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Instantaneous Non-Local Computation of Low
T-Depth Quantum Circuits
Florian Speelman∗

Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
f.speelman@cwi.nl

Abstract
Instantaneous non-local quantum computation requires multiple parties to jointly perform a
quantum operation, using pre-shared entanglement and a single round of simultaneous commu-
nication. We study this task for its close connection to position-based quantum cryptography,
but it also has natural applications in the context of foundations of quantum physics and in dis-
tributed computing. The best known general construction for instantaneous non-local quantum
computation requires a pre-shared state which is exponentially large in the number of qubits
involved in the operation, while efficient constructions are known for very specific cases only.

We partially close this gap by presenting new schemes for efficient instantaneous non-local
computation of several classes of quantum circuits, using the Clifford+T gate set. Our main
result is a protocol which uses entanglement exponential in the T-depth of a quantum circuit,
able to perform non-local computation of quantum circuits with a (poly-)logarithmic number
of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind
and delegated quantum computation with the garden-hose model, a combinatorial model of
communication complexity which was recently introduced as a tool for studying certain schemes
for quantum position verification. As an application of our results, we also present an efficient
attack on a recently-proposed scheme for position verification by Chakraborty and Leverrier.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum Cryptography, Quantum Communication

Digital Object Identifier 10.4230/LIPIcs.TQC.2016.9

1 Introduction

We study the task of instantaneous non-local quantum computation, and present new
protocols to efficiently perform this task for specific classes of quantum circuits. Our main
motivation comes from position-based quantum cryptography, where previous attacks on
schemes for position-based quantum cryptography have taken either of two forms:

First results on quantum position-based cryptography involved attacks on specific pro-
posals for schemes, such as the attacks by Lau and Lo [31], those by Kent, Munro and
Spiller [28], and the attack on Beigi and König’s scheme using mutually-unbiased-bases [37].
A certain family of efficient attacks on a concrete class of single-qubit schemes [13] was
formalized by the garden-hose model. Described as ‘fast protocols for bipartite unitary
operators’, Yu, Griffiths and Cohen [40, 39] give protocols that, although not directly inspired
by position-based quantum cryptography, can be translated to our setting.

On the other hand Buhrman et al. [12] constructed a general attack which treats the
quantum functionality of the protocol to be attacked as a black box. For a protocol which uses
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9:2 Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

a message of n qubits, the entanglement consumption of this attack is around 2log ( 1
ε )24n EPR

pairs, doubly exponential in n. Here ε represents the probability that the attack does not
succeed. The construction of Buhrman et al. was based on a protocol for ‘instantaneous non-
local measurement’ by Vaidman [38, 16]. Beigi and König [5] later constructed a more efficient
general attack, using port-based teleportation – a new teleportation method introduced by
Ishizaka and Hiroshima [25, 26]. The improved attack uses O(n 28n

ε2 ) EPR pairs, still an
exponential dependence on n.

These protocols were able to solve the following task. Given a constant ε ≥ 0 and an
n-qubit quantum operation1 U , where n is a natural number. Two players, Alice and Bob,
receive an arbitrary input state ρAB of n qubits, with the players receiving n/2 qubits each.
After a single round of simultaneous quantum2 communication, the players must output a
state ε-close to UρABU†. Alice outputs the first n/2 qubits of the state and Bob outputs
the other n/2 qubits. We define INQCε(U) as the smallest number of EPR pairs that the
players have to share at the start of a protocol which performs this task. INQC(U) is used
as a shorthand for INQC0(U), a protocol which works with no error. We present a more
precise definition of INQC is presented in Appendix A.

In this work we partially bridge the gap between efficient specific constructions for
instantaneous non-local computation and expensive general ones, by constructing a protocol
for non-local computation of a unitary transformation U such that the entanglement use of
the protocol depends on the quantum circuit which describes U .

In particular, writing quantum circuits over the Clifford+T gate set, we create a protocol
using entanglement exponential in the T-count. We also present a protocol that uses an
amount of entanglement which scales as the number of qubits n raised to the power of
the T-depth of the circuit. Even though this is a quickly-growing dependence, for circuits
of constant T-depth this amounts to a polynomial dependence on n, unlike any earlier
construction. For circuits of polylogarithmic T-depth we obtain an amount of entanglement
which is quasi-polynomial in n, i.e. a dependence of the form 2(logn)c for some constant c.
Note that the depth and size of the quantum circuit can be much higher than its T-depth: we
allow an arbitrary number of gates from the Clifford group in addition to the limited number
of T gates. Our results imply new efficient attacks on any scheme for position-verification
where the action of the honest party can be written as a low T-depth quantum circuit.

Linking blind quantum computation and instantaneous non-local quantum computation
was first considered by Broadbent3 [8], who considered a setting where the parties have access
to non-local boxes – correlations even stronger than those allowed by quantum mechanics. The
techniques we use are also based on delegated and blind quantum computation [15, 4, 18, 19, 7]
and results on computation via teleportation [24], but we combine them with new ideas from
the garden-hose model [13, 29] – a recently-introduced combinatorial model for communication
complexity with close links to a specific class of schemes for position verification.

We prove two main theorems, each improving on the entanglement consumption of
the best-known previous constructions for non-local instantaneous quantum computation

1 Our constructions only consider unitaries given by quantum circuits, but the task naturally extends to
more general quantum operations. The motivation for Vaidman’s original scheme [38], which formed
the basis of Buhrman et al.’s construction, was to instantaneously perform a non-local measurement.
Our constructions can also be applied to that case, by writing the measurement as a unitary operation
followed by a measurement in the computational basis.

2 Since restriction to classical communication is not necessarily dictated by the application in position-
based quantum cryptography, we allow quantum communication. All presented protocols work equally
well when all messages are classical instead.

3 These results were first available as privately-circulated notes in December 2011, and were made available
online in December 2015.
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for specific circuits4. Additionally, we use our proof method to construct a new attack
on a scheme for position verification which was recently proposed by Chakraborty and
Leverrier [14].

I Theorem 3. Any n-qubit Clifford+T quantum circuit C which has at most k T gates has
a protocol for instantaneous non-local computation using O(n2k) EPR pairs.

I Theorem 5. Any n-qubit quantum circuit C using the Clifford+T gate set which has
T-depth d, has a protocol for instantaneous non-local computation using O( (68n)d ) EPR
pairs.

The main technical tool we use in the proof of our depth-dependent construction is the
following lemma, which is able to remove a conditionally-applied gate from the Clifford group
without any communication – at an entanglement cost which scales with the garden-hose
complexity of the function which describes the condition.

I Lemma 4. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function known to all parties, and let
GH (f) be the garden-hose complexity of the function f . Assume Alice has a single qubit with
state Pf(x,y)|ψ〉, for binary strings x, y ∈ {0, 1}n, where Alice knows the string x and Bob
knows y. The following two statements hold:
1. There exists an instantaneous protocol without any communication which uses 2GH (f)

pre-shared EPR pairs after which a chosen qubit of Alice is in the state Xg(x̂,ŷ)Yh(x̂,ŷ)|ψ〉.
Here x̂ depends only on x and the 2GH (f) bits that describe the measurement outcomes
of Alice, and ŷ depends on y and the measurement outcomes of Bob.

2. The garden-hose complexities of the functions g and h are at most linear in the garden-
hose complexity of the function f . More precisely, GH (g) ≤ 4GH (f) + 1 and GH (h) ≤
11GH (f) + 2.

Chakraborty and Leverrier [14] recently proposed a protocol for quantum position verification
on the interleaved multiplication of unitaries. They show that all known attacks, applied
to this protocol, require entanglement exponential in the number of terms t in the product.
As an application of Lemma 4, we present an attack on their proposed protocol which has
entanglement cost polynomial in t and the number of qubits n. The new attack requires an
amount of entanglement which scales as ( tε )O(1) per qubit, and for each qubit succeeds with
probability at least 1− ε.

