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Abstract
We study the communication complexity of a number of graph properties where the edges of the
graph G are distributed between Alice and Bob (i.e., each receives some of the edges as input).
Our main results are:

An Ω(n) lower bound on the quantum communication complexity of deciding whether an n-
vertex graph G is connected, nearly matching the trivial classical upper bound of O(n logn)
bits of communication.
A deterministic upper bound of O(n3/2 logn) bits for deciding if a bipartite graph contains a
perfect matching, and a quantum lower bound of Ω(n) for this problem.
A Θ(n2) bound for the randomized communication complexity of deciding if a graph has an
Eulerian tour, and a Θ(n3/2) bound for its quantum communication complexity.

The first two quantum lower bounds are obtained by exhibiting a reduction from the n-bit
Inner Product problem to these graph problems, which solves an open question of Babai, Frankl
and Simon [2]. The third quantum lower bound comes from recent results about the quantum
communication complexity of composed functions. We also obtain essentially tight bounds for the
quantum communication complexity of a few other problems, such as deciding if G is triangle-free,
or if G is bipartite, as well as computing the determinant of a distributed matrix.
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1 Introduction

Graphs are among the most basic discrete structures, and deciding whether graphs have
certain properties (being connected, containing a perfect matching, being 3-colorable, . . . ) is
among the most basic computational tasks. The complexity of such tasks has been studied
in a number of different settings.

Much research has gone into the query complexity of graph properties, most of it focusing
on the so-called Aandera-Karp-Rosenberg conjecture. Roughly, this says that all monotone
graph properties have query complexity Ω(n2). Here the vertex set is [n] = {1, . . . , n} and
input graph G = ([n], E) is given as an adjacency matrix whose entries can be queried. This
conjecture is proved for deterministic algorithms [25], but open for randomized [13, 4].

Less—but still substantial—effort has gone into the study of the communication complexity
of graph properties [22, 2, 12, 8]. Here the edges of G are distributed over two parties, Alice
and Bob. Alice receives set of edges EA, Bob receives set EB (these sets may overlap), and
the goal is to decide with minimal communication whether the graph G = ([n], EA ∪ EB)
has a certain property. Here we obtain new bounds for the communication complexity of a
number of graph properties, both in the classical and the quantum world:

An Ω(n) lower bound on the quantum communication complexity of deciding whether G
is connected, nearly matching the trivial classical upper bound of O(n logn) bits.
Hajnal et al. [12] state as an open problem to determine the communication complexity of
deciding if a bipartite graph contains a perfect matching (i.e., a set of n/2 vertex-disjoint
edges). We prove a deterministic upper bound of O(n3/2 logn) bits for this, and a
quantum lower bound of Ω(n).
For deciding if a graph contains an Eulerian tour we show that the quantum communication
complexity is Θ(n3/2) while the randomized communication complexity is Θ(n2).

Our quantum lower bounds for the first two problems are proved by reductions from the hard
inner product problem, which is IPn(x, y) =

∑n
i=1 xiyi mod 2. Babai et al. [2, Section 7]

showed how to reduce the disjointness problem (Disjn(x, y) = 1 iff
∑n
i=1 xiyi = 0) to these

graph problems, but left reductions from inner product as an open problem (they did reduce
inner product to a number of other problems [2, Section 9]). In the classical world this does
not make much difference since both Disj and IP require Ω(n) communication (the tight
lower bound for Disj was proved only after [2] in [16]). However, in the quantum world Disj
is quadratically easier than IP, so reductions from IP give much stronger lower bounds here.

While investigating the communication complexity of graph properties is interesting in its
own right, there have also been applications of lower bounds for such problems. For instance,
communication complexity arguments have recently been used to show new and tight lower
bounds for several graph problems in distributed computing in [7]. These problems include
approximation and verification versions of classical graph problems like connectivity, s-t
connectivity, and bipartiteness. In their setting processors see only their local neighborhood in
a network. Paper [7] use reductions from Disj to establish their lower bounds. Subsequently
some of these results have been generalized to the case of quantum distributed computing
[10], employing for instance the new reductions from IP given in this paper, which in the
quantum case establish larger lower bounds than the previous reductions from Disj.

