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Abstract
We investigate competitive equilibria in a special type of incomplete markets, referred
to as a comonotonemarket, where agents can only trade such that their risk allocation is
comonotonic. The comonotone market is motivated by the no-sabotage condition. For
instance, in a standard insurance market, the allocation of risk among the insured, the
insurer and the reinsurers is assumed to be comonotonic a priori to the risk-exchange.
Two popular classes of preferences in risk management and behavioral economics,
dual utilities (DU) and rank-dependent expected utilities (RDU), are used to formulate
agents’ objectives. We present various results on properties and characterization of
competitive equilibria in this framework, and in particular their relation to complete
markets. For DU-comonotone markets, we find the equilibrium in closed form and for
RDU-comonotone markets, we find the equilibrium in closed form in special cases.
The fundamental theorems of welfare economics are established in both the DU and
RDU markets. We further propose an algorithm to numerically obtain competitive
equilibria based on discretization, which works for both the DU-comonotone market
and the RDU-comonotone market. Although the comonotone and complete markets
are closely related,many of our findings are intriguing and in sharp contrast to results in
the literature on complete markets in terms of existence, uniqueness, and closed-form
solutions of the equilibria, and comonotonicity of the pricing kernel.
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1 Introduction

1.1 Background

This paper studies risk sharing games in a special type of one-period exchangemarkets,
called the comonotone markets, and compare them with those in the classic complete
markets. A comonotone market is one in which only comonotonic risk allocations
(defined in Sect. 2) are allowed. Equivalently, market participants only trade risk
allocations in the market that are comonotonic with the market total risk. This may be
interpreted as, for instance, the market total risk is the systematic risk that is present,
and participants are not allowed to bet against it.

Comonotone markets are closely related to the following economic setups. First,
in the context of insurance risk allocations, comonotonic contracts are desirable a pri-
ori to the risk-exchange (e.g. Huberman et al. 1983). In particular, for comonotonic
contracts, no insurer or insured would benefit from an incremental loss, and no par-
ticipant has an incentive to underreport their losses. As a policyholder would have no
incentive to increase the underlying loss in this case, comonotonicity is often referred
to as the no-sabotage condition (e.g. Carlier and Dana 2003). In optimal reinsurance
contract theory, comonotonicity of risk allocations implies that individual and aggre-
gate indemnity contracts are not allowed to increase more than the underlying insured
risk (e.g. Cheung et al. 2014 and Xu et al. 2019). Therefore, studying competitive
equilibria in comonotone markets helps to understand the insurance/reinsurance mar-
ket. Alternatively, suppose there is an insurance market, where all individuals face
risk driven by a single factor. For instance, the individuals occur losses in case of a
flood, an earthquake, but one can also think about a single default event of a major
creditor. The individuals in the market can buy insurance against this common factor,
but cannot bet against it. This gives rise to comonotone markets. Second, in collective
risk sharing, the no-sabotage condition is an intuitive condition to impose as a prop-
erty of risk allocations. It means that all agents in a collective agree to take positions
that are non-decreasing functions of the total risk. This monotonicity property also
plays a central role in cost sharing, where the cost of a good needs to be allocated
among agents that each have a demand for this good. For instance, Moulin (1987)
and Moulin and Shenker (1992) both study monotonicity properties in a deterministic
setting. Moulin (1987) requires that the allocated costs weakly increase for all agents
if the cost of the good increases. Moulin and Shenker (1992) impose that if an agent
requires a higher amount of the good, then the cost allocation should weakly increase
as well. Third, in a complete financial market with homogeneous beliefs, equilibrium
allocations are generally comonotonic, and each position in an equilibrium allocation
is counter-comonotonic with respect to the pricing kernel (see a detailed explanation
in Sect. 2). A natural question is what happens if we constrain up-front the feasi-

123



Competitive equilibria in a comonotone market 1219

ble set of allocations to be comonotonic, and whether and how this would affect the
equilibrium price and allocation. As such, the study of comonotone markets helps to
enhance the understanding of the mechanism in complete markets, and this model is
able to accommodate some intriguing phenomena such as the pricing kernel puzzle.
Regardless of the interpretation one takes, our market setup is generic, and we shall
simply refer to a market participant, be it an investor, a firm, an insured, an insurer or
a reinsurer, as an agent.

In this paper, the preferences of agents are modelled by dual utilities (DU, Yaari
1987) or rank-dependent utilities (RDU, Quiggin 1982, 1993). These preferencemod-
els received considerable attention as an alternative (and generalization) to expected
utility, as RDU are one of the most popular decision models in behavioral economics.
DU, as a special case of RDU, are related to the theory of risk measures (Artzner
et al. 1999), which has gained great popularity after the introduction of the Basel III
regulations for banks (e.g. Embrechts et al. 2014). The key feature of RDU is the
non-linearity in the probabilities of the risk evaluation. We focus on RDU preferences
because, even in a complete market, finding competitive equilibria is very challenging;
existence may not be guaranteed, and explicit forms are generally unavailable. This is
in sharp contrast to the case of expected utilities in a complete market, where existence
and explicit forms are available.

Recent advances on RDU equilibria in complete markets are summarized in Xia
and Zhou (2016) and Jin et al. (2019). Our paper is essentially different from Xia and
Zhou (2016) and Jin et al. (2019), noting that our market is comonotone to begin with.
In the latter two papers, non-trivial technical assumptions are imposed to guarantee the
existence of an RDU equilibrium, and this also ensures counter-comonotonicity of the
pricing kernel with the market risk. In our paper, we show that the pricing kernel is not
necessarily counter-comonotonicwith themarket risk, andwe require only a veryweak
condition on the structure of the preferences to guarantee existence. See Sect. 4 for
more detailed discussions on the differences between our results and those in the classic
complete market model. We shall see that in the comonotone market we consider,
the problem becomes much more mathematically tractable, because comonotonicity
yields technical convenience allowing one to translate between RDU and an expected-
utility-based model with heterogeneous beliefs. Nevertheless, in order for explicit
calculation of competitive equilibria, some non-trivial technical conditions need to be
imposed.

1.2 Contribution of the paper

The main part of in this paper is dedicated to finding competitive equilibria in a
comonotone market, discussing their economic properties, and comparing them with
the case of a complete market. In Sect. 2, we formally introduce the comonotone
market, collect its properties and its relation to the corresponding complete market,
and review DU and RDU preference models.

Section 3 contains our main results on markets with DU agents. In complete mar-
kets, competitive equilibria do not necessarily exist unless the probability distortions
are strictly convex. In comonotone markets, we show the existence of competitive
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1220 T. J. Boonen et al.

equilibria, and we provide complete closed-form solutions. Generally, the equilib-
rium price is not necessarily unique. If probability distortions are non-convex, the
equilibrium pricing kernel does not need to be counter-comonotonic with the market
risk. If the probability distortions are different almost everywhere, then the equilibrium
risk allocations are unique up to constants. Moreover, we show that the two classic
fundamental theorems of welfare economics hold in comonotone markets with DU
agents.

Section 4 addresses markets with RDU agents. In complete markets, once again
competitive equilibria do not need to exist unless the probability distortions are strictly
convex. Strict convexity of distortion functions is consistent with strong risk aversion
(Chew et al. 1987). In contrast, we establish the existence of competitive equilibria
in comonotone markets. This is a result of the fact that our preferences are strictly
convex on the set of comonotonic allocations, and thus the agents are strong risk
averse. Moreover, we establish the two fundamental theorems of welfare economics
in comonotone markets. Although closed-form solutions of competitive equilibria are
not universally available, we do obtain them if the distortions are considered to be
“close” to each other. In particular, we obtain an analytical condition for RDU agents
with exponential utilities.

To compute competitive equilibria in a comonotone market with general DU and
RDU agents, especially in the cases where explicit solutions are not available, we
design an efficient algorithm in Sect. 5, and its numerical performance is reported in
Sect. 6 with various examples.

In general, comonotone markets allows for a flexible framework to accommodate
interesting phenomena. In complete markets, the equilibrium pricing kernel is nec-
essarily counter-comonotonic with the market risk. This is a reason that competitive
equilibria do not necessarily exist for rank-dependent utilities (Jin et al. 2019) or
the more general cumulative prospect theory preferences (De Giorgi et al. 2010). In
comonotone markets, the equilibrium pricing kernel does not need to be counter-
comonotonic with the market risk, and existence of the equilibrium is guaranteed
under mild conditions.

1.3 Related literature

There is a relatively large literature that analyzes competitive equilibria in risk shar-
ing, based on the seminal work of Arrow and Debreu (1954). Pareto-optimal and
competitive risk sharing in complete markets with (convex) risk measures (which
include convex dual utilities) is studied by Heath and Ku (2004), Barrieu and El
Karoui (2005), Jouini et al. (2008), and Dana and Le Van (2010); see Ludkovski and
Young (2009) and Boonen (2015, 2017) for a more focused treatment on dual utili-
ties. The non-convex case is studied recently for quantile-based risk measures (special
cases of dual utilities) by Embrechts et al. (2018) and Embrechts et al. (2020).

Risk sharingwith rank-dependent utilities is studiedby, amongst others,Chateauneuf
et al. (2000) and Tsanakas and Christofides (2006), who also assume convex prob-
ability distortions. In this paper, we consider general probability distortions (not
necessarily concave or convex), that include inverse-S shaped distortions proposed
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Competitive equilibria in a comonotone market 1221

by Tversky and Kahneman (1992). Competitive equilibria in complete markets for not
necessarily convex distortions are studied recently by Xia and Zhou (2016) and Jin
et al. (2019), who establish some sufficient conditions for the existence of equilibria.

A key concept we introduce and study in this paper is the comonotone market. A
summary of comonotonicity and its related properties can be found in Denuit et al.
(2005). The profound connection between optimality in risk sharing and comonotonic-
ity is studied in Landsberger and Meilijson (1994) and Ludkovski and Rüschendorf
(2008); see Rüschendorf (2013) and the references therein. Because of the imposed
comonotonicity, a comonotone market with RDU agents is closely related to a com-
plete market with expected utility agents and heterogeneous beliefs. Risk sharing in
complete markets with expected utilities gained interest already by Arrow and Debreu
(1954), and have been generalized bymany authors thereafter (e.g. Borch 1962;Wilson
1968; Dana 1993). An extension to dynamic risk sharing under a notion of ambiguity
is proposed by Dana and Riedel (2013). A more recent account is given by Anthrope-
los and Kardaras (2017), where agents can strategically choose their subjective beliefs
regarding the underlying risk in the market. A more common notion of market incom-
pleteness arises by the spanning of the payoff space by a limited number of securities.
For instance, Araujo et al. (2012) and Beissner and Riedel (2019) study incomplete
markets with sublinear price functionals, that are a result of transaction costs. Also,
market incompleteness by constraints on feasible risk sharing contracts has particu-
larly gained popularity in the financial literature on short-selling constraints, which is
a weaker constraint than the constraints in comonotone markets (Jarrow 1980; Nielsen
1989; Heaton and Lucas 1996). Our use of comonotone markets is not driven by con-
straints on securities, but arise by directly constraining the payoff space. As far as
we are aware of, this paper is the first one to formulate market incompleteness by
means of the comonotone market and to study risk sharing in this market. In comono-
tone markets, we assume that our pricing function is comonotonic additive, which is
introduced by Schmeidler (1986).

Another related stream of research is in the literature of optimal insurance/reinsur-
ance design, where comonotonicity of risk allocation is assumed as a natural
requirement of no moral hazard. Our technical approaches share some similarity with
recent developments in this field; for the latter, the reader is referred to Bernard et al.
(2015), Cai et al. (2016), Xu et al. (2019) and the references therein.

2 Notation and preliminaries

2.1 Dual utilities and rank-dependent utilities

We work with a probability space (Ω,B,P), and denote the set of bounded random
variables1 on it by X = L∞(Ω,B,P). We consider a one-period exchange market
with a finite set of agents, given by N = {1, . . . , n}. Each agent in the market is
endowed with an endowment ξi ∈ X , i ∈ N , that we interpret as a (random) future

1 The reason of working with bounded random variables in this paper is simply to avoid possible infinity
in optimizations. Most results can be naturally generalized to unbounded random variables, assuming that
the preference functionals we encounter take finite values on these random variables.
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1222 T. J. Boonen et al.

wealth at a given future reference period. The total (future) wealth in the market is
then given by X = ∑n

i=1 ξi , and denote by R(X) the range of X , which is assumed
to be a closed real interval.2 We assume that B is the σ -algebra generated by X .
Throughout, FX (·) = P(X ≤ ·) represents the cumulative distribution function of a
random variable X and SX = 1 − FX represents its survival function.

