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Preface

In my thesis "A Coding Perspective on Deep Latent Variable Models",
we discuss how statistical inference in Deep Latent Variable Models
(DLVMs) relates to coding.

In particular, we examine the minimum deception length (MDL) prin-
ciple as a guide for statistical inference. In this context, we explore its
relation to Bayesian inference. We shall see that despite both leading to
similar algorithms, the MDL principle allows us to make no assump-
tion about the data generating process. We merely restrict ourselves
to finding regularity in the observed data, where regularity is con-
nected to the ability to compress. We thus find that learning DLVMs
is equivalent to minimizing the cost for communicating (compressing)
a set of observations. One common approach to communication is to
send a hypothesis (or model), and subsequently the data misfit under
the aforementioned model. This is known as the two-part code. In
this thesis, we will mainly focus on the so-called Bayesian code — a
theoretically more effective code than the two-part code.

Somewhat counter-intuitively, the Bayesian inference method will al-
low us to compute the code length without knowing the code nor the
coding scheme that achieved this code length. The purpose of this the-
sis is to close this gap by developing respective coding schemes. We
will, inspired and guided by the MDL principle, look for the codes
that achieve the code length predicted by MDL. A special focus lies
on differentiable functions, and more precisely, deep neural networks,
learned by way of large quantities of high dimensional data. We will
investigate model compression as well as source compression through
the lens of the MDL principle.

vii






Samenvatting

In mijn dissertatie "A Coding Perspective on Deep Latent Variable
Models" bespreken we hoe statistische gevolgtrekking in Deep Latent
Variable Models (DLVMs) zich verhoudt tot coderen.

We onderzoeken specifiek het principe van minimum deception length
(MDL) als een gids voor statistische gevolgtrekking. In deze context
verkennen we de relatie met Bayesiaanse gevolgtrekking. We zullen
zien dat ondanks dat beide tot vergelijkbare algoritmes leiden, het
MDL principe ons toestaat om geen aannames te maken over het pro-
ces dat de data genereert. We beperken onszelf slechts tot het vinden
van regelmatigheden in de geobserveerde data, waar regelmatigheid
verbonden is aan het vermogen tot comprimeren. We ontdekken dus
dat het leren van DLVMs equivalent is aan het minimaliseren van de
kosten voor het communiceren (comprimeren) van een set van obser-
vaties. Eén veelvoorkomende aanpak voor communicatie is het ver-
sturen van een hypothese (of model) en vervolgens de data "misfit"
onder eerdergenoemd model. Dit staat bekend als de tweedelige code.
In deze dissertatie zullen we voornamelijk focussen op de zogenoemde
Bayesiaanse code — theoretisch een effectievere code dan de tweedelige
code.

Enigszins tegenintuitief laat de Bayesiaanse methode voor gevolgtrekking

ons de lengte van de code uitrekenen zonder de code of de codering
te kennen die deze lengte behaalde. Het doel van deze dissertatie is
het sluiten van deze kloof door het ontwikkelen van respectievelijke
coderingen. We zullen, geinspireerd en geleid door het MDL principe,
codes zoeken die de lengte behalen die door MDL voorspelt. Een
speciale focus ligt op differentieerbare functies, en specifieker, diepe
neurale netwerken, geleerd via grote hoeveelheden hoog dimensionale
data. We zullen zowel model compressie als bron compressie onder-
zoeken door de lens van het MDL principe.
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Introduction and Background

In this chapter, we shall introduce essentials to frame the remainder of
this thesis and develop our research questions.

We shall start by recapping models for communication, especially those
that have been picked up and interpreted by the machine learning
community (Section 1.1). We shall continue by introducing the foun-
dations of inference and learning in the communication models we
consider in this thesis. Specifically, we will focus our view on the
minimum description length (MDL) principle as a credo for sending
information (Section 1.2). The importance of the MDL view for learn-
ing heavily parametrized communication systems will be exemplified
on two areas of interest: function compression (Section 1.3) and deep
latent variable models for communication (Section 1.4).

1.1 Information Theory

At the core of information theory, we study systems that convey in-
formation from one point to another point. Alternatively, we shall
describe the systems as transmitting messages from a sender to a re-
ceiver. The fundamental problem of communication to be solved is to
forward messages such that the received reconstructed message is ei-
ther an approximate or exact copy of the original message. We shall



refer to these two goals as lossy or lossless communication, respectively.
The communication problem is caused by the medium through which
information is passed. The effect of an inherently noisy environment
on the messages is described by the channel.

Systems of communication can be found anywhere in technology, so-
ciety and nature. Some prominent example include;

(1) Most will promptly think of digital and analog communication in
technology: two modems that communicate via a telephone line,
two radios that communicate through the air, or two computers
that are connected through the internet.

(2) Communication can be more than spacial, however. When writing
information from the computer RAM to a hard disk drive, we can
think of the process of storing the information as communication
that unfolds in the time dimension.

(3) Further, by no means is the concept of communication restricted
to human made systems. Conveying messages from one living be-
ing to another is a core problem in nature approached by different
means. As seen in many mammalian species, one may send mes-
sages by the medium of urine to be received by the other party’s
sense of smell. Similar examples include visual markings found in
insects, bird vocal communication, and of course human language.

(4) Communication is also present in less conscious processes. Evo-
lution is a communication problem, transporting information from
one generation to another. Reproduction and repair of any cell is
a communication problem, where science has identified the mes-
sage to be conveyed as DNA and RNA. Mistakes in communica-
tion of this information can lead to cancer. It is therefore fascinat-
ing that even this unconscious communication process appears to
have found mechanisms to prevent errors in transmitting messages,
thereby making long lived lives and complex individuals with bil-
lion of cells possible — each cell representing a successful communi-
cation.

Imagine we were to naively send a message through a channel as ex-
emplified in Figure 1.1. We would find two kinds of errors in the
reconstructed message: (i) the message may be cut short because it is
too large to be carried through the channel; and (ii) the message would
suffer from corruption due to the nature of the transfer medium. We
find examples of errors of the second kind in examples (1) and (2).



Telephone lines may suffer from cross-talk, radio-waves interfere with
each other and are corrupted by other signals traveling through air,
hard-drives suffer from corruption when magnetization changes spon-
taneously. A common error of the first kind is often present in example
(3)- Smell, visual markings, and language can all suffer from capacity
constrains. This can lead to ambiguous message reconstructions and
thus misunderstandings.

sender X channel receiver
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In the next two sections, we will unfold principled approaches to tack-
ling both errors and identify the limits of successful communication.
In our discussion, we assume that we have no access to the channel
itself. Hence, we ignore the option to physically improve the chan-
nel to perfection. It may be argued that this is obvious, because all
systems undergo entropic decay eventually. However, often the de-
cay rate is small enough for this to be ignored as an argument. For
example, instead of using ferromagnets to store information digitally,
moving to a storage medium such as glass with fewer spontaneous
corruption events may yield great benefits [6]. Arguably the main
reason as to why an algorithmic solution to the communication prob-
lem should receive strong consideration is coming from a cost point of
view. Improving a channel physically will increase the communication
cost for each message sent through the channel. Furthermore, algorith-
mic solutions may be transferred more easily to other communication
domains, further reducing the cost per sent message. In short, we as-
sume algorithmic solutions to be more scalable due to the negligible
cost of replicating algorithmic solutions.

Source compression: removing redundancy

A channel may restrict the amount of information that can pass through
per time unit and additionally corrupt the information that does pass.
In this section, we address the former problem. For this, we shall
compress the messages to be sent as much as possible.

Figure 1.1: The sender is trying to trans-
mit a message X to the receiver. How-
ever, due to the channel the received
massage Xis incomplete and corrupted.



Let us formalize our ideas by thinking of the sender as emitting an
unlimited stream of messages D = {x;}?°,. We may think of a message
as random variable X. Messages are sampled from the source X ~
Ps(X), where we approximated the source as a distribution. We shall
map each message to a finite length string of symbols from a finite
length dictionary. For example, in Figure 1.2, we map the dog image
to the binary string 110010. We call this map a source code SC(-),
i.e., SC('dog’) = 110010. We can now estimate how long we expect a
source code to be on average

L(C) = ZDP(X = x;)len(SC(x;)), (1.1)

where len(-) denotes the length of the source code. In the interest of
sending short messages, we want to optimize the average length of a
source code to be as short as possible. Intuitively, it should be clear
that there is a lower bound to the achievable code length. This bound is
determined by how much information the source emits. We can quan-
tify the amount of information emitted by the source by its entropy
H(X) . Shannon’s source coding theorem states more concretely, that
the source entropy bounds the expected code length H(X) < L(C).

sender encoder channel decoder receiver
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This bound applies if we seek to compress without loss of information.
We can create even shorter codes if we allow for a certain level of mes-
sage distortion after reconstruction. The following formulation will
also allow for random variables with infinite source alphabet. More
precisely, the distortion measure d(x;,x;) between two messages x;
and x; may be any deterministic, non-negative function. An encod-
ing function maps messages to encodings g : X — Y. A decoding or
reconstruction function inverts the encoder approximately g: Y — X.
We can compute the expected distortion, given an encoder and a de-
coder, to be

D= ZP(X = x;)d(x;, g (7 (x:)))- (1.2)

A lower bound on the expected code length L given a distortion mea-

"H(X): =Y. P(X=x)logP(X = x)

X

Figure 1.2: In contrast to Figure 1.1, we
now compress the message before send-
ing it through the channel. We use a
source code to compress the message X
to the encoding Y, SC : X — Y. In our
example, the message is a dog picture,
and the respective code is "110010" (visu-
alized by dark and bright pixels). The
encoding Y gets corrupted by the chan-
nel such that some bits change their ori-
entation, e.g. '110010° — ‘010010". As
a result of source coding the entire mes-
sage passes the channel, but still suffers
from corruption.



sure and distortion is given by the information rate distortion function

R(D) = i 1% X .
) p(x|x): ¥ P(g)lrl:l(lﬂx)d(x,x)gp (X;X) (1.3)
(%)

where the minimization is over all conditional distributions p(%|x) for
which the joint distribution p(%, x) is limited by the distortion D. We
can relate the notions of rate and distortion to the source entropy with
the Rate-Distortion theorem. It states that the rate-distortion function
lower bounds achievable codes,

H(X) - D < R(D) < L(g,g,D). (1.4)

Channel coding: error-correcting codes

In the previous section, we have discussed how to reduce a message to
its essential information units. When sending the compressed message
through the channel without further alterations, we would be left with
random corruptions as exemplified in Figure 1.2. In this section, we
will discuss how we can send messages without error despite noisy
channels.

Possible errors cannot be detected by observing the received source
sequence itself, since when we compress our data optimally, all source
bits are independent. We thus need to add redundancy to our mes-
sage. As a consequence the sent messages will become longer. We
shall discuss by how much longer they become at the end of this sec-
tion. A natural solution to the corruption problem is to send repetition
codes such as illustrated in Figure 1.3. For this, we simply repeat the
source signal N times. We decode the received code by averaging. For
the binary channel, the probability of error p, is related to the code

length by pe ~ (pp(1— pp))V.

However, we can do better than repetition. The central idea behind
other codes is to correlate redundant bits with more than one variable
of the source code. In Hamming codes this is known as parity checks.

This leads us to a central question: How good can such a code possibly
be. To find out, we first need to establish a property that evaluates the
channel - the channel capacity. We define the channel capacity to be

C(P(Z]Y)) = rlgl(ey;l(Y;Z)- (1.5)

The distribution P(Y) that achieves the maximum is the optimal input
distribution. Note that, the mutual information between channel in-
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and output is crucial for reconstructing the output. Given that we can
change the input distribution to the channel, we may look for the input
distribution on source codes that makes best sense for the channel. The
noisy channel coding theorem shows that the capacity does indeed
measure the maximum amount of error free communication that can
happen over the channel per time unit. Specifically, for every discrete
memory-less channel, when we seek to send source messages with a
rate smaller than the capacity R < C, an arbitrarily small error rate can
be achieved.

Joint source channel coding theorem

Next, we will demonstrate how we can combine both of the results
discussed in the previous two sections. That is, in the error free case
of transmitting finite alphabet random variables: (1) we can compress
messages X such that the average code length R is at least the source
entropy R < H(X), and (2) we can transmit our code Y only through
the channel with arbitrarily small error if the average code length is
smaller than the channel capacity R < C. We suspect the source en-
tropy smaller than the channel capacity H < C to be a necessary condi-
tion for successful transmission. This is not immediately clear, because
we have applied a two stage (data compression and transmission) com-
munication process. However, our intuition will prove to be correct.
The joint source channel coding theorem (SCCT) yields the following
results: (1) There exist encoders and decoders that allow for error free
message transmission, but only if the source entropy is smaller than
the channel capacity H < C. Conversely, if the channel capacity is
smaller than the source entropy C < H, error free transmission is not
possible. (2) There exists an optimal solution, that uses a two stage
method.

The result can be extended for the case that we allow for some distor-
tion. It can be shown that for i.i.d. random variables and memoryless

Figure 1.3: By source compression and
error correction we can send the message
without corruption as long as the source
entropy H(X) is smaller than the chan-
nel capacity SC(P(Z]Y)).



channels, there exists a solution to the communication problem if and
only if the rate given a distortion is smaller than the channel capacity,
R(D) < C.

Let us think about the implications of the SCCT. We can think of a
communication problem to be defined by its source and its channel.
For a separate solution, we aim to find a good source coding scheme,
depending only on the source, and a good channel coding scheme,
depending only on the channel. Any good solution for a given source,
may be reused for any other channel and vise versa. That means the
total number of communication problems in the world can be reduced
from M - N joined problems to M + N separate problems, where M is
the total number of sources in the world and N the total number of
channels.

The SCCT can be misleading or lead to wrong conclusions. First, it
might be hard to identify the source entropy or channel capacity es-
pecially for empirical sources and channels. In practical situations, we
may often only have access to an imperfect solution to either source or
channel coding. It is hard to predict how much an imperfect solution
to one problem affects the other solution. Furthermore for the theo-
rem to hold, we must ignore common properties of channels such as
memory and feedback. Moreover, we think of the entire process as an
infinite stream of information. However, in reality we are often inter-
ested in sending a package of information. For finite length messages,
we need to trade compression and transmission bits against each other.
Finally, knowing that there exists a solution does not necessarily con-
stitute one finding it.

1.2 Minimum description length principle

In this section we address two limitations of Shannon’s studies that
stem from his description of the message source. As discussed in the
previous section, in reality we seek to send finite messages instead
of infinite ones. Thus it seems to be important to account for shared
knowledge between sender and receiver, such as the message decoder.
If one were not to do so, the messages to be sent can be stored within
the decoder entirely, reducing the cost of sending to zero. To be fair,
we have to account for the information that is stored in the decoder
too. Further we shall not make any assumption about the true data



generating process because any model is a simplified abstraction of a
real source and thus no model can contain the true source.

Naturally, the idea arises to compress the message as concisely as pos-
sible including the information that is placed in the decoder. How
would one formalize this concept practically? Solomonoff [195] sug-
gests a criterion based on universal computer languages®.Every data
sequence S may be encoded by a computer program P that prints S
and than halts. The description length of the data sequence is thus
defined by the length of the program (in bits) that prints S and than
halts. We can generalize the idea of a programming language with
the notion of a description method. A description method is a one-
to-many relation from the sample space to the set of binary strings of
arbitrary length.

The Kolmogorov complexity measures the length of the shortest pro-
gram to describe the data.3 The Kolmogorov complexity measures
the ideal message length after compression accounting for the coding
hypothesis. In general, the Kolmogorov complexity cannot be com-
puted because a description method as discussed here cannot exist.
Assuming that for every possible input such a method exists leads to
contradiction [121]. Further, for short sequences S the invariance the-
orem is not relevant and the Kolmogorov complexity is dominated by
a large, description method dependent, constant.

There are two schools of thought for dealing with these problems: The
algorithmic or idealized minimum description length (MDL) school
that assumes the two problems can be discounted 4; and the practi-
cal MDL school that tackles uncomputability and large constants (due
to universal programming languages) explicitly by using a less than
universal description method. Any such description method must be
a compromise in that it should be general enough to describe many
similar sequences but also restrictive enough such that we can com-
pute the Kolmogorov complexity for any input S. For many descrip-
tion methods, we can reduce the description length constant consid-
erably and express their Kolmogorov complexity explicitly. However,
we must acknowledge that the choice of method is guided by some
prior knowledge about S. Thus there will be sequences for which the
description method fails to produce a description.

As an example, consider sending data D by means of a class of para-
metric models H. We describe each model H € H by describing its
parameters. The number of parameters we need and their respective
precision will influence the description length of the hypothesis L(H).

> Universal languages are those that can
implement universal Turing machines.
Commonly used computer languages
are usually universal.

3 Solomonoff [195], Kolmogorov [110]
and Chaitin [27] show that asymptoti-
cally, the complexity is independent of
the programming language used, known
as the invariance theorem. In fact, the
Kolmogorov complexity is language in-
dependent up to a (possibly large) con-
stant.

4This school can be subdivided again
into authors that focus more on
Solomonoff [195] original work and
those that focus on Kolmogorov [110]
studies.



We send S in a two-part code: we first send the model H and then the
data misfit>. Identifying the best hypothesis H becomes a matter of
balancing the complexity of the hypothesis L(H) and the error made
by H in describing the data L(D|H),

L(D) := min L(H) + L(D|H). (1.6)

This is the most common interpretation of MDL and, as such, has been
introduced by Rissanen [173, 175]. Note that in contrast to idealized
MDL, the winning hypothesis may strongly depend on its description
method. To tackle the arbitrary length issue, it has been advocated
to refine the MDL principle [175, 15] such that one should chose the
best hypotheses under worst-case assumptions for the code (minimax
code). However, this is not a large concern for this work. In the context
of this work, the description length of H is implicitly given by the task
at hand. It can be the number of flops to make a prediction, or the
number of bits to store H. We acknowledge that our approach may fail
the test of time, for a given hypothesis, when implementation details
or hardware of an underlying system change over time. A reasonable
solution is provided by repeating experiments presented here.

The simple two-part method described in this section can be related
to maximum a posteriori (MAP) inference. Specifically in the two-part
code we first encode a hypothesis H or its representative parameters 6
using a code Lyjap. The hypothesis specifies a prior over the parame-
ters as well. The two-part code length is thus given by

Lmap(D) = min —log P(D|H) —log P(H) (1.7)
= fin = log P(D|0) —log P(0), (1.8)

where — log P(0) depends on the specific code L that is used.

The MDL principle may be extended to include probabilistic hypoth-
esis as well. To achieve this we optimize L(D|H) such that, if there
exists a hypothesis H in the model class H with small description
length L(D|H), L(D|H) will be small too. As a specific example we
shall introduce the Baysian code,

LBayes(D) = —log Z P(D|H)P(H) (1.9)
HeH

= —log ) P(D|6)P(6). (1.10)
0cO

We can show that from an MDL perspective Bayesian inference is to
be preferred over the two-part (MAP) inference method. The Bayesian

SFor any  probabilistic — observa-
tion model P(D|H), the Shannon-
Fano code relates the observation
model to the description length
L(D|H) = —log P(D|H).
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code is a lower bound to the two-part code,

LBayes(D) = —log Z P(,D‘G)P(G) (1.11)
0c®
< 16}16%1— log P(D|6) — log P(68) = Lpmap(D). (1.12)

Generally, the Bayesian code will provide shorter code-length than
the two-part code. From this analysis it is not clear however, which
code can achieve this code-length. In the next section, we shall discuss
which coding scheme can achieve the this code-length approximately.

To conclude, in this section, we have introduced the MDL principle as
a basis for learning. We have seen that we can formulate MAP and full
Bayesian inference as instances of the principle; and that, of the two,
Bayesian inference is to be preferred. However, note that the MDL
principle motivates other forms of inference that have no Bayesian
counter part such as the Shtarkov normalized maximum likelihood
code or the prequential plug-in code that we will not discuss in this
thesis (see Griinwald [63], Chapter 11).

Exemplified by the Bayesian code, we have observed another obscurity
in coding with the MDL principle: To construct the code length of the
Bayesian code, we did not require to construct an actual code. This is
an interesting property when using the MDL for complexity analysis
of functions, but of little value for us that we seek the codes to achieve
the MDL. We will tackle this problem in the next sections.

Approximate Bayesian inference and MDL principle

In the previous section, we have seen that the MDL point of view
provides a motivation for Bayesian inference. Thus, both frameworks
lead to the same learning methodology. We may thus regard them
as equivalent, despite their variance in motivation®. In this section,
we strive to develop Bayesian codes. Derived from the previous dis-
cussion, we expect them to outperform two-part codes. Our previous
analysis only showed the advantage in expected code length, however,
it did not provide the code that can achieve such code length. We now
turn to exploring possible coding schemes. We will see that we need
to approximate Bayesian codes due to infeasible integration. Different
approximation techniques will yield different codes. In the cases that
we deem relevant, it turns out that variational inference provides a
practical framework for both feasible approximate Bayesian inference
and a code.

®Bayesian statistics are usually moti-
vated through Cox’s axioms. Cox’s ax-
ioms state that a subject shall act ratio-
nal with respect to the information it is
given [36]. A subjects beliefs are repre-
sented by probabilities. Observations in
the world are weighted by a given utility
function to provide for optimal decision
making based on previous observations.



To see the need for approximation, lets formalize our ideas more pre-
cisely. Consider observations D = {x;(t)|i,t}, that shall be fit to a
parametric model governed by 8 = {6;|j}. The two-part code in this
setting would correspond to a maximum a posteriori (MAP) approach
to finding the single set of variables that maximize p(6|D). Yet, we al-
ready know that if we can include more point hypotheses, we should
be able to get a shorter code. For this we need for the parameter values
to be distributed according to the posterior probability distribution of
the parameters given the data, and all the assumptions related to using
the given model p(0|D, H). We can evaluate the posterior by means of
the Bayes rule

p(6]#)

pOID, 1) = p(DI6,H) S pmary (1.13)
The evaluation process includes the marginalization over the param-
eter space. Therefore, even if we were to have a clear way of re-
alizing the Bayesian code, in many realistic scenarios, it is difficult
to even evaluate the full posterior due to the burden of marginal-
ization. We thus rely on approximation techniques including varia-
tional approximations and stochastic approximations provided by dif-
ferent Markov chain Monte Carlo (MCMC) methods. In the following,
we will demonstrate two coding schemes approximating the Bayesian
code.

