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Article
Regulating Lipid Composition Rationalizes Acyl Tail
Saturation Homeostasis in Ectotherms
Martin Girard1,* and Tristan Bereau1,2
1Max Planck Institute for Polymer Research, Mainz, Germany and 2Van ’t Hoff Institute for Molecular Sciences and Informatics Institute,
University of Amsterdam, Amsterdam, the Netherlands
ABSTRACT Cell membranes mainly consist of lipid bilayers with an actively regulated composition. The underlying processes
are still poorly understood, in particular, how the hundreds of components are controlled. Cholesterol has been found to correlate
with phospholipid saturation for reasons that remain unclear. To better understand the link between cell membrane regulation
and chemical composition, we establish a computational framework based on chemical reaction networks, resulting in multiple
semigrand canonical ensembles. By running computer simulations, we show that regulating the chemical potential of lipid spe-
cies is sufficient to reproduce the experimentally observed increase in acyl tail saturation with added cholesterol. Our model pro-
poses a different picture of lipid regulation in which components can be regulated passively instead of actively. In this picture,
phospholipid acyl tail composition naturally adapts to added molecules such as cholesterol or proteins. A comparison between
regulated membranes with commonly studied ternary model membranes shows stark differences: for instance, correlation
lengths and viscosities observed are independent of lipid chemical affinity.
SIGNIFICANCE We run computer simulations of a lipid bilayer. Instead of fixing its composition, we passively regulate it
via semigrand canonical ensembles. Our simple model reproduces correlations observed in vivo between cholesterol
content and saturation levels of phospholipid acyl tails. Membrane properties such as viscosity are largely independent of
phospholipid composition, suggesting a decoupling from lipid composition in complex membranes.
INTRODUCTION

For eukaryotes, the plasma membrane is the last interface
between the cell interior and the extracellular environment.
It is responsible for regulating permeation of molecules
(1,2), and membrane protein function (3,4). Cell membranes
mainly consist of lipid bilayers. In aqueous environments,
the amphiphilic molecules forming these structures, which
are comprised of a polar headgroup and hydrocarbon tails,
readily self-assemble to hydrate the polar head while mini-
mizing hydrophobic interactions of apolar tails. Phospho-
lipids can be broadly classified by their headgroup
(phosphatidylcholine, phosphatidylserine, etc.). Most phos-
pholipids in biological membranes have two hydrocarbon
tails, and their nature is generally widely variable, ranging
from 12 to 24 carbons with varying degrees of saturation.
When considering both classifications, this yields hundreds
to thousands of different lipid types (5). Furthermore, bio-
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logical membranes are generally asymmetric: the two leaf-
lets of the bilayers have different compositions, which is
maintained by transmembrane proteins pumping specific
lipids from one leaflet to the other (6). Similar complexity
is replicated by various lipid membranes inside the cell
and, although advances have been made by lipidomics,
many fundamental questions still need to be answered (7).

Membrane regulation is one of the most poorly under-
stood areas of biological membrane physics. The question
of how and why various properties are regulated is of great
interest to biology. For instance, there are differences in
composition of various membranes within single cells that
are thought to endow the membrane with specific properties
(8). Lipid tail composition is often thought to be regulated
by specific pathways activated by sensor proteins in the
membrane, but little is known about them (9). Based on
experimental observations, two physical properties are
perceived as tightly regulated in plasma membranes: viscos-
ity (10,11) and curvature (12), which correlate in vivo (13).
Regulation of viscosity includes acyl tail remodeling via the
Lands cycle (14–16), a process through which lipids change
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Rationalizing Saturation Homeostasis
the nature of their acyl tails. Membrane curvature regulation
involves multiple factors. Some of them are internal to
membrane chemistry, for instance phosphatidylethanol-
amine carries a small headgroup, which gives the lipid a
conical shape and can induce curvature (17). However, it
may also involve external factors to the membrane, such
as action of the cytoskeleton (18). Another quantity has
recently emerged as being regulated in cells: the difference
between ambient and bilayer demixing temperature (Tm).
Whether Tm is regulated through the same mechanism as
viscosity or simply as a byproduct of its regulation is
currently unknown. Additionally, although there is a clear
link between Tm and proximity to the critical temperature
needed for lipid rafts, the picture remains incomplete. How-
ever, experiments presented in (19) clearly demonstrate that
lowering the incubation temperature of zebrafish cells by
�12 K lowers Tm of their plasma membranes by �12 K,
an astounding precision considering how much the mem-
brane composition changes in the process.