2 Preliminaries

2.1 The Pauli matrices and the Clifford group

The single-qubit Pauli matrices are X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, and the

identity I =
(

1 0
0 1

)
. A Pauli operator on an n-qubit state is the tensor product of n

one-qubit Pauli matrices, the group of n qubit Pauli operators5 is P = {σ1 ⊗ · · · ⊗ σn |

4 From now on, whenever we write ‘quantum circuit’, we will always mean a quantum circuit that only
uses the Clifford group generators, together with T gates.

5 The given definition includes a global phase, which is not important when viewing the elements as
quantum gates.

TQC 2016



9:4 Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

∀j : σj ∈ {I,X, Y, Z}} × {±1,±i}. These are some of the simplest quantum operations and
appear, for example, as corrections for standard quantum teleportation.

The Clifford group can be defined as those operations that take elements of the Pauli
group to other elements of the Pauli group under conjugation – the normalizer of the Pauli
group. We consider the Clifford group on n qubits, for some natural number n.

C = {U ∈ U(2n) | ∀σ : σ ∈ P =⇒ UσU† ∈ P} (1)

Notable elements of the Clifford group are the single-qubit gates given by the Hadamard

matrix H = 1√
2

(
1 1
1 −1

)
and the phase gate P =

(
1 0
0 i

)
, and the two-qubit CNOT gate

given by CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

The set {H,P,CNOT} generates the Clifford group up to a global phase when applied
to arbitrary qubits, see e.g. [23]. For all these gates, we will use subscripts to indicate the
qubits or wires to which they are applied; e.g. Hj is a Hadamard gate applied to the j-th
wire, and CNOTj,k is a CNOT that has wire j as control and k as target.

Even though there exist interesting quantum circuits that use only gates from the Clifford
group, it is not a universal set of gates. Indeed, the Gottesman–Knill states that such a
circuit can be efficiently simulated by a classical computer, something which is not known to
be true for general quantum circuits [22, 1]. By extending C with any gate, we do obtain a
gate-set which is universal for quantum computation [32].

The gate we will use to extend the Clifford gates to a universal set is the T gate, sometimes

called π/8-gate or R, defined by T =
(

1 0
0 eiπ/4

)
. We will write all circuits using gates from

the set {X,Z,H,P,CNOT,T}. Technically X, P, and Z are redundant here, since they can be
formed by the others as P = T2, Z = P2 and X = ZHZ, but we include them for convenience.

In our protocols for instantaneous non-local computation, we will alternate teleportation
steps with gate operations, and therefore the interaction between the Pauli matrices and
the other gates are especially important. We will make much use of the following identities,
which can all be easily checked6.

XZ = ZX
PZ = ZP
PX = XZP

HX = ZH
HZ = XH
TX = PXT

CNOT1,2(X⊗ I) = (X⊗X)CNOT1,2

CNOT1,2(I⊗X) = (I⊗X)CNOT1,2

CNOT1,2(Z⊗ I) = (Z⊗ I)CNOT1,2

CNOT1,2(I⊗ Z) = (Z⊗ Z)CNOT1,2

(2)

2.2 Key transformations from Clifford circuits
For a 0/1 vector v of length n and for any single-qubit operation U , we write Uv =

⊗n
j=1 U

vj ,
i.e., Uv is the application of U on all qubits j ∈ [n] for which vj = 1. When Alice teleports a
state |ψ〉 of n qubits to Bob, the uncorrected state at Bob’s side can be written as XaxZaz |ψ〉.
Here we let ax and az be the vectors representing the outcomes of the Bell measurements of
Alice. In analogy with the the literature on assisted and blind quantum computation, we
will call the teleportation measurement outcomes ax and az the key needed to decode |ψ〉.

6 Here equality is up to a global phase – which we will ignore from now on for simplicity.
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The specific entries of these keys will often depend on several different measurement
outcomes, given by earlier steps in the protocol, and we will therefore occasionally describe
them as polynomials over F2. Viewing the keys as polynomials is especially helpful in the
description of the more-complicated protocol of Section 5.

For any gate from the Clifford group U ∈ C, if we apply U on the encoded state, we can
describe the resulting state as U |ψ〉 with a new key. That is, UXaxZaz |ψ〉 = X âxZ âzU |ψ〉
for some new 0/1 keys âx, âz. The transformations of the keys will have a particularly simple
form. (See for example [11] for a characterization of these transformations and a different
application of Clifford circuit computation.)

For example, we can write the identities of Equation 2 in terms of key transformations.
The transformations that occur when a bigger Pauli operator is applied, can then be easily
found by writing the Pauli operator in terms of its generators {H,P,CNOT}, and applying
these rules one-by-one. We will write (x1, x2 | z1, z2) as a shorthand for, respectively, the X
key on the first and second qubit, and the Z key on the first and second qubit – this is a
convenient notation7 for the pair of vectors ax and az that represent these keys. All addition
of these keys will be over F2, i.e., the + represents the binary exclusive or.

P(x | z)→ (x | x+ z)P
H(x | z)→ (z | x)H

CNOT1,2(x1, x2 | z1, z2)→ (x1, x1 + x2 | z1 + z2, z2)CNOT1,2

2.3 Clifford+T quantum circuits, T-count and T-depth
In several different areas of quantum information, gates from the Clifford group are ‘well-
behaved’ or ‘easy’, while the other non-Clifford gates are hard – an observation which was
also made, with several examples, in the recent [10].

The T-count of a quantum circuit is defined as the number of T gates in the entire
quantum circuit. The T-depth is the number of layers of T gates, when viewing the circuit
as alternating between Clifford gates and a layer of simultaneous T gates. See for example
Figure 5.

Given a quantum operation, it is not always obvious what is the best circuit in terms of
T-count or T-depth. Recent work gave algorithms for finding circuits that are optimized in
terms of T-depth [3, 21, 35, 2] and optimal constructions for arbitrary single-qubit unitaries
have also been found [30, 34, 36]. These constructions sometimes increase the number of
qubits involved by adding ancillas – the use of which can greatly decrease the T-depth of the
resulting circuit.

2.4 The garden-hose model
The garden-hose model is a combinatorial model of communication complexity, first introduced
by Buhrman, Fehr, Schaffner and Speelman [13]. The recent work by Klauck and Podder [29]
further investigated the notion, proving several follow-up results. Here we repeat the basic
definitions of the garden-hose model and its link to attacks on schemes for position-based
quantum cryptography.

Alice has an input x ∈ {0, 1}n, Bob has an input y ∈ {0, 1}n, and the players want to
compute a function f : {0, 1}n × {0, 1}n → {0, 1} in the following way. Between the two

7 This mapping is called the symplectic notation when used in the stabilizer formalism, although we won’t
need to introduce the associated symplectic inner product for our construction.

TQC 2016



9:6 Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

players are s pipes, and, in a manner depending on their respective inputs, the players link
up these pipes one-to-one with hoses. Alice also has a water tap, which she can connect
to one of these pipes. When f(x, y) = 0, the water should exit on Alice’s side, and when
f(x, y) = 1 we want the water to exit at Bob’s side. The garden-hose complexity of a function
f , written GH (f), then is the least number s of pre-shared pipes the players need to compute
the function in this manner.

There is a natural translation from strategies of the garden-hose game to a quantum
protocol that routes a qubit to either Alice or Bob depending on their local inputs, up
to teleportation corrections. Consider the following quantum task, again dependent on a
function f like in the previous paragraph. Alice now receives a quantum state |ψ〉 and a
classical input x, Bob receives input y, and the players are allowed one round of simultaneous
communication. If f(x, y) = 0, Alice must output |ψ〉 after this round of communication, and
otherwise Bob must output |ψ〉. We would like to analyze how much pre-shared entanglement
the players need to perform this task.

From the garden-hose protocol for f , the players can come up with a strategy for this
quantum task that needs at most GH (f) EPR pairs pre-shared. Every pipe corresponds to
an EPR pair. If a player’s garden-hose strategy dictates a hose between some pipe j and
another pipe k, then that player performs a Bell measurement of EPR-halves labeled j and
k. Alice’s connection of the water tap to a pipe corresponds to a Bell measurement between
her input state |ψ〉 and the local half of an EPR pair. After their measurements, the correct
player will hold the state |ψ〉, up to Pauli corrections incurred by the teleportations. The
corrections can be performed after a step of simultaneous communication containing the
outcomes of all measurements.

