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Chapter 1

Introduction
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hile millions of people undergo an MRI-exam every year, it remains an

expensive and lengthy diagnostic tool, unavailable to many. The cramped

space, loud and unfamiliar sounds, and long scan times make it an
unpleasant experience for many patients. Often, a substantial part of the exam needs
to be redone because of insufficient image quality, patient motion or other artefacts.
Still, MRI is a unique diagnostic tool. We are now able to discriminate tissues based
on an almost inexhaustible list of properties. Most MR images depict the spatial
distribution of hydrogen atoms in the body. The magnetic moments of the tiny nuclei
of these hydrogen atoms will align with the strong magnetic field of the scanner. A
sequence of radiofrequency pulses and variations in magnetic fields causes these
nuclei to do a sort of mass choreography. Small differences in this choreography,
between healthy and diseased tissue for instance, can be shown using MRI.
The great versatility in MRI contrast is unparalleled in the medical imaging field. For
example, we can measure diffusion in cells—tiny molecules are always randomly
shooting in all directions at very high speeds, and we are able to say something about
the speed and direction in which they do. We can even visualize the flow of blood in
small arteries and vessels, with extreme precision in time and space. Contrasts
between tissues can be tweaked to your heart’s content, and if we want to remove
bothersome signal (fat in the knee, or blood signal in vessel wall imaging) we can
find a sequence that does just that. We even have the ability to image nuclei different
than hydrogen, such as fluorine (F) or phosphorus (*P). And let’s not forget the
multi dimensionality: two- and three-dimensional images are standard, but we can
even vary over time, respiratory and cardiac phases, echo times, etc. Only string
theorists use more dimensions than MR physicists, it seems.

However, this extreme versatility comes with one important caveat: measuring takes
time. A long time. While a CT examination is over in minutes, and an ultrasound
probe can give volumetric information almost instantaneously, MR exams are
notoriously slow. Relax and make yourself comfortable, we’ll see you in an hour.

It is often said that there is no free lunch in MRI; this is a simple yardstick you can
use to hit claims of ambitious researchers with. One example of the no free lunch
theory is the well-known trade-off between imaging speed, signal-to-noise ratio
(SNR) and resolution (Figure 1). In the quest for early detection of disease, we want
sharper images, measured with a higher resolution. However, this means an
increase in scan time, and a decrease of valuable SNR—you have the resolution to see
the subtle lesions the doctor wanted to see, but now they are hidden in a sea of noise;
and due to the longer scan time the patient has moved, blurring the image. Moreover,
patient comfort and ever-increasing healthcare costs demand quick MR check-ups.
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Speed | " Resolution

Figure 1. The balancing act. Classically, if the MR operator wants to double the
resolution of a 3D acquisition, he expects the scan to take four times as long.
However, this will also negatively impact the SNR. Alternatively, he can choose to
improve the SNR of the original scan by averaging. To double the SNR, he needs to
scan four times as long. The invention of smart sampling and reconstruction
techniques gives more options for sequence designers in this balancing act.

We face these challenges, and they require us to handle the MRI process in its
entirety in a smarter way. If we can manage to accelerate MR exams considerably
with minimum drawbacks, it will increase patient throughput, enable higher
resolution scans and ultimately have more and better diagnoses.

In the last years, the field of magnetic resonance imaging has undergone a major
innovation push. Acceleration techniques have been introduced and refined, and
ever-smarter things keep on arriving. It seems that, sometimes, there is such a thing
as a free lunch. Or, if not free, the lunch is heavily discounted. Extremely clever
acceleration techniques with names like SENSE, GRAPPA, and compressed sensing
are the shoulders of giants upon which we as researchers are currently standing.
The studies described in this thesis have the overarching aim to progress the field of
accelerated MRI beyond its current possibilities and to demonstrate the possibilities
of these novel methods in relevant clinical applications.

The remainder of this introductory section presents further details on relevant
research on MR acceleration techniques. This would be a good moment to refresh
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the basics of MR physics. The section concludes with an overview of the research
described in this thesis.

1.2 A technical introduction to this thesis

The signals recorded in Magnetic Resonance Imaging (MRI) are usually Fourier-
encoded. Neglecting all effects of tissue and sequence parameters on the
magnetization, we can reasonably model the received signal y as the discretized
Fourier transform of the magnetization:

y = Fx, €9)]

where x is the magnetization and F is the discrete Fourier Transform (DFT). The k-
space signal y is usually collected during many repetition times (TR), every TR
acquiring one k-line. For a two- or three-dimensional single-coil Cartesian
acquisition, image reconstruction is simply an inverse DFT:

% =Fly. 2)

However, image reconstruction quickly becomes more difficult when we add receive
coils or sample differently, e.g. on a non-Cartesian grid or by omitting certain k-lines.

Image reconstruction in the presence of multiple channels
In general, the signal received by coil element 7 can be described as:

Yi = P;Cix) (3)

where F; is the encoding matrix, and C; is a matrix describing the coil sensitivity on
the diagonal. The encoding matrix is known beforehand: the researcher has chosen
the location of encoding k-lines. The coil sensitivity matrix, however, is unknown
beforehand and should be measured, either by calibration k-lines or alow-resolution
pre-scan. Combining the received signal from all coil elements into one model, we
get:

Y1

F - 071G

x+ n, 4)

YN 0 FS‘ CN

for N coil elements. Here n is the noise term.

Parallel imaging is a complete family of reconstruction techniques; most of these
were developed in the late 1990s[1] when receive coils with multiple elements started
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to become available. The overarching idea of parallel MRI (pMRI) is to accelerate
MRI by selectively omitting certain k-lines. The resulting aliasing is then resolved by
using prior knowledge of the local sensitivities of the coil elements.

We can recognize two main branches in pMRI: image-based and k-space based
reconstruction. Image-based pMRI uses knowledge of coil sensitivities for image
reconstruction, examples of these are SENSE (Sensitivity Encoding), which was
introduced in 1999 [2], and is an optimized form of an earlier-published idea called
subencoding [3]. In contrast, k-space based pMRI, like GRAPPA [4], extracts a k-space
kernel from autocalibration lines, and performs unaliasing in k-space.

The goal in image reconstruction is to recover the image x. The more prior
information we have, the better our reconstructed result image can be. The entire
MR measurement can be put in a forward model, with the magnetization as an
unknown that is to be solved for. More generally put, the Fourier- and coil-sensitivity
encoding matrices in Equation 4 can be combined into one model matrix M as:

y=Mx+n. (5)

The model matrix can be expanded to include inhomogeneity effects, different
sampling patterns, et cetera. In parallel MRI, the predictable nature of the aliasing
behavior caused by regular undersampling can be leveraged to solve for x. However,
notall image reconstruction problems are that easy, for instance in the case of SENSE
with arbitrary k-space trajectories [5]. In those cases, Equation 5 can also be
reformulated as an iterative optimization problem of the form:

X = arg min [Mx — y|% + AR(x), (6)

where R(x) is an (optional) regularization function, A is a regularization parameter,
and the minimization is put into a ,-norm.
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Figure 2. The building blocks of equation 4. A multi-channel coil receives localized
k-space data. The k-space can be described as the final image, multiplied by the coil
sensitivity maps and transformed to the Fourier domain. Undersampled strategies
accelerate scans, and in effect, the Fourier encoding matrix becomes high and
narrow.

Equation 6 is a very powerful model to pose our problem as.
With Equation 6, we can significantly accelerate the MRI experiment, modifying M,
and if we add enough prior information to our regularizer, we are still able to recover
x. Alternatively, we can modify our experiments to improve image quality—i.e. such
that our error |X — x|3 is as small as possible—an approach I have taken in chapter 2
of this thesis. Thirdly, we might be interested instead to recover the magnetization
in a different form: visualizing the magnetization over different time frames, for
instance. T describe such an approach in chapters three, four, and six. Finally, in
chapter five, this concept is used to reconstruct separate magnetization images for
different F compounds.

Compressed Sensing

Compressed Sensing (CS) [6], like parallel methods, can be used to accelerate or
otherwise improve MR acquisitions. It deviates from pMRI in several important
ways: while SENSE and GRAPPA have a very regular pattern of omitted k-lines, CS
uses incoherent undersampling. Incoherent undersampling in the Fourier domain
gives rise to undersampling artifacts in the image-domain that don’t add up
constructively—these artefacts are noise-like and do not represent natural images.

The main assumption of CS is sparsity: the idea that the information content is much
less than the number of pixels suggests. Most, if not all, medical images are naturally
sparse in some representation. This means that the signal can be represented by a
vector containing a small number of non-zero entries. However, the sparsity is
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usually not in the image (pixel) domain, they are sparse under a transformation
instead. The sparsity transforms used in CS are similar to the Fourier transform, as
they are a one-to-one transformation of the image domain to another domain,
preserving all the information, so that after applying the inverse transform the initial
image is recovered (Figure 3). Sparsity can be measured by counting the zero-valued
entries (the l-norm), but the 1;-norm is usually used instead, since this can be more
efficiently minimized, while resulting in the same solution.

A. pixel domain B. total-variation (edges) C. wavelet transform

Figure 3. Sparsity is defined as the fraction of zero-valued elements. In the pixel
domain (panel A), all pixel values are greater than zero. However, we can also
calculate the total-variation (the edges), and see that only about a fifth of pixels still
contain non-zero information (panel B). With the edge information for both
directions, you could perfectly recover the original image. Another (slightly less
intuitive) transform that can efficiently capture all image information is the wavelet
transform, with only 13% of the original data size (panel C).

CS image reconstruction can be performed by adapting Eq. 6 to the LASSO-form:
X = argmin [Mx — y|3 + A[Wx]|,, (7)

where W is a transform operator, the wavelet transform or a finite-difference
operator are often used. The l,-norm in this equation enforces the data consistency,
while sparsity is forced by the li-norm (see inset, Figure 5). The regularization
parameter A can be tuned to balance between these terms and will be dependent on
noise levels and inherent sparsity of the image. Equation 7 can be solved by any of a
myriad of reconstruction algorithms. [7]
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The last ten years have seen a huge interest in the research community in sampling
pattern design, algorithmic development, and optimal sparse transformations. In
addition to sparsity in image space, sparsity over time (dynamic imaging) has been

The |, ,-norms, an analogy

Imagine you are in New York, standing at the intersection of Central Park West and
67" street. Your friend calls you to meet you and says: I'm on Broadway, I could not
be closer to you—and at that moment the connection drops. You know he is on
Broadway, the yellow line on the map, but you didn’t catch the full address. He can
be anywhere on thatlong street. However, he also said: ‘T could not be closer to you’.
You start mentally drawing an ever-expanding circle on the map. It grows, until it
touches Broadway, at W 65%. This is the point on Broadway with the shortest
distance to you, according to Pythagoras (this distance is sometimes called the 1,-
norm). However, now you remember that you are in Manhattan. Here, distance is
not calculated as in the rest of the world—you use the Manhattan-distance instead,
also known as the l;-norm. The shape for equidistant points is a square, rotated 45
degrees to the grid. For all points on this square (the red line on the map), the
walking distance along the street grid is the same. This means that your friend is at
67" street and Broadway! In this system, the closest intersection is also the most
sparse: sparsity in Manhattan means the number of different streets you’d have to
walk on: only one!

Figure 4. The I-norms in New York.

In our accelerated MR experiments, we also have incomplete information, but
rather than a phone call in which a few words were dropped, we have decided to
skip some k-lines. Just like in Manhattan, we need a simple solution, in our case a
sparse image, that fits with the data that we do know for sure.

proposed, in addition to low-rank methods, joint sparsity, etc. These are all
variations on the basic model in Equation 6.
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However, sparsity and incoherence can be described more subtly, as these seem to
vary over resolutions; a property called multi-level sparsity [8] has been proposed.
This insight can explain why the variable-density sampling pattern, which has been
experimentally derived, has seen so much success. In effect, the low-resolution k-
space does not encode for a very sparse image; while the high-resolution outer k-
space does.

Accelerated dynamic imaging

Dynamic MRI is a booming research field and is used for visualization of perfusion,
and motion dynamics. Acceleration techniques can be directly used to increase
frame-rates, enabling more reliable visualization of dynamic processes. Paralle]l MRI
strategies can accelerate dynamic MRI roughly as much as static images, 2 to 6 times
generally, thus limiting the achievable framerate. In contract, CS approaches can
leverage the enormous sparsity that exists in these datasets for very high
accelerations, tens of times faster than fully sampled. As subsequent frames are
usually highly correlated, information can be compressed greatly. In line with the
examples given in Figure 1, the sparsity can be calculated, for example by a total-
variation constraint in the time dimension [9] (see Figure 4). Several chapters (4,5
and 6) in this thesis deal with accelerated dynamic imaging. We have used the
golden-angle sampling strategy [10]. In this strategy, subsequent k-lines are chosen
such that the angle between the two (the “golden angle”) is equal to the angle dividing
the semicircle with the golden ratio. Tt can be shown [11] that this gives a nearly
uniform k-space coverage for an arbitrary number of lines, as every line fills in the
largest remaining gaps. A similar strategy can be found throughout nature, e.g. in
the distribution of leaves on a stem, optimized for maximum sunlight coverage.
Additionally, radial k-space sampling is robust to motion artefacts, and gives
undersampling artefacts which look like streaking, and which are well optimized for
in a reconstruction.

Multicolor Fluorine imaging

Fluorine (*F) MRI is rapidly gaining traction for in vivo cell tracking [12], as any
signal can be assumed to originate from exogenously administered fluorine probes
[13]. The different PFCs differ from one another in terms of the number of ¥F
resonances and their chemical shifts. In chapter 6 of this thesis, we have leveraged
these differences, and the model-based MR equation 6, to detect different “F-
containing nanoparticles in the same sample and in the same imaging session,
enabling “multicolor” *F-MRI.
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Pre-contrast 118 s 236's 354 s

Figure 5. Close-ups of the signal of a femoral arterial plaque, as measured with a
highly accelerated dynamic contrast-enhanced black-blood sequence [chapters 3,4
of this thesis]. Note the high correlation between time frames, a property that is
exploited by compressed sensing techniques to achieve very high frame-rates (12
seconds per volume in this case).

1.3 Thesis aims and outline

The studies described in this thesis have the overarching aim to progress the field of
accelerated MRI beyond its current possibilities and to demonstrate the possibilities
of these novel methods in relevant clinical applications. As we have seen in this
chapter, a myriad of successful applications of accelerated MRI by means of a sparse
prior have been introduced in the last decade. However, the usually stated goals of
increasing scan resolution by leveraging the saved acquisition time are not usually

successfully met—the SNR penalty is the limiting factor. Therefore, I aimed to study
and improve CS for low SNR acquisitions. Chapter 2 introduces a novel sampling
method applying CS to low-SNR MRI.

In chapter 3, I have studied the possibility of volumetric, accelerated dynamic
contrast-enhanced MRI for vessel wall imaging. Vessel wall delineation requires
blood signal suppression. However, this suppression makes pharmacokinetic
analysis of the data more difficult. In this chapter, T investigate the use of arterial
input-free analysis methods.

In chapter 4,1 continue this research, by applying the sequence to a group of patients
with femoral atherosclerotic plaques. I found a correlation between DCE-MRI and
USPIO uptake in the patient group.

In chapter 5, a radial stack-of-stars acquisition was applied for dynamic imaging of
the patella in a moving knee.

Chapter 6 uses the possibilities of iterative reconstruction and the MR physics to
enable multi-color MRI for F MRI. T describe a novel method to simultaneously
measure two chemical compounds.

Finally, in chapter 7, I discuss findings and propose future directions for this
research.
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2.1 Abstract

We investigated whether a combination of k-space undersampling and
variable density averaging enhances image quality for low-SNR MRI
acquisitions. We implemented 3D Cartesian k-space prospective
undersampling with a variable number of averages for each k-space line. The
performance of this compressed sensing with variable-density averaging (CS-
VDA) method was evaluated in retrospective analysis of fully sampled
phantom MRI measurements, as well as for prospectively accelerated in vivo
3D brain and knee MRI scans. Both phantom and in vivo results showed that
acquisitions using the CS-VDA approach resulted in better image quality as
compared to full sampling of k-space in the same scan time. Specifically, CS-
VDA with a higher number of averages in the center of k-space resulted in
the best image quality, apparent from increased anatomical detail with
preserved soft-tissue contrast. This novel approach will facilitate improved
image quality of inherently low SNR data, such as those with high-resolution
or specific contrast-weightings with low SNR efficiency.
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2.2 Introduction

esigning MRI acquisitions always involves a compromise between scan
time, image signal-to-noise ratio (SNR), tissue contrast, and spatial
resolution. The development of undersampling acquisition schemes in
combination with advanced reconstruction algorithms, such as parallel
imaging and compressed sensing (CS) has allowed for a significant reduction in scan
time, thereby minimizing image distortions (e.g. due to motion) as well as improving
patient comfort and cost effectiveness of MRI protocols [1], [2].
In  addition, accelerated imaging has allowed  application  of
3D imaging protocols at isotropic resolution, which would otherwise result in
clinically unfeasible imaging times.
In certain cases, however, MRI scans have inherently low SNR, e.g. when aiming for
a very high spatial resolution or to achieve a specific contrast weighting, such as in
T2-weighted or diffusion-weighted imaging. This limits the application of
accelerated imaging as these are thought to further decrease SNR.
In recent years, the optimization of CS acquisition and reconstruction techniques has
received considerable attention. With respect to image reconstruction, improved
transforms were designed to find the best sparse representation of the images [3]-
[5], facilitating higher compression factors and thus a higher degree of
undersampling. Although early work in CS theory suggests purely random
subsampling of k-space[6], much work has been performed on finding optimal
sampling strategies to maximize image quality and robustness to artifacts [7]-[10],
and these patterns are not uniformly distributed for MR acquisitions [11], [12].
Despite the research into the optimal distribution of sampling points, one aspect that
surprisingly has received little attention is the noise sensitivity of the individual
sampling points on the resulting reconstructed images. In light of the relation
between wavelet and k-space coefficients [13], we hypothesized that compressed
sensing reconstructions are more robust to noise disturbances in high frequency
regions. In this work, we therefore aimed to show that employing an undersampling
and averaging scheme (without affecting total acquisition time) results in superior
image quality as compared to full sampling without averaging.
While this seems unintuitive at first, this study clearly shows the advantage of this
approach in a number of steps. First, the rationale and implementation of our new
acquisition method of Compressed Sensing with variable averaging (CS-VDA) is
presented, combined with a noise-optimal weighted 12-norm in the CS
reconstruction. It can be shown that the weighted 12-norm, considering the number
of averages for every line, is a least-squares optimizer for this reconstruction
problem.
In simulations, we were able to show that our new CS-VDA approach, given equal
total scan time, provides superior image quality to fully sampled data. To further



20| Chapter2

demonstrate the performance of our CS-VDA approach, we performed experiments
using prospectively undersampled in vivo brain MRI scans, as well as quantitative T2
MRI of the knee, using clinical 3T MRI.

2.3 Theoretical background

In this paper, we introduce a new compressed sensing sampling method with
variable averaging (CS-VDA). Assume we have a fixed sampling pattern, consisting
of n k-points, but a scan-time budget of m>n sampling points, i.e. we must distribute
these m points over n, by resampling points in some way. Figure 1 shows three ways
to distribute sampling points: by uniform averaging, center-dense averaging; and
periphery dense-averaging. For all experiments in this work, k-space was
undersampled.

many
NSA
1 NSA
Uniform Center-dense Periphery-dense
averaging averaging averaging

Figure 1. lllustration of the three k-space undersampling & averaging strategies.
Shown are the 2 phase encoding dimensions of the 3D k-space; the 3rd dimension is
the frequency encoding direction. The k-spaces share the same variable density
undersampling pattern, with denser sampling in the center of k-space than in the
periphery. However, the three k-spaces differ in how the number of signal averages
(NSA) are distributed in k-space, with (A) uniform averaging of all measured k-
space points, (B) higher NSA in the center of k-space (center-dense averaging), and
(C) periphery-dense averaging. Note that all strategies have the same total number
of k-space points.

To obtain a better understanding of the effect of the proposed sampling strategy, we
first illustrate the influence of noise in the wavelet domain (using Db-4 wavelets), a
commonly used sparsity transform in MRI compressed sensing. Figure 2 shows the
wavelet transform of the Shepp-Logan phantom, with complex noise of an equal 1,-
norm added in the two following ways: A) the noise was added in the 5 lowest-
frequency levels of the wavelet coefficients; B) the noise was added to the highest
level of wavelet coefficients only. From the resulting inverse wavelet transforms, it
is evident that the addition of noise to the low wavelet levels has a much worse effect
on the general quality of the image: the details indicated by the red arrow are much
more difficult to distinguish in this case.

While the wavelet transform is commonly used to employ sparsity in compressed
sensing, MR images are acquired in k-space. Fig. 3 shows the Shepp -Logan phantom
in these two transforms. The MR measurement of a wavelet signal in Cartesian k-
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space is the subsequent operation of the inverse wavelet transform (DWT*) and the
discrete Fourier transform (DFT), and can be formulated as the matrix U= DFT
DWT*.

(a) (b)

Figure 2. Influence of noise in the wavelet domain on image reconstructions. A)
Noise was added to the coarse wavelet coefficients. In B), noise with an equal I»-
norm as in A. is added to the highest wavelet level only. It is clearly visible that
resulting details in the reconstruction (red arrow) are much more easily distinguished
in B.
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k-space U=DFTxDWT*  wavelet coefficients

Figure 3. The structure of the MR measurement. The MR measurement of this
wavelet signal in Cartesian k-space is the subsequent operation of the inverse
wavelet transform (DWT*) and the discrete Fourier transform (DFT), and can be
formulated as the matrix U= DFT DWT*. The absolute values are displayed here.
Wavelets of increasing coefficients are indicated by red lines, and increased
frequencies in k-space are illustrated by blue lines.