Cholesterol appears to play an important role in cell ho-
meostasis but, here again, the exact mechanisms are not fully
understood. Its concentration in cell membranes is tightly
regulated (20–23) and strongly affects membrane properties.
It reduces diffusion (24) and raises nematic order in liquid
phases (25,26). It is known to be involved in raft formation
(27,28) and registration (29) by preferentially partitioning
in ordered phases, rich in high-Tm saturated phospholipids
(28,30). Cholesterol levels in membranes also appear corre-
lated with phospholipid saturation contents (9,10,19), leading
to different phenomena: an increase in cholesterol in model
membranes of purified components and in cells will lead to
a decrease (31) and increase (19) of Tm, respectively.

To rationalize some of these findings using computer sim-
ulations, the composition must be allowed to fluctuate. This is
elegantly achieved by controlling the chemical potential—
the thermodynamic variable conjugate to composition. Alter-
natively, differences between chemical potentials of different
chemical species can be fixed, yielding the semigrand canon-
ical (SGC) ensemble. This keeps the overall number of mol-
ecules fixed, a more suitable approach for molecular
dynamics, as compared to the grand canonical ensemble.
Furthermore, chemical reaction networks, sets of reactants,
products and reactions, can be expressed into chemical poten-
tial differences (32) between molecules and large-scale, par-
allel algorithms have been developed for this ensemble (33).

Here, we introduce the regulated thermodynamic
ensemble (RTE), a collection of SGC ensembles to emulate
regulation pathways in cells. This enables us to model com-
plex membrane biochemistry and gain insight into biolog-
ical implications. We apply this methodology to a
phosphatidylcholine (PC) membrane incorporating various
amounts of cholesterol. We show that regulating the chem-
ical potential of lipid species is sufficient to reproduce the
experimentally observed increase in acyl tail saturation
with added cholesterol (9,10,19). Beyond the overall trend,
our distributions of saturations are in line with lipidomics
studies (19): phospholipids that contain zero or one unsatu-
ration increase with cholesterol, whereas others decrease.
METHODS

In this section, we introduce a hypothetical regulation pathway to illustrate

the collection of SGC ensembles. We make a connection with the biological

pathway responsible for remodeling the acyl tail nature, although similar ar-

guments can be applied to other mechanisms involving chemical networks

(9). The RTE can be used to describe out-of-equilibrium systems, such as

asymmetric membranes, and derived results should be associated with ho-

meostasis or stationary states rather than a thermodynamic equilibrium in

the usual sense because chemical potential differences can be enforced.

Let us consider a simple lipid bilayer, with only two classes of lipids

(headgroups) and acyl tails of varying saturation, as illustrated in Fig. 1

A. Inside the cell, lipid transport proteins (LTP) provide most of the traf-

ficking and we neglect vesicular transport (34) for simplicity. LTPs trans-

port lipids from one membrane to another, and we hypothesize that

regulatory transport mainly takes place with the endoplasmic reticulum

(ER). For simplicity, we also discard effects of other proteins present in bio-

logical membranes (35).

In this picture, lipids present on the plasma membranes are simply a sub-

set of a wider chemical reaction network, which includes remodeling in ER

and transport by LTP. The former implies formation of a protein-lipid com-

plex, which involves at least partial extraction of the lipid, creating a free

energy barrier to form the complex. For a lipid of species s in a membrane

with a given composition, rates of formation of complexes depend on the

free energy difference of the lipid between barrier and membrane states.