Recall that according to Shannon’s coding theorem the code length
L(x) of a continuous or discrete variable is bounded by its entropy. The
optimal code encodes each variable with — log, p(x) bits or —log p(x)
nats for binary or continuous variables, respectively. For discrete latent
variables, there are optimal coding schemes (prefix codes) [35]. The
models that we are interested in, in the scope of this thesis, however,
are parameterized primarily by continuous variables. Because we can-
not send continuous variables with infinite precision, we require some
form of vector quantization (VQ) for the sending scheme. 7

1.3 Coding schemes based on approximate Bayesian in-
ference

In the following, we will motivate two coding schemes that achieve
the Bayesian code length approximately. Frequently, the situation is
such that we aim to send continuous symbols from a similarly contin-
uous distribution. In this scenario, sending even one symbol at arbi-

11

7VQ is a classical technique from signal
processing that allows the modeling of
probability density functions by the dis-
tribution of prototype vectors. Examples
include k-means quantization, product
quantization, residual quantization, op-
timal fixed point and hashing quantiza-
tion.
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trary precision would lead to an infinitely long message (see Equation
(1.16), for € — 0). We thus instead only restrict ourselves to coding up

(x, p(x))

to a tolerance of error t. As illustrated in Figure 1.4, the quantization
width e determines that error. The error tolerance and the quantization
width are linked as follows,

|p(x) = p(x + 3€)|, (1.14)

t=  max

xesupp(p(x))
where supp(p(x)) is the support of p(x). The probability mass of the
continuous distribution is approximated by p(x)e. Thus, we expect
an optimal code of length —log(p(x)€) nats per message. Equivalent
to the two-part code, we may postulate the following coding scheme
for the Bayesian code. First, we send the parameterized model (#, 6),
which models the data, through the channel. Assuming the model
16|
0

7

parameters are continuous, we assign the quatization width to be ¢
and we similarly assign the quatization width of our continuous ob-

Dl

servation model to be €y '. Subsequently, the model-data misfit is

communicated, resulting in
L(D) = L(6) + L(D|6)
0 D
—1og (p(6#H)e;") —log (p(Dl6, 1)el” )

(1.15)
(1.16)

where L(0) = —log (p(6|7-[)e{‘99‘) is the description length of the model
parameters using a given prior distribution and precision €. The de-
scription length to convey the model-data misfit up to precision ey
is given by L(D|0) = —log (p(D\B,’H)e,[(D]), where |D| and |0| de-
note the number of elements in the respective sets. Ignoring the error
and parameter precisions for a moment, we note that optimizing this
objective is equivalent to identifying the MAP estimate. Therefore,
to achieve a short description length, we can decrease the parameter
precision by increasing e€g. Our hope is that despite giving up infor-
mation and effectively collapsing many hypothesis into equivalence
classes, the model-data misfit is maintained. We may speculate that
this approach works by exploiting regularity in the model class.

The strategy outlined in the previous paragraph, however, leads to
some challenges. When performing an exact Bayesian evaluation, each

Figure 1.4: The figure shows the prob-
ability mass associated with a quan-
tized probability distribution. The quan-
tization width e determines the how
precisely the approximation matches
the continuous distribution. The log-
probability mass of the continuous dis-
tribution is approximated by log p(x) +
loge. As is intuitive, the narrower we
choose €, the more information we need
to transmit.



parameter setting contributes zero probability mass to the continuous
density. When we quantize, many parameter settings are collapsed,
thus collapse the parameter probability density functions (PDFs). Thus,
some areas of the original PDFs will carry much density while others
may carry none. The more we quantize, the more we average over
the original PDF. This may result in poor model performance. Even
worse, one can imagine that, on top of quantization, we use a statisti-
cal approximation such as MC sampling. Encountering a high density
model may be so unlikely that we never sample one. This leads to
poor approximations of the averaged regions. Besides the effect of
quantization on the model itself, in the current formulation (Equation
(1.16)), there is no feedback from the change we invoke to the model,
to how this translates to the model-data misfit.

As a solution to both aforementioned problems, we make use of impor-
tance sampling. For this, let us introduce a quantized approximation
to the parameter distribution

q(0|H, elf‘) ~ / p((§|7-[)dé. (1.17)
[9—%6(‘99‘,9-&-%629‘}

We now rewrite Equation (1.16) to

L(D) = —log (/ p(ﬂ|7—[)p(D9,7—[)ede9) (1.18)

- p(0]7) DD
=—1 E 0 ——————p(D 6,7—[ X ( . )
°8 ( 9(6H,ey") lqwm,ee@)P( | )e 1.19

0|H
> —E (o) [log <P( | |)9\
e Q(6|Hr€9 )

where we have made use of Jensen’s inequality. To conclude, we have

P(D|9/H)€xp>1 ,  (1.20)

made several approximations to the Bayesian code. First, we quan-
tized the model. Second, to circumvent the required model marginal-
ization and combat problems introduced by the quantization process,
we required the introduction of a parameter distribution approxima-
tion. This led to a likelihood ratio of q(9|?-[,e(‘99|) and p(6|H). When
combined with sampling, this is also known as importance sampling.
The above consideration lead us to the first research question for this
thesis.

Research Question 1: Can we identify a coding scheme that achieves

the code length in Equation (1.20) ? Can we learn how much quantiza-
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tion €, a model can sustain while maintaining its performance? Can

Research Question 1
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our approach be of practical use for compressing deep neural network
models?

In answering this research question we refer the reader to Chapter 2
of this thesis.

Research Question 1 aims at performing a strategy for non-uniform
precision quantization of continuous variable models. Next, we shall
discuss an alternative approach that is based on an approximation
to the Baysian mixture code, where we use a mixture model to turn
continuous variables models into discrete ones. Specifically, we use a
mixture model to describe the true parameter distribution p(0|H) ~
Y. p(i)p(6|H, ). Next, each parameter is approximated with one of the
1

components in the mixture model q(0|H) = max p(0|H, i) = p(0|H, i*).
1

The corresponding objective is

L(D) = —log (/ p(9|H)p(D|9,H)ede9> (1.21)
;v(i)P(BIH,i) .
> _lEp(G\H,i*) log WP(D|B,H)€X . (1.22)

Under the constraint that only one component claims responsibility
for the approximation g(6||H),

p(*)p(OIH, i") + Py pD)p(6|H, i)

PG ~ p(i*)+0, (1.23)

the cost of sending the model now reduces to log, p(i*) bits per pa-
rameter. In other words, we only send the description for the mixture
component that best describes a model parameter. This allows us to
model with continuous distributions while sending discrete symbols.
Our examinations raise the second set of research questions of this
thesis.

Research Question 2: Can we identify a coding scheme that achieves
the code length in Equation (1.22) under the constraint from Equation
(1.23)? Can we learn how much quantization a model can sustain
while maintaining its performance? Can our approach be of practical
use for compressing deep neural network models?

In answering this research question we refer the reader to Chapter 3
of this thesis.

Research Question 2



Conclusion

In this section, we have introduced two coding schemes, both require
us to use variational inference. We have hinted at, but not yet dis-
cussed, how to optimize such models. This will be laid out in the
respective chapters.

The reader may have noticed that we seem to give up a lot of infor-
mation in the model by the quantization we perform. Even though
giving up information improves the coding length, this surely will ef-
fect the model performance ("No pain no gain"). However, as we will
see, the overparameterized neural network models that we are deal-
ing with are able to lose a lot of information while maintaining model
performance.

The reader may also wonder why we have not discussed another cod-
ing scheme — the so called bits-back coding. In the next section, we
shall discuss this alternative coding idea. Numerous authors have ex-
perimented with the idea of sending distributions rather than param-
eter settings [80, 84, 134, 52, 51]. Practically, one would send a code
using redundant code words. The code words are selected based on
auxiliary information. The receiver can identify the redundant bits in
the code by rerunning the encoding procedure and thus get its bits-
back 8. One question then remains: How to use the received bits?
It turns out that they can be used when the variables being sent are
source encodings.

1.4 Latent variable models as communication models

In the previous section, we discussed model communication from an
MDL point of view. In the following, we will show how we can
widen our perception and transfer the insights and ideas from model
to source coding.

Latent variable models for source coding

Let us consider a source that emits partially redundant messages D =
{x;}N,. We wish to find a code SC : X — Y that maps the original

15

8 The term bits-back has been coined by
[80].
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messages to a code such that the overall description length is as short
as possible according to Equation (1.1). The coding scheme at use
is similar to the one we used when communicating a model. We first
send the encodings {SC(x;)} | = {y;}\, thereafter we communicate
the model misfit 9. As in the previous section, we prefer the Bayesian
code over the two-part code. This leads to a code with description
length,

LBayes(X;H) = —10g/p(X|Y,H)p(Y,H)dY, (1.24)
Q

per message. We face precisely the same situation as before: even if
we were able to connect the code length to a coding scheme, we face
the problem of intractability first. We hence need to make approxima-
tions. From the approximation techniques at hand, we shall choose
variational inference, because, as we will discuss in the next section,
we can derive a general coding scheme based on this particular ap-
proximation.

Assume we choose a conditional approximation g(Y|X, H) to the pos-
terior. Equivalent to Equation (1.20), the bound to Lpayes(X;H) be-
comes

LBayes(X,'H) > _]Eq(YIX,H) |:10g <q(pY(Y}|Z-[7_)L)p(XY,H)€LX>:| . (1.25)
Note that g(Y|X, ) acts as the code SC. We have talked about two
coding schemes involving variational inference that request a partic-
ular form of the posterior approximation to the parameters. In the
next section, we see that when compressing many messages we can
efficiently code any distribution q(Y|X, H) independent of the source
model. Knowing this, we shall spend the remainder of this section

discussing how we can learn rich function classes for p(X,Y|#) and
g(Y|X, H).

When source coding with latent variable models was first proposed
by Frey and Hinton [52], the authors assumed a mixture of Gaus-
sians source model. This choice allowed for finding the maximum
likelihood solution by application of the Expectation Maximization al-
gorithm. The algorithm iterates between optimizing p(X,Y|H) and
g(Y|X,H). In each step, the optimal solution is determined given the

other distribution is fixed. The algorithm requires its user to compute
p(XY[H)

Tp(XYH)dY"

unfortunately.

This is tractable only for a small number of distributions

Since this proposal for learning latent variable models, there have
been many advances in the field of inference and estimation using

9 To simplify the discussion, in this sec-
tion, we will disregard the effect of the
channel. We motivate this decision in
Section 1.1. We will also ignore the cost
of communicating the model. This task
is orthogonal to our discussion here.



variational methods that allow for more complex posteriors and joint
models [92, 156, 86, 165, 166, 171, 106, 56, 182]. In the 2010s, deep
neural networks (DNNs) increased in popularity due to successful ap-
plication for discriminative tasks. DNNs are a class of parameterized
models that can easily be trained by stochastic gradient decent. Hop-
ing the performance gain would carry to generative tasks as well, it
has been proposed to use DNNs to learn complex conditional distri-
butions [167, 216, 106]. For this, the DNN takes as input the con-
ditional and returns the parameters for the distribution. For instance
q(y|x,8) = q(y|x; DNN(x;8)), where § are the parameters of the DNN.
This technique allows for a powerful class of conditional distributions.
The problem of finding the optimal distribution has now been shifted
to finding the optimal DNN. Luckily, we may use stochastic-gradient
decent to identify the best solution. To accomplish this, we separate the
stochastic computational node, i.e. our distribution, into a stochastic
node and deterministic node, where the latter carries all the parame-
ters, i.e. q(x;0) = f(q(e);0). This allows us to compute any expec-
tation E,(x;0)[g(x)] = E,(e)[g(f(e;0))] with MC sampling. This is
also known as the reparameterization trick [106, 171]. By applying
this trick, we attain unbiased stochastic gradients of our objective with
respect to the variational parameters 6. Thus, this results in a standard
optimization problem that may be optimized with stochastic gradient
ascent as desired.

Latent variable models that use distributions parameterized by deep

neural networks are also known as deep latent variable models (DLVMs).

One important advantage of DLVMs is that they can encode complex
marginal distributions p(X|#) even with relatively simple conditional
distributions ¢(Y|X, ). Hence, this expressivity makes DLVMs at-
tractive for approximating complex source distributions.

Since their introduction, DLVMs have seen many approaches to fit
even more complex latent distributions. Since we are interested in hav-
ing short codes Y, we want to point out two directions in particular.
First, one can improve the decoding process through conditional re-
currence. This allows for progressive refinement and spatial attention
[155, 212, 181, 59, 154]. Exploiting these correlations will eventually al-
low for shorter codes. Second, we may learn to transform simple latent
approximations to more complex ones by learning invertible represen-
tations, also known as flows [170, 211, 139, 104]. Matching the true
distribution more closely will allow for a shorter code as well.

So far we have seen how we may use one encoder to encode many
messages. However, we can also understand communication in the
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opposite direction. We may find a system that communicates one mes-
sage by sending many partially redundant codes. For example, this
might be the case if we have no access to the encoder. Reconstruction
algorithms represent an example of such communication [169, 114].
Here we seek to reconstruct a 3D object or scene, i.e. the message, by
observing 2D projections, i.e. many noisy encodings. When DNNs
learn to reconstruct, we cannot be sure to reconstruct the message cor-
rectly. Modelling bias may influence the reconstruction. Reconstruct-
ing protein structures from electron microscopes correctly is an impor-
tant challenge where we need to make sure that the reconstructed 3D
structure is precise.This leads us to our third research question:

Research Question 3: Can the projections caused by a molecule in an
electron microscope be interpreted as source compression. Can we
reconstruct a protein with local uncertainty bounds?

In answering this research question we refer the reader to Chapter 4
of this thesis.

Bits-back coding for source coding

In section 1.3, we approximated the Bayesian code length for commu-
nicating both a model and data by a variational code length. We saw
that in contrast to the Bayesian code, we could identify a correspond-
ing coding scheme for some choices of prior and posterior. In this
section we will describe a variational coding scheme to achieve the
variational code length that can use any choice of posterior and source
assumption. The new scheme presented here, generally should allow
for tighter bounds than the two schemes presented earlier. For this,
we will encode redundant code words by using auxiliary information
that we will be able to retrieve.

So, let us consider the variational code in Equation (1.25). We will
encode each message X according to the approximate posterior distri-
bution q(Y|X,H),

Lvi(X;H) = Byyixa) |~ log p(YIH) — log p(X|Y, H)el] . (1.26)

Computationally this is still intractable, we thus use MC samples to
retrieve encodings Y ~ q(Y|X). We send encodings Y in this fashion
(step 1). Once we are done with that, we also send the data misfit, as
before, with a method such as Shannon-Fano codes (step 2).

Research Question 3



Note that parts of the code we sent contained no information about the
data. The entropy of the approximate posterior distribution quantifies
the amount of extra information that we transmit,

Hyyix,20)(Y[X) = = Eg(yx,n) [logq(Y|X, H)]. (1.27)

This opens two questions: How can the receiver identify this informa-
tion? How can the receiver use these auxiliary bits?

The receiver is now in possession of messages and encoding, X and Y
respectively. From this information, the receiver can construct q(Y|X, H)
given it knows the algorithm used to compute the posterior or has
shared resources (step 3). It can now identify the auxiliary informa-
tion bits by sampling the message Y ~ q(Y|X).

This justifies the effective coding length of the variational code to be
the same as Equation (1.25), Ly[(X;H) — Hy(y|x,2)(Y[X) . From a
practical point of view though, it is not clear how the receiver can make
use of the auxiliary bits that have already been sent after all. It turns
out that when sending many encodings in sequence, the auxiliary bits
of one encoding can be used to code the next one. For the first data
point, we do need to send the auxiliary bits. However, starting at the
second data point, we can use the previously encoded data point’s
bits as auxiliary bits (assuming they are random). This scheme is also
known as ’bits-back with feedback’. This practical bits-back coding
was first worked out by Frey and Hinton [52], and has recently been
refined [207, 107, 85].

Beyond source coding

In this section, we would like to point out some shortcomings of the
modelling choices we have presented so far. First of all, we have looked
at sending codes and models separately. However, it should be clear
that in a realistic scenario we have to consider both. This results in the
following coding length,

- _pOH)
LBayes(X|H) > ]Eq(elﬂ,e‘f‘) [log <q(9|7—[,el)9|) (1.28)

p(Y|H) X
—E 1 X|Y,H :
Q(Y|X,H) l:og <q(Y|X,H)P( | )€x
This is especially important when learning with large over parame-

terized models. Imagine we would want to do source compression
without accounting for the model transfer cost. For a finite amount of
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messages sent, we could hide all messages in the encoder and decoder.
Thus, we would not need to send any code. The communication cost
would be zero. In fact, this is a common problem in generative mod-
elling where the latent code is being ignored (observed in e.g. [155]
and discussed in [5]).

Secondly, so far we have only payed attention to the source coding
part of the communication process instead of considering channel and
source coding. We have justified that we can treat those two problems
separately by the SCCT. However, it turns out that the theorem is only
applicable when a certain set of assumptions is met (see Section 1.1). If
this is not the case, we can not assume separate solutions to be optimal.
On top of this, even if they were to exist, we may not be able to identify
the best model in the model class. This is why pioneering work looks
at channel coding and modelling channel and source jointly [147, 62,
23, 44, 100, 101].

One of the most important characteristics of a channel to take into
consideration when modelling is the bandwidth-limited channel. This
channel describes the situation in which the amount of transmitted
information varies, e.g. wifi or radio waves.

Research Question 4:  What are relevant modelling choices when mod-
elling communication systems with the bandwidth-limited channel
when the encoder and decoder are large parametric models?

In answering this research question we refer the reader to Chapter 5
of this thesis.

Research Question 4
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In the first part of this thesis, we focus our efforts on learning sim-
ple models as motivated by the MDL principle. We will focus our
efforts on simplification through parameter reduction in deep neural
networks. This is, of course, not the only way to think about func-
tion complexity. We shall elaborate on alternative methods in the final
chapter. In the following, we relate the next two chapters to related
literature.

Neural network compression

Due to the ever increasing computational demands of recent neural
network models, pruning neural network parameters has become a
major line of research. In some common architectures, more than
99% of parameters can be removed without significant loss of accu-
racy. There are a few notable approaches to pruning when given a
trained neural network. Some work operates under the assumption
that weights with small magnitude, or small first or second derivatives
may be removed [119, 71, Han et al., 64, 69, 97, 42]. This approach is
usually applied iteratively: weights are removed, then the smaller net-
work is trained again, and optionally, some previously pruned weight
may be revived. This cycle repeats until a required pruning rate is
achieved. Other pruning criteria include heuristics based on activation
[89] or redundancy [137, 197, 225].

The Bayesian community introduced schemes that explicitly optimize
the description length of a model alongside the discrimination accu-
racy, thus leading to sparser models [135, 149, 116, 20, 105, 148, 99, 209].
Notable work, additionally relevant in this context, is work that applies
learned noise to learned weights [56, 53, 146, 199, 145, 129, 131, 54, 48,
199, 150]. The impact of this noise on the discrimination ability of the
model is used as a learning signal for the noise and weights. As a
result, weights that can sustain high levels of noise may be removed.

Beyond pruning single parameters, the community realized that in or-
der to drop computational needs of a neural network it can be more
beneficial to prune entire structures such as filters, channels or features
[221, 224, 120, 131, 132, 42, 77, 230, 227, 226]. Even though structure
pruning might reduce the total number of parameters less than afore-
mentioned methods, it often leads to more computationally efficient
architectures. On the other hand, there is work that trains efficiency
aware architectures from scratch [90, 43, 88, 9, 189]. The aforemen-
tioned work was influenced by earlier work that showed small net-
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works can be trained from scratch when learning from samples drawn
from an overparameterized network, often referred to as distillation
[10, 178, 81].

Vector quantization

It is worth mentioning that good neural network compression results
are usually achieved by pruning and a form of vector quantization
(VQ). VQ is a classical technique from signal processing that allows
for the modeling of probability density functions by the distribution
of prototype vectors. Various studies explore k-means quantization
[Han et al.], product quantization, residual quantization [55], optimal
fixed point [124] and hashing quantization [28]. Most successful in this
field is precision quantification where the prototype vectors lay on a
regular grid, i.e. the grid of points that can be represented by a 16-bit
floating-point number [141, 65, 33, 214, 26].

Binary neural networks

Binary neural networks can be seen as another special case of VQ. A
common approach to learning binary (or tertiary) weights is to utilize
floating-point gradients during training. Through gradient accumula-
tion, it can be determined when to switch to the other state [32, 140,
168, 233, 31, 158]. Even though binary architectures are promising due
to their low computational demands per operation during inference,
it is hard to optimize them. Further, they often rely on many more
parameters than their continuous counterparts.

Low rank matrix decomposition

A final approach to compressing information is to apply low rank ma-
trix decomposition. This was first introduced by [41] and [94], and
elaborated on by using low rank filters [91], low rank regularization
[202] or combining low rank decomposition with sparsity [125].



Approximate Bayesian
Compression for Deep Learning

In this chapter of the thesis, we seek to approximate the Bayesian code
of communicating deep neural network models. We do this by remov-
ing prediction irrelevant parameters from the model and by lowering
the bit-precision of parameters. These procedures are performed sub-
ject to the constraint that they do not affect the predictive power of the
model. Our scheme thus executes the communication idea that was
laid out in the introduction (see Equation (1.20)). Note that reducing
precision as a form of vector quantization can be understood, from
a Bayesian point of view, to be an ensemble of many high precision
models (see Equation (1.17)).

Practically, we determine the parameter precision by investigating the
uncertainty learned in the posterior distribution. To prune unnec-
essary parameters, we rely on a scheme proposed by Kingma et al.
[105] and developed by Molchanov et al. [145]. In contrast to their
work, we use hierarchical sparsity inducing priors to eliminate groups
of weights instead individual ones. This bears large computational ben-
efits not for communicating the model, but for executing it with good
performance. Both of our inventions significantly improve model com-
pression rates. They also show excellent energy efficiency and speed
compared to other methods that have been explicitly designed for this
purpose.
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3.1 Introduction

While deep neural networks have become extremely successful in in a
wide range of applications, often exceeding human performance, they
remain difficult to apply in many real world scenarios. For instance,
making billions of predictions per day comes with substantial energy
costs given the energy consumption of common Graphical Processing
Units (GPUs). Also, real-time predictions are often about a factor 100
away in terms of speed from what deep NNs can deliver, and send-
ing NNs with millions of parameters through band limited channels
is still impractical. As a result, running them on hardware limited
devices such as smart phones, robots or cars requires substantial im-
provements on all of these issues. For all those reasons, compression
and efficiency have become a topic of interest in the deep learning
community.

While all of these issues are certainly related, compression and perfor-
mance optimizing procedures might not always be aligned. As an il-
lustration, consider the convolutional layers of Alexnet, which account
for only 4% of the parameters but 91% of the computation [201]. Com-
pressing these layers will not contribute much to the overall memory
footprint.

There is a variety of approaches to address these problem settings.
However, most methods have the common strategy of reducing both
the neural network structure and the effective fixed point precision for
each weight. A justification for the former is the finding that NNs
suffer from significant parameter redundancy [40]. Methods in this
line of thought are network pruning, where unnecessary connections
are being removed [119, 68, 64], or student-teacher learning where a
large network is used to train a significantly smaller network [10, 81].

In this work, we show that parameter sparsity and vector quantization
(aka reducing bit precision) alongside achieving high predictive accu-
racy is motivated by a Bayesian perspective on learning. Specifically,
we will use the MDL principle [63] to justify our actions. The princi-
ple has been linked to Bayesian learning through the bits-back argu-
ment [80]. As suggested by the authors of the latter, we will use the
variational Bayesian approximation to the Bayesian inference method.