We will describe some of the logic in terms of the garden-hose model, as an abstraction
away from the qubits involved. When we refer to a quantum implementation of a garden-hose
strategy, we always mean the back-and-forth teleportation as described above.

The following lemma will prove to be useful. Let the number of spilling pipes of a
garden-hose protocol for a player be the number of possible places the water could possibly
exit. That is, the number of spilling pipes for Alice for a specific x, is the number of different
places the water could exit on her side over all Bob’s inputs y. The number of spilling pipes
for Alice is then the maximum number of spilling pipes over all x. To be able to chain
different parts of a garden-hose protocol together, it can be very convenient to only have a
single spilling pipe for each player.

I Lemma 1 (Lemma 11 of [29]). A garden-hose protocol P for any function f with multiple
spilling pipes can be converted to another garden-hose protocol P ′ for f that has only one
spilling pipe on Alice’s side and one spilling pipe on Bob’s side. The size of P ′ is at most 3
times the size of P plus 1.

Klauck and Podder also showed that computing the binary XOR of several protocols is
possible with only a linear overhead in total garden-hose complexity [29, Theorem 18]. We
give an explicit construction for this statement in AppendixC – the result already follows
from the similar construction of [29, Lemma 12], except that we obtain a constant which is
slightly better than unfolding their (more general) proof.

I Lemma 2. Let (f1, f2, . . . , fk) be functions, where each function fi has garden-hose
complexity GH (fi). Let c ∈ {0, 1} be an arbitrary bit. Then,

GH
(
c⊕

k⊕
i=1

fi

)
≤ 4

k∑
i=1

GH (fi) + 1 .
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C1 C2 Ck Ck+1

T
· · ·

T︸ ︷︷ ︸
k times

Figure 1 A circuit with T-count k. The Ci gates represent subcircuits consisting only of operation
from the Clifford group C.

3 Low T-count quantum circuits

I Theorem 3. Let C be an n-qubit quantum circuit with gates from the Clifford+T gate set,
and let C contain k T-gates in total. Then INQC(C) ≤ O(n2k), i.e., there exists a protocol
for two-party instantaneous non-local computation of C which uses a pre-shared entangled
state of O(n2k) EPR pairs.

Proof. Let Alice’s input state be some arbitrary quantum state |ψ0〉. We will write the
quantum state at step t ∈ {0, . . . , k}, as intermediate result of executing the circuit C for t
steps, as |ψt〉. Let Ct be the subcircuit, consisting only of Clifford gates, between the (t−1)th
and tth T gates. At step t, the circuit alternates between the Clifford subcircuit Ct and a
T-gate on some wire wt which we write as Twt , that is, we define Twt = I⊗wt−1⊗T⊗I⊗n−wt−1.

Because of the nature of the setting, all steps are done instantaneously unless noted
otherwise, without waiting for a message of the other party. For example, if the description
mentions that one party teleports a qubit, we can instantly describe the qubit as ‘being on the
other side’, but the other party will act on the uncorrected qubit, since the communication
will only happen afterwards and simultaneously.

We first give a high-level description of the protocol. Bob teleports his part of the state
to Alice, who holds the entire state – up to teleportation corrections. Alice will now apply
the first set of Clifford gates, followed by a single T gate. The teleportation corrections (all
known to Bob) determine whether the T gate that Alice performs creates an unwanted extra
P gate on the state. The extra P gate is created whenever an X correction is present, because
of the relation TX = PXT. Therefore, even though Alice holds the state, only Bob knows
whether the state has an extra unwanted P gate or not.

To remove the unwanted gate, Alice teleports all n qubits back to Bob, who corrects the
phase gate (if present). The players then perform a garden-hose-like trick to keep the form
of the key simple, at the cost of doubling the total size at each step.

Now we will give the precise description of the players’ actions:

Step 0. Bob performs a Bell measurement to teleport all his n/2 qubits to Alice, where we
write the needed X-corrections as b0

x,i and Z-corrections b0
z,i, for i = n/2 + 1, . . . , n. Now,

since the qubits Alice already started with don’t need a correction, we have b0
x,i = b0

z,i = 0
for i = 1, . . . , n/2. Then we write b0

x and b0
z for the 0/1 vector containing the X corrections

and Z correction respectively. The complete state is Xb0
xZb0

z |ψ0〉, where all qubits are at
Alice’s side while Bob knows the key.

Step 1.a. Alice executes C1 on the (uncorrected) qubits, so that the state now equals

C1Xb0
xZb

0
z |ψ0〉 = Xb̂1

xZb̂
1
zC1|ψ0〉 ,

TQC 2016



9:8 Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

where (b̂1
x, b̂

1
z) = f1(b0

x, b
0
z), with f1 : Fn2 × Fn2 → Fn2 × Fn2 is a formula that consists of

relabeling and addition over F2, and that is known to all parties. Bob knows all the
entries of the vectors b̂1

x and b̂1
z that contain the new teleportation corrections.

Step 1.b. Alice executes the T gate on the correct wire w1 ∈ {1, . . . , n} of the uncorrected
qubits. Define b1 = b̂1

x,w1
, the w1 entry of the vector b̂1

x. The state in Alice’s possession
is now

Tw1Xb̂1
xZb̂

1
zC1|ψ0〉 = Pb1

w1
Xb̂1

xZb̂
1
z Tw1C1|ψ0〉 = Pb1

w1
Xb̂1

xZb̂
1
z |ψ1〉 .

That is, besides the presence of the Pauli gates, depending on the teleportation measure-
ments, the w1 qubit possibly has an extra phase gate that needs to be corrected before
the protocol can continue.

Step 1.c. Alice teleports all qubits to Bob, with teleportation outcomes a1
x, a

1
z ∈ Fn2 . We

will define the a1 as the w1 entry of a1
x. Bob then has the state

Xa1
xZa

1
z Pb1

w1
Xb̂1

xZb̂
1
z |ψ1〉 = Pb1

w1
Xb̂1

xZb̂
1
z Za1b1

Xa1
xZa

1
z |ψ1〉 .

Knowing the relevant variables from his measurement outcomes in the previous steps,
Bob performs the operation Xb̂1

xZb̂1
z (Pb1

w1
)† to transform the state to Za1b1Xa1

xZa1
z |ψ1〉.

Step 1.d. For this step the players share two sets of n EPR pairs, one set labeled “b1 = 0”,
the other set labeled “b1 = 1”. Bob teleports the state to Alice using the set corresponding
to the value of b1, with teleportation outcomes b2

x and b2
z.

Step 1.e. The set of qubits corresponding to the correct value of b1 are in the state

Xb2
xZb

2
xZa1b1

Xa1
xZa

1
z |ψ1〉 .

On the set labeled “b1 = 0”, Alice applies Xa1
xZa1

z , and on the set labeled “b1 = 1” Alice
applies Xa1

xZa1
z Za1

w1
, so that the state (at the correct set of qubits) equals Xb2

xZb2
z |ψ1〉.

We are now in almost the same situation as before the first step: Alice is in possession of
a state for which Bob completely knows the needed teleportation corrections – with the
difference that Alice does not know which of the two sets that is.

Steps 2. . . k. The players repeat the protocol from Step 1, but Alice performs all steps in
parallel for all sets of states. The needed resources then double with each step: two sets
for step 2, four for step 3, etc.

Step k+1, final step. When having executed this protocol for the entire circuit, Alice only
teleports Bob’s qubits back to him, i.e. the qubits corresponding to the last n/2 wires,
instead of the entire state, so that in the correct groups, Alice and Bob are in possession of
the state |ψk〉 up to simple teleportation corrections. Then, in their step of simultaneous
communication, the players exchange all teleportation measurement outcomes. After
receiving these measurement outcomes, the players discard the qubits that did not contain
the state, and perform the Pauli corrections on the correct qubits.