Once a lipid molecule is remodeled, membrane composition changes, the

free energy decreases, and remodeling becomes slower. If the system is

at equilibrium and closed, then it converges toward the global free energy

minimum. At this point, the gradient of the free energy with respect to

composition—corresponding to the chemical potential m—is zero, and so

is the chemical potential difference between any two lipid species s and

s0 (Dms; s0 ¼ 0). Enzymatic pathways are usually described by complex ki-

netics (32,36,37) that can drive the system away from equilibrium. Never-

theless, we will approximate the bilayer at equilibrium (Dms; s0 ¼ 0), which

we call the equal-binding approximation. Below, we detail the chemical

processes in the ER, what the equal-binding approximation entails, and

how it could later be refined.

The Lands cycle, the acyl tail remodeling process, is an interesting chem-

ical network because it involves many lipid species, but few enzymes.

These are able to cleave an acyl tail from a PC molecule, yielding a fatty

acid and a lysophosphatidylcholine (LPC) or to attach a coenzyme A-fatty

acid complex onto an LPC molecule to produce a PC (14,15,38,39).

External cofactors such as ATP can enforce a chemical potential difference

between all PC and LPC species (Dms; s0s0), which is dependent on

cofactor concentrations and affinities (i.e., binding rates to different sub-

strates). If multiple chemical networks are isolated as a function of external

cofactors, then each network constitutes a single SGC ensemble.

Within the equal-binding approximation, we implement a few assump-

tions to make our calculations tractable: 1) acetylation is fast, such that

LPC are only involved as reaction intermediates; 2) phospholipases do

not selectively hydrolyze lipids; and 3) a molecule that experiences the

Lands cycle—hydrolyzed and acetylated—simply swaps one of its tails ac-

cording to a distribution at chemical equilibrium. As a result, we neglect the

selectivity of acyltransferase proteins. In addition, our regulation of fatty

acids is done implicitly. If all these conditions are satisfied, all phospho-

lipids are at equilibrium with Dms;s0 ¼ 0.

This set of approximations offers a simple conceptual framework to regu-

late lipids but naturally conveys caveats. The first approximation seems

reasonable because LPC, and lysophospholipids in general, are minor

component of membranes. However, the two other approximations are
Biophysical Journal 119, 892–899, September 1, 2020 893
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FIGURE 1 (A) Sketch of the regulatory processes

used for our argument. Lipids are moved from the

ER to other membranes through LTP, which carry

over chemical potential differences (phosphatidyl-

choline transport protein PDB: 1LN1 depicted

here). Lipids being able to transform from one to

another through the Lands cycle, indicated by ar-

rows, belong to a single SGC, depicted here by rect-

angles. The remodeling cycle enforces chemical

potential differences within the SGC ensemble,

which is then carried to other membranes by LTP.

Headgroup composition is fixed as head groups are

not able to remodel from one to another. (B) Repre-

sentative ensemble of PC molecules used in

molecular dynamics, with different degrees of unsa-

turation. During simulation, at each Monte Carlo

event, molecules may gain or lose an unsaturated

bond. Unsaturations are located on gray beads and

only the two middle beads of each chain can be

unsaturated. Because there are multiple locations

available for unsaturation, many different molecules

may have the same degree of unsaturation. (C) Time

evolution of a lipid bilayer initialized with two unsa-

turations per acyl tail. The left side shows initial

relaxation and thermalization (after 1 ns), the middle

shows after 100 ns, and the right side shows after

15 ms. In highly unsaturated membranes, cholesterol

tends to form aggregates which dissolve upon chem-

ical relaxation. Numerically, composition relaxation

is faster than cholesterol diffusion and dispersion

throughout the layer. Lipids are colored by unsatura-

tions, ranging from zero (blue) to four (yellow),

whereas cholesterol is colored red. To see this figure

in color, go online.
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more stringent because proteins involved in the Lands cycle are known to be

highly selective. In particular, unsaturated acyl chains are preferentially

located on glycol position sn2 (16). Furthermore, the regulation of fatty

acids operate quite differently from the Lands cycle because biology does

not go by the equal-binding approximation and tends to suit particular bio-

logical needs (40). However, we can still infer general trends in the mech-

anism, with the caveat that membrane composition of a particular species

will be more complex than our model. We therefore expect the population

distributions to be shifted from actual plasma membranes. A potential

extension would be to incorporate the underlying chemical reaction

network in an ER simulation and extracting the relevant chemical potential

differences. However, it is presently outside the scope of this article.
RESULTS AND DISCUSSION