More precisely, our method codes with sparsity inducing priors. This
induces posteriors that are rewarded for uncertainty, which can be



translated into reduced bit precision. To design our priors, we also
keep computational benefits in mind. This means, we employ sparsity
inducing priors for hidden units (instead of individual weights). We
can thus prune neurons. When this scheme is applied for each layer,
it has an effect not just to the outgoing weights of a layer but also to
the incoming ones. We use the posterior uncertainty, to identify the
required precision of a given neuron. This means that our Bayesian
network can be re-interpreted as a low precision network. The result
of our pruning method does not require any sampling. It is in fact
applicable and practical on chip with current GPUs. We demonstrate
this in our experiment section.

3.2 Variational Bayes and Minimum Description Length

A fundamental theorem in information theory is the minimum de-
scription length (MDL) principle [63]. It relates to compression directly
in that it defines the best hypothesis to be the one that communicates
the sum of the model (complexity cost £¢) and the data misfit (error
cost L£F) with the minimum number of bits [174, 176]. It is well un-
derstood that variational inference can be reinterpreted from an MDL
point of view [159, 220, 80, 87, 56]. More specifically, assume that we
are presented with a dataset D that consists from N input-output pairs
{1, y1), -+, (xXn,yn) }- Let p(D|w) = [T, p(vi|x;, w) be a parametric
model, e.g. a deep neural network, that maps inputs x to their cor-
responding outputs y using parameters w governed by a prior distri-
bution p(w). In this scenario, we wish to approximate the intractable
posterior distribution p(w|D) = p(D|w)p(w)/p(D) with a fixed form
approximate posterior g4(w) by optimizing the variational parameters
¢ according to:

L(¢) = E, (w)llog p(D|W)] + E; w)llog p(w)] + H(gp(w))  (3.1)

LE L€

where H(-) denotes the entropy and L(¢) is known as the evidence-
lower-bound (ELBO) or negative variational free energy. As indicated
in eq. 6.8, L(¢) naturally decomposes into a minimum cost for com-
municating the targets {y,}_; under the assumption that the sender
and receiver agreed on a prior p(w) and that the receiver knows the
inputs {x,})_; and form of the parametric model.

By using sparsity inducing priors for groups of weights that feed into
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a neuron the Bayesian mechanism will start pruning hidden units that
are not strictly necessary for prediction and thus achieving compres-
sion. But there is also a second mechanism by which Bayes can help us
compress. By explicitly entertaining noisy weight encodings through
gp(w) we can benefit from the bits-back argument [8o, 87] due to the
entropy term; this is in contrast to infinitely precise weights that lead to
H(6(w)) = —oo'. Nevertheless in practice, the data misfit term LF is
intractable for neural network models under a noisy weight encoding,
so as a solution Monte Carlo integration is usually employed. Contin-
uous q¢(w) allow for the reparametrization trick [106, 171]. Here, we
replace sampling from g,(w) by sampling from a deterministic func-
tion of the variational parameters ¢ and noise variables €:

L(¢) = Epe)[log p(DIf (¢, €))] + By w) [log p(w)] + H (g (w)) (32)

where w = f(¢, €). By applying this trick, we obtain unbiased stochas-
tic gradients of the ELBO with respect to the variational parameters
¢, thus resulting in a standard optimization problem that is fit for
stochastic gradient ascent. The efficiency of the gradient estimator
resulting from eq. 3.2 can be further improved for neural networks
by utilizing local reparametrizations [105] (which we will use in our
experiments); they provide variance reduction in an efficient way by
locally marginalizing the weights at each layer and instead sampling
the distribution of the pre-activations.

3.3 Bayesian compression with scale mixtures of normals

We consider a network parameter to be a random variable w. Its scale
z is characterized by a distribution p(z):

z ~ p(z2); w ~ N(w;0,2%) (3:3)

2 gerves as the variance of the zero-mean normal distribution

where z
over w. Because we treat the scale z of the parameter as random vari-
ables too, under this parameterization, we may recover marginal prior
distributions over the parameters. We bias the distribution over w to
be sparse by choosing the appropriate distribution on its scale z to
allow for heavier tails and more mass at zero. A corresponding fam-
ily of distributions are the scale-mixtures of normals [17, 7]. We will
present some members of this family in this work. However, the group
is general and many sparsity inducing priors can be considered special
cases.

* In practice this term is a large constant
determined by the weight precision.



One of the most well known members of this family is the spike-
and-slab distribution [143], also refereed to as the golden standard
for sparse Bayesian inference. Assume the Bernoulli distribution on
the parameter scale. The resulting marginal distribution p(w) has a
delta “spike” at zero when z = 0 and a continuous “slab” over the
real line when z = 1. Sadly, using this prior leads to computation-
ally expensive inference. We would have to search 2M models, with
M being the number of model parameters. In search for a more effec-
tive inference scheme, Dropout [82, 200] can be interpreted as effective
spike-and-slab. Specifically, the variance of the “slab” is zero [53, 128].
This comes handy because Dropout is already a popular regularization
techniques for neural networks.

A second example of the scale-mixture family is the Laplace distribu-
tion. For this the scale is parameterized by an exponential distribu-
tion p(z2) = Exp(A). The mode of the posterior distribution given a
Laplace prior is called the Lasso [205] estimator. Previously, Lasso has
been used for sparsifying neural networks [221, 183]. An advantage
of the Lasso estimator is that it can be applied with few computa-
tional burdens. However, the effect of the Lasso estimator may be to
“shrink" large signals [25] and only provide for point estimates over
the parameters. The lack of providing uncertainty bounds may lead to
over-fitting. The need for potentially precise point estimates leads on
top to large networks even after compression.

Because we strive for computationally feasible inference and sparse
results, we tackle the problem of group sparsity with an approximate
Bayesian approach. We will consider two choices for the scale prior
p(z): the hyperparameter free log-uniform prior [105, 145] and the
half-Cauchy prior. Latter results into a horseshoe [25] prior distribu-
tion. Both of these distributions correspond to a continuous relaxation
of the spike-and-slab prior and we provide a brief discussion on their
shrinkage properties at the Appendix C.

Reparametrizing variational dropout for group sparsity

We seek to identify a scale prior that allows for group sparsity. A
viable candidate is the normal-Jeffreys prior, that has been introduced
by [50]. For this we choose p(z) to be the improper log-uniform prior,

p(z) « |z|~!. When we marginalize z to recover the corresponding
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weight prior we again obtain a log-uniform prior:

1 5 B i
a/HN(w\O,z Ydz = ol (3-4)

Equipped with our prior choices we can simply “couple” the scales of
weights belonging to the same group (e.g. neuron or feature map). We
do so by sharing the corresponding scale variable z in the joint prior:

p(W,z) ocl_[| 1|HN w;j|0,27). (3.5)

Note that W is the weight matrix of a fully connected neural network
layer, where A is the dimensionality of the inputs and B is the dimen-
sionality of the outputs. Next we specify the form of the approximate
posterior distribution, we require for our variational inference scheme.
The joint posterior may be parametrized in the following way:

A
qp(W,z) = HN(ZiWZi/‘uZ HN wijlzipy, Z;07)  (3.6)
i= ij
with &; being the dropout rate [200, 105, 145] of a given group in-
dexed by i. [105, 145] report that the multiplicative parametrization
of the approximate posterior as we chose it suffers from high variance
gradients. [145] offer a solution by re-parameterizing the scale such
that (722]_ = ygl_zxi. We follow them and thus instead of optimizing the
scale we shall optimize w.r.t. Uzzi- The resulting lower bound given our
choice of prior and posterior becomes:

L(¢) =Eg, (1), (wiz) [log p(DIW)] (37)
E,,(2)[KL(q(W|z)|[p(W]|z))] — KL(q¢(2)|p(2))

Surprisingly, under our choices, the KL-divergence between the condi-
tional prior p(W|z) and posterior q4(W|z) is independent of z:

KL(g9(Wl2)|[p(Wlz)) = <10g; ;/;”ﬂLiZ” > (38)
i z] i

Let us understand why this is the case. For this let us consider the non-
wij
z; *
The corresponding joint distribution is p(W|z)p(z) = p(W)p(z) where
p(W) = IT;; N'(w;j|0,1) and W = diag(z)W. Given this trick, we

see that we arrive at the same KL-divergence term when performing

centered parametrization of the prior [157] over the weights; w;; =

variational inference under the p(W)p(z) prior and a posterior of the
form q4(W, z) = q5(W)qy(z), where q4(W) = /\/(wijmi]-,aizj).

Finally, we compute the KL-divergence between the normal-Jeffreys
scale prior p(z) and Gaussian posterior g4(z). We follow [145] in



approximating its precise form by;

A
KL(q9(2)|p(2)) = } (k1o (kz + k3 log a;) (39)

1

— 0.57”[(* logai) — kl)

where o (-), m(-) are the sigmoid and softplus functions respectively?.
The k-parameters are set as follows; k; = 0.63576, ky = 1.87320, k3 =
1.48695. Note that the divergence depends on the “implied” dropout
rate, a; = U,zzi / y%i, only.

We will prune a group of parameters that have high dropout rates.
For this we specify a threshold at which we remove the corresponding
groups of parameters, i.e., loga; = (log cTZZl_ —log y%i) > t. Note that
our prior parametrization allows generally for more flexible marginal
posteriors over the weights because we have a compound distribution,
99(W) = [ q4(W|z)qe(z)dz. This contrasts previous work by by [105,
145].

Another measure we take is to mask the posterior mean at test time.
This guarantees that we have a single feed-forward pass, where at each
layer we replace the distribution over W with a single weight matrix:
The masked posterior

W = diag(m) ® E,(2)qW) [diag(z)W] = diag (m © p: )My (3.10)

carries a binary mask m that os determined according to the group
variational dropout rate and Myy, the means of g4 (W).

Group horseshoe with half-Cauchy scale priors

In the previous section, we have investigated the effect of the normal-
Jeffreys prior to our variational inference compression scheme. In this
section we shall investigate an alternative choice for p(z): the proper
half-Cauchy distribution; C*(0,s) = 2(s7(1 + (z/s)?))~!. This leads
to the following the prior hierarchy over the weights (in non-centered
parametrization);

s~CT(0,1); % ~CT(0,1); (3.11)

Wi ~ N(0,1);  wjj = @jjZis
with 1y being the free parameter which may be tuned for a specific
desiderata. The half-Cauchy scale prior induces a horseshoe prior [25]

over the weights. Again this is an already well known sparsity induc-
ing prior referenced in the statistics literature. The intuition for the

2o(x) = (1+exp(—x))7!, m(x)
log(1 + exp(x))
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horseshoe prior is the one of “global-local" shrinkage. More precisely,
the (global) scale variable s rewards all of the variables for striving
towards zero. On the other hand, the heavy tailed (local) variables z;
compensates this behaviour thus allowing for some weights to escape.

If we were to apply the half-Cauchy priors directly, we could not com-
pute the KL-divergence from the scale prior p(z) to a log-normal scale
posterior gy(z) in closed form. We thus chose a re-parameterization
by decomposing the half-Cauchy with (inverse) gamma distributions
according to [151]. We detail the derivation in in Appendix D. This
results in the half-Cauchy prior to be expressed in a non-centered
parametrization:

p(B) = ZG(0.5,1); p(&) = G(0.5,k%); 22 = ap (3.12)

where ZG () and G() denote the inverse Gamma and Gamma distribu-
tions, respectively. z shall follow a half-Cauchy with scale parameter
k. Let us express the prior hierarchy (see Equation (3.12)) again:

sp ~IG(0.5,1); s, ~G(05,73); Bi ~ZIG(05,1); (3.13)

&j ~ Q(O.S,l); ’(I)i]' ~ N(O,l),‘ ZUZ‘]‘ = '(IJZ‘]‘ sasb&iﬁi

Note that, we can relate the improper log-uniform prior from the pre-
vious section to this prior. When the shapes of the (inverse) Gamma
hyper-priors on &;, 8; goes to zero the horseshoe prior becomes the
log-uniform prior [25]. More generally, we can express many shrink-
age priors as horseshoe when altering shapes of the (inverse) Gamma
hyper-priors [8].

Next, we choose a corresponding approximate posterior that allows
for computable KL-divergences:

‘7¢(5brsa//§) :EN(Sb”/‘sw‘Tszh)EN(sa|Vsa/Usz,,) (3.14)

A
[ 12N Bilug,.o3)

A A,B
99 (&, W) :H‘CN(E‘Z'WEWUE%L-) HN(ZDI‘]’WZ%'UED,-]‘) (3.15)
i

i,j

where LN (-, -) is a log-normal distribution. Furthermore, it is impor-
tant to mention that we apply the local reparametrization trick [105] as

it reduces variance. In particular, we sample 4/ &; ,Bi and /5,5 3, such

3 This exploits the fact that the product
of log-normal r.v.s is again a log-normal,
furhter the power of a log-normal r.v. is
also a log-normal.



Zi =\ &;B; ~ LIN(yzi,UZZi); 5 = \/525p ~ LN (us,02) (3.16)

1 1

M = 5 (na; + 1) 0z = (% +03); (317)
1 1

Hs = 5 (su + by 02 = (0% +0) (18)

We will again use a thresholding method to achieve group pruning.
Specifically, we will use the negative log-mode* of the local log-normal
I.V. z; = SZ;;

2. — . 2 _ 2 2
p(zi) = EN(ZZ'WZNUZ,-)I Hz; = Mz + Ps; 0y, = 0z, + 05 (3-19)
In other words, we prune when ((77%, — Yz;) > t. Even though, our
proposal ignores dependencies induced by the common scale s among
the z; elements, we nonetheless found convincing results in practice.

Equivalently to the group normal-Jeffreys prior, at test time, we replace
the distribution over W with the masked posterior mean:

W = diag(m) ® E, (,)q(w)|diag(z)W] (3.20)
1
= diag (m © exp(p; + 5022))MW

again m determines binary mask computed according to the threshold
t, My represent the means of (W) and p;, 0> denote the means and
variances of the local log-normals over z;.

3.4 Experiments

We validated the compression and speed-up capabilities of our mod-
els on the well-known architectures of LeNet-300-100 [117], LeNet-5-
Caffe> on MNIST [118] and, similarly with [145], VGG [192]® on CIFAR
10 [112]. The groups of parameters were constructed by coupling the
scale variables for each filter for the convolutional layers and for each
input neuron for the fully connected layers. The precise algorithms
that cover the forward pass through our networks for fully connected
and convolutional network layers are depicted in Appendix F. When
using the horseshoe prior, the scale 1 of the global half-Cauchy prior
is set to a sensibly small value such as 1) = 1e — 5. This measure in-
creases the prior mass at zero further, an essential trick for the sparse
estimation and compression of our networks. Further we constrain
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4 In prior experiments, we found that the
mode has similar behavior to the neg-
ative log-mean, —(pz; + %U%_), but it is
slightly better in separating the scales.

5Shttps://github.com/BVLC/caffe/
tree/master/examples/mnist

¢ The actual architecture we used is the
adapted CIFAR 10 version described
at http://torch.ch/blog/2015/07/30/
cifar.html.
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the standard deviations as described in [130]. We use “warm-up" [196]
to avoid bad local optima when optimizing our the variational objec-
tive. Any further details of our experimental setup are described in
Appendix A. To determine the pruning threshold, we manually in-
spect the distribution on of dropout rates. Usually we find two well
separated clusters (one with signal other with noise). A sample visu-
alization of our method for threshold determination is visualized in
Appendix E.

Architecture learning & bit precisions

We first demonstrate the effectiveness of our method by comparing
the two presented priors (BC-GNJ and BC-GHS) against other Baysian
sparsification techniques. The results of our experiments are summa-
rized in Table 3.1. From the scales, we infer the corresponding bit
precision for each layers. We obtain them by computing the marginal
posterior variances of each weight, 7:

V (wij)ny =07 (U'izj + ;112]) + Uizj;tfi (3.21)
V(wij)us :(exp(Uzzl_) — 1) exp(2uz, + 0221,) (0'1-2]- + ylzj) (3.22)
+ (71-2]- exp(2uz, + 0'22]_)

We approximate the mean variance of each layer to be the unit round-
off necessary in order to represent all weights. We can compute the
amount of significant bits from the unit round-off. We further add
three exponent bit and one sign bit to estimate the final bit-precision
of any layer. We detail this further in Appendix B. We observe our
method to compress the LeNet-300-100 and LeNet-5-Caffe architec-
tures significantly more than the Sparse Variational Dropout (VD) [145],
Generalized Dropout (GD) [198] or Group Lasso (GL) [221] methods.
On the VGG architecture, our method reduces the primarily the later
layers from 512 to around 10 feature maps per layer. On top of the
architecture reduction, all Bayesian compression methods we consider
here reduce the standard 32-bit precision per layer drastically to up to
sometimes only 5 bit precision.

Compression Rates

For the actual compression task we compare our method to current
work in three different scenarios: (i) compression achieved only by
pruning, here, for non-group methods we use the CSC format to store

7 Because of the non-centered
parametrization, we can easily
compute:  V(w;) = V(zw;) =
V(Zi) ( E [ZTI,'jP + V(Zilij)) + V(ZTIL‘]') E [Z,-F.



Network & size Method Pruned architecture Bit-precision
LeNet-300-100 Sparse VD 512-114-72 8-11-14
784-300-100 BC-GNJ 278-98-13 8-9-14
BC-GHS 311-86-14 13-11-10
LeNet-5-Caffe Sparse VD 14-19-242-131 13-10-8-12
GD 7-13-208-16 -
20-50-800-500 GL 3-12-192-500 -
BC-GNJ 8-13-88-13 18-10-7-9
BC-GHS 5-10-76-16 10-10-14-13
VGG BC-GNJ 63-64-128-128-245-155-63-  10-10-10-10-8-8-8-
-26-24-20-14-12-11-11-15 -5-5-5-5-5-6-7-11
(2x 64)-(2x 128)- BC-GHS 51-62-125-128-228-129-38-  11-12-9-14-10-8-5-

-(3%x256)-(8x 512) -13-9-6-5-6-6-6-20 -5-6-6-6-8-11-17-10

parameters; (ii) compression based on the former but with reduced
bit precision per layer (only for the weights); and (iii) the maximum
compression rate as proposed by [68]. We believe these to be relevant

Compression Rates (Error %)

Model Fast Maximum
Original Error %  Method %% Pruning Prediction Compression
LeNet-300-100 DC 8.0 6 (1.6) - 40 (1.6)
DNS 1.8 28* (2.0) - -

1.6 SWS 4.3 12* (1.9) - 64(1.9)
Sparse VD 2.2 21(1.8) 84(1.8) 113 (1.8)

BC-GNJ 10.8 9(1.8) 36(1.8) 58(1.8)

BC-GHS 10.6 9(1.8) 23(1.9) 59(2.0)

LeNet-5-Caffe DC 8.0 6*(0.7) - 39(0.7)
DNS 0.9 55%(0.9) - 108(0.9)

0.9 SWS 0.5 100*(1.0) - 162(1.0)
Sparse VD 0.7 63(1.0) 228(1.0) 365(1.0)

BC-GNJ 0.9 108(1.0) 361(1.0) 573(1.0)

BC-GHS 0.6 156(1.0) 419(1.0) 771(1.0)

VGG BC-GNJ 6.7 14(8.6) 56(8.8) 95(8.6)

8.4 BC-GHS 5.5 18(9.0) 59(9.0) 116(9.2)

scenarios because (i) can be applied with already existing frameworks
such as Tensorflow [1], (ii) is a practical scheme given upcoming GPUs
and frameworks will be designed to work with low and mixed pre-
cision arithmetics [123, 66]. For (iii), we perform k-means clustering
on the weights with k=32 and consequently store a weight index that
points to a codebook of available weights. Note that the latter achieves
highest compression rate but it is however fairly unpractical at test
time since the original matrix needs to be restored for each layer. As we
can observe at Table 3.2, our methods are competitive with the state-
of-the art for LeNet-300-100 while offering significantly better com-
pression rates on the LeNet-5-Caffe architecture, without any loss in
accuracy. Do note that group sparsity and weight sparsity can be com-
bined so as to further prune some weights when a particular group is

37

Table 3.1: We present sparsified archi-
tectures as inferred by Sparse VD [145],
Generalized Dropout (GD) [198] and
Group Lasso (GL) [221], Bayesian Com-
pression (BC) with group normal-
Jeffreys (GNJ) and group horseshoe
(GHS) priors. The latter two are pro-
posed in this work. The original archi-
tecture is displayed in the first column
along with the architecture name. Fur-
ther we present the amount of neurons
after pruning in column 3 and the the
average bit precisions of the weights per
layer in column 4.

Table 3.2: Compression results for our
methods. “DC” corresponds to Deep
Compression method introduced at [68],
“DNS” to the method of [64] and “SWS”
to the Soft-Weight Sharing of [209].
Numbers marked with * are best case
guesses.
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not removed, thus we can potentially further boost compression per-
formance at e.g. LeNet-300-100. For the VGG network we observe that
training from a random initialization yielded consistently less accuracy
(around 1%-2% less) compared to initializing the means of the approx-
imate posterior from a pretrained network, similarly with [145], thus
we only report the latter results®. After initialization we trained the
VGG network regularly for 200 epochs using Adam with the default
hyperparameters. We observe a small drop in accuracy for the final
models when using the deterministic version of the network for pre-
diction, but nevertheless averaging across multiple samples restores
the original accuracy. Note, that in general we can maintain the orig-
inal accuracy on VGG without sampling by simply finetuning with a
small learning rate, as done at [145]. This will still induce (less) spar-
sity but unfortunately it does not lead to good compression as the bit
precision remains very high due to not appropriately increasing the
marginal variances of the weights.

Speed and energy consumption

We demonstrate that our method is competitive with Wen et al. [221],
denoted as GL, a method that explicitly prunes convolutional kernels
to reduce compute time. We measure the time and energy consump-
tion of one forward pass of a mini-batch with batch size 8192 through
LeNet-5-Caffe. We average over 10* forward passes and all experi-
ments were run with Tensorflow 1.0.1, cuda 8.0 and respective cuDNN.
We apply 16 CPUs run in parallel (CPU) or a Titan X (GPU). Note that
we only use the pruned architecture as lower bit precision would fur-
ther increase the speed-up but is not implementable in any common
framework. Further, all methods we compare to in the latter exper-
iments would barely show an improvement at all since they do not
learn to prune groups but only parameters. In figure 3.1 we present
our results. As to be expected the largest effect on the speed up is
caused by GPU usage. However, both our models and best compet-
ing models reach a speed up factor of around 8x. We can further
save about 3 X energy costs by applying our architecture instead of
the original one on a GPU. For larger networks the speed-up is even
higher: for the VGG experiments with batch size 256 we have a speed-
up factor of 51x.