The needed EPR pairs for this protocol consist of n/2 for Step 0. Then every set uses at
most 3n pairs: n for the teleportation of Alice to Bob, and 2n for the teleportation back.
The t-th step of the circuit starts with 2t−1 sets of parallel executions, therefore the total
entanglement is upper bounded by n/2 +

∑k
t=1 2t−13n ≤ 3n2k. J

4 Conditional application of phase gate using garden-hose protocols

The following lemma connects the difficulty of removing an unwanted phase gate that is
applied conditional on a function f , to the garden-hose complexity of f . This lemma is the
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Pf(x,y)|ψ〉

Teleport according to
GH protocol for f

P−1

P−1

P−1

Xg(x̂,ŷ)Zh(x̂,ŷ)|ψ〉

Pf(x,y)|ψ〉

GH protocol for f (copy)

Figure 2 Schematic overview of the quantum protocol to undo the conditionally-present phase
gate on |ψ〉. The solid connections correspond to Bell measurements.

main technical tool which we use to non-locally compute quantum circuits with a dependence
on the T-depth.

I Lemma 4. Assume Alice has a single qubit with state Pf(x,y)|ψ〉, for binary strings
x, y ∈ {0, 1}n, where Alice knows the string x and Bob knows y. Let GH (f) be the garden-
hose complexity of the function f . The following two statements hold:
1. There exists an instantaneous protocol without any communication which uses 2GH (f)

pre-shared EPR pairs after which a known qubit of Alice is in the state Xg(x̂,ŷ)Yh(x̂,ŷ)|ψ〉.
Here x̂ depends only on x and the 2GH (f) bits that describe the measurement outcomes
of Alice, and ŷ depends on y and the measurement outcomes of Bob.

2. The garden-hose complexities of the functions g and h are at most linear in the complexity
of the function f . More precisely, GH (g) ≤ 4GH (f) + 1 and GH (h) ≤ 11GH (f) + 2.

Proof. To prove the first statement we will construct a quantum protocol that uses 2GH (f)
EPR pairs, which is able to remove the conditional phase gate. The quantum protocol uses
the garden-hose protocol for f as a black box.

For the second part of the statement of the lemma, we construct garden-hose protocols
which are able to compute the teleportation corrections that were incurred by executing our
quantum protocol. By explicitly exhibiting these protocols, we give an upper bound to the
garden-hose complexity of the X correction g and the Z correction h.

The quantum protocol is shown as Figure 2. Alice and Bob execute the garden-hose pro-
tocol with the state Pf(x,y)|ψ〉, i.e. they teleport the state back and forth, with the EPR pairs
chosen depending on x and y. Afterwards, if f(x, y) = 0, the qubit will be at one of the unmeas-
ured EPR halves on Alice’s side, and if f(x, y) = 1 the qubit will be on Bob’s side. The state
of the qubit will be Xg′(x′,y′) Zh′(x′,y′) Pf(x,y)|ψ〉 = Pf(x,y)Xg′(x′,y′) Zh′(x′,y′)⊕f(x,y)g′(x′,y′) |ψ〉,
for some functions g′ and h′.
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9:10 Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

On each qubit on Bob’s side, corresponding with an ‘open pipe’ in the garden-hose model,
Bob applies P−1, so that the state of the qubit is now equal to Xg′(x′,y′) Zh′(x′,y′)⊕f(x,y)g′(x′,y′)

|ψ〉. The exact location of our qubit depends on the protocol, and is unknown to both
players. Here x′ and y′ are the measurement outcomes of Alice and Bob in this first half of
the protocol.

To return the qubit to a known position without an extra communication step, we employ
a trick that uses the reversibility of the garden-hose model. Alice and Bob repeat the exact
same garden-hose strategy, except they leave the start open, and connect the open ends
between the original and the copy. Alice performs a Bell measurement between the first open
qubit in the original, and the first open qubit in the copy, etc. Bob does the same, after
he applied the P gates. Afterwards, the qubit will be present in the start location, ‘water
tap’ in garden-hose terminology, of the copied game, since it has followed the exact same
path backwards. The final state of the qubit now is Xg(x̂,ŷ) Zh(x̂,ŷ) |ψ〉, for some functions
g and h and x̂ and ŷ the measurement outcomes of Alice and Bob respectively. The total
entanglement consumption is 2GH (f).

Every measurement corresponds to a connection of two pipes in the garden-hose model,
therefore each player performs at most GH (f) teleportation measurements, of which the
outcomes can be described by 2GH (f) bits.

Label the EPR pairs with numbers from {1, 2, . . . , 2GH (f)}, and use the label 0 for the
register holding the starting qubit |ψ〉. Let A be a list of disjoint pairs of the indices of
the EPR pairs that Alice uses for teleportation in this protocol, and let ax, az ∈ {0, 1}|A|
be the bit strings that respectively hold the X and Z outcomes of the corresponding Bell
measurements. Similarly, let B be a list of the indices of the EPR pairs that Bob uses, and
let bx, bz ∈ {0, 1}|B| be the bit strings that hold the measured X and Z corrections.

To show the second part of the statement, we will construct a garden-hose protocol which
tracks the newly-incurred Pauli corrections from teleporting the qubit back-and-forth, by
following the qubit through the path defined by A and B.

We will first construct the protocol for the final X-correction, a function we denoted by g.
The protocol is also schematically shown as Figure 3. Note that to compute the X correction
the conditional presence of the phase gate is not important: independent of whether f(x, y)
equals 1 or 0, we only need to track the X teleportation corrections that the qubit incurred
by being teleported back-and-forth by Alice and Bob. An efficient garden-hose protocol for g
is given by the following.

Use two pipes for each EPR pair in the protocol, 2GH (f) pairs of 2 pipes each. Label the
top pipe of some pair i by Ii, and the bottom pipe by Xi. We will iterate over all elements of
A, i.e. all performed Bell measurements by Alice. Consider some element of A, say the k-th
pair Ak which consists of {i, j}. If the corresponding correction bx,k equals 0, we connect the
pipe labeled Ii with the pipe labeled Ij and the pipe labeled Xi with the pipe labeled Xj .
Otherwise, if bx,k equals 1, we connect them crosswise, so we connect Ii with Xj and Xi with
Ij . Finally, the place where the qubit ends up after the protocol is unique (and is the only
unmeasured qubit out of all 2GH (f) EPR pairs). For the set of open pipes corresponding to
that EPR pair, say number i∗, we use one extra pipe to which we connect Xi∗ , so that the
water ends up at Bob’s side for the 1-output. This garden-hose protocol computes the X
correction on the qubit, and uses 4GH (f) + 1 pipes in total, therefore GH (g) ≤ 4GH (f) + 1.

For the Z-correction we can build a garden-hose protocol using the same idea, but there
is one complication we have to take care of. At the start of the protocol, there might be an
unwanted phase gate present on the state. If some teleportation is performed before this
phase gate is corrected, say by Alice with outcomes ax, az, then the effective correction can be
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|ψ〉

EPR pair 1

EPR pair 2

EPR pair 3

ax,1, az,1

ax,2, az,2

bx,1, bz,1

tap
I1

X1

I2

X2

(out if ax,1 ⊕ bx,1 ⊕ ax,2 = 0)
I3

(out if ax,1 ⊕ bx,1 ⊕ ax,2 = 1)
X3

ax,1 =0 ax,1 =1

ax,2 =0 ax,2 =1

bx,1 =0 bx,1 =1

Figure 3 Example garden-hose protocol to compute the Pauli X incurred by Alice and Bob
teleporting a qubit back-and-forth. When a teleportation requires a Pauli X correction, the
corresponding pipes are connected crosswise, and otherwise they are connected in parallel.

written as XaxZaz P = PXaxZax⊕az . That is, for the part of the protocol that the unwanted
phase gate is present, a Bell measurement gives a Z-correction whenever the exclusive or of
the X- and Z-outcomes is 1, instead of just when the Z-outcome is 1. We will therefore use
the garden-hose protocol that computes whether f(x, y) = 1, that is, compute whether the
phase gate is present, and then execute a slightly different garden-hose protocol for each case.