Making use of the equal-binding approximation, we
consider a simple RTE lipid membrane consisting of a sin-
894 Biophysical Journal 119, 892–899, September 1, 2020
gle SGC ensemble, constituted by 16:(0–2), 16:(0–2) PC
molecules (with 0–2 unsaturations per acyl tail; see Fig. 1,
B and C and Supporting Material for a full list), and mixed
with cholesterol. Overall, the PC SGC ensemble contains 16
distinct lipid molecules. We consider a mixture of 1600 PC
molecules along with a molar fraction of 10–30% choles-
terol. Systems are kept at constant temperature between
289 and 314 K (kBT ¼ 2:4� 2:6 kJ/mol) and use a variant
of the MARTINI force field (see Supporting Material).

Additionally, to mitigate potential force field effects, we
tested different levels of interactions in our force field (see
Supporting Material for details). Effectively, our modifica-
tions tune the affinity between saturated and unsaturated
portions of the acyl tails, similar to the c-parameter of solu-
tion models. This parameter measures the relative strength



Rationalizing Saturation Homeostasis
of like versus unlike interactions, having a low value if un-
like molecules prefer to aggregate, thus driving mixing, and
a high value if like molecules prefer each other, which
drives segregation. We therefore label high chemical affinity
by ‘‘low-c’’ and low chemical affinity by ‘‘high-c.’’ All sys-
tems show a single homogeneous phase, as shown in Fig. 1
C. Furthermore, we have simulated an unregulated system
with a phospholipid composition taken from the low-c-
regulated ensemble at 14% cholesterol, labeled ‘‘No Reg.’’

Unlike usual fixed composition model membranes, the
composition dynamically changes with cholesterol fraction.
The lipid-unsaturation fraction—the fraction of lipids in the
membrane with a given number of unsaturations—is shown
in Fig. 2, A and B for the low and high c-models. The trends
qualitatively match those observed in zebrafish (19), that is
lipids with zero or one unsaturation increase with choles-
terol, whereas others decrease (see Fig. 2, A and B). The
behavior is independent of the MARTINI model used, sug-
A

B

gesting that the mechanism is general for liquid phases.
Cholesterol appears as a saturating agent in these mem-
branes, i.e., the proportion of acyl chains with low unsatura-
tion increases with cholesterol. This is associated with a
decrease in area per lipid in the membrane (see Fig. S1),
meaning that an increase in cholesterol increases packing.
Because saturated lipids pack better, their proportion in-
creases, and this explains the bias toward saturated tails as
cholesterol is added. As a general rule, unsaturations posi-
tioned far from the headgroup are preferred by cholesterol.
Aweak preference for unsaturations to be located on glycol
carbon position sn1 over sn2 is also observed in our simula-
tions, a phenomenon that does not happen in biological sys-
tems because of protein selectivity when phospholipids are
formed: sn1 is preferentially saturated (16).

In the low c-regime, populations of individual species are
similar, leading to the lipid-unsaturation fraction being
shaped by the binomial distribution of molecule types
FIGURE 2 (A) and (B), lipid tail composition of

16:(0–2), 16:(0–2) PC lipids under the equal-binding

approximation at kBT ¼ 2:5 for (A) low c-parameter

and (B) high c-parameter. Color indicates the overall

number of unsaturations on the lipid molecule. Note

the different axis scales for (A) and (B). Shaded area

indicates the standard deviation of the data. To see

this figure in color, go online.