This matrix is nearly block-diagonal, with each row representing a k-point
measurement. The wavelet coefficients exist in increasing scales, each scale
illustrated by a red bounding box. The sections of matrix Uacting upon each separate
wavelet scales are distinguished by the red lines.

In contrast to wavelets, the frequencies in k-space are linearly increasing - not fixed
blocks. However, if we show increasing resolutions by blue boxes (1mm, 2mm etc.),
this converts to the blue lines in U. Now, because measurement U is nearly block-
diagonal, we can say that wavelets at a given scale are essentially concentrated in
square rings of k-space.

Figure 4 shows a one-dimensional toy example, combining the insights from Figs. 2
and 3. Consider a one-dimensional object to be measured: the projection of the
Shepp-Logan phantom. Resembling many natural signals, this signal has a sparse
representation in the wavelet domain (Fig. 4B). Moreover, it shares the sparsity
structure of most natural images: the wavelet coefficients are unequally distributed,
with most of the signal energy made up from coarse wavelets, and few non-zero
coefficients lying in the higher coefficients. Consider two resampling strategies: we
will measure all k-points at least once, but we can choose to measure either the low-
resolution (Fig. 4C; case 1), or the high-resolution half (Fig. 4D; case 2) of k-space
many times, such that there is effectively no more noise in that half. In the wavelet
domain this will result in the following: case 1) noise mostly concentrated in the
higher wavelet coefficients encoding for the details; case 2) noise mainly in the lower
wavelet coefficients, which encode for coarse image structures and contrast.
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Figure 4. The structure of noise in a 1D MR measurement. A) A one- dimensional
signal. B) The wavelet coefficients of this signal. Note the sparsity in the wavelet
domain. C) Noise disturbed wavelet coefficients for infinite resampling in the high-
frequency half of k-space. Most noise is contained in the higher wavelet coefficients.
D) Noise disturbed wavelet coefficients for infinite resampling in the low-frequency
half of k-space.

This has the following effects: firstly, as was illustrated in Figure 2, the image quality
is considerably worse in the case of coarse-wavelet noise. Secondly, because U is
nearly block-diagonal, when the noise is concentrated on the lower wavelet
coefficients (case 2), it is projected onto few coefficients in k-space. In contrast, for
case 1 the noise contribution will be shared with many more points. Along the same
lines as in Adcock et al.[14], where the structure of U is the basis of the explanation
of the variable-density sampling strategy in CS, this structure can also point in the
direction of success in designing an averaging strategy. Thirdly: while one of the key
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tenets of CS is incoherence, it has been shown that the MRI measurement matrix is
only asymptotically incoherent: In the low-resolution regime, the measurement is
very coherent, as indicated by the concentrated coefficients in the columns of U. For
higher resolutions, U becomes increasingly more incoherent. Given these
considerations, we theorize that higher frequency k-points are more robust to noise,
as the CS theory is more applicable in this regime.

It is evident that the toy example given in Fig. 4 is extreme: the examples given
correspond to the unrealistic limit of infinite resampling. A full theoretical
explanation of the effects, given realistic sampling numbers, is outside the scope of
this paper. However, the behavior described in these toy examples suggests that
resampling of points should be focused on the low resolution, coherent, k-space.
Therefore, we predict that for low SNR measurements, unevenly distributing
averages with more averages in the low frequencies of k-space will result in
superior image quality, even compared to full sampling. In this paper, we have
investigated three types of averaging distributions (Figure 1). A full investigation
over the range of distributions, and its dependence, on SNR, resolution, sparsity
structure etc. is outside the scope of this work. This paper introduces the concept,
and argues for CS-VDA in certain low-SNR applications. The remainder of this will
work focus on simulations and prospective measurements of the CS-VDA strategy.

Acquisition strategy

For all experiments in this work, a randomly generated variable density [1]
undersampling pattern was generated, according to the probability density function

P(r) =c+ (1—-n)* €9)

where 1y is the distance to the k-space center. The scaling factor ¢ was chosen such
that

N,
| Podn =3¢, @

i.e. the total number of k-space samples for a fully sampled scan N, divided by the
undersampling factor R. The center ten percent of k-space is always fully sampled
(i.e. P(ri)is defined as 1). In every undersampled scan, the total number of measured
k-space samples was kept identical: Ny. This implies that the total acquisition times
of undersampled and fully sampled scans were equal. Thus, for the undersampled
scans, k-space points could be averaged since there are more readouts than available
k-space positions. This averaging in k-space was done in one of the following three
ways (Fig. 1):
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i) Uniform averaging
Every sampled k-space point was averaged an equal number of R times, with
R an integer number.

i)  Center-dense averaging
Averaging was denser in the k-space center, i.e. more averages were taken
in the center of k-space, and fewer in the periphery. The number of signal
averages (NSA) was determined using the sampling probability density

NSA(Tk) = Nmax(c + (1 - rk)p): (3)

where p determines the distance-dependent sampling. In this work, p was
chosen to be 4, ¢ similar as the sampling distribution as in Equation 1, and
the scaling factor Nmaysuch that the total number of acquisitions equals

N, = fNSA(rk)P(rk)drk. 4)

iii) Periphery-dense averaging
Fewer averages were taken in the center, and more in the periphery,
according to

1

NS

5)

where f is a normalization constant calculated with Eq. 4. For both center-
dense and periphery-dense averaging NSA(7;) was rounded off to its nearest
integer number.

The weighted |,-norm

Noise in k-space can be modeled as a normally distributed stochastic variable
N(0, %) with zero mean, and a standard deviation ¢ independent of k-space location
[15]. The maximum likelihood estimator of independent and identically normally
distributed data is the least-squares estimator, which is related to the data fidelity
term

|F,Sm —yl3 = (F,Sm —y)"(F,Sm —y), (6)

where F, is the undersampled discrete Fourier transform operator, is a matrix
containing the coil sensitivities, m is the image vector, and y is the multichannel
undersampled k-space. However, in the case of non-uniform averaging in k-space,
the assumption of identical noise variance per k-space point is violated. In this case,
the maximum likelihood estimator is given by the weighted least-squares estimator
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|Fu5m_y|%,w = (FuSm—J’)*W(FuSTn—)’), (7)

where W denotes the variance-covariance matrix. Assuming independent noise, the
covariances are zero. From the sample mean, we can estimate the variances
2
2 _ 90

of = (8)
l

where n; is the number of averages for the i k-point, and g, is the variance for a
single average. The weighting matrix then becomes

W =—2 H . H
0-0 O e nN

1m0
H * ::|' (9)

where N is the total number of measured k-points. Of note, a similar weighting
matrix in the l,-norm has been proposed previously for general noise uncertainties
[16]. In this work, we use the weighted L,-norm in combination with the l;-norm,

according to
2

1
i = arg min |W2(E,Sm —y)| + 1|Q m|,, (10)
m 2

with A a regularization parameter and Q a sparsifying transform, e.g. the wavelet
transform or a finite-difference operator.

Noise variance and the |,-norm

The averaging schemes described in Equations 3,4,5 will influence the noise variance
and lead to different data fidelity terms. To keep the balance with the l;-norm. the A
in Equation 10 is adapted to the expected LLb-norm:

Ainoa = @ g (11

where a is the regularization adaption term.
The expected data fidelity in Equation 10 is given as:

N
E(i2) = [EZ

Where y; is the averaged measurement of the i k-space line, and y; , is the true value
of that k-space line. This simplifies to:

2

: (12)

1
W2(y; = Yi0)
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N
E3) = Y B = ¥i0) 0 = ¥10)). (13)
i=1
and simplifies further to:
N
E(3) = ZWi : (IE(yi*yi) + YioYio — Zyi*lE(yi))- (14)

i=1

As we assume white noise, the expected values of the measurement E(y;) =y;, and

EQ{yi) = YioYio + |o;|? , Equation 12 becomes

N
E(B) = ) Wi-lail* = N. (15)
i=1

From the definition of the weighting matrix in Equation 9, the regularization is then
be scaled with:

Ll BB N 1 6
E(Dpuu  No R’

where N, is the number of samples for a fully sampled measurement.

2.4 Methods

Retrospective undersampling of phantom data

MRI was performed on a 3T clinical MRI scanner (Philips Ingenia, Best, the
Netherlands). For retrospectively undersampled experiments, we chose to scan a
grapefruit phantom to maximize the presence of detailed structures.
A high-resolution 2D T;-weighted fast-field echo scan of the grapefruit was
performed using the following parameters: flip angle (FA) = 15°, TR = 15.6 ms, TE =
4.2 ms, FOV=128x128 mm?, matrix size = 512x512, resolution = 0.25%0.25 mm?, and
slice thickness = 1 mm. This fully sampled scan was performed with 50 averages for
every k-space point to allow full flexibility in retrospective undersampling of k-space
points and NSA per point. Total scan time was 6 minutes and 39 seconds. This dataset
was retrospectively undersampled and averaged for R =1, 2, 3, 4, and 5 in the above
described three ways. Four different regularization parameters 1 were tested
(0.0005, 0.005, 0.05, and 0.5). After reconstruction, images were normalized with the
normalize function in the BART toolbox [17]. Scan quality was assessed by fitting a
sigmoid perpendicular to the air/fruit-skin interface, with the Matlab Isgnonlin fit
routine. For every reconstruction, this was done for ten lines. The sigmoid width
parameter was used as a measure for apparent sharpness [18].
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To further investigate the effect of the weighting matrix, a second scan of the
grapefruit was performed with the same settings as described above. The k-space
data was subsampled at R = 5 with a center-dense variable density pattern. The center
k-space was averaged 5 times more than the periphery. Data was reconstructed in 4
different ways, i.e. using an ,b-norm, a weighted l,-norm, an l,-norm plus the l;-norm,
and finally, our proposed weighted l,-norm combined with an l;-norm (Eq. 10). For
both methods, 30 iterations of the non-linear conjugate gradient algorithm were used
and the optimal 1 was determined by the l-curve method [19]. The noise spectral
density was calculated in a noise-only region-of-interest, outside the fruit.

Prospective undersampling of in vivo human brain data

The institutional review board of our hospital approved this study. All four healthy
volunteers (2m, 2f, age=26-35) gave written informed consent for participating in this
study.

For prospective undersampling of k-space, an in-house developed scanner software
patch was used to sample user-defined k-space trajectories. An inversion prepared
3D T1-weighted fast-field-echo brain scan was performed at high isotropic spatial
resolution using a 16-channel head coil and the following sequence parameters: FA
=5% TR = 7.9 ms, TE = 2.6 ms, inversion delay time (TT) = 1000 ms, echo train length
=120, FOV= 210x210x58 mm?, matrix size = 304x302x91, resolution = 0.7x0.7x0.7
mm?. For each volunteer, five different k-space patterns were measured, i.e. one
fully sampled k-space, uniform averaging with either R = 3 or 5, and center-dense
averaging with R = 3 and 5. Total scan time was 6min24s for all scans. Furthermore,
a fully sampled lower resolution acquisition with a resolution of 1x1x1 mm? and
uniform NSA =2 was acquired. Scans were assessed visually for image sharpness and
signal-to-noise.
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Figure 5 Imaging of grapefruit using different reconstruction methods. (A) Center-
dense undersampling of k-space. (B) Middle slice of a fully sampled scan with NSA
= 50. (C) Magnifications of the regions of interest, shown in A, with different
reconstruction strategies and number of iterations. (D) Noise power spectral density
for the four methods. The use of the noise weighting matrix reduces the power
spectral density over the full range of spatial frequencies, both without inclusion of
I:-norm regularization (black to blue) and with I;-norm regularization (red to green).

Prospective undersampling of in vivo human knee data

A T2-prepared fast-field echo knee scan of a healthy female volunteer (26y) was
performed at 3T, using a 16-channel knee coil. The sequence was adapted from
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Colotti et al. [20], modified with selective water excitation, and a segment-time
increased from 700 to 800 ms. Fully sampled and CS-VDA
(R=3) data were scanned in an interleaved fashion, for T2-echo preparation times of
0, 23, 38 and 58 ms. Further scan parameters were: FOV = 140x150x171 mm?,
resolution: 0.8x0.8x0.8 mm?®, FA = 15 degrees, TE/TR = 3.4/6.9 ms, TFE-factor = 100.
Total scan time amounted to 4 x 4m51s per sampling method. The reconstruction
parameter A was optimized for every separate T2-prepared acquisition: a value of
2=0.001 was used for TE =0, and A =0.005 for all other scans. Three-dimensional rigid
registration and a pixel-wise T2 fits were performed with Matlab (R2015b).

Image reconstruction

All image reconstructions were performed in Matlab (R2015b, The MathWorks,
Natick, 2014). Both full and undersampled data went through the same
reconstruction pipe-line. K-space data was loaded and preprocessed with the
MRecon toolbox (version 5.3.19, Gyrotools, Ziirich, Switzerland). The data was pre-
whitened and sensitivity maps were calculated with the ESPiRIT method in the BART
toolbox [21][17]. Slices were reconstructed in parallel after an iFFT in the frequency
encoding direction. Equation 10 was solved by a non-linear conjugate gradient
algorithm. The number of iterations (20) was carefully chosen by visual comparison
to prevent noise amplification [22] and a restart strategy with 3 outer iterations was
used. A wavelet transform was used as a sparsifying operator for the in vivo scans,
and a total-variation constraint was used for the grapefruit scans. Reconstruction
time was 5 minutes for a full reconstruction of a 3D dataset on a standard Dell
workstation (3.5 GHz, 32 GB memory), with a Geforce Titan XP GPU.
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Figure 6. Comparisons of different CS-VDA sampling schemes. (A) half of a
center slice of the grapefruit, five times undersampled (R = 5), reconstructed using
uniform, center-dense, and periphery-dense k-space averaging in comparison to the
fully sampled scan. (B) Enlarged sections of the reconstructed images with varying
regularization parameter A. Note the thin layer covering the grapefruit skin, which is
sharpest for the center-dense averaging scheme with A = 5x10, Undersampled scans
have better signal-to-noise than the fully sampled scan. (C) Mean calculated sigmoid
widths for different sampling and reconstruction parameters. The fully-sampled scan
corresponds to undersampling = 1. The error-bars indicate the standard deviation of
10 measurements. The lowest sigmoid width, and the corresponding image are
indicated by red arrows. This indicates the best reconstruction, however, compared to
a fully sampled references at high SNR (10 times longer scan time), there is still a loss
of resolution apparent in the skin.

Figure 5 illustrates the beneficial effect on image quality of the weighted l,-norm in

comparison to the traditional unweighted I,-norm. Figure 5B shows the middle slice
of the fully sampled 3D dataset of the grapefruit with NSA = 50 (experiment 1),
providing a reference to which the reconstructions with the undersampled and
center-dense NSA k-space pattern (Fig. 5A) can be compared. Magnifications of the
regions of interest in Fig. 5B with different reconstruction strategies and iteration

numbers are shown in Fig. 5C. Upon visual inspection, the reconstructions with 1-
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Figure 7. Inversion prepared 3D T1-FFE brain scans of the four volunteers scanned with (top) center-
dense averaging (R = 3) and 0.7 mm isotropic voxel size, (middle) fully sampling at 0.7 mm isotropic voxel
size, and (bottom) full sampling at 1 mm isotropic voxel size. All scan times were equal. The red arrows
indicate small anatomical details in the brain.

norm + l;-norm and weighted L-norm + l;-norm (Eq. 10) with 15 and 30 iterations
resulted in the best image quality with the lowest noise. This visual assessment can
be objectified by comparing the power spectral density calculated from a
background-only (noise) region in the image for the different reconstruction
methods (Fig. 5D). The use of the noise weighting matrix W reduced the noise power
over the full range of spatial frequencies. In CS reconstructions that included the 1;-
norm, the benefit was visually less apparent, but still substantial as is shown in Fig.
5D.

Figure 6A shows half of a center slice of the grapefruit, reconstructed from five times
undersampled (R = 5) data using uniform, center-dense, and periphery-dense
averaging in comparison to the fully sampled scan. Note that based on visual
inspection, we used 5 (instead of only 1/50) averages to define the low SNR fully
sampled scan. For a fair comparison, all reconstructions, including the fully sampled
scan, were performed using Eq. 10 with A =5x10*and equal total number of samples.
In Fig. 6B, reconstructions are shown for varying regularization parameter A. The
width of the sigmoid-curves fitted to the air/grapefruit-skin interface (Fig. 6C) is
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Figure 8. Inversion prepared 3D T1-FFE brain scans of a single volunteer
acquired with 6 sampling schemes of equal total scan times. (A) Reconstructed
images with magnifications in the three orientations. (B) Corresponding k-space
sampling patterns. Colors indicate the number of averages for every k-space line.
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Figure 9. T2 mapping experiment. (A) Coronal slice of a T2-prepared acquisition with TE=58 ms. Red
arrows indicate loss of details in the fully sampled acquisition, with respect to the CS-VDA acquisition
(B). Zoomed-in section of image for four different echo times, corresponding to the red arrow with the
white star. Loss of structural detail in the fully sampled acquisitions is apparent for TE=38 ms and TE=58
ms. (C) Signal-to-noise ratio in a section of the muscle (box of subplot a). For all echo times and for the
T2 map, the SNR is higher in CS-VDA compared to full sampling (D) T2-maps for the cartilage. Arrows
indicate regions of difference between the two acquisitions: the high T2 of fluid and the delineation of
the muscle is represented more clearly in the CS-VDA T2 map.

lowest, i.e. the interface is sharpest for the center-dense sampling scheme with 1 =
5x10?and R =4. This approach results in a sharper interface than the corresponding
fully-sampled scan, approaching the sharpness of a very high-SNR reference. Only
for the higher values of 4, fully sampled scans are sharper than the undersampled
counterparts, but this is due to over-smoothing of all images (Fig. 6B).

For the in vivo experiments, both a CS-VDA brain scan with center-dense averaging
(R=3), as well as a fully sampled scan were acquired at 0.7 mm isotropic resolution.
In addition, a low-resolution (1 mm isotropic) fully sampled scan was acquired. All
acquisitions were performed in equal total scan time. Because of the - deliberately
chosen - low flip angle of the read-out train, images resulting from the fully sampled
scan were noisy with almost no visible anatomical details (middle row, Fig. 7). In
comparison, the CS-VDA scans with center-dense averaging showed considerably
better signal-to-noise (top row, Fig. 7) and clearly displayed detailed anatomical
features such as vessels and outlines of sulci.
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To prove that the improved signal-to-noise and image sharpness was due to the
specific k-space sampling pattern with center-dense averaging and not merely a
signal smoothing effect, we also scanned with lower resolution in the same scan time
(bottom row, Fig. 7). As expected, lower resolution scans did not present the level of
anatomical detail as was seen for the images acquired with the CS-VDA approach.
Figure 8A shows scans of one volunteer for varying degrees of undersampling (full
sampling, R = 3 and 5) and magnifications in three orientations. Corresponding k-
space sampling patterns are shown in Fig. 8B. Again, fully sampled scans at low and
high resolution as well as scans with uniform k-space averagingwere noisy and lack
anatomical detail. However, the variable density averaging images have much better
image sharpness and signal-to-noise. For R = 5 though, images appear slightly
smoothed, particularly for the coronal cross section. Figure 9 shows results from the
T2-mapping knee acquisitions. The images in Fig. 9A corresponds to the highest T2-
prepared echo time (TE = 58 ms), which has the lowest SNR. Red arrows indicate
detailed structures of cartilage and muscle that are recovered in CS-VDA, while
appearing not sharp (or lost in the noise) in the fully sampled acquisition. Fig. 9B
shows the loss of details in a zoomed-in section, corresponding to the red box in
subplot A, occurring at the later echo times in the fully sampled acquisition. This
leads to underestimation of T2, as shown in Fig 9C. Finally, the calculated SNR values
of a ROI in the muscle reveals an increased SNR for CS-VDA, for all acquired echo
times, as well as for the reconstructed T2-map. The calculated T2 for muscle was
(mean + standard deviation) T2 = 26.1+0.9 ms (CS-VDA); T2 = 25.0+1.6 ms (fully
sampled). Supplementary figure S1 provides an animated gif, covering a range of
slices of the same acquisition.
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2.0 Discussion

In this study, we demonstrated that image quality in SNR-deprived volumetric scans
can be improved by using both k-space undersampling and averaging, combined
with CS reconstruction while maintaining the same total scan time as a fully sampled
scan. We introduced and tested three different undersampling and averaging
methods. The averaging strategies were: uniform averaging; more averages in the
center and more averages in the periphery of k-space. We found that in terms of
image quality, most benefit was gained by center-dense averaging. In Fig. 6, the three
different strategies are employed for a retrospectively undersampled acquisition of
a grapefruit. The measured thickness of the fruit skin, a surrogate for image
sharpness, was lowest for the center-dense averaging at four times scan acceleration.
Uniform averaging also impacted the resolution positively, compared to full
sampling with only one average.

Deterministic variable averaging has been used as an alternative to a low-pass filter
[23], [24], with an SNR benefit that was found to be 17 percent in 31P-MRI [25]. The
deterministic approaches do not average multiply sampled points, but rather sum
the points as to achieve low-pass filtering to reduce Gibbs ringing. In contrast to these
earlier works, we do average all sampled points, and combine it with a compressed
sensing acquisition. Instead of Gibbs ringing removal, we achieve image quality
improvements explained by the noise characteristics and the wavelet-Fourier
relation. The link between wavelet-domain sparsity and k-space was used to design
the Subband Compressed Sensing with Quadruplet Sampling method [13], where
parallel imaging was used in the low-frequency k-space. As opposed to CS-VDA, this
method requires high SNR and high contrast.