2 Preliminaries

We assume familiarity with communication complexity, referring to [18] for more details
about classical communication complexity and [32] for quantum communication complexity
(for information about the quantum model beyond what’s provided in [32], see [21]).
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150 New bounds on quantum/classial communication complexity of graph properties

Given some communication complexity problem f : X × Y → R we use D(f) to denote
its classical deterministic communication complexity, R2(f) for its private-coin randomized
communication complexity with error probability ≤ 1/3, and Q2(f) for its private-coin
quantum communication complexity with error ≤ 1/3. Our upper bounds for the quantum
model do not require prior shared entanglement; however, all lower bounds on Q2(f) in this
paper also apply to the case of unlimited prior entanglement.

Among others we consider two well-known communication complexity problems, with
X = Y = {0, 1}n and R = {0, 1}. For x, y ∈ {0, 1}n we define x ∧ y ∈ {0, 1}n as the bitwise
AND of x and y, and |x| = |{i ∈ [n] : xi = 1}| as the Hamming weight of x.

Inner product: IPn(x, y) = |x ∧ y| mod 2. The quantum communication complexity
of this problem is Q2(IPn) = Θ(n) [17, 5] (in fact even its unbounded-error quantum
communication complexity is linear [11]).
Disjointness: Disjn(x, y) = 1 if |x∧y| = 0, and Disjn(x, y) = 0 otherwise. Viewing x and
y as the characteristic vectors of subsets of [n], the task is to decide whether these sets are
disjoint. It is known that R2(Disjn) = Θ(n) [16, 23] and Q2(Disjn) = Θ(

√
n) [3, 1, 24].

In fact, the Aaronson-Ambainis protocol [1] can find an i such that xi = yi = 1 (if such
an i exists), using an expected number of O(

√
n) qubits of communication. This saves a

log-factor compared to the distributed implementation of Grover’s algorithm in [3].

We will make use of both undirected and directed graphs. We use {i, j} to refer to an
undirected edge between vertex i and j, and (i, j) for an edge directed from i to j.

3 Reduction from Parity

We begin with a reduction from the n-bit Parity problem to the connectedness of a 2n-vertex
graph in the model of query complexity. This reduction was used by Dürr et al. [9, Section 8],
who attribute it to Henzinger and Fredman [14]. The same reduction can be used to reduce
Parity to determining if an n-by-n bipartite graph contains a perfect matching. Our hardness
results for communication complexity in later sections follow by means of simple gadgets to
transfer this reduction from the query world to the communication world.

I Claim 1. For every z ∈ {0, 1}n there is a graph Gz with 2n vertices (where for each possible
edge, its presence or absence just depends on one of the bits of z), such that if the parity of
z is odd then Gz is a cycle of length 2n, and if the parity of z is even then Gz is the disjoint
union of two n-cycles.

Proof. We construct a graph G with 2n vertices, arranged in two rows of n vertices each.
We will label the vertices as ti and bi for i ∈ [n] indicating if it is in the top row or the
bottom row. For i ∈ [n− 1], if zi = 0 then add edges {ti, ti+1} and {bi, bi+1}; if zi = 1 then
add {ti, bi+1} and {bi, ti+1}. For i = n make the same connections with vertex 1, wrapping
around. See Figure 1 for illustration. If the parity of z is odd then the resulting graph G
will be one 2n-cycle, and if the parity is even then it will be two n-cycles. J

4 Connectivity

We first focus on the communication complexity of deciding whether a graph G is connected
or not. Denote the corresponding Boolean function for n-vertex graphs by Connectivityn
(we sometimes omit the subscript when it’s clear from context). Note that it suffices for
Alice and Bob to know the connected components of their graphs; additional information
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Figure 1 The string z determines the edges present in Gz. If z5 = 1 there are edges connecting
A with D, and B with C (omitted for clarity). When the parity of z is odd, the graph is a 2n-cycle,
and when it is even the graph is the disjoint union of two n-cycles.

about edges within their connected components is redundant for deciding connectivity.
Hence the “real” input length is O(n logn) bits, which of course implies the upper bound
D(f) = O(n logn). Hajnal et al. [12] showed a matching lower bound for D(f). As far
as we know, extending this lower bound to R2(Connectivity) is open. The best lower
bound known is R2(Connectivity) = Ω(n) via a reduction from Disjn [2]. Since Disj
is quadratically easier for quantum communication than for classical communication, the
reduction from Disjn only implies a quantum lower bound Q2(Connectivity) = Ω(

√
n).

