
dt − MX

t−dM̃Y
t

+ MY
t−MX

t−FKt−(
ψ(T − t, u)

)
dt + MY

t−dM̃X
t

= −MX
t−dM̃Y

t + MY
t−dM̃X

t .

Hence M is a local martingale. But MX and Y are uniformly bounded, and so M is a
true martingale. �

8 Discounting

Derivatives pricing often requires some form of discounting, either with an inter-
est rate or a hazard rate of default, or both; see Lando [38]. This section explains
discounting, and that discounting for regime switching affine processes driven by a
Markov chain boils down to the same small modification of the generalised Riccati
equations as discounting for affine processes.

Consider an affine process X with semigroup (Pt ). Discounting means that instead
of Ptf (x), we are interested in

Qtf (x) := Ex

[
exp

(∫ t

0
L(Xs)ds

)
f (Xt )

]
,

where L : D → R given by

L(x) := � + λ1x1 + · · · + λdxd

is the discounting rate. This is usually a short rate or a hazard rate, or a combination.
For (Qt ), Qtfu(x) still has the exponential affine form from Definition 3.1. Naturally,
unless � = λ1 = · · · = λd = 0, � and ψ are not the same as for (Pt ). However, it is
well known that a small adaptation of F and R solves this problem. Effectively F(u)

becomes F(u) + � and Ri(u) becomes Ri(u) + λi for all i = 1, . . . , d .
For a regime switching affine process (X,Y ), the natural equivalent is to see it as

a conditionally affine process and use the exact same notation to obtain

Q∗
t f (x, y) := E(x,y)

[
exp

(∫ t

0
L(Xs,Ys)ds

)
f (Xt ,Yt )

]
,

where L : D × E → R is given by

L(x, y) := � + λ1x1 + · · · + λdxd + λd+1y1 + · · · + λd+pyp.

The same modifications apply to Fk and R, giving Fk(u)+�+λd+k and Ri(u)+λi .
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Alternatively, we can assume without loss of generality that � = 0 since the con-
stant � can be added to all the λd+1, . . . , λd+p , keeping L the same. Then, using a
slightly different notation, we can write

Q∗
t f (x, y) = E(x,y)

[
exp

(∫ t

0
〈L∗(Xs), Ys〉ds

)
f (Xt ,Yt )

]
, (8.1)

where L∗ : D × E → R
p is now given by

L∗
k(x) := �k + λ1x1 + · · · + λdxd . (8.2)

The modifications to Fk and R are now Fk(u) + �k for k = 1, . . . , p and Ri(u) + λi

for i = 1, . . . , d .

9 Applications

This section explains why the most important cases of regime switching processes
from the literature are in fact regime switching affine processes. First, we consider
the regime switching short rate models in Landén [37] and Elliott and Siu [19], and
show how the price of a zero-coupon bond is expressed in both models. Second, we
derive the characteristic function of the regime switching univariate Lévy processes
analysed by Elliott and Osakwe [18]. Third, we derive the characteristic function of
a regime switching Heston model of the type in Elliott and Lian [16], Elliott et al.
[17, 20]. In the final example, we explore a credit derivative with different interest
rate and credit regimes. For this application, we do not base the model directly on
the literature. The section concludes with a few high-level notes on hedging in the
context of regime switching affine processes.

9.1 Riskless bond

Landén [37] and Elliott and Siu [19] consider the Vasiček and Cox–Ingersoll–Ross
short rate models (with translated notation such that Xt is the short rate and Kt is the
regime index as before)

dXt = (bKt + βXt)dt +
√

aKt dWt

and

dXt = (bKt + βXt)dt + √
αXtdWt.

Using Proposition 7.2, it is easy to see how these are special cases of regime switching
affine processes. The authors find that the price of a zero-coupon bond at t with
maturity T > t in these short rate models is

P(t, T , x, k) := E

[
exp

(
−

∫ T

t

Xsds

)∣∣∣∣Xt = x,Kt = k

]
= eA(t,T ,k)−B(t,T )x .
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In our notation in (8.1), this is

P(t, T , x, k) = E(x,ek)

[
exp

(∫ T −t

0
〈L∗(Xs), Ys〉ds

)]
= Q∗

T −t f0(x, ek),

where L∗
k(x) = �k + λ1x = −x is the discount rate as in (8.2) and f0 is simply fũ

with ũ = 0. Note that due to �k = 0, the discounting formula is regime invariant and
the regime only influences the price indirectly through the dynamics of the short rate
(rt ). The authors use a system of differential equations that is a specific case of the
ODE in Theorem 5.3, and use A(t, T , r, k) = ln θk(T − t,0).