See Figure 4 for an overview of the different parts of this garden-hose protocol for the
Z-correction h. Using Lemma 1 we can transform the garden-hose protocol for f into a
garden-hose protocol for f with unique 0 and 1 outputs at Alice’s side, of size 3GH (f).8
For the 0 output, that is if there was no unwanted phase gate present, we can track the Z
corrections in exactly the same way as we did for the X corrections, for a subprotocol of size
4GH (f) + 1. For the 1 output there was in fact a phase gate present, for the teleportations
that happened in the protocol before the P−1 corrections. For that part of the protocol,
we execute the correction-tracking protocol using the XOR of the X- and Z-measurement
outcomes. For all teleportations after the phase correction, we again track the correction
using just the Z-outcomes, since there is no phase gate present anymore. This part of the
garden-hose protocol also uses 4GH (f) + 1 pipes, for a total of 11GH (f) + 2. J

8 If the unique 0 output has to be at Alice’s side, and the unique 1 output at Bob’s side, the construction
uses 3GH (f) + 1 pipes. It is an easy exercise to show that the construction of Lemma 1 needs one pipe
less if Alice wants to have both the designated 0 output and the 1 output.
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Unique-output GH protocol
for f(x, y)

(Lemma 1)

Compute correction using
Z outcomes

Compute correction using
X⊕Z outcomes of first part

Compute correction using
Z outcomes of the rest

tap

f(x, y) = 0

f(x, y) = 1
0 1

0 1

Figure 4 Sketch of garden-hose protocol for the Z correction. The bottom two boxes use the
construction which was used for the X-correction; in the top case using the Z-outcomes for all
measurements, in the bottom case using the parity of the X- and Z-outcomes for those teleportations
that happened before the unwanted phase gate was removed.

5 Low T-depth quantum circuits

I Theorem 5. Let C be an n-qubit quantum circuit with gates out of the Clifford+T gate set,
where C has T-depth d. Then there exists a protocol for two-party instantaneous non-local
computation of C, where each party receives n/2 qubits, which uses a pre-shared entangled
state of O( (68n)d ) EPR pairs. That is, INQC(C) ≤ O( (68n)d ).

Proof. As in the proof of Theorem 3, we write the input state |ψ〉, and write the correct
quantum state after step t of the circuit as |ψt〉. At a step t, the circuit alternates between a
layer of T gates9 and a subcircuit consisting of only Clifford gates, Ct.

The high-level idea of this protocol is as follows. During steps 1 to t, Alice will hold the
entire uncorrected state and performs a layer of the circuit: she performs a layer of T gates
and then a Clifford subcircuit. The Pauli corrections at each step are a function of earlier
teleportation outcomes of both Alice and Bob. These functions determine for each qubit
whether that qubit now has obtained an unwanted extra P gate when Alice performs the
layer of T gates. The players then, for each qubit, correct this extra gate using Lemma 4 –
removing the unwanted phase gate from the qubit in a way that both players still know its
location.

9 We will assume that for each layer of T gates all wires have a T gate. This is only done to avoid
introducing extra notation needed when instead the gates are only applied to a subset – the protocol
easily generalizes to the more common general situation.
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C0

T

C1 Cd−1

T

Cd

T
T · · · T
T T
T︸ ︷︷ ︸

d times

Figure 5 An example circuit with T-depth d. The Ci gates represent subcircuits consisting only
of operations from the Clifford group C. A layer does not necessarily have a T gate on all wires.

At each step we express the corrections as functions of earlier measurements and consider
their garden-hose complexity, which is important when using Lemma 4. The Clifford
subcircuit takes the correction functions to the XOR of several earlier functions. We can
bound the growth in garden-hose complexity by taking XORs using Lemma 2. Taken together,
the garden-hose complexity grows with a factor of at most a constant times n each step.

We will use f tx,i to denote the function that describes the presence of an X correction on
qubit i, at step t of the protocol. Similarly, f tz,i is the function that describes the Z correction
on qubit i at step t. Both will always be functions of outcomes of earlier teleportation
measurements of Alice and Bob. For any t, let mt be the maximum garden-hose complexity
over all the key functions at step t.

Step 0. Bob teleports his qubits, the qubits labeled n/2 up to n, to Alice, obtaining the
measurement outcomes b0

x,1, . . . , b
0
x,n/2 and b0

z,1, . . . , b
0
z,n/2. On these uncorrected qubits,

Alice executes the Clifford subcircuit C0.
Then, since Bob also knows how C0 transforms the keys, the functions describing the
Pauli corrections can all either be described by a single bit of information which is locally
computable by Bob, or are constant and therefore known by both players. Let f0

x,i and
f0
z,i be the resulting key function for any qubit i. The garden-hose complexity of all these
key functions is constant: GH (f0

x,i) ≤ 3 and GH (f0
z,i) ≤ 3, and therefore also for the

maximum garden-hose complexity we have m0 ≤ 3.
Step t = 1, . . . , d. At the start of the step, the X and Z corrections on any wire i are given

by f t−1
x,i and f t−1

z,i respectively.
Alice applies the T gates on all wires. Any wire i now has an unwanted P if and only if
f tx,i equals 1.
Alice and Bob apply the construction of Lemma 4, which removes this unwanted phase
gate. Let gti be the function describing the extra X correction incurred by this protocol,
so that the new X correction can be written as f tx,i⊕ gti . Let hti be the function describing
the Z correction, so that the total Z correction is f tz,i ⊕ hti. The entanglement cost of this
protocol is given by 2GH (f tx,i) and the garden-hose complexities of the new functions are
at most GH (gti) ≤ 4GH (f tx,i) + 1 and GH (hti) ≤ 11GH (f tx,i) + 2.
Alice now executes the Clifford subcircuit Ct. The circuit Ct determines how the current
Pauli corrections, i.e. the key functions, transform. For a specification of the possible
transformations, see Section 2.2. These new keys are formed by taking the exclusive OR
of some subset of keys that were present in the previous step10.

10This is slightly more general than necessary, since not all possible key transformations of this form are
actually possible – only those transformations generated by the possibilities in Section 2.2 can occur.
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Consider the worst case key for our construction: a key which is given by the XOR of all
keys that were present when the Clifford subcircuit was executed. Applying Lemma 2,
the worst-case key function of the form

⊕n
i=1 f

t−1
x,i ⊕ gti ⊕ f

t−1
z,i ⊕ hti has garden-hose

complexity at most

mt ≤ 4
(

n∑
i=1

GH (f t−1
x,i ) + GH (gti) + GH (f t−1

z,i ) + GH (hti)
)

+ 1

≤ 4
(

n∑
i=1

GH (f t−1
x,i ) + 4GH (f t−1

x,i ) + 1 + GH (f t−1
z,i ) + 11GH (f t−1

x,i ) + 2
)

+ 1

≤ 4
(

n∑
i=1

mt−1 + 4mt−1 + 1 +mt−1 + 11mt−1 + 2
)

+ 1

= 68nmt−1 + 12n+ 1 . (3)

Step d + 1, final step. Alice teleports the last n/2 qubits back to Bob. Alice and Bob
exchange all results of teleportation measurements and locally perform the needed
corrections, using both players’ measurement outcomes.

At every step t, the protocol uses at most 2nmt−1 EPR pairs for the protocol which
corrects the phase gate. Using that m0 ≤ 3, we can write the upper bound of Equation 3
as the closed form mt ≤ c1(68n)t + c2, with c1 = 216n−2

68n−1 ≈
54
17 and c2 = 3− 216n−2

68n−1 ≈ −
3

17 .
The total entanglement use therefore is bounded by

∑d
t=1 2nmt−1 ≤ O( (68n)d ). J

6 The Interleaved Product protocol

Chakraborty and Leverrier [14] recently proposed a scheme for quantum position verification
based on the interleaved multiplication of unitaries, the Interleaved Product protocol, denoted
by GIP(n, t, ηerr, ηloss). The parameter n concerns the number of qubits that are involved
in the protocol in parallel, while t scales with the amount of classical information that the
protocol uses. Their paper analyzed several different attacks on this scheme, which all
required exponential entanglement in the parameter t. In this section, as an application of
the proof strategy of Theorem 5, we present an attack on the Interleaved Product protocol
which requires entanglement polynomial in t.