We now improve this by a reduction from IPn, answering an open question from [2].
Since we know Q2(IPn) = Ω(n), this will imply Q2(Connectivity) = Ω(n), which is tight
up to the log-factor. We modify the graph from Claim 1 originally used in the context of
query complexity to give a reduction from IP to connectivity in the communication world.

I Theorem 1. Ω(n) ≤ Q2(Connectivityn) ≤ D(Connectivityn) ≤ O(n logn).

Proof. Let x ∈ {0, 1}n and y ∈ {0, 1}n be Alice and Bob’s inputs, respectively. Set z = x∧y,
then the parity of z is IPn(x, y). We define a graph G which is a modification of the graph Gz
from Claim 1 by distributing its edges over Alice and Bob, in such a way that if IPn(x, y) = 1
(i.e., |z| is odd) then the resulting graph is a 2n-cycle, and if IPn(x, y) = 0 (i.e., |z| is even)
then G consists of two disjoint n-cycles, and therefore is not connected. To do that we
replace every edge with a “gadget” that adds two extra vertices. Formally, we will have the
2n vertices ti, bi, and 8n new vertices ktti , kbbi , ktbi , kbti , `tti , `bbi , `tbi , `bti , for i ∈ [n]. See Figure 2
for a picture of the gadgets.

We describe the gadget corresponding to the ith horizontal edge on the top. It involves
the vertices ti, ktti , `tti , ti+1 and depends only on xi and yi. The gadget corresponding to the
ith horizontal bottom edge is isomorphic but defined on vertices bi, kbbi , `bbi , bi+1. If xi = 0
then {ti, ktti } ∈ EA, and if yi = 0 then {ti, `tti } ∈ EB. Independently of the value of xi, the
edges {ktti , ti+1} and {`tti , ti+1} are in EA. Note that this gadget is connected iff xiyi = 0.

Now we describe the gadget corresponding to the ith diagonal edge {ti, bi+1}, the gadget
corresponding to {bi, ti+1} is isomorphic to this one on the appropriate vertex set. If xi = 1
then {ti, `tbi } ∈ EA, if yi = 0 then {ktbi , `tbi } ∈ EB, and if yi = 1 then {`tbi , ti+1} ∈ EB.
Finally {ti, ktbi } ∈ EA no matter what xi is. Note that this gadget is connected iff xiyi = 1.

In total the resulting graph G will have 10n vertices, and disjoint sets EA and EB of
O(n) edges. If IPn(x, y) = 1 then the graph consists of one cycle of length 4n, with a
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152 New bounds on quantum/classial communication complexity of graph properties

few extra vertices attached to it. If IPn(x, y) = 0 then the graph consists of two disjoint
cycles of length 2n each, again with a few extra vertices attached to them. (Observe
that `tbi is always connected to ti or to ti+1 even when xi = yi = 0). Accordingly, a
protocol that can compute Connectivity on this graph computes IPn(x, y), which shows
Q2(IPn) ≤ Q2(Connectivity10n).

Our gadgets are slightly more complicated than strictly necessary, to ensure the sets of
edges EA and EB are disjoint. This implies that the lower bound holds even for that special
case. Note that the lower bound even holds for sparse graphs, as G has O(n) edges. J

y =0i

x =0
i

k

l

k

l
y =1x =1 ii

y =0i

t i i+1t

tt

tt

i

i

t i b  i+1

i

i

tb

tb

Figure 2 Two gadgets used to modify the reduction from Parity in the query complexity model
to one for Inner Product in communication complexity. On the left the gadget replacing the top
zi = 0 edge in Fig 1; on the right the gadget for the diagonal top-to-bottom zi = 1 edge.

5 Matching

The second graph problem we consider is deciding whether an n×n bipartite graph G contains
a perfect matching. We denote this problem by Bipartite Matchingn. First, we show
that the above reduction from IP can be modified to also work for Bipartite Matching.