8We also tried to finetune the same
network with Sparse VD, but unfortu-
nately it increased the error considerably
(around 3% extra error), therefore we do
not report those results.
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3.5 Conclusion

We showed how we can obtain group sparsity in neural networks in
a Bayesian way through scale mixtures of normals. The Log-uniform
prior arises through weighted likelihood bootstrap [152], therefore has
strong ties to frequentist statistics. The normal-Jeffreys / log-uniform
prior assumes independence of the groups a-priori whereas the horse-
shoe prior assumes mild dependence due to the shared global scale
variable s, which can subsequently allow for a more informative selec-
tion of groups.

As for future work; we plan to evaluate uncertainty estimates of the
pruned networks, using an experimental procedure akin to [130]. We
can further improve upon variational Bayesian compression schemes
of neural networks by improving the posterior approximation; accord-
ing to the MDL principle the best noisy weight encoding is the true
posterior distribution.
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Figure 3.1: Top: Avg. Time a batch
of 8192 samples takes to pass through
LeNet-5-Caffe. Numbers on top of the
bars represent speed-up factor relative to
the CPU implementation of the original
network. Bottom: Energy consumption
of the GPU of the same process (when
run on GPU).






Soft Weight-Sharing for Neural
Network Compression

In this chapter, we investigate another variational inference based ap-
proximation to the Bayesian code. The scheme we propose uses a mix-
ture prior and a Dirac posterior, also known as "soft weight-sharing"
[153]. Due to the posterior choice, our scheme can be realized through
a two part code. In that, it contrasts bits-back codes. The Dirac poste-
rior will be “assigned” to the mixture component that best describes it.
The expected code length per parameter is thus log(p(i)), where p(i)
is the probability of a given component of the mixture prior. Note that
we chose a Dirac posterior such that we can guarantee that only one
component of the mixture claims responsibility for a given parameter.

Practically, we show that competitive compression rates can be achieved.
We aid the bits-back coding by removing any redundant model param-
eters. We do this by making appropriate choices in the model prior.
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4.1 Introduction

"Bigger is better" is the ruling maxim in deep learning land. Deep
neural nets with billions of parameters are no longer an exception.
Networks of such size are unfortunately not practical for mobile, on-
device applications which face strong limitations with respect to mem-
ory and energy consumption. Compressing neural networks could
not only improve memory and energy consumption, but also lead
to less network bandwidth, faster processing and better privacy. It
has been shown that large networks are heavily over-parametrized
and can be compressed by approximately two orders of magnitude
without significant loss of accuracy. Apparently, over-parametrization
is beneficial for optimization, but not necessary for accurate predic-
tion. This observation has opened the door for a number of highly
successful compression algorithms, which either train the network
from scratch [81, 90, 31, 34] or apply compression post-optimization
[68, 67, 64, 28, 221].

It has been long known that compression is directly related to (varia-
tional) Bayesian inference and the minimum description principle [83].
One can show that good compression can be achieved by encoding the
parameters of a model using a good prior and specifying the parame-
ters up to an uncertainty given, optimally, by the posterior distribution.
An ingenious bits-back argument can then be used to get a refund for
using these noisy weights. A number of papers have appeared that
encode the weights of a neural network with limited precision (say
8 bits per weight), effectively cashing in on this "bits-back" argument
[65, 33, 214]. Some authors go so far of arguing that even a single bit
per weight can be used without much loss of accuracy [32, 31].

In this work we follow a different but related direction, namely to
learn the prior that we use to encode the parameters. In Bayesian
statistics this is known as empirical Bayes. To encourage compression
of the weights to K clusters, we fit a mixture of Gaussians prior model
over the weights. This idea originates from the nineties, known as soft
weight-sharing [153] where it was used to regularize a neural network.
Here our primary goal is network compression, but as was shown in
[83] these two objectives are almost perfectly aligned. By fitting the
mixture components alongside the weights, the weights tend to con-
centrate very tightly around a number of cluster components, while
the cluster centers optimize themselves to give the network high pre-
dictive accuracy. Compression is achieved because we only need to



encode K cluster means (in full precision) in addition to the assign-
ment of each weight to one of these | values (using log(]) bits per
weight). We find that competitive compression rates can be achieved
by this simple idea.

4.2 MDL View on Variational Learning

Model compression was first discussed in the context of information
theory. The minimum description length (MDL) principle identifies
the best hypothesis to be the one that best compresses the data. More
specifically, it minimizes the cost to describe the model (complex-
ity cost L) and the misfit between model and data (error cost £F)
[174, 176]. It has been shown that variational learning can be reinter-
preted as an MDL problem [220, 83, 87, 56]. In particular, given data
D = {X={x ), T={t,}]\ ]}, a set of parameters w = {w;}_,
that describes the model and an approximation q(w) of the posterior
p(w|D), the variational lower bound, also known as negative varia-
tional free energy, £(q(w),w) can be decomposed in terms of error

and complexity losses
£lg(w),w) = ~Ey [log (LEE )

= E,(w) [~ log p(D|w)] + KL(q(w)||p(w))

~———

LE L€

(4.1)

where p(w) is the prior over w and p(D|w) is the model likelihood.
According to Shannon’s source coding theorem, LE lower bounds the
expected amount of information needed to communicate the targets T,
given the receiver knows the inputs X and the model w. The functional
form of the likelihood term is conditioned by the target distribution.
For example, in case of regression the predictions of the model are
assumed be normally distributed around the targets T.

N
p(Dlw) = p(TIX, w) = [ T N (tu|xu, W) (4-2)
n=1

where NV (t,, X, w) is a normal distribution. Another typical example
is classification where the conditional distribution of targets given data
is assumed to be Bernoulli distributed’. These assumptions eventually
lead to the well known error functions, namely cross-entropy error and
squared error for classification and regression, respectively.

Before however we can communicate the data we first seek to commu-
nicate the model. Similarly to £, £C is a lower bound for transmitting
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the model. More specifically, if sender and receiver agree on a prior,
LE is the expected cost of communicating the parameters w. This cost
is again twofold,

KL(q(w)||p(w)) = Eyw) [~ log p(w)] — H(g(w)) (4-3)

where H(-) denotes the entropy. In [220] and [83] it was shown that
noisy encoding of the weights can be beneficial due to the bits-back ar-
gument if the uncertainty does not harm the error loss too much. The
number of bits to get refunded by an uncertain weight distribution
g(w) is given by its entropy. Further, it can be shown that the opti-
mal distribution for g(w) is the Bayesian posterior distribution. While
bits-back is proven to be an optimal coding scheme [87], it is often not
practical in real world settings. A practical way to cash in on noisy
weights (or bits-back) is to only encode a weight value up to a limited
number of bits. To see this, assume a factorized variational posterior
g(w) = [1q(w;). Each posterior g(w;) is associated with a Dirac distri-
bution up to machine precision, for example, a Gaussian distribution
with variance ¢, for small values of ¢. This implies that we formally
incur a very small refund per weight,

H(g(w)) = = [ q(w)logq(w) dw 44)
Q

- / N (wlpt, o) log N (wlpi, oT) = [0.5 - log(27ec?)] .
RI

Note that the more coarse the quantization of weights the more com-
pressible the model. The bits-back scheme makes three assumptions:
(i) weights are being transmitted independently, (ii) weights are inde-
pendent of each other (no mutual information), and (iii) the receiver
knows the prior. Han et al. [67] show that one can successfully exploit
(i) and (ii) by using a form of arithmetic coding [222]. In particular,
they employ range coding schemes such as the Sparse Matrix Format
(discussed in Appendix A). This is beneficial because the weight dis-
tribution has low entropy. Note that the cost of transmitting the prior
should be negligible. Thus a factorized prior with different parameters
for each factor is not desirable.

The main objective of this work is to find a suitable prior for optimizing
the cross-entropy between a delta posterior q(w) and the prior p(w)
while at the same time keeping a practical coding scheme in mind.
Recall that the cross entropy is a lower bound on the average number
of bits required to encode the weights of the neural network (given
infinite precision). Following [153] we will model the prior p(w) as a



mixture of Gaussians,

I ]
p(w) =TTY N (wilpj, o). (4.5)

i=1j=0

We learn the mixture parameters y;, 0j, 77; via maximum likelihood
simultaneously with the network weights. This is equivalent to an
empirical Bayes approach in Bayesian statistics. For state-of-the-art
compression schemes pruning plays a major role. By enforcing an
arbitrary “zero” component to have fixed py = 0 location and g to
be close to 1, a desired weight pruning rate can be enforced. In this
scenario 7p may be fixed or trainable. In the latter case a Beta distribu-
tion as hyper-prior might be helpful. The approach naturally encour-
ages quantization because in order to optimize the cross-entropy the
weights will cluster tightly around the cluster means, while the cluster
means themselves move to some optimal location driven by £F. The
effect might even be so strong that it is beneficial to have a Gamma
hyper-prior on the variances of the mixture components to prevent the
components from collapsing. Furthermore, note that, mixture compo-
nents merge when there is not enough pressure from the error loss
to keep them separated because weights are attracted by means and
means are attracted by weights hence means also attract each other.
In that way the network learns how many quantization intervals are
necessary. We demonstrate that behaviour in Figure 4.3.

4.3 Method

This section presents the procedure of network compression as applied
in the experiment section. A summary can be found in Algorithm 1.

General set-up

We retrain pre-trained neural networks with soft weight-sharing and
factorized Dirac posteriors. Hence we optimize

L(w, {y]-,aj, nj}]lzo) =LF + 72C (4-6)
=—logp(T|X,w)
— tlog p(w, {u), 0}, Tfj}]]-:o)/
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via gradient descent, specifically using Adam [102]. The KL diver-
gence reduces to the prior because the entropy term does not depend
on any trainable parameters. Note that, similar to [153] we weigh the
log-prior contribution to the gradient by a factor of T = 0.005. In the
process of retraining the weights, the variances, means, and mixing
proportions of all but one component are learned. For one compo-
nent, we fix pj—og = 0 and 7j—9 = 0.999. Alternatively we can train
Tj=o as well but restrict it by a Beta distribution hyper-prior. Our
Gaussian MM prior is initialized with 2* + 1 = 17 components. We
initialize the learning rate for the weights and means, log-variances
and log-mixing proportions separately. The weights should be trained
with approximately the same learning rate used for pre-training. The
remaining learning rates are set to 5-10~*. Note that this is a very
sensitive parameter. The Gaussian mixtures will collapse very fast as
long as the error loss does not object. However if it collapses too fast
weights might be left behind, thus it is important to set the learning
rate such that the mixture does collapse too soon. If the learning rate
is too small the mixture will converge too slowly. Another option to
keep the mixture components from collapsing is to apply an Inverse-
Gamma hyperprior on the mixture variances.

Initialization of Mixture Model Components

In principle, we follow the method proposed by [153]. We distribute
the means of the 16 non-fixed components evenly over the range of the
pre-trained weights. The variances will be initialized such that each
Gaussian has significant probability mass in its region. A good orien-
tation for setting a good initial variance is weight decay rate the orig-
inal network has been trained on. The trainable mixing proportions
are initialized evenly 7; = (1 — 7tj=9)/J. We also experimented with
other approaches such as distributing the means such that each com-
ponent assumes an equal amount of probability. We did not observe
any significant improvement over the simpler initialization procedure.

Post-Processing

After re-training we set each weight to the mean of the component
that takes most responsibility for it i.e. we quantize the weights. Be-
fore quantizing, however, there might be redundant components as
explained in section 4.2. To eliminate those we follow [2] by comput-



ing the KL divergence between all components. For a KL divergence
smaller than a threshold, we merge two components as follows

o2 2
e = 704 7T L1 S S S /P
new i jr Hnew T+ 7 ’ hew — 7 4.7
for two components with indices i and j.
Finally, for practical compression we use the storage format used in

[67] (see Appendix A).

Require: T < set the trade-off between error and complexity loss
Require: ® < set parameters for gradient decent scheme such as
learning rate or momentum
Require: «, < set gamma hyper-prior parameter (optional)
w < initialize network weights with pre-trained network weights
0 = {uj, o, ﬂj}]]-zl < initialize mixture parameters (see Sec. 4.3)
while w, 6 not converged do
W,0 < VweLlE +7LC update w and 0 with the gradient decent
scheme of choice

end while %
W argmax—nk (wpei, o)
e LGN (wlpj, o)

the mean that takes most responsibility (for details see Sec. 4.3)

compute final weight by setting it to

4.4 Models

We test our compression procedure on two neural network models
used in previous work we compare against in our experiments:

1. LeNet-300-100 an MNIST model described in [117]. As no pre-
trained model is available, we train our own, resulting in an error
rate of 1.89%.

2. LeNet-5-Caffe a modified version of the LeNet-5 MNIST model in
[117]. The model specification can be downloaded from the Caffe
MNIST tutorial page 2. As no pre-trained model is available, we
train our own, resulting in an error rate of 0.88%.

3. ResNets have been invented by [73] and further developed by [76]
and [228]. We choose a model version of the latter authors. In ac-
cordance with their notation, we choose a network with depth 16,
width k = 4 and no dropout. This model has 2.7M parameters.
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Algorithm 1: Soft weight-sharing for com-
pression, our proposed algorithm for
neural network model compression. It
is divided into two main steps: network
re-training and post-processing.

>https://github.com/BVLC/caffe/
blob/master/examples/mnist/lenet_
train_test.prototxt
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In our experiments, we follow the authors by using only light aug-
mentation, i.e., horizontal flips and random shifts by up to 4 pixels.
Furthermore the data is normalized. The authors report error rates
of 5.02% and 24.03% for CIFAR-10 and CIFAR-100 respectively. By
reimplementing their model we trained models that achieve errors
6.48% and 28.23%.

4.5 Experiments

Initial experiment

First, we run our algorithm without any hyper-priors, an experiment
on LeNet-300-100. In Figure 4.1 we visualise the original distribution
over weights, the final distribution over weight and how each weight
changed its position in the training process. After retraining, the dis-
tribution is sharply peaked around zero. Note that with our procedure
the optimization process automatically determines how many weights
per layer are pruned. Specifically in this experiment, 96% of the first
layer (235K parameter), 9o% of the second (30K) and only 18% of the
final layer (10K) are pruned. From observations of this and other ex-
periments, we conclude that the amount of pruned weights depends
mainly on the number of parameters in the layer rather than its posi-
tion or type (convolutional or fully connected).

Evaluating the model reveals a compression rate of 64.2. The accuracy
of the model does not drop significantly from 0.9811 to 0.9806. How-
ever, we do observe that the mixture components eventually collapse,
i.e., the variances go to zero. This makes the prior inflexible and the
optimization can easily get stuck because the prior is accumulating
probability mass around the mixture means. For a weight, escaping
from those high probability plateaus is impossible. This motivates the
use hyper-priors such as an Inverse-Gamma prior on the variances to
essentially lower bound them.

Hyper-parameter tuning using Bayesian optimization

The proposed procedure offers various freedoms: there are many hyper-
parameters to optimize, one may use hyper-priors as motivated in the
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previous section or even go as far as using other distributions as mix-
ture components.

To cope with the variety of choices, we optimize 13 hyper-parameters
using the Bayesian optimization tool Spearmint [194]. These include
the learning rates of the weight and mixing components, the number
of components, and 7. Furthermore, we assume an Inverse-Gamma
prior over the variances separately for the zero component and the
other components and a Beta prior over the zero mixing components.

In these experiments, we optimize re-training hyperparameters for
LeNet-300-100 and LeNet-5-Caffe. Due to computational restrictions,
we set the number of training epochs to 40 (previously 100), know-
ing that this may lead to solutions that have not fully converged.
Spearmint acts on an objective that balances accuracy loss vs compres-
sion rate. The accuracy loss in this case is measured over the training
data. The results are shown in Figure 4.2. In the illustration we use the
accuracy loss as given by the test data. The best results predicted by
our spearmint objective are colored in dark blue. Note that we achieve
competitive results in this experiment despite the restricted optimiza-
tion time of 40 epochs, i.e. 18K updates.

The conclusions from this experiment are a bit unclear, on the one
hand we do achieve state-of-the-art results for LeNet-5-Caffe, on the
other hand there seems to be little connection between the parameter
settings of best results. One wonders if a 13 dimensional parameter
space can be searched efficiently with the amount of runs we were
conducting. It may be more reasonable to get more inside in the opti-
mization process and tune parameters according to those.
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Figure 4.1: On top we show the distri-
bution of a pretrained network. On the
right the same distribution after retrain-
ing. The change in value of each weight
is illustrated by a scatter plot.
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Compression Results

We compare our compression scheme with [67] and [64] in Table 4.1.
The results on MNIST networks are very promising. We achieve state-
of-the-art compression rates in both examples. We can furthermore
show results for a light version of ResNet with 2.7M parameters to il-
lustrate that our method does scale to modern architectures. We used
more components (64) here to cover the large regime of weights. How-
ever, for large networks such as VGG with 138M parameters the algo-
rithm is too slow to get usable results. We propose a solution for this
problem in Appendix C; however, we do not have any experimental

results yet.

Final Weights

© Hanetal (2016)
@ Guoetal (2016)
e Ous

00 02 04 08 08 10
Accuracy loss [%]

-1.0 -05 0.0 05 10
Initial Weights

Model Method Top-1 Eror[%] A% [W][107 el o) cr
LeNet-300-100  [67] 1.64 — 1.58 0.06 0.2 8.0 40
[64] 2.28 — 1.99 -0.29 1.8 56
Ours 1.89 — 1.94 -0.05 4.3 64
LeNet-5-Caffe  [67] 0.80 — 0.74 -0.06 0.4 8.0 39
[64] 0.91 — 0.91 0.00 0.9 108
Ours 0.88 — 0.97 0.09 0.5 162
ResNet (light)  Ours 6.48 — 8.50 2.02 2.7 6.6 45

Figure 4.2: We show the results
of optimizing hyper-parameters with
spearmint. Specifically, we plot the accu-
racy loss of a re-trained network against
the compression rate. Each point repre-
sents one hyper-parameter setting. The
guesses of the optimizer improve over
time. We also present the results of other
methods for comparison. Left: LeNet-
300-100 Right: LeNet-5-Caffe.

Figure 4.3: Illustration of our mix-
ture model compression procedure on
LeNet-5-Caffe. Left: Dynamics of Gaus-
sian mixture components during the
learning procedure. Initially there are
17 components, including the zero com-
ponent. During learning components
are absorbed into other components, re-
sulting in roughly 6 significant compo-
nents. Right: A scatter plot of ini-
tial versus final weights, along with
the Gaussian components’ uncertainties.
The initial weight distribution is roughly
one broad Gaussian, whereas the final
weight distribution matches closely the
final, learned prior which has become
very peaked, resulting in good quanti-
zation properties.

Table 4.1: Compression Results. We
compare methods based on the post-
processing error (we also indicate the
starting error), the accuracy loss A, the
number of non zero weights [W_| and
the final compression rate CR based on
the method proposed by [67].



4.6 Discussion and Future Work

In this work we revived a simple and principled regularization method
based on soft weight-sharing and applied it directly to the problem of
model compression. On the one hand we showed that we can opti-
mize the MDL complexity lower bound, while on the other hand we
showed that our method works well in practice when being applied
to different models. A short-coming of the method at the moment is
its computational cost and the ease of implementation. For the first,
we provide a proposal that will be tested in future work. The latter
is an open question at the moment. Note that our method—since it is
optimizing the lower bound directly—will most likely also work when
applied to other storage formats, such as those proposed originally by
[83]. In the future we would like to extend beyond Dirac posteriors
as done in [56] by extending the weight sharing prior to more gen-
eral priors. For example, from a compression point of view, we could
learn to prune entire structures from the network by placing Bernoulli
priors over structures such as convolutional filters or ResNet units.
Furthermore, it could be interesting to train models from scratch or in
a student-teacher setting.
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PART 11

LEARNING TO COMMUNICATE WITH DLVMs
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In the introduction we laid out how we can communicate latent vari-
ables with bits-back coding with feedback. Having this coding scheme
in mind, in this section, we shall focus on two applications of commu-
nicating latent codes: 3D reconstructions and communication under
varying information loss.

Reconstruction algorithms play a major role in science and civil engi-
neering. Given many noisy and incomplete observations of a scene, an
object or a process; one seeks to reconstruct this observed item based
on this collection of observations. For example, in electron microscopy,
an electron ray permits the object of interest to leave a 'shadow’ on a
sensor detector. The goal of reconstruction then is to reconstruct the
true shape or pose of the object based on multiple sensor readings.

Looking at this system as a communication system, we may postulate
the object itself as the message source, and the map that causes the
projection onto the sensor system as the encoder. In contrast to other
communication systems, in reconstruction problems we have no access
to the encoding system. We are solely focused on learning to decode
or reconstruct the message. Reconstruction algorithms thus constitute
an important class of communication systems that we will investigate
in Chapter 5.

In Chapter 6, assuming that we have access to bits-back codes and
being able to learn encoding and decoding processes, we focus our at-
tention to the question of how to transmit information despite an un-
predictable loss of information during the transmission process. This
is a problem of significance, for most digital and analog signal trans-
fer.
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Differentiable probabilistic
models of scientific imaging

with the Fourier slice theorem

Scientific imaging techniques, e.g. optical and electron microscopy or
computed tomography, are used to study 3D structures through 2D
observations. These observations are related to the 3D object through
orthogonal integral projections. For computational efficiency, common
3D reconstruction algorithms model 3D structures in Fourier space,
exploiting the Fourier slice theorem. At present it is somewhat un-
clear how to differentiate through the projection operator as required
by learning algorithms with gradient-based optimization. This pa-
per shows how back-propagation through the projection operator in
Fourier space can be achieved. We demonstrate the approach on 3D
protein reconstruction. We further extend the approach to learning
probabilistic 3D object models. This allows us to predict regions of
low sampling rates or to estimate noise. Higher sample efficiency can
be reached by utilizing the learned uncertainties of the 3D structure as
an unsupervised estimate of model fit. Finally, we demonstrate how
the reconstruction algorithm can be extended with amortized infer-
ence on unknown attributes such as object pose. Empirical studies
show that joint inference of the 3D structure and object pose becomes
difficult when the underlying object contains symmetries, in which
case pose estimation can easily get stuck in local optima, inhibiting a
fine-grained high-quality estimate of the 3D structure.
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Figure 5.1: Example of electron cryo-
microscopy with the GroEL-GroES pro-
tein [223]. Left: 2D observations ob-
tained by projections with an electron
beam. Right: Two different views of the
ground truth 3D protein structure repre-
sented by its electron density.

5.1 Introduction

The main goal of many scientific imaging methods is to reconstruct a
(d + 1)-dimensional structure v e V C RP*™ from N (d)-dimensional
observations x,, € Z C RP d, where d is either one or two. For the sake
of simplicity we will talk about the case d = 2 in the rest of this work.
The contributions of this paper are:

1. We view the process of image formation through a graphical model
in which latent variables correspond to physical quantities such as
the hidden structure v or the relative orientation/pose of a speci-
men. This enables one to predict errors in the reconstruction of 3D
structures through uncertainty estimates. This is especially interest-
ing when objects v are only partially observable, as is the case in
certain medical scans, such as breast cancer scans. Moreover, uncer-
tainty prediction enables more data efficient model validation.