The original protocol is described in terms of the actions of hypothetical honest parties
and also involves checking of timings at spatial locations. For simplicity, we instead only
describe a two-player game, for players Alice and Bob, such that a high probability of winning
this game suffices to break the scheme. Let x be a string x ∈R {0, 1}n, and let U be a random
(single-qubit) unitary operation, i.e. a random element of U(2). Alice receives t unitaries
(ui)ti=1, and Bob receives t unitaries (vi)ti=1 such that U =

∏t
i=1 uivi. Alice receives the

state U⊗n|x〉. The players are allowed one round of simultaneous communication. To break
the protocol GIP(n, t, ηerr, ηloss), after the round of simultaneous communication the players
need to output an identical string y ∈ {∅, 0, 1}n such that the number of bits where y is
different from x is at most ηerrn and the number of empty results ∅ is at most ηlossn. We
will consider attacks on the strongest version of the protocol, where we take ηloss = 0.

I Theorem 6. There exists an attack on GIP(n, t, ηerr, ηloss = 0) that requires p(t/ηerr) EPR
pairs per qubit of the protocol, for some polynomial p, and succeeds with high probability.

The detailed attack is included as Appendix D.
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7 Discussion

We combined ideas from the garden-hose model with techniques from quantum cryptography
to find a class of quantum circuits for which instantaneous non-local computation is efficient.
These constructions can be used as attacks on protocols for quantum position-verification, and
could also be translated back into the settings related to physics (most notable the relation
between the constraints of relativity theory and quantum measurements) and distributed
computing.

The resource usage of instantaneous non-local quantum computation quantifies the non-
locality present in a bi- or multi-partite quantum operation, and there is still room for new
upper and lower bounds. Any such bounds will result in new insights, both in terms of
position-based quantum cryptography, but also in the other mentioned settings.

Some possible approaches for continuing this line of research are as follows:
Computing the Pauli corrections happens without error in our current construction.
Perhaps introducing randomness and a small probability of error – or the usage of
entanglement as given in the quantum garden-hose model of [13, Section 2.5] – could
make this scheme more efficient.
Future research might be able to extend this type of construction to a wider gate set or
model of computation. One could think for example of a Clifford+cyclotomic gate set [20],
match-gate computation [27], or measurement-based quantum computation [6, 9].
We presented an attack on the Interleaved Product protocol which required entanglement
polynomial in t. Since the exponent of this polynomial was quite large, the scheme
could still be secure under realistic assumptions. Since the parameter t concerns the
classical information that the verifiers send, requiring attackers to manipulate an amount
of entanglement which scales linearly with the classical information would already make
a scheme unpractical to break in practice – let alone a quadratic or cubic dependence.
The combination of the garden-hose model with the tool set of blind quantum computation
is potentially powerful in other settings. For example, following up on Broadbent and
Jeffery who published constructions for quantum homomorphic encryption for circuits of
low T-gate complexity [10], Dulek, Speelman, and Schaffner [17] developed a scheme for
quantum homomorphic encryption, based on this combination as presented in (a preprint
of) this work.

Acknowledgments. The author is supported by the EU projects SIQS and QALGO, and
thanks Anne Broadbent, Harry Buhrman, Yfke Dulek and Christian Schaffner for useful
discussions.

A Definition of INQC

An instantaneous non-local quantum protocol that uses k qubits of entanglement is a protocol
of the following form.

Alice and Bob start with a fixed, chosen 2k-qubit state ηAeBe
∈ C2k ⊗ C2k , the entan-

glement. (Our protocols all use the special case where this state is a tensor product of k
EPR pairs.) The players receive an input state ρ ∈ S(Ain ⊗Bin), where S(A) is used for the
set of density matrices on some Hilbert space A. Let Am, As, Bm, As denote arbitrary-sized
quantum registers. Alice applies some quantum operation, i.e. completely positive trace-
preserving map, A∞ : S(Ain ⊗Ae)→ S(Am ⊗As) and Bob applies the quantum operation
B∞ : S(Bin ⊗Be)→ S(Bm ⊗Bs). Alice sends the register As to Bob, while simultaneously
Bob sends Bs to Alice.
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Afterwards Alice applies the quantum operation A∈ : S(Am ⊗ Bs) → S(Aout) on her
memory and the state she received from Bob, and outputs the result. Likewise Bob applies
the operation B∈ : S(Bm ⊗ As) → S(Bout) on the part of the quantum state he kept and
outputs the result of this operation.

I Definition 7. Let Φ : S(Ain ⊗Bin)→ S(Aout ⊗Bout) be a bipartite quantum operation,
i.e. a completely positive trace-preserving map, for some input registers Ain, Bin and output
registers Aout, Bout.

We say that INQCε(Φ) is the smallest number k such that there exists an instantaneous
non-local quantum protocol that uses k qubits of entanglement, with induced channel
Ψ : S(Ain ⊗Bin)→ S(Aout ⊗Bout), so that ‖Φ−Ψ‖� ≤ ε.

For any unitary U , we write INQCε(U) as a shorthand for INQCε(ΦU ), where ΦU is the
induced quantum operation defined by ρAB → UρABU

†. In this chapter, we assume for
simplicity that Alice’s and Bob’s input and output registers all consist of n qubits.

These definitions are mostly compatible with those given in [5], but differ in two ways
– both are unimportant for our results in this chapter, but might be relevant for follow-up
results, especially when proving lower bounds. Firstly, we made the choice for generality
to allow the players to communicate using qubits, instead of just classical messages. As
long as the number of communicated qubits is not too large, quantum communication could
potentially be replaced by classical communication using teleportation, at the cost of extra
entanglement – the counted resource. Secondly, we make the choice to explicitly separate
the shared entangled state from the local memory in notation – Beigi and König split the
state in a measured and unmeasured part, but do not introduce notation for (free) extra
local memory in addition to the shared entangled state.

Whether these choices are reasonable or not will also depend on the exact application.
Since we mostly think about applications to position-based quantum cryptography, giving
the players, i.e. ‘attackers’, as much power as possible seems the most natural.

B The Clifford hierarchy

The Clifford hierarchy, also called the Gottesman–Chuang hierarchy, generalizes the definition
of the Clifford group of Equation 1 in the following way [24]. Define C1 = P , the first level of
the hierarchy, as the Pauli group. Recursively define the k-th level as

Ck = {U ∈ U(2n) | ∀σ ∈ P : UσU† ∈ Ck−1} .

Then C2 is the Clifford group and the next levels consist of increasingly more quantum
operations – although for k ≥ 3 the set Ck is no longer a group [41].

The method behind the protocol of Theorem 3 immediately translates to the related
setting of the Clifford hierarchy. Since the dependence on n is exponential, Proposition 8
will only be a qualitative improvement over Beigi and König’s port-based teleportation
construction when both n and the level k are small.

The results of Chakraborty and Leverrier [14] contain a complete proof of Proposition 8,
proven independently and made available earlier than (the preprint of) the current paper.
We still include a proof of the statement as an illustrative application of the proof technique
of Section 3.

I Proposition 8. Let U be an n-qubit operation in the k-th level of the Clifford hierarchy,
where Alice receives n/2 qubits and Bob receives n/2 qubits, then INQC(U) ≤ O(n4nk).
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Proof Sketch. First Bob teleports his qubits to Alice, with n outcomes for X and Z. Alice
applies U to the uncorrected state, so that now the state equals UXbxZbz |ψ〉 = Vbx,bz

U |ψ〉,
where Vbx,bz

is an operator in the (k − 1)-th level of the Clifford hierarchy. Exactly which
operator depends on Bob’s measurement outcomes bx, bz.