I Theorem 2. Q2(Bipartite Matchingn) ≥ Ω(n).

Proof. Let x ∈ {0, 1}n and y ∈ {0, 1}n be respectively the inputs of Alice and Bob. As
previously, we set z = x ∧ y, and observe again that the parity of z is IPn(x, y). We go back
to the query world and the 2n-vertex graph Gz of Claim 1. Assume n is odd. Then in case
the parity of z is odd, Gz is a cycle of even length 2n and so has a perfect matching. On
the other hand, in case the parity of z is even, Gz consists of two odd cycles and so has no
perfect matching.

Now we again use gadgets to transfer this idea to a reduction from inner product to
matching in the communication complexity setting. For simplicity we first describe the
reduction where the edge sets of Alice and Bob can overlap. We then explain a modification
to make them disjoint.

The vertices of the graph G will consist of the 2n vertices ti, bi as in Figure 1 with the
addition of 4n new vertices kti , kbi , `ti, `bi for i ∈ [n]. For every i there is a unique gadget on
vertex set {ti, bi, kti , kbi , `ti, `bi , ti+1, bi+1}. The edges {kti , `bi} and {kbi , `ti} are always present
in the graph, and will be given to Alice. If xi = 0 then we give Alice the edges {ti, ti+1}
and {bi, bi+1}. If yi = 0 we do the same thing for Bob (this is where edges may overlap). If
xi = 1 we give Alice the edges {ti, kti} and {bi, kbi }. If yi = 1 we give Bob the edges {ti+1, `

t
i}

and {bi+1, `
b
i}. This is illustrated in Figure 3.
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Now in case the parity of z is odd, we will have a cycle of even length, with possibly
some additional disjoint edges and attached paths of length two. Thus there will be a perfect
matching. In case the parity of z is even, we will have two odd cycles, and again some
additional disjoint edges or attached paths of length two. Suppose, by way of contradiction,
that there is a perfect matching in this case. In case xiyi = 0, this matching must include
the edge {kti , `bi}, since at least one of these vertices has degree one, and similarly for
{kbi , `ti}. Thus a perfect matching in this case gives a perfect matching of two odd cycles, a
contradiction. To make the edge sets disjoint, we replace horizontal edges between vertex i
and i+ 1 by the gadget in the left of Figure 3. It can be seen that this does not change the
properties used in the reduction. J

x =1i y =1i
x  =

0
i

x  =0i

y  =0i
y  =

0
i

i i+1
t t t ii i+1 bk li

t b

Figure 3 Two gadgets used to modify the reduction from Parity in the query complexity model
to one for matching in the communication complexity model. On the right is the gadget for the top
to bottom diagonal zi = 1 edge. On the left, the gadget used to replace the top zi = 0 horizontal
edge in the graph from Figure 1 such that Alice and Bob receive disjoint sets of edges.

Second, we show a non-trivial deterministic upper bound D(Bipartite Matchingn) =
O(n3/2 logn) by implementing a distributed version of the famous Hopcroft-Karp algorithm
for finding a maximum-cardinality matching [15]. Let us first explain this algorithm in
the standard non-distributed setting. The algorithm starts with an empty matching M ,
and in each iteration grows the size of M until it can no longer be increased. It does this
by finding, in each iteration, many augmenting paths. An augmenting path, relative to a
matching M , is a path P of odd length that starts and ends at “free” (= unmatched in
M) vertices, and alternates non-matching with matching edges. Note that the symmetric
difference of M and P is another matching, of size one greater than M . Each iteration of the
Hopcroft-Karp algorithm does the following (using the notation of [15], we call the vertex
sets of the bipartition X and Y , respectively).
1. A breadth-first search (BFS) partitions the vertices of the graph into layers. The free

vertices in X are used as the starting vertices of this search, and form the initial layer
of the partition. The traversed edges are required to alternate between unmatched and
matched. That is, when searching for successors from a vertex in X, only unmatched
edges may be traversed, while from a vertex in Y only matched edges may be traversed.
The search terminates at the first layer k where one or more free vertices in Y are reached.