9.2 European option price

In the next example, we look at option pricing in a Lévy setting. Elliott and Osakwe
[18] choose a regime switching univariate Lévy process with the Lévy kernel of the
variance gamma process. Their arguments for this specific process are empirical, but
theoretically, their derivation checks out for any other univariate Lévy kernel. Trans-
lated to our setup, they choose αi = 0, βi = 0, γ i = 0, μi = 0 for i = 1 since there is
only one dimension, and ak = 0, bk free, ck = 0 and mk(dξ)dt are the compensators
of variance gamma processes for k = 1, . . . , p.

With these parameters, it follows that Ri(u) = 0 so that ψ(t, u) = u. The function
Fk(u) is the regime specific log-characteristic function

Fk(u) = ubk +
∫
R\{0}

(
euξ − 1 − uh(ξ)

)
mk(dξ).

Using Theorem 5.3, we get the characteristic function

E[exp (uXt )|X0 = 0,K0 = k] = P ∗
t f(u,0)(0, ek) = θk(t, ũ),

where ũ = (u,0), u ∈ iR and θ is p × 1 and the solution to

∂t θ(t, ũ) =
(

diag
(
F ∗(u)

) + Q
)
θ(t, ũ), θ(0, ũ) = 1,

where 1 is a vector of ones, and with straightforward closed-form solution

θ(t, ũ) = exp

((
diag

(
F ∗(u)

) + Q
)
t

)
1.

This result is obtained in an entirely different fashion by Elliott and Osakwe [18,
Proposition 2]. By Lemma 6.1 and Theorem 6.2, we may expand u beyond iR to a
convex open neighbourhood of 0 in C, as long as F is analytic on this neighbourhood.
Note how in our setup, we can trivially generalise to any multivariate process (Xt ),
as in the setup of Vostrikova and Dong [45]. Variants of this result have been estab-
lished in various contexts related to Markov additive processes; see e.g. Asmussen
[1, Proposition XI.2.2].
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9.3 Stochastic volatility

Next, we cast the regime switching Heston model of Elliott et al. [17] in the regime
switching affine process format. The interpretation of volatility in terms of regimes
is not new, but has become more important in the low volatility period of 2017; see
Hamilton and Susmel [28]. Let lnSt be the log-stock price, Vt the (instantaneous)
variance and Kt the regime index. The regime switching Heston model has

d lnSt =
(

r − 1

2
Vt

)
dt + √

VtdW 1
t ,

dVt = κ(θKt − Vt )dt + ν
√

Vt

(
ρdW 1

t +
√

1 − ρ2dW 2
t

)
.

When Xt = (lnSt ,Vt ), it is easy to see this in the light of Proposition 7.2 as

(
d lnSt

dVt

)
=

((
r

κθKt

)
+

(
0 − 1

2
0 κ

)(
lnSt

Vt

))
dt

+
√(

0 0
0 0

)
lnSt +

(
1 νρ

νρ ν2

)
Vt

(
dW 1

t

dW 2
t

)
.

From this formulation, we can read off all parameters required for Ri and Fk as

ak =
(

0 0
0 0

)
, α1 =

(
0 0
0 0

)
, α2 =

(
1 νρ

νρ ν2

)
,

bk =
(

r

κθk

)
, β1 =

(
0
0

)
, β2 =

(− 1
2

κ

)
.

The killing and jump parameters ck , γ i , mk and μi are all zero, and we note that ak

is zero and thus regime invariant. From here on, it is straightforward to numerically
solve the Riccati equations for ψ(t, u) and θ(t, ũ) using (3.2) and Theorem 5.3 to get
the characteristic function. With this, we can price European options through standard
Fourier transformation as in Elliott et al. [17], or we can price the variance swap in
Elliott and Lian [16], Elliott et al. [20].