In this paper, we focus on rank-dependent utilities (RDU) (Quiggin 1982, 1993)
as class of risk preferences, which includes dual utilities (DU) (Yaari 1987) as spe-
cial cases. Define the set of distortion functions (also called probability perception
functions)3

G =
{
g : [0, 1] → [0, 1]

∣
∣
∣g is continuous and increasing, g(0) = 0 and g(1) = 1

}
.

A dual utility functional Dg with distortion function g ∈ G is defined as a Choquet
integral (see e.g. Denneberg 1994 and Wang et al. 1997), namely,

Dg(Y ) =
∫

Yd (g ◦ P) :=
∫ 0

−∞
(g(SY (z)) − 1) dz +

∫ ∞

0
g(SY (z))dz, Y ∈ X .

(1)

For an increasing function u : R → [−∞,∞) and a distortion function g ∈ G, a
rank-dependent utility functional Ru,g is given by

Ru,g(Y ) = Dg(u(Y )) =
∫

u(Y )d(g ◦ P), Y ∈ X .

Throughout, we shall use the abbreviations DU for dual utility functionals, and RDU
for rank-dependent utility functionals. Note that DU does not take the value −∞ on
X whereas RDU may take the value −∞ on a subset of X depending on the choice
of u, such as power utility functions.

RDU is a special case of Choquet expected utility, in which the agent’s non-additive
measure (also called a capacity) υ is a distortion of a probability measure (υ = g ◦P).
In this case, convexity of the probability weighting function g yields convexity of the
capacity υ. In Choquet expected utility, a convex capacity reflects ambiguity aversion,
and a concave capacity reflects an ambiguity-seeking behavior. It is well known that
Ru,g is consistent with strong risk aversion.4 if and only if u is concave and g is
convex. Due to the popularity of and the empirical evidence for non-convex distortion
functions in modern decision theory (e.g. Tversky and Kahneman 1992 and Quiggin
1993), we are particularly interested in the cases where g1, . . . , gn are not necessarily
convex.

2 For instance, if X is a uniform random variable on (0, 1), then R(X) = [0, 1].
3 For the ease of presentation, we only consider continuous distortion functions, although many results can
be applied to the case of discontinuous distortion functions.
4 This result was shown by Chew et al. (1987) For risk aversion in more advanced decision models,
see Schmidt and Zank (2008) and Müller et al. (2017).
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2.2 Comonotonemarket and competitive equilibria

A pair of random variables (Y , Z) ∈ X 2 is called comonotonic, or equivalently, the
pair (Y ,−Z) is called counter-comonotonic, if Y = f (Y + Z) and Z = g(Y + Z)

for some increasing functions5 f and g. We say that a random vector (X1, . . . , Xn)

is comonotonic if each pair of X1, . . . , Xn is comonotonic. Equivalently, there exist
increasing functions f1, . . . , fn such that Xi = fi (X1 + · · · + Xn), i = 1, . . . , n.

Denote by P the set of all probability measures on (Ω,B) which are absolutely
continuous with respect to P. The current price of a random wealth Y in the market is
given by E

Q[Y ] for some Q ∈ P , which we shall refer to as a pricing measure.
We consider competitive equilibria in two market settings. The main focus is a

special type of incomplete market, the comonotone market, in which allocations are
confined to the set C(X) of comonotonic allocations, namely,

C(X) = {Y ∈ X : (Y , X − Y ) is comonotonic}.

In this market, the set of admissible allocations6 is denoted by

A
c
n(X) =

{

(X1, . . . , Xn) ∈ (C(X))n :
n∑

i=1

Xi = X

}

.

For comparison with the comonotone market, we also consider a complete market,
where the set of admissible allocations is denoted by

An(X) =
{

(X1, . . . , Xn) ∈ X n :
n∑

i=1

Xi = X

}

.

The preference of agent i ∈ N is modelled via an objective functional Vi , which is
a dual utility or rank-dependent utility functional. In general, competitive equilibrium
is a pricing measure and a risk redistribution, such that given the price formula, each
agent i ∈ N individually maximizes Vi (X∗

i ) such that X
∗
i is in the budget set, and the

pricingmeasureQ inducesmarket-clearing by equating aggregate supply and demand,
i.e.,

∑n
i=1 X

∗
i = X . The formal definition of competitive equilibria in the two markets

is given below.7

5 In this paper, terms “increasing” and “decreasing” are in the non-strict sense.
6 In fact, any tuple of random variables in C(X) is comonotonic; see Denneberg (1994). According to
Denneberg’s Lemma (Denneberg 1994), for an allocation (X1, . . . , Xn) ∈ A

c
n(X) and each i ∈ N , it is

possible to write Xi = fi (X) for some fi ∈ F . As a consequence, (X1, . . . , Xn) is comonotonic. These
facts are used repeatedly in the analysis of this paper.
7 In a market of finitely many linear assets, the existence of a pricing measure follows from the no-arbitrage
assumption by the first Fundamental Theorem of Asset Pricing in the form of Theorem 1.7 of Föllmer and
Schied (2016). In the more general markets such as the ones we consider in Definition 1, a small extra
assumption of continuity is required, such as semi-continuity of the pricing functional with respect to the
weak* topology (see e.g., Theorem 12 of Delbaen 2012). Following the standard practice in the literature,
we directly assume that the pricing in the market is induced by probability measures.
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Definition 1 (Competitive equilibria) Fix objective functionals V1, . . . , Vn , total risk
X ∈ X and initial endowments ξ1, . . . , ξn ∈ X , and define the budget set B(Q, ξi ) =
{Y ∈ X : EQ[Y ] ≤ E

Q[ξi ]}.
(i) A constrained competitive equilibrium (CCE) is a pair of comonotonic allocation

and pricing measure ((X1, . . . , Xn),Q) ∈ A
c
n(X) × P such that for i ∈ N ,

Xi ∈ B(Q, ξi ) and Vi (Xi ) = max {Vi (Yi ) : Yi ∈ C(X) ∩ B(Q, ξi )} .

(ii) An unconstrained competitive equilibrium (UCE) is a pair of allocation and
pricing measure ((X1, . . . , Xn),Q) ∈ An(X) × P such that for i ∈ N ,

Xi ∈ B(Q, ξi ) and Vi (Xi ) = max {Vi (Yi ) : Yi ∈ B(Q, ξi )} .

In a competitive equilibrium, (X1, . . . , Xn) is an equilibrium allocation, and Q is an
equilibrium price.8

Clearly, if the allocation in a UCE is comonotonic, then the UCE is a CCE for the
same set of objective functionals and initial endowments.

Competitive equilibria rely on the assumption that there is a competitive envi-
ronment, where individual transactions have no influence on the prices. UCE in the
complete market for rank-dependent utilities are studied recently in Xia and Zhou
(2016) and Jin et al. (2019), and an analytical solution is very difficult to obtain in
general for heterogeneous distortion functions. In this paper, our main focus is put on
the comonotone market, and we shall investigate the difference between equilibria in
these two markets, namely CCE and UCE.

Suppose that ((X∗
1, . . . , X

∗
n),Q) is a UCE, and let η = dQ/dP, namely the pricing

kernel.9 As one of the classic results in equilibrium asset pricing theory in complete
markets (e.g. Föllmer and Schied 2016 and Jin et al. 2019), assuming that the objec-
tives are law-determined and strictly monotone and η is continuously distributed, the
following statements hold.

(i) (X∗
i , η) is counter-comonotonic (Dybvig 1988).

(ii) (X , η) is counter-comonotonic (a result of (i)).
(iii) (X∗

1, . . . , X
∗
n) ∈ A

c
n(X) (a result of (i)).

The above fact (ii) is commonly referred to as the law of demand and supply, meaning
that in an equilibrium, the higher supply (larger values of X ) is associated with a lower
price (smaller values of η); see e.g. Chabi-Yo (2012) and Hens and Reichlin (2013).
Therefore, from (iii), under mild conditions, a UCE is always a CCE. However, from
the detailed analysis in this paper, we shall see that a CCE is not necessarily a UCE.
Moreover, for a CCE ((X∗

1, . . . , X
∗
n),Q), the above (i) and (ii) are not necessarily true,

thus in sharp contrast to the case of complete market.
A concept closely related to competitive equilibria is the classic Pareto optimality,

also known as Pareto efficiency.

8 It may happen that Vi (Xi ) = −∞ in both (i) and (ii). This may be, for instance, the case where an agent
with a logarithmic utility function has a negative endowment. We shall mainly focus on the cases where
Vi (Xi ) > −∞.
9 Since EQ[1] = 1, we know that the pricing kernel dQ/dP is in L1(Ω,B,P).
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Definition 2 (Pareto-optimal allocations) Fix objective functionals V1, . . . , Vn , total
risk X ∈ X and initial endowments ξ1, . . . , ξn ∈ X .

(i) In the comonotone market, an allocation (X1, . . . , Xn) ∈ A
c
n(X) is Pareto-

optimal if for any allocation (Y1, . . . ,Yn) ∈ A
c
n(X), Vi (Yi ) ≥ Vi (Xi ) for i ∈ N

implies Vi (Yi ) = Vi (Xi ) for i ∈ N .
(ii) In the complete market, an allocation (X1, . . . , Xn) ∈ An(X) is Pareto-optimal

if for any allocation (Y1, . . . ,Yn) ∈ An(X), Vi (Yi ) ≥ Vi (Xi ) for i ∈ N implies
Vi (Yi ) = Vi (Xi ) for i ∈ N .

Themain part of this paper is dedicated to derive CCE, compare it with properties of
UCE, and establish its relation to Pareto-optimal allocations through the fundamental
theorems of welfare economics.

Note that the classic von Neumann–Morgenstern expected utility functional (EU)
is a special case of RDU by taking g as the identity function on [0, 1]. Moreover, a DU
is a special case of an RDU by taking u as the identity function. In what follows we
treat the corresponding CCE problems with DU and RDU separately in Sects. 3 and 4
for two reasons. First, we can analytically solve CCE for DU, but not for RDU, and
second, in this paper we only consider RDU in which u is strictly concave, a common
setup in the study of RDU (Quiggin 1993), which rules out DU as a special case; see
Sect. 4.

2.3 Individual optimization

In a comonotone market, the individual optimization problem is to find X∗
i which

solves

max
Xi∈C(X)∩B(Q,ξi )

Vi (Xi ), or, equivalently,

max
Xi∈C(X)

Vi (Xi ) s.t. EQ[Xi ] ≤ E
Q[ξi ]. (2)

If Vi , i ∈ N , are DU or RDU, we first present a simple fact on the individual optimiza-
tion problem (2), which will serve as a building block to solving the CCE in Sects. 3
and 4 and as the basis of the numerical algorithm in Sect. 5.

Lemma 1 Let Vi = Rui ,gi , i ∈ N, where ui , i ∈ N, are strictly increasing functions.
For a fixed Q and Xi ∈ C(X), let Yi = Xi − E

Q[ξi ] + E
Q[Yi ]. Then, Xi maximizes

problem (2) if and only if Yi satisfies

Yi ∈ arg max
Y∈C(X)

{Vi (Y − E
Q[Y ] + E

Q[ξi ])}. (3)

The proof of the lemma follows directly from the fact that the budget constraint
E
Q[Y ] ≤ E

Q[ξi ] in B(Q, ξi ) is binding, because of the strict monotonicity of the
objective Vi .
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1226 T. J. Boonen et al.

In the special case of Vi = Dgi for an individual agent (that is, ui is the identity
function), for a fixed Q, (3) boils down to

Yi ∈ arg max
Y∈C(X)

{Vi (Y ) − E
Q[Y ]}. (4)

3 Competitive equilibria with dual utilities

In this section,we study the case of equilibria for dual utilities. Throughout this section,
we impose the following assumption.

Assumption 1 Let Vi = Dgi for i ∈ N , where g1, . . . , gn ∈ G, ξ1, . . . , ξn ∈ X , and
X = ∑n

i=1 ξi .

For the convenience of presentation, we shall refer a market with the above objectives
and endowments as a DU-comonotone market or a DU-complete market.