2. All free vertices in Y at layer k are collected into a set F . That is, a vertex v is put into
F iff it ends a shortest augmenting path (i.e., one of length k). The algorithm finds a
maximal set of vertex-disjoint augmenting paths of length k. This set may be computed
by depth-first search (DFS) from F to the free vertices in X, using the BFS-layering to
guide the search: the DFS is only allowed to follow edges that lead to an unused vertex
in the previous layer, and paths in the DFS tree must alternate between unmatched and
matched edges. Once an augmenting path is found that involves one of the vertices in F ,
the DFS is continued from the next starting vertex. After the search is finished, each of
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154 New bounds on quantum/classial communication complexity of graph properties

the augmenting paths found is used to enlarge M .
The algorithm stops when a new iteration fails to find another augmenting path, at which
point the current M is a maximal-cardinality matching. Hopcroft and Karp showed that
this algorithm finds a maximum-cardinality matching using O(

√
n) iterations. Since each

iteration takes time O(n2) to implement, the overall time complexity is O(n5/2).
Now consider what happens in a distributed setting, where Alice and Bob each have

some of the edges of G. In this case, one iteration of the Hopcroft-Karp algorithm can be
implemented by having each party perform as much of the search as possible within their
graph, and then communicate the relevant vertices and edges to the other. To be more
specific, the BFS is implemented as follows. For each level, first Alice scans the vertices
on the given level and lists the set of vertices which belong to the next level due to edges
seen by Alice, and then Bob lists the remaining vertices of the next level. When doing a
DFS, first Alice goes forward as much as possible, then Bob follows. If Bob cannot continue
going forward he gives the control back to Alice who will step back. Otherwise Bob goes
forward as much as he can and then gives the control back to Alice who can either step back
or continue going forward. During both types of search, when a new vertex is discovered
Alice or Bob communicates the vertex as well as the edge leading to the new vertex. (Note
that both the BFS and the DFS give algorithms of communication cost Θ(n logn) for the
constructive version of connectivity.)

Since each vertex needs to be communicated at most once per iteration, implementing
one iteration takes O(n logn) bits of communication. Since there are O(

√
n) iterations, the

whole procedure can be implemented using O(n3/2 logn) bits of communication. Finding
the maximum-cardinality matching of course suffices for deciding if G contains a perfect
matching, so we get the same upper bound on D(Bipartite Matchingn) (we don’t know
anything better when we allow randomization and quantum communication). We proved:

I Theorem 3. D(Bipartite Matchingn) ≤ O(n3/2 logn).

In the usual setting of computation (not communication), Lovász [20] gave a very elegant
randomized method to decide whether a bipartite graph contains a perfect matching in
matrix-multiplication time. Briefly, it works as follows. The determinant of an n× n matrix
A is det(A) =

∑
σ∈Sn

sgn(σ)
∏n
i=1Ai,σ(i). Thus det(A) is a degree-n polynomial in the matrix

entries. Suppose we replace the nonzero entries of Aij by variables xij . This turns det(A)
into a polynomial p(x) of degree n in (at most) n2 variables xij . Note that the monomial∏n
i=1 xi,σ(i) vanishes iff at least one of the Ai,σ(i) equals 0. Hence a graph G has no perfect

matching iff the polynomial p(x) derived from its bipartite adjacency matrix A is identically
equal to 0. Testing whether a polynomial p is identically equal to 0 is easy to do with a
randomized algorithm: randomly choose values for the variables xij from a sufficiently large
field, and compute the value of the polynomial p(r). If p ≡ 0 then p(r) = 0, and if p 6≡ 0
then p(r) 6= 0 with high probability by the Schwartz-Zippel lemma [26, 33]. Since p(x) is
the determinant of an n× n matrix, which can be computed in matrix-multiplication time
O(nω),1 we obtain the same upper bound on the time needed to decide with high probability
whether a graph contains a perfect matching.