Biophysical Journal 119, 892–899, September 1, 2020 895
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(Fig. 2 A). We conclude that the regime is dominated by the
entropy of mixing. On the other hand, the high c-model im-
pairs significant differences in interactions between satu-
rated and unsaturated groups and we predominantly
observe single unsaturations. We conclude that this regime
is dominated by enthalpic interactions. Changes in compo-
sition are also significantly larger in this regime (see
Fig. 3). For low c-lipids, increasing temperature tends to
decrease saturation (see Fig. S3). Moreover, it lowers the
response of the membrane to changes in cholesterol concen-
tration, for both viscosity and composition. This arises from
the mixing entropy, which has a contribution to the free en-
ergy proportional to temperature and tends toward equal
lipid species concentrations. In biological membranes, fatty
acids located on sn1 are mostly saturated and the few excep-
tions involve unsaturated fatty acids on sn2 (41). This may
be a way to counteract dominance of the mixing free energy
as it strongly reduces the available number of polyunsatu-
rated species.

Lipid composition aside, our results reproduce well-es-
tablished trends of cholesterol in lipid membranes. The
nematic order parameter, characterized by the largest eigen-
value of the de Gennes Q-tensor, lþ, is characteristic of
liquid-disordered phases and increases with cholesterol
fraction (see Fig. 4), a known effect in fluid membranes
(42). Increases in temperature also cause the nematic order
to decrease. When the cholesterol concentration is increased
from 10 to 30%, the lateral diffusion constant reduces by a
factor 2–3 (see Fig. S2), whereas the viscosity increases by a
similar amount (factor of 3–4, see Fig. 4 C). Although the
values of viscosity observed here (�10�2–10�1 P) are
much lower than previously reported values in (11), they
are in line with other simulations of lipid bilayers (43,44).
The change in diffusion with cholesterol was previously re-
ported in biological-like membranes (24) and thus suggests
lipid packing as the main determinant of diffusion. Charac-
terizing the correlation of the nematic order parameter in the
FIGURE 3 Compositions changes viewed as fold increase of the unsatu-

ration contents of the membrane between 30 and 10% cholesterol. (left)

Low-c-membrane and (right) high-c-membrane are shown. To see this

figure in color, go online.
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RTE shows short correlation lengths (Fig. 4 B), which in-
crease with cholesterol and decrease with temperature,
similar to lþ. Correlation length diverge when approaching
critical demixing points and these results suggest that Tm in-
creases with cholesterol concentration, but that Tm is too low
to be accessible in our simulations. Similar behavior is
observed for lþ, correlation lengths and viscosity, which
has implications when attempting to understand biological
behavior from model ternary membranes.

Although the membrane composition (Fig. 2) can change
quite drastically with cholesterol and with variations of the
MARTINI force field, properties shown in Fig. 4 are
remarkably similar. The associated trends remain similar
in the absence of regulation, so long as its fixed composition
was taken from a regulated simulation (‘‘No Reg’’). Howev-
er, behavior of our complex membranes appears very
different than usual ternary model membranes. In our com-
plex membranes, only cholesterol content and temperature
affect viscosity, whereas, in ternary mixtures, phospholipid
saturation also strongly affects dynamical properties such as
viscosity, and this has been the rationale to explain changes
in saturation contents of cells (10,45). This suggests that
lipid saturation contents in eukaryote membranes does not
play the same role as in model ternary membranes and
may explain the shortcomings of simple models of biolog-
ical membranes (40).
CONCLUSIONS

The regulated ensembles presented in this article shine a
new light on acyl tail regulation: an accurate modeling of
lipid saturation can be obtained simply as a consequence
of the other components, such as cholesterol, and need not
be actively regulated. It suffices to qualitatively reproduce
cholesterol trends observed in zebrafish (19), in which an in-
crease in cholesterol causes a decrease of acyl tail saturation
as well as increased viscosity and correlation lengths of the
membrane. Such a passive regulation scheme highlights the
essential role of cholesterol to control both viscosity and Tm.
In fact, our results closely resemble experimental observa-
tions in zebrafish (19), in which lipids with no tail or only
one saturated tail become more prevalent at higher temper-
atures, along with cholesterol concentration. It is also remi-
niscent of trends observed along the secretory pathway, in
which cholesterol concentration increases (9) along with
acyl tail saturation (10). Properties of complex membrane
studied here also differ from usual ternary mixtures. The
saturation content has little effect on viscosity, suggesting
that some properties tied to composition in model mem-
branes, are decoupled from composition in complex
membranes.

