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Abstract
We investigate structural properties of the completely positive semidefinite cone CSn

+, consisting
of all the n × n symmetric matrices that admit a Gram representation by positive semidefinite
matrices of any size. This cone has been introduced to model quantum graph parameters as
conic optimization problems. Recently it has also been used to characterize the set Q of bipartite
quantum correlations, as projection of an affine section of it. We have two main results concerning
the structure of the completely positive semidefinite cone, namely about its interior and about
its closure. On the one hand we construct a hierarchy of polyhedral cones which covers the
interior of CSn

+, which we use for computing some variants of the quantum chromatic number
by way of a linear program. On the other hand we give an explicit description of the closure of
the completely positive semidefinite cone, by showing that it consists of all matrices admitting a
Gram representation in the tracial ultraproduct of matrix algebras.
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1 Introduction

General background
Entanglement, one of the most peculiar features of quantum mechanics, allows different
parties to be correlated in a non-classical way. Properties of entanglement can be studied
through the set of bipartite quantum correlations, commonly denoted as Q, consisting of
the conditional probabilities that two physically separated parties can generate by perform-
ing measurements on a shared entangled state. More formally, a conditional probability
distribution (P (a, b|x, y))a∈A,b∈B,x∈X,y∈Y is called quantum if P (a, b|x, y) = ψ†Ea

x ⊗ F b
yψ

for some unit vector ψ in a finite dimensional Hilbert space H and some sets of positive
semidefinite matrices (aka measurement operators) {Ea

x : a ∈ A} and {F b
y : b ∈ B} satisfying∑

a∈A E
a
x = I and

∑
b∈B F

b
y = I for all x ∈ X, y ∈ Y . Clearly, we can equivalently assume

that the unit vector ψ is real valued and that Ea
x , F

b
y are real valued positive symmetric

operators. We will assume this throughout the paper. Here we consider the case of two
parties (aka the bipartite setting) and the sets X,Y (resp., A,B) model the possible inputs
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128 Completely Positive Semidefinite Cone

(resp., outputs) of the two parties, assumed throughout to be finite. While the set of classical
correlations (those obtained using only local and shared randomness) forms a polytope so
that membership can be decided using linear programming, the set Q of quantum correla-
tions is convex but with infinitely many extreme points and its structure is much harder
to characterize. An open question in quantum information is whether allowing an infinite
amount of entanglement, i.e., allowing the Hilbert space H in the above definition to be
infinite dimensional, gives rise to a probability distribution P which is not quantum [28]. In
other words, it is not known whether the set of quantum correlations Q is closed.

A setting which is frequently used to study the power of quantum correlations is the
one of nonlocal games. In a nonlocal game a referee gives to each of the two cooperating
players a question and, without communication throughout the game, they have to answer.
According to some known predicate, which depends on the two questions and on the two
answers, the referee determines whether the players have won or lost the game. In a quantum
strategy the players can use quantum correlations to answer. The quantum coloring game
is a particular nonlocal game that has received a substantial amount of attention lately
[1, 8, 25, 24, 14, 19, 23]. Here, each of the two players receives a vertex of a fixed graph G.
They win if they output the same color upon receiving the same vertex or if they output
different colors on pairs of adjacent vertices. The quantum chromatic number χq(G) is the
minimum number of colors that the players must use as output set in order to win the
coloring game on all input pairs with a quantum strategy. It is not hard to see that if the
players are restricted to classical strategies then the minimum number of colors they need to
win the game on all input pairs is exactly the classical chromatic number χ(G).

Like its classical analog the quantum chromatic number is an NP-hard graph parame-
ter [14]. Moreover, it is also lower bounded by the theta number [25], which can be efficiently
computed with semidefinite programming. However, it appears to be hard to find non-trivial
improved upper and lower bounds to χq(G). With the intention of better understanding
χq(G) and other related quantum graph parameters, two of the authors have introduced the
completely positive semidefinite cone CSn

+ [19].
Throughout Sn is the set of real symmetric n× n matrices and Sn

+ the subset of positive
semidefinite matrices; 〈X,Y 〉 = Tr(XY ) is the trace inner product and Tr(X) =

∑n
i=1 Xii

for X,Y ∈ Sn. Then, CSn
+ consists of all matrices A that admit a Gram representation

by positive semidefinite matrices, i.e., such that A = (〈Xi, Xj〉)n
i,j=1 for some matrices

X1, . . . , Xn ∈ Sd
+ and d ≥ 1. (When we do not want to specify the size of the matrices

in CSn
+ we omit the superscript and write CS+.) Using an equivalent formulation of the

quantum chromatic number proven in [8], it is shown in [19] that the parameter χq(G) can
be rewritten as a feasibility program over the completely positive semidefinite cone:

χq(G) = min t ∈ N s.t. ∃A ∈ CSnt
+ , A ∈ At and LG,t(A) = 0. (1.1)

Here, n is fixed and equal to the number of vertices of the graph G while t is the variable
that triggers the size of the matrix variable A in the above program. Indeed, A is indexed by
V (G)× [t]. With At we represent the affine space in Snt defined by the equations∑

i,j∈[t]

Aui,vj = 1 for u, v ∈ V (G), (1.2)

and with LG,t : Snt → R we denote the linear map defined by

LG,t(A) =
∑

u∈V (G),i6=j∈[t]

Aui,uj +
∑

uv∈E(G),i∈[t]

Aui,vi. (1.3)
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Notice that any matrix in CS+ is positive semidefinite. Moreover it has nonnegative
entries because the inner product of two positive semidefinite matrices is nonnegative. Hence
the condition LG,t(A) = 0 is equivalent to requiring that all the terms in the sum in (1.3)
are equal to zero. The constraint A ∈ At models that the players are using a conditional
probability distribution for their strategy, while LG,t(A) = 0 imposes that they have a
winning strategy for the coloring game. The structure of the matrix cone CS+ is still largely
unknown. In particular it is not known whether the cone CS+ is a closed set.