3.1 Equilibrium allocations and prices

Let

F = { f : R → R| f is absolutely continuous, 0 ≤ f ′(z) ≤ 1 for z ∈ R},

where for f ∈ F , we use f ′ to represent a function that is almost everywhere (a.e.)
equal to the derivative of f .10

In the case of a DU-complete market where the distortion functions are not convex,
a UCE does not necessarily exist; see Embrechts et al. (2018) in the case of quantiles.
Let gN ,1(t) = max{g1(t), . . . , gn(t)} for t ∈ [0, 1]. If the distortion functions are all
convex, then a UCE in a complete market ((X∗

1, . . . , X
∗
n),Q) exists, and is given by

Q(X > z) = gN ,1(SX (z)) for all z ∈ R(X) and X∗
i = fi (X) such that fi ∈ F , and

for all z ∈ R(X):

f ′
i (z) = 0, if gi (SX (z)) < Q(X > z) and

n∑

i=1

f ′
i (z) = 1.

We refer to Boonen (2015) for the case of a finite state space.
We proceed with studying the DU-comonotone market. For a fixedQ, we first give

an explicit solution to the individual optimization problem (2) based on Lemma 1.

Proposition 1 Suppose that Assumption 1 holds. For a fixedQ and fi ∈ F , the random
variable Yi = fi (X) satisfies (4) if and only if for all z ∈ R(X),

f ′
i (z) = 1, if gi (SX (z)) > Q(X > z), and f ′

i (z) = 0, if gi (SX (z)) < Q(X > z).
(5)

10 When speaking of derivatives of functions in F , we do not distinguish two functions that are a.e. equal.
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Combining Proposition 1 and Lemma 1, we see that there always exists amaximizer
to the individual optimization problem (2) given by Xi = Yi − E

Q[Yi ] + E
Q[ξi ].

We continue by characterizing the CCE explicitly. In the following, gN ,2(t) is the
second-largest element in {g1(t), . . . , gn(t)} for t ∈ [0, 1].
Theorem 1 In the comonotonemarket underAssumption1, the pair ((X∗

1 , . . . , X
∗
n),Q)

is a CCE if and only if the following hold

(i) gN ,2(SX (z)) ≤ Q(X > z) ≤ gN ,1(SX (z)) for z ∈ R(X);
(ii) for i ∈ N, X∗

i = fi (X)−E
Q[ fi (X)]+E

Q[ξi ] almost surely where fi satisfies (5)
with

∑n
i=1 fi (X) = X.

If there exists an i ∈ N such that gi (t) = gN ,1(t) for all t ∈ [0, 1], then we interpret
this agent as the most risk-loving agent since Dgi (Y ) ≥ DgN ,2(Y ) ≥ Dgj (Y ) for
every risk Y ∈ X and every other j ∈ N . Therefore, there exists an equilibrium such
that agent i bears all the aggregate risk in equilibrium and the other agents only face
deterministic risk allocations (e.g., full insurance in an insurance setting). If there does
not exist a most risk-loving agent, then locally a most-risk loving agent bears the local
aggregate risk. More precisely, the marginal risk of X at z ∈ R(X) is allocated to the
agent(s) in I(z) = {i ∈ N : gi (SX (z)) = gN ,1(SX (z))} and ∑

i∈I(z) f ′
i (z) = 1.

From Theorem 1, we get directly the following corollary for the case of identical
dual utilities among agents.

Corollary 1 In the comonotone market under Assumption 1, if gi = g for all i ∈ N,
then the pair ((X∗

1, . . . , X
∗
n),Q) is a CCE if and only if the following hold

(i) Q(X > z) = g(SX (z)) for z ∈ R(X);
(ii) for i ∈ N, X∗

i = fi (X) − E
Q[ fi (X)] + E

Q[ξi ] almost surely where∑n
j=1 f j (X) = X and fi ∈ F .

According to Corollary 1, if all agents use the same DU, then the equilibrium price
turns out to be unique. On the contrary, equilibrium allocations are not unique. In
fact, each comonotonic allocation satisfying the individual budget constraints is an
equilibrium allocation. In the theorem below we analyze existence and uniqueness of
the CCE in more details.

Theorem 2 In the comonotone market under Assumption 1, the following hold.

(i) A CCE always exists.
(ii) If gN ,1(t) > gN ,2(t) for almost everywhere t ∈ [0, 1], then the equilibrium

(CCE) allocation is unique up to constant shifts, and the equilibrium price is not
unique.

(iii) If gN ,1(t) = gN ,2(t) for almost everywhere t ∈ [0, 1], then the equilibrium
(CCE) price is unique, and the equilibrium allocation is not unique.

In (i) of the theorem, we obtain existence of a CCE in a comonotone market. We
wish to point out that existence of a UCE may not hold in expected utility complete
markets with an unbounded commodity space (e.g. Cheng 1991 and Dana and Le Van
2000). Assumptions in suchmarkets to obtain existence of equilibria often include that
individual agents are risk-averse or the individually rational utility set is compact. In
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our DU-comonotone market, such assumptions are not needed. In (ii) of the theorem,
by saying that the equilibrium allocation is unique up to constant shifts, we mean
that, for any two CCEs ((X1, . . . , Xn),Q) and ((Y1, . . . ,Yn), Q̃), Xi − Yi , i ∈ N
are deterministic. Here, the two pricing measures Q and Q̃ may not be the same. In

particular, Xi − Yi = E
Q[ξi − Yi ] = E

Q̃[Xi − ξi ].
By constraining the market by allowing only for comonotonic allocations, the

equilibrium price is typically not unique, and the difference with a complete mar-
ket can be explained intuitively as follows. In a complete market, suppose we have
Q(X > z) < g1(SX (z)) for some z and X1 ∈ C(X). Then, we let Agent 1 buy the
security δ(I{X>z}−Q(X > z)) for δ > 0, where IA is the indicator function of an event
A. Note that the resulting new position X∗

1 = X1+δ(I{X>z}−Q(X > z)) has the same
price as X1, and it increases the utility of Agent 1 by δ(g1(SX (z)) −Q(X > z)) > 0.
Infinite profit for Agent 1 follows from letting δ → ∞, making an equilibrium allo-
cation impossible. On the other hand, in a comonotone market, the feasible choice of
δ is constrained. Hence, this strategy with asymptotic profits is not feasible anymore.
This fact leads to the sharp qualitative contrast between the two markets.

3.2 Pareto optimality and fundamental theorems of welfare economics

In this section we discuss the relation between equilibria and Pareto optimality, and
establish fundamental theorems ofwelfare economics for theDU-comonotonemarket.
First, we state a simple fact that for DU agents, Pareto optimality is equivalent to
optimality with respect to the sum. This result is well known (see e.g. Proposition
1 of Embrechts et al. 2018) in case of the complete market, and the same argument
therein applies to the comonotone market.

Proposition 2 In the comonotone market under Assumption 1, an allocation (X1, . . . ,

Xn) ∈ A
c
n(X) is Pareto-optimal if and only if it is sum-optimal, that is,

n∑

i=1

Vi (Xi ) = max

{
n∑

i=1

Vi (Yi ) : (Y1, . . . ,Yn) ∈ A
c
n(X)

}

. (6)

The value of the right-hand side of (6) can be easily calculated. Indeed, by Propo-
sition 5 of Embrechts et al. (2018), we have, for any S ⊆ N and Y ∈ C(X),

max

{
∑

i∈S
Vi (Yi ) : Yi ∈ C(X),

∑

i∈S
Yi = Y

}

= DgS,1(Y ), (7)

where DgS,1 is the dual utility with distortion function gS,1(s) = max{gi (s) : i ∈ S}
for s ∈ [0, 1]. Hence, from Theorem 1 that for every CCE ((X∗

1, . . . , X
∗
n),Q), we get

n∑

i=1

Vi (X
∗
i ) = DgN ,1(X),
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and

Vi (X
∗
i )≥E

Q[X∗
i ]≥DgN\{i},1(X

∗
i )=max

⎧
⎨

⎩

∑

j �=i

V j (Y j ) : Y j ∈C(X∗
i ),

∑

j �=i

Y j = X∗
i

⎫
⎬

⎭
.

Note that DgN\{i},1(X
∗
i ) is the maximum price that all agents, except i , are jointly

willing to offer to bear the risk X∗
i .

We conclude the section by establishing the fundamental theorems of welfare eco-
nomics (FTWE) for the DU-comonotone market. The proof of FTWE relies on the
explicit form of CCEs obtained in Theorem 1 and the relation to sum-optimality in
Proposition 2.

Theorem 3 In the comonotone market under Assumption 1, the following hold.

(i) An equilibrium (CCE) allocation is necessarily Pareto-optimal.
(ii) A Pareto-optimal allocation is necessarily an equilibrium (CCE) allocation for

some choice of endowments.

4 Competitive equilibria with rank-dependent utilities

We proceed to the market with agents using rank-dependent utilities, which is a much
more complicated object to analyze. Throughout this section we make the following
assumption.

Assumption 2 Let Vi = Rui ,gi for i ∈ N , where g1, . . . , gn ∈ G are continuously
differentiable, u1, . . . , un are strictly increasing and strictly concave utility functions,
ξ1, . . . , ξn ∈ X , and X = ∑n

i=1 ξi .

For i ∈ N, write di = inf{x ∈ R : ui (x) > −∞}, that is, the infimum wealth value on
which the utility of agent i is finite, and assume that ui is continuously differentiable on
(di ,∞). We say an allocation (X1, . . . , Xn) is proper if Vi (Xi ) > −∞ for all i ∈ N .
Certainly, only proper allocations are economically interesting. For the convenience
of presentation, we shall refer a market with the above objectives and endowments as
an RDU-comonotone market or an RDU-complete market.

4.1 General results

We start with stating equilibrium results in the RDU-complete market. UCE do not
need to exist when distortions are not convex (see Xia and Zhou 2016 and Jin et al.
2019). For example, in Xia and Zhou (2016), if the homogeneous distortion function
gi = g is not concave, the assumption that the function g′(1 − t)u′(VaRX (t))11 is
strictly increasing in t is required to guarantee the existence of equilibria. Xia and
Zhou (2016) consequently show counter-comonotonicity between the pricing kernel

11 On top of individual agents, Xia and Zhou (2016) define a representative agent in the market, and u is
the utility of the representative agent.
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and the market total wealth. Moreover, Jin et al. (2019) show existence of UCE under
a technical condition that implies the counter-comonotonicity between the pricing
kernel and the market total wealth.

We proceed with studying the RDU-comonotone market. In Lemma 1, the individ-
ual optimization problem (2) is linked to looking for Yi ∈ C(X) satisfying (3). Our
first result shows the existence of such Yi .

Proposition 3 In the comonotone market under Assumption 2, there exists Yi ∈ C(X)

satisfying (3). Thus, the individual maximal objectives in (2) are achieved.

We next establish the existence of a CCE, as well as the first and second FTWE
in this market. The proof of the following results hinges on the observation that the
preference Vi = Rui ,gi is continuous and concave on the domain C(X), and C(X)

is a convex set. Then, one builds on the existing results of existence and FTWE
in discrete models, e.g. Theorem 1 of Werner (1987) and Propositions 16.D.1 and
16.D.3 of Mas-Colell et al. (1995). The technical difficulties of bridging discrete and
continuous models are overcome by Lemma 2 below which may be of independent
interest. In the presentation of the lemma below, the objectives are fixed as V1, . . . , Vn ,
while we allow the initial endowments to vary.

Lemma 2 In the comonotone market under Assumption 2, suppose that (ξ1, . . . , ξn) is
proper and ξi is a continuous function of X on R(X) for each i ∈ N, {ξi,k}∞k=1 ⊂ X n

converges to ξi uniformly for i ∈ N, and for each k ∈ N, ξ1,k + · · · + ξn,k ≥ X and
((X∗

1,k, . . . , X
∗
n,k), Q

k) is a CCE for the initial endowments (ξ1,k, . . . , ξn,k). Then,

there exists a subsequence of {((X∗
1,k, . . . , X

∗
n,k), Q

k)}∞k=1 which converges to a CCE
for the initial endowments (ξ1, . . . , ξn). Here, the convergence is uniform for {X∗

i,k}∞k=1

and weak for {Qk}∞k=1.

With the help of Lemma 2, we are able to establish the existence and the FTWE
results in the RDU-comonotone market.

Theorem 4 In the comonotone market under Assumption 2, the following hold.

(i) If (ξ1, . . . , ξn) is proper and ξi is a continuous function of X on R(X) for each
i ∈ N, then a CCE exists.