9.4 Defaultable bond

Lastly, we consider an example from credit risk, namely the price of a defaultable
zero-coupon bond of a bank, with no recovery value. As far as we know, this example
does not correspond to a model found in the literature. This simplified case can be
extended to include recovery value and can be used to price a credit default swap,
possibly with counterparty credit risk, using the principles in Duffie et al. [14]. We
consider a situation in which in search of yield, banks tend to take on more risky
loans in a low interest rate environment. We model this by constructing two regimes
indexed by a process (Kt ), one stressed regime with a relatively low mean reversion
level for the interest rate (rt ) with a corresponding high mean reversion level for the
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bank’s default hazard rate (ht ), and one vice versa. Both processes are correlated CIR
processes under the risk neutral measure,

drt = θr(μ
r
Kt

− rt )dt + σr

√
rtdW 1

t ,

dht = θh(μ
h
Kt

− ht )dt + σh

√
ht

(
ρ2dW 1

t +
√

1 − ρ2dW 2
t

)
,

where μr
1 < μr

2 and μh
1 > μh

2 . It is well known from Lando [38, Proposition 3.1] that
by the Markov property of the involved processes, the price of such a bond is given by

P(t, T , r, λ, k) = 1{τ>t} E
[

exp

(
−

∫ T

t

(rs + hs)ds

)∣∣∣∣rt = r, ht = h,Kt = k

]
,

where τ is the default time corresponding to the intensity process h and T is the
maturity. To translate this to our setup, write X = (r, h). It is straightforward to derive
the parameters of the regime switching process for this case as it closely resembles
the Heston model in the previous example. Using (8.1), we get

P(t, T , r, h, k) = 1{τ>t} E(x,ek)

[
exp

(∫ T −t

0
〈L∗(Xs), Ys〉ds

)]
= Q∗

T −t f0(x, ek),

where L∗
k(x) = �k + λ1x1 + λ2x2 = −r − h is the discount rate as in (8.2). Note

that due to �k = 0, we have regime invariance in the discounting, meaning that
〈L∗(Xt ), Yt 〉 = −rt − ht . This pricing problem can be solved numerically using the
ODE in Theorem 5.3.

9.5 Notes on hedging

In the Black–Scholes world (and several generalisations to other diffusion processes),
hedging a contingent claim is well understood and standard. After switching to an
equivalent martingale measure, we can use a unique self-financing strategy to repli-
cate the payoff of the contingent claim almost surely. With jumps involved, market
incompleteness generally (but not always) arises, i.e., the contingent claim cannot be
exactly replicated. It is beyond the scope of this paper to go into detail, but worthwhile
to highlight the implications when using regime switching processes for hedging pur-
poses.

In such applications, the set of generators Ay may cause hedging errors due to in-
completeness, for example because these are the generators of processes that include
certain jump components. These hedging errors may be regime specific, i.e., in some
regimes it may be harder to hedge than in others. But the perturbation by the genera-
tor B may lead to an additional source of hedging error that is caused by non-tradable
regime changes. This is clearest in the case when we try to hedge a European option
in a regime switching Black–Scholes world where only the volatility is different in
each regime. In the trivial case that the regime is observed and constant (i.e., each
state is absorbing), the contingent claim can be replicated as in the Black–Scholes
case. If the regime is observed and can be traded, then the risk of jumping to another
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regime is priced, and the claim can be replicated again with appropriate modifica-
tions to the absorbing case. However, if the regime cannot be traded, then in general
a hedging error emerges. In this specific Black–Scholes case, the hedging error can
be fully attributed to the regime switching nature of the process, since the generators
Ay correspond to different Black–Scholes diffusions. The hedging error can be min-
imised using for instance mean–variance hedging and locally risk minimising trading
strategies. Di Masi et al. [10] show explicitly how this can be done for the regime
switching volatility case described above. It is conceivable that their approach can be
mimicked for our switching regime processes, but as said above, this is beyond the
scope of the present paper.
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Appendix A: Proof of Theorem 5.3

The proof consists of three parts. We first prove the form of P ∗
t fũ(x̃) through the

existence of θ . Second, given that θ exists, we find the ODE it satisfies. Finally, we
prove that this ODE always has a unique solution.

To prove the existence of θ , consider A′ and B ′ as in the proof of Theorem 4.3.
Let (P ′

t ) be the semigroup that corresponds to A′. This semigroup exists since A′ is
the generator of a Feller semigroup. From the construction of A′, it is immediate that
P ′

t f (x, y) = P
y
t f y(x). Intuitively, this shows that (P ′

t ) is the semigroup of a regime
switching affine process when every regime is absorbing.

Define P
(0)
t := P ′

t and recursively, for all n = 1,2, . . . and t ≥ 0,

P
(n)
t :=

∫ t

0
P ′

t−sB
′P (n−1)

s ds.