2. Based on the aforementioned innovations, we propose a new method
for (unsupervised) reconstruction evaluation. Particularly, we demon-
strate that learned uncertainties can replace currently used data in-
efficient methods of evaluation (see Section 5.6). We thus learn bet-
ter model fits than traditional methods given the same amount of
data.

3. We extend current approaches such as [95] to describe the genera-
tive process as a differentiable map by adopting recent techniques
from the deep learning community [93, 169]. We demonstrate that
this fenables more advanced joint inference schemes over object



pose and structure estimation.

Our experimental validation focuses on single particle electron cryo-
microscopy (cryoEM). CryoEM is a challenging scientific imaging task,
as it suffers from complex sources of observation noise, low signal to
noise ratios, and interference corruption. Interference corruption at-
tenuates certain Fourier frequencies in the observations. Radiation ex-
posure is minimized because electron radiation severely damages bio-
logical specimens during data collection. Minimal radiation, however,
leads to low signal-to-noise ratios, where sensor cells record relatively
low electron counts. Since imaging techniques like CT suffer from a
subset of these difficulties, we believe that evaluating and analyzing
our method on cryoEM problems is appropriate.

5.2 Background and related work

Modelling nano-scale structures such as proteins or viruses is a cen-
tral task in structural biology. By freezing such structures and subse-
quently projecting them via a parallel electron beam to a sensor grid
(see figure 5.2), CryoEM enables reconstruction and visualization of
such structures. The technique has been described as revolutionary
because researchers are capable of observing structures that cannot be
crystallized, as required for X-ray crystallography [180].

The main task of reconstructing the structure from projections in cry-
oEM, and the wider field of medical imaging, is somewhat similar
to multi-view scene reconstruction from natural images. There are,
however, substantial differences. Most significantly, the projection op-
eration in medical imaging is often an orthogonal integral projection,
while in computer vision it is a non-linear perspective projection for
which materials exhibit different degrees of opacity. Thus, the gen-
erative model in computer vision is more complex. Medical imaging
domains, on the other hand, face significant noise and measurement
uncertainties, with signal-to-noise ratios as low as 0.05 [16].

Most CryoEM techniques [39, 61, 184, 203] iteratively refine an initial
structure by matching a maximum a posteriori (MAP) estimate of the
pose (orientation and position) under the proposal structure with the
image observation. These approaches suffer from a range of prob-
lems such as high sensitivity to poor initialization [78]. In contrast to
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this approach, and closely related to our work, [22, 163] treat poses
and structure as latent variables of a joint density model. MAP esti-
mation enables efficient optimization in observation space. Previous
work [190, 185, 95, 184] has suggested full marginalization, however
due to its cost, it is usually intractable.

This paper extends the MAP approach by utilizing variational infer-
ence to approximate intractable integrals. Further, reparameterizing
posterior distributions enables gradient based learning [106, 171]. To
our knowledge this is the first such approach that provides an efficient
way to learn approximate posterior distributions in this domain.

5.3 Observation Formation Model

Given a structure v, we consider a generic generative model of ob-
servations, one that is common to many imaging modalities. As a
specific example, we take the structure v to be a frozen (i.e. cryogenic)
protein complex, although the procedure described below applies as
well to CT scanning and optical microscopy. v is in a specific pose
p,, relative to the direction of the electron radiation beam. This yields
a pose-conditional projection, with observation x;,. Specifically, the
pose p, = (ry, t,), consists of r, € SO(3), corresponding to the rota-
tion of the object with respect to the microscope coordinate frame, and
t, € E(3), the translation of the structure with respect to the origin.

The observations are then generated as follows: The specimen in pose
p,, is subjected to radiation (the electron beam), yielding an ortho-
graphic integral projection onto the plane perpendicular to the beam.
The expected projection can be formulated as

Xy = PTy, Ry, v. (5.1)

Here P is the projection operator, Ty, is the linear translation operator
for translation t;, and Ry, is the linear operator corresponding to rota-
tion r,. Without loss of generality we can choose the projection direc-
tion to be along the z-direction e,. When the projection is recorded
with a discrete sensor grid (i.e., sampled), information beyond the
Nyquist frequency is aliased. Additionally, the recording is corrupted
with noise stemming from the stochastic nature of electron detection
events and sensor failures [45]. Low doses are necessary since electron
exposure causes damage to sensitive biological molecules. Logically,
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the effect is more severe for smaller objects of study.

Many sophisticated noise models have been proposed for these phe-
nomena [47, 219, 186]. In this work, for simplicity, we assume isotropic
Gaussian noise; i.e.,

p(xn|Pp, V) = N (xn|%n, 102), (5-2)

where 0. models the magnitude of the observation noise. The image
formation process is depicted in Figure 5.2.

The final section below discusses how one can generalize to more so-
phisticated (learnable) noise models. Note that we do not model in-
terference patterns caused by electron scattering, called defocus and
modelled with a contrast transfer function (CTF). This will lead to less
realistic generative models, however we see the problem of CTF esti-
mation as somewhat independent of our problem. Ideally, we would
like to model the CTF across multiple datasets, but we leave this to
future work.
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Figure 5.2: Top: Image formation on the
example of cryo EM: The parallel Elec-
tron beam projects the electron densities
on a surface where a grid of DDD sen-
sors record the number of electrons that
hit it. Bottom: To detect the projections
(outlines in red) an algorithm seeks out
areas of interest [115, 231] (Figure from
[162]).
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5.4 Back-propagating through the generative model

In this section we aim to bridge the gap between our knowledge of
the generative process p(x,|p,,v) and a differentiable mapping that
facilitates direct optimization of hidden variables (p,,, v) with gradient-
descent style schemes. We start with an explanation of a naive differ-
entiable implementation in position space, followed by a computation-
ally more efficient version by shifting the computations to the Fourier
domain (momentum space).

Naive implementation: project in position space

Our goal is to optimize the conditional log-likehood log p(x,|p,,, V)
with respect to the unobserved p, and v, maximizing the likelihood of
the 2D observations. This requires (5.2) to be a differentiable operator
with respect to p, and v. Note that the dependence on p, and v
is fully determined by (5.1). In order to achieve this, we first need to
apply the group action R, onto v. Matrix representations of the group
action such as the Euler angles matrix are defined on the sampling
grid G = {(vl(j),vg),v(j)) ]Djl of v rather than the voxel values {?J]-}]Dj1
. For example, the action induced by a rotation around the z-axis by

an angle « on the position (vl(j ), éj ), y )) of an arbitrary voxel j can be

written as,

4 cos(a) —sin(a) 0) vy
Ry ° (7) = Sin(ﬁ() COS(DC) 0 Vé]) . (5-3)
0 0 1)\

This entails two problems. First, the volume after transformation should
be sampled at the same grid points as before. This requires interpo-
lation. Second, to achieve a differentiable map we need to formulate
the transformation of position values as a transformation of the voxel
values. [93] offers a solution to both problems, known as differentiable
sampling®.

The j-th voxel v;- = (v'); of the transformed volume, v/ = Ry, v, with in-

dex vector {(/), can be expressed as a weighted sum of all voxels before
transformation {v;, v(?) }lD:3 1- The weights are determined by a sampling
kernel k(-), the argument of which is the difference between the trans-
formed voxel’s position (/) and all transformed sampling grid vectors

*Originally invented to learn affine
transformations on images to ease the
classification task for standard neural
networks, the approach has since been
extend to 3D reconstruction problems
from images [169].
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A popular kernel in this context is the linear interpolation sampling
kernel?

(Rfl W) =y =
H max(0

(0,1— |(Rg "~ g0y — ). (5.5)

Computing one voxel U;. only requires a sum over 8 voxels from the
original structure. These are determined by flooring and ceiling the

elements of (R;1¢()),,. Furthermore, the partial derivatives are pro-

vided by,
v, . .
S = k(R =) (5.6)
av’ ) .
S [Tmax(01 - (R~ )
IR F i

0 if|(R71g f>)m 1'|>1
—1 elif (R;1¢0), > um : (5.7)
1 elif (Rg1g0),, < vm

This framework was originally proposed for any differentiable kernel
and any differentiable affine position transformation v — . In our
setting, we restrict ourselves to linear interpolation kernels. The group
actions represented by R, are affine. In this work we represent rota-
tions as Euler angles by using the Z-Y-Z convention. One could also
use quaternions or exponential maps. As with rotation, the translation
operation is also a transformation of the voxel grid, rather than the
voxel values. Thus, (5.4) can also be used to obtain a differentiable
translation operation.

Finally, the orthogonal integral projection operator is applied by sum-
ming voxel values along one principal direction. Since the position of
the hidden volume is arbitrary we can fix this direction to be the Z-axis
as discussed in section 5.3. Denoting a volume, rotated and translated
according to p = (r,t), by v = TiRyv, the ({1,{2)-th element of its
expected projection is given by

Xn[C1,02] =

(P3*>2V gl/ 52 ZV gl/ gZ/ €3] (58)

4]
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*Linear kernels are efficient and yield
fairly good results. More complex ones
such as the Lanczos re-sampling kernel
may actually yield worse results due to
smoothing.
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where v'[{1, (2, (3] denotes the element ({q,{2,{3) of V.

This concludes a naive approach to modelling a differential map of
the expected observation in position space. This approach is not par-
ticularly efficient, as according to (5.8) we need to interpolate all
D? voxels to compute one D? dimensional observation. Moreover,
back-propagating through this mapping requires transporting gradi-
ents through all voxels. Next, we show how to reduce the cost of this
naive approach without a loss of precision by shifting the problem to
the Fourier domain.

Projection-slice theorem

The projection-slice theorem or Fourier-slice theorem states the equiv-
alence between the Fourier transform F; of the projection Py _,; of a d’
dimensional function f(r) onto a d-dimensional submanifold F;Py .4 f ()
and a d-dimensional slice of the d’-dimensional Fourier transform of
that function. This slice is a d-dimensional linear submanifold through
the origin in the Fourier domain that is parallel to the projection sub-
manifold S;Fy f(r).

In our setting, given an axis-aligned projection direction (see (5.1))
and the discrete grid G, the expected observation in 2D Fourier space
is equal to a central slice through the Fourier transformed 3D structure
parallel to the projection direction e;:

Fox =FpP3 oV
=8 (FV') = SV, (5-9)

where F, and F3 denote discrete Fourier transforms in 2 and 3 dimen-
sions. The slice operator S is the Fourier equivariant of the projection
operator. In our case, it is applied as follows:

(S2¥) w1, wa] = ¥'[wy, w2, 0], (5.10)

where wy, are Fourier indexes.

This allows one to execute the generative model in position or mo-
mentum space. It has proven more efficient for most reconstruction
algorithms to do computation in the Fourier domain [191]. This also
applies to our algorithm: (i) We reconstruct the structure in the Fourier
domain. This means we only need to apply an inverse Fourier trans-
formation at the end of optimization. (ii) We may save the Fourier



transformed expected projections a-priori, further this is easily paral-
lelized. Thus even though in its original formulation we can not expect
a computational benefit, when sharing the computation across many
data points to reconstruct one latent structure the gain is significant.
We elaborate on this point with respect to differentiation below.

Differentiable orthographic integral projection

We incorporate the Fourier Slice Theorem into our approach to build
an efficient differentiable generative model. For this we translate all
elements of the model to their counterparts in the Fourier domain.
The Gaussian noise model becomes [72],

2
p(sznlpn,\Af) = N(.szn|f27_(n/1%)r (5'11)

where ¥ = F3v. In the following, we aim to determine an expres-
sion for the expected Fourier projection Fpx, = F2(P32Tt, Ry, V) by
deriving the operators counterparts F5(P3 2Ty, Ry, v) = P32 Tt, Ry, 0.

We start by noting that it is useful to keep ¥ in memory ¥ to avoid
computing the 3D discrete Fourier transform multiple times during
optimization. The inverse Fourier transform F; 1y = v is then only
applied once, after convergence of the algorithm. Next, we restate that
the Fourier transformation is a rotation-equivariant mapping R, =
Ry, [29]. This means the derivations from Section 5.4 with respect to
the rotation apply in this context as well. A translation in the Fourier
domain T, however, induces a re-weighting of the original Fourier
coefficients,

(Ttn an ‘A,) [CUl, w2, w3] = e—izﬂtn‘w (an ‘A,) [(Ul, wa, CU3] . (5'12)

Finally, the last section established the equivalence of the slice and the
projection operator P50 = S, (see (5.9)) in momentum and position
space. Specifically, for the linear interpolation kernel, we compute
the set of interpolation points by flooring and ceiling the elements of
the vector R, L) W) = (w%j ),wéj ),O). This entails 6 interpolation
candidates per voxel of the central slice, in total 6D?. Remember, this
computation above involved D3 voxels and 6D? candidates.

We can further improve the efficiency of the algorithm by swapping the
projection and translation operators. That is, due to parallel radiation,
and hence orthographic projection,

PTi, Ry, v = Te, PRy, v, (5.13)
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where T, = (t; - ex)ex + (t; - ey)e,. This is more efficient because
we reduce the translation to a two dimensional translation. Thus this
modifies (5.12) to its two dimensioanl equivalent.

For the naive implementation the cost of a real space forward pro-
jection is O(D3). In contrast, converting the volume to the Fourier
space O(D?log D), projecting O(D?) and applying the inverse Fourier
transform O(D?log D). At first glance this implies a higher compu-
tational cost. However, for large datasets the cost of transforming
the volume is amortized over all data points. For gradient descent
schemes, we iterate over the dataset more than once, hence the cost
of Fourier transforming the observations is further amortized. Fur-
thermore, it is often reasonable to consider only a subset of Fourier
frequencies, so back projection becomes O(r?) with r < D. The ef-
ficiency of this algorithm in the context of cryo-EM was first recog-
nized by Grigorieff [60]. (We provide code for the differentiable ob-
servation model and in particular for the Fourier operators: https:
//github.com/KarenUllrich/pytorch-backprojection.)

5.5 Variational inference

Here we describe the variational inference procedure for 3D recon-
struction in Fourier space, enabled by the Fourier slice theorem. We
assume we have a dataset of observations from a single type of protein
with ground truth structure v, and its Fourier transform ¥ = F3v. We
consider two scenarios. In the first, both the pose of the protein and
the projection are observed, and inference is only performed over the
global protein structure. In the second, the pose of the protein for each
observation is unknown. Therefore, inference is done over poses and
the protein structure.

The first scenario is synonymous with the setting in tomography, where
we observe a frozen cell or larger complex positioned in known poses.
This case is often challenging because the sample cannot be observed
from all viewing angles. For example, in cryo-EM tomography the
specimen frozen in an ice slice can only be rotated till the verge of
the slice comes into view. We find similar problems in CT scanning,
for example in breast cancer scans. The second scenario is relevant
for cryo-EM single particle analysis. In this case multiple identical
particles are confined in a frozen sample and no information on their
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structure or position is available a priori.

In this work we lay the foundations for doing inference in either of the
two scenarios. However, our experiments demonstrate that joint infer-
ence over the poses and the 3D structure is very sensitive to getting
stuck in local minima that correspond to approximate symmetries of
the 3D structure. Therefore, the main focus of this work is the setting
where the poses are observed.

Inference over the 3D structure

Here the data comprise image projections and poses, {(xx, p,)}\;,
with Fourier transformed projections denoted %X, = F>x,. Our goal is
to learn a model 4(¥) of the latent structure that as closely as possi-
ble resembles the true posterior p(¥|{X,}, {p,,}). For this, we assume a
joint latent variable model p({%x })_;, ¥|{p,}2_) = p({%:}2_; [{p,, }

Specifically, we minimize an upper bound to the Kullback-Leibler (KL)
divergence:

D [9(9) (31 {31}, (P, D)
- [ vy n (PG BLL 000
N

Y

q(v)

=Y. —Ey) [Inp(Xalp,, 9)] + Dxr [3(9) [ p(9)] - (5.14)

n=1

Here, we have assumed that, given the volume, the data are IID:
p({&a}{p,}, %) = [TY_; p(%u|p,, ¥). We have bounded the divergence
by the data log-likelihood In p({X,}), a constant with respect to ¥ and
{p,,}. This is equivalent to lower bounding the model evidence by

n=1’
To avoid clutter below, we use short-hand notations like {%, } for {X, }]._;.

67

Figure 5.3: Graphical model: Latent struc-
ture v, pose p, and noise o, can be
learned from observations x, through
back-propagation. The latent structure
distribution is thereby characterized by
a set of parameters, in the Gaussian ex-
ample py and oy.

9)p(9).
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introducing a variational posterior [98].

In this work we focus on modelling 4(¥) as isotropic Gaussian distri-
bution. The prior is assumed to be a standard Gaussian. In practice,
we use stochastic gradient descent-like optimization, with the data or-
ganized in mini-batches. That is, we learn the distribution parameters
1 = {pv,0v} for q(¥v) = g,(¥) through stochastic optimization, effi-
ciently by using the reparameterization trick [106, 171].

In (5.14), the reconstruction term depends on the number of data-
points. The KL-divergence between the prior and approximate poste-
rior does not. As the sum of the mini-batch objectives should be equal
to the objective of the entire dataset, the mini-batch objective is

D;
. ~Eye) np(alp, 9]+ SD@ g@)p®)]. G
neD;
where D; is the set of indices of the data in minibatch i, and |D;|

denotes the size of the i-th minibatch.

Joint inference over the 3D structure and poses

In the second scenario the pose of the 3D structure for each obser-
vation is unknown. The data thus comprises the observed projec-
tions {xn}n 1- Again, we perform inference in the Fourier domain,
with transformed projections {%,})_, as data. We perform joint in-
ference over the poses {p,}_; and the volume ¥. We assume the
latent variable model can be factored as follows, p({X.},¥,{p,}) =

p(Za Py} 9)p({P, HP(¥)-
Upper bounding the KL-divergence, as above, we obtain

Dt [9(9)q ({5 (%, %}, {po )]
- [ [4¥p,avq({p, Da(e)

p{&at{p,H ¥ PP, P (¥)
i ( 1({p, 1)) >

N
=) —Eg0)Eq(p,) Inp(Xnlp,, V)]

n=1

N
+ 3 Dxe [a(p,)lIp(p,)] + Dxe [9(9) [p(¥)] - (5.16)

n=

—_

The prior, approximate posterior and conditional likelihood all factor-
ize across datapoints: p({p,}) = IT,_1 P(P,), 9({P,}) = ITiZ1 4(py),



and p({&:}1{p,},¥) = IT_; p(Xu|p,, ¥). Like (5.15), for mini-batch
optimization algorithms we make use of the objective

Z ~Eg)Eqp,) [In p(%n[p,,, V)] (5.17)
neD;
|Di

+ Y Dr la(pa)lIp(pa)] + 5~ D [9(9) [ p(9)]

neD;

In Section 5.5, we learn the structure parameters shared across all data
points. Here the pose parameters are unique per observation and
therefore require separate inference procedures per data point. As an
alternative, we can also learn a function that approximates the infer-
ence procedure; This is called amortized inference [106]. In practice, a
complex parameterized function f, such as a neural network predicts
the parameters of the variational posterior 77 = fy(-).

5.6 Experiments

We empirically test the formulation above with simulated data from
the well-known GroEL-GroES protein [223]. To this end we generate
three datasets, each with 40K projections onto 128 x128 images at a
resolution of 2.8A per pixel. The three datasets have signal-to-noise
ratios (SNR) of 1.0, 0.04 and o0.01, referred to below as the noise-free,
medium-noise and high-noise cases. Figure 9.16 shows one sample per
noise level. As previously stated in Section 5.3, we do not model the
microscope’s defocus or electron scattering effects, as captured by the
CTF [109].

Using synthetic data allows us to evaluate the algorithm with the
ground-truth structure, e.g., in terms of mean-squared error (MSE).
With real-data, where ground truth is unknown, the resolution of a
fitted 3D structure is often quantified using Fourier Shell Correlation
[179]: The N observations are partitioned randomly into two sets, A
and B, each of which is then independently modeled with the same
reconstruction algorithm. The normalized cross-correlation coefficient
is then computed as a function of frequency f = 1/A to assess the
agreement between the two reconstructions.

Given two 3D structures, F4 and Fg, in the Fourier domain, FSC at
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frequency f is given by

FSC(f|Fa, Fg) = (5.18)

fl‘ES]r f,’ESf

i/z EAF)P- © Es(F)P

where Sy denotes the set of frequencies in a shell at distance f from
the origin of the Fourier domain (i.e. with wavelength A). This yields
FSC curves like those in Fig. 5.4. The quality (resolution) of the fit can
be measured in terms of the frequency at which this curve crosses a
threshold 7. When one of F4 or Fp is ground truth, then T = 0.5, and
when both are noisy reconstructions it is common to use T = 0.143
[179]). The structure is then said to be resolved to wavelength A =1/ f
for which FSC(f) = 7.

Comparison to Baseline algorithms

When poses are known, the current state-of-the-art (SOTA) is a conven-
tional tomographic reconstruction (a.k.a. back-projection). When poses
are unknown, there are several well-known SOTA cryo-EM algorithms
[39, 61, 184, 203]. All provide point estimates of the 3D structure. In
terms of graphical models, point estimates correspond to the case in
which the posterior (V) is modeled as a delta function, 6(¥|uy), the
parameter of which is the 3D voxel array, yy.

We compare this baseline to a model in which the posterior g(¥) is a
multivariate diagonal Gaussian, N (¥|uy, 16Z). While the latent struc-
ture is modeled in Fourier domain, the spatial domain signal is real-
valued. We restrict the learnable parameters, yy and oy, accordingly 3.
We use the reparameterization trick thus correlate the samples accord-
ingly. Finally, the prior in (5.14) in a multivariate standard Gaussian,

p(v) = N(v]o,1).

Table 5.1 shows results with these two models, with known poses (the
tomographic setting), and with noise-free observations. Given the sen-
sor resolution of r = 2.8, the highest possible resolution would be
the Nyquist wavelength of 5.6. Our results show that both models
approach this resolution, and in reasonable time.

> That is for py, R(py)[C] = R(pv)[—C]
and S()[Z] = —S()[~E) with { —
(C1,02,03). Further, a noise sample is
shared accordingly.
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Uncertainty estimation leads to data efficiency

In this section, we explore how modelling the latent structure with un-
certainty can improve data efficiency. For this, recall that FSC is com-
puted by comparing reconstructions based on dataset splits, A and B.
As an alternative, we propose to utilize the learned model uncertain-
ties oy to achieve a similar result. We thus only need one model fit
that includes both dataset splits. Specifically, we propose to extend a
measure first presented in Unser et al. [210]: the spectral SNR to the
3D case, and hence refer to it as spectral shell SNR (SS-SNR). When
modelling the latent structure as diagonal Gaussian N (v|uy, 102), the
SS-SNR can be computed to be

L (P
= lZfJTfi)' (5.19)
f,'GSf v

a(f

Following the formulation by [210], we can then express the FSC in
terms of the SS-SNR, i.e., FSC ~ a/ (1 + «).
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Table 5.1: Results for modelling protein
structure as latent variable. Fitting a
Gaussian or Dirac posterior distribution
with VI leads to similar model fits, as
measured by MSE and FSC between fit
and ground truth with T = 0.5.