(ii) A proper equilibrium (CCE) allocation is necessarily Pareto-optimal.
(iii) A proper Pareto-optimal allocation is necessarily an equilibrium (CCE) alloca-

tion for some choice of endowments.

4.2 An analytical approach for the competitive equilibria

In general, to find explicit solutions for competitive equilibria in the RDU markets is
very challenging. In this section we derive an approach for explicit CCE under some
nice conditions on the agents’ preferences.

In the following, we shall build a connection from the CCE problem for RDU
agents to a UCE problem for expected utility agents with heterogeneous beliefs. Let
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Assumption 2 hold. For i ∈ N , define a probability measure Qi on (Ω,B) generated
by its value on the events {X > t}t∈R, specified as

Qi (X > t) = gi ◦ P(X > t), t ∈ R, (8)

which is indeed a probabilitymeasure since gi (0) = 0, gi (1) = 1, and gi is continuous
and increasing. Since gi is continuously differentiable, we know that Qi is absolutely
continuous with respect to P, and the Radon–Nikodym derivative of Qi with respect
to P is given by12

dQi

dP
= g′

i (SX (X)), i ∈ N . (9)

For each i ∈ N and Y ∈ C(X),

Vi (Y ) = Rgi ,ui (Y ) =
∫ 0

−∞
(gi ◦ P(ui (Y ) > z) − 1) dz

+
∫ ∞

0
gi ◦ P(ui (Y ) > z)dz

=
∫ 0

−∞
(Qi (ui (Y ) > z) − 1) dz

+
∫ ∞

0
Qi (ui (Y ) > z)dz = E

Qi [ui (Y )]. (10)

Note that (10) relies on the useful fact that (Y , X) is comonotonic. Based on (10), in
a comonotone market, the individual optimization problem (2) translates to

max
Xi ∈C(X)∩B(Q,ξi )

E
Qi [ui (Xi )]. (11)

Now, we introduce the following accessory EU problem in the complete market, for
i ∈ N ,

max
Xi ∈X∩B(Q,ξi )

E
Qi [ui (Xi )]. (12)

Write V ′
i (Y ) = E

Qi [ui (Y )] for Y ∈ X and i ∈ N . Since V ′
i and E

Q are monotone
operators, the budget constraint in B(Q, ξi ) will be binding at the optimizers.

Clearly, if a solution to (12) is in C(X), then it also solves (11), thus (2). Based on
the above observation, we can solve a UCE for the individual objectives V ′

1, . . . , V
′
n .

If the resulting UCE is comonotonic, then we arrive at a CCE in the RDU-monotone
market as well. Unfortunately, the resulting equilibrium allocation is not necessarily
comonotonic in general, and we need some conditions for it to be so.

12 Since B is generated by X , (9) holds on (Σ,B).
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RDU-complete market
UCE

EU-complete
market (12)

UCE

⇑ ⇑

⇐⇒

=�==

RDU-comonotone
market
CCE

EU-comonotone
market (11)

CCE

(if comonotonic)(generally)

(relatively well studied)

First, we try to solve UCE for the individual objectives V ′
1, . . . , V

′
n . Note that

V ′
i is not necessarily equal to Vi on X , although they are equal on C(X); thus the

EU-complete market (12) is not equivalent to an RDU-complete market. Analytical
solutions for such a market are available for special classes of utility functions; see
e.g. Anthropelos and Kardaras (2017). Below we outline the main steps.

Note that Q1, . . . , Qn,P,Qmust all be equivalent probabilitymeasures so that (12)
has a maximizer. For a fixed Q ∈ P , using a Lagrangian method, we obtain a unique
solution for (12) under somemild regularity conditions (see e.g. Section 3.1 of Föllmer
and Schied (2016) for the technical conditions), that is,

Xi = (
u′
i

)−1
(
dQ

dQi
λi

)

, (13)

where λi is a positive constant that ensures the binding budget constraint EQ[Xi ] =
E
Q[ξi ].
The market clearing condition then boils down to

n∑

i=1

(
u′
i

)−1
(
dQ

dQi
λi

)

= X , (14)

and from this equation one can solve for Q. Note that λi also involves Q, making a
solution to (14) possibly implicit.

Note that ui is strictly concave, which guarantees that (u′
i )

−1 is a decreas-

ing function. Therefore, (X1, . . . , Xn) in (13) is comonotonic if ( dQ
dQ1

, . . . , dQ
dQn

) is
comonotonic. We summarize our findings in the following proposition.

Proposition 4 Suppose that ((X1, . . . , Xn),Q) is a UCE for the objective functionals
V ′
1, . . . , V

′
n. If ( dQ

dQ1
, . . . , dQ

dQn
) is comonotonic, then ((X1, . . . , Xn),Q) is a CCE in

the comonotone market under Assumption 2.

A key consequence of Proposition 4 is that the pricing kernel η = dQ
dP in a CCE

is not necessarily a decreasing function of the total wealth X ; recall that counter-
comonotonicity of (η, X) is a classic feature of UCE (see Sect. 2.2). To show this,
note that, by (9), we have

η = dQ

dP
= dQ

dQ1

dQ1

dP
= dQ

dQ1
g′
1(SX (X)). (15)
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Fig. 1 The pricing kernel η as a
non-monotone function of X in
Example 2
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As a result of (14), the term dQ
dQ1

is a decreasing function of X . However, since
g′
1 is not necessarily an increasing function unless g1 is convex, g′

1(SX (X)) is not
necessarily a decreasing function of X . Indeed, if gi is inverse-S-shaped as in Tversky
and Kahneman (1992) (see Fig. 2 in Sect. 6), then g′

1 on [0, 1] is first decreasing
and then increasing. As a result, η as a function of X can be first decreasing and
then increasing. This case is shown in Example 2, and here we plot the obtained
pricing kernel η as a function of X in Fig. 1. Our model is able to accommodate the
pricing kernel puzzle (see e.g. Hens and Reichlin 2013), where empirical evidence
suggests that the pricing kernel is not a decreasing function of the total wealth X ,
contradicting classic UCE models. Note that a non-decreasing function η implies that
the comonotonicity constraints in C(X) are binding somewhere in equilibrium; there
exists a trade in X \C(X) that a rational agent would prefer and can afford.

In case that any of g1, . . . , gn is convex, (15) implies that η as a decreasing function
of X , and hence the above non-classic phenomenon disappears.

We note that Proposition 4 does not tellmuch if ( dQ
dQ1

, . . . , dQ
dQn

) is not comonotonic.
Thus, we are only able to partially solve competitive equilibria for the RDU market
under nice conditions guaranteeing the comonotonicity of ( dQ

dQ1
, . . . , dQ

dQn
). A simple

example is the case that g1 = · · · = gn , and this includes the case of expected utility
agents (i.e. g1, . . . , gn are identity functions). In this case, Q1 = · · · = Qn , and
obviously ( dQ

dQ1
, . . . , dQ

dQn
) is comonotonic. In fact, this market is closely related to a

classic market where the individual preferences are characterized by EU (under the
probability measure Q1 = · · · = Qn) with concave utility functions. In this case,
Proposition 4 recovers the result of Borch (1962). See Xia and Zhou (2016) for more
recent developments on RDU equilibria with homogeneous probability distortions.

As hinted by the above example, if g1, . . . , gn are very similar to each other (“almost
identical”), then it is more likely that ( dQ

dQ1
, . . . , dQ

dQn
) is comonotonic. In Sect. 4.3, we

formalize this concept for the case of exponential utility functions.

4.3 The RDU-exponential market

In this section, we focus on the case where the utility functions u1, . . . , un are expo-
nential.
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Assumption 3 Let

ui (x) = − exp

(

− x

θi

)

, x ∈ R,

for i ∈ N , where θ1, . . . , θn > 0 are parameters representing risk tolerance.

From (13), the problem (12) has a unique solution

Xi = −θi ln

(

θiλi
dQ

dQi

)

.

To determine the coefficient λi from E
Q[ξi ] = E

Q[Xi ], we have

E
Q[ξi ] = −θi

(

E
Q

[
dQ

dQi

]

+ ln(θiλi )

)

= −θi (DKL(Q‖Qi ) + ln(θiλi )) ,

where DKL(Q‖Qi ) = E
Q

[
dQ
dQi

]
is the Kullback–Leibler divergence from Qi to Q.

Then,

Xi = θi ln

(
dQi

dQ

)

+ θi DK L(Q‖Qi ) + E
Q[ξi ] = θi ln

(
dQi

dQ

)

+ ci ,

for ci ∈ R. The market clearing constraint implies that, for each j = 1, . . . , n,

X =
n∑

i=1

Xi =
n∑

i=1

θi ln

(
dQi

dQ

)

+
n∑

i=1

ci = θ̄ ln

(
dP

dQ

)

+
n∑

i=1

θi ln

(
dQi

dP

)

+ c̄,

(16)

where θ̄ = ∑n
i=1 θi and c̄ = ∑n

i=1 ci . Solving the above equation we arrive at

dQ

dP
= exp

{
1

θ̄

(
n∑

i=1

θi ln

(
dQi

dP

)

+ c̄ − X

)}

. (17)

Meanwhile,

X =
n∑

i=1

Xi =
n∑

i=1

θi ln

(
dQi

dQ

)

+
n∑

i=1

ci = θ̄ ln

(
dQ j

dQ

)

+
n∑

i=1

θi ln

(
dQi

dQ j

)

+ c̄.

Thus, for the j th agent, the optimal risk allocation for (12) is

X j = θ j

θ̄

(

X −
n∑

i=1

θi ln

(
dQi

dQ j

)

− c̄

)

+ c j = θ j

θ̄

(
φ j (X) − c̄

) + c j , (18)
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where

φ j (X) = X −
n∑

i=1

θi ln

(
dQi

dQ j

)

. (19)

Next, we check if this risk allocation also solves (2), i.e., we check the comonotonic-

ity constraint X j ∈ C(X). This is equivalent to
θ j

θ̄

(
X − ∑n

i=1 θi ln
(
dQi
dQ j

))
∈ C(X),

or φ′
j (x) ≥ 0 for all j = 1, . . . , n and x ∈ R(X). This is a sufficient condition for

the existence of the solution to Problem (2). Let qi (x) = dQi (X≤x)
dx for i = 1, . . . , n.

Then, the condition φ′
j (x) ≥ 0 for all j = 1, . . . , n and x ∈ R(X) is equivalent to

θ̄−1 + q ′
j (x)

q j (x)
≥

n∑

i=1

θi

θ̄

q ′
i (x)

qi (x)
, for all j = 1, . . . , n and x ∈ R(X),

or

inf
x∈R inf

j=1,...,n

{

θ̄−1 + q ′
j (x)

q j (x)
−

n∑

i=1

θi

θ̄

q ′
i (x)

qi (x)

}

≥ 0. (20)

This result is summarized in the following theorem.

Theorem 5 In the comonotone market under Assumptions 2 and 3, if (20) holds, then
a CCE is given by ((X1, . . . , Xn),Q) in (17)–(18).

Condition (20) has the following intuition. The term
q ′
j (x)

q j (x)
−∑n

i=1
θi
θ̄

q ′
i (x)
qi (x)

states the
level of ambiguity aversion for agent j relative to a weighted average of that of other
agents, and θ̄−1 is a measure of risk aversion for all agents in the market. Roughly
speaking, if the overall risk aversion is larger than the ambiguity aversion of each
agent relative to others, then the complete market yields also an equilibrium in the
comonotone market, similarly to the case of a classic expected utility market. The case
of power utilities is presented in Appendix A.1.

5 An algorithm to compute the competitive equilibria

Generally, explicit forms of the competitive equilibria for the RDU-comonotone mar-
ket are not available except for the special cases studied in Sects. 4.2–4.3. In this
section, we propose an algorithm to numerically obtain competitive equilibrium based
on discretization, which works for both the DU-comonotone market and the RDU-
comonotone market. Its numerical performance is reported in Sect. 6.

We assume the same assumptions as in Theorem 4 to guarantee the existence of a
CCE. Without loss of generality, take R(X) = [0, X̄ ], where X̄ < ∞, for the purpose
of the algorithm. First, choose m ∈ Z

+ such that ε = X̄/m is small, and approximate
X by a discrete random variable X̂ which takes value in a finite set R(X̂) := {xk = kε :
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k = 1, . . . ,m}. Then, we propose the algorithm of the discretization approach on the
discrete probability space (R(X̂),B(R(X̂)), P̂), whereB(R(X̂)) is theBorelσ -algebra
of R(X̂) and P̂({xk}) = P ((k − 1)ε < X ≤ kε) for k = 1, . . . ,m. The discretized
version of the initial endowment for agent i , denoted by ξ̂i , satisfies ξ̂i (xk) = ξi (xk)
for k = 1, . . . ,m. From now on, we work with discrete random variables X̂ and
ξ̂1, . . . , ξ̂n , and study this discrete market (R(X̂),B(R(X̂)), P̂) as an approximation
to the original market.