This framework offers many opportunities to further
improve the description of complex biological cellular
processes. Many biological phenomena naturally arise
from the model, notably correlations between cholesterol



FIGURE 4 Complex membrane properties show

weak dependence on phospholipid composition.

The ‘‘No Reg’’ simulation corresponds to a fixed

phospholipid composition taken from a regulated

simulation from the low�c force field with 14%

cholesterol and kBT ¼ 2:5. (A) Nematic order of

lipid molecules in the system is shown. (B) Correla-

tion length of the nematic order parameter is shown.

(C) Viscosity of the membrane as a function of

cholesterol fraction is shown. Shaded area indicates

the standard deviation of the data or the confidence

interval of the fitting procedure. Temperature is ex-

pressed in kJ/mol. To see this figure in color, go on-

line.
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and phospholipid saturation. In principle, membrane
composition will further be affected by additives, thereby
affecting various properties (e.g., correlation length). Ab-
sent of the current model are proteins, which constitute a
large portion of the surface of biological membranes, and
likely influence Tm. Some of these are known to bind pref-
erentially to specific lipids (35,46,47) and induce domain
formation, whereas others bind to the actin network,
which is hypothesized to be involved in membrane struc-
ture regulation (48–50). Nevertheless, the RTE predicts
that passive regulation will cause membranes to specialize
even without external input: cells that incorporate
different proteins should naturally lead to different com-
positions. It could also be used to model cell response
to membrane insertion of various compounds, such as
drugs and anesthetics.

The equal-binding approximation, whereas a more faith-
ful description than usual ternary model membranes, could
be improved to better account for the relevant biology. More
work is needed to better approximate the chemical networks
involved, in particular to understand which ones can be
easily extracted into SGCs and how to better approximate
chemical potential differences between lipid species to lift
the equal-binding approximation. Although there is consid-
erable overlap between lipids chosen here and those found
in biological membranes, there are discrepancies between
the two sets. Notably, our lipids allow too many unsatura-
tions on sn1 and only a single acyl chain length on sn2. Bet-
ter lipid sets, closer available lipids in cells, will be tackled
in future research, along with the modeling of asymmetric
membranes. In the mean time, we hope that further experi-
ments can lead to more insights into a chemical-network-
based regulation mechanism and provide concrete evidence
into the RTE.
Software

Simulations were run in the HOOMD-blue molecular dy-
namics engine (51, 52). Systems were assembled using the
hoobas molecular builder (53). Simulations are run using
a slight modification to the MARTINI force-field (54) (see
Supporting Material). Visualization was done using the
Ovito package (55). Data analysis was done using custom
Cþþ code on top of publicly available C gsd API.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2020.07.024.
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SIMULATION DETAILS

Simulations are run using HOOMD-blue 2.4.0 [1, 2] with a custom plugin for semi-grand canonical moves, velocity
rescaling thermostat [3] and Nosé-Hoover-Langevin barostat [4, 5]. The thermostat employs a time constant of
τT = 1 ps while the barostat has a coupling constant of τP = 2, a friction coefficient of γP = 1 ps−1 with an
integration step size of 10 fs. The simulation box is a hexagonal prism and the tilt factors are not allowed to change.
Trajectories record one frame every 104 timesteps (every 100 ps). Analysis are ran using custom C++ code and makes
use of the GSD file format API available at https://github.com/glotzerlab/gsd. The first 10 µs of the trajectory
is discarded.

Semi-grand canonical moves are performed using the algorithm described in [6]. Briefly, the neighbor cell list is made
to comprise an even number of cells in all directions, and every 20 timesteps (20∆t = 200 fs) one cell every two in all
dimensions is picked (1/8 of the cells overall are picked). In those cells, a particle is chosen at random. If the particle is
swappable, an attempt to change its type is made based on the Monte-Carlo criteria P = min(1, exp(−β(∆E−∆µ))).