Figure 5.4: The FSC curves for various
model fits. The grey lines indicate reso-
lution thresholds. The higher the resolu-
tion of a structure the better the model
fit. We contrast the FSC curves with the
proposal we make to evaluate model fit.
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Figure 5.4 shows FSC curves based on reconstructions from the medium-
noise (top) and high-noise (bottom) datasets. First, we aim to demon-
strate that the FSC curves between the Gaussian fit (with all data) vs
ground truth, and the MAP estimate model with all data vs ground
truth, i.e., FSC(f|d, écr) and FSC(f|N, dgr), yield the same fit qual-
ity. Note that we would not usually have access to the ground truth
structure. Secondly, because in a realistic scenario we would not have
access to the ground truth we would need to split the dataset in two.
For this we evaluate the FSC between ground truth and two disjoint
splits of the dataset FSC(f|d4, dgr) and FSC(f|dp, dgr). This curve
not surprisingly lies under the previous curves. Also note, that the
actual measure we would consider FSC(f|d4, dp) is more conservative.
Finally, we show that a/(1 + &) curve has the same inflection points
as the FSC curve. As one would expect, it lies above the conservative
FSC(f|0, d).

Using « one can quantify the model fit with learned uncertainty rather
than FSC curve. As a consequence there is no need to partition the
data and perform two separate reconstructions, each with only half
the data.

Uncertainty identifies missing information

Above we discussed how global uncertainty estimation can help esti-
mate the quality of fit. Here we demonstrate how local uncertainty
can help evaluate the local quality of fit*. In many medical settings,
such as breast cancer scans, limited viewing directions are available.
This is an issue in tomography, and also occurs in single particle cryo-
EM when the distribution of particle orientations around the viewing
sphere are highly anisotropic. To recreate the same effect we construct
a dataset of 40K observations, as before with no noise to separate the
sources of information corruption>. We restrict viewing directions to
Euler angles (a, B,7v) with B € (—15,415); i.e., no observations out-
side a 30° cone As above, we assume a Gaussian posterior over the
latent protein structure.

Figure 5.5: Center slice through the
learned Fourier volume uncertainties oy .
Left: real part, Right: imaginary part.
We learn the model fit with observations
coming only from a 30° cone, a scenario
similar to breast cancer scans where ob-
servations are available only from some
viewing directions. Uncertainty close to
1 means that the model has no informa-
tion in these areas, close to zero repre-
sents areas of high sampling density. In
contrast to other models, our model can
identify precisely where information is
missing (high variance).

4 Other studies recognize the importance
of local uncertainty estimation, measur-
ing FSC locally in a wavelet basis [24,
113, 215].

5 For completeness we present the same
experiment with noise in the appendix.



Figure 5.5 shows the result. We can show that the uncertainty the
model has learned correlates with regions in which data has been ob-
served (uncertainty close to o) and has not been observed (uncertainty
close to 1). Due to the pressure from the KL-divergence (see (5.14)) the
latter areas of the model default to the prior A/(v|0,1). This approach
can be a helpful method to identify areas of low local quality of fit.

Limits: Treating poses as random variables

Extending our method from treating structures as latent variables to
treating poses as latent variables is difficult. In the following we ana-
lyze why this is the case. Note though that, our method of estimating
latent structure can be combined with common methods of pose es-
timation such as branch and bound [163] without losing any of the
benefits we offer. However, ideally it would be interesting to also learn
latent pose posteriors. This would be useful to for example detect
outliers in the dataset which is common in real world scenarios.

In an initial experiment, we fix the volume to the ground truth. We
subsequently only estimate the poses with a simple Dirac model for
each data point p, ~ J(p,|up,). In figure 5.6, we demonstrate the
problem of SGD-based learning for this. For one example (samples on
top), we show its true error surface, the global optimum (red star) and
the changes over the course of optimization (red line). We observe that
due to the high symmetries in the structure, the true pose posterior
error surface has many symmetries as well. An estimate depending
on its starting position, seems to converge to the closest local optimum
only rather than the global one. We would hope to be able to fix this
problem in the future by applying more advanced density estimation
approaches.

5.7  Model Criticism and Future Work

This paper introduces practical probabilistic models into the scientific
imaging pipeline, where practical refers to scalability through the use
of the reparameterization trick. We show how to turn the operators
in the pipeline into differentiable maps, as this is required to apply
the trick. The main focus of the experiments is to show why this
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novelty is important, addressing issues such as data efficiency, local
uncertainty, and cross validation. Specifically, we found that a param-
eterized distribution, i.e. the Gaussian, achieves the same quality of
fit as a point estimate, i.e. the dirac, while relying on less data. We
conclude that our latent variable model is a suitable building block.
It can be plugged into many SOTA approaches seamlessly, such as
[39, 61, 184, 203]. We also established that the learned uncertainty is
predictive of locations with too few samples. Finally, we demonstrated
the limits of our current methods in treating poses as latent variables.
This problem, however, does not limit the applicability of our method
to latent structures. We thus propose to combine common pose estima-
tion with our latent variable structure estimation. This method benefit
from the uncertainty measure but also find globally optimal poses.

In future work we hope to find a way to efficiently learn pose poste-
rior distributions as well. We hope that a reasonable approach would
be to use multi-modal distributions and thus more advanced density
estimation techniques. We will also try to incorporate amortized in-
ference, mentioned in Section 5.5. Amortization would give the ad-
ditional advantage of being able to transfer knowledge from protein
to protein. Transfer could then lead to more advanced noise and CTF
models. Bias in transfer will be a key focus of this effort; i.e., we only
want to transfer features of the noise and not the latent structure. An-

Figure 5.6: Example of gradient descent
failing to estimate the latent pose of a
protein. Small images from left to right: ob-
servation, real and imaginary part of the
Fourier transpose. Large figure: Corre-
sponding error surface of the poses for 2
of 3 Euler angles. The red curve shows
the progression of the pose estimate over
the course of optimization. Itis clear that
the optimization fails to recover the true
global optimum (red star).



other problem we see with the field of reconstruction algorithms is that
the model evaluation can only help to detect variance but not bias in a
model class. This is a problem with FSC comparison, but also with our
proposal. We believe that an estimate of the data-log-likelihood of a
hold out test dataset is generally much better suited. In a probabilistic
view, this can be achieved by importance weighting the ELBO [172].
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Neural Communication
Systems with
Bandwidth-limited Channel

Reliably transmitting messages despite information loss due to a noisy
channel is a core problem of information theory. One of the most im-
portant aspects of real world communication, e.g. via wifi, is that it
may happen at varying levels of information transfer. The bandwidth-
limited channel models this phenomenon. In this study we consider
learning coding with the bandwidth-limited channel (BWLC). Recently,
neural communication models such as variational auto-encoders have
been studied for the task of source compression. We build upon this
work by studying neural communication systems with the BWLC.
Specifically, we find three modelling choices that are relevant under
expected information loss. First, instead of separating the sub-tasks of
compression (source coding) and error correction (channel coding), we
propose to model both jointly. Framing the problem as a variational
learning problem, we conclude that joint systems outperform their
separate counterparts when coding is performed by flexible learnable
function approximators such as neural networks. To facilitate learning,
we introduce a differentiable and computationally efficient version of
the bandwidth-limited channel. Second, we propose a design to model
missing information with a prior, and incorporate this into the channel
model. Finally, sampling from the joint model is improved by intro-
ducing auxiliary latent variables in the decoder. Experimental results
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justify the validity of our design decisions through improved distor-
tion and FID scores.

6.1 Introduction

The 21st century is often referred to as the information age. Infor-
mation is being created, stored and sent at rates never before seen.
To cope with this deluge of information, it is vital to design opti-
mal communication systems. Such systems solve the problem of re-
liably transmitting information from sender to receiver given some
form of information loss due to transmission errors (i.e. through a
noisy channel). As the size of the transmitted messages goes to infin-
ity for memory-less communication channels, the joint source-channel
coding theorem [187] states that it is optimal to split the communica-
tion task into two sub-tasks: (i) removing redundant information from
the message (source coding) and (ii) re-introducing some redundancy
into the encoded message to allow for message reconstruction despite
the channel information loss (channel coding). As a result, separate
systems have been studied extensively in the literature and are the
standard way of coding for many scenarios. However, it is also well
known that there are limits to the optimality of separate systems in
practical settings. Most importantly for this work, limitations arise
when we seek to encode finite length messages as is the case with
any real-world application [111]. These limits result in two important
consequences: (i) When there is a budget on transmission bits, a chal-
lenging unequal allocation of resources must be made between the
source and channel to optimize reconstruction results. (ii) Decoding
via the maximum-likelihood principle becomes an NP-hard problem
[18]. Thus approximations need to be made that can lead to highly
sub-optimal solutions [108, 49, 218].

(a) sender A X encoder channel decoder X receiver B
Y = E(X) cz\|y) X=D2)

X source Y’ channel Y channel | Z channel 7' source
(b) sender A —> encoder ——| encoder |— > decoder |—— decoder ——— receiver B

Y = BX) Y= ES(Y) e z=0%2) | |2=D%@)

Recent work [30, 46], has thus looked at the problem of learning to
jointly communicate. This includes systems that learn to do source

Figure 6.1: (a) Joint communication sys-
tem: A message X passes through a joint
source and channel encoder before it
passes a channel and is subsequently de-
coded. (b) Separate communication sys-
tem: This system distinguishes source
encoding and decoding (red) from chan-
nel encoding and decoding (blue). The
red and blue systems are designed inde-
pendently of each other.



and channel coding jointly from data. Practically this can be achieved
by learning neural network encoders and decoders, where channels
are simulated by adding noise to encoded messages. Several desir-
able properties of such systems were shown, including improvements
in decoding speed and code length. Complementary to this body of
work, we focus this study on the investigation of neural joint models
with the bandwidth-limited channel. Specifically, we direct our exper-
imentation on the bandwidth-limited channel due to it’s ubiquity as
a fundamental component in the real world communication systems.
The main contributions of this work include:

1. We cast the problem of learning joint communication as a varia-
tional learning problem, parallel to other work [30].

2. We justify the importance of jointly learned systems by empir-
ically evaluating the gap between neural systems for joint and
separate communication.

3. We design standard channels such as the Gaussian and Binary
channel as differentiable probabilistic nodes, which serve as base
for our design of the bandwidth-limited channel.

4. We show how transmission rate can be improved through learned
prior models.

5. We introduce an auxiliary latent variable decoder and show how it
can improve image reconstructions in the low bandwidth regime.

6.2 Notation and preliminaries

We mark sets as calligraphic letters (i.e. & ), random variables as
capital letters (i.e. X) and their values as lower case letters (i.e. x). We
use capital letters to denote probability distributions (i.e. P(X)) and
lower case letters for the corresponding densities (i.e. p(x)). We will
refer to the entropy of stochastic processes. This describes the average
rate at which a process emits information. Formally,

H(X) = Ep(x)[—log P(X)], (6.1)

where [E is the expectation. Further, we expect the reader to be fa-
miliar with the distortion-rate theory. Appendix 9.4 summarizes these
shortly and makes connections to neural compression systems.
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6.3 Source and Channel Coding for Communication Sys-
tems

In this section the reader will be introduced to communication systems
and in particular to the challenge of joint coding when a finite bit-
length budget is given.

Communication is defined by an entity A called the sender, or source,
that induces a state X, the message, in another entity B, the receiver.
We call this transfer of information successful if A and B agree about
the message being sent: X = X, or if the message distortion || X — X||
does not exceed a certain level D. Real-world communication is an in-
herently noisy physical process where many uncontrollable or unpre-
dictable factors may interfere with a sent message before it reaches its
receiver. To account for this interference, communication is typically
organized into three distinct components which we illustrate in Figure
6.1: (i) The encoder Y = E(X), whose role is to compress its inputs (i.e.
to remove redundant information) and subsequently prepare them for
transmission through the channel with minimal distortion. (ii) The
channel Z = C(Z|Y) over which we have no control, and represents
the unpredictable distortions caused by the physical transmission pro-
cess. (iii) The decoder X = D(Z), whose goal is to reverse the process
to the original datum X from the received code Z.

Channel capacity The most important characteristic of a channel is its
capacity. In order to evaluate it, we may compute the number of dis-
tinguishable messages that we can send through the channel given an
encoder. The logarithm of that number is referred to as information
capacity of the channel. It is given by the maximum of the mutual infor-
mation of Y and Z, I(Y; Z), taken over all possible input distributions
P(Y),

C= I;}@))(I(Y,Z). (6.2)
Other relevant properties of channel models include (i) bandwidth, the
number of information units passing a channel per time unit, (ii) mem-
ory, the independence of joint probabilities of a transmitted sequence,
where a channel with fully independent joint probabilities is called
memoryless , and (iii) feedback, the ability for the sender side of the sys-
tem to know what bits have arrived at the receiver side, resulting in
Y = E(X,Z). Note that in this work, we will constrain our research
question to feedback and memoryless channels.



Joint source-channel coding The channel capacity fundamentally re-
stricts the ability of a communication system to transfer messages.
The source-channel coding theorem (SCCT) specifies this restriction
as follows. For i.i.d. variables and memoryless channels, given a cer-
tain tolerated message distortion D, we must send codes with length
R(D). The data may be recovered by the receiver at distortion D if and
only if R(D) < C.

Furthermore, it can be shown that there exists a two stage method
that is as good as any alternative to transmit information over a noisy
channel reliably: source coding and channel coding. These two steps
can be accomplished by two distinctly designed systems, referred to
as the source encoder and decoder, E°(-) and D°(-) , and the chan-
nel encoder and decoder, E€(-) and D®(-), respectively. It is easy to
see why this result had great impact on the design of communication
systems in practice. A communication problem is essentially defined
by its source and its channel. Any such tuple defines an individual
problem, resulting in an enormous problem space. By separation, it is
possible to independently reuse good source or channel solutions for
other problems.

However, there are also restrictions to the applicability of the SCCT.
For finite length messages, we have to trade bits for compression and
channel coding against each other. This is not trivial [161, 37, 111].
On top of this, encoders and decoders are being idealized to be any
function. In practical settings however, we may not be able to identify
optimal encoders. Further, they are computationally restricted. In the
era of machine learning, however, hypothesis spaces can be searched
increasingly quickly in an automated fashion, allowing researchers to
search over the space of joint solutions for the first time. For these rea-
sons, we propose to learn joint communication systems using flexible
function approximators such as deep neural networks.

6.4 Learned Communication Systems

In this section, we outline how to learn neural encoders and decoders
for a given joint communication problem defined by a channel and a
source. Our approach requires a differentiable path through the com-
munication system. For this, we design appropriate channel models.
Additionally we introduce a new design for the bandwidth-limited
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channel, adapted from classical models, and explain how to do marginal-
ization of bands in practice. Consequently, we frame learning in the
joint and in the separate model as a variational optimization prob-
lem. Our approach is related to auto-encoders [217] and variational
auto-encoders [171, 106]. We will outline the connection here. Finally,
we introduce auxiliary latent variables (ALV) to the decoding process
as means to combat low reconstruction quality when the information
transmitted though such a model is limited.

Channel Models

To enable back-propagation through a communication system, we shall
introduce the most common channel models in the literature and ex-
plain how to build them in a differentiable fashion.

Gaussian Channel We start this discussion with the Gaussian chan-
nel model, the most important continuous alphabet channel. It is a
time discrete channel that distorts incoming signal Y by ii.d. Gaus-
sian noise W.

Zi=Y;+W, W; ~ N(0,07) (6.3)

However, this particular definition is of limited use. When the noise
is fixed but the power of the input is not, one can easily design chan-
nel encodings that essentially ignore that noise. It is thus common
to power constrain the input, or equivalently keep a constant signal-
to-noise ratio (SNR), s. It can be shown that the channel capacity of a
power limited Gaussian channel is equal to C = % log (1 + s) bits per
transmission [35]. For a differentiable Gaussian channel with constant
SNR, we assume the channel input to be an isotropic Gaussian dis-
tribution Y; ~ N (py,, 0}2,1,). We propose to use the reparameterization
trick [106, 171], where a probabilistic node is separated into a parame-
ter independent stochastic node and a deterministic one. By using the
trick twice we can rewrite the channel to

Zi=Y;+ 2w, W; ~ N(0,1). (6.4)

Bandwidth-limited channel Related to the Gaussian channel, and one
of the most important models for communication, e.g. over a radio
and wifi, is the bandwidth-limited channel. The channel capacity for
a Gaussian bandwidth limited channel is known to be linearly related
to the bandwidth C ~ B. In the classical literature, this is described as
a continuous time, white noise and bandwidth-pass filtered channel



1; however, in this work, we adopt the concept to be a discrete time
channel, for which we introduce the bandwidth B as a discrete latent
variable,

C(ZlY) = §C(Z,B|Y)

B

=Y PB)]C(ZYi {Z} 1Y) ﬁ Py,(Zs). (65)
B t=B

t=1

=C(Z|B,Y)

where t is a discrete time step. In words, a signal X gets encoded
into a sequence Y = {Yt}thl- The sequence gets transmitted up to B
by sending Y = {Y;}?_; though a channel C(Z;|Y;) such as the Gaus-
sian channel. Other information Y = {Y;}L , 41 is lost. This infor-
mation is replaced by samples from a prior over Y;, Py,(Z;). The full
integration over the input domain required to compute the integral
Py,(Y;) = [e(Yi|x¢)dx is expensive. Thus, we will introduce an ap-
proximation to it, i.e., a standard Gaussian prior or a more elaborate
model such as the ConvDraw prior [58].

To summarize, we have introduced a differentiable and computation-
ally efficient version of the bandwidth-limited channel. For this, we
turn it into a time discrete channel by introducing the discrete latent
variable B. To marginalize over the latent variable we may either per-
form Monte Carlo sampling or complete marginalization. The model
also requires a model for codes that have been dropped. This is sim-
ilar to the prior in a variational auto-encoder and can be learned to
arbitrary complexity.

Other differentiable models include the erasure channel, first consid-
ered in [100]. However, this channel is mainly relevant for feedback
systems, we will thus not discuss it in this context. Another relevant
channel is the Binary channel, which we detail in the appendix. For
real-world channels there is the option to learn a parametric model that
emulates them by sending random information units. Subsequently
this learned parametric model can be utilized as channel model. If only
a black-box model of the channel is available, our proposed framework
may be extended by using discrete optimization schemes. For example
VIMCO [144] has been used in [30]. The implementation of the chan-
nels we consider here can be found online, github.com/anonymous_
code.

*see [35], chap. 10 for more details
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Separate Source-Channel coding

As described in section 6.3, the joint communication problem can be
broken down into two independent problems; the source coding and
channel coding problem. Here, we demonstrate how to apply the vari-
ational auto-encoder as a source coder and an auto-encoder as channel
coder. Note that, there is no exchange of information between those
two systems. We provide a visual aid for this section in Figure 6.2.
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Source-VAE In recent years, neural networks have been shown to be

useful source compressors. Specifically, variational auto-encoders (VAEs)

have been pointed to as natural source coding systems [106, 5], show-
ing great practical success [13, 14, 142, 232, 208]. Such a source-VAE
is essentially a learned probabilistic model. Based on a set of sam-
ples emitted by the source X = {x,})_;, we aim to learn the source
encoder E5(Y’|X) and the source decoder D (X|Z'), both parameter-
ized functions of ¢ and 6, respectively. The learning objective thereby
originates from looking at the model as a latent-variable model (with
the encoding Z being the latent variable) for which we aim to do max-
imum marginal likelihood learning of the parameters. The involved
marginalization, however, forces the introduction of a variational ap-
proximation, the encoder, to construct a lower bound on the marginal
log likelihood, known as variational inference. For this, we set the
source encoder to be the variational approximation to the source de-

Figure 6.2: (a) Graphical model of the
jointly learned communication system. The
message X is passed by the encoder and
the channel, to be reconstructed into X.
Note that because marginalization is not
possible we apply a variational approxi-
mation Q to aid inference. (b) Graphical
models of the separately learned communica-
tion system. Two systems are learned in-
dependently: a VAE for source compres-
sion (red) and an AE for channel trans-
mission (blue).



coder, such that Y’ LZand X = X:

Ep(x) [log P(X|0,8)] = Ep(x) | Egs(y/x)llog D3 (X|Z")]

=-b (6.6)

—Epex) |KL(EF(Y'|X)]|Ps(2))
=:—R

This bound is known as the evidence lower bound (ELBO). Optimizing
ELBO is equivalent to optimizing a rate(R)-distortion(D) problem. We
can adjust the rate-distortion trade-off to a desired rate or distortion
by introducing a parameter § into the objective, this framework is well
known as B-VAE [79, 5].

Generally, it is possible to optimize decoder and encoder indepen-
dently. This however would only make sense if we consider chan-
nel coding systems that do not try to reconstruct their inputs. Note
that in contrast to the original formulation in section 6.3, encoder and
decoder have been turned into probabilistic mappings rather than de-
terministic ones. This allows one to find an ideal compression rate
given a certain distortion-rate trade-off . The rate can practically be
achieved with the so called bits-back coding [80o, 207]. For inference it
became common that the parameters for the encoder distribution may
be predicted by a neural network parameterized by ¢. This is called
amortized inference. The parameters of this inference model and the
generative model, the decoder, are trained jointly though stochastic
maximization of ELBO. To do this efficiently, it is common to use the
reparameterization trick [106, 171].

Finally, it is important to note that the prior distributions in the context
of compression may not be learned Py(Z) = P(Z) . This would conflict
the independence of the source and channel.

Channel-AE  For training a neural channel coding system, we will use
samples from the source independent prior {y),}M_,, y,, ~ P(Z). Af-
ter using a deterministic encoding Y = ES(Y|Y’), we send Y though
the probabilistic channel Z ~ C(Z|Y), after which we try to recover
the inputs by channel decoding Z’ = D§(Z’|Z). The system is trained

by minimizing a measure of distortion between Y’ and Z'.

Note, that a for a simple additive withe Gaussian noise channel there
exists a near optimal channel coding scheme: LDPC. However, in more
general scenarios they do not perform as well anymore and can be
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beaten by neural network architectures [100]. Further, it has been
shown that neural networks can decode them efficiently [147]. For
the sake of generalizing to more complex channels we thus propose
general purpose neural network channel coding.

Joint Source-Channel coding

For the jointly optimized system, we translate the communication sys-
tem as described in section 6.3 into a generative model Py(X|X) =
[ ep(y|X)c(zly)dg(X|x) dy dz. Similar to the previous section, we think
of the encoder and decoder as parameterized mappings, while the
channel model is taken as given. We are interested in performing max-
imum likelihood learning of the model parameters ¢, by optimizing

Ep(x) [log Py (XX)]

A (6.7)
~ Epx) [105 [ el X)c(ely)d(X]2) dy bz
The required marginalization in (6.7), however, leads to generally in-
tractable integrals. One frequently applied solution is to introduce a
variational approximation Q,(Y, Z|X) to the posterior, to construct a
lower bound on the marginal likelihood.

log Pp(X|X) > Eq, v,z [log Dy(X|Z)]

‘ (6.8)
— Dx1(Qy (Y, Z|X) || Ep(Y|X)C(Z]Y))

As before, this represents an ELBO. Note though that, the first term in
(6.8) refers to the quality of the message reconstruction and the second
to how closely the receiver understands the sender. This is different
to the previous section where the message never actually passes the
communication system. The variational posterior plays a very different
role there where it is assumed to be the encoder. In the joint scenario
the posterior only serves to train the system, at test time, however it
is of no interest. To sum it up, our proposed framework optimizes the

2
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Figure 6.3: Excerpt of the graphical
model in Figure 6.2 (a). We show how
the decoder changes when introducing
auxiliary latent variables V.



actual objective of communication, the message reconstruction. For
channels that do not allow for information transfer this model turns
into a VAE.