Suppose the algorithm starts with an initial pricing measure Q̂0 = (q0,k)k=1,...,m,

which is the initial guess of price q0,k := Q̂0(X̂ ≥ xk), and initial allocation functions
ψ i
0, i ∈ N such that (ψ i

0(X̂), X̂ − ψ i
0(X̂)) is comonotonic, i ∈ N . Without prior

knowledge, we may choose the initial values as Q̂0 = P̂ and ψ i
0(X̂) = ξ̂i , assuming

(ξ1, . . . , ξn) ∈ A
c
n(X).

Remark 1 Our idea is to use a multi-step discrete procedure to mimic the actual
one-period trading (which leads to an equilibrium). In order to make sense of the
comonotone market, we have to assume that the individual endowments are comono-
tonic at each step of the trading. If the initial endowments are already comonotonic,
then this is not a problem, and we set ψ i

0(X̂) = ξ̂i , i ∈ N as mentioned above. If
(ξ1, . . . , ξn) /∈ A

c
n(X), i.e. the initial endowments are not comonotonic, then we need

to first transform it into another initial condition in which endowments are comono-
tonic. For this purpose, we may use

ψ i
0(X̂) = E

Q̂0 [ξ̂i ]
EQ̂0 [X̂ ]

X̂

as the initial endowment for agent i . This interprets into the situation where each agent
liquidates his or her initial endowment and trade it for portion of the total endowment
under the price Q̂0, before the actual trading starts.

Due to Lemma 1, for each i ∈ N , we aim to find a non-negative allocation
(Y1, . . . ,Yn) ∈ A

c
n(X̂) such that Vi (Yi − E

Q[Yi ] + E
Q[ξ̂i ]) is maximized. There-

fore, we define a “score function” of agent i as

vi (Yi ; Q) = Vi (Yi − E
Q[Yi ] + E

Q[ξ̂i ]),

for Yi ∈ C(X̂) and Q ∈ P .
Let δi0,1 = ψ i

0(x1) and δi0,k = ψ i
0(xk) − ψ i

0(xk−1) for k = 2, . . . ,m. Since

(ψ i
0(X̂), X̂ − ψ i

0(X̂)) is comonotonic, we have δi0,k ∈ [0, ε] for k = 1, . . . ,m. For

any x ∈ [0, X̄ ], it holds that

ψ i
0(x) =

m∑

k=1

δi0,kI{x≥xk }.

Our target is to recursively update δi0,k and q0,k simultaneously. After the ( j − 1)th

step, j = 1, 2, . . . ,m−1, the pricingmeasure is denoted by Q̂ j−1 = (q j−1,k)k=1,...,m ,
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and the allocation function for agent i , denoted by ψ i
j−1, becomes ψ i

j−1(x) =
∑m

k=1 δij−1,kI{x≥xk }. In the j th step, we want to replace δij−1, j by δij, j such that

the agent’s utility is improved. Denote ψ i
j (x) = ∑m

k=1 δij,kI{x≥xk }, where we keep

δij,k = δij−1,k for k �= j . Note thatψ i
j (x)−ψ i

j−1(x) = (δij, j −δij−1, j )I{x≥x j }. Since ε

is small, the difference between agent i’s utilities for ψ i
j−1 and ψ i

j , assuming the pric-

ing measure is Q̂ j−1, can be approximated by using a first-order Taylor’s expansion
as follows:

vi

(
ψ i

j (X̂); Q̂ j−1

)
− vi

(
ψ i

j−1(X̂); Q̂ j−1

)

= E
Qi

[
ui

(
ψ i

j (X̂) − E
Q̂ j−1 [ψ i

j (X̂)] + E
Q̂ j−1 [ξ̂i ]

)]

− E
Qi

[
ui

(
ψ i

j−1(X̂) − E
Q̂ j−1 [ψ i

j−1(X̂)] + E
Q̂ j−1 [ξ̂i ]

)]

≈ E
Qi

[
u′
i

(
ηij−1

) (
I{X̂≥x j } − q j−1, j

)]
(δij, j − δij−1, j )

= E
Qi

[
u′
i

(
ηij−1

)] (
r ij−1 − q j−1, j

)
(δij, j − δij−1, j ), (21)

where

ηij−1 = ψ i
j−1(X̂) − E

Q̂ j−1 [ψ i
j−1(X̂)] + E

Q̂ j−1 [ξ̂i ], (22)

and

r ij−1 =
E
Qi

[
u′
i

(
ηij−1

)
I{X̂≥x j }

]

EQi

[
u′
i

(
ηij−1

)] . (23)

In (21), δij, j − δij−1, j represents the position change of the allocation function at
value x j for agent i at the j th step of the algorithm. Note that if each agent updates
δij, j , i ∈ N according to (21), then

∑n
i=1 δij, j = ε does not necessarily hold, namely,

the market is not cleared. As the agents start to adjust their positions, the pricing
measure updates simultaneously, so that the market clearing condition is satisfied,
i.e. q j−1, j is replaced by q j, j in (21) so that

∑n
i=1 δij, j = ε. To make this happen, let

Q̂ j = (q j,k)k=1,...,m with q j,k = q j−1,k for k �= j and

q j, j = 1

2

(
sl
i
{r ij−1} + max

i
{r ij−1}

)
, (24)

where sl
i
{r ij−1} is the second largest value among r ij−1, i ∈ N . Write

Di
j = E

Qi
[
u′
i

(
ηij−1

) (
I{X̂≥x j } − q j, j

)]
= E

Qi
[
u′
i

(
ηij−1

)] (
r ij−1 − q j, j

)
. (25)
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We shall update δij, j , i ∈ N such that Di
j (δ

i
j, j − δij−1, j ) is maximized instead of (21).

Clearly, at most one of Di
j for i ∈ N is positive, and at least one of them is non-

negative. For agent i , i ∈ N , he/she should set δij, j = ε if Di
j > 0 (or equivalently

r ij−1 − q j, j > 0) and δij, j = 0 if Di
j < 0. If Di

j = 0 and maxi {Di
j } > 0, then

δij, j = 0, and if Di
j = 0 and maxi {Di

j } = 0, then δij, j could be any number in [0, ε]
summing up to ε. For convenience, and to summarize the above cases, we set

δij, j =
εI{maxi {Di

j }=0}
#{Di

j = 0, i = 1, . . . , n} if Di
j = 0,

where #A is the cardinality of the set A. In this way,
∑n

i=1 δij, j = ε, and the market
clearing condition is satisfied. Indeed, q j, j may be chosen at any value in the interval
[sli {r ij−1},maxi {r ij−1}], and we choose (24) for convenience.

Now, since we have updated Q̂ j and ψ i
j for all i , we can determine the function

ηij , and proceed to step j + 1. We repeat this procedure m times so that the values of
the allocation functions and the pricing measure at each xk , k = 1, . . . ,m is updated
once.

Finally, we set the resulting allocation functions and the pricing measure from the
above procedure as new initial values, and run the algorithm above again, until a
satisfactory convergence is achieved. We summarize the entire algorithm below.

Algorithm.

(1) Set ψ i
0(X̂) = ξ̂i as the initial endowment for agent i for all i = 1, . . . , n, and

q0,k = P̂(X̂ ≥ xk), k = 1, . . . ,m, as the initial pricing measure.
(2) At the j th step, j = 1, 2, . . . ,

(a) Determine r ij−1 for i = 1, . . . , n from (23).

(b) Set q j,k = q j−1,k for k �= j and q j, j = 1
2

(
sl
i
{r ij−1} + max

i
{r ij−1}

)
.

(c) Determine Di
j for i = 1, . . . , n from (25).

(d) For i = 1, . . . , n, set

δij,k = δij−1,k, for k �= j, and δij, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε, if Di
j > 0,

0, if Di
j < 0,

ε
I{maxi {Di

j }=0}
#{Di

j=0,i=1,...,n} , if Di
j = 0.

(26)

(e) Determine ηij , for i = 1, . . . , n from (22).

(3) Run (2) for j = 1, . . . ,m. After m steps, the wealth allocation function for agent
i becomes ψ i

m(X̂) = ∑m
k=1 δim,kI{X̂≥xk }, and the pricing probability is Q̂m =

(qm,k)k=1,...,m.
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(4) Reset the values Q̂0 = Q̂m, andψ i
0 = ψ i

m+E
Q̂0 [ξ̂i −ψ i

m(X̂)] or all i = 1, . . . , n,
and repeat the process (2)–(3) until results converge. The outputs are the final
values of ψ i

m , i = 1, . . . , n and Q̂m.

Remark 2 The aforementioned flexibility of the choice of q j, j in (2-b) will affect
largely the resulting equilibrium price in cases where the equilibrium price is not
unique, for instance, the case of the DU market, as established in Theorem 1. In cases
where the equilibrium price is unique (e.g. the setting of Theorem 5), this choice has
a minor influence on the resulting equilibrium price in our numerical experiments of
Sect. 6.

Due to technical challenges, for general RDU-markets, convergence and termina-
tion conditions of the algorithm are still unclear. Nevertheless, we can show that in a
DU-comonotone market, the algorithm converges to a CCE. This result is included in
Proposition 5 in Appendix A.3 for the interested reader.

6 Illustration of the algorithm

In this section, we illustrate the algorithm introduced in Sect. 5 by means of four
examples. In the first three examples, we show that the algorithm works quite well in
cases where we know the equilibrium exactly. Thereafter, we provide another example
where the equilibrium solution is not known exactly.

We use certainty equivalents (CEQ) to assess the quality of our algorithm and to
evaluate the improvement from prior to posterior allocations. For i ∈ N , let CEQprior

i

and CEQpost
i be constants such that

Vi (CEQ
prior
i ) = Vi (ξi ) and Vi (CEQ

post
i ) = Vi (Xi ),

where (X1, . . . , Xn) is an equilibrium allocation, either obtained via analytical results
or arrived from our algorithm.

We parameterize the distortion function g as in Tversky and Kahneman (1992) for
γ ∈ (0, 1):

g(s; γ ) = sγ

(sγ + (1 − s)γ )1/γ
, s ∈ [0, 1]. (27)

Rieger and Wang (2006) show that g(·; γ ) in (27) is increasing and inverse-S shaped
for γ ∈ (0.279, 1). We display this function in Fig. 2 for three choices of γ . For larger
parameters γ , we have that the distortion function is closer to the identity function.
Therefore, we say that distortion functions with a smaller γ is more distorted.

For illustrative purposes, throughout this section, we assume that ε = 0.01, m =
1000, and P̂ is the discrete uniform distribution over {kε : k = 1, . . . ,m}. Moreover,
we have three agents with ξi = 1

3 X for i = 1, 2, 3.

Example 1 (Dual utilities) Let N = {1, 2, 3}, and the three agents use dual utilities
with distortion functions gi (·) = g(·; γi ), where γ1 = 0.4, γ2 = 0.6, and γ3 = 0.8.
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Fig. 2 Three examples of g(·; γ )

in (27), for γ = 0.4, 0.6, 0.8

Figure 3 plots an equilibrium (CCE) price and allocation obtained from the algo-
rithm. The equilibrium (CCE) price is reported in terms of Q(X ≥ S−1

X (s)), where
S−1
X is the inverse function of SX , so that it can be compared with the distortion func-

tions via the relation (8). Since u′
i (·) = 1, the algorithm is unaffected by the initial

values, and so it yields the same solution after every loop. The equilibrium (CCE)
price critically depends on our choice to select q j, j as in (24).

In Fig. 3, we see that the pricemeasure is indeed between gN ,1 and gN ,2, as shown in
Theorem1.Also, the allocations are exactly as shown inProposition 1. The equilibrium
(CCE) allocations exhibit a regime-switching at X ≈ 7.3 and X ≈ 9.0, which coincide
with the crossing of the distortion functions at s ≈ SX (7.3) = 0.27 and s ≈ SX (9.0) =
0.1. Note that the pricing kernels, as characterized in Theorem 1, are all not counter-
comonotone with X . Therefore, no UCEs exist in this example.