Since variable k-space averaging introduces a non-uniform noise variance, we
included a weighted l,-norm in the image reconstruction minimization function.
This led to a significant improvement in image quality, in agreement with Johnson
et al [16] who introduced the l,-norm weighting to improve image reconstructions of
data with unfavorable contrast evolutions in k-space. In the presence of an l;-norm,
the noise reduction gain when using a weighted LL-norm was smaller but still
significant and therefore we recommend the addition of the weighted L,-norm for
these types of acquisitions. Note that for uniform sampling, the added weights have
no effect, since they are the same for all k-space lines. At low iteration numbers, the
weighted l,-norm + li-norm for the center-dense acquisitions (Fig. 5C) resulted in
more blurring as compared to the non-weighted versions. The reason for this is that
at the start of iterative reconstruction — when convergence has not been reached yet
- there is more weight on the center of k-space. This initially leads to some blurring,
which is resolved at higher iteration numbers.
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In our experiments, the number of signal averages was based on a power function
(Eq. 3). The optimal distribution of averages throughout k-space will depend on
several factors, such as the specific sampling distribution, noise level, matrix size,
etc. Such optimization may be a topic of future research. Supplemental Figure 2
shows the effect of varying p on different image quality measures for the R = 4 case
in Figure 6. These results justify the choice for p = 4 in Eq. 3 to create the center-
dense averaging distribution.

As an in vivo proof of concept, we applied the center-dense averaging strategy to
high-resolution 3D imaging of the human brain (Figs. 7 and 8). The quality of images
acquired with center-dense averaging method was significantly better than fully
sampled images acquired in the same scan time. Image quality in terms of sharpness
and signal-to-noise was also better than fully sampled images at lower resolution,
which shows that center-dense averaging is not equivalent to low-resolution high
SNR imaging. Nevertheless, the distribution of points should remain balanced
between the k-space center and periphery and we have observed that R = 4 resulted
in the sharpest images (Fig. 6). While the proposed approach is well-suited to
counterbalance decreased SNR of high-spatial resolution acquisitions, effective
resolution can be decreased as a result of motion. To achieve true high resolution
images, strategies to minimize physical motion or apply prospective motion
correction could be considered [26]. Although we did not investigate this explicitly,
an additional benefit of center-dense averaging could be increased motion
robustness. While this might explain some of the quality improvement in the brain
images, the sharpness improvements in retrospective grapefruit scans, which were
not influenced by any motion, show that this is not the only factor. We here again
want to explain that 3D brain scans were acquired purposely with a low flip angle
resulting in low SNR images for the fully sampled scans. Although we are aware that
better image quality for the fully sampled scans can be obtained with a higher
excitation flip angle, these SNR-deprived scans provided a good starting point to
demonstrate the improvement in image quality resulting from our non-uniform k-
space averaging approach.

An application in a clinically relevant sequence is the T2-mapping experiment of the
knee we performed, shown in Fig. 9. The images acquired with a high T2 weighting
are naturally SNR-deprived. We noticed that for the higher T2-prepared acquisitions,
which suffer from low SNR, CS-VDA recovered details that were lost in the noise in
the fully sampled acquisition. Figure 9B shows an example of an image detail that is
being lost in the fully sampled acquisition, for decreasing SNR. This behavior could
lead to the loss of high T2 values in a T2-map. The CS-VDA T2 map showed regions
of high T2, and a sharp delineation of muscle, which were not visible on the fully
sampled T2-map. Furthermore, we saw an increase in SNR in all acquired images,
and the calculated T2-map, when using CS-VDA. While the signal shows a convincing
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decay curve, and a T2 estimate that is in agreement with both methods, the noise
behavior is not as straightforward, owing to the optimized 1, constraints. Therefore,
the noise is not necessarily constant over the decay times, which reflects on the SNR
values.

The effects on the SNR arising from accelerated imaging are well understood for
parallel imaging [29], however, the noise penalty in CS is more complicated for
several reasons. First, the spatial distribution of sampling points in a typical CS
measurement gives rise to colored noise [30]. Secondly, 1, regularization inherently
leads to denoising, the effect of which depends greatly on the chosen regularization
parameter and which makes it difficult to quantify SNR in CS reconstructed images.
While application of CS in MRI is one of the most promising applications of this
technique, research into the effects of noise on CS reconstruction has been mostly
limited to the mathematical literature [31]-[33]. Our work now shows that the link
between the sparsifying transform and the sampling transform can be used to design
sampling methods that include averaging of k-space points. These insights can be
valuable in other imaging fields where CS is used with binary sampling, such as
fluorescence microscopy [34], and other Fourier-based sampling modalities, such as
radio interferometry [35].

Our proposed CS and variable density averaging method will be beneficial
specifically when dealing with acquisitions that have low SNR per unit of time and
may otherwise require regular averaging to achieve sufficient image quality. This is
for instance the case when sequences are designed to achieve a specific contrast
weighting at the expense of SNR. While in the current manuscript we used T2
prepared imaging as an example (Figure 9), other applications could be diffusion-,
Tlp- or ASL-based imaging protocols that are affected by similar low SNR
acquisitions. Finally, we believe our approach may significantly improve
applications with an inherently low sensitivity, such as non-proton MRI or low-field
MRI (< 0.5T), with the latter gaining much interest because of its low costs and
possibility to use as an intra-operative imaging modality [27]. A well-known problem
in CS literature is to find objective metrics for image quality [28]. Frequently-used
measures like the structural-similarity index or the mean squared error did not work
well in our study because these are strongly biased by the noise characteristics of the
images and there is no gold-standard image for comparison for the in-vivo data. For
this reason, we chose to evaluate image sharpness as the main quality measure by
determining the width of the air/grapefruit-skin interface.

In conclusion, we implemented 3D Cartesian k-space undersampling with a variable
number of k-space averages. Additionally, we incorporated the weighted l,-norm
into a CS reconstruction. We have shown that variable center-dense k-space
averaging outperforms fully sampled k-space sampling for low-SNR MRI
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acquisitions. We think this novel approach will facilitate improved image quality of
inherently low SNR data, such as those with high-resolution or specific contrast-
weightings with low SNR efficiency.
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3.1 Abstract

Objectives: This study investigated whether wuptake of ultrasmall
superparamagnetic iron oxide (USPIO; ferumoxytol) nanoparticles is related
to atherosclerotic plaque permeability, assessed with dynamic contrast-
enhanced (DCE-)MRI, in patients with peripheral artery disease (PAD).
Background: Nanomedicine holds promise for drug delivery of therapeutic
agents to manage atherosclerosis. Because adequate delivery of
nanoparticles to the plaque is a prerequisite to achieve a therapeutic
response, non-invasive assessment of plaque permeability to nanoparticles
is essential to identify patients suitable for nano therapy. Preclinical studies
demonstrated that nanoparticle uptake in the atherosclerotic plaque is
dependent on endothelial permeability.

Methods: Patients with PAD and healthy control subjects were recruited for
USPIO-enhanced MRI and DCE-MRI of the femoral arteries. Quantitative R2*
measurements before and 72 hours after USPIO administration were used to
calculate regional AR2* values, representative of USPIO uptake. For femoral
artery DCE-MRI, we implemented a novel 3D black-blood sequence with high
spatiotemporal resolution. DCE images were acquired using Gadovist and
AUC values were calculated from the signal intensity-time curves during the
initial two minutes after contrast agent administration.

Results: 18 patients with PAD and 8 control subjects underwent all study
procedures. Patients with PAD clearly demonstrated USPIO uptake with R2*
changes in femoral plaques being markedly increased compared with the
vessel wall of healthy controls (AR2* 19.9+12.5 s? vs. 5.67+4.38 s*; p<0.001).
DCE-MRI revealed a wide range of contrast enhancement patterns, while
showing co-localization with USPIO R2* maps. In plaques, there was a
significant correlation between AUC and AR2* (r=0.52; p=0.002). In
multivariable analysis the AUC remained a significant predictor of AR2*
(p=0.007).

Conclusions: MRI-detected USPIO nanoparticle uptake in atherosclerotic
plaques is associated with plaque permeability assessed with DCE-MRI, in
patients with PAD. Further development of these imaging modalities may
assist in a personalized approach to identify patients most suitable for
nanomedical therapies.
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3.2 Introduction

to be achieved without any apparent safety concerns [1,2], the ensuing focus is
shifting towards intervening in non-lipid pathways to reduce the residual
cardiovascular (CV) risk [3]. Novel therapeutics including anti-inflammatory [4] and
anti-coagulant [5] drugs have recently achieved risk reduction beyond contemporary

S ince advances in drug development allow for very low levels of LDL-cholesterol

drug regimens. However, an unacceptable high number of CV events still occur,
underlining the need to further increase pharmacological efficacy. In contrast to
LDL-cholesterol lowering strategies, dose-escalation of compounds targeting
inflammatory or coagulant pathways cannot invariably be achieved, since higher
efficacy is likely to be counterbalanced by increased systemic toxicity. In fact, this
has already been illustrated by observations of an increased number of fatal
infections for interleukin-1f antibody administration [4] and an increased bleeding
risk for factor Xa-inhibition [5].

Encapsulating drugs in nanoparticles for atherosclerotic plaque targeted delivery
could resolve this issue [6]. Nanomedicine has the potential to enhance drug delivery
to target organs and thus increase efficacy, while minimizing systemic adverse
effects due to a lower total dose administered [7]. We previously accomplished proof
of concept in patients showing that administered nanoparticles reached the
atherosclerotic plaque [8,9], but important questions remain to be answered before
this approach can successfully be translated to a clinical setting [10]. One of the
pivotal questions is how to non-invasively assess nanoparticle uptake efficiency in
atherosclerotic lesions. Because sufficient delivery of drug-loaded nanoparticles to
the atherosclerotic plaque is crucial for a therapeutic response and such therapy is
likely to be costly, identifying patients who are likely to respond to nanomedical
therapy prior to drug administration is important.

In the current study, we developed an MRI protocol to investigate whether
nanoparticle delivery can be predicted non-invasively by assessment of plaque
permeability. To this end, we used ultrasmall superparamagnetic iron-oxide (USPIO;
ferumoxytol) nanoparticles, which are long circulating nanoparticles that are taken
up by tissue macrophages [11]. By using quantitative R2* MRI measurements before
and after USPIO administration, uptake of these nanoparticles in plaques can be
assessed [12,13]. On the other hand, dynamic contrast-enhanced (DCE-)MRI using
gadolinium (Gd)-based contrast agents measures uptake kinetics in the plaque and
thus quantifies microvascular permeability [14]. We developed a novel 3D black-
blood DCE-MRI technique with high spatiotemporal resolution and combined this
with USPIO-enhanced imaging in patients with peripheral artery disease (PAD), in
order to assess whether USPIO uptake in femoral plaques was related to plaque
permeability as assessed by DCE-MRI.
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3.3 Methods

Study design

This was a single-center, observational study performed in the Amsterdam UMC,
location Academic Medical Center in Amsterdam. The study was conducted in
accordance with the Declaration of Helsinki, the approval of the ethics committee of
the Academic Medical Center and the written informed consent of all participants.
All participants underwent blood withdrawal for lipid measurements and MRI
scanning at baseline before ferumoxytol infusion and returned for repeat imaging
after 72 hours.

Study populations

Patients with peripheral artery disease and healthy control subjects were included in
this study. Patients were recruited based on the presence of atherosclerotic plaques
in the femoral arteries as detected by duplex ultrasound. Exclusion criteria included
contraindications for MRI scanning, history of anaphylaxis or severe allergic
reactions, renal dysfunction (eGFR < 30 ml/min) or hepatic dysfunction (liver
transaminases > 3 upper limit of normal) and femoral angioplasty. Healthy controls
were age- and sex matched to patients.

USPIO administration

Ferumoxytol (AMAG Pharmaceuticals, Waltham, Massachusetts) at the dose of 4
mg/kg was diluted in 250 ml saline and administered intravenously over a period of
30 minutes. After infusion, participants were monitored for 30 minutes for adverse
reactions.

MRI acquisitions

All imaging was performed on a 3 T MRI (Philips Ingenia, Best, the Netherlands)
using a 16-channel phased-array anterior coil and a 16-channel phased-array
posterior coil. After initial scout scans, a 3D improved motion-sensitized driven
equilibrium (iMSDE) black-blood gradient echo sequence covering both femoral
arteries was performed using the following parameters: TR = 10 ms, TE = 3.4 ms, FA
= 8°, ETL = 60, FOV = 320 x 320 x 50 mm?, resolution = 0.7 x 0.7 x 0.7 mm?3, NSA = 3.
This acquisition was used to localize atherosclerotic plaques, non-plaque containing
regions of patients (patient non-plaque vessel wall) and a standardized region of the
femoral artery of healthy controls located approximately 10 mm cranial from the
flow divider (healthy control vessel wall).
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USPIO-enhanced MRI - USPIO accumulation was detected using a 2D Double
Inversion Recovery (DIR) T2*-weighted multi-echo gradient echo sequence. Single
slices of plaques (at point of maximum stenosis, carefully avoiding slices with overt
calcification because of insufficient MRI signal), as well as patient non-plaque vessel
wall and healthy control vessel wall were acquired with the following parameters:
TR =41.15ms, TE =3.28 ms, FA =90°, ETL = 8, FOV = 280 x 280 mm?, resolution = 0.58
x 0.58 mm? slice thickness = 2 mm, NSA = 2. Repeat imaging at 72 hours was
meticulously performed using anatomical landmarks to ensure accurate co-
localization with baseline images. The multi-echo data was used for quantitative
mapping analysis to derive pixel-wise T2* and R2* (=1/T2*) values.

DCE-MRI acquisition - Additionally, a 3D DCE-MRI scan was performed during the
baseline visit. Participants were scanned continuously for 10 minutes. Four minutes
after the start of the scan, a Gd-based contrast agent (Gadovist, Bayer, Leverkusen,
Germany) at the dose of 0.1 mmol/kg bodyweight was injected intravenously. For
acquisition, we used a 3D T1-weighted FFE scan with a tiny golden angle radial stack-
of-stars sampling scheme and iMSDE pre-pulses for blood suppression [15]. Every
TFE-shot acquired one z-stack of radial spokes, while a low-high sampling order in
the k,-direction assured good blood suppression. Additionally, fat signal was
suppressed by a spectral presaturation with inversion recovery (SPIR) fat-saturation
pre-pulse. Further scan parameters were: TR = 7.2 ms, TE = 3.2 ms, FA=15°, TFE-
factor =36, FOV =250 x 250 x 60 mm?, resolution =0.7 x 0.7 x 2 mm?. The radial stack-
of-stars acquired data was reconstructed with a compressed sensing reconstruction
using a temporal variation constraint, which resulted in a temporal resolution of 11.8
seconds per volume.

Image analysis

Vessel wall dimensions of the common femoral arteries were analyzed using the 3D
black-blood MRI scans in a standardized segment of 20.3 mm long, starting from 10.5
mm away from the flow divider of the bifurcation, similar to previously described
methods.[16] To calculate mean wall area and mean wall thickness, lumen and outer
wall contours were manually delineated using VesselMass (Leiden University,
Leiden, the Netherlands). T2*-weighted multi-echo images for each participant were
analyzed using Medis Medical Imaging Systems (Leiden, the Netherlands). Regions
of interest (ROI) were drawn by delineating lumen and outer wall contours on the
generated quantitative T2* maps. To quantify USPIO uptake, we calculated the
absolute change in R2* between baseline and post USPIO infusion scans for the
arterial wall. For atherosclerotic plaques, we divided the ROI in 6 segments and
calculated the mean R2* for all plaque-containing segments, defined as having a
mean wall thickness greater than 1.5 mm. For patient non-plaque vessel wall and
healthy control vessel wall, R2* was calculated for the entire vessel wall ROI. DCE-
MRI images were co-localized to the slices of the T2*-weighted multi-echo images
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and ROIs were drawn in the same manner. Signal-intensity time curves of the ROI
were generated, in which the signal was normalized by removing and dividing by the
pre-injection baseline signal. The relative area-under-the-curve (AUC) was
calculated for all analyzed tissues by summing the normalized signal intensity for the
two minutes following injection.

Statistical analysis

All data are presented as mean with standard deviation or median with interquartile
ranges. To assess differences in vessel wall dimensions, a Student T-test was
performed. For evaluation of USPIO uptake between groups, a one-way analysis of
variance was performed. If significance was found, post-hoc testing was performed
using Tukey’s range test. Correlation between USPIO uptake and DCE-MRI contrast
enhancement was tested using Pearson’s correlation coefficients. Statistical analyses
were performed using the SPSS Statistics package version 24 (IBM, Armonk, New
York).

3.4 Results

18 PAD patients (mean age 55.8 + 10.1 years; 13 males) and 8 age- and sex-matched
healthy controls provided written informed consent and were subjected to all study
procedures. As expected, PAD patients were characterized by the preponderance of
cardiovascular risk factors, as well as receiving standard of care medication for
secondary prevention of cardiovascular disease. Clinical characteristics are listed in
Table 1. No adverse events or reactions occurred upon USPIO administration, which
was well tolerated by all participants.



Plaque permeability assessed with DCE-MRI predicts ferumoxytol nanoparticle uptake in patients with PAD | 49

A 3D iMSDE of femoral artery plaque

B 3D iIMSDE of patient non-plaque slice

C 3D iMSDE of healthy control

D E
Mean wall area Mean wall thickness
100 4
.
80 evet
o =
< E
£ 60 LY ° =
E : ” e 82
S 404 == TFT tegl,ee g
z —= e he)
- 2 5 £
.

=}

Healthy  Non-plaque  Plaque Healthy  Non-plaque  Plaque
control PAD control PAD

Figure 1. Vessel wall dimensions are increased in PAD patients.

3D black-blood MRI scans were performed to identify (A) femoral artery plaques
and (B) non-plaque vessel wall in patients with PAD, as well as (C) vessel wall in
healthy control subjects. Analysis of vessel wall dimensions demonstrated that (D)
mean wall area and (E) mean wall thickness was increased for plaques compared
with patient non-plaque vessel wall and healthy control femoral artery wall.

Vessel wall dimensions are increased in PAD patients

Arterial wall dimensions in a standardized segment of each femoral artery were
determined using 3D black-blood MRI. In total, 35 femoral arteries of PAD patients
and 15 femoral arteries of healthy controls were suitable for analysis. One patient
had a total occlusion of the common femoral artery on one side and 1 healthy control
had an anatomical variant of the femoral artery precluding vessel wall dimension
analysis. PAD patients had thickened femoral arteries compared with healthy
controls, as evidenced by a mean wall area of 47 + 17 mm? vs. 32 + 8 mm? (p=0.003)
and a mean wall thickness of 1.70 + 0.59 mm vs. 0.95 + 0.11 mm (p<0.001).

Using the 3D black-blood scans, we identified 34 plaques and 24 non-plaque vessel
wall slices in patients with PAD and 16 control vessel wall slices in healthy control
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control PAD
subjects for USPIO-enhanced MRI and DCE-MRI (Figure 1A- C). Vessel wall
dimensions of plaques were markedly increased compared with the patient non-
plaque and healthy control vessel wall: mean wall area was 55.2 + 19.5 mm? vs. 32.6
+11.9 mm?vs. 31.9 £ 8.5 mm?, respectively (p<0.001 for comparisons vs. plaque), and
mean wall thickness was 1.90 + 0.58 mm vs. 1.15 £ 0.28 mm vs. 0.94 + 0.15 mm,
respectively (p<0.001 for comparisons vs. plaque) (Figure 1D+E).
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USPIO uptake is enhanced in femoral plaques

Next, we performed quantitative USPIO MRI for the identified plaques, patient non-
plaque vessel wall and healthy control vessel wall. At baseline, R2* values of plaques
were not different compared with non-plaque vessel wall in patients with PAD (44.3
+10.1 s vs. 40.4 + 5.8 5!, p=0.153), but were slightly increased compared with the
vessel wall of controls (35.5 + 4.3 s?, p=0.001). Repeat imaging 72 hours after USPIO
administration revealed USPIO enhancement of the vessel wall especially in PAD
patients, detected by clear regional increases in the R2* maps (Figure 2A).
Importantly, a wide spectrum of USPIO uptake patterns could be detected (Figure 2B
and 2C). Furthermore, the change in R2* in plaques (AR2* = 19.9+12.5 s) was
markedly increased compared with patient non-plaque vessel wall (AR2* = 8.1+5.4 §°
1. p<0.001) and healthy control vessel wall (AR2* = 5.67 + 4.38 s*; p<0.001). USPIO
enhancement between patient non-plaque vessel wall and healthy control vessel wall
was not different (p=0.694).
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Table 1. Baseline characteristics of participants

PAD patients Healthy controls
N 18 8
Clinical parameters
Age, years 55.8+10.1 56.3+7.2
Male sex 13 (72.2%) 6 (75%)
Body mass index, kg/m2 26.5+4.6 25.5+£2.7
Ischemic heart disease 3(16.7) 0 (0)
Stroke/TIA 2 (11.1) 0 (0)
Active smoker 8 (44.4) 1(12.5)
Diabetes 5(27.8) 0 (0)
Hypertension 15 (83.3) 0 (0)
Laboratory data
Total cholesterol, mg/dL 174+ 83 213+ 52
LDL cholesterol, mg/dL 97 +78 120+ 35
HDL cholesterol, mg/dL 47 +14 66 + 25
Triglycerides, mg/dL 151 (94-248) 127 (43-234)
Lipoprotein (a), mg/dL 11.3 (5.9-37.2) 8.6 (5.7-44.5)
Medication
Lipid lowering therapy 18 (100) 0 (0)
Anti-hypertensive 15 (83.3) 0 (0)
Anti-platelet 17 (94.4) 0 (0)
Anti-diabetic 5(27.8) 0 (0)
Femoral artery dimensions
Mean wall area, mm?2 47 £17 32+8

Mean wall thickness, mm 1.70£0.59 0.95+0.11
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Figure 3. DCE-MRI reveals heterogeneous enhancement patterns in PAD patients.
(A) Dynamic contrast-enhanced scans of femoral artery plaque demonstrating
heterogeneous enhancement after injection of Gadovist, illustrated by the observed
differences between the colored ROIs and (B) corresponding signal intensity-time
curves (normalized for baseline signal intensity). (C) Area-under-the-curve maps
covering the first two minutes after injection were generated to allow for further
analysis of plaques.