One might hope that a distributed implementation of Lovász’s algorithm could improve
the above communication protocol for matching, using randomization and possibly even
quantum communication. Unfortunately this does not work, because it turns out that
computing the determinant of an n×n matrix whose n2 entries are distributed over Alice and

1 The current best bound is ω ∈ [2, 2.373) [6, 27, 31].
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Bob, takes Ω(n2) qubits of communication. In fact, even deciding whether the determinant
equals 0 modulo 2 takes Ω(n2) qubits of communication. We show this by a reduction from
IPn2 . Let DETn be the communication problem where Alice is given an n-by-n Boolean
matrix X, Bob an n-by-n Boolean matrix Y , and the desired output is det(X ∧ Y ), where
X ∧ Y is the bitwise AND of X and Y .

I Theorem 4. Ω(n2) ≤ Q2(DETn).

Proof. As before, we first explain a reduction in the query world from Parity of n2 bits to
computing the determinant of a (2n + 2) × (2n + 2) matrix. The basic idea of the proof
goes back to Valiant [30]. Say that we want to compute the parity of the bits of an n2-bit
string Z, and arrange the bits of Z into an n-by-n matrix. We construct a directed bipartite
graph GZ with 2n+ 2 vertices, n+ 1 on each side (we will refer to these as left-hand side
and right-hand side). Label the vertices on the left-hand side as t and `i for i ∈ [n], and
those on the right-hand side as s and ri for i ∈ [n]. For every i ∈ [n], we add the edges (s, `i)
and (ri, t). For every (i, j) with Z(i, j) = 1 we put an edge (`i, rj). Finally we put the edge
(t, s), and self-loops are added to all vertices but s and t.
I Claim 2. det(GZ) = −|Z|.

Proof. Note that det(GZ) =
∑
σ(−1)χ(σ)∏

iGZ(i, σ(i)). Consider a permutation that con-
tributes to this sum. In this case, σ(`i) = rj for some i, j for which Z(i, j) = 1. We then
must have σ(rj) = t, σ(t) = s, σ(s) = `i and that σ fixes all other vertices. The sign of σ is
negative, and we get such a contribution for every i, j such that Z(i, j) = 1. J

Now again we transfer this reduction to the communication complexity setting by means of a
gadget. Say that Alice has X, an n-by-n matrix and similarly Bob has Y and they want to
compute |X ∧ Y | mod 2. We will actually count the number of zeros in X ∧ Y , which clearly
then allows us to know the number of ones and so the parity.

We give Alice the set of edges EA and Bob the set of edges EB. Unlike in the previous
reductions, in this case EA and EB will not be disjoint (we do not know how to do the
reduction with disjoint EA, EB). Put (s, `i), (`i, `i) ∈ EA for all i ∈ [n] and similarly
(ri, t), (ri, ri) ∈ EB for all i ∈ [n]. For all (i, j) where X(i, j) = 0 put (`i, rj) ∈ EA, and
similarly for all (i, j) where Y (i, j) = 0 put (`i, rj) ∈ EB . Thus in EA ∪ EB there is an edge
(`i, rj) if and only if X(i, j)Y (i, j) = 0. Thus by Claim 2 from the determinant of the graph
with edges EA ∪ EB we can determine the number of zeros in X ∧ Y . J

t s
in degree n

Z(i,j)=1

l

r

i

j

out degree n

Figure 4 The construction of the graph GZ . Self-loops omitted for clarity.

In fact what our proof shows is that even computing the determinant over F2 already
requires Ω(n2) qubits of communication. Independently of our work, Sun and Wang [28]
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recently proved a stronger result: for every prime p, deciding singularity over the finite
field Fp requires Ω(n2 log p) qubits of communication. Their proof is substantially more
complicated than ours.

6 Eulerian tour

An Eulerian tour in a graph G is a cycle that goes through each edge of the graph exactly
once. A well-known theorem of Euler states that G has such a tour iff it is connected and all
its vertices have even degree. Denote the corresponding communication complexity problem
for n-vertex graphs by Eulern. Note that when the sets EA and EB are allowed to overlap,
deciding if the degree deg(v) of a fixed vertex v ∈ [n] is even is essentially equivalent to
IPn−1, as follows. Let x ∈ {0, 1}n−1 be the characteristic vector of the neighbors of v in
EA, and y ∈ {0, 1}n−1 the same for EB, then we have deg(v) = |x ∨ y| = |x|+ |y| − |x ∧ y|.
Since Alice and Bob can send each other the numbers |x| and |y| using a negligible logn bits,
computing deg(v) mod 2 is essentially equivalent to computing |x ∧ y| mod 2 = IPn−1(x, y).