Initial configurations of the bilayer is generated using hoobas [7] and incorporates 32745 MARTINI water beads
(∼ 82 water molecules per lipid). The system first undergoes a relaxation process. This consists of slowly increasing the
ϵ and σ values of the Lennard-Jones potential, up to their normal values, while running the system in microcanonical
ensemble with a limit on displacement of 0.001 nm every timestep, with no coulombic potentials and no semi-grand
canonical moves. The rest of the relaxation is described below:

Integration Timesteps ∆t (fs) Parameters
NVT, Langevin 3× 104 10−2 γT = 1000 ps−1, kBT = 0

NVT, Langevin 104 10−1 γT = 10 amu ps−1, kBT = 0

NVT, Langevin 105 1 γT = 5 amu ps−1

Coulombic potential and semi-grand canonical moves turned on
NVT, Langevin 2× 105 1 γT = 5 amu ps−1

NPT 4× 105 0.3 τT = 5 ps, τP = 80, γP = 5 ps−1

NPT 3× 105 3 τT = 5 ps, τP = 80, γP = 5 ps−1

NPT 2× 105 3 τT = 5 ps, τP = 20, γP = 1 ps−1

NPT 2× 105 10 τT = 1 ps, τP = 2, γP = 1 ps−1

NPT + langevin thermostat 5× 104 3 τT = 1 ps, τP = 2, γP = 1 ps−1, γT = 5 amu ps−1

NPT > 1.3× 109 10 production, τT = 1 ps, τP = 2, γP = 1 ps−1

MARTINI FORCE-FIELD

The force-field described in [8] is used with the following exceptions. All angle potentials centered on unsaturated
beads have the following parameters: θ0 = 120◦, kθ = 45 kJ/mol. For lipids with 0 or 1 unsaturations per acyl tail,
this is not different from the original MARTINI force-field. For lipids with 2 unsaturations, the first angle along the
tail was originally θ0 = 100◦ and kθ = 10 kJ/mol. Furthermore, all beads centered on unsaturations are either C3 or
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C4. This is a requirement of the way we implement the semi-grand canonical Monte-Carlo moves on GPU. The first
version of cholesterol molecules (without virtual sites) are used.

LIPIDS

Lipids used here are comprised of two acyl tails, each of which can be either of four fatty acids for a total of 16
lipid types. These represent the following fatty acids: stearic acid (C18:0), oleic acid (C18:1, ω-9, ∆-9), linoleic acid
(C18:2, ω− 6, ∆-9,12) and cis-vaccenic acid (C18:1, ω− 7, ∆-11). There are no restriction on which position (sn-1 or
sn-2) these are placed, unlike in cells. We also note that MARTINI does not differentiate between C16 and C18 tails
due to its four-to-one mapping.

TERNARY MIXTURE

With C3 beads, above 16 - 18 % cholesterol, ternary DPPC / DOPC / Cholesterol mixture phase separates into
DOPC-rich and DPPC-rich phases. This is an experimentally known phase separation and was reported in 25 µs long
simulations using the MARTINI force-field at 290K [9] for a single composition (5:3:4). In [10], 10 µs long simulations
did not show any phase separation for 7:7:6 composition at 295K. The typical phase separation time we observed for
our phase separation is 10 - 12 µs, suggesting that the thermodynamic drive for separation is small. Both of these
articles were published before the virtual-site MARTINI cholesterol model [11] and thus use the same cholesterol
model as us. In contrast, in [12], none of the DPPC / DOPC / Cholesterol mixtures phase separated. Whether this
is induced by changes to the cholesterol model in 2015 or subtle effects of the positional restraints used in [12] is
unknown. Nevertheless, all our simulations above 18% cholesterol phase separate at 300K. Replacing the C3 beads
by C4 beads results in very fast (< 1µs) demixing, at all cholesterol concentrations. This makes direct comparison of
properties between our complex membranes and ternary mixtures impossible.

NEMATIC ORDER PARAMETER

To compute the nematic order parameter, the Q-tensor is constructed from every bond in lipid molecules:

Qij = N−1
b

∑
b

bibj − 1/3δij

Where bi is the ith component of the unit vector of the bond b and the lipids have Nb bonds overall. The eigenvalues
of the tensor is computed using the Eigen package http://eigen.tuxfamily.org/. The largest eigenvalue defines
the order parameter λ+.