DCE-MRI predicts USPIO uptake in femoral plagues

At the baseline visit, all study subjects were subjected to a DCE-MRI to assess vessel
wall permeability. DCE-MRI slices were co-registered to plaques previously
identified for USPIO imaging (33 out of 34 plaques; one DCE-MRI image was of
insufficient quality). Figure 3A shows an example of a DCE-MRI time series with
corresponding signal-intensity time curves in different plaque regions (Figure 3B),
as well as the quantitative pixel-wise AUC map calculated from the first two minutes
following Gadovist injection (Figure 3C).

In patients with PAD, these AUC maps showed co-localization with USPIO uptake as
indicated by the R2* maps of the corresponding plaques (Figure 4A-C). For plaques
there was a significant correlation between the AUC and AR2* (r=0.52; p=0.002)
(Figure 4D). In multivariable analysis, adjusting for age, sex, BMI, smoking, diabetes,
hypertension, LDL-cholesterol and Lp(a), the AUC remained a significant predictor
of AR2* (R 3.24 (1.00-5.49), p=0.007). In a secondary analysis, we assessed the AUC
values for patient non-plaque vessel wall and healthy control vessel wall. There were
no correlations with the co-registered patient non-plaque and healthy control vessel
wall AR2* values.
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Baseline 72h post-USPIO DCE-MRI DCE-MRI vs. USPIO
R2* map R2* map

Figure 4. DCE-MRI associates with USPIO enhancement. (A) Example of
femoral artery plaque identified with 3D iMSDE sequence which demonstrated (B)
strong USPIO uptake which co-localized with DCE-MRI enhancement. (C) DCE-
MRI and USPIO-enhanced MRI of plaques were significantly correlated in patients

with PAD.
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3.5 Discussion

We report for the first time the assessment of USPIO nanoparticle uptake in femoral
artery plaques in patients with PAD using quantitative USPIO-enhanced MRI, which
was found to be associated with plaque permeability as measured with DCE-MRI.
These MRI techniques provide important phenotypic information on atherosclerotic
plaques and hold potential for future decision algorithms to allocate nanomedical
treatment using a personalized approach.

In this proof-of-concept study, we used ferumoxytol as nanoparticle agent, which
could be detected using MRI. Previous studies have established that ferumoxytol and
other USPIOs are engulfed by macrophages in human atherosclerotic plaques and
other inflamed cardiovascular tissues [17-23]. We quantified USPIO enhancement
using R2* mapping, allowing us to detect heterogeneous USPIO enhancement among
and within femoral artery plaques. These observations may relate to local variations
in inflammatory cell content and/or other features which affect nanoparticle
penetration in the plaque.

Clinical imaging studies investigating atherosclerotic plaque vulnerability have used
DCE-MRI to study plaque microvasculature, recognizing that plaque inflammation,
neovascularization and impaired endothelial barrier function are closely related
processes [24-27]. Ideally, vascular DCE-MRI requires high spatial resolution and
optimal blood suppression to accurately delineate the vessel wall; as well as high
temporal resolution to capture the signal dynamics. To this end, we developed a
novel 3D black-blood DCE-MRI protocol with sufficient anatomical coverage to
enable characterization of contrast enhancement patterns in femoral atherosclerotic
plaques. Plaque permeability, semi-quantitatively assessed with the AUC of the
signal enhancement curves, was positively and independently correlated to the level
of USPIO enhancement. The correlation between plaque permeability assessed with
DCE-MRI and USPIO nanoparticle accumulation in patients substantiates findings
from preclinical studies, linking nanoparticle deposition to endothelial barrier
function [28,29].

Our data also herald potential clinical utility. First, DCE-MRI holds promise to predict
nanoparticle delivery in plaques in humans, allowing for tailored decisions in
patients with advanced atherosclerotic disease. Despite the promise of
nanomedicine to specifically target atherosclerotic plaques using nanoparticle
encapsulated drugs, most research remains in the preclinical setting [30]. The use of
non-invasive imaging methods such as DCE-MRI to assess plaque susceptibility to
nanoparticle uptake may help to accelerate development of nanomedicine-based
strategies. Second, DCE-MRI also provides information on the degree of arterial wall
inflammation. In support, the majority of clinical studies in carotid atherosclerosis
have reported a positive association between 18F-FDG-PET/CT and DCE-MRI
measurements [31-33]. Thus, DCE-MRI also holds potential in assisting personalized
management of high-risk patients in the context of novel anti-inflammatory drugs
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[4], or to serve as surrogate endpoint in drug development trials. Note that
theoretically also USPIOs can be used for aforementioned purposes. However, it
should be taken into account that this is a burdensome procedure for patients, as it
requires two imaging sessions 72 hours apart. In addition, the availability of USPIOs
has been restricted in Europe, following the observed risk of severe allergic reactions
upon ferumoxytol administration in post-marketing safety data. Awaiting the
development of safer USPIOs [34], these challenges confine implementation of
USPIO-enhanced MRI in clinical practice.

Limitations of this study include the absence of tissue samples, although previous
studies provided human histological validation of USPIO uptake by plaque
macrophages [17-21] and of the correlation between DCE-MRI and plaque
microvessel density [24-27,32]. In this proof-of-concept study, we used ferumoxytol
as a model for nanoparticle delivery. However, prospective studies are needed to
establish whether plaque permeability as assessed by DCE-MRI is also related to
plaque uptake of other nanomedicinal formulations. Finally, we found that the AUC
values from patient non-plaque and healthy controls did not correlate with the AR2*
values. This may be due to the partial volume effect, inherent to a thin vessel wall,
decreasing the accuracy of DCE-MRI measurements in patient non-plaque vessel
wall and healthy controls. Increasing spatial resolution will be required to
investigate whether DCE-MRI measurements in the diseased vessel wall, but before
the presence of an overt plaque, are useful.

In conclusion, we demonstrate that USPIO nanoparticle uptake in atherosclerotic
plaques is associated with plaque permeability as assessed with DCE-MRI in patients
with PAD. We envision that further development of these imaging modalities may
assist in evaluation of novel therapeutics and personalized decisions in high-risk CV
patients.
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Chapter 4

Pharmacokinetic modeling of 3D
black-blood vessel wall DCE
imaging using an AlF
independent reference region
method.
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4.1 Abstract

Purpose: Changes in pharmacokinetic (PK) parameters have been associated
with plaque vulnerability. To enable clinical implementation, fast volumetric
dynamic contrast-enhanced (DCE) sequences have been developed. Vessel
wall delineation necessitates blood suppression; however, this prohibits
Arterial Input Function (AIF)-based PK parameter estimation. We aim to
evaluate reference-region PK analysis for vessel wall DCE applications.

Methods: A compressed sensing-accelerated black-blood DCE protocol was
used. Monte Carlo simulation of the signal evaluation and analysis were used
to estimate the feasibility of the method. Patient scans of peripheral artery
disease patients (PAD, n=18) and abdominal aortic aneurysm (AAA) patients
(n=7) were evaluated.

Conclusions: In all cases, the blood signal was sufficiently suppressed
throughout the scan. We were able to model PK parameters without an AIF,
using the constrained extended reference region with additional constraints.
Reproducibility in a patient population with AAAs was moderate. The
presented method yielded good discrimination between vessel wall and
plaque tissue types both in Monte Carlo simulations and in vivo patient data.
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4.2 Introduction

therosclerotic plaque microvascularization and increased vessel wall

permeability are characteristic features of vulnerable plaques, which are

associated with cardiovascular events, such as myocardial infarction and

stroke. Dynamic contrast-enhanced (DCE) vessel wall magnetic resonance
imaging (MRI) using fast T1-weighted gradient-echo sequences allows assessment of
these parameters in a quantitative way by applying pharmacokinetic (PK) modeling
to the measured signal curves providing parameters such as K" and v, [1], [2].
Changes in PK parameters have been associated with increased plaque vulnerability.
Moreover, these imaging biomarkers are increasingly used as secondary endpoints
in the evaluation of novel therapeutic strategies [3].

Recently, innovations in accelerated imaging have allowed the development of 3D
DCE protocols with high isotropic resolution [4]-[6]. These protocols are highly
beneficial because they provide large coverage of the arterial segment of interest.
Moreover, the imaging volume can be oriented (and reconstructed) independent of
the vessel orientation even when multiple arteries are involved, e.g. both carotids or
femoral arteries. 3D protocols are usually performed with non-selective blood
suppression to prevent severe flow artefacts and achieve good delineation of the
vessel wall. However, this suppression highly compromises simultaneous
measurement of the blood arterial input function (AIF), information which is
generally required to perform pharmacokinetic modeling of the DCE data.

Several strategies could be employed to overcome the AIF issue. First, a low
concentration pre-bolus could be given and measured with a fast bright-blood
sequence. Timing and scaling of the low-bolus AIF to the full-bolus DCE data
increases complexity of both the examination and the postprocessing, and might
introduce errors [7]. Secondly, a population-based AIF can be simply assumed.
However, this could introduce bias in PK parameters, especially in a patient
population with cardiac output differences. Third, DCE protocols with interleaved
bright-blood and black-blood acquisitions have been developed to acquire both AIF
and vessel response curves. While most of these interleaved methods are two-
dimensional [8], the recently developed LABBI sequence [5] uses a compressed
sensing accelerated volumetric black-blood sequence interleaved with a 2D bright-
blood ATF measurement. Still, this approach may suffer from several disadvantages
since the interruption of the steady-state condition requires complex models to
relate the signal to the contrast agent (CA) concentration. Furthermore, scan
efficiency is compromised, while fast sampling is paramount for good accuracy of
tissue perfusion parameter estimations [9]. To achieve the required fast AIF
sampling without sacrificing spatial resolution, dual imaging approaches have been
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proposed [10], [11]. Finally, a semi-quantitative analysis could be performed, such as
determination of the area-under-the-curve (AUC). While AUC has been shown to
correlate to plaque micro vessel count [12], and positively correlated with K™ [13],
it remains difficult to relate semi-quantitative parameters to relevant tissue
properties, such as plaque permeability and blood volume.

For tumor imaging, Yankeelov et al. [14] have shown that reliable pharmacokinetic
parameters can be made without the use of an AIF, by means of analyzing data from
a reference tissue within the same dynamic scan. Often, muscle is taken as the
reference tissue, meaning that resulting PK parameters are relative to those of
muscle. An additional benefit is that reference methods seem to be more robust for
lower temporal resolutions [15], making this approach feasible for 3D applications.
The original Reference Region Method (RRM) is derived from the Tofts model [16]
and therefore does not take into account the vascular contribution (vp) in the solution
of the two-compartment model. While v, is usually very low in tumors, it is a
significant parameter in vessel wall imaging. For vessel wall DCE applications, the
extended Tofts model was found to have superior performance [17]. In contrast to
the RRM, the recently published Constrained Extended RRM (CERRM) does
incorporate v, [18] and could therefore be used to perform AlIF-independent
pharmacokinetic modeling of vessel wall DCE data. However, to our knowledge, this
has not been studied so far in literature.

Recently, we developed an accelerated volumetric black-blood DCE sequence, which
can be applied to different vascular beds [19]. The DCE sequence uses a stack-of-stars
golden angle radial sampling strategy with center-out ordering to achieve high-
spatial and high-temporal resolutions, while maintain blood suppression. In this
study, we combined this approach with CERRM modelling to obtain AIF independent
vessel wall PK parameters. Firstly, we added additional constraints to the CERRM
model to improve fitting reliability and investigate through simulations how the
performance of the CERRM model compares to other published models in terms of
sensitivity to changes in PK parameters. Furthermore, we demonstrate the feasibility
our approach by analyzing data from repeated DCE measurements in patients with
abdominal aorta aneurysms (AAA), as well as data from patients suffering from
peripheral artery atherosclerotic plaques (Peripheral Artery Disease; PAD).
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4.3 Methods

DCE acquisition and reconstruction We implemented a radial stack-of-stars
sampling scheme [6] with an improved motion-sensitized driven-equilibrium
(iMSDE) pre-pulse [20]. The tiny golden angle scheme of angle increments was used
to minimize eddy current effects, while maintaining a near-uniform k-space
coverage after sorting the data in time-frames [21]. The blood signal was suppressed
continuously throughout the scan by the iMSDE pre-pulse at the beginning of each
TFE shot. Also, a CHESS fat-suppression pre-pulse was given at the beginning of each
shot. The TFE-shot length was chosen such that it could acquire either one stack or
half a stack of radial spokes. A low-high sampling order in the k,-direction assured
good blood suppression. A diagram of the sequence is shown in Figure 1. A
compressed sensing reconstruction was performed with a total-variation constraint
in the temporal dimension [22]. Slices were reconstructed in parallel, after inverse
FFT of the k-space in the fully sampled k,-direction. Coils were compressed to six
virtual channels [23]. Sensitivity maps were estimated from the center of k-space
acquired before contrast injection using the adaptive method [24]. The radial spokes
were sorted in time-frames. For every slice, the following equation was minimized:

X = argmin |NS_1X - Y|§ + AITV(X)|1, (1)

Where X is the multi-dimensional image, TV is the finite difference operator in the
temporal dimension; Y is the multi-channel, multi-frame k-space; N is the NUFFT
operator, and S is the coil sensitivity operator. The sparsity parameter A was chosen
to prevent smoothing of the initial contrast-arrival peak. The computationally
expensive NUFFT operator was accelerated [25] and reconstructions were performed
on a computer cluster containing two Tesla P100 GPUs.
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Figure 1. The accelerated black-blood DCE pulse sequence. A) A 3D Fast-Field
Echo module is preceded by an iMSDE pre-pulse and spectrally selective fat
saturation. B) A stack-of-stars readout with golden angle increments covers the k-
space. To ensure efficient blood and fat suppression, k-lines within each shot are
ordered in a center-out fashion.

Signal values and tracer concentrations

In order to perform pharmacokinetic modeling using our proposed sequence, the
signal evolution of the sequence during pre-contrast and post-contrast was modeled
based on the Bloch equations. To this end, signal values were converted to tracer
concentrations by a nonlinear fit of the steady-state signal for a T1 weighted FLASH
sequence, interrupted by an iMSDE black-blood prepulse after every K pulses, given
by [26]:

_ My(1—E1E2sinf 1— (Elcosp)¥

Mss = 2
58 1—FElcosB  1—E2(Elcosp)X )

where M, is the full relaxation, E2 represents T2 decay between the last RF-pulse and
TE, B is the flip angle, and E1 represents T1 recovery. Itis clear that this steady state
has both T1 as well as T2 weighting. The parameter M, was found by solving the
signal equation for the time-frames before contrast injection. Using this My, E1 and
E2 can be found by a nonlinear fit of the signal value for every time point after
contrast injection. The dynamic R1 and R2 values are to Gadolinium concentrations
in the tissue, using the following equations:

Ri(t) = Ryp(t) + 1 C(t); Ry(t) = Ry(t) +1,C(1) (3)
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where the relaxitivities used were r;=4.5 L/mmol/s, 1,=5.09 L/mmol/s.

Pharmacokinetic analysis using an adaptation to the Reference Region model
The original CERRM method [18] is a least-squares solution of Ax=b, where A
contains the signal concentration and B is a matrix containing integrals of the muscle
and signal-of-interest concentrations. x is a vector containing linear combinations of
the PK parameters. The CERRM methods consists of two steps: the first one (ERRM)
fits a model for all voxels. The fitted parameter x is a vector consisting of four terms,
X to x4, which are linear combinations of the (relative) pharmacokinetic parameters.
Subsequently, a second fit is done with a keprr fixed for all voxels. In the second fit,
a three-term vector y is fitted. However, we have experienced in our analyses that
the global solution to this problem sometimes results in unphysical (negative) values
for keprr, or other PK parameters. To prevent this, we have introduced additional
constraints to this model, and solve it by minimization of an I, norm:

min|Ax — b|5 s.t.keprr >0 (4)
From the model, we know:

X1
kep,RR = 05 x_ - 05 (5)

3

Using the nonnegativity constraint, the term inside the square root cannot be
negative and therefore we constrain:

min|Ax — b|%s.t. x? > 4x,%3, x, > 0. (6)

Similarly, in the second step of [18] we added additional constraints to ensure a
positive Kans;
min|Gy — bl3 s.t. y1 > ¥,¥s (7)

The constrained fit was performed in Matlab (v2018a, The Mathworks, Natick,
Massachusetts), and the YALMIP toolbox [27].

Area-under-the-curve (AUC) analysis

Signal-intensity time curves of the ROI were generated, in which the signal was
normalized by removing and dividing by the pre-injection baseline signal. The
relative area-under-the-curve (AUC) was calculated for all analyzed tissues by
summing the normalized signal intensity for the two minutes following injection.
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Monte Carlo Simulations

The performance of the CERRM method was investigated by means of numerical
simulations. In the simulations, we focus on atherosclerotic plaque applications.
First, we estimated how much parameters deviated from true values in the range of
PK parameters expected in atherosclerotic plaques. Secondly, we compare the
CERRM with 1) an ERRM, 2) a Patlak model with known AIF [28], and 3) a semi-
quantitative AUC, to estimate how derived parameters differed between tissues.

An arterial input function (AIF) Cy(t) was simulated, according to the Parker model
[28], which is an empirically derived function consisting of two Gaussians plus an
exponential decay. The contrast concentration in the simulated tissue-of-interest
(TOI) and reference-region (RR), Ci(t) and Cgr(t) respectively, was simulated with the
Extended Tofts model [16]:

Ktrans (T—t))
T

Ce(t) = v,Cp(t) + Kirans J cp(f)e'( ve , (8)
0

where values of K™ v, and v, for the vessel wall (VW) and plaque components
being intra-plaque hemorrhage (IPH); necrotic core (NC) and fibrous tissue (FT);
were taken from probability ranges constructed from reported literature values [2],
[26], [29]-[33]; and for reference muscle a fixed literature value was used [34].
Relaxation values were fixed and taken from [5]. All values used in the simulations
are reported in Table 1.

Table 1. Parameters used for Monte Carlo simulation and fitting. For image analysis,

only the relaxation parameters and the muscle PK parameters were used. For MC

Simulations, PK parameters were sampled from a normal distribution with the means
and standard deviations reported.

Healthy Necrotic Fibrous Intra-plaque = Muscle

vessel Core Tissue Hemorrhage
wall
K™ (min') 0.0273 + 0.0221 =+ 0.0649 + 0.00595 + 0.14
0.0052 0.0034 0.01497 0.0077
vp 0.0152 £ 0.0248 = 0.1084 <+ 0.0042+0.0025 0.07
0.0042 0.00311 0.0141
Ve 0.53+0.1 0.53+0.1 0.53+0.1 0.53+0.1 0
T, (ms) 1150 1150 1150 500 1450
T, (ms) 54 37 56 107 50

To limit discretization errors, simulations were performed with a temporal
resolution of 0.1 seconds. From the simulated CA concentrations, the signal was
reconstructed using equations 2 and 3. Sequence parameters used were: TR/TE =
7.2/3.2 ms, FA=15 degrees, the iMSDE-pulse wait-time Tiuspr Was 11 ms. For the error
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simulations, five different noise regimes were simulated (0, 5x10°, 10 5x10*%, 10® x
M, respectively), and 50 signals were simulated for every tissue/noise combination.
For the second simulation, no noise was added, and N=250 signal evolutions were
simulated per tissue.

Patient data

Data was analyzed from two different ongoing clinical studies which involved
measurements of PAD and AAA patients. Patients were recruited based on the
presence of atherosclerotic plaques in the femoral arteries as detected by duplex
ultrasound or presence of an asymptomatic AAA of at least 30 mm in diameter,
respectively. Studies were conducted in accordance with the Declaration of Helsinki,
the approval of the ethics committee of the Academic Medical Center and the written
informed consent of all participants.

Sequence parameters for the 3D black-blood iIMSDE DCE acquisitions in both
applications are given in Table 2. All scans were performed on a Philips Ingenia 3T
MRI system using a 32-channel torso coil. 3D black-blood iMSDE prepared DCE scan
was performed 4 min. before and at least 5 min. after intravenous infusion of a Gd-
based contrast agent (Gadovist; 0.1 mmol/kg). In case of femoral artery imaging, the
field-of-view covered both femoral arteries. As the reference region, a region of the
abdominal muscle was used. From all patients, a total of 18 DCE datasets from
different plaques were used. In addition, 10 femoral artery segments from age- and
sex-matched controls were included.

AAA patients were scanned twice with a one-week interval. From all available scan-
rescan datasets, seven were included in this study based on sufficient image quality
in both scans. As a reference region, a region of the back muscle was used.

CERRM analysis was performed in Matlab (Mathworks, USA) and Python. Signal
intensity curves were converted to concentration curves using the signal model
described in Equation 4. Pre-contrast vessel-wall T1 and T2 values were used from
literature values (Table 1).

Table 2 Anatomy-specific scan parameters of the iIMSDE-DCE sequence.

PAD AAA
Scan time 478 s 501s
Resolution (mm?) 0.7x0.7x2 1.2x1.2x3
FOV (mm?3) 250x 250 x 60 420x 420 x 87
FOV orientation coronal coronal
Golden Angle (deg) 38.98 111.25
Spokes per frame 37 34

Temporal resolution (s) 9.8 8.5
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FA 15 11
TR/TE (ms) 7.38/3.22 7.37/3.46
TFE-factor 36 35

Coil compression channels 6 5

Total spokes 1800 1584

Kz oversampling 1.2 1.2

Total number of frames 48 46
Z-stack size (no oversampling) 36 (30) 35(29)

Analysis of plaque composition in PAD patients

PAD patient and control data was delineated as described in Chapter 3 (healthy
control VW; in patients: plaque; lipid; and non-plaque vessel wall). The delineated
vessel wall components regions were transferred to the CERRM K"sf maps.
Additionally, a simple area-under-the-curve analysis was also done. The K¥sf and
AUC values for all analyzed voxels were collected and the distribution of these for
the different components were compared using a cumulative-density function
(CDF). The average K™s™f for every plaque component and every patient was
collected and analyzed by means of a mixed linear model.

Analysis of AAA patient data

For the AAA patient group, the area of the aneurysm wall and muscle region-of-
interest was delineated manually using VesselMass (Leiden University Medical
Center, the Netherlands) in both scan and re-scan datasets. The volumetric Kransref
maps were divided into three parts in the foot-head direction, and 12 parts in the
circular direction centered around the centroid of the segmentation. The mean
Ktranstef i the resulting segments was compared for the scan and re-scan, and the
coefficients of variation (CoV) were calculated from this dataset for all patients and
all segments.
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4.4 Results

A

patient 1

patient 2

patient 1 patient 2
B 61 vessel wall ROI 61 vessel wall ROI
- plaque ROI -+ plaque ROI
- lumen ROI - lumen ROI
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Figure 2. 3D black-blood DCE of femoral arteries, showing A) close-ups of two
arterial plaques from two different patients (red arrows), and B) the signal intensity
in the plaque, lumen and vessel wall. In patient 1, high enhancement of the plaque
was observed. On the other hand, in patient 2, the plaque intensity does not change
substantially over time, while the border between the plaque and the lumen does
enhance strongly. This agrees with the presence of a lipid necrotic core.

Figure 2 shows close-ups of two different arterial plaques. A wide variety of uptake
enhancement patterns was seen in the femoral plaque patient population. Adequate
blood suppression was maintained throughout the dynamic scan.

The percentage error of PK parameters from the original ERRM method and the
ERRM with additional fit constraints is shown in Figure 3. For both methods, the
errors in v, are very small; only with increasing noise does the error grow for IPH -
however the v, is very low in IPH to begin with. For the parameters K™ and k., the
additional fit constraints considerably stabilize the fits, showing smaller median
errors and smaller interquartile ranges. A positive bias was found in k., estimates,
for VW and NC. For fibrous tissue however, there is sometime a large
underestimation in kep. This is accompanied by a similar overestimation in K", For
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the other tissues, K" was accurate (median error 10 to 20 percent) over the
simulated noise ranges.

A histogram of Monte Carlo data comparing different analysis methods for a range
of plaque tissues is shown in Figure 4. The largest spread of values is found for a
Patlak analysis. Both Reference Region models show very consistent estimates,
making distinguishing between healthy and diseased tissue possible. In contrast,
Patlak analysis (with a known AIF) gives wider estimates and discrimination between
tissue types is compromised.
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Figure 3. Monte Carlo simulation. Relative error for estimate of PK parameters
from the ERRM, original (green), and with a constrained fit method (Red). The solid
line shows the median of 50 simulations, and the shaded area signifies the
interquartile region. A) The estimates for v, show a very low error percentage for
both methods, even for the higher noise regions, over all the four simulated tissue
types. In contrast, estimates for kep, shown in B), show a positive bias for healthy
VW tissue and necrotic core. The constrained fit shows lower error and smaller
areas. Similarly, in C), the estimates for K" show a smaller error over all tissue
types for the constrained fit over the unconstrained ERRM. Only the fibrous cap has
a considerable number of estimates with over 100 percent error.
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Pharmacokinetic parameter values were estimated for in-vivo PAD data. Compared
to the reference method, the area-under-the-curve method did not give
distinguishable results between control, non-plaque and plaque components.
Cumulative probability density functions are shown in Figure 5. The cumulative
density functions were more spread out for the K™ s™f values obtained from the
adapted CERRM than for the AUC, suggesting that classifying plaque type would be
easier using the PK parameter derived from a reference region than using an AUC. A
linear mixed model was used for analysis: for the AUC a r?=0.181 was found, for the
adapted CERRM r*=0.469.

Figure 6 shows a typical example of a AAA patient. Excellent blood suppression was
generally found throughout the acquired volume. Heterogeneous enhancement was
seen on the AAA wall. A reproducibility analysis for the scan-rescan data of the AAA
patients is shown in Figure 7. In general, the method was moderately reproducible.
Notably, the additional constraints we added on the CERRM increased the
reproducibility; the coefficient of variation improved from 66 to 49 percent.

Patlak RRM
=0 healthy VW healthy VW
necrotic core necrotic core
fibrous tissue fibrous tissue
300 intraplaque-hemmarhage intraplaque-hemmarhage

250
200
150

100

0.00 0.02 0.04 0.06 0.08 010 000 002 004 006 008 010 012 014 016
Kirans Kirans
CERRM AUC
30 healthy VW healthy VW
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fibrous tissue fibrous tissue
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s; L

000 002 004 D06 008 010 012 014 016 000 002 004
Kirans AlC

0.06 0.08 010

Figure 4. Histogram of Monte Carlo simulation (N=250). The Patlak model shows
the largest spread of estimated values, and therefore discriminating between the
different types of healthy and diseased tissues is more difficult than either reference
region method, or even the AUC.
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Figure 5. Cumulative Density Functions (CDF) of parameter values of all femoral

data. The Area-under-the-curve measure is more similar between the different tissue
types than the fitted K" yalues.
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Figure 6. A. Example AAA images, pre- and post-contrast. Good blood signal
suppression remains after contrast injection. B. Voxel-wise K" maps show very
good and well-reproducible localization of high- and low uptake regions.
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Figure 7. Bland-Altman plots of the K" of the original (unconstrained) and
constrained CERRM methods.

4.5 Discussion

We found that we were able to consistently achieve adequate blood suppression in
our black-blood DCE scans. While the lumen signal increased slightly, it did not
cause serious flow artifacts or signal bleed into the surrounding tissue. Although the
sequence was heavily under sampled, image quality remained good and delineation
between vessel wall, lumen and plaque was clear. In some patients with femoral
plaques, lipid core regions were characterized by a strong hypointense pre-contrast
signal. This may be explained by repetitive use of the T2-preparation in combination
with short TFE shots and the low T2 values of the lipid core. This sequence could be
easily applied in other areas of the vascular bed, such as the carotid arteries.

Distinguishing between healthy and diseased tissue

The ability of the CERRM to discriminate between different tissue types in PAD
patients and controls, much better than a semi-quantitative parameter like AUC,
shows that the reference-based K" adds valuable information. The Monte Carlo
simulations suggested that the CERRM could better distinguish plaque components
than the Patlak model. This could be explained by the temporal robustness of the
reference region methods, which have been shown to receive better permeability
estimates than traditional AIF-based fitting for moderate temporal resolutions [15].
Compared to the discrimination ability of semi-quantitative markers, such as AUC,
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the effect of permeability and other variables, such as vascular or plasma fractions,
are better resolved in CERRM.

Reproducibility

A voxel wise K™ f map of both the scan and rescan (Fig. 3B) shows good spatial
correspondence of the high and the low enhancement regions. The scan-rescan
coefficient of variation was 49 percent. Nguyen [35] found a AAA scan-rescan CoV of
38% in a 2D bright-blood sequence with a Patlak fit. We found a CoV that is slightly
worse. This may be caused by the mis-registration between scan and rescan which
could be improved by elastic registration.

Additional constraints to the CERRM

The additional constraints gave considerably smaller errors in the relevant
parameter space for atherosclerotic imaging. In the Monte Carlo simulations in
Figure 3, we see a similar performance for v,, smaller errors in ke, and K™ for all
tissues except the fibrous cap, where the median value estimate is good, but for some
simulations, a considerable error, leading to a positive bias in K**™ for fibrous tissue.
A similar bias can be seen in the histogram of Figure 3.

The constrained fit lowered the CoV from 66% to 49%, it also removed the bias (Fig.
7). Additionally, the constraint has removed unphysical values entirely (i.e. negative
K"ans| negative ve, vp). Also, the fit cost has substantially lowered, while we saw that
the overall Kransref distribution remained similar.

Future outlook

Ideally, robust, high-resolution T, and T, estimates would be necessary to do a full
analysis. Unfortunately, quantitative MRI is very slow and unfeasible for coverage
and resolution described here.

We were unable to compare an in-vivo scan with a known AIF to our AIF-free
method, due to the inability to scan two protocols after each other in the same
volunteer (the T1-effects of Gd injection remain for a long time).

The combination of a CERRM approach with a highly accelerated golden-angle
strategy sampling DCE protocol is very promising. While high spatial and temporal
resolutions are achievable in this way, a sub-second temporal resolution remains out
of grasp, and therefore indirect PK estimation methods will be useful. New reference
region work using a low-temporal resolution AIF-tail could improve reproducibility,
as fewer assumptions would be necessary [36].
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4.6 Conclusion

We have shown the feasibility of 3D black blood dynamic contrast enhancement,
with sufficient resolution to determine the vessel wall and plaque. In all cases, the
blood signal was sufficiently suppressed throughout the scan. We were able to
model PK parameters without an AIF, using the constrained extended reference
region with additional constraints. Reproducibility in a patient population with
abdominal aortic aneurysm was moderate. According to Monte Carlo simulations
and patient data, good discrimination of vessel wall and plaque tissue types was
found.
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H.1 Abstract

Purpose: YF-MRI is gaining widespread interest for cell tracking and
quantification of immune and inflammatory cells in-vivo. Different
fluorinated compounds can be discriminated based on their characteristic
MR spectra, allowing in-vivo imaging of multiple YF compounds
simultaneously, so-called multicolor “F-MRI . We introduce a method for
multicolor ®F-MRI using an iterative sparse deconvolution method to
separate different YF compounds and remove chemical shift artifacts arising
from multiple resonances.

Methods: The method employs cycling of the readout gradient direction to
alternate the spatial orientation of the off-resonance chemical shift artifacts,
which are subsequently removed by iterative sparse deconvolution. Noise
robustness and separation was investigated by numerical simulations.
Mixtures of fluorinated oils (PFCE and PFOB) were measured on a 7T MR
scanner to identify the relation between "F signal intensity and compound
concentration. The method was validated in a mouse model after
intramuscular injection of fluorine probes, as well as after intravascular
injection.

Results: Numerical simulations show efficient separation of ¥F compounds,
even at low SNR. Reliable chemical shift artifact removal and separation of
PFCE and PFOB signals was achieved in phantoms and in-vivo. Signal
intensities correlated excellently to the relative “F compound concentrations
(r2=0.966/0.990 for PFOB/PFCE).

Conclusions: The method requires minimal sequence adaptation, and is
therefore easily implemented on different MRI systems. Simulations,
phantom experiments, and in-vivo measurements in mice showed effective
separation and removal of chemical shift artifacts below noise level. We
foresee applicability for simultaneous in-vivo imaging of “F-containing
fluorine probes or for detection of ’F-labeled cell populations.



An iterative sparse deconvolution method for simultaneous multicolor 19F-MRI of multiple contrast agents | 83

H.2 Introduction

luorine (*F) magnetic resonance imaging (MRI) is rapidly gaining traction for

in vivo cell tracking as it possesses several advantages over traditional 'H MRI

and other imaging methods[1]. Firstly, the human body contains negligible
amounts of “F. Therefore, any detected “F-MRI signal originates solely from
exogenously administered fluorine probes, making accurate quantification possible
[2]. Secondly, since the F resonates at a frequency distinguishable from 'H, the F
signal does not influence the 'H contrast, allowing imaging with regular PD, T1- and
T2-weighted '"H-MRI.

For most cell tracking and inflammation “F-MRI studies, perfluorocarbon (PFC)
based nanoparticles are applied [3]-[5] . Upon intravenous injection, these
fluorinated nanoparticles accumulate at inflamed tissues, hematopoietic organs,
such as the bone marrow and spleen, as well as in the liver, where they are taken up
by phagocytic cells. So far, YF-MRI has shown great potential and has been explored
in a variety of studies including Alzheimer’s disease, lung imaging, cancer,
myocardial infarction and stroke, and inflammatory bowel disease [2], [6]-[8].

The different PFCs differ from one another in terms of the number of F resonances
and their chemical shifts. This enables unambiguous discrimination on the basis of
their MR spectrum. This property has been previously exploited to separate
confounding signal from isoflurane (a commonly used anesthetic) from the “F signal
of interest [9]. More importantly, these differences can be leveraged to detect
different ¥F-containing nanoparticles —and thus populations of *F-labeled cells- in
the same sample and in the same imaging session, enabling “multicolor” or
“multiplex” F-MRI. This technique has potential as an in vivo, non-invasive readout
of tissue immune cells composition, similar to commonly used ex vivo
immunological assays, such as flow cytometry.

However, recording multiple F resonances in a single MR spectrum gives rise to
chemical shift artifacts, which present themselves as signal ghosts in the readout
gradient direction and hinder accurate localization and quantification. Several
strategies have been proposed to avoid or mitigate these. The first is spectrally
selective excitation and selective suppression of certain resonances [10]-[13] ,which
can also be used to image multiple different compounds [14]-[16], at the cost of
increased scan times and excluding signal of non-excited resonances.

A second strategy is chemical shift imaging (CSI) [17][18]. CSI suffers from long
acquisition times though and therefore acceleration by the use of pseudo-radial
projections [19] and compressed sensing [20] has been proposed. While effective in
terms of SNR [21], lengthy acquisitions remain a problem for 3D acquisitions at
moderate to high spatial and spectral resolutions. DIXON-type bSSFP (Balanced
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Steady-State Free Precession) and multi-echo acquisitions methods separate the *F
resonances based on their phase evolution [9][22]. These methods require the
acquisition of multiple echoes with increasing TE. This comes at the cost of increased
scan time, and decreased SNR and increased sensitivity to T2* effects and motion
with increasing TE.

As an alternative to acquisition-based methods, sensitivity encoding [23] includes
coil sensitivities and spectra in a linear model, which is subsequently solved by
pseudo-inversion. While artifact-free multicolor imaging was demonstrated, this
method is prone to noise and in this implementation requires multiple coil elements.
Finally, chemical shift artifacts can be resolved during image reconstruction. As
early as in the 1980s, deconvolution methods were proposed as an approach to
remove chemical shift image artifacts [24]. However, plain deconvolution in the
presence of noise results in noise amplification, thereby affecting image quality.
More advanced deconvolution algorithms, such as the reblurred deconvolution
method [25], have been proposed to overcome this issue. More recently, iterative
regularized deconvolution under the assumption of sparsity in the image domain as
an additional prior [26] has been introduced. However, these deconvolution
techniques do not allow discrimination of multiple fluorinated compounds because
the underlying models assume an equal MR spectrum for all ¥F signal.

Here, we introduce an alternative deconvolution approach that is based on cycling
of the readout gradient, allowing multicolor imaging of different F compounds with
complex and overlapping spectra. The method exploits the sparse nature of most F
images by iterative deconvolution, removes the chemical shift artifacts associated
with multiple peaks in the “F spectra, and thereby enables discrimination of “F
compounds in the resulting images. We show reliable separation and artifact
removal in numerical simulations and in phantoms, as well as in mice after
intramuscular injection of PFOB and PFCE nanoparticles and in mouse liver and
spleen at several time points after intravenous administration.

H.3 Methods

Our method is based on a sequential or interleaved acquisition of images with
different readout directions. While in our experiments we have used a 3D gradient
echo (GE) acquisition (see Table 1 for imaging parameters), this method can be
applied to 3D imaging (e.g. fast spin echo (FSE)), or any other sequences with
predictable chemical shift artifacts, optimized to SNR per unit time. Imaging
requires a broadband excitation to excite all peaks in the ¥F spectra and k-space
sampling method resulting in well-defined chemical shift artifacts.
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Figure 1. Schematic illustration of the technique to correct chemical shift
artifacts and separate multiple compounds in **F-MRI. (A) PFOB and PFCE at
different locations in the image. PFOB has a complex spectrum with several
resonances, whereas PFCE has a single resonance. (B) Two acquisitions with
readout in down-up and left-right directions (orange arrows), leading to chemical
shift artifacts from the multiple PFOB resonances in vertical and horizontal
direction, respectively. (C) The FLASH sequence diagrams describing the two
acquisitions with different readout directions .(D) The 2 acquisitions are combined
using the algorithm described, showing that PFOB and PFCE are separated and
chemical shift artifacts resolved.

A two compound - two measurement model

We illustrate the method by considering two F compounds with different resonance
spectra, i.e. perfluorooctyl bromide (PFOB) and perfluoro-15-crown-5-ether (PFCE),
in Figure 1A. PFOB has a complex “F spectrum with multiple resonance peaks
originating from 1 CF,Br, 1 CF;, and 6 CF, groups, whereas PFCE has a single peak
from 10 identical CF, groups at a different resonance frequency than those of PFOB
[17].

To spectrally un-mix the two compounds in MR imaging, at least two acquisitions
with different chemical shift artifact behavior are required, e.g. one with a readout
direction in the horizontal orientation and one with the readout in the vertical
direction. We will represent these measurements by the column vectors y, and y,,,
respectively. Let F be the Fourier sampling operator, and C, and C, the circular
convolution operators convolving an image with the spectrum of PFOB in horizontal
and vertical directions of frequency encoding, respectively. A single reconstructed
PFOB and PFCE image x; will thus contain chemical shift artifacts, described by
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X; = C; Xprog + Xprcp with i € {h,v}. @

Because PFCE has only a single peak which we center at 0 ppm, the sampling
convolution operator for PFCE is the identity operator I. The full measurement
model for two frequency encoding directions, horizontal h and vertical v, together

now reads
Yo\ _(F 0 (Ch 1) <fPFOB> ~
(}7v> B (0 F) C, 1) \Xprce 1 @
with 77 the noise contribution. Equation 2 can be generalized to
y=Mx+17, 3)

with M the full signal encoding matrix for both compounds and readout directions.
The method is illustrated in Figure 1.

Generalization of the measurement model

The encoding matrix M can be extended in a straightforward way to include more
YF-containing compounds and more measurements. One needs at least as many
measurements as the number of “F-compounds to solve the reconstruction problem.
A higher number of measurements would improve the robustness of the
reconstruction. A generalized form of Eq. 2 with y measurements and x compounds

reads
V1 F o« 0\/C1 - Cim\ /Xprcs
_ =(: - : : ) : +17, (4)
Vn 0 - F/\Cvm - Cyum/) \Xppcm

where y, are the N different directions acquired, and xprcm are the M different F F-
containing compounds. C, n, are the expected spectra for compounds m and readout
n. These can be varied by changing readout direction, like we have done in this
paper, but also by e.g. modifying the readout bandwidth. The acquisitions y, need
not be full k-space acquisitions, but can be undersampled to accommodate parallel
imaging or compressed sensing reconstructions.

Image reconstruction

Equation 3 can be solved by direct inversion, i.e. multiplying the measurement data
by the pseudo-inverse of the signal encoding matrix M*, according to

X=Mjy. (5)
However, this approach will induce noise amplification, even for very low noise

levels [25]. To prevent this, Eq. 3 can be modified to a least absolute shrinkage and
selection operator (LASSO)

£=argmin|ly-Mz||,+ AW z||_, (6)
X
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where W is an image transform, such as a wavelet transform or a total-variation
operator, and A a regularization parameter which controls the balance between
sparsity and data consistency.
In this study, the wavelet transform was used, and the equation was solved with a
non-linear conjugate gradient algorithm [27]. In addition to increased noise
robustness, the LASSO method allows for flexibility in k-space acquisition, enabling
advanced sampling schemes, such as random undersampling. As such, our approach
is also fully compatible with compressed sensing acceleration.

Estimation of the convolution operator

The convolution operator (point-spread function) of PFOB is

NR NL.

C, =Zaj 5 )

Jj=1
where NR is the number of resonances, q; is the relative amplitude and §; (Hz) the
chemical shift of resonance peak j, BW (Hz) the readout bandwidth, and N; the
matrix size in readout direction. PFOB has 7 resonances, but 3 of them are close and
their relative chemical shift is generally smaller than a pixel. Therefore, we have
used NR =5 for PFOB in this study. The relative amplitudes and pixel shifts of C; can
be calculated from the theoretical spectrum or measured in a phantom with a pure
compound.

Numerical simulation of noise robustness

The influence of noise on the ability of our algorithm to reconstruct and separate the
signal of two YF-containing nanoemulsions was investigated by numerical
simulations in Matlab (The MathWorks, Inc., Natick, Massachusetts, United States).
A two-dimensional image of 64x64 pixels, containing two elliptical PFOB and two
elliptical PFCE phantoms, was used. The PFOB chemical shift artifacts were
calculated as in Equation 7. Two readout directions were simulated, and Gaussian
noise was added to the fully sampled k-space. Reconstruction was performed in two
ways: 1) a simple deconvolution, by multiplying the k-space with the pseudo-inverse
of M, as in equation 5; 2) minimization of Equation 6 with a non-linear conjugate
gradient algorithm. Simulations were performed for a range of noise inputs, with
zero mean and a standard deviation ranging from 0 to 20 a.u., (one-fifth of the
maximum intensity of the two brighest ellipses), corresponding to the lowest SNR=5.
For all simulated noise values, the mean intensity of the reconstructed images was
tested in three regions-of-interest (ROI): i) a ROI in the PFOB phantom,; ii) a ROI in
the PFCE phantom; iii) a ROI in a noise-only region of the image.
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Imaging

All imaging was performed on a 7T pre-clinical scanner (Bruker Biospec 70/30,
Billerica, MA) using a dedicated 'H/”F volume coil with a 4 cm inner diameter (MR
Coils, Zaltbommel, the Netherlands). The imaging frequency was centered on the
PFCE peak in the MR spectrum before two or four sets of F images were acquired
using a 3D fast-low angle shot (FLASH) sequence. In the case of two readout
directions, half of the data was acquired with readout direction left-to-right, while
the other half was acquired with readout direction foot-to-head. In the case of four
directions, additional right-to-left, and head-to-foot readouts were acquired.

Phantom °F MR

Six 200 pL Eppendorf tubes with a mixture of pure PFOB/PFCE oils (Avanti lipids
Alabaster, AL, USA) were prepared by linearly varying the relative volume in the
mixtures in a total volume of 100 ul(0/100; 20/80; 40/60; 60/40; 80/20; 100/0 mL PFOB/
mL PFCE respectively). These tubes were positioned in a circular phantom set up,
also containing an Eppendorf tube filled with water for localization by 'H imaging.
Imaging was performed with the scan parameters reported in Table 1. The mean and
standard deviation of the intensities in the six phantoms in an ROI covering the entire
tube was calculated in the resulting images. Means and standard deviations were
then normalized to the mean intensities of the pure compounds.

/n vivo ®F MRI

All experiments were performed in accordance with protocols approved by the
Mount Sinai Animal Care and Utilization Committee.

Synthesis of the PFOB- and PFCE-containing
nanoemulsions

Materials:

PFOB, PFCE, DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), and DPSE-
PEGa000 (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
[methoxy(polyethyleneglycol)-2000]) were obtained from Avanti lipids (Alabaster,
AL, USA), chloroform was obtained from Sigma Aldrich (St Louis, MO, USA), and PBS
from Gibco (Grand Island, NY, USA). Vivaspin (20 mL variant) centrifugal filters were
purchased from Sartorius (Gottingen, Germany). Dynamic light scattering
measurements were performed on a ZetaPals analyzer (Brookhaven Instrument
corp., Holtsville, NY). Sonication was performed using a 150 V/T ultrasonic
homogenizer working at 30% power output.
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Experimental procedure:

Nanoemulsions were made by dissolving 1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC; 36.17 mg, 53.4 pmol) and 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[amino(polyethyleneglycol)-2000] (DPSE-PEGao0; 63.8 mg,
22.86 umol) in chloroform (~2 mL) and slowly dripping this in PBS (10 mL) at 80 °C
under vigorous stirring. After all chloroform was added, the viscous solution was
allowed to cool to room temperature and additional PBS added to compensate for
evaporation. The lipid solution (1 mL) was combined with PBS (9 mL) in a Falcon
tube (15 mL), and either (PFOB or PFCE (320 uL) added. This solution was
subsequently sonicated using a tip sonicator (30 minutes) while cooled in an ice bath.
Large precipitates were removed by carefully decanting the solution. The particles
were concentrated by centrifugal filtration (1 MDa molecular weight cut-off) to
approximately 1 mL. Samples for dynamic light scattering measurements were
prepared by diluting the nanoparticles with PBS. The mean of the number average
size distribution was typically 160-180 nm.

Phantom Mouse
Intramuscular Intravascular
19F 19F lH 19F 1H

Sequence 3D FLASH 3D FLASH 3D FLASH 3DFLASH 3D FLASH

Readout FH, HF, LR, FH&LR FH FH & LR FH
direction RL

Acquisition 128x128x128 128x128x128 128x128x128 64x64x64 128x128x128
matrix

Field of 40x40x40 40x40x40 40x40x40 40x40x40 40x40x40
view (mm?)

TE (ms) 3.03 3.03 2.76 2.76 2.76
TR (ms) 20 20 20 20 20

Flip angle 35° 25° 25° 25° 25°
Excitation 33000 33000 33000 33000 33000
BW (Hz)

Receiver 44600 44600 44600 44600 44600
BW (Hz)

Number of 4 6 2 24 4
Averages

Scan time 4x 21mSls 2x 32m46s 10mSSs 2x 32m46s 10mSSs

Table 1. Scan parameters.
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Intramuscular injection

A male C57BL/6 mouse was injected with the PFCE nanoemulsion in the right upper
leg and with the PFOB nanoemulsion in both left and right upper legs. The animal
was anesthetized with 1.5% isoflurane. Subsequently, 'H and *F MRI was performed
using the parameters described in Table 1. After image reconstruction, the PFCE and
PFOB images were color-coded and overlaid on the proton scan in Matlab.

Intravascular injection

Three male C57BL/6 mice were anesthetized with 1.5% isoflurane and underwent 3
longitudinal imaging sessions 24 hours apart, after intravenous injections of PFCE
and PFOB containing nanoemulsions. At the beginning of each imaging session, 'H
images were acquired using a FLASH 3D sequence. Relevant scan parameters can be
found in Table 1. Prior to the firstimaging session, PFCE nanoemulsion (200 uL) was
injected through a lateral tail vein. Twenty-four hours afterward, the mice were
injected with PFOB nanoemulsion (200 pL) and immediately imaged using the same
protocol. The third and final imaging session was performed 24 hours later (48 hours
after PFCE nanoemulsion injection, and 24 hours after PFOB nanoemulsion
injection). After image reconstruction, a coronal slice was chosen that contained
both liver and spleen tissue. The liver and spleen were segmented and the mean
image intensity was determined. The PFCE and PFOB images were colored and
overlaid on the proton scan in Matlab.

Reconstruction and post-processing

Translation errors may occur when the PFCE resonance is not exactly centered at 0
ppm. Prior to spectral un-mixing, the images with different readout directions were
three-dimensionally co-registered using Matlab’s imregister, to quantify the
translation mismatch. A regular step gradient descent algorithm was used for
imregister, with a maximum number of iterations of 100, and a relaxation factor of
0.5. The translation error was subsequently corrected in k-space. All data in this
manuscript were reconstructed with the conjugate gradient algorithm, using a value
of 1=0.01 and 75 iterations. These reconstruction parameters were empirically
selected for optimal SNR, while limiting oversmoothing. The peak heights in the
convolution spectrum (Equation 7) were based on the relative amplitudes of a PFOB
phantom scanned with the same sequence parameters. After reconstruction, F
images were color-coded and overlaid on proton images. Thresholding of the *F
signal was performed by setting all signal below the noise level to zero.
Reconstruction code and example data are available online at
https://github.com/amc-mri/19F-multicolor.



An iterative sparse deconvolution method for simultaneous multicolor 19F-MRI of multiple contrast agents | 91

H.4 Results
A B C

Simulated Simple deconvolution
measurement (pseudo-inverse)
READOUT 1 PFCE PFCE

Sparse deconvolution

Figure 2. Simulation of PFOB and PFCE signal separation and chemical shift
artifact removal. (A) Noisy acquisitions of 2 PFOB and 2 PFCE hot spots with
readout in vertical and horizontal directions (orange arrows). The chemical shift
artifacts from PFOB are apparent. (B) A pseudo-inverse reconstruction effectively
separates the two compounds, but results in noise amplification. (C) Our sparse
deconvolution method achieves excellent signal separation, while preserving signal-
to-noise.

Numerical simulations

Numerical simulations were performed for an image containing two PFOB and two
PFCE hot spots (Figure 2). The regular Fourier transform images for vertical and
horizontal readout directions contain chemical shift artifacts for the PFOB (Figure
2A). Reconstruction was performed either as multiplication with the pseudo-inverse
(Figure 2B) or by using the LASSO with a conjugate gradient (CG) (Figure 2C). Both
methods successfully separated the two compounds and removed the chemical shift
artifacts for PFOB. However, the pseudo-inverse reconstruction resulted in visually
more noisy images as compared to CG reconstruction. Figure 3 presents the results
for a simulation with a range of noise input images. Over the whole range of SNR
values, the discrimination of the two compounds remained successful, there was no
residual PFCE signal in the PFOB images since the signal at the location of the PFCE
hot spots was equal to background signal. Similarly, no residual PFOB signal was
observed in the PFCE images. For the CG method the background signal (noise)
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essentially followed the nominal input SNR values. However, the pseudo-inverse
method leads to significant noise amplification, particularly for the PFOB images.
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Figure 3. Simulated results for SNR levels between 5 and 20. A) Red triangles
represent the mean signal in a ROI at the location of the PFOB phantom, yellow
circles represent the mean signal in a ROI at the location of the PFCE phantom,
whereas the blue dashed line indicates the mean signal intensity in noise ROI in the
background. Both PFOB and PFCE mean signal intensities are relatively constant
over the range of SNR values and both methods achieve good signal separation.
There is no residual PFOB signal in the PFCE images (top two graphs), since the
residual signal in the PFOB ROI (red triangles) is equal to the mean noise signal
(blue dashed line). The same holds for residual PFCE in the PFOB image (bottom
two graphs). However, noise levels with the new sparse-deconvolution method are
much lower compared to simple pseudo-inverse reconstruction. B) Average mean
squared-error per pixel for the separated PFOB and PFCE images. Error levels are
much lower for sparse deconvolution than for simple deconvolution.

Phantom °F MR

Figure 4A shows the linear Fourier transform reconstructions of the PFOB/PFCE
mixture phantoms for the acquisitions with readout in 4 different directions. Our CG
method successfully discriminated PFCE and PFOB in the different phantoms and
removed the chemical shift artifacts (Figure 4B). The relative PFOB and PFCE signal
intensities in the images were consistent with the mixture ratios (Figure 4C, D). The

coefficients of variations (r?) were 0.966 and 0.990 for PFOB and PFCE respectively.
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Figure 4. Phantom measurement of six Eppendorf tubes containing
PFOB/PFCE with varying volume ratios. (A) **F-MRI of the 6 phantoms with
readout in 4 different directions (orange arrows). (B) Reconstructions of PFOB and
PFCE signals. (C) Normalized mean signal intensities and standard deviation in the
phantoms as function of PFCE and PFOB volume contributions. The dashed black
line indicates a linear increase from 0 to 1. The coefficients of variation for PFOB
and PFCE were r?=0.966 and r?=0.990, respectively.

Intramuscular injection

Figure 5 displays an axial, sagittal, and coronal slice, as well as magnifications,
through the pockets of PFOB and PFCE nanoemulsions, which were injected in the
mouse muscle. The ¥F images resulting from PFOB and PFCE are shown as green
and red overlays on the 'H MR images. Our CG method successfully removed the
chemical shift artifacts from PFOB and separated the PFOB and PFCE signals. The
pockets of nanoemulstions are also visible on the 'H MR images as darker regions.
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Figure 5. F-MRI after intramuscular injections of PFOB and PFCE
nanoemulsions. Reconstructed PFOB (green) and PFCE (red) signals (arbitrary
units) are overlaid on the 1H-MRI anatomical image. PFOB was injected on both
sides and PFCE in the right upper leg only.
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Figure 6. In vivo *F MRI of a mouse injected with PFCE nanoemulsion at
t=0 hours and PFOB nanoemulsion at t=24 hours. PFOB and PFCE signal
are reconstructed and overlaid on a 'H-MRI anatomical image. Color bars
indicate PFOB (green) and PFCE (red) signal intensity in arbitrary units. The
nanoemulsions accumulate mainly in the spleen (arrow head marked ‘a’) and
to a lesser extent in liver (arrow head marked ‘b’). At 48 hours accumulation
in bone marrow (arrow heads marked ‘c’) is also observed.

Intravascular injection

Images of a representative mouse which received intravascular injections of PFCE
and PFOB nanoemulsions are shown in Figure 6. Again, “F signal resulting from
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PFOB and PFCE are shown as green and red overlays on 'H MRI anatomical images.
After injection, both PFCE and PFOB accumulated in liver and mainly spleen over
time. PFCE was injected at day 0 prior to the first imaging session and PFOB emulsion
one day later. Therefore, at day 0, only PFCE signal was observed, whereas PFOB
appears at the 24-hour time point. At 48 hours, PFCE signal was also observed in the
bone marrow in the spine and hip bones.

The mean F PFOB and PFCE signal intensities of the spleen and liver of the three
mice as function of time are plotted in Figure 7. The PFCE signal in both organs
increased after the injection time, between day 0 and day 1, and remained relatively
constant between day 1 and day 2. In contrast, the PFOB signal, which was injected
24 hours later, was not visible above the noise level at day 0 and increased between
day 1 and day 2.
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Figure 7. Mean image intensities in liver (yellow diamonds) and spleen (blue
circles) of the three measured mice. Intensities are clustered closely together both
in the PFCE (panel A) as in the PFOB images (panel B), for similar time points and
organs. The increase in intensity over time corresponds to the IV injection times:
PFOB image intensity increases overall between 24 to 48 hours, while PFCE
intensity remains relatively constant between these time points.
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H.5 Discussion

We have introduced a novel deconvolution approach for multicolor imaging of
different YF compounds with complex spectra. Our method exploits the sparse
nature of most ¥F images by iterative sparse deconvolution, removes the chemical
shift artifacts associated with multiple peaks in the “F spectra, and efficiently
separates multiple F compounds in the images. We have also successfully applied
this technique in in vivo small animal MR imaging.

We showed reliable separation and chemical shift artifact removal in numerical
simulations. We found that, even for measurements with an SNR as low as 5, the
separation of compounds was successful and signal intensities remained constant
over SNR values ranging from 5 to 20, although background signal (noise) for the
PFOB with the complex spectrum was consistently higher than for the single-peak
PFCE. Nevertheless, this shows that the LASSO reconstruction algorithm, which
enforces sparsity in the images, efficiently regularizes the reconstruction to avoid
noise amplification while preserving relative signal intensity and separation. We can
conclude that this method is robust at low SNRs and does not lead to noise
amplification, which is important since F-MRI is often signal deprived.

The phantom experiments (Figure 4) demonstrated that chemical shift artifacts are
successfully removed and relative concentrations of PFOB and PFCE accurately
determined. Relative signal intensities of both PFOB and PFCE scaled linearly with
concentrations, although the standard deviation of the PFOB signal was somewhat
higher than that of PFCE. This can be explained partly by lower signal of PFOB as
compared to PFCE, due to differences in T1, T2 and ¥F atom concentration, but also
by the higher residual background signal (noise-amplification [25]) associated with
the reconstruction of the PFOB signal (Figure 3). The degree of noise amplification
due to the deconvolution is controlled by the regularization parameter 4, and is a
trade-off between denoising and over smoothing.

Intramuscular injections of PFOB and PFCE nanoemulsions were used to test the
acquisition and reconstruction protocol in an in vivo setting. The pockets of PFOB
and PFCE in the muscle could be readily identified and separated (Figure 5). The
injection pockets were also seen on the anatomical T1-weighted proton images as
signal voids. These signal voids co-localized well with the reconstructed PFOB and
PFCE hot spots.

Finally, the applicability of our approach was put to the test in three mice which were
intravenously injected with PFCE and PFOB nanoemulsions. These experiments
indeed demonstrated that PFOB and PFCE nanoemulsion accumulations can be
separately imaged, even when both compounds are present in the same organs.
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Technical considerations

Although we require multiple acquisitions with different readout gradient directions,
our multicolor ¥F-MRI experiment does not lead to increased acquisition times.
Since YF-MRI generally involves the detection and localization of low concentrations
of “F-containing compounds, many signal averages are required to achieve
acceptable SNR. The measurements in different directions can therefore be
distributed over the averages, ensuring that the total acquisition time remains the
same as the normal sequence and the resulting image SNR is not affected. SNR can
even be improved by an optimized sparse k-space sampling and compressed sensing
reconstruction strategy [28]. Our approach can be applied with different sequences,
e.g. gradient-echo or spin-echo, provided that the multiple F resonances lead to
predictable and non-identical point spread functions.

We have neglected phase in our deconvolution model, since no signal cancellations
issues were noticed. Also, we think that the deconvolution method is robust to
incidental phase-related signal cancellation because the method can rely on the 7
resonances in the PFOB spectrum. Although the introduction of phase would be
possible, a magnitude approach was chosen since phase images are much more
prone to artifacts resulting from global and local field inhomogeneities.

Our experiments started with carefully centering the PFCE resonance frequency,
which resulted in minimal (and often absent) misalignment between different
readout directions. Any misalignment was then corrected with an image-based
registration algorithm. In case a simple registration fails, the registration can be
included in the reconstruction algorithm in a so-called ‘blind deconvolution method’,
which jointly optimizes the deconvolution spectrum as well as the images. In that
case, misregistration between images is also included in the optimization.

Although the SNR efficiency of the FLASH sequence is not optimal compared to more
SNR-efficient sequences like bSSFP, particularly when T1 and T2 are long, we believe
our approach has distinct advantages that justify the use of the FLASH sequence. We
collect all the signal from the different resonances in a single acquisition; the
deconvolution has the effect of ‘collapsing’ the signal of all peaks into one. Moreover,
the FLASH sequence is relatively robust to Bo and Bl inhomogeneities and
movement, which is a big advantage for 3D mouse abdominal imaging. While a
regular FLASH sequence may display the inhomogeneity artifacts, the relatively low
matrix size in combination with an intermediate acquisition bandwidth limits pixel-
shifts. In practice, shimming in the mouse was adequate and we did not encounter
problems. Even in the case of the plastic Eppendorf phantoms, which are difficult to
shim and can induce considerable B0 inhomogeneities, our technique performed
well. Bl inhomogeneities will have the usual influence on flip-angle and signal
intensity, but this will not influence the performance of the deconvolution method.
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On the other hand, bSSFP is experimentally difficult at high magnetic fields in
mouse, and artifacts in the hot spot ¥F images will be difficult to recognize.
Moreover, bSSFP is not balanced for off-resonance PFOB peaks, adding complexity
to the SNR behavior.

Previous work has demonstrated the possibility and usefulness of multicolor “F
imaging. Compared to multicolor imaging with selective excitation [14], [15], our
method does not require multiple scans or acquisition of multiple echoes. SNR is
maximized because we collect all the signal from the different resonances in a single
acquisition and distribute the different readout directions over the averages.
Chemical shift imaging has been proposed [17], [18], however this method suffers
from long acquisition times due to the need for an additional phase-encoding
dimension. Even accelerated CSI [19], [20] will ultimately be time-limited with
excessively long scan times for high-resolution 3D imaging.

Chemical shift encoding [22], uses a Dixon-like approach to separate multiple PFC
compounds and remove artefacts. This requires acquisition of multiple echoes with
varying TE. However, our approach is sequence independent, and does not suffer
from T2* effects.

The usage of a multiple-measurement model is closely related to the SENSE-like coil
sensitivity-based decoupling [23]. Here we have demonstrated deconvolution with
different readout directions, but if available, acquisition with multiple receive coils
can also be included in the reconstruction model.

Future work will focus on comparing our method to other multicolor F techniques.
We have used a volume coil in this study, but the algorithm does not put constraints
on coil type. Multi-coil arrays could further improve SNR.

This method of separating “F signal can be integrated into recently adapted
compressed sensing techniques [20][30]. The here presented approach for multicolor
YF-MRI is fully compatible with parallel imaging and k-space undersampling and
future work will focus on this application. More recently, machine learning (ML)
techniques have been used to remove ghosts in spectroscopy [31]. In a similar vein,
ML methods could be developed for the purposes of multicolor YF-MRI artifact
removal and denoising.

Our experiments were designed with either two or four different readout directions.
While keeping the acquisition time the same, one can increase the number of
readout directions and reduce the number of averages per direction. We think that
it is beneficial to use more readout directions (with less averages) to mitigate
direction-related imperfections due to translation, motion, or gradient
imperfections. On the other hand, the SNR per readout should be high enough to
distinguish the chemical-shifted F resonances. The optimal number of directions
therefore needs to be balanced with SNR, which could be a topic of future studies
We expect our methodology to find application in non-invasive readout of tissue
immune cells composition. In mouse studies, “F multicolor MRI may replace
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commonly used ex vivo immunological assays, such as flow cytometry, and facilitate
longitudinal in vivo studies. The methods may be translated to clinical scanners in a
straightforward way, since it requires merely a standard 3D FLASH sequence with
different readout directions. Of course, the clinical system needs to be equipped with
YF coils, ¥F send and receive capability, and multi-nuclear software. At 3T, the lower
field strength will resultin decreased detection sensitivity, which might be mitigated
with improved sampling strategies. Also, the appropriate regulatory approval is
required for the safe use of specific “F compounds in humans. If these conditions
are met, we believe that our approach can be a valuable addition to F-labeled cell
tracking studies in humans.

H.6 Conclusion

We successfully implemented an iterative deconvolution method for multicolor “F-
MRI that is applicable in all sequences exhibiting well-defined chemical shift
artifacts. In phantoms as well as in mice in vivo reliable chemical shift artifact
removal and separation of PFCE and PFOB compounds was achieved. Our technique
efficiently discriminates different “F compounds and facilitates in vivo MRI
localization and quantification of multiple *F compounds.
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6.1 Abstract

Introduction: Anatomical (static) MRI is the most useful imaging technique
for evaluation and assessment of internal derangement of the knee, but it
does not provide dynamic information and does not allow to study the
interaction of the different tissues during motion. Since knee pain is often
only experienced during dynamic tasks, the ability to obtain four-
dimensional (4D) images of the knee during motion could improve diagnosis
and provide a deeper understanding of the knee joint. In this work, we
present a novel approach for dynamic, high-resolution 4D imaging of the
freely moving knee without a need for external triggering.

Methods: The dominant knee of 5 healthy volunteers was scanned during a
flexion/extension task. To evaluate the effects of non-uniform motion and
poor coordination skills on the quality of the reconstructed images, we
performed a comparison between fully free movement and movement
instructed by a visual cue. The trigger signal for self-gating was extracted
using Principal Component Analysis (PCA), and the images were
reconstructed using a parallel imaging and compressed sensing
reconstruction pipeline. The reconstructed 4D movies were scored for image
quality and used to derive bone kinematics through image registration.
Results: Using our method, we were able to obtain 4D high-resolution movies
of the knee without the need for external triggering hardware. The movies
obtained with and without instructions did not significantly differ in terms of
image scoring and quantitative values for tibiofemoral kinematics.
Conclusions: Our method showed to be robust to extract self-gating signal
even for uninstructed motion. This can make the technique suitable for
patients that due to pain may find difficult to exactly comply with
instructions. Furthermore, bone kinematics can be derived from accelerated
MRI without the need for additional hardware for triggering.
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6.2 Introduction

hile anatomical MRI is the most commonly used imaging technique for

evaluation and assessment of the knee joint, it does not provide dynamic

information and therefore does not allow to study the interaction of the
different tissues during motion tasks.
The normal mechanism of motion in the tibiofemoral joint depends on both static
and dynamic factors. Dynamic interaction between the different tissues during
motion plays a fundamental role in the stability of the knee joint. For instance, one of
the main dynamic stabilizers of the patella is the quadriceps muscle group. Due to the
fundamental role of the musculature in the biomechanical behavior of the patella,
active quadriceps contraction is required to get a realistic assessment. This implies
that a series of static images is not appropriate for describing the real kinematic
behavior. The added value of dynamic imaging has been shown by d’Entremont et
al.!, who compared dynamically acquired MRI datasets with a series of static scans at
different knee positions, and found significant differences in kinematic parameters.
Furthermore, dynamic MRI of the musculoskeletal system could provide information
beyond static imaging to understand the cause of pain. Pain is often absent in static
conditions and only present during a specific movement, as it is often the case with
impingements for example. The ability to perform this specific movement inside the
MRI scanner could provide the radiologist with additional tools to understand the
cause of pain and adapt treatment accordingly*>.
Fluoroscopy* has been proposed as a powerful method to study bone kinematics.
Unlike MRI, it can provide bone kinematics under physiologically relevant loading
conditions and during daily motion tasks. However, since it requires ionizing
radiation, it is not an ideal candidate for longitudinal studies. Furthermore,
fluoroscopy provides very limited soft tissue contrast, thus preventing the study of
the interaction of the different soft tissue structures during motion.
MRI has been proposed as an alternative technique to assess tibiofemoral kinematic.
Unlike fluoroscopy, it does not make use of ionizing radiation and allows for
visualization of soft tissues such as cartilage and muscles. Draper et al.>® have
assessed patellar tilt in patellofemoral dislocation using single slice real-time MRI.
While a real-time approach is desirable, it does not allow for volumetric imaging and
thus does not provide 3-dimensional information. Joint motion can also be visualized
by Phase Contrast (PC)-CINE (synchronized) techniques’’. These methods rely on the
acquisitions of a high-resolution static scans and 3 single-slice dynamic scans. While
bone kinematics can be accurately determined using this approach, it is intrinsically
unsuitable for 3D visualization of soft tissue motion. Furthermore, since PC
techniques encode velocity, they require integration to obtain displacement, which is
a procedure prone to error.
Kaiser et al. have developed a 4D MRI imaging technique to study tibiofemoral
kinematic in healthy subjects®and patients after Anterior Cruciate Ligaments
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reconstruction (ACL reconstruction)'!. After ACL reconstruction altered kinematic
parameters were measured in comparison to the contralateral healthy knee.
Abnormal kinematic parameters are believed to induce abnormal cartilage loading
patterns, which could be a primary cause of osteoarthritis. Therefore, there is great
clinical interest in tools to quantify knee kinematic parameter. Kaiser et al. acquired
data using a 3D radial k-space encoding scheme. During data acquisition, the knee
angle was constantly externally monitored and this information was used for
retrospective sorting of the images into a desired number of 3D frames™.

3D radial methods offer highly incoherent sampling of k-space, which is highly
beneficial for compressed sensing reconstruction, and it is inherently insensitive to
motion artifacts within a given 3D time frame. However, eddy current related
artifacts pose a challenge and the image reconstruction is a computationally
expensive process.

Stack-of-stars is an alternative 3D MRI acquisition scheme that consists of a radial
sampling pattern in the ky - ky plane, and a Cartesian encoding in the k, direction.
Like 3D radial sampling, it is robust to motion artifacts’ and appropriate for
undersampling and compressed sensing reconstruction. The stack-of-stars has some
added benefits compared to 3D radial sampling: a reduced sampling time (pi/2 times
fewer sampling points are required for a fully sampled image), and easier correction
strategies for eddy currents effects’. Furthermore, the Cartesian stack direction
enables different slices to be reconstructed in parallel, therefore greatly reducing
computation times. In non-Cartesian imaging, each readout for the central slice
encode passes through the center of k-space, thus facilitating retrospective self-gating
“and eliminating the need for external sensors and/or navigators.

Radial trajectories can be acquired following a golden angle ordering scheme?®,
where the angle between two consecutive radial spokes is increased by 111.246°. This
approach allows to obtain an almost uniform coverage of k-space for each given
number of consecutive spokes, which has the advantage of allowing continuous data
acquisition and retrospective sorting of the spokes into several motion frames. The
uniform distribution of the spokes using a golden angle ordering scheme allows for
reconstruction of an almost arbitrary number of time frames, thus offering high
flexibility in terms of temporal resolution.

For dynamic MRI studies, the knee motion can either be externally imposed, making
it less suitable to assess contributions from active muscle contraction in the
kinematics !, or be based on visual/audio instructions, synchronized with an external
TTL (transistor-transistor logic) trigger. The latter approach heavily relies on the
perfect execution of the motion task, which becomes problematic if the subject is not
able to comply with instructions due to poor coordination skills or pain. An
alternative approach is the use of an external sensor to continuously monitor the
position of the leg in the scanner®. However, this requires additional hardware which
is not standard available with clinical MRI scanners.

In this study, we have developed a self-gated 4D stack-of-stars protocol to facilitate 4D
imaging of the knee during uninstructed motion. We have performed measurements
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in healthy volunteers during synchronized as well as free uninstructed movement of
the knee, compared image quality, and quantified the derived tibiofemoral
kinematics. In addition to dynamic bone imaging, we show feasibility for dynamic
visualization of soft tissue structures in the knee.

6.2 Methods

Subjects

We collected images of the dominant knee of 5 healthy female volunteers (age 28+1
y/o, weight 61+6 kg, BMI=22+3 kg/m?). None of the subjects had a history of knee
injury or knee pain. We received informed consent from all the subjects prior to the
study, according to our institution’s regulations.

Knee motion

The subjects were placed supine on the scanner table, with a triangular-shaped
support underneath their knee, and they were asked to perform a knee
flexion/extension task. Two sand bags were placed laterally on each side of the knee,
in order to prevent sliding and rotation of the knee during the motion task. Three
different experiments were performed for each subject: in the first two experiments,
the subjects were asked to flex and extend their knee for about 5 minutes at a
frequency of 0.67 Hz. In order to improve the repeatability and consistency of the
motion task, the subjects were shown a video of a ball bouncing up and down with
the required frequency while inside the scanner, and asked to follow the movement
of the ball (“with instructions”). Prior to the start of the experiments, subjects were
instructed to always touch the support when in the mostly flexed position, and to
extend their knees until the edge of the bore would be reached. Consequently, the
amount of knee flexion was dependent on the size of the subject, but was kept
relatively constant between different repetitions of the motion task for each subject.
In order to simulate the effect of poor motor coordination skills on the results, a third
experiment was performed without constraints on the frequency of the motion. For
this experiment, no instruction was shown and the subjects were asked to move at
their preferred pace (“without instructions”). For all experiments, the subjects flexed
and extended their knees without any external weight.

Image acquisition

MRI was performed with a 3T Philips Ingenia scanner (Philips, Best, The
Netherlands). All acquisitions were performed using a custom built 15 channel
flexible coil array (MR Coils BV, Zaltbommel, The Netherlands). The coil array (3x5)
was placed around the knee with Velcro straps and centered around the patella. The
scan protocol consisted of 5 different datasets: 2 high-resolution anatomical datasets
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to be used for segmentation, and 3 dynamic scans during the knee-movement tasks
previously described.

The first high-resolution anatomical scan was a Turbo Spin Echo (TSE) scan with
proton density contrast (TR=1000 ms and TE=29.9 ms, scan time=8 minutes). The
second anatomical scan was a Fast Field Echo (FFE) with ProSet fat suppression
(TR=10 ms, TE=4.5 ms, scan time 6 minutes). Both scans had 352x352x230 voxels of
0.68x0.68x0.7 mm®.

The dynamic scans were obtained using a golden angle stack-of-stars sequence. A
spoiled gradient echo sequence was used for data acquisition. Sequence parameters
were: matrix size = 160x160x47, voxel size=1.5x1.5x3 mm?, FOV=240x240x141 mm?,
TE/TR=1.3/3.9 ms. For Experiment 1 a flip angle of 20° was used, to obtain high SNR
from the bones. For Experiment 2 the same imaging sequence was used, with a flip
angle of 5° to enhance signal from collagen-rich structures such as ligaments and
cartilage. For Experiment 3 (movement “without instructions”) a flip angle of 20° was
used. The acquisition was performed with 47 radial stacks with 1.3x slice
oversampling. A zy ordering approach was used for the spoke acquisition, meaning
that for each radial angle, spokes from all stacks were acquired before advancing to
the next radial angle. A total of 1410 spokes was acquired for each stack, with a tiny
golden angle increment of 20.89°. A tiny golden angle increment was used instead of
111.246° in order to reduce eddy current effects, which could lead to artifacts in the
reconstructed images '¢. Data were continuously acquired during 5min20s of knee
flexion/extension. All static and dynamic scans were acquired with readout in the
sagittal orientation.

Image reconstruction

The main steps used in the reconstruction process are summarized in Figure 1. Raw
scan data was exported and post-processed with MRecon (Gyrotools, Ziirich) and
Matlab (The Mathworks Inc.). We applied a coil channel compression routine,
reducing the number of channels from 24 (15 ch flexible coil + 8 ch embedded in the
scanner table + body coil) to 10 virtual channels”. Eddy current correction was
performed offline’®®. An inverse FFT was applied along the fully sampled z-
dimension, resulting in a set of 2D k-spaces which could be reconstructed in
parallel™.

The synchronization signal required for self-gating was derived from the center of k-
space after FFT transform in the z-dimension. A principal component analysis (PCA)
was calculated on the data matrix from the k-space center of the middle three slices
of 10 channels (columns) and 1410 spokes (rows). The matrix on which PCA was
performed had size 301410, corresponding to 3 slices in 10 channels (rows) and1410
radial spokes (columns). All principal components were analyzed. We selected the
principal components with the highest signal power in the frequency bands [0.6-0.75]
Hz, and [0.45-0.9] Hz for the instructed and non-instructed motion respectively™.
Next, the self-gating signal was filtered with a band-pass filter to suppress additional
periodic signals not of interest (such as the rotational frequency in k-space). The



Accelerated 4D self-gated MRI of tibiofemoral kinematics | 109

cutoff frequencies for the band-pass filter were the upper and lower values of the
corresponding frequency bands.

Subsequently, a peak-finding algorithm was applied to the filtered self-gating signal
to define a fixed time-point in each motion cycle. This was used to sort the measured
spokes into 20 motion states, each with an equal number of k-space spokes. This
resulted in 20 k-space frames containing 70 randomly angled spokes, which
corresponds to an undersampling factor of 3.59 (with respect to a fully sampled radial
acquisition).

A parallel-imaging compressed-sensing reconstruction was performed using the
BART toolbox [DOI: https://github.com/mrirecon/bart/releases/tag/v0.3.01]. Relevant
parameters were: total-variation L1-regularization 0.01 (temporal and three spatial
dimensions) and 100 iterations. Reconstructions were performed in parallel for all
slices. Dynamic sensitivity maps used for the reconstruction were estimated using the
ESPIRIT method Y. Sensitivity map estimation was performed for each dynamic
frame independently, based on a sliding windows approach, in which the sensitivity
map of frame m was constructed using k-lines from frame m-1, m, and m+1. The
average reconstruction time for a dataset was 3 hours on a server with two Intel Xeon
E5-2690 processors and 256GB RAM. The reconstruction resulted in a set of 20 3D
images for each single flexion extension cycle.

Image scoring

The movies obtained with and without instructions (Experiment 1 and Experiment 3)
were scored in a blinded fashion by two independent MSK MR imaging experts for
sharpness, contrast, bone visibility, fluency of motion, and presence of artifacts. The
scores were assigned on a scale from 0 to 3, where 0 was insufficient and 3 diagnostic
quality. One-way ANCOVA was used to compare the scoring obtained for the movies
with instructions and without instructions. The reviewer was set as a covariate and
p<0.05 was considered to be significant

Image segmentation

The femur and the tibia of the 5 volunteers were segmented from the high resolution
FFE scan using a semiautomatic algorithm based on region growing (ITK-snap®). The
contours were manually adjusted where necessary using the high-resolution proton
density weighted scan as an additional reference.
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Figure 1. Schematic overview of the image acquisition and reconstruction
pipeline. All images were acquired using a 15ch custom-built coil that could be
wrapped around the subject’s knee, offering high signal-to-noise ratio (SNR) without
hindering the flexion/extension range of motion (Figure a). A stack-of-stars sampling
scheme was used (Figure b). The 3 center stacks were used to determine the gating
signal, based on Principal Component Analysis. The five first principal components
are shown in Figure ¢, from bottom to top. The first component, depicted in blue,
represents the knee motion frequency. This component is filtered (Figure d, middle
row) and, after detection of minima and maxima, it is used to correctly assign each
radial spoke to a given time bin (Figure d, bottom row). The 20 sorted k-spaces, which
will be used to reconstruct 20 time frames, have an equal number of uniformly
distributed spokes (Figure e).
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Figure 2. Image registration pipeline used to derive tibiofemoral kinematics
from the reconstructed 4D images. a) 3D bone masks are segmented from the high-
resolution anatomical scans. b) Bone masks are slightly dilated, in order to contain
the interface between bones and other tissues (muscle and fat). ¢) A rigid registration
is performed with constraints on the femur, using the anatomical proton density
weighted scan as target. The result is a series of dynamic scans in which the femur is
fixed. d) A second rigid registration step is performed with constraints on the tibia.
The first time frame of the previously determined dataset with fixed femur was used
as registration target. The result is a series of dynamic scans in which the tibia is
fixed. The registration parameters of the last registration steps represent the
tibiofemoral kinematics (three rotations and three translations).

Determination of bone kinematics

After image reconstruction, a 3D registration pipeline was applied on the datasets
obtained from Experiment 1 and Experiment 3 to determine the bone kinematics. The
main registration steps are summarized in Figure 2. We used a rigid registration
pipeline implemented in Elastix?, with 500 iteration steps and 2 levels of resolution.
First, the segmented bone masks were convolved with a Gaussian kernel, and then
dilated by a 3x3x3 cubic voxel to increase their volume. The dilation of the masks was
needed in order to include the interface between the bone and the adjacent tissues
into the registration target, which is the primary feature that drives the registration
of the dynamic datasets. Subsequently, the dynamic datasets were reformatted to an
isotropic resolution of 1.5x1.5x1.5 mm?. The femur in the first dynamic frame was
registered to the femur in the proton density weighted scans. The registered frame
was used as a registration target for the subsequent 19 dynamic frames over the
motion cycle. The results of this registration steps were 20 time frames with a static
femur, and a moving tibia. An automated selection routine based on minimum
detection of the femur translation curve was applied on this dataset to define the first
time frame in a consistent way across the volunteers. This corresponded to the knee
in full flexion. After femur registration, the same pipeline was repeated for the tibia,
using the images with the registered femur as target.

The final result was a set of rigid-body trajectories (3 rotations and 3 translations) of
the tibia with respect to the femur over the full motion cycle (20 dynamic frames). For
each volunteer, the center of rotation was defined in the center of mass of the high-
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resolution anatomical scan used for segmentation and the axis parallel to the axis of
the image. The angles presented refer to the roll pitch and yaw convention, with
rotations performed in the order roll, yaw and pitch. All kinematic trajectories were
subsequently smoothed using a Gaussian filter with a smoothing factor of 2.
Differences between the peak kinematics values measured at time frame #10 (where
peak flexion occurred in all the subjects), with and without instructions, were
statistically evaluated using a paired t-test, where p<0.05 was considered to be

significant.
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Figure 3. First principal component for one volunteer before (figure a) and after
filtering with a bandpass filter (figure b). The main peak corresponds to the frequency
of the visual cue (0.67 Hz). When no visual cue is provided, a typical broadening of
the motion peak is observed (Figure ¢ and d, before and after filtering respectively).
The Fourier transform of the filtered spectra, shown in Figure b and d, are used as
self-gating signal.

6.4 Results

Allvolunteers were able to perform the motion task very consistently when instructed
via a visual cue, which is illustrated by a narrow peak in the frequency spectrum of
the self-gating signal (Figure 3a and 4a). The typical spectra derived from the first
principal component for instructed motion are shown in Figure 3a (before filtering)
and Figure 3b (after the application of a band pass filter) for one of the volunteers.
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On the other hand, for uninstructed motion a worse repeatability of the motion task
is observed in the same volunteer, as indicated by the broadening of the motion peak
in Figure 3c (before filtering) and Figure 3d (after the application of a band pass
filter). Figure 4a and Figure 4b show the mean self-gating signal averaged over the 5
volunteers. The agreement between the visual cue frequency and the self-gating
frequency spectra of all volunteers (Figure 4a) indicates a credible self-gating signal.
Without visual cue the peak of the motion frequency was different for the different
volunteers (Figure 4b) and the peak broadened indicating a larger variability in
motion during the ~5 min acquisition (Figure 4b and Figure 4c). However, in both
cases, the self-gating approach with PCA analysis allowed for a correct assignment of
the motion states resulting in 3D movie frames of high quality without significant
motion-related blurring and artifacts (Figure 5). There was no significant difference
in the expert image scores for the movies reconstructed from the instructed and
uninstructed acquisitions (Table 1).
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Figure 4. Mean self-gating signal, averaged over the 5 volunteers when instructions
were given using a visual cue (Figure a) and when the motion task was performed
without instructions (Figure b). The frequency of the visual cue, corresponding to
0.67 Hz, is indicated as dotted line for reference in Figure a, b and c, although the
visual cue was only used to acquire the data in Figure a. Figure ¢ shows the
representative motion spectrum for one of the volunteers. In this case the frequency
peak appears to be broader and at average higher frequency, suggesting that the
motion task performed without instruction could be a good way to simulate the
motion task performed by an orthopedic patient.
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Figure 5. Two reconstructed dynamic frames (out of 20) representing the maximum
achieved flexion and the full extension for a volunteer. Sagittal, coronal, and
transverse views are presented. The left images were acquired when the subject was
instructed to move at 0.67 Hz, while during the acquisition of the right images the
subject was free to move at his own preferred pace. For both datasets the flip angle
used was 20°.

The range of knee flexion achieved in the scanner by the subjects was 16.2°+1.7°
(motion with instructions) and 14.5°+3.0° (motion without instructions) averaged ovm
er the 5 subjects. The kinematic parameters representing tibiofemoral motion are
presented in Figure 6. Taken together, the 3 rotational and 3 translational values and
their variability, which describe the full range of possible tibiofemoral motions
during knee flexion and extension, were similar for instructed and uninstructed
tasks.

A small tibial external/internal rotation was measured for all subjects with increasing
flexion angle. The peak tibial internal rotation across subjects was 3.4°+1.9° (motion
with instructions) and 2.8°+2.6° (motion without instructions). Bigger inter-subject
variation was detected for the translation degrees of freedom, as compared to
rotations.

The mean values for each kinematic parameter was calculated at frame #10, which
corresponds to the knee in maximum flexion. The results are presented in Figure 7.
A paired t-test revealed no differences between the results obtained with and without
instructions (p>0.17).

Using a low flip angle resulted in higher signal from collagen rich structures such as
ligaments and cartilage. In Figure 8, two timeframes with the knee in maximum
flexion and full extension respectively are shown. The Posterior Cruciate Ligament
(PCL) presents high curvature in the extended position, and progressively gets more
stretched as a function of increasing knee flexion angle.

Representative 4D movies obtained for a volunteer moving with and without
instruction are presented as supplementary material (see Video 1 and 2 respectively),
together with the movie obtained with instructions and the low flip angle (Video 3).
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Criteria With instructions ~ Without instructions P

Sharpness 2.2 2.1 0.721
Contrast 2.3 2.2 0.692
Bone visibility 2.2 2.3 0.703
Fluency of motion 3.0 2.9 0.331
Artifacts 2.0 1.9 0.668

Table 1. Results of scoring of the 4D movies by two musculoskeletal imaging
experts. Scores are indicated on a scale from 0 to 3. No statistical difference (p>0.05)
was observed in terms of sharpness, contrast, bone visibility, fluency of motion and
presence of artifacts when the instructed frequency was 0.67 Hz (“with instructions”)
as compared to free movement (“without instructions”).
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Figure 6: Tibiofemoral kinematics averaged over five healthy volunteers (shaded
curves represent mean + standard deviation) as a function of frame number. The three
rotational degrees of freedom (abduction/adduction, extension/flexion and
external/internal rotation) are indicated in red. The three translational degrees of
freedom (posterior/anterior, superior/inferior and medial/lateral translation) are
indicated in blue. Similar curves are observed when the instructed frequency was 0.67
Hz (“with instructions”) as compared to free movement (“without instructions”).
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6.5 Discussion

The proposed golden angle radial sequence enabled acquisition of self-gating signals
which were successfully used for binning the data in 20 time-frames over the
flexion/extension cycle of the knee. We tested the sequence in 5 female volunteers,
which were instructed to keep a constant frequency of 0.67 Hz during motion.
Additionally, the volunteers were also asked to perform flexion extension without any
visual instruction. We found no statistically significant differences in image quality
scores between the two methods. Furthermore, we obtained similar results in terms
of tibiofemoral kinematics extracted from the movies with and without instructions.
Self-gated MRI is gaining popularity for cardiac imaging *>* as well as in abdominal
imaging % to estimate motion in relation to radiotherapy treatment planning. The
self-gating approach is very attractive since it allows binning of the data in several
motion states based on the k-space itself without relying on external triggering
devices. Since the binning is done retrospectively, the number of movie frames and
the data undersampling factor can be chosen after data acquisition.