Auxiliary latent variable Decoders When the information transmitted
by the channel is variable, i.e. for the bandwidth-limited channel, a
model has to adapt to low and high information transmission rates.
To contest information loss due to a noisy channel, we propose to in-
troduce auxiliary latent variables V to the decoder model. This model
choice acknowledges the implicit marginalization over lost informa-
tion. Although expected message distortion is unchanged, when sam-
pling from such a model, message reconstructions should occur more
in distribution with the true source distribution (e.g. one would expect
sharper images).

We can enforce this change to the decoder by adapting the distortion
term in (6.8). As before we would need to marginalize over V but
choose the variational approach instead,

—D 2B (v 71%)Eq,(v%,v,2) [P (RIZ, V)] (6.9)
— Dk (Qe(VIX, Y, Z)|P(V))].

Again, we introduced an approximate posterior to circumvent the in-
tractable task, where P(V) is a prior over these newly introduced latent
variables. Just as before, the parameters of the variational distribution
shall be inferred by a deep neural network with parameters ¢. We
indicated the components introduced to the communication model in
yellow in Figure 6.3. We note that we could execute the same idea
using other conditional generative models, and corresponding infer-
ence methods, such as conditional GANs. We leave this exploration to
future research.

6.5 Related Work

The field of learned image and video compression has enhanced rapidly
over the past few years. While [133] give a recent concise overview of
the field, here we focus on probabilistic auto-encoding approaches first
proposed by [204]. The main focus of the field of image compression
is to close the gap between theoretical ideas and well performing sys-
tems. One block of efforts focuses on learning representations. While
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VAEs tend to work better in the continuous regime, most codes and
channels can best be described by binary representations. To bridge
this, it has been proposed to (i) quantize continuous representations
by convolving them with a uniform distribution [13, 14, 142, 3], (ii)
learn discrete representations directly [213, 11, 188] or even (iii) learn
to generate common codecs e.g. JPEG [96, 126]. Note that some of
these systems rely on learned priors; however, these are actually not
suitable for separate coding. Other work is focused on biasing com-
pression towards image features important for perception or system
security [122, 4]. For situations where sequences of source inputs are
communicated, neural buffers have also been explored to allow re-
ordering of elements to improve code length [57]. Another branch of
research focuses on the architecture of encoder and decoder models
[58, 38, 232]. Additionally, there is work looking into performing tasks
on compressed representations directly [206]. Important to mention
also are efforts to make the often expensive encoder and decoder more
computationally efficient [12].

In contrast to neural source coding, neural channel coding has yet
to be explored so extensively. However, first studies [147, 62, 23, 44]
demonstrate great success with neural encoder/decoder architectures.
For example, it was shown that a neural model can find a solution
to the Gaussian feedback channel which benefits from the feedback,
a result known before but not demonstrated by any channel code yet
[100, 101].

Most related to our work in spirit is a range of end-to-end learned
joint communication systems. [46] apply a joint source channel system
to text; [21] use auto-encoders to transmit messages over the AWGN
channel; and [229] use joint systems for data compression. Closest to
our work is the study by [30] where they learn the communication
system in a variational fashion as well, but exclusively look at the
binary erasure channel. The discrete channel leads to another variant
of the learning scheme.

6.6 Experiments

We focus our experiments on the bandwidth-limited channel with ad-
ditive white Gaussian noise (AWGN) and power restricted inputs. The
latter ensures a limited channel capacity.



We empirically investigate our three hypothesis for improved mod-
elling with bandwidth-limited channel. First we repeat an experiment,
first performed by [30] on the Binary channel. For this, we com-
pare neural joint and separate models, finding the joint model con-
sistently outperforms it’s separate counterpart. These findings echo
aforementioned work. We therefore expand upon this by focusing the
remainder of our experiments on a neural joint model with the AWGN
bandwidth-limited channel. Second, we go on to show the importance
different prior and decoder choices for the performance of this model.

All results are evaluated on CelebA [127]. All images were re-scaled to
a resolution of 32 x 32 pixels. Encoders and decoders have generally
been chosen to be Residual Networks [75], due to their wide usage in
a range of generative modelling tasks, e.g. in [58].

Comparing Joint and Separate Neural Models with Gaussian Channel
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As previously discussed in section 6.3, we can not predict precisely
how a separate model would compare in contrast to a joint one. We
hence compare separate and joint neural models as described in sec-
tion 6.4 for the AWGN at various SNRs. For both models we choose
the same posterior distribution for latent encoding: isotropic Gaus-
sians. We additionally choose the observation model to be Gaussian
since it is quite common to measure distortion in L2-space. Encoder
and decoders of both models share the same architecture configura-
tion. For the separate system, we choose a standard Gaussian to be
the prior for the source-VAE and simultaneously the data source for
the channel-AE. We note that this cannot be a data dependent prior as
this would leak information to the channel coding system. For both
models we hyper-optimize over a range of beta values on a log-scaled
grid®. We optimize both models with an SGD algorithm.
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Figure 6.4: Results of comparing distor-
tion for joint and separate neural com-
munication systems with ResNet en-
coders and decoders [75, 58] at various
signal-to-noise ratios for the Gaussian
channel. The joint model outperforms
the separate one consistently. Our re-
sults echo [30] that model with Binary
channel.

2 To get an understanding of the sensitiv-
ity to this parameter we put all results in
the appendix.
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We evaluate both systems by sending a message through the encoder,
channel and eventually the decoder, subsequently measuring the L2-
distortion between sent and received messages. The quantitative re-
sults are presented in Figure 6.4 on the left. For any of the 5 SNRs
that we run our experiment on, we find the joint model outperforms
the separate one. We observe, though, that the difference between
the systems shrinks towards either end of the range of the SNRs pre-
sented. This effect can be explained: For very high SNRs the channel
model becomes somewhat redundant, thus both systems resemble a
source-VAE. At very low SNRs both systems fail to communicate as
they approach the channel capacity. Our findings are in line with other
recent work: [30] show that joint systems outperform hybrid models
(neural source coding, hand-designed channel coding) and [100] show,
for some feedback channels, learned neural models outperform hand-
crafted channel codes.

Communication Model Design for Bandwidth-limited Channel
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After verifying the importance of joint modelling for Gaussian chan-
nels, we will now investigate the performance of a joint model on the
AWGN bandwidth-limited channel design we introduced in section

Figure 6.5: We consider joint models
trained based on the AWGN bandwidth-
limited channel with a fixed SNR of 1. In
both figures we contrast message quality
with bandwidth. The higher the band-
width the more information is transmit-
ted to the receiver. We measure mes-
sage quality by distortion in L2-space.
We compare two approximations to the
channel encoding distributions.  Our
complex prior [58] outperforms a sim-
pler one. Further, we observe a linear re-
lationship between bandwidth and dis-
tortion.

Figure 6.6: We consider joint models
trained based on the AWGN bandwidth-
limited channel with a fixed SNR of 1. In
both figures we contrast message quality
with bandwidth. The higher the band-
width the more information is transmit-
ted to the receiver. We measure message
quality by FID score. Lower FID score
is better. We compare decoders with-
out auxiliary latent variables to decoders
with auxiliary latent variables.



6.4. In this experiment we fix the SNR of the AWGN to 1.

Two choices for the model are relevant, the prior that models channel
codes and the decoder. Both deal with a lack of information in the low
bandwidth regime.

Prior As mentioned in the section 6.4, we require an approximation
to Py,. In our first experiment, we investigate how much the com-
plexity of this approximation influences the quality of message recon-
struction. Here we shall compare a spherical Gaussian and ConvDraw
prior (see [58]) to contrast a simple with a complex approximation.
We consider a 100 dimensional latent space. The space is partitioned
into 5 parts. Each part representing another band. Other specifica-
tions of the experiment are equivalent to the previous section. We
present our findings in Figure 6.5. We observe that, as expected, the
message distortion decreases when we transmit more information, for
both approximations. We additionally observe that the quality of re-
construction increases when the more complex prior model is used,
and the distortion gap between priors increases when less information
units are being transported through the channel. Furthermore, for
both prior choices, the distortion decreases almost linearly with the
bandwidth increasing. This result is in line with classic findings that
show a linear relationship between channel capacity and bandwidth
of an input power restricted AWGN. Finally, we shall give a visual im-
pression of the reconstructions at various bandwidth in Figure 1 in the
appendix.

Decoder For small bandwidths, we find that loss of information leads
to blurry reconstructions even with learned priors. To combat this, we
contrast a model without auxiliary latent variables with our proposed
auxiliary latent variable model. Specifically, for these two models, we
use an unconditional ConvDraw decoder and a conditional ConvDraw
decoder [58] respectively. As a measure of in-distribution affiliation we
use the well established FID measure [164]. This measure has mainly
served to evaluate the quality of GAN samples. Smaller FID mea-
sures are better. In this experiment, we use the more complex auto-
regressive prior model. Other experiment details remain the same as
before. The results of this experiment are presented in Figure 6.6. For
both decoders, as expected, the sample quality drops for smaller band-
width. However, the model with auxiliary latent variables significantly
outperforms the one without across the full range of bandwidth pre-
sented here. We thus conclude auxiliary latent variable decoders can
significantly improve the quality of communicated messages in some
respects, and therefore encourage their continued exploration.
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6.7 Discussion

In this chapter, we derived a generative model for joint coding with
the bandwidth-limited channel and showed how to perform learning
based on variational inference. For this, we introduced a differentiable
and efficient model of the channel. Since back-propagation through
the channel is now possible, we demonstrate how we can learn flexible
function approximators for coding by Monte Carlo sampling.

To justify the usage of joint coding instead of channel coding, we first
compared joint with separate communication models. Joint models
were shown to consistently and significantly outperform their separate
counterparts. Given joint coding as a basis, we investigate our main
hypothesis that when a channel transfers little or variable amounts
of information, the decoder might be helped by understanding the
source distribution. We put this idea into practice by focusing on two
modelling choices. First, when there is no information transferred, the
decoder may draw a sample from the encoding distribution Py (Z;) to
get a source-typical encoding. We test how the complexity of the dis-
tribution model influences reconstruction performance. We find the
more complex model to improve the distortion especially in the low
transmission regime. Second, when sampling message reconstruc-
tions from the communication system, missing information leads to
averaged reconstructions (i.e. blurry images). We prevent this by in-
troducing auxiliary latent variable decoders. In experiments, we show
that these decoders improve message reconstruction considerably in
terms FID score.

Further, this model serves as a simple method to learn a latent en-
coding that is sorted according to information content and channel
noise, eliminating the need to pass the latent code through a lossless
compressor before transmitting the data. This is an essential property
for sequential information transfer. In future work, we want to explore
this aspect more extensively. Future efforts in this field would focus on
reinforcing our finding further by investigating the same hypothesis in
other data domains and with other channels.



Conclusion

In this thesis, we have revisited the connection between statistical infer-
ence in DLVMs and coding by means of the MDL principle. In partic-
ular, we have focused our attention on realizing approximate Bayesian
codes. We showed that fully Bayesian codes are more effective than
the more common two-part codes (see Equation (1.12)).

Thus, in the first part of this thesis, we identified two approximate
Bayesian codes to compress functions. We approximate the Bayesian
code with the help of variational inference. The research questions
of this part, hence, focus on identifying feasible coding schemes for
the prior and posterior distributions assumed by the approximate in-
ference. In answering our first research question (Research Question
1), in Chapter 3, we described how quantization and pruning can be
understood as performing variational inference over latent parame-
ter distributions. As an example, we applied our ideas to Gaussian
parameter prior and posterior distributions. By learning the parame-
ter’s variance we could identify the level of quantization it can sustain.
However, the map from a posterior’s variance to the corresponding pa-
rameter’s precision is approximate. We are hopeful that future efforts
dispose of this shortcoming.

The second research question (Research Question 2) of part 1 of the
thesis aimed at an alternative prior and posterior choice. We discov-
ered that by choosing a mixture prior, we can turn the problem of
sending continuous parameter distributions into a problem of sending
discrete ones. In Chapter 4, we demonstrated the use of this idea by
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choosing a Gaussian mixture prior and a Dirac posterior. We subse-
quently used Huffman encoding or arithmetic coding to compress the
discrete symbols. Again the solution we propose is only an approxi-
mation of the original research question . Originally, we were hoping
for the prior to be a mixture of posterior distributions for the com-
pression scheme to work exactly. At the same time, we had to ensure
that only one mixture component claims responsibility for a posterior.
Thus, a Dirac posterior posed a good compromise between these two
objectives.

In the second part of this book, we focus our efforts on communication
with DLVMs. We zoom into two relevant applications; communica-
tion with fixed partially unknown encoding and communication with
a varying level of information transfer. In Chapter 5, we showed how
Research Question 3 can be answered by framing the scientific imag-
ing process of collecting projections with partially known encoding
processes as a communication process. We found that our method can
discover protein structures as precise as other benchmark algorithms
while allowing for construction with local uncertainty when part of
the message is not possibly reconstructable. We ope that this work can
be extended in the future to include inference over poses as well. For
this we seek to define distributions on SE(3). In Chapter 6, we iden-
tify three modelling choices when modelling with limited information
transfer; (i) Instead of separating the sub-tasks of compression (source
coding) and error correction (channel coding),we propose to model
both jointly. (ii) We propose a design to model missing information
instead of ignoring it. (iii) By introducing auxiliary latent variables in
the decoder,we can sample more realistic messages.

Next, we will explore open questions in the field of coding and respec-
tive statistical inference; and discuss relevant possible applications of
this line of work.

The frontiers for improving communication are wide. We believe gen-
erative modelling can improve many communication applications such
as video calling and live television. These examples stick out to us be-
cause, due to the urgency of instantaneous execution, communication
needs to happen most efficiently and the cost of encoding and de-
coding is nearly irrelevant assuming sender and receiver have enough
computational resources. Generative models could improve these ap-
plications in a real sense very soon. Especially given that many ap-
plications such as skype or zoom host their own platforms where the
respective owners control the data formats. Good generative models
should be able to capture a conversation to the point where if a party



drops out, we would able to predict the conversation up to a certain
degree. Generative modelling also allows for inpainting of missing
information as demonstrated in Chapter 5. One research direction in
this domain could be to look into fast (approximately) exact inference
encoders, such as annealed importance sampling. This contrasts the
approximate inference schemes, i.e., amortized inference we mainly
rely on today.

In light of these applications, we see channel coding as a discipline that
needs more attention. Even though some pioneering work has been
published in the last few years [100, 101, 46, 30, 229, 147, 62, 23, 44],
there are considerable challenges in incorporating feedback-channels
with memory. Beyond the classical idea of modelling a simplified
channel, it might be worth looking into learning the channel model
itself. A naive approach would be to send random messages through
a given channel. The set of random messages and received messages
constitutes a learning problem. However, it is hard to say what a suf-
ficient set of random messages would constitute when there is no in-
formation about respective sources. We may go even further with this
approach and adaptively learn to adjust to a channel environment.
This may be useful in situations where the signal varies or when there
is more than one channel to choose from. We can also think of explor-
ing new materials as channels by means of learning. For example, a
project by Anderson et al. [6] recently discovered that storing infor-
mation on glass may be more durable than on regular ferromagnets.
Understanding information storage as communication over time, we
may ask to identify the channel for this specific material.

There are also systematic challenges. Machine learning in communica-
tion algorithms promises highly user adapted models. Soon different
users may have different personalized compression algorithms, e.g. a
cat loving vs a car loving person may have different compressors to
store their vast amount of cat and car pictures, respectively. However
in order to make good on the promise of individualized functions for
each user of a communication system, we need to rethink storage, and,
more generally, communication formats. How are we going to com-
municate and store, data and models in the future on real systems?
We consider function compression to be a vital part of this question.
Devices have limited storage and computational budgets that differ
from device to device. How can this be incorporated in a generalized
format?

For function compression, most work has focused on reducing param-
eters in numbers or precision. We think it is worth investing resources
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in other ways to restrict function complexity. New frontiers in function
compression could evolve around restricting the function space rather
than the parameter space; or acting Bayesian on a flop level. The latter
includes considerations with respect to architecture search, the cost of
non-linearities, etc. Potentially, we should, as originally proposed by
Solomonoff [195], understand communication (literally) as communi-
cation of universal binary codes; and optimize them accordingly.

We are excited for the possibilities that casting various problems as
communication problems hold for the future. Finally, we would like
to emphasis that we are aware that many problem known from similar
domains are also present in modelling communication; (i) Data and se-
lection bias can cause problems when, for example, training a channel
model or learning a generative model to model a conversation. (ii) Do-
main shifts originating from attempting to reuse a source or a channel
model in a different context can lead to another form of bias.
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Appendix

9.1 Appendix Chapter 2

A. Detailed experimental setup

Our method was implemented with Tensorflow *. We used the Adam [103]

optimization scheme with the default hyperparameters to learn pa-
rameters. To initialize the means of the conditional Gaussian g4(W/|z),
we use the technique proposed by He et al. [74]. The log of the stan-
dard deviations, on the other hand, were initialized by sampling from
the distribution N'(—9,1e — 4). Further we initialised g4(z) to have
an overall mean z ~ 1 and a low overall variance (=~ 1le — 8). This is
necessary to make sure that all groups are active in the initial phase of
training.

One of the more important tricks to make our method work is to con-
strain the standard deviations. For LeNet-300-100 we constrained the
first layer’s standard deviation < 0.2, for LeNet-5-Caffe we to < 0.5.
Other layers stayed unconstrained. For the VGG architecture we con-
strained the 64 and 128 feature maps layers to < 0.1, and the 256
feature map layers to < 0.2. Any other layers were again left uncon-
strained. We used the “warm-up” method as proposed by [196]. For
this we slowly annealed the negative KL-divergence from the approxi-
mate posterior to the prior using a linear schedule during the first 100
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epochs. In order to not train VGG from scratch, we took the pretrained
VGG and initialized our posterior means accordingly. During training,
we disabled batch-normalization. As is usually the case we rescaled
MNIST to a range [—1,1]. For CIFAR 10, we tool the preprocessed
dataset by [228]. AS noted before, when computing the final architec-
ture, we use pruned outputs to inform pruning of inputs. This hold
true for both fully connected and convolutional layers.

B. Standards for Floating-Point Arithmetic

Floating points values eventually need to be represented in a binary
basis in a computer. The most common standard today is the IEEE
754-2008 convention [193]. It defines x-bit base-2 formats, officially re-
ferred to as binaryx, with x € {16,32,64,128}. The formats are also
widely known as half, single, double and quadruple precision floats,
respectively and used in almost all programming languages as a stan-
dard. The format considers 3 kinds of bits: one sign bit, w exponent
bits and p precision bits.

1bit MSB  wbits LSB MSB t = p—1 bits LSB
S E T
(sign)| (biased exponent) (trailing significand field)
- ORI A

The Sign bit determines the sign of the number to be represented. The
exponent E is an w-bit signed integer, e.g. for single precision w = 8
and thus E € [—127,128]. In practice, exponents range from is smaller
since the first and the last number are reserved for special numbers.
The true significand or mantissa includes t bits on the right of the
binary point. There is an implicit leading bit with value one. A values
is consequently decomposed as follows

t .
mantissa =1+ ) _b;2™" (9.1)
i=1

value = (—1)8"Pit 5 2F » mantissa (9-2)

In table 9.1, we summarize common and less common floating point
formats.

There is however the possibility to design a self defined format. There
are 3 important quantities when choosing the right specification: over-
flow, underflow and unit round off also known as machine precision.

Figure 9.1: A symbolic representation of
the binaryx format [193].



Bits per  Exponent Significand underflow overflow unit

Float width [bit]  precision [bit] level level roundoff

64 11 52 222 x 10738 1.79x10%8 222 x 107 1°
32 8 23 117 x 10738 340x10%  1.19x 1077
16 5 10 610 x107%  6.54x10* 9.76 x 1074

Each one can be computed knowing the number of exponent and sig-
nificant bits. in our work for example we consider a format that uses
significantly less exponent bits since network parameters usually vary
between [-10,10]. We set the unit round off equal to the precision and
thus can compute the significant bits necessary to represent a specific
weight.

Beyond designing a tailored floating point format for deep learning,
recent work also explored the possibility of deep learning with mixed
formats [123, 66]. For example, imagine the activations having high
precision while weights can be low precision.

C. Shrinkage properties of the normal-Jeffreys and horseshoe priors

In this section, we shall compare the two priors proposed in chapter 3.
For this we rely on hte analysi provided by [25]. When performing a

change of variables, we can express the scale mixture distribution (see
1

Equation 3.3) as function of the shrinkage coefficient, A = =7:

A~p(A);, w~ /\/(0, 1_AA> (9:3)

In this parameterization, we can infer that our method is a to a con-
tinuous relaxation of the spike-and-slab prior. To do so we choose
A =0, thus p(w|A = 0) = U(—o0,00). In other words, there is no
shrinkage/regularization for w. On the other hand, when A = 1,
p(wlA = 1) = 6(w = 0) follows. This in term means w is exactly
zero. If we now set A = } we obtain p(w|A = }) = N(0,1).

We can now compare the log-uniform and the horseshoe prior by ex-
amining the implied prior on A. Following [25], we note that the
normal-Jeffreys / log-uniform prior on z correlate with the following
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Table 9.1: Floating point formats

Figure 9.2: We compare the behav-
ior of the log-uniform / normal-Jeffreys
(NJ) prior against the horseshoe (HS)
prior (where s = 1). At zero, both
show similar behaviour. However, the
normal-Jeffreys prior displays an ex-
tremely heavy tail.
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prior on the shrinkage coefficient p(A) = B(e,e) with € ~ 0; and
the half-Cauchy prior on z to a beta prior, p(A) = B(3,1). We plot
the densities of both distributions in Figure ??. We notice that the
log-uniform prior exhibits a distribution that concentrates most of its
mass at either A ~ 0 or A = 1. This means, the prior causes to either
prune the parameters or maintain them close to their ML estimate® .
The horseshoe prior on the other hand keeps some probability mass
for A between the extremes. This behaviour might potentially, benefit
regularization and generalization.