Alice teleports the entire state to Bob, with outcomes ax, az, and Bob applies the inverse
V †bx,bz

, so that the state is

V †bx,bz
XaxZazVbx,bz

U |ψ〉 = Wax,az,bx,bz
U |ψ〉 ,

with Wax,az,bx,bz in the (k − 2)-th level of the Clifford hierarchy. For every possible value of
bx, bz, the players share a set of n EPR pairs. Bob teleports the state using the set labeled
with his measurement outcome bx, bz, obtaining teleportation corrections b̂x, b̂z.

For every set the players repeat this protocol recursively, in the following way. For any
set, Alice repeats the protocol as if it were the set used by Bob. At the correct set, Alice
effectively knows the values bx, bz from the label, and ax, az she knows as own measurement
outcomes. The state present is Xb̂xZb̂zWax,az,bx,bzU |ψ〉. When Alice applies W †ax,az,bx,bz

, the
state is given by Fax,az,bx,bz,b̂x,b̂z

U |ψ〉, with F in the (k− 3)-th level of the Clifford hierarchy.
Of this state, effectively only b̂x, b̂z is unknown to Alice. Alice teleports this state to Bob
using the EPR pairs labeled with ax, az, and the recursive step is complete.

The players continue these steps until the first level of the hierarchy is reached – formed
by Pauli operators – after which they can exchange the outcomes of their measurements to
undo these and obtain U |ψ〉.

After t steps, Every teleportation step after the first uses a set of n EPR pairs, picked
out of 4n possibilities corresponding to the Pauli correction of the n qubits teleported in the
previous step.

Summing over all rounds gives a total entanglement use of n
∑k
t=1 4nt = O(n4nk). J

C Proof of Lemma 2: Garden-hose protocols for XOR of functions

To prove: Let (f1, f2, . . . , fk) be functions, where each function fi has garden-hose com-
plexity GH (fi). Let c ∈ {0, 1} be an arbitrary bit that is 0 or 1. Then,

GH
(
c⊕

k⊕
i=1

fi

)
≤ 4

k∑
i=1

GH (fi) + 1 .

Proof Sketch. This statement was proven by Klauck and Podder [29, Theorem 18] in a more
general form, using the following two steps: First, any garden-hose protocol can be turned
into a single-output garden-hose protocol, repeated in this paper as Lemma 1, such that
the new complexity is at most three times the old complexity. Then, these single-output
garden-hose protocols can be used as nodes in a permutation branching program. Our current
case is simply an instantiation of that proof for the particular case of the exclusive OR,
together with the observation that we can combine both steps into one for this particular
case.

For all functions fi we build a gadget with two input pipes and two output pipes, such
that if the water flows in at input pipe labeled b ∈ {0, 1}, it flows out at the pipe labeled
fi ⊕ b. See Figure 6 for an overview. We use four copies of the garden-hose protocol for fi.

The open 0 output pipes of the protocol for fi in copy 0-INi are connected to the open 0
output pipes in copy 0-OUTi. The designated source pipe of the original protocol for fi in
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protocol
for fi

0-INi

protocol
for fi

1-INi

protocol
for fi

0-OUTi

protocol
for fi

1-OUTi

0 in 1 in

0 out 1 out

Figure 6 XOR gadget for any function fi, total complexity 4GH (fi).

copy 0-OUTi is then guaranteed to be the output.11 We similarly connect the 1 outputs of
0-INi to the 1 outputs of 1-OUTi. This construction, i.e. before adding the 1-IN copy, is
exactly the method used to create a single-output protocol. We connect the open 0 pipes of
1-INi to the open 0 pipes of 1-OUTi and the open 1 pipes of the open 1 pipes of 1-INi to the
open 1 pipes of 0-OUTi.

The gadget then works as claimed by direct inspection. Since all four copies are wired
exactly the same, the path of the water through the ‘OUT’ copy is the reverse of the path
it followed through the ‘IN’ copy, and therefore the water will exit correctly – at the pipe
which was the source of the original protocol. J

D Proof of Theorem 6: attack on the Interleaved Product scheme

It was shown in [13] that polynomial garden-hose complexity is equivalent to log-space
computation – up to a local preprocessing of the inputs. Instead of directly presenting garden-
hose protocols, for the current construction it will be easier to argue about space-bounded
algorithms and then using this equivalence as a black-box translation.

I Theorem 9 (Theorem 2.12 of [13]). If f : {0, 1}n×{0, 1}n → {0, 1} is log-space computable,
then GH (f) is polynomial in n.

Our attack will involve the computation of the unitary U =
∏t
i=1 uivi in the garden-hose

protocol. This is a simple function, but so far we have only defined the garden-hose model
for functions with a binary output. Therefore we define an extension of the garden-hose

11This same trick is used in the proof of Lemma 1 in [29, Lemma 11] and in our proof of Lemma 4.
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model to functions with a larger output range, where instead of letting the water exit at
Alice’s or Bob’s side, we aim to let the water exit at correctly labeled pipe. A short proof of
the following proposition is given after the proof of the main theorem.

I Proposition 10. Let f : {0, 1}n × {0, 1}n → {0, 1}k be a function, such that f is log-space
computable and k is at most O(log k). Then there exists a garden-hose protocol which uses a
polynomial number of pipes, and such that for any input x, y the water exists at Alice’s side,
at a pipe labeled by the output of f(x, y).

We will also need a decomposition of arbitrary unitary operations into the Clifford+T
gate set. The Solovay–Kitaev theorem is a classic result which shows that any single-qubit
quantum gate can be approximated up to precision ε using O(logc(1/ε)) gates from a finite
gate set, where c is approximately equal to 2. See for example [33] for an exposition of the
proof. Our constructions use a very particular gate set and we are only concerned with
the number of T gates instead of the total number of gates. A recent result by Selinger
strengthens the Solovay–Kitaev theorem for this specific case [36]12.

I Theorem 11 (Selinger 2015). Any single-qubit unitary can be approximated, up to any given
error threshold ε > 0, by a product of Clifford+T operators with T-count 11 + 12 log(1/ε).

With these auxiliary results in place, we can present our attack on the Interleaved Product
protocol.

Proof of Theorem 6. We will describe the actions taken for any single qubit U |b〉, with
b ∈ {0, 1}, such that the probability of error is at most ε. The protocol will be attacked by
performing these actions on each qubit, n times in parallel. Our construction can be divided
in the following four steps. For operators A,B, let ‖A‖ denote the operator norm, and we
use ‖A−B‖ as an associated distance measure.
1. Construct a (polynomial-sized) garden-hose protocol, with a number of pipes s, where the

qubit is routed to a pipe labeled with a unitary Ũ which is ε1-close to the total product
U .

2. Decompose the unitaries of all labels in terms of the Clifford+T gate set, using Theorem 11.
In particular, we have a Clifford+T circuit C with T-count k = O(log ε2) such that C is
ε2-close to Ũ , and therefore C is at most ε-close to U , where ε = ε1 + ε2.

3. After executing the garden-hose protocol as a series of teleportations, the state at pipe
Ũ can be approximated by XfxZfzC|ψ〉, with fx and fz functions of the connections
Alice and Bob made in step 1 and their measurement outcomes. By the construction of
Figure 3, described in the proof of Lemma 4, the garden-hose complexities GH (fx) and
GH (fz) are at most linear in s.
We can now alternate between applying a single gate of the circuit C† and using Lemma 4,
k times in total, to obtain a state which only has Pauli corrections left.

4. After Alice measures this final state, she can broadcast the outcome to Bob. Alice and
Bob also broadcast their inputs and measurement outcomes, which together determine
whether to flip the outcome of Alice’s final measurement.

As the first step, we present a log-space computation solving the following problem
(equivalent to the input of the protocol, with simplified notation): The input is given by t two-
by-two unitary matrices, u1, . . . , ut, and we output a matrix Ũ such that ‖Ũ −ut . . . u2u1‖ ≤

12When the single-qubit unitary is a z-rotation, an even stronger version of the theorem is available [34].
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ε1, where Ũ is encoded using O(log t+ log 1/ε1) bits. We can then use a simple extension of
Theorem 9 to transform this computation to a garden-hose protocol.