Table 1 shows the welfare gains. We find that Agents 1 and 2 also gain in a CCE,
even though these agent bear little risk. In particular, Agent 1 mitigates his or her risk
substantially, because it has the most distorted preferences.

Example 2 (Rank-dependent utilities with explicit solution 1)
In this example, we want to compare our algorithm with a case where we know

an exact solution. Let N = {1, 2, 3}, and the three agents use an exponential utility
function with risk tolerance parameters θ1 = 3, θ2 = 2 and θ3 = 1. Moreover, the
agents use the distortion function gi (·) = g(·; γ ), with γ = 0.6.

If the distortions are the same for every agent, the preferences are represented
to expected utilities, but with an alternative probability measure of X . This holds
true because we assume that admissible allocations are comonotonic with the total
endowments. Since the CCE is Pareto-optimal (Theorem 4), and any Pareto-optimal
risk allocation with exponential utilities is proportional to X (Wilson 1968), we find
in Fig. 4 that the risk allocation in a CCE is proportional to X . The algorithm selects
very closely the equilibrium solution. This CCE is not a UCE in the RDU-complete
market, since the pricing kernel is not counter-comonotone with X .

We find that the allocation for Agent 2, X2, is very close to the initial endowment
ξ2. Therefore, Agent 2 does not benefit significantly in the equilibrium, as confirmed
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(a) (b)

(c) (d)

Fig. 3 A CCE corresponding to Example 1. In the top figures, the black line is the price Q(X ≥ S−1
X (s))

(we displayQ as Q), both exact and obtained from the algorithm. The other lines are the distortion functions
g1, g2 and g3. The bottom figures show the corresponding equilibrium (CCE) allocations X1, X2 and X3,
both exact and obtained from the algorithm

Table 1 The certainty equivalents before and after risk sharing, corresponding to Example 1

CEQprior
i CEQpost

i (theoretical) % increase CEQpost
i (algorithm)

Agent 1 0.99 1.56 58.0 1.56

Agent 2 1.44 1.56 8.3 1.56

Agent 3 1.63 1.86 14.7 1.86

in Table 2. Table 2 also confirms that the algorithm selects an equilibrium that is close
to the theoretical equilibrium.

Example 3 (Rank-dependent utilities with explicit solution 2) Let N = {1, 2, 3}, and
the three agents use an exponential utility function with parameters θ1 = 2, θ2 = 1.5,
and θ3 = 1. In order for the condition in Theorem 5 to hold, the derivatives of the
distortion functions need to be close to each other uniformly. Therefore, we choose,
for i = 1, 2, 3 and δ > 0:
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(a) (b)

(c) (d)

Fig. 4 The exact and approximated equilibrium (CCE) solution corresponding to Example 2. The top figures
display Q(X ≤ z) (we display Q as Q), both exact and obtained from the algorithm. The bottom figures
display the allocation both exact and obtained from the algorithm

Table 2 The certainty equivalents before and after risk sharing, corresponding to Example 2

CEQprior
i CEQpost

i (theoretical) % increase CEQpost
i (algorithm)

Agent 1 1.21 1.25 3.6 1.25

Agent 2 1.10 1.10 0.0 1.10

Agent 3 0.86 0.96 11.3 0.96

gi (s) = ag

(
s + δ

1 + 2δ
; γi

)

+ b, s ∈ [0, 1], (28)

where a, b are constants such that gi (0) = 1 − gi (1) = 0. Fix δ = 0.05, γ1 = 0.55,
γ2 = 0.6, and γ3 = 0.65. We display the distortion functions in Fig. 5.

In Fig. 6, we find that the algorithm selects again very closely an equilibrium (CCE)
solution. Moreover, in Table 3 we show the welfare gains in the risk allocation, which
also shows that the algorithm performs well in selecting an equilibrium solution.
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Fig. 5 Three examples of gi
in (28), for δ = 0.05 and
γ = 0.55, 0.6, 0.65

(a) (b)

(c) (d)

Fig. 6 The exact and approximated equilibrium (CCE) solution corresponding to Example 3. The top figures
display Q(X ≤ z) (we display Q as Q), both exact and obtained from the algorithm. The bottom figures
display the allocation both exact and obtained from the algorithm
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Table 3 The certainty equivalents before and after risk sharing, corresponding to Example 3

CEQprior
i CEQpost

i (theoretical) % increase CEQpost
i (algorithm)

Agent 1 1.156 1.167 0.9 1.167

Agent 2 1.138 1.138 0.0 1.138

Agent 3 1.049 1.070 2.0 1.069

(a) (b)

Fig. 7 The equilibrium (CCE) solution of the algorithm corresponding to Example 4. The left figure displays
the equilibrium price Q(X ≤ z) (we display Q as Q), and the right figure displays the corresponding
allocation

Example 4 (General rank-dependent utilities) Let N = {1, 2, 3}, and the three agents
use an exponential utility function with parameters θ1 = 3, θ2 = 2 and θ3 = 1.
Moreover, the agents use the distortion function gi (·) = g(·; γi ), with γ1 = 0.4, γ2 =
0.6, and γ3 = 0.8. So, Agent 1 (Agent 3) has the most (least) distorted probability
measure, but is least (most) risk averse.

In Fig. 7, we show the outcomes of the algorithm of Sect. 5. We find again that
equilibrium (CCE) price is inverse-S shaped. In particular, we find that including a
strictly concave utility function yields higher equilibriumprices, as the priceQ(X ≤ z)
is larger than this price in Example 1 for all z. Agent 1 (Agent 3) has the most (least)
distorted probability measure. For that reason, we find in Fig. 7 that Agent 1 bears the
least risk in the worst and best realizations of the total endowments X , and in turn, it
has a low allocation in case the realizations of X are around the average. Moreover,
we find the opposite pattern for Agent 3. Moreover, the equilibrium (CCE) allocation
for Agent 2 is S-shaped, and thus neither convex or concave. Such S-shaped allocation
is commonly observed in an insurance market, which requires comonotonic contracts
as we discussed in Sect. 1.1.

In Table 4, we show the certainty equivalents of the equilibrium (CCE) allocations.
In particular, we find that the equilibrium is most attractive for the agent with the most
distorted probability measure (Agent 1) and for the most risk averse agent (Agent 3).
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Table 4 The certainty equivalents before and after risk sharing, corresponding to Example 4

CEQprior
i CEQpost

i (algorithm) % increase

Agent 1 0.75 0.90 19.3

Agent 2 1.10 1.14 3.0

Agent 3 1.11 1.19 6.8

7 Concluding remarks

In this paper, we introduce the novel concept of comonotone markets, and study
competitive equilibria (CCE) in such markets for DU and RDU preferences. The
comonotone market is closely associated with a complete market, in the sense that
competitive equilibria in the complete market are necessarily (but not sufficiently)
equilibria in the corresponding comonotone market. Although these two markets are
closely related, many of our findings on the comonotone market are in sharp contrast
to results on the complete market, in terms of existence, uniqueness, closed-form
solutions of the equilibria, and comonotonicity of the pricing kernel. For instance, we
show existence of equilibria in comonotone markets under mild conditions, whereas
existence in complete markets is known to hold only under stronger assumptions—
both for DU and RDU preferences. With the help of the comonotone market, we
enhance the understanding of real financial and insurance markets, which are much
more complicated objects.

We also design an algorithm which produces competitive equilibria numerically
in the comonotone market for DU and RDU agents, and its numerical performance
is illustrated to be quite satisfactory. Due to great technical challenges, theoretical
properties of the algorithm, such as convergence and termination conditions for general
RDU markets, are still unclear. We leave these questions for future study.
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A Appendix

A.1 The RDU-power market

We use the same notation in the RDU markets of Sect. 4. Furthermore, we assume
that all agents use power (including logarithmic) utility functions, given by
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ui (t) =
{

t1−η−1
1−η

, η > 0, η �= 1

ln(t), η = 1
for all t > 0,

and ui (t) = −∞ if t ≤ 0, for i ∈ N . We assume that the parameter η is the same
for all agents. We shall refer to this market as the RDU-power-comonotone market.
In this market, agents are assumed to hold non-negative wealth all the time, and thus
the equilibrium risk sharing will be conducted among non-negative random variables.
For simplicity, we assume there exists some ε > 0 such that ξ1, . . . , ξn > ε.

The solution to Problem (12), which is without the comonotonicity constraint, is
given by

Xi = (
u′
i

)−1
(
dQ

dQi
λi

)

=
(
dQi

dQ

1

λi

)1/η

, where λ
−1/η
i = E

Q[ξi ]
EQ

[(
dQi
dQ

)1/η
] .

By the market clearing constraint,

X =
n∑

i=1

Xi =
n∑

i=1

(

λ−1
i

dQi

dQ

)1/η

=
(
dP

dQ

)1/η n∑

i=1

(

λ−1
i

dQi

dP

)1/η

,

and then

dQ

dP
=

(
1

X

n∑

i=1

(

λ−1
i

dQi

dP

)1/η
)η

. (29)

Therefore, X =
(
dQ j
dQ

)1/η ∑n
i=1

(
λ−1
i

dQi
dQ j

)1/η
, and, for j = 1, . . . , n,

X j = λ
−1/η
j X

∑n
i=1

(
λ−1
i

dQi
dQ j

)1/η . (30)

The comonotonicity constraint requires X j ∈ C(X) for all j = 1, . . . , n. Therefore,
a sufficient condition for the existence of solution to the Problem (2) is

X
∑n

i=1

(
λ−1
i

dQi
dQ j

)1/η is comonotonic with X for all j = 1, . . . , n.

Let q̄(x; η) = ∑n
i=1

(
λ−1
i qi (x)

)1/η
for x > 0. The condition d

dx

(
xq1/ηj (x)

q̄(x;η)

)

≥ 0 or,

equivalently,

sup
x>0

{

x

(
q̄ ′(x; η)

q̄(x; η)
− 1

η
inf

j=1,...,n

{
q ′
j (x)

q j (x)

})}

≤ 1 (31)
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guarantee that (X∗
1, . . . , X

∗
n), given by (30) is a solution to the Problem (2).

This result is summarized in the following theorem.

Theorem 6 In the RDU-power-comonotone market, if (31) holds, then a CCE is
uniquely given by ((X1, . . . , Xn),Q) in (29)–(30).

A.2 Proofs of theorems, lemmas and propositions

Proof of Proposition 1 We write Yi = fi (X) for fi ∈ F (Denneberg 1994),
and let f −1

i (y) = inf {t ∈ R : fi (t) > y} ∈ F be the inverse function of fi .

Then, Vi (Yi ) = f −1
i (0) + ∫ ∞

0 gi (SX (t)) f ′
i (t)dt + ∫ 0

−∞ (gi (SX (z)) − 1) f ′
i (t)dt and

E
Q[Yi ] = f −1

i (0) + ∫ ∞
0 Q(X > t) f ′

i (t)dt + ∫ 0
−∞ (Q(X > t) − 1) f ′

i (t)dt . Thus,
for Yi = fi (X) ∈ C(X), Vi (Yi ) − E

Q[Yi ] = ∫ ∞
−∞ (gi (SX (t)) − Q(X > t)) f ′

i (t)dt .
Since R(X) is a closed interval, maximizing this over the set F yields the desired
result. ��
Proof of Theorem 1 “if” part. Consider functions f ′

i , i ∈ N satisfying (5). For each
z ∈ R(X), if i = min{l ∈ N : gl(SX (z)) ≥ Q(X > z)}, then take f ′

i (z) = 1
and f ′

j (z) = 0 for j �= i . It follows that
∑n

i=1 f ′
i (z) = 1. Write X∗

i = fi (X) −
E
Q[ fi (X)]+E

Q[ξi ] almost surely where fi (z) = ∫ z
0 f ′

i (t)dt . Here, we take fi (0) = 0
without loss of generality. It is easy to check that

∑n
i=1 fi (z) = z for z ∈ R(X). By

Lemma 1 and Proposition 1, X∗
i is the maximizer of (2) for each i ∈ N . Meanwhile,

∑n
i=1 X

∗
i = ∑n

i=1 fi (X) − ∑n
i=1 E

Q[ fi (X)] + ∑n
i=1 E

Q[ξi ] = X . Therefore, the
pair ((X∗

1, . . . , X
∗
n),Q) is a competitive equilibrium.