By replacing in (1.1) the cone CS+ by its closure cl(CS+), we get another graph parameter,
denoted as χ̃q(G). Namely,

χ̃q(G) = min t ∈ N s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0. (1.4)

Clearly, χ̃q(G) ≤ χq(G), with equality if CS+ is closed. This parameter, which was introduced
in [19], will be studied in this paper.

Interestingly, Mančinska and Roberson [20] showed recently that the set Q of quantum
bipartite correlations can also be described in terms of the completely positive semidefinite
cone. They show that Q can be obtained as the projection of an affine section of the
completely positive semidefinite cone.

I Theorem 1 ([20]). A conditional probability distribution P = (P (a, b|x, y)) with input sets
X,Y and output sets A,B is quantum (i.e., P ∈ Q) if and only if there exists a matrix
R ∈ CS+ indexed by (X ×A) ∪ (Y ×B) satisfying the conditions:∑

a,a′∈A

Rxa,x′a′ = 1 for all x, x′ ∈ X, (1.5)

∑
b,b′∈B

Ryb,y′b′ = 1 for all y, y′ ∈ Y, (1.6)

∑
a∈A,b∈B

Rxa,yb = 1 for all x ∈ X, y ∈ Y, (1.7)

Rxa,yb = P (a, b|x, y) for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y. (1.8)

In other words, Q = π(CSN
+ ∩ Bt) where N = |(X × A) ∪ (Y × B)|, Bt is the affine space

defined by the constraints (1.5), (1.6) and (1.7), and π is the projection onto the subspace
indexed by (X ×A)× (Y ×B) (defined by (1.8)).

Notice that any feasible matrix R to the above program has the form
(

R1 P

P T R2

)
, where R1 is

indexed byX×A, R2 is indexed by Y ×B and each entry of P is such that Pxa,yb = P (a, b|x, y).
As shown in [20], if the completely positive semidefinite cone is closed then the set Q of

quantum bipartite correlations too is closed. Indeed, the constraints (1.5)-(1.7) imply that
the set CS+ ∩ Bt is bounded. Hence, if CS+ is closed then CS+ ∩ Bt is compact and thus its
projection Q = π(CS+ ∩ Bt) is compact.

Our contributions
The results of this paper are twofold. First we construct a hierarchy of polyhedral cones
that asymptotically covers the interior of the completely positive semidefinite cone CS+.
Moreover we show how this hierarchy can be used to study the quantum chromatic number.
In particular we build a hierarchy of linear programs, among which one of them permits to
compute the variant χ̃q(G) in (1.4) of the parameter χq(G). This idea can also be applied to
compute variants of other versions of the quantum chromatic number; we will indicate how

TQC’15



130 Completely Positive Semidefinite Cone

to do that for the variant χ̃qa(G) of the parameter χqa(G) considered in [23]. See below for
some details and Sections 2 and 3 for the proofs.

As a second main contribution we provide an explicit description of the closure of the
cone CS+, in terms of tracial ultraproducts of matrix algebras. Moreover we exhibit a larger
cone, containing CS+, which can be interpreted as an infinite dimensional analog of CS+.
This cone consists of the matrices which admit a Gram representation by (a specific class
of) positive semidefinite operators on a possibly infinite dimensional Hilbert space instead
of Gram representations by finite positive semidefinite matrices. We can in fact show that
this larger cone is indeed a closed cone and that it is equal to cl(CS+) if Connes’ embedding
conjecture holds true. Since the description of these cones involve quite some notation and
concepts from operator theory we skip a preliminary description of the used methods and
refer directly to Section 4 which can be read independently of the other part.

In summary, our results give structural information about the completely positive semidef-
inite cone CS+ which come in two flavors, depending whether we consider its interior or its
boundary.

We now give some more details about our first contribution. In a nutshell, the idea for
building the hierarchy of polyhedral cones is to discretize the set of positive semidefinite
matrices by rational ones with bounded entries. Namely, given an integer r ≥ 1, we define the
cone Cn

r as the conic hull of all matrices A that admit a Gram representation by r× r positive
semidefinite matrices X1, . . . , Xn whose entries are rational with denominator at most r and
satisfy

∑n
i=1 Tr(Xi) = 1. We show that the cones Cn

r and their dual cones Dn
r = Cn∗

r satisfy
the following properties:

int(CSn
+) ⊆

⋃
r≥1
Cn

r ⊆ CS
n
+ and CSn∗

+ =
⋂
r≥1
Dn

r .

Moreover, for any fixed r, linear optimization over the cone Cn
r can be performed in polynomial

time in terms of n. This discretization idea was also used in the classical (scalar) setting,
where a hierarchy of polyhedral cones is constructed to approximate the completