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Chapter 1 

 

Introduction





Figure 1. The balancing act. Classically, if the MR operator wants to double the 
resolution of a 3D acquisition, he expects the scan to take four times as long. 
However, this will also negatively impact the SNR. Alternatively, he can choose to 
improve the SNR of the original scan by averaging. To double the SNR, he needs to 
scan four times as long. The invention of smart sampling and reconstruction 
techniques gives more options for sequence designers in this balancing act.  



1.2 A technical introduction to this thesis  

𝒚 = 𝑭𝑥, (1)

𝒙  =  𝐹−1 𝒚.  (2)

𝒚𝒊 = 𝐹𝑠𝐶𝑖𝒙, (3)

[

𝒚𝟏

⋮
𝒚𝑵

] = [
𝐹𝑠 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐹𝑠

] [
𝐶1

⋮
𝐶𝑁

]  𝒙 +  𝜼, (4)



𝒚 = 𝑴𝒙 + 𝜼. (5)

𝒙 =  |𝑀𝒙 − 𝒚|2
2 +  𝜆𝑅(𝒙), (6)

λ



Figure 2. The building blocks of equation 4. A multi-channel coil receives localized 
k-space data. The k-space can be described as the final image, multiplied by the coil 
sensitivity maps and transformed to the Fourier domain. Undersampled strategies 
accelerate scans, and in effect, the Fourier encoding matrix becomes high and 
narrow.  

|𝒙 − 𝒙|2
2

Compressed Sensing  



Figure 3. Sparsity is defined as the fraction of zero-valued elements. In the pixel 
domain (panel A), all pixel values are greater than zero. However, we can also 
calculate the total-variation (the edges), and see that only about a fifth of pixels still 
contain non-zero information (panel B). With the edge information for both 
directions, you could perfectly recover the original image. Another (slightly less 
intuitive) transform that can efficiently capture all image information is the wavelet 
transform, with only 13% of the original data size (panel C).  

 

𝒙 =  |𝑀𝒙 − 𝒚|2
2 +  𝜆|𝑊𝒙|1 , (7)

λ



The l1,2-norms, an analogy  

Figure 4. The l-norms in New York. 



Accelerated dynamic imaging 

Multicolor Fluorine imaging 



Figure 5. Close-ups of the signal of a femoral arterial plaque, as measured with a 
highly accelerated dynamic contrast-enhanced black-blood sequence [chapters 3,4 
of this thesis]. Note the high correlation between time frames, a property that is 
exploited by compressed sensing techniques to achieve very high frame-rates (12 
seconds per volume in this case).  

1.3 Thesis aims and outline 

—
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2.1 Abstract 



2.2 Introduction 
 



2.3 Theoretical background  

Figure 1. Illustration of the three k-space undersampling & averaging strategies. 
Shown are the 2 phase encoding dimensions of the 3D k-space; the 3rd dimension is 
the frequency encoding direction. The k-spaces share the same variable density 
undersampling pattern, with denser sampling in the center of k-space than in the 
periphery. However, the three k-spaces differ in how the number of signal averages 
(NSA) are distributed in k-space, with (A) uniform averaging of all measured k-
space points, (B) higher NSA in the center of k-space (center-dense averaging), and 
(C) periphery-dense averaging. Note that all strategies have the same total number 
of k-space points. 
 



Figure 2. Influence of noise in the wavelet domain on image reconstructions. A) 
Noise was added to the coarse wavelet coefficients. In B), noise with an equal l2-
norm as in A. is added to the highest wavelet level only. It is clearly visible that 
resulting details in the reconstruction (red arrow) are much more easily distinguished 
in B. 

 



Figure 3. The structure of the MR measurement. The MR measurement of this 
wavelet signal in Cartesian k-space is the subsequent operation of the inverse 
wavelet transform (DWT*) and the discrete Fourier transform (DFT), and can be 
formulated as the matrix U= DFT DWT*. The absolute values are displayed here. 
Wavelets of increasing coefficients are indicated by red lines, and increased 
frequencies in k-space are illustrated by blue lines. 



Figure 4. The structure of noise in a 1D MR measurement. A) A one- dimensional 
signal. B) The wavelet coefficients of this signal. Note the sparsity in the wavelet 
domain. C) Noise disturbed wavelet coefficients for infinite resampling in the high-
frequency half of k-space. Most noise is contained in the higher wavelet coefficients. 
D) Noise disturbed wavelet coefficients for infinite resampling in the low-frequency 
half of k-space. 
 



Acquisition strategy 

𝑃(𝑟 ) = 𝑐 +  (1 − 𝑟 )4, (1)

𝑟 𝑐

∫ 𝑃(𝑟 )𝑑𝑟 =
𝑁𝑘

𝑅
, (2)

𝑁𝑘

𝑅

𝑁𝑘



 

𝑅

𝑅

 

(𝑟 ) = Nmax(𝑐 +  (1 − 𝑟 )𝑝), (3)

𝑁𝑘 = ∫ (𝑟 )𝑃(𝑟 )𝑑𝑟k . (4)

 

(𝑟 ) =
1

𝛽 + (1 − 𝑟 )𝑝
 , (5)

𝛽

(𝑟 )

 

The weighted l2-norm 

𝑁(0, 𝜎2) 𝜎

|𝐹𝑢𝑆𝒎 − 𝒚|2
2 = (𝐹𝑢𝑆𝒎 − 𝒚)∗(𝐹𝑢𝑆𝒎 − 𝒚), (6)

𝐹𝑢  

𝒎 𝒚



|𝐹𝑢𝑆𝒎 − 𝒚|2,𝑊
2 = (𝐹𝑢𝑆𝒎 − 𝒚)∗𝑊(𝐹𝑢𝑆𝒎 − 𝒚), (7)

𝑊

𝜎𝑖
2 =

𝜎0
2

𝑛𝑖

 , (8)

𝑛𝑖 𝜎0

𝑊 =
1

𝜎0
2 [

𝑛1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑛𝑁

] , (9)

�̂� = arg min
𝒎

|𝑊
1
2(𝐹𝑢𝑆𝒎 − 𝒚)|

2

2

+  𝜆|𝑄 𝒎|1 , (10)

𝜆 𝑄

Noise variance and the l2-norm  

𝜆𝑚𝑜𝑑 = 𝛼 𝜆0 (11)

𝔼(𝑙2
2) = 𝔼 ∑ |𝑊

𝑖

1
2(𝑦𝑖 − 𝑦𝑖,0)|

2𝑁

𝑖=1

, (12)

𝑦𝑖 𝑦𝑖,0

  



𝔼(𝑙2
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2.4 Methods 

Retrospective undersampling of phantom data 

× × ×

𝑅

𝜆



𝜆

Prospective undersampling of in vivo human brain data 

× × × × × ×

𝑅

𝑅

× ×



Figure 5 Imaging of grapefruit using different reconstruction methods. (A) Center-
dense undersampling of k-space. (B) Middle slice of a fully sampled scan with NSA 
= 50.  (C) Magnifications of the regions of interest, shown in A, with different 
reconstruction strategies and number of iterations. (D) Noise power spectral density 
for the four methods. The use of the noise weighting matrix reduces the power 
spectral density over the full range of spatial frequencies, both without inclusion of 
l1-norm regularization (black to blue) and with l1-norm regularization (red to green). 

Prospective undersampling of in vivo human knee data 



𝜆

Image reconstruction  

 



2.5 Results 

Figure 6.  Comparisons of different CS-VDA sampling schemes. (A) half of a 
center slice of the grapefruit, five times undersampled (R = 5), reconstructed using 
uniform, center-dense, and periphery-dense k-space averaging in comparison to the 
fully sampled scan. (B) Enlarged sections of the reconstructed images with varying 
regularization parameter λ. Note the thin layer covering the grapefruit skin, which is 
sharpest for the center-dense averaging scheme with λ = 5×10-3. Undersampled scans 
have better signal-to-noise than the fully sampled scan. (C) Mean calculated sigmoid 
widths for different sampling and reconstruction parameters. The fully-sampled scan 
corresponds to undersampling = 1. The error-bars indicate the standard deviation of 
10 measurements. The lowest sigmoid width, and the corresponding image are 
indicated by red arrows. This indicates the best reconstruction, however, compared to 
a fully sampled references at high SNR (10 times longer scan time), there is still a loss 
of resolution apparent in the skin. 



𝑊

𝑅

𝜆 ×

𝜆

Figure 7. Inversion prepared 3D T1-FFE brain scans of the four volunteers scanned with (top) center-
dense averaging (R = 3) and 0.7 mm isotropic voxel size, (middle) fully sampling at 0.7 mm isotropic voxel 
size, and (bottom) full sampling at 1 mm isotropic voxel size. All scan times were equal.  The red arrows 
indicate small anatomical details in the brain. 



Figure 8. Inversion prepared 3D T1-FFE brain scans of a single volunteer 
acquired with 6 sampling schemes of equal total scan times. (A) Reconstructed 
images with magnifications in the three orientations. (B) Corresponding k-space 
sampling patterns. Colors indicate the number of averages for every k-space line. 



𝜆

× 𝑅

𝜆

Figure 9. T2 mapping experiment.  (A) Coronal slice of a T2-prepared acquisition with TE=58 ms. Red 
arrows indicate loss of details in the fully sampled acquisition, with respect to the CS-VDA acquisition 
(B). Zoomed-in section of image for four different echo times, corresponding to the red arrow with the 
white star. Loss of structural detail in the fully sampled acquisitions is apparent for TE=38 ms and TE=58 
ms. (C) Signal-to-noise ratio in a section of the muscle (box of subplot a). For all echo times and for the 
T2 map, the SNR is higher in CS-VDA compared to full sampling (D) T2-maps for the cartilage. Arrows 
indicate regions of difference between the two acquisitions: the high T2 of fluid and the delineation of 
the muscle is represented more clearly in the CS-VDA T2 map. 
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𝑅

 



2.6 Discussion 
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3.1 Abstract 

 



3.2 Introduction 



3.3 Methods 

Study design 
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USPIO administration 

MRI acquisitions 



Image analysis 



Statistical analysis 

3.4 Results 



Vessel wall dimensions are increased in PAD patients 

Figure 1. Vessel wall dimensions are increased in PAD patients. 
3D black-blood MRI scans were performed to identify (A) femoral artery plaques 
and (B) non-plaque vessel wall in patients with PAD, as well as (C) vessel wall in 
healthy control subjects. Analysis of vessel wall dimensions demonstrated that (D) 
mean wall area and (E) mean wall thickness was increased for plaques compared 
with patient non-plaque vessel wall and healthy control femoral artery wall. 
 



Figure 2. USPIO uptake is 
enhanced in PAD patients. 
USPIO-enhanced MRI scans 
were performed using T2* multi-
echo sequences (TE=3.2 ms 
presented as anatomical 
reference, left) and color-coded 
R2* maps were generated to 
illustrate quantification of USPIO 
uptake, before (middle) and 72 
hours (right) after administration 
of USPIO nanoparticles. For 
femoral artery plaques, the ROI 
was divided in 6 segments and the 
mean R2* of all plaque-
containing segments (defined as 
having a mean wall thickness 
greater than 1.5 mm) was 
calculated (A+B, left). We 
detected varying degrees of 
USPIO uptake as measured by an 
increase in R2*, as depicted by 
examples of high (A) and low (B) 
uptake in femoral artery plaques. 
(C) In patients with PAD, USPIO 
uptake was occasionally also 
observed in non-plaque vessel 
wall. (D) Healthy control vessel 
walls were characterized by low 
uptake of USPIO. (E) R2* 
changes 72 hours after 
administration of USPIO 
nanoparticles. 
 



USPIO uptake is enhanced in femoral plaques 

 



Table 1. Baseline characteristics of participants 
 

 



 

DCE-MRI predicts USPIO uptake in femoral plaques 

Figure 3. DCE-MRI reveals heterogeneous enhancement patterns in PAD patients. 
(A) Dynamic contrast-enhanced scans of femoral artery plaque demonstrating 
heterogeneous enhancement after injection of Gadovist, illustrated by the observed 
differences between the colored ROIs and (B) corresponding signal intensity-time 
curves (normalized for baseline signal intensity). (C) Area-under-the-curve maps 
covering the first two minutes after injection were generated to allow for further 
analysis of plaques. 

 



Figure 4. DCE-MRI associates with USPIO enhancement. (A)  Example of 
femoral artery plaque identified with 3D iMSDE sequence which demonstrated (B) 
strong USPIO uptake which co-localized with DCE-MRI enhancement. (C) DCE-
MRI and USPIO-enhanced MRI of plaques were significantly correlated in patients 
with PAD. 
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Chapter 4 

 

Pharmacokinetic modeling of 3D 
black-blood vessel wall DCE 
imaging using an AIF 
independent reference region 
method.  



4.1 Abstract 

 



4.2 Introduction 



 



4.3 Methods 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 |𝑁𝑆−1𝑋 − 𝑌|2
2 + 𝜆|𝑇𝑉(𝑋)|1, (1)



Figure 1. The accelerated black-blood DCE pulse sequence. A) A 3D Fast-Field 
Echo module is preceded by an iMSDE pre-pulse and spectrally selective fat 
saturation.  B) A stack-of-stars readout with golden angle increments covers the k-
space. To ensure efficient blood and fat suppression, k-lines within each shot are 
ordered in a center-out fashion.  

𝑀𝑠𝑠 =  
𝑀0(1 − 𝐸1)𝐸2 sin 𝛽

1 − 𝐸1 cos β
 

1 − (𝐸1 cos 𝛽)𝐾

1 − 𝐸2 (𝐸1𝑐𝑜𝑠𝛽)𝐾  
  (2)

𝑅1(𝑡) =   𝑅1,0(𝑡) + 𝑟1𝐶(𝑡);          𝑅2(𝑡) =   𝑅2,0(𝑡) + 𝑟2𝐶(𝑡) (3)



min|𝐴𝑥 − 𝑏|2
2 𝑠. 𝑡. 𝑘𝑒𝑝,𝑟𝑟 > 0 (4)

𝑘𝑒𝑝,𝑅𝑅 = 0.5 
𝑥1

𝑥3

− 0.5√(
𝑥1

𝑥3

)
2

− 4 
𝑥2

𝑥3

 (5)

min|𝐴𝑥 − 𝑏|2
2 𝑠. 𝑡.  𝑥1

2 > 4𝑥2𝑥3,   𝑥𝑛 > 0. (6)

min|𝐺𝑦 − 𝑏|2
2 𝑠. 𝑡.  𝑦1 > 𝑦2𝑦3 (7)



𝐶𝑡(𝑡) = 𝑣𝑝𝐶𝑝(𝑡) +  𝐾𝑡𝑟𝑎𝑛𝑠  ∫ 𝐶𝑝(𝜏) 𝑒
−(

𝐾𝑡𝑟𝑎𝑛𝑠
𝑣𝑒

(𝜏−𝑡))
𝑑𝜏 

𝑡

0

, (8)

Table 1. Parameters used for Monte Carlo simulation and fitting. For image analysis, 
only the relaxation parameters and the muscle PK parameters were used. For MC 
Simulations, PK parameters were sampled from a normal distribution with the means 
and standard deviations reported.  
 



Table 2 Anatomy-specific scan parameters of the iMSDE-DCE sequence. 
 



 



4.4 Results  

Figure 2. 3D black-blood DCE of femoral arteries, showing A) close-ups of two 
arterial plaques from two different patients (red arrows), and B) the signal intensity 
in the plaque, lumen and vessel wall. In patient 1, high enhancement of the plaque 
was observed. On the other hand, in patient 2, the plaque intensity does not change 
substantially over time, while the border between the plaque and the lumen does 
enhance strongly. This agrees with the presence of a lipid necrotic core. 



Figure 3. Monte Carlo simulation. Relative error for estimate of PK parameters 
from the ERRM, original (green), and with a constrained fit method (Red). The solid 
line shows the median of 50 simulations, and the shaded area signifies the 
interquartile region. A) The estimates for vp show a very low error percentage for 
both methods, even for the higher noise regions, over all the four simulated tissue 
types. In contrast, estimates for kep, shown in B), show a positive bias for healthy 
VW tissue and necrotic core. The constrained fit shows lower error and smaller 
areas. Similarly, in C), the estimates for Ktrans show a smaller error over all tissue 
types for the constrained fit over the unconstrained ERRM. Only the fibrous cap has 
a considerable number of estimates with over 100 percent error.  
 



Figure 4. Histogram of Monte Carlo simulation (N=250). The Patlak model shows 
the largest spread of estimated values, and therefore discriminating between the 
different types of healthy and diseased tissues is more difficult than either reference 
region method, or even the AUC.  



Figure 5. Cumulative Density Functions (CDF) of parameter values of all femoral 
data. The Area-under-the-curve measure is more similar between the different tissue 
types than the fitted Ktrans,ref values.  
 

Figure 6.  A. Example AAA images, pre- and post-contrast. Good blood signal 
suppression remains after contrast injection. B. Voxel-wise Ktrans,ref maps show very 
good and well-reproducible localization of high- and low uptake regions.  
 



Figure 7. Bland-Altman plots of the Ktrans,ref  of the original (unconstrained) and 
constrained CERRM methods.  

4.5 Discussion 



  



4.6 Conclusion  
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5.1 Abstract 

 



5.2 Introduction 



5.3 Methods 



Figure 1. Schematic illustration of the technique to correct chemical shift 
artifacts and separate multiple compounds in 19F-MRI. (A) PFOB and PFCE at 
different locations in the image. PFOB has a complex spectrum with several 
resonances, whereas PFCE has a single resonance. (B) Two acquisitions with 
readout in down-up and left-right directions (orange arrows), leading to chemical 
shift artifacts from the multiple PFOB resonances in vertical and horizontal 
direction, respectively. (C) The FLASH sequence diagrams describing the two 
acquisitions with different readout directions .(D) The 2 acquisitions are combined 
using the algorithm described, showing that PFOB and PFCE are separated and 
chemical shift artifacts resolved.  
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Numerical simulation of noise robustness 



Imaging  

Phantom 19F MRI 

In vivo 19F MRI 

Synthesis of the PFOB- and PFCE-containing 

nanoemulsions  



Table 1. Scan parameters.  
 



Intramuscular injection  

Intravascular injection 

Reconstruction and post-processing  

𝜆



5.4 Results 

Figure 2. Simulation of PFOB and PFCE signal separation and chemical shift 
artifact removal. (A) Noisy acquisitions of 2 PFOB and 2 PFCE hot spots with 
readout in vertical and horizontal directions (orange arrows). The chemical shift 
artifacts from PFOB are apparent. (B) A pseudo-inverse reconstruction effectively 
separates the two compounds, but results in noise amplification. (C) Our sparse 
deconvolution method achieves excellent signal separation, while preserving signal-
to-noise. 

Numerical simulations 



Figure 3. Simulated results for SNR levels between 5 and 20. A) Red triangles 
represent the mean signal in a ROI at the location of the PFOB phantom, yellow 
circles represent the mean signal in a ROI at the location of the PFCE phantom, 
whereas the blue dashed line indicates the mean signal intensity in noise ROI in the 
background. Both PFOB and PFCE mean signal intensities are relatively constant 
over the range of SNR values and both methods achieve good signal separation. 
There is no residual PFOB signal in the PFCE images (top two graphs), since the 
residual signal in the PFOB ROI (red triangles) is equal to the mean noise signal 
(blue dashed line). The same holds for residual PFCE in the PFOB image (bottom 
two graphs). However, noise levels with the new sparse-deconvolution method are 
much lower compared to simple pseudo-inverse reconstruction. B) Average mean 
squared-error per pixel for the separated PFOB and PFCE images. Error levels are 
much lower for sparse deconvolution than for simple deconvolution. 

Phantom 19F MRI 



Figure 4. Phantom measurement of six Eppendorf tubes containing 
PFOB/PFCE with varying volume ratios.  (A) 19F-MRI of the 6 phantoms with 
readout in 4 different directions (orange arrows). (B) Reconstructions of PFOB and 
PFCE signals. (C) Normalized mean signal intensities and standard deviation in the 
phantoms as function of PFCE and PFOB volume contributions. The dashed black 
line indicates a linear increase from 0 to 1. The coefficients of variation for PFOB 
and PFCE were r2=0.966 and r2=0.990, respectively.  

Intramuscular injection  



Figure 5. 19F-MRI after intramuscular injections of PFOB and PFCE 
nanoemulsions. Reconstructed PFOB (green) and PFCE (red) signals (arbitrary 
units) are overlaid on the 1H-MRI anatomical image. PFOB was injected on both 
sides and PFCE in the right upper leg only.  
 
 
 

Figure 6. In vivo 19F MRI of a mouse injected with PFCE nanoemulsion at 
t=0 hours and PFOB nanoemulsion at t=24 hours.  PFOB and PFCE signal 
are reconstructed and overlaid on a 1H-MRI anatomical image. Color bars 
indicate PFOB (green) and PFCE (red) signal intensity in arbitrary units. The 
nanoemulsions accumulate mainly in the spleen (arrow head marked ‘a’) and 
to a lesser extent in liver (arrow head marked ‘b’). At 48 hours accumulation 
in bone marrow (arrow heads marked ‘c’) is also observed.  
 

Intravascular injection 



 
Figure 7.  Mean image intensities in liver (yellow diamonds) and spleen (blue 
circles) of the three measured mice. Intensities are clustered closely together both 
in the PFCE (panel A) as in the PFOB images (panel B), for similar time points and 
organs. The increase in intensity over time corresponds to the IV injection times: 
PFOB image intensity increases overall between 24 to 48 hours, while PFCE 
intensity remains relatively constant between these time points. 
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Figure 1. Schematic overview of the image acquisition and reconstruction 
pipeline. All images were acquired using a 15ch custom-built coil that could be 
wrapped around the subject’s knee, offering high signal-to-noise ratio (SNR) without 
hindering the flexion/extension range of motion (Figure a). A stack-of-stars sampling 
scheme was used (Figure b). The 3 center stacks were used to determine the gating 
signal, based on Principal Component Analysis. The five first principal components 
are shown in Figure c, from bottom to top. The first component, depicted in blue, 
represents the knee motion frequency. This component is filtered (Figure d, middle 
row) and, after detection of minima and maxima, it is used to correctly assign each 
radial spoke to a given time bin (Figure d, bottom row). The 20 sorted k-spaces, which 
will be used to reconstruct 20 time frames, have an equal number of uniformly 
distributed spokes (Figure e). 

 

 



Figure 2. Image registration pipeline used to derive tibiofemoral kinematics 
from the reconstructed 4D images. a) 3D bone masks are segmented from the high-
resolution anatomical scans. b) Bone masks are slightly dilated, in order to contain 
the interface between bones and other tissues (muscle and fat). c) A rigid registration 
is performed with constraints on the femur, using the anatomical proton density 
weighted scan as target. The result is a series of dynamic scans in which the femur is 
fixed. d) A second rigid registration step is performed with constraints on the tibia. 
The first time frame of the previously determined dataset with fixed femur was used 
as registration target. The result is a series of dynamic scans in which the tibia is 
fixed. The registration parameters of the last registration steps represent the 
tibiofemoral kinematics (three rotations and three translations). 

Determination of bone kinematics 



Figure 3. First principal component for one volunteer before (figure a) and after 
filtering with a bandpass filter (figure b). The main peak corresponds to the frequency 
of the visual cue (0.67 Hz). When no visual cue is provided, a typical broadening of 
the motion peak is observed (Figure c and d, before and after filtering respectively). 
The Fourier transform of the filtered spectra, shown in Figure b and d, are used as 
self-gating signal. 

6.4 Results 



Figure 4. Mean self-gating signal, averaged over the 5 volunteers when instructions 
were given using a visual cue (Figure a) and when the motion task was performed 
without instructions (Figure b). The frequency of the visual cue, corresponding to 
0.67 Hz, is indicated as dotted line for reference in Figure a, b and c, although the 
visual cue was only used to acquire the data in Figure a. Figure c shows the 
representative motion spectrum for one of the volunteers. In this case the frequency 
peak appears to be broader and at average higher frequency, suggesting that the 
motion task performed without instruction could be a good way to simulate the 
motion task performed by an orthopedic patient. 



Figure 5. Two reconstructed dynamic frames (out of 20) representing the maximum 
achieved flexion and the full extension for a volunteer. Sagittal, coronal, and 
transverse views are presented. The left images were acquired when the subject was 
instructed to move at 0.67 Hz, while during the acquisition of the right images the 
subject was free to move at his own preferred pace. For both datasets the flip angle 
used was 20°. 



 
Table 1. Results of scoring of the 4D movies by two musculoskeletal imaging 
experts. Scores are indicated on a scale from 0 to 3. No statistical difference (p>0.05) 
was observed in terms of sharpness, contrast, bone visibility, fluency of motion and 
presence of artifacts when the instructed frequency was 0.67 Hz (“with instructions”) 
as compared to free movement (“without instructions”). 

Figure 6: Tibiofemoral kinematics averaged over five healthy volunteers (shaded 
curves represent mean ± standard deviation) as a function of frame number. The three 
rotational degrees of freedom (abduction/adduction, extension/flexion and 
external/internal rotation) are indicated in red. The three translational degrees of 
freedom (posterior/anterior, superior/inferior and medial/lateral translation) are 
indicated in blue. Similar curves are observed when the instructed frequency was 0.67 
Hz (“with instructions”) as compared to free movement (“without instructions”). 



6.5 Discussion 



Figure 7. Bar graphs representing the tibiofemoral kinematics in the middle time 
frame (#10). Results are averaged over the five volunteers and the bars indicate 
standard deviation. No statistically significant differences observed between the peak 
kinematics parameters obtained with (light gray) and without instructions (dark gray).   



Figure 8. Two different reconstructed dynamic frames (out of 20) representing the 
maximum achieved flexion and the full extension for a volunteer during instructed 
motion at a frequency of 0.67 Hz. The flip angle used in the acquisition was 5º. The 
increasing stretching pattern of the PCL for increasing flexion angle of the knee can 
be observed.  





6.6 Supplemental material 
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