A higher number of movie frames with increased data undersampling generally leads
to lower SNR and more image artifacts, such as streaking. However, these artifacts
can be reduced by compressed sensing image reconstruction'*®. In practice, a
compromise has to be reached between temporal resolution and presence of image
reconstruction artifacts, since a low number of movies frames will result in motion
blurring, and a high number of movie frames will lead to undersampling artifacts
even with compressed sensing reconstruction. We heuristically found that 20 frames
over the flexion/extension cycle was the optimal trade off.
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Figure 7. Bar graphs representing the tibiofemoral kinematics in the middle time
frame (#10). Results are averaged over the five volunteers and the bars indicate
standard deviation. No statistically significant differences observed between the peak
kinematics parameters obtained with (light gray) and without instructions (dark gray).

It should be understood that with our technique the motion is not depicted in real
time, but rather averaged over several motion cycles. This is not a limitation specific
to our particular approach, but rather inherently related to the fact that 3D MRI with
sufficient spatial resolution is too slow for real-time imaging even with state-of-the-
art acceleration techniques. For the practical application of dynamic knee imaging,
this implies that sudden movements such as dislocations cannot be visualized using
a gated method. A real-time method” would then be required, but this is currently
limited to single slice imaging.

Using our imaging method, in combination with novel image registration techniques,
we were able to quantify the displacement of the tibia relative to the femur. The
current gold standard for determination of bone kinematics is biplane fluoroscopy.
This technique allows to acquire functional information during physiologically
relevant task such as stair rising* and gait®, with very high temporal and spatial
resolution. However, fluoroscopy involves the use of ionizing radiation, which makes
its use unpractical for longitudinal studies, and requires highly specialized machines
which are not largely available in clinical settings. On the other hand, MRI scanners
are present in virtually every hospital and routinely used for evaluation of the knee
joint.
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Since we used a closed-bore scanner, we had to deal with a limited range of motion
of the knee joint due to geometrical constrains. This limitation could be solved with
the use of an open-bore® or a vertical MRI system®, although at the expense of
temporal and spatial resolution related to the typically lower field strength of these
systems.

Maximum Full
Flexion Extension

Figure 8. Two different reconstructed dynamic frames (out of 20) representing the
maximum achieved flexion and the full extension for a volunteer during instructed
motion at a frequency of 0.67 Hz. The flip angle used in the acquisition was 5°. The
increasing stretching pattern of the PCL for increasing flexion angle of the knee can
be observed.

Previous studies focused on determination of normative patellofemoral and
tibiofemoral kinematics using Phase Contrast (PC) MRI”®. PC-MRI relies on velocity
measurements over time, which can be integrated to provide displacement
measurements. The technique proposed by Rebmann et al. ®is based on an unloaded
flexion/extension task that is synchronized with an external trigger. Due to the need
for acquiring velocity information along 3 orthogonal directions and the compliance
of the subjects, the measurements are limited to 3 single slice acquisition of 2min48s
each (through patella, through femur and through tibia). This technique heavily
relies on the ability of the subject to keep a constant motion frequency, and small
imperfections in the execution of the task can result in spatial and temporal blurring
of the velocity values, that may lead to errors in the quantification of bone kinematics
and even make the images unusable.

While bone motion can also be evaluated precisely and with higher frame rate using
dynamic CT*, the ability to simultaneously observe soft tissue and bone during
motion makes our MRI-based approach unique. We were able to obtain images of the
moving knee with relatively high resolution and sufficient soft tissue contrast, as
indicated by the image scoring.

In this study, image scoring by experts was used instead of more conventional SNR
and CNR measurements due to the use of compressed sensing reconstruction. In fact,
when compressed sensing is used, high SNR can be obtained by simply increasing the
regularization factor, without any corresponding increase in image quality or
diagnostic information®.
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The images obtained with a low flip angle show high signal from ligaments and
cartilage, potentially allowing the evaluation of these tissues during motion. The
added values of dynamic imaging for soft tissue assessment in diagnosis still has to
be systematically evaluated, and spatial resolution will likely have to be improved in
order to increase the usefulness of these images. Nonetheless, the preliminary results
presented in this study are a first step towards assessment of soft tissue motion in 3D.
In general, the lack of motion instructions results in a poorer repeatability of the task,
as indicated by the lack of a well-defined frequency peak in this condition. Although
this might result in incorrect sorting of the k-space spokes in bins, the expert quality
scoring of the movies from the instructed and uninstructed tasks were similar,
suggesting that sorting was robust to non-repetitive motion. While we believe that
visual (or auditory) guidance to motion should always be provided for dynamic MRI
study, conventional acquisition strategies based on prospective gating do not offer
robustness against deviation from the given instructions. Many repetitions of the
motion, especially under load, can lead to error in the executions of the task.
Similarly, execution errors can be expected in orthopedic patients or subjects that
due to pain may find it difficult to comply with instructions. Therefore, our self-gating
method based on PCA and phase binning could be a useful tool for evaluation of those
subjects, especially during long and/or loaded acquisitions.

All our acquisitions were obtained using a custom flexible knee coil, consisting of a
3x5 ch coil array. While the coil did add benefits in terms of SNR and image quality,
our imaging pipeline is not hardware dependent and can be easily generalized to
other anatomies (suck as wrist and ankle) and to other coil configurations.

Our self-gating signal was extracted from the three center slices of k-space. Other
methods exist (i.e. ZIP*). However, for our application and slice orientation, they
proved unreliable. We performed phase binning, instead of magnitude binning often
used in respiratory motion®. In our experiments the volunteers were instructed to
maintain a fixed start and end points for the flexion extension task. In this case an
almost fixed magnitude of the motion was expected, but significant variation in the
frequency could occur. Therefore, phase binning could be used more robustly than
magnitude binning.

A general limitation of self-gating methods is that there is no absolute time stamp that
indicates beginning and end of the flexion and extension cycle. For image scoring by
the experts this was no problem, since movies were visualized in an infinite loop.
However, quantification of the bone kinematics analysis requires knowledge about
the time frame of maximum flexion and extension. Here we determined these time
points by automatic detection of the minimum in the translation curve after the
registration of femur, and this represented the maximum achievable extension. The
starting point was chosen to be the full extension position, since the bone position
was relatively constant for all volunteers in full extensions, while the maximum
flexion position was largely dependent on the size of the subjects.

An additional limitation of our self-gating method is that it fails to determine the
motion frequency when too much net translation of the knee occurs in the
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mediolateral direction. In our study, the problem was mitigated by placing sand bags
on each side of the knee. In order to completely avoid this problem, a motion device
should be designed that restricts the range of motion in the mediolateral direction,
while allowing full range of motion in the sagittal plane. Furthermore, a loading
device could also increase the physiological values of the kinematic measurements,
as compared to the “no-load” condition applied in this study.

We did not define an anatomical frame of reference based on the tibia and the femur
at this point. Therefore our kinematic results cannot be directly compared previous
studies”®. The determination of an anatomical frame of reference based on bony
landmarks could introduce additional inter-subject variation*. Therefore, for the
purpose of this study, we preferred a direct comparison of the derived motions from
the datasets obtained with and without instructions. Using our imaging methodology,
we were able to obtain 4D images of the moving knee with relatively high resolution
and sufficient soft tissue contrast, as indicated by the image scoring. Compressed
sensing allowed for high undersampling factor (3.59-fold). The achieved scan time
allows application of the technique as an addition to standard clinical protocols.

In conclusion, we have implemented a method to obtain self-gated 4D images of the
moving knee using a golden angle radial sampling of k-space. Using a stack-of-stars
sampling scheme we were able to derive the trigger signal directly from the data
itself, without the need of any external monitoring device. Furthermore, we showed
that high-resolution anatomical scans could be co-registered with the dynamic
images to provide measurements of bone kinematics. Due to its simplicity, the
method shows potential in evaluation of knee structures during motion and to track
in vivo skeletal kinematics non-invasively in a clinical setting.

6.6 Supplemental material

Video 1: Sagittal slice for a volunteer moving with instructions (frequency of motion
=0.67 Hz, flip angle = 20°).

Video 2: Sagittal slice for a volunteer moving without instructions (flip angle = 20°).
Video 3: Sagittal slice for a volunteer moving with instructions (frequency of motion
=0.67 Hz, flip angle = 5°).
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esearch can take us on strange winding paths. Interesting (publishable) work

is sometimes found while studying something else. Such was certainly the

case for me. That is why this thesis covers so many different topics

(anatomies, static, dynamic and quantitative imaging, and even pre-clinical
work). However, the work shares a common theme in the application of accelerated
imaging based on sparsity. From the broad range of applications in this thesis the
question arises which technological advances are likely to change the way we will
acquire clinical images in the future, and which won't.

Aims

Anatomical (static} MRI is the work-horse of imaging in most clinical settings.
Parallel imaging (e.g. SENSE) has revolutionized scanning, and acceleration factors
in the order of two to four times are routinely used in clinical practice these days.
Compressed sensing is now well-established and understood and therefore it seems
ready for clinical introduction [1]. Philips has introduced a product called
‘Compressed SENSE’, which successfully shortens scan times in anatomical
imaging—up to 2 times compared to the standard parallel-MRI [2]. In terms of time
gained, this compares rather poorly to the sexier dynamic and parametric
acquisitions, for which acceleration factors in the double digits were reported [3].
So, anatomical MRT has less acceleration potential, and we are stuck with a minimum
scan time? Maybe. But it might pay off to stop focusing solely on acceleration in
accelerated imaging. In Chapter 2, we have investigated whether we could use the
gained scan time for averaging, and, in a way, enable us make better images in low-
SNR conditions rather than obtain them in less time. We found this to improve
imaging in a certain low-SNR regime, and this could open up opportunities to obtain
good quality images under low SNR conditions, deemed unfeasible before. In a
similar way, some authors have proposed to use this novel insight to scan at greater
resolution [4]. Lesson learned is that improving image quality with compressed
sensing reconstruction techniques above standard parallel MRI is a goal worth
pursuing.

Dynamic Contrast-Enhanced (DCE)-MRI is a widely used (in about 25% of
examinations [5]) imaging technique. Most radiologists still prefer visual inspection
of a limited set of images during contrast in- and efflux above a full quantitative
contrast-dynamics analysis. A quantitative analysis of the full time-course of contrast
in- and efflux, requiring a full dynamic movie, could potentially give more
information on the tissue dynamics and thus give us more valuable diagnostic
information to work with. In Chapter 3 and 4, we therefore developed a highly
accelerated DCE protocol and measured various lesion-prone vascular regions
(carotids, abdominal aorta, femoral arteries) in patients. New and essential to
vascular imaging this protocol facilitated black-blood imaging with high spatial
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resolution. A high spatial resolution, which is an absolute requirement for good
delineation of vessel wall and plaque components, could only be obtained because
of the overcompleteness of the anatomical information in the time domain. The
temporal resolution in these scans was on the order of 10 seconds, whereas the total
scan time—dictated by time it takes for contrast in- and efflux— was several minutes.
In this example, we are thus not accelerating the examination time, but rather obtain
more detailed spatio-temporal information in the same examination time.

A similar argument can be made for the work in Chapter 6. We were able to image
the dynamics of tibiofemoral kinematics at unprecedented temporal resolution
without the use of an external trigger. This could benefit the study of bone
kinematics.

The question arises if we even want to call this collection of strategies accelerated
imaging. That is not a bad thing. Speed is one factor but not a goal in itself. The true
goal is to increase the diagnostic power of scans.

The promise of reduced waiting times and lower healthcare costs, usually laid at the
feet of accelerated imaging, might therefore be more easily found in other aspects,
e.g. more efficient patient preparation, and much wider clinical usage (educate
technicians and start scanning patients in the evenings and the weekends!).

Technology

If we are interested in faster patient turnover times, image information of the entire
exam should be combined. Multi-parametric approaches such as the low-rank-
tensor framework [6], fingerprinting, MR-STAT [7], and joint sparsity over multiple
contrasts [8], may allow for speeding up entire exams. These innovations are very
exciting, as they are moving away from the simple prior knowledge of sparsity only
- rather incorporating MR physics and data-driven compressibility into the
reconstruction. The sparsity of images can be exploited to accelerate imaging, but
might not be a great fit for all type of images—e.g. low SNR, or highly detailed images.
However, multi-parametric approaches will only be helpful if these contrasts are
clinically useful and provide complementary diagnostic information.

Specific tailoring

As the research in this thesis deals with a variety of contrasts, anatomies, and
purposes, it is easy to see differences in what works for one approach and not for
another. For example, in Chapter 2, for low SNR anatomical MRI, we used both total-
variation and wavelet transform in our CS minimization. In the dynamic imaging
chapters (3,4 & 6), only total-variation over time was used. In the preclinical work of
Chapter 5, using “F data, which is very noisy, but also sparse by nature due to no
background signal, total-variation could be used, but no transform works as well.
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As with sparse transformation, many other ‘buttons’ can and should be tweaked to
get optimal image quality. However, these are very specific to the intended use. For
instance, we found our CS-VDA strategy of Chapter 2 to work very well—but only in
a specific SNR and contrast regime.

The segmentation of very specific optimal settings for every use case needs to be
addressed to achieve practical implementation of the collection of accelerated
imaging techniques.

Implementation

Subtle differences in derivative measures might save lives. For example, knowledge
on vessel wall permeability in atherosclerotic plaques may ultimately give insight
into the vulnerability of plaques [9]. These permeability measures are derived from
DCE-MRI. CS application has greatly improved image quality. However, ever-more
complicated models are used. If the imaging was done right, the image
reconstruction worked, the model was sufficiently explanatory of the biology, and
all model input parameters have been measured or estimated correctly—only then
the derived parameters are valuable. Error propagation is extremely tedious, and this
is what will ultimately limit clinical application.

Image reconstruction times still represent a major hurdle. A big collection of
optimization algorithms has been developed [10]. Many of which can now be run on
state-of-the-art GPU clusters. However, the problems are generally ill-posed, with a
huge possible solution space. As such, even the cleverest algorithms can take a few
minutes to finish. For MR operators, which are used to receive reconstructed images
in a few seconds, this is still too long.

Artificial Intelligence (AI) based learned reconstruction might be the solution—while
training times are very long, a pre-trained model can be run in a fraction of a second.
Many promising ideas have been proposed [11]-[13]. In contrast to sparsity-based
accelerated imaging, Al methods do not generally have any prior, but learn image
reconstruction purely based on training data. The recent fast MRI Challenge [14]
gives an overview of the state of Al reconstruction. Many different approaches were
tested and gave similar results, although comparisons with CS by neutral observers
still seems to be lacking in literature. However, while optimization algorithms are
generally proven to be robust—generally, the optimal solution will be found as long
as you run it long enough—AlI-based approaches are not [15]. Small disturbances in
the data can have massive consequences on image quality. This should be a big
priority for current research.
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Community

We should recognize the importance of open-source software. The open-source
Berkeley Advanced Reconstruction Toolbox [16] has seen a surge of users in the last
few years. The ability for all researchers to look into and modify the source code is
essential for fast, reproducible research. Similar approaches have been proposed for
k-space data [17], and reconstruction frameworks [18] —however, the big vendors
seem very slow and reluctant to join the open-source trend. This is very unfortunate:
industry-wide open standards can speed up research and innovation for everyone. A
big reason for the rapid innovation in the AI field is precisely the availability of the
most state-of-the-art machine learning software to anyone.

Preventing code sharing by the vendors, combined with regular software changes, is
very inefficient and makes researchers spend a big part of their time maintaining
instead of innovating.

The MRI community is not very big, but it is quite well-connected. Novel papers and
ideas quickly find their way around. However, cross-disciplinary knowledge transfer
is more important than ever. Many ideas introduced in seminal papers were not new
at all—merely cleverly applied and well marketed. I believe that very useful ideas will
be found just by looking over the hedge. Of course, this will work the other way
around as well, other (medical) imaging fields can benefit greatly from the research
revolution in image reconstruction in the MRI field.
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Summary

he research is this thesis aimed at developing methods to increase the scan

I efficiency of various types of MRI acquisitions. This is predominantly
achieved by designing clever ways to combine data undersampling strategies

with advanced reconstruction techniques. These methods are all based on the
assumption of data sparsity in some transform domain, which can be highly
dependent on the application itself. Increased scan efficiency can be found in
various factors, such as decreasing scan times, improving spatio-temporal resolution
within the same scan time or increasing the effective SNR of scans. While the
methods developed in this thesis are mostly tailored for specific anatomical regions
or clinical applications, the concepts may very well be translated to other

applications as well.

In Chapter 2, T aimed to study and improve the acceleration technique ‘compressed
sensing’ (CS) for noisy acquisitions. I introduced a novel sampling method called CS-
VDA which is a combination of Cartesian undersampling and variable averaging in
k-space. We hypothesized that this strategy could successfully improve image quality
in the low-SNR regime. We have shown successful applications in computer
simulations, in static phantoms and in in-vivo volunteer scans.

Chapters 3 and 4 report on a novel volumetric, accelerated dynamic contrast-
enhanced MRI sequence (DCE-MRI) for vessel wall imaging. In Chapter 3, the
developed sequence was applied to a group of patients with femoral atherosclerotic
plaques. I found a correlation between DCE-MRI and USPIO (ultrasmall
superparamagnetic iron oxide particles) uptake in the patient group.

Signal from blood can negatively impact vessel wall delineation, therefore the
developed sequence suppressed blood signal. This suppression makes
pharmacokinetic analysis of the data more difficult. In Chapter 4, I investigated the
use of arterial input-free analysis methods, and show that the use of such a method
if a viable alternative for atherosclerotic plaques. I show successful application in
two patient groups, and I make suggestions for improvement of the fitting of this
analysis.

In Chapter 5, a radial stack-of-stars acquisition was applied for dynamic imaging of
the patella in a moving knee. With this combination of innovative sampling,
compressed sensing and self-gating, high-resolution dynamic knee images could be
made which could provide useful in the study of bone kinematics.



Summary | 133

In Chapter 6, I used the possibilities of iterative reconstruction and the MR physics
to enable multi-color MRI for *F MRI. I describe a novel method to simultaneously
measure two chemical compounds. With this method, successful multi-color images
were made in-vivo in a pre-clinical animal model which had been injected with the
YF compounds PFOB and PFCE.
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Nederlandse samenvatting

et onderzoek in dit proefschrift beschrijft de ontwikkeling van methoden

om de scanefficiéntie van verscheidene soorten MRI-acquisities te

verhogen. Dit wordt vooral gedaan door slimme manieren van
databemonstering te combineren met geavanceerde reconstructietechnieken. Deze
methoden zijn gebaseerd op de aanname dat de data schaars is na een wiskundige
transformatie.
Een verhoogde efficiéntie kan verschillende dingen betekenen: snellere scans; een
verhoogde tijds- of beeldresolutie of het verhogen van de effectieve signaal-
ruisverhouding van de scans. Hoewel alle methoden in dit proefschrift zijn toegepast
op bepaalde anatomische gebieden of klinische applicaties, kunnen de beschreven
concepten makkelijk vertaald worden naar andere toepassingen.

In Hoofdstuk 2 beschrijf ik een methode om de MRI-versnellingstechniek
‘compressed sensing’ te verbeteren voor scans die erg veel last hebben van ruis.
Hiertoe heb ik een nieuwe bemonsteringsmethode ingevoerd, CS-VDA genaamd, wat
een combinatie is van Cartesisch bemonsteren en een variabel aantal middelingen
over de k-ruimte. Onze hypothese was dat deze strategie de beeldkwaliteit ten goede
zou komen in een laag-SNR regime. We laten succesvolle toepassingen zien, zowel
in computersimulaties, in stilstaand fantoombeelden als in in-vivo scans van
vrijwilligers.

In hoofdstuk 3 en 4 wordt gebruik gemaakt van een door ons ontwikkeld
scanprotocol voor het in versneld in beeld brengen van dynamische volumetrische
contrastscans voor vaatwand toepassingen. In hoofdstuk 3 wordt deze sequentie
toegepast in een een patiéntengroep met atherosclerose in de femorale vaten. Hier
vonden we een positieve correlatie tussen de DCE-MRI en de opname van
superparamagnetische ijzeroxide- nanodeeltjes.

Aangezien bloedsignaal het onderscheid tussen vaatwand en ander weefsel moeilijk
kan maken, bevat onze nieuwe sequentie een bloedsignaalonderdrukking. Het
nadeel van deze onderdrukking is dat het bloedsignaal niet meer meegenomen kan
worden in de analyse van de contrastdynamiek. In hoofdstuk 4 onderzoek ik of het
mogelijk is om een analyse te doen zonder de bloeddynamiek signaal. Ik laat zien dat
deze methoden succesvol toegepast kunnen worden in de beeldvorming van
vaatwanden, in simulaties en in twee verschillende patiéntengroepen. Ik doe ook
suggesties om de toepassing van deze methode te verbeteren.

In hoofdstuk 5 wordt de snelle beeldvorming van de patella in een bewegende knie
mogelijk gemaakt door innovatieve data-acquisitie: bestaande uit het bewegen door
de k-ruimte in een ster-vorm. Door een combinatie van deze bemonstering,
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compressed sensing, en self-gating (een innovatieve methode om de kniebeweging
uit de data te halen), was het mogelijk om bewegende beelden te maken op een hoge
resolutie. Dit kan een nuttige toevoeging zien in de studie naar botbewegingen.

In hoofdstuk 6 heb ik de mogelijkheden van iteratieve reconstructie en de unieke
natuurkunde van de MRI gebruikt om de multi-color beelden van *F-MRI mogelijk
te maken. Dit wil zeggen, het gelijktijdig in beeld brengen en nadien uit elkaar halen
van twee verschillende chemische verbindingen die fluor bevatten: PFOB en PFCE
genaamd. Met deze nieuwe techniek konden wij de verbindingen in een muismodel
injecteren, en naderhand in beeld brengen waar de verbindingen zich hadden
opgehoopt. Deze beeldvorminginnovatie kan gebruikt gaan worden in de studie naar
medicijneffecten in diermodellen.
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