D. Negative KL-divergences for log-normal approximating posteriors

In this section we will compute the negative KL-divergences from
g(z) to inverse gamma, and gamma to half-normal distribution. For
this, we first consider the log-normal approximating posterior to be
q(z) = LN (u,0?), p(z) shall be an inverse gamma distribution, p(z) =
ZG(a, B). We can now express the KL-divergence as:

~KL@()/|p(2) = [ q()logp(z)dz— [ g(z)loga(z)dz (0.4

We may compute the entropy term (the second term in Equation (9.4))
as follows;

1 1 1
Hy = —/q(z) logq(z)dz = 5 logo? + p + 5 + 3 log(2m).  (9.5)
The cross entropy term (first term in Equation (9.4)) is;

CEyp = /q(z) (vclog,B —logT'(a) — (a+1)logz) — !j)dz (9.6)

=alogp —logI'(a) — (a + 1) E,;)[logz] — BE, () [z71].

Note that E,.)[logz] = u because the natural logarithm of a random
variable distributed according to a a log-normal distribution LN (p, 0?)
is a normally distributed random variable N (y, o).

Furthermore, E, . [z71] = exp(—p + ‘772) because when x ~ LN (i, 0?)
then % ~ LN (—p,0?%). We thus can compute the cross-entropy term
precisely;
2
o
CEqp = wlogp —logT(a) — (a + D — pexp(—p+ =) (97)
Hence we conclude the KL-divergence;

—KL(q(2)||p(2)) =alog p —logT(a) — ap — pexp(—p +050%) (9.8)
+0.5(log o + 1+ log(27)).

2Becuase p(w|A ~ 1) = U(—o0,00).



Next let p(z) be a Gamma prior p(z) = G(«, ). We can update the
cross-entropy according to our change to be;

CEgp = /q(z) ( —alogB —logT'(a) — % +(a—1) logz) dz  (9.9)

= —alogp —logT(a) — 71 E, ) ]
+(a—1)E a(z y[log z] (9.10)
2
= —alogB —logT(a) — B texp(u + %) +(a—1)p.  (9.11)
Again we conclude the corresponding KL-divergence;

KL(q(2)lp(z)) = alog p +logT'(a) — ap
+ B Lexp(p + 0.50?)
—0.5(logo* + 1 + log(27m)). (9.12)

Summarizing the previously made efforts we can compute the KL-
divergence from p(s,, sy, &, B) to ¢ (Sa,Sp, &, B) by;

_ 1
—KL(g¢(s4)|1p(sa)) = log 10 + 75 " exp (s, + Effszﬂ)
1
+ 5 (#sa + logai +1+log2) (9.13)
1
—KL(q¢(sp)[|p(sp)) = *eXP( — Hsy)

1
+ 7( — Us, + logaszb +1+1log2) (9.14)

A
1
—KL(g4(&)||p(& Z(exp (a; + 50%,)
1
l(ﬂai +log oz, +1+log 2)) (9-15)
A 1 )
—KL(g9(B)IIp(B) = | —exp (505, — 1p)
l

1
+ E( ) +log0§l_ +1 +log2)>- (9-16)

Note that the KL-divergence corresponding to the weight distribution
q¢(W) is given by Equation (3.8).

F. Algorithms for the feedforward pass

We present the algorithms to compute a forward pass int Algorithms 9.3, 9.4, 9.5,

and 9.6. Note that we use the local reparametrization trick for both
fully connected and convolutional layers. The approximate posteri-
ors correspond to the Bayesian compression (BC) scheme with group
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4

Require: H,My,, Xy

1

N

: E~N(0,1)
cZ=pu,+0,0OF

: I:I:HQZ

. M, = HM,,

. V), = H2Z,

. E~N(0,1)

return My, + /V;, © E

Require: H,My,, Xy

1:

N

[~ JEEN TS NEEC, R o)

M, =Hx*+My
V, =H%2xXL,
. E~N(0,1)

: fi; = reshape(pz, [K, 1,1, Nf])

. 0, = reshape(o, [K, 1,1, Nf])
Z=j,+06,0F

. E~N(0,1)

creturn My, ©Z++/V, ®Z2OE

normal-Jeffreys (BC-GNJ) and group Horseshoe (BC-GHS) priors. The
groups are defined to be the weights corresponding to one input neu-
ron for fully connected layers; and output feature maps for convolu-
tional layers. My, Xy, represent the means and variances of a layer,
and H denotes a minibatch of activations with corresponding size K.
Naturally, in the first layers; H = X with X being the minibatch of
inputs. Note that, in the context of convolutional layers * denotes the
convolution operator, N [ the number of convolutional filters, and we
assume the shape of a minibatch to be according to the [batch, height,

width, feature maps] convention.

Figure 9.3: Fully connected BC-GN]J
layer h.

Figure 9.4: Convolutional BC-GN]J layer
h.



Require: H,My,, Xy
: é~N(0,1)
2 Hs = .Bys, + .Sys,
05 = /2502, + 2502

3:

4 logs = pus+os © €

5 Mz = Spa + Spg +logs
@@z/%ﬁ+%%
7 E~N(0,1)

8 Z =exp(pz + 0z ©E)

9: H=HoZ

10: M, = HM,,

1 V), = H2Z,

12: E~ N(O,l)
13: return My, + /V, ©E

9.2 Appendix Chapter 3

Review of state-of-the-art Neural Network Compression

We apply the compression scheme proposed by [68, 67] that highly
optimizes the storage utilized by the weights. First of all, the authors
store the weights in regular compressed sparse-row (CSR) format. In-
stead of storing |W()| parameters with a bit length of (commonly)
Porig = 32 bit, CSR format stores three vectors (A, IR, IC).

¢ A stores all non-zero entries. It is thus of size |W(l ) |0 X Porig, Where
|W("]_ is the number of non-zero entries in W().

e IR Is defined recursively: IRy = 0, IRy =IR;_1+ (number of non-
zero entries in the (k — 1)-th row of W()). It got K + 1 entries each
of size porig-

e IC contains the column index in W) of each element of A. The size
is hence, |W(l)|#0 X Porig-

Figure 9.5:
layer h.
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Fully connected BC-GHS
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Require: H,My,, Xy
M, = Hx M,
.V, =HZ2x X,
e~ N(0,1)
Us = Dis, + .Dys,
05 = /2502 + 2502
log s = reshape(ys + 05 ©® €, [K,1,1,1])
: pz = reshape(.5pus + Spg, [K, 1,1, N¢])

. 0z = reshape(, /.2502% + .250'%, [K,1,1, N¢])
o E~N(0,1)

10: Z = exp(pz +logs + oz © E)

11: E~ N(O,l)

12: return M, ©Z + /V, ©Z2 O E

N

® N > 9 AW

An example shall illustrate the format, let

wd —

SO N O O O
O U1 O N O
S O O O O
_ O O O =

than

A=[1,2,2,51]
IR =[0,1,2,2,4,5]
IC = [3,1,0,1,3]

The compression rate achieved by applying the CSC format naively is

W

Ty = 1
P oW + (K+1) (v17)

However, this result can be significantly improved by optimizing each
of the three arrays.

Storing the index array IR

To optimize IR, note that the biggest number in IR is [W() |£0. This
number will be much smaller than 2Peris. Thus one could try to find

Figure 9.6: Convolutional BC-GHS layer
h.



p € Z4 such that |W(l)|¢0 < 2Ppran - A codebook would not be neces-
sary. Thus instead of storing (K + 1) values with pg, we store them
with pprun depth.

Storing the index array IC

Instead of storing the indexes, we store the differences between in-
dexes. Thus there is a smaller range of values being used. We further
shrink the range of utilized values by filling A with zeros whenever
the distance between two non-zero weights extends the span of ZErun.
[67] propose p = 5 for fully connected layers and p = 8 for convolu-
tional layers. An illustration of the process can is shown in Fig. 9.7.
Furthermore, the indexes will be compressed Hoffman encoding.

Storing the weight array A

In order to minimize the storage occupied by A. We quantize the val-
ues of A. Storing indexes in A and a consecutive codebook. Indexing
can be improved further by again applying Huffman encoding.

Scalability

Neural Networks are usually trained with a form of batch gradient de-
cent (GD) algorithm. These methods fall into the umbrella of stochastic
optimization [177]. Here the model parameters W are updated itera-
tively. At each iteration ¢, a set of B data instances is used to compute
a noisy approximation of the posterior derivative with respect to W
given all data instances N.

w\z

B I
Vw log p(W|D) = 2 Vw log p(tu|x,, w) + ) Vw log p(w;)

=1
(9-18)

This gradient approximation can subsequently be used in various up-
date schemes such as simple GD.

For large models estimating the prior gradient can be an expensive
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Figure 9.7: Illustration of the process de-
scribed in g.2. IC is represented by rela-
tive indexes(diff). If the a relative index
is larger than 8(= 23), A will be filled
with an additional zero. Figure from
[67].
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operation. This is why we propose to apply similar measures for the
gradient estimation of the prior as we did for the likelihood term. To
do so, we sample K weights randomly. The noisy approximation of
the posterior derivative is now:

N
Vwlog p(WD) = =

B [ K
Z Vw log p(tn|xn, w) + % Z Vw log p(w;)
- i—1

n=1 i=

(9.19)

Filter Visualisation

In Figure 9.8 we show the pre-trained and compressed filters for the
first and second layers of LeNet-5-Caffe. For some of the feature maps
from layer 2 seem to be redundant hence the almost empty columns.
In Figure 9.9 we show the pre-trained and compressed filters for the
first and second layers of LeNet-300-100.

Configuring the Hyper-priors
Gamma Distribution

The Gamma distribution is the conjugate prior for the precision of
a univariate Gaussian distribution. It is defined for positive random
variables A > 0.

:B[X x—1,—BA
ra =——A .
(A, B) = A e (9:20)
For our purposes it is best characterised by its mode A* = £ ; and its

variance var, = In our experiments we set the desired variance of

n
E.
the mixture components to 0.05. This corresponds to A* = 1/(0.05)% =
400. We show the effect of different choices for the variance of the

Gamma distribution in Figure 9.10.

Beta Distribution

The Beta distribution is the conjugate prior for the Bernoulli distribu-
tion, thus is often used to represent the probability for a binary event.
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It is defined for some random variable 7t;—q € [0, 1]

Blrj=ole.P) = %(”f—o)“l(l — mj=)P (9.21)

with @, > 0. «a and B can be interpreted as the effective number
of observations prior to an experiment, of 71j—o = 1 and 7,9 = 0,
respectively. In the literature, « + § is defined as the pseudo-count.
The higher the pseudo-count the stronger the prior. In Figure 9.11,
x—1
P
0.9. Note, that, the beta distribution is a special case of the Dirichlet

we show the Beta distribution at constant mode n;‘:O =

distribution in a different problem setting it might be better to rely on
this distribution to control all 7;.
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Figure 9.8: Convolution filters from
LeNet-5-Caffe. Left: Pre-trained filters.
Right: Compressed filters. The top fil-
ters are the 20 first layer convolution
weights; the bottom filters are the 20
by 50 convolution weights of the second
layer.
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_ _ Figure 9.9: Feature filters for LeNet-300-
5 5 e [ Rl = S 100. Left: Pre-trained filters. Right:
; X Compressed filters.

014 Figure 9.10: Gamma distribution with
a=6,3=0.05 A* = 100. « and B correspond to dif-
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9.3 Appendix Chapter 4

Visual impressions

First, to give a visual impression of the observations, we learn from we
present in Figure 9.16 samples from the 3 data sets we use. All of the
datasets are based on the same protein estimate of the GroEL-GroES
protein[223]. They differ in the signal-to-noise ratio (SNR). The left
row represents noise free data, the middle a moderate common noise
level, and the right an extreme level of noise. For each observation ex-
ample, we show also the corresponding Fourier transformations, their
real part in the second column and their imaginary part in the third
column. Further we present the qualitative results of fitting the mid

) T

and high level datasets with our method. We visualize the respective
protein fit from experiment 6.2 in Figure 9.13 with the Chimera X soft-
ware package [160]. The two pictures on the top row represent the
middle noise fit, respectively the bottom two the high noise fit.
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Figure 9.11: Beta distribution with
mi_g = 09. a and B correspond to dif-
ferent choices for the pseudo-count.

Figure 9.12: Left to Right: We show sam-
ples from the dataset we use: (i) no noise
(such as in Experiment 6.1), (i) moder-
ate noise and (iii) high noise (such as in
experiment 6.2). Top to Bottom: Obser-
vation in (a) real space, first 20 Fourier
shells (b) real part and (c) imaginary part
(for better visibility log-scaled). The lat-
ter two are being used for the optimiza-
tion due to the application of the Fourier
slice theorem explained in Section 5.4.
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Extension to experiment 5.6

We shall execute the same experiment as in section 5.6 given the dataset
with intermediate noise. We display the experiments of this result in
Figure 9.14. It is clear that while, missing information leads to large
deviation in variance we also find that the noise leads to some variance
in the observed area. Again we visualize the result of the fit in Figure

9.15.

Figure 9.13: Top: Side and top view of
the GroEL-GroES protein fit with moder-
ate noise level data. Bottom: Side and top
view of the respective high noise level
dataset.

Figure 9.14: Center slice through the
learned Fourier volume uncertainties oy.
Left: real part, Right: imaginary part.
We learn the model fit with observations
coming only from a 30° cone, a scenario
similar to breast cancer scans where ob-
servations are available only from some
viewing directions. Uncertainty close to
1 means that the model has no informa-
tion in these areas, close to zero repre-
sents areas of high sampling density. In
contrast to other models, our model can
identify precisely where information is
missing (high variance).

Figure 9.15: Side and top view of the
GroEL-GroES protein fit with moder-
ate noise level data and all observations
stemming from a limited pose space.



Amortized inference and variational EM for pose estimation

We have not used amortized inference in our experiments. In experi-
ment 6.4 we have modelled poses as local variables and trained them
by variational expectation maximization. Other work shows that the
amortization gab can be significant [186, 5, 138]. Hence in order to
exclude the gap as a reason for failure, we decided to model local
variables. We did run experiments though with ResNets as encoders
without success either. We believe the core problem in probabilistic
pose estimation is the number of local optima. This makes simple
SGD a somewhat poor choice, because we rely on finding the global
minimum.

Remarks to the chosen observation model

The Gaussian noise model is a common but surely oversimplified
model [190]. A better model would be the Poisson distribution. The
Gaussian is a good approximation to it given a high rate parameter
meaning if there is a reasonable high count of radiation hitting the
sensors. This is a good assumption for most methods of the field, but
can actually be a poor model in some cases of cryo electron microscopy.
An example of an elaborate model is presented in Vulovi¢ et al. [219].

9.4 Appendix Chapter 5

Model samples

Message reconstructions for the bandwidth-limited channel can be
seen in Figure 9.16.

Rate-distortion perspective

Originally, information theory would study how a message can be
communicated over a noisy channel to a receiver without errors. It
is often a more realistic scenario, though, to think of the receiver to
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tolerate a certain amount of distortion. Intuitively, the more we allow
for distortion of a message the smaller the number of bits we need to
communicate. Rate-distortion theory is a major field of information
theory that studies how these modifications to the original set-up ef-
fect fundamental theorems such as data compression or transmission.
The limitations of the classical view become clear when considering
continuous random variables. Continuous random variables require
infinite precision to represent exactly. Hence it is not possible to send
finite rate codes. Assume X to be the continuous random variable to
be represented by X’'(X). Say we are given R bits to send X. X'(X)
than can take 2R values. The goal of rate-distortion coding is to dis-
tribute these 2R codepoints such that a minimal distortion, measured
by a distortion function d,

d: X xX —RT, (9.22)

where X is the source alphabet, is being achieved.

Source Coding in a rate-distortion sense

Source coding in the context of rate-distortion theory entails two steps:
quantization X’(X) and traditional source encoding Y (X’) = Y(X). In
both steps the goal is to keep the loss of information minimal given a

rate that shall be achieved, I(X;Y) < R where
I(X;Y) = Ep(xy)llog P(X,Y) ~log P(X)P(Y)],  (9.23)

is the mutual information. The goal is to keep this bound tight. How-
ever, computing the mutual information is hard since we do not have
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Figure 9.16: First row: Message samples
from the source distribution. Other rows
from top to bottom: Samples of the recon-
structed message at all considered band-
widths. The top row has least informa-
tion.



access to the true data density. Following Alemi et al. [5], we instead
find a variational approximation,

H-D<I(X;Y)<R (9-24)
with

D := Ep(x)[Egs(yr|x)[log D (X|Y")]] (9-25)
R := Ep(x)[Bps(yx) [log E*(Y'|X) — log M(Y)]], (9-26)

where they introduce M(Y) as the variational approximation to P(Y) =
Ep(x) [ES(Y'|X)]. This reestablishes that the data entropy bounds fea-
sible (compression rate R, distortion D) pairs: H(X) < R+ D. This ties
together with the result from optimal coding that the source entropy
bounds the optimal code length. Hinton and Van Camp [8o] show that
via bits-back coding this code length (rate) can actually be achieved.
This argument has further been hardened by Townsend et al. [207]
who design an actual compression algorithm in this manner.

Joint Source-Channel Coding in a rate-distortion sense

In the previous section we discussed how relaxing the requirement to
sending a message exactly, to sending a message under a certain dis-
tortion, effects source coding. The optimal code length would thus
be R(D) bits/symbol rather than H(X) > R(D) in the error-free sce-
nario. We can connect this information to Shannon’s channel coding
theorem. We know that the channel capacity C restricts the number
of bits that can be send. Thus there exists a solution for a maximum
distortion communication system only if R(D) < C. When in the pre-
vious section R helps to describe the number of bits that represent a
random variable X, we can similarly find a variational approximation
to I(X, Z) the amount of bits representing X after passing the channel,

T:=Epx)e(v|x) [IEC(ZW) [log C(Z[Y) — log N(Z)ﬂ / (9-27)

where equivalent to the discussion in the previous section N(Z) is the
variational approximation to P(Z) = Epxg(y|x)[C(Z]Y)]. We shall
refer to T as the transmission rate.
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Relaxing the Binary Channel
Relaxing the Bernoulli: Binary Concrete Distribution

Learning of systems with stochastic nodes Py(X) in Machine Learning
is often synonymous with optimizing an objective function £(6,¢) =
Ex~py(x) [fo(X)] w.r.t the parameters 6,¢ via some gradient descent
based scheme. The challenge lies in computing the parameters 6 that
belong to the stochastic node. A popular approach to this problem is
the application of the so called reparameterization trick [106, 171] in
which a stochastic node Py(X) with parameter dependency 6 is turned
into a stochastic node Q(Z) without parameter dependentcy and a
determined function gy(+).

L(0,¢) = Exp,(x)[fe(X)] = Ez~q(z)[fo(g8(2))] (9-28)

with x = gg(x). The remodelled stochastic node now allows for gradi-
ent based stochastic optimization via Monte Carlo sampling3,

VoL (0,9) = Ez0(2)f6(86(Z2))Vege(Z)]. (9-29)

For example, consider sampling from the Gaussian distribution, X ~
N (X|p, o) can be replaced by sampling from a standard Gaussian Z ~
N(Z|0,1) and applying x = g{, +1(z) = p + 0z. Reparameterizing a
discrete distribution such as the Bernoulli B(p) is not as straight for-
ward. Maddison et al. [136] propose reparameterization with Gumbel-
Max trick. Specifically, the reparameterization is based on a logistic
random variable L ~ Logistic(L) as parameter-free stochastic node,
the relaxed Bernoulli sample can than be attained by

Y = (L +log(a)/T) (9:30)
X =0(Y)

where « corresponds to the location parameter p in the Bernoulli dis-
tribution, T the temperature adjusts the amount of relaxiation and o
is the sigmoid function. The density corresponding to this sampling
procedure is given by,
T —T-1 1— —T-1

Pa,T(x) = % (9:31)
We shall call this the Binary Concrete distribution or relaxed Bernoulli
distribution Br(a). It has several desirable properties.

1. P(X >05) = 1%

. P(lmX=1) =%
2 (Tlg}) ) 1+a

3If there is no possibility of reparam-
etization, one can retain to the score-
function estimator, also known as RE-
INFORCE or likelihood-ratio estimator,
which allows to compute the gradient
via Monte Carlo sampling. This however
leads to higher variance gradients.



3. If T <1 than p, r(x) is log-convex in x.

One problem, however, we may often be faced with is computing the
log-likelihood of such a stochastic node. For example when computing
the KL-divergence of a variational auto-encoder. Due to the saturation
of the sigmoid function computing the log-likelihood empirically may
lead to underflow issues. This is why it has been proposed to compute
the log-likelihood based on the samples Y before applying the sigmoid
function since this is an inevitable function. The corresponding log-
likelihood is given by,

log 8o 7(y) =1log T — Ty +loga

32
—2log(1+exp(—Ty +loga)). (9:32)

As an alternative we may clip the log-likelihood. This variant is easier
to apply when there is no direct access to the stochastic node, we shall
see what this means precisely in the next section.

Binary Channel

The symmetric binary channel is a discrete channel with an input and
output alphabet of size 2, J € {0,1}P, Z € {0,1}P. The channel can
be realized with Bernoulli noise on each input pixel,

ew;—-1) 1
Zi=c—F—=+= Wi ~ P (W;) = B(W; .
where B(p) is a Bernoulli with p the likelihood of keeping an input
bit. The channel is called a symmetric channel because the probability

of changing a bit does not depend on its state.

Following, we relax the channel as defined above to allow for training
of differntiable communication models. For this we will utilize the re-
laxed Bernoulli distribution as described in the previous section. As
for the Gaussian Channel we assume that that Y; can be constructed
from a learned Bernoulli itself with Y; ~ Br, (Y;j|ay,). In order to com-
pute (6.8), we need to evaluate the channel density given its input
C(Z]Y). Since Z depends deterministically on W; and Y;, the chan-
nel density equals the noise density with transformed input argument
C(Z|Y) = Pw(((2Z —1)(2Y —1))/2+ 1). For Bernoulli noise, such as
in the original channel formulation, the system could thus not learn.
We thus propose to also adapt the noise to be a relaxed Bernoulli with
probability density as in Eq. (19).

Finally, we may restrict our channel to a specific SNR. This can be
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computed to be

_ 2ppy, +05—p—py,
_ZPYIP_O‘LS_p_pY,

(9:34)

To train neural models, we will use the relaxed Bernoulli for both Y
and W, however the SNR is computed assuming both as Bernoulli
distributions. This assumption is only correct for T — 0. Initial exper-
imental results, with the relaxed binary channel have been showing
that optimization with this parameterisation is somewhat challenging.
Our finding supports a finding in [30] that focus on VIMCO instead of
the re-parameterisation trick.

Sensitivity of the communication systems to the hyper-parameter

In optimizing communication systems, § is perhaps the most impor-
tant hyper parameter. This is why we present the complete set of
results for experiment one in Figure 9.17. For the source VAE B trades
compression rate vs distortion. At maximum compression, the channel
source distribution would be emulated perfectly and thus the channel
AE input distribution. However, this scenario would also eliminate the
mutual information between X and Y. Thus a balance must be found

by tuning B.
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Figure 9.17: The results in Figure 6.4
show the distortion vs the SNR for an
optimized B. Here we present all results.
Note that, the joint model is more sensi-
tive to changes in f in the range we have
chosen. Top: Joint model Bottom: Seper-
ate Model