Now we show how to embed into Euler3n+4 an ORn of disjoint IPn’s. As usual, we first
explain the reduction in the query world. For i ∈ [n], let zi ∈ {0, 1}n, and suppose that we
want to compute ORn(|z1| mod 2, . . . , |zn| mod 2). We construct a graph G with n+ 2 left
vertices `i and n+ 2 right vertices ri for 0 ≤ i ≤ n+ 1, and n middle vertices mi for i ∈ [n].
Independently from the strings zi, the graph G always has the edges {`i, `i+1} and {ri, ri+1}
for 0 ≤ i ≤ n and the edges {mi,mi+1} for 1 ≤ i ≤ n− 1. It also contains the following 5
edges: {`0,m1}, {r0,m1}, {`n+1,mn}, {rn+1,mn}, {m1,mn}. We call these edges fixed edges.
Finally, for every (i, j) with zij = 1 we add the edges {`i,mj} and {ri,mj}. Observe that G
is already connected by the fixed edges. See Figure 5 for an illustration.

I Claim 3. G is Eulerian if and only if ORn(|z1| mod 2, . . . , |zn| mod 2) = 0.

Proof. In the subgraph restricted to the fixed edges every vertex has even degree. Therefore
we can restrict our attention to the degrees with respect to the remaining edges that depend
on the values zij . All the middle vertices have even degrees since for all (i, j), we add 0 or 2
edges adjacent to mj . For every i ∈ [n], the degrees of `i and ri are the same since we add
the edge {`i,mj} exactly when we add the edge {ri,mj}. The degree of `i is the Hamming
weight of zi. Therefore G is Eulerian iff |zi| is even for all i ∈ [n]. J

l r

l r0

4 4

0

1

3

m

m

Figure 5 Illustration of the graph to reduce OR of parities to Eulerian tour in the query model.
In this example, n = 3 and z1 = 010, z2 = 101, z3 = 000.

The transfer of this reduction to the communication complexity setting is quite simple.
Suppose that for each i ∈ [n] Alice has string xi ∈ {0, 1}n, and Bob has yi ∈ {0, 1}n, and
they want to compute the function ORn(IPn(x1, y1), . . . , IPn(xn, yn)). Let us suppose that
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n is even, then IPn(xi, yi) =
∑
j(x̄ij ∨ ȳij) mod 2. For all (i, j) such that xij = 0 we put

the edges {`i,mj} and {ri,mj} in EA, and similarly, for yij = 0 we put the edges {`i,mj}
and {ri,mj} in EB. Thus in EA ∪ EB the edges {`i,mj} and {ri,mj} exist iff x̄ij ∨ ȳij = 1.
Therefore, by Claim 3 ORn(IPn(x1, y1), . . . , IPn(xn, yn)) = 0 iff G is Eulerian.

We can easily reduce Disjn2 on n2-bit instances with intersection size 0 or 1 to ORn ◦IPn.
Since even that special case of Disjn2 requires linear classical communication [23], we obtain
a tight lower bound R2(Eulern) = Ω(n2).

The quantum communication complexity of ORn(IPn(x1, y1), . . . , IPn(xn, yn)) is Ω(n3/2).
This follows because for any f(g(x1, y1), . . . , g(xn, yn)) where g is strongly balanced (meaning
that all rows and columns in the communication matrix M(x, y) = (−1)g(x,y) sum to zero),
the quantum communication complexity of f is at least the approximate polynomial degree
of f , times the discrepancy bound of g [19, Cor. 3]. In our case, ORn has approximate degree
Ω(
√
n) and IPn contains a 2n−1-by-2n−1 strongly balanced submatrix with discrepancy

bound Ω(n). Thus we get Q2(Eulern) ≥ Q2(ORn ◦ IPn) ≥ Ω(n3/2).
This quantum lower bound is in fact tight: we first decide if G is connected using

O(n logn) bits of communication (Section 4), and if so then we use the Aaronson-Ambainis
protocol to search for a vertex of odd degree (deciding whether a given vertex has odd degree
can be done deterministically with O(n) bits of communication). Thus we have:

I Theorem 5. R2(Eulern) = Θ(n2) and Q2(Eulern) = Θ(n3/2).