“only if” part. Write X∗
i = fi (X) where fi ∈ F , i ∈ N . Again this is possible by

Denneberg’s Lemma. Since ((X∗
1, . . . , X

∗
n),Q) is a competitive equilibrium, we have∑n

i=1 f ′
i (t) = 1 for almost everywhere t ∈ R(X).

(i) Suppose that Q(X > z) > gN ,1(SX (z)) for some z ∈ R(X). Since both Q(X >

·) and g(SX (·)) are decreasing functions, andQ(X > ·) is right-continuous, there
exists a closed interval [z, z + ε] ⊂ R(X) on which Q(X > t) > gN ,1(SX (t)).
Applying Proposition 1, we get f ′

i (z) = 0 for each i ∈ N on [z, z + ε]. Noting
that [z, z+ ε] has non-zero measure, this contradicts

∑n
i=1 f ′

i (t) = 1 for almost
everywhere t ∈ R(X).

(ii) Suppose that Q(X > z) < gi (SX (z)) for some z ∈ R(X) and i ∈ M and M
has a cardinality strictly greater than 1. Since both Q(X > ·) and gi (SX (·)) are
decreasing and right-continuous functions, there exists a closed interval [z, z +
ε] ⊂ R(X) on which Q(X > z) < gi (SX (z)) for i ∈ M . By Proposition 1,
we get f ′

i (z) = 1 for i ∈ M on [z, z + ε]. Noting that [z, z + ε] has non-zero
measure, and each f ′

i is non-negative on the convex range R(X), this contradicts∑n
i=1 f ′

i (t) = 1 for almost everywhere t ∈ R(X).

Combining (i) and (ii) completes the proof. ��
Proof of Theorem 2 (i) Noting that gN ,2(SX (z)) ≤ gN ,1(SX (z)), there always exists

Q satisfying gN ,2(SX (z)) ≤ Q(X > z) ≤ gN ,1(SX (z)). For such Q, it is easy
to see that f1, . . . , fn satisfying (5) with

∑n
i=1 fi (X) = X also exist. By Theo-

rem 1, a CCE exists.
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(ii) Assume gN ,1(t) > gN ,2(t) for a.e. t ∈ [0, 1]. In this case, by Theorem 1 (i), Q
can be anything such that gN ,2(SX (z)) ≤ Q(X > z) ≤ gN ,1(SX (z)), which is
not unique. Moreover, forQ satisfying the above condition, (5) and the condition∑n

i=1 fi (X) = X uniquely determine the functions f1, . . . , fn . Therefore, the
equilibrium allocation is unique up to the constant term −E

Q[ fi (X)] + E
Q[ξi ]

as specified in Theorem 1 (ii).
(iii) Suppose that gN ,1(t) = gN ,2(t) for almost everywhere t ∈ [0, 1]. Since

Q(X > z) is a right-continuous function of z, it is uniquely determined by
gN ,2(SX (z)) ≤ Q(X > z) ≤ gN ,1(SX (z)). As B is the set of all events gen-
erated by X , Q is uniquely determined by Q(X > z), z ∈ R(X). In this case,
f1, . . . , fn satisfying (5) and

∑n
i=1 fi (X) = X are not unique due to the fact

that for i, j ∈ N , i �= j such that gi = gN ,1 = gN ,2 = g j , f ′
i and f ′

j in (5) can
be arbitrary as long as they add up to 1. ��

Proof of Theorem 3 (i) It follows from the same proof of Theorem 4 (ii) below.
(ii) Suppose that (X1, . . . , Xn) ∈ A

c
n(X) is a Pareto-optimal allocation. Write Xi =

fi (X)where each fi is inF , i ∈ N . TakeQ such thatQ(X > z) = gN ,1(SX (z))
for z ∈ R(X), where gN ,1(t) = max{gi (t) : i ∈ N } for t ∈ [0, 1]. ByTheorem1,
it suffices to show that f ′

i satisfies (5), since we already have
∑n

i=1 f ′
i (z) = 1 for

z ∈ R(X) by the definition of an allocation (X1, . . . , Xn). By direct calculation,
we have

n∑

i=1

Vi (Xi ) =
n∑

i=1

∫ ∞

0
gi (SX (t)) f ′

i (t)dt . (32)

By Proposition 2 and (7), we have, since (X1, . . . , Xn) is Pareto-optimal,

n∑

i=1

Vi (Xi ) = DgN ,1(X) =
∫ ∞

0
gN ,1(SX (t))dt . (33)

Noting that
∑n

i=1 f ′
i (z) = 1 almost everywhere for z ∈ R(X), and combin-

ing (32) and (33), we have f ′
i (z) = 0 almost everywhere for gi (SX (z)) <

Q(X > z). Further note that by the definition ofQ we always have gi (SX (z)) ≤
Q(X > z). Therefore, f ′

i (z) satisfies (5). ��
Proof of Proposition 3 Denote Mi = supY∈C(X) Vi

(
Y − E

Q[Y ] + E
Q[ξi ]

)
, and take a

sequence Yi,k ∈ C(X), k ∈ Z
+ such that limk→∞ Vi (Yi,k −E

Q[Yi,k]+E
Q[ξi ]) = Mi .

Write Yi,k = fi,k(X), k ∈ Z
+ where fi,k ∈ F . Without loss of generality, assume

fi,k(0) = 0, k ∈ Z
+. Using Lemma 2.3 of Cai et al. (2017), there exists a subsequence

of { fi,k} converges point-wise to some f ∗
i ∈ F . For notational simplicity, write

fi,k → f ∗
i point-wise, and then fi,k(X) → f ∗

i (X) almost surely. Consequently,
limk→∞ E

Q[ fk(X)] = E
Q[ f ∗(X)]. Denote ci,k = E

Q[ξi ] − E
Q[ fi,k(X)] and c∗

i =
E
Q[ξi ] − E

Q[ f ∗
i (X)]. By Fatou’s Lemma, for i ∈ N ,

Mi = lim
k→∞ Vi (Yi,k + ci,k) ≤ lim sup

k→∞
Vi ( fi,k(X) + ci,k) ≤ Vi ( f

∗
i (X) + c∗

i ) ≤ Mi ,
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which completes the proof. ��
Proof of Lemma 2 First note that we can write ξi = ϕi (X) for a bounded and con-
tinuous function ϕi defined on R(X), i = 1, . . . , n. Moreover, we have EQk [ξi,k] =
E
Qk [X∗

i,k] for i ∈ N and we can write X∗
i,k = fi,k(Xk) for some functions fi,k ∈ F ,

i ∈ N , where Xk = ξ1,k +· · ·+ξn,k . It is clear that {Xk}∞k=1 converges to X uniformly.
Let B(R(X)) be the Borel σ -algebra of R(X). Each measure Qk on B induces

a measure Q̃k on B(R(X)) such that Q̃k(A) = Qk(X−1(A)) for all subset A ∈
B(R(X)). Since R(X) is a compact subset of R, every collection of measures on
B(R(X)) is tight. Prokhorov’s theorem implies that there exists a subsequence of
{Q̃k}∞k=1 such that

Q̃kl → Q̃∗ weakly as l → ∞ for some measure Q̃∗ on B(R(X)). (34)

For notational simplicity, we choose this subsequence as {((X∗
1,k, . . . , X

∗
n,k), Q

k)}∞k=1

in the following. Define Q
∗(B) = Q̃∗(X(B)) for B ∈ B. Then, E

Qk [ξi ] =∫
ϕi (x)Q̃k(dx) converges to E

Q∗ [ξi ] = ∫
ϕi (x)Q̃∗(dx) since the function ϕi is

bounded and continuous. Moreover, since {ξi,k}∞k=1 converges to ξi uniformly, then

for any ε > 0, there exists K ∈ N such that |EQk [ξi,k] − E
Qk [ξi ]| ≤ ε for all k > K .

Therefore, we get limk→∞ E
Qk [ξi,k] = E

Q∗ [ξi ].
Note that f̃1,k = f1,k − f1,k(0) are functions in F with f̃1,k(0) = 0, using Lemma

2.3 of Cai et al. (2017), it has a subsequence f̃1,k which converges point-wise to some
f̃ ∗
1 ∈ F and f̃ ∗

1 (0) = 0. Doing this sequentially for i ∈ N , we get a subsequence such
that { f̃i,kl }∞l=1 point-wise converges to a function f̃ ∗

i for all i ∈ N simultaneously.
As f̃ ∗

i is uniformly bounded and continuous, f̃ ∗
i (Xk) converges to f̃ ∗

i (X) uniformly.
Combining the above results, f̃i,kl (X

k) converges to f̃ ∗
i (X) uniformly for all i ∈

N simultaneously. Recall from (34) and the explanation afterward that {Q̃k}k∈N is
chosen such that Q̃k → Q̃∗ weakly. Therefore, we obtain the joint convergence that
f̃i,kl (X

k) converges to f̃ ∗
i (X) uniformly and Q̃kl → Q̃∗ weakly as l → ∞. Again,

for notational simplicity, we choose this subsequence as {((X∗
1,k, . . . , X

∗
n,k), Q

k)}∞k=1

in the following. Similarly to the case of ξi , one can show limk→∞ E
Qk [ f̃i,k(X)] =

E
Q∗ [ f̃ ∗

i (X)]. Using fi,k(0) = E
Qk [ξi,k] − E

Qk [ f̃i,k(X)], we have limk→∞ fi,k →
f ∗
i = f̃ ∗

i + f ∗
i (0) point-wise, where f ∗

i (0) = E
Q∗ [ξi ] − E

Q∗ [ f̃ ∗
i (X)]. Let X∗

i =
f ∗
i (X) for i ∈ N . Then Xi,k converges to X∗

i uniformly and E
Q∗ [X∗

i ] = E
Q∗ [ξi ],

i.e., the budget constraint for each agent holds for (X∗
i , . . . , X

∗
n), which can be easily

verified to be an allocation in A
c(X).

To show that ((X∗
1, . . . , X

∗
n),Q

∗) is indeed a competitive equilibrium, it remains
to show that for any Yi ∈ C(X) ∩ B(Q∗, ξi ), it holds that Vi (Yi ) ≤ Vi (X∗

i ), i ∈ N .
To this end, we first fix i ∈ N and take an arbitrary Zi ∈ C(X) ∩ B(Q∗, ξ) such that
E
Q∗ [Zi ] < E

Q∗ [ξi ].
Write Zi = zi (X) for some function zi ∈ F and let Zi,k = zi (Xk), k ∈ N.

Take ε = (EQ∗ [ξi ] − E
Q∗ [Zi ])/3. Using the convergence results analyzed above,

there exist K1, K2 and K3 such that |EQk [Zi,k] − E
Q∗ [Zi,k]| ≤ ε for all k > K1,

|EQ∗ [Zi,k] − E
Q∗ [Zi ]| ≤ ε for all k > K2, and |EQ∗ [ξi ] − E

Qk [ξi,k]| ≤ ε for all
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k > K3. Taking K = max{K1, K2, K3}, we have, for all k > K ,

E
Qk [Zi,k] ≤ E

Q∗ [Zi,k] + ε ≤ E
Q∗ [Zi ] + 2ε = E

Q∗ [ξi ] − ε ≤ E
Qk [ξi,k].

Therefore, from the optimality of Xi,k as it is in an equilibrium, we have Vi (Zi,k) ≤
Vi (Xi,k). Note that X ≤ Xk implies Zi ≤ Zi,k , and we have lim supk→∞ Vi (Xi,k) ≤
Vi (X∗

i ) by Fatou’s lemma, as ui (Xi ) is bounded above and Xi,k → X∗
i uniformly as

k → ∞. It follows that

Vi (Zi ) ≤ lim sup
k→∞

Vi (Zi,k) ≤ lim sup
k→∞

Vi (Xi,k) ≤ Vi (X
∗
i ).

Thus, for all Zi ∈ C(X) such that EQ∗ [Zi ] < E
Q∗ [ξi ], we have Vi (Zi ) ≤ Vi (X∗

i ).
Next, take Yi ∈ C(X) ∩ B(Q∗, ξi ). Let Wi,m = max{Yi ,m} for m ∈ R and

ri = sup{y ∈ R : P(Yi > y) > 0}. If Vi (Yi ) = −∞, then there is nothing to show. If
ri > di , then E

Q∗ [Wi,m] < E
Q∗ [ξi ] for di < m < ri , and hence Vi (Wi,m) ≤ Vi (X∗

i ).
Therefore, Vi (Yi ) = limm↑ri Vi (Wi,m) ≤ Vi (X∗

i ) by the continuity of ui on (di ,∞).
If ri = di and Vi (Yi ) > −∞, then Yi = di almost surely and Vi (di ) > −∞. Since
ξi,k ≥ di , we have Vi (Xi,k) ≥ Vi (di ) > −∞, implying Xi,k ≥ di almost surely.
Therefore, X∗

i ≥ di almost surely, and Vi (X∗
i ) ≥ Vi (di ) = Vi (Yi ). Combining all

cases, we have Vi (Yi ) ≤ Vi (X∗
i ), and hence ((X∗

1, . . . , X
∗
n),Q

∗) is a competitive
equilibrium. ��

Proof of Theorem 4 We will switch between discrete and continuous models in the
proof, and these models are connected by Lemma 2.