Store the current intermediate outcome of the product in the memory of our computation,
using 2`+ 2 bits for each entry of the two-by-two matrix, `+ 1 for the real and imaginary
part each. Let Mr denote the memory of our log-space computation after r steps, obtained
by computing the product urMr−1 with rounding. Since the rounded matrix entry has a
difference of at most 2−` with the unrounded entry, we can write the precision loss at each
step as Mr = urMr−1 + ∆r, where ∆r is some matrix with all entries absolute value at most
2−`. Note that ‖∆r‖ ≤ 2−`+1.

The total error incurred by the repeated rounding can now be upper bounded by

‖Mt − ut . . . u2u1‖ ≤ ‖utMt−1 + ∆t − ut . . . u2u1‖
≤ ‖∆t‖+ ‖ut(Mt−1 − ut−1 . . . u2u1)‖
≤ 2−`+1 + ‖Mt−1 − ut−1 . . . u2u1‖
≤ t2−`+1

Here we use that ‖AB‖ ≤ ‖A‖‖B‖ together with the unitarity of all ui. The final step is by
iteratively applying the earlier steps t times. If we choose ` = log t+ log 1/ε1 + 1 and note
that the final output Ũ is given by Mt, we obtain the bound.

By application of Proposition 10 we can convert this log-space computation to a garden-
hose protocol, using s pipes, where s is polynomial in ε1 and t. We then teleport the qubit
back-and-forth using Bell measurements given by this garden-hose protocol.

As second step, we approximate the unitaries that label each output pipe of the garden-
hose protocol of the previous step. In particular, consider the pipe labeled Ũ , and say
we approximate Ũ using a Clifford+T circuit C. By Theorem 11, we can write C using
k = 11 + 12 log(1/ε2) T gates, such that ‖Ũ − C‖ ≤ ε2. Therefore, defining ε = ε1 + ε2, we
have ‖U − C‖ ≤ ε.

We will perform the next steps for all unmeasured qubits (corresponding to open pipes in
the garden-hose model) in parallel. After the simultaneous round of communication, Alice
and Bob are then able to pick the correct qubit and ignore the others.

Consider the state of the qubit after the teleportations chosen by the garden-hose protocol.
For some functions fx, fz, with inputs Alice’s and Bob’s measurement outcomes, the qubit
has state XfxZfzU |b〉. From now on, we will assume this state is exactly equal to XfxZfzC|b〉
– since U is ε-close to C in the operator norm, this assumption adds error probability at most
2ε to the final measurement outcome13.

Write the inverse of this circuit as alternation between gates from the Clifford group and
T gates, C† = CkTCk−1T . . . C1TC0. We will remove C from the qubit by applying these
gates, one by one, by repeated application of Lemma 4. As convenient shorthand, define the
state of the qubit after applying the first r layers of C†, i.e. up to and including Cr, of C† as

|ψr〉 = T†C†r+1T†Cr+2 . . .T†C†k|b〉 .

In particular, we have CrT|ψr−1〉 = |ψr〉.
By exactly the same construction used in the proof of Lemma 4, shown in Figure 3, we

observe that the garden-hose complexities of the functions fx and fz is at most 2s+ 1. That
is, the protocol uses 2 pipes for all of the s EPR pairs, and connects them in parallel if the

13 See for instance [33, Box 4.1] for a computation of this added error.
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corresponding X- or Z-correction is 0, or crosswise if the corresponding X- or Z-correction
is 1.

We will use divide frx and frz as the functions describing the X and Z corrections at the
end of the step r. Define mr = max{GH (f ix),GH (f iz)} to be the maximum garden-hose
complexity out the of functions describing the X and Z corrections after step r. After Alice
executes the Clifford gate C0, the new key functions f0

x and f0
z can be written as (the NOT

of) an XOR of subsets of the previous keys, e.g., one of the keys could be fx ⊕ fz. By
Lemma 2, we then have that our starting complexities GH (f0

x) and GH (f0
z ) are at most

linear in s.
Now, for any layer r = 1, 2, . . . , k: Our qubit starts in the state Xfr−1

x Zfr−1
z |ψr−1〉, for

some functions fr−1
x , fr−1

z that each have garden-hose complexity at most mr−1. After Alice
performs a T gate, the qubit is in the state

TXfr−1
x Zf

r−1
z |ψr−1〉 = Pf

r−1
x Xfr−1

x Zf
r−1
z T|ψr−1〉 .

Now, we apply Lemma 4, costing 2GH (fr−1
x ) EPR pairs, so that Alice has the state

Xfr−1
x ⊕gr Zf

r−1
z ⊕hr T|ψr−1〉 ,

for some functions gr and hr that depend on the measurement results by Alice and Bob. We
have that GH (gr) ≤ 4GH (fr−1

x ) + 1 and GH (gr) ≤ 11GH (fr−1
x ) + 2.

Now Alice applies the Clifford group gate Cr, so that the state becomes

CrXfr−1
x ⊕gr Zf

r−1
z ⊕hr T|ψr−1〉 = Xfr

x Zf
r
z |ψr〉 .

The functions frx and frz can be expressed as XOR of the functions fr−1
x , fr−1

y , gr, hr. These
functions have garden-hose complexity respectively at most mr−1, mr−1, 4mr−1 + 1 and
11mr−1 +2. By application of Lemma 2, the exclusive OR of these functions therefore at most
has garden-hose complexitymr ≤ 4(mr−1+mr−1+4mr−1+1+11mr−1+2)+1 = 68mr−1+13.

Finally, after application of the gates in C†, Alice has a qubit in a state which is ε-close to
Xfr

x Zfr
z |b〉. Measurement in the computational basis will produce outcome b⊕ frx with high

probability. Besides this final measurement, Alice and Bob both broadcast all teleportation
measurement outcomes in their step of simultaneous communication. From these outcomes
they can each locally compute frx and so derive the bit b from the outcome, which equals
b⊕ frx , breaking the protocol.

Our total entanglement usage is s for the first step, and then for each of the at most
s output pipes, Alice performs the rest of the protocol. For the part of the protocol that
undoes the unitary U , we use at most 2

∑k−1
r=0 mr EPR pairs (for each of the at most s output

pipes of the first part). We have m0 ≤ O(s) and mr ≤ m0 · 2O(k). Since s is polynomial in t
and ε1 and k = O(log ε2), the total protocol uses entanglement polynomial in t and ε. J

Our attack replaces the exponential dependence on t of the attacks presented in [14] by a
polynomial dependence. For the case of ηerr = 0, we would need an error per qubit of around
ε
n to achieve total error at most ε. In that case, the entanglement required still grows as a
polynomial, now with a super-linear dependence of both parameters n and t.

Only the first step of our attack, i.e. the garden-hose protocol which computes a unitary
from the inputs of the players, is specific to the interleaved product protocol. This attack can
therefore be seen as a blueprint for attacks on a larger class of protocols: any protocol of this
same form, where the unitary operation chosen depends on a log-space computable function
with classical inputs, can be attacked with entanglement which scales as a polynomial in the
size of the classical inputs.
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Proof of Proposition 10. We can split up the computation f : {0, 1}n × {0, 1}n → {0, 1}k
into k functions that each compute a bit, f1, . . . , fk. Since f is a log-space computation,
each of these functions is also a log-space computation and therefore has a polynomial-size
garden-hose protocol by Theorem 9. Using Lemma 1, we can with linear overhead transform
each of these protocol into a unique-output protocol, so that the water flows out at a unique
pipe when the function is 0 and another unique pipe when the function is 1. Let p be a
polynomial so that the single-output garden-hose protocol of each function fi uses pipes at
most p(n).

First use the protocol for f1, with output pipes labeled 0 and 1. Now each of these output
pipes we feed into their own copy of f2. The 0 output of the first copy we label 00 and its
1 output 10. Similarly, we label the 0 output of the second copy 01 and the 1 output we
label 11. By recursively continuing this construction, we build a garden-hose protocol for the
function f which uses s pipes, where s is at most

s ≤
k∑
i=1

2i−1p(n) ≤ 2kp(n) .

Since we have taken k = O(logn), this construction uses a number of pipes polynomial in
n. J
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