7 Other problems

In this section we look at the quantum and classical communication complexity of a number
of other graph properties. Most results here are easy observations based on previous work,
but worth making nonetheless.

Suppose we want to decide whether G contains a triangle. Papadimitriou and Sipser [22,
pp. 266–7]2 gave a reduction from Disjm to Trianglen for m = Ω(n2), which implies
R2(Trianglen) = Θ(n2). Since we know that Q2(Disjm) = Θ(

√
m), it also follows that

Q2(Trianglen) = Ω(n).
This quantum lower bound is actually tight, which can be seen as follows. First Alice

checks if there already is a triangle within the edges EA, and Bob does the same for EB . If
not, then Alice defines the set of edges SA = {(a, b) | ∃ c s.t. (a, c), (b, c) ∈ EA} which would
complete a triangle for her, and uses the Aaronson-Ambainis protocol to try to find one
among Bob’s edges (i.e., she searches for an edge in SA ∩EB). Since |SA| ≤

(
n
2
)
, this process

will find a triangle if Alice already holds two of its edges, using O(n) qubits of communication.
Bob does the same from his perspective. If G contains a triangle, then either Alice or Bob
has at least two edges of this triangle. Hence this protocol will find a triangle with high
probability if one exists, using O(n) qubits of communication. Thus we have:

I Theorem 6. R2(Trianglen) = Θ(n2) and Q2(Trianglen) = Θ(n).

Deterministic protocols can decide whether a given graph G is bipartite using O(n logn)
bits of communication, as follows. Being bipartite is equivalent to being 2-colorable. Alice
starts with some vertex v1, colors it red, and colors all of its neighbors (within EA) blue.
Then she communicates all newly-colored vertices and their colors to Bob. Bob continues

2 Word of warning: Papadimitriou and Sipser [22] use the term “inner product” for what is now commonly
called the “intersection problem,” i.e., the negation of disjointness.
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coloring the neighbors of v1 blue, and once he’s done he communicates the newly-colored
vertices and their colors to Alice. If all vertices have been colored then Alice stops, otherwise
she chooses an uncolored neighbor v2 of a blue vertex, colors v2 red, and continues as above
coloring v2’s neighbors blue. A connected graph is 2-colorable iff this process terminates
without encountering a vertex colored both red and blue (if the graph is not connected then
Alice and Bob can treat each connected component separately). Since each vertex will be
communicated at most once, the whole process takes O(n logn) bits.

Babai et al. [2, Section 9] state a reduction from IPn to bipartiteness (see also [29]
for details of such a reduction), which implies a nearly-matching quantum lower bound
Q2(Bipartitenessn) = Ω(n).

I Theorem 7. Ω(n) ≤ Q2(Bipartitenessn) ≤ D(Bipartitenessn) ≤ O(n logn).

8 Conclusion and open problems

We studied the communication complexity (quantum and classical) of a number of natural
graph properties, obtaining nearly tight bounds for many of them. Some open problems:

For Connectivityn, can we improve the quantum upper bound from the trivialO(n logn)
to O(n), matching the lower bound? One option would be to run a distributed version
of the O(n)-query quantum algorithm of Dürr et al. [9], but this involves a classical
preprocessing phase that seems to require O(n logn) communication. Another option
would be to run some kind of quantum random walk on the graph, starting from a random
vertex, and test whether it converges to a superposition of all vertices.
For Bipartite Matching, can we show that the deterministic O(n3/2 logn)-bit protocol
is essentially optimal, for instance by means of a 2Ω(n3/2) lower bound on the rank of the
associated communication matrix? Can we improve this upper bound using randomization
and/or quantum communication, possibly matching the Ω(n) lower bound?
Can we extend the D(Bipartite Matchingn) ≤ O(n3/2 logn) bound to general graphs?

Acknowledgements We thank Rahul Jain for several insightful discussions.
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