Then by Engel and Nagel [21, Theorem III.1.10], we have

P ∗
t =

∞∑
n=1

P
(n)
t . (A.1)

We prove the theorem by showing that P
(n)
t fũ(x̃) obeys a specific factorisation that

gives P ∗
t fũ(x̃) the desired form as stated in the theorem.
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First, define the functions gn recursively through

g0(t, y, ũ) = �y(t, u) exp (〈v, y〉),

gn(t, y, ũ) =
∫ t

0
�y

(
t − s,ψ(s,u)

)
B ′gn−1(s, y, ũ)ds.

We prove by induction for n ≥ 0 that

P
(n)
t fũ(x̃) = exp

(〈ψ(t, u), x〉)gn(t, y, ũ). (A.2)

This holds for n = 0 because

P
(0)
t fũ(x̃) = P ′

t fũ(x̃) = fv(y)P
y
t fu(x) = exp (〈v, y〉)�y(t, u) exp

(〈ψ(t, u), x〉).
Suppose (A.2) holds for n − 1. Then it must also hold for n since by using (3.1) in
the fifth equality below, we get

P
(n)
t fũ(x̃) =

∫ t

0
P ′

t−sB
′P (n−1)

s fũ(x̃)ds

=
∫ t

0
P ′

t−sB
′ exp

(〈ψ(s,u), x〉)gn−1(s, y, ũ)ds

=
∫ t

0

(
P ′

t−s exp
(〈ψ(s,u), x〉))B ′gn−1(s, y, ũ)ds

=
∫ t

0
�y

(
t − s,ψ(s,u)

)
exp

(〈
ψ

(
t − s,ψ(s,u)

)
, x

〉)
B ′gn−1(s, y, ũ)ds

=
∫ t

0
�y

(
t − s,ψ(s,u)

)
exp

(〈ψ(t, u), x〉)B ′gn−1(s, y, ũ)ds

= exp
(〈ψ(t, u), x〉)

∫ t

0
�y

(
t − s,ψ(s,u)

)
B ′gn−1(s, y, ũ)ds

= exp
(〈ψ(t, u), x〉)gn(t, y, ũ).

At this point, it follows from (A.1) and (A.2) that

P ∗
t fũ(x̃) = �∗(t, ũ, y) exp

(〈ψ(t, u), x〉) (A.3)

for all x ∈ D, y ∈ E and t ≥ 0 and some function �∗. The finiteness of �∗ follows
from basic properties of the complex norm and the fact that Feller semigroups are
contractive, so that

|�∗(t, ũ, y)| = |P ∗
t fũ(x̃)|

| exp (〈ψ(t, u), x〉)| ≤ |fũ(x̃)|
| exp (〈ψ(t, u), x〉)| < ∞.

We proceed with the derivation of the ODE for �. Taking the time derivative on
the left-hand side of (A.3) gives
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∂tP
∗
t fũ(x̃) = A∗(P ∗

t fũ(x̃)
)

= A∗�∗(t, ũ, y) exp
(〈ψ(t, u), x〉)

= �∗(t, ũ, y)Ay exp
(〈ψ(t, u), x〉) + exp

(〈ψ(t, u), x〉)B�∗(t, ũ, y)

= �∗(t, ũ, y)
(
∂tφ

y(t, u) + 〈∂tψ(t, u), x〉) exp
(〈ψ(t, u), x〉)

+ exp
(〈ψ(t, u), x〉)B�∗(t, ũ, y).

Similarly, taking the derivative on the right-hand side gives

∂t�
∗(t, ũ, y) exp

(〈ψ(t, u), x〉)
= exp

(〈ψ(t, u), x〉)∂t�
∗(t, ũ, y) + �∗(t, ũ, y)∂t exp

(〈ψ(t, u), x〉)
= exp

(〈ψ(t, u), x〉)∂t�
∗(t, ũ, y) + �∗(t, ũ, y)〈∂tψ(t, u), x〉 exp

(〈ψ(t, u), x〉).
Equating both sides and multiplying by exp (−〈ψ(t, u), x〉) yields

∂t�
∗(t, ũ, y) = −�∗(t, ũ, y)〈∂tψ(t, u), x〉

+ �∗(t, ũ, y)
(
∂tφ

y(t, u) + 〈∂tψ(t, u), x〉) + B�∗(t, ũ, y)

= �∗(t, ũ, y)∂tφ
y(t, u) + B�∗(t, ũ, y)

= Fy
(
ψ(t, u)

)
�∗(t, ũ, y) + B�∗(t, ũ, y),

which is what we wanted to prove. �
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