VISCOSITY

The viscosity is calculated through the orientational relaxation time. For every lipid molecule, we compute its
q-tensor and obtain its director, d⃗, from the eigenvector corresponding to the largest eigenvalue. We then compute
the orientational correlation function:

C(∆t) = ⟨P2(d⃗(t+∆t) · d⃗(t))⟩

Where P2 = 3/2x2 − 1/2 is the second Legendre polynomial. Averaging is done over all molecules and we take one
reference frame every 256 frames of the trajectory. The first 100 ns of the orientational correlation function is then
fitted (with correlation coefficient r2 > 0.995) to a stretched exponential function C(t) = a exp(−(t/t0)

β) + (1 − a)
and the relaxation time is obtained by integrating the stretched exponential, τ = t0β

−1Γ(β−1), which can be related
to the viscosity (η) through τ = ηπr2h/kBT , where h is half the bilayer height and r = (A/π)1/2 ∼ 0.4 nm is the size
of a lipid molecule, with A being the area per lipid.

As mentioned in the main text, values of viscosity on the order of 10−2 P have been measured in other simulations
as well. This has been measured for MARTINI, CHARMM36 as well as GROMOS96 force-fields. Viscosity was

http://eigen.tuxfamily.org/
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Figure S 1. Area available per lipid, computed from the size of each voronoi cell belonging to lipid molecules

calculated using periodic Saffman-Delbrück diffusion model (MARTINI and CHARMM36), reverse non-equilibrium
molecular dynamics (GROMOS 96) and rotational diffusion correlation here. In [13], the value is compared favorably
with a disordered n-hexadecane system (η = 2.8×10−2 P). It is possible that the lipid chosen here lead to a phase that
is less ordered than biological membranes. For instance, in [14], by taking a lipid composition representative of plasma
membrane at 310K (kBT = 2.56 kJ/mol) and 30% cholesterol, they find a nematic order parameter λ+ = 0.31 ∼ 0.34,
which is slightly than in our simulations at similar parameters (λ+ = 0.30 ∼ 0.31). It is also possible that proteins,
lipid rafts and other objects such as actin networks contribute to measured cell viscosities.

CORRELATION LENGTHS

The correlation length is obtained by computing a local value of λ+ a 16× 16 grid for each leaflet, and computing
the spectral power P (k) = |F(λ+(x, y))|2, where F is the Fourier transform. We use the fftw package (http:
//www.fftw.org/) to compute the Fourier transform through an FFT. The spectral power is then averaged through
time, is then inverted and fitted to an exponential function: F−1 (⟨P (k)⟩) (x, y) = exp(−r/r0), where r =

√
x2 + y2

and r0 is the correlation length.

AREA PER LIPID

The area occupied by each lipid is computed by mapping lipids of each leaflet on a 2D plane, then using a voronoi
tesselation to compute the area available to each lipid, shown in Fig. 1. We used the voronoi package from JCash,
available at https://github.com/JCash/voronoi to perform the tesselation.

DIFFUSION

Diffusion constants are computed by measuring the mean squared displacement R(∆t) = ⟨(r(t + ∆t) − r(t))2⟩,
which at long times yields the lateral diffusion constant D through: R(t) = 4Dt, which is evaluated by fitting the
curve R(t). The averaging is done over all lipids and we take one reference frame every 256 frames of the trajectory.
Diffusion constants are shown in Fig. 2.

http://www.fftw.org/
http://www.fftw.org/
https://github.com/JCash/voronoi
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Figure S 2. Diffusion constants computed by fitting the mean-squared displacement R(t) = 4Dt

LIPID COMPOSITION AT DIFFERENT TEMPERATURES

The overall picture of acyl tail composition versus cholesterol fraction does not change much at different tempera-
tures. However, the bilayers incorporate more unsaturated lipids to increase the mixing entropy. Curves are shown
in Fig. 3 for both kBT = 2.4 and kBT = 2.6.
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