(i) First, suppose that the probability space (Ω,B,P) is such that Ω is finite. Note
that C(X) is non-empty, convex, and bounded, and the preference induced by
Rui ,gi is continuous and concave on the admissible set C(X). The constant
Y = 1 is a useful commodity bundle (see Werner 1987 for a definition), because
Rui ,gi is monotone. Also, for every Q ∈ P and i ∈ N , it holds E

Q[ζi ] >

infY∈C(X) E
Q[Y ] because ζi is assumed to be bounded, and Y = f (X) ≤ X +

f (0) implies for f (0) → −∞ that infY∈C(X) E
Q[Y ] = −∞. Moreover, there

exists a pricing measure that admits no arbitrage opportunities for all agents;
namely take a pricing measure that is equivalent to P. Then, existence of a
competitive equilibrium follows from Theorem 1 of Werner (1987).
Next, we show existence for an infinite Ω . To this end, we first construct a
sequence of {Xk}k∈N uniformly converging to X and Xk , k ∈ N, takes finitely
manyvalues.Again, the existenceof equilibriumassociatedwith Xk follows from
Theorem 1 of Werner (1987). Then, Lemma 2 guarantees the limit of equilibria
associated with Xk is an equilibrium for the original model. For k ∈ N, consider
a partition {Ik,1, . . . , Ik,k} of R(X), that is R(X) = ∪k

m=1 Ik,m and Ik,m∩ Ik,l = ∅
for m �= l, such that each Ik,m is an interval with the Lebesgue measure smaller
than ‖R(X)‖

k−1 , where ‖R(X)‖ is the length of R(X). Write ak,m = sup Ik,m and
Ak,m = X−1(Ik,m) for m = 1, . . . , k. For each i ∈ N , write ξi = ϕi (X), where
ϕi : R(X) → R is a bounded and continuous function on a compact interval,
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making it uniformly continuous. Define

ξi,k =
k∑

m=1

ϕi (ak,m)I{X∈Ik,m } =
k∑

m=1

ϕi (ak,m)IAk,m , i ∈ N , k ∈ N.

Since ϕi is uniformly continuous, it is easy to see that {ξi,k}∞k=1 converges to
ξi uniformly for i ∈ N . For each k ∈ N, define Xk = ∑

i∈N ξi,k . Note that
Xk ≥ X for k ∈ N by construction. By using the existence result of Werner
(1987) mentioned above, there exists an equilibrium ((X∗

1,k, . . . , X
∗
n,k), Q

k) for
the initial endowments (ξ1,k, . . . , ξn,k) in the probability space generated by
σ(Xk). By Lemma 2 we obtain the existence of a competitive equilibrium for
the original model.13

(ii) This is a classicmarketwhere the non-satiation condition holds, and hence Pareto
efficiency of competitive equilibria should be expected. For completeness we
provide a self-contained proof. Let ((X1, . . . , Xn),Q) ∈ A

c
n(X) × P be a CCE

for this market. Hence

Xi ∈ arg max
Y∈C(X)∩B(Q,ξi )

Vi (Y ), i ∈ N . (35)

Suppose, for the purpose of contradiction, that (X1, . . . , Xn) is not Pareto-
optimal. Then, by definition of Pareto optimality, there exists an allocation
(X ′

1, . . . , X
′
n) ∈ A

c
n(X) such that Vi (X ′

i ) ≥ Vi (Xi ) for all i ∈ N and
Vj (X ′

j ) > Vj (X j ) for some j ∈ N . If EQ[X ′
j ] ≤ E

Q[X j ], then (35) does
not hold for i = j , thus a contradiction to the definition of ((X1, . . . , Xn),Q)

being a competitive equilibrium. Therefore, EQ[X ′
j ] > E

Q[X j ]. Then, since
∑n

i=1 E
Q[X ′

i ] = E
Q[X ] = ∑n

i=1 E
Q[Xi ], there exists some k ∈ N such

that EQ[X ′
k] < E

Q[Xk]. Now, let X∗
k = X ′

k + E
Q[Xk] − E

Q[X ′
k], which

clearly satisfies EQ[X∗
k ] = E

Q[Xk], and thus X∗
k ∈ B(Q, ξk). From the def-

inition of Vk where uk is strictly increasing and Vk(Xk) > −∞, we have
Vk(X∗

k ) > Vk(X ′
k) ≥ Vk(Xk). As a consequence, (35) does not hold for i = k,

thus a contradiction to the definition of ((X1, . . . , Xn),Q) being a CCE. In sum-
mary, (X1, . . . , Xn) is Pareto-optimal.

(iii) Suppose that (X1, . . . , Xn) is a Pareto-optimal allocation. Since the non-
satiation condition holds, it is clear that (X1, . . . , Xn) is proper. As the
set of allocations A

c(X) is convex, there exist λ1, . . . , λn > 0 such that
(X1, . . . , Xn) maximizes

∑n
i=1 λi Vi (Yi ) over (Y1, . . . ,Yn) ∈ A

c(X). Write
V (Y1, . . . ,Yn) = ∑n

i=1 λi Vi (Yi ) for (Y1, . . . ,Yn) ∈ A
c(X). Note that V is

a strictly concave function on A
c(X). We define Xk as in part (i) and note

that Xk ≥ X . Let (X1,k, . . . , Xn,k) be a maximizer of V over Ac(Xk), and
hence it is Pareto-optimal for the comonotone market with total risk Xk . Since

13 The set of natural numbers with the ordinary order is a directed set, so that ((X∗
1,k , . . . , X

∗
n,k ), Q

k )

form a net. Lemma 2 shows that this net contains a subnet whose components converge. In Bewley (1972),
the author also used the net-convergence argument to show the existence of an equilibrium for economies
whose commodity space has infinite dimension.
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V is strictly concave and continuous, and due to our construction of Xk , we
can see that (X1,k, . . . , Xn,k) → (X1, . . . , Xn) uniformly. By Propositions
16.D.1 and 16.D.3 of Mas-Colell et al. (1995), the Pareto-optimal allocation
(X1,k, . . . , Xn,k) is also an equilibrium allocation. By Lemma 2, a subsequence
of (X1,k, . . . , Xn,k) converges to an equilibrium allocation, which shows that
(X1, . . . , Xn) is an equilibrium allocation. ��

A.3 Convergence of the algorithm in a DU-comonotonemarket

We use the following notation for the convergence result of the algorithm in a DU-
comonotone market. In a DU-comonotone market, for each positive integer m, let
((ψ1

m(X̂), . . . , ψn
m(X̂)), Q̂m) be the output of the algorithm, where ψ i

m(X̂) for i ∈ N
and Q̂m are given in the step (3). Moreover, as m → ∞, denote by fi (x) the point-
wise limit of ψ i

m(x) for i ∈ N , and denote by Q(X > x) the point-wise limit of
Q̂m(X̂ > xm,km ) where km is a sequence such that xm−1,km−1 < x ≤ xm,km for all m.
We have the following convergence result.

Proposition 5 (X∗
i , . . . , X

∗
n, Q) is a CCE in the original DU-comonotone market,

where X∗
i = fi (X) − E

Q[ fi (X)] + E
Q[ξi ] for i ∈ N.

Proof Consider R(X̂) = {kε : k = 1, . . . ,m}, initial wealth allocationsψ i
0(X̂) for i ∈

N and pricing measure Q̂0. In step (2-a), r ij−1 = Qi

(
X̂ ≥ x j

)
= Qi (X > ( j − 1)ε)

and r ij−1 is independent with the choice of pricing measures for each j = 1, . . . ,m.
After the step (3) in the algorithm, we have

ψ i
m(x) =

m∑

k=1

δim,kI{X̂≥xk }(x), i ∈ N , and

Q̂m = (
qm,k

)
k=1,...,m (36)

where

qm,k = 1

2

(

sl
i
{r ik−1} + max

i
{r ik−1}

)

, and

δim,k

ε
=

⎧
⎪⎪⎨

⎪⎪⎩

1, if r ik−1 > qm,k,

0, if r ik−1 < qm,k,
I{maxi {rik−1}=qm,k }

#{r ik−1=qm,k ,i=1,...,n} , if r ik−1 = qm,k .

Since r ij , j = 0, . . . ,m−1, i ∈ N are independent with the choice of pricingmeasures
and the choice of initial allocation functions repeating the process (2)–(3) will lead to
the same result as (36). Thus, we get the convergence result ψ i

m(x) and Q̂m in (36)
after the first round of step (2)–(3).

Let Z+ be the set of positive integers. To show the convergence to a CCE, we take
a sequence {εm = X̄

2m }m∈Z+ . For simplicity, we abuse notation slightly here: for each
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m ∈ Z+, on the discrete sample space R(X̂m) = {xm,k = kεm = k X̄
2m , k = 1, . . . , 2m},

the result obtained in the Algorithm is ((ψ1
m(X̂m), . . . , ψn

m(X̂m)), Q̂m) where
ψ i
m(x) = ∑2m

k=1 δim,kI{X̂m≥xm,k }(x), Q̂m = (
qm,k

)
k=1,...,2m , qm,k = 1

2 (sli
{r im,k−1} +

maxi {r im,k−1}) and r im,k−1 = Qi (X̂m ≥ xm,k) = Qi (X >
(k−1)X̄

2m ).

Arbitrarily take x0 ∈ (0, X̄), and take a sequence km such that xm,km−1 < x0 ≤
xm,km for each m ∈ Z+. First Note that we have either xm,km−1 = xm+1,km+1−1 or
xm+1,km+1−1 = (xm,km−1 + xm,km )/2. It follows that xm,km−1 increases to x0, while
xm,km decreases to x0 as m → ∞. Thus, r im,km

= Qi
(
X > xm,km

)
increases in m and

lim
m→∞ r im,km

= Qi (X > x0) for i ∈ N . Since

max
i �= j

{
1

2

(
r im,km + r j

m,km

)}

≤ qm,km+1 ≤ max
i

{r im,km },

passing both sides to the limit gives us

sl
i
{Qi (X > x0)} ≤ 1

2

(

sl
i
{Qi (X > x0)} + max

i
{Qi (X > x0)}

)

≤ lim
m→∞ qm,km+1 ≤ max

i
{Qi (X > x0)}.

That is sl
i
{gi (P(X > x0))} ≤ Q(X > x0) ≤ maxi {gi (P(X > x0))}, i.e., condition (i)

in Theorem 1 is satisfied. Denote fi (x) = limm→∞ ψ i
m(x) for all x ∈ [0, X̄ ]. Then,

f ′
i (x0) = lim

k→∞ 2k lim
m→∞

(
ψ i
m(x0 + 2−k) − ψ i

m(x0)
)

= lim
k→∞ 2k lim

k≤m→∞

(
δim,km+1 + · · · + δim,km+2m−k

)
.

If gi (P(X > x0)) > Q(X > x0) = limm→∞ qm,km+1, there exists Δ1,Δ2 > 0 such
that gi (P(X > x)) > Q(X > x) + Δ2 for all x ∈ [x0, x0 + Δ1). Consider cases
2−k < Δ2 only. For each k, when m is large enough, we have qm,km+l < r im,km+l−1

and thus δm,km+l = 2−m for l = 1, . . . , 2m−k . It follows that f ′
i (x0) = 1. If g j (P(X >

x0)) < Q(X > x0) = limm→∞ qm,km+1, we can use similar argument as above to
conclude that δm,km+l = 0 for l = 1, . . . , 2m−k and thus f ′

i (x0) = 0. Therefore,
X∗
i = fi (X) − E

Q[ fi (X)] + E
Q[ξi ], i ∈ N satisfy Condition (ii) in Theorem 1.

According to Theorem 1, ((X∗
i , . . . , X

∗
n, Q) is a CCE in the original DU-comonotone

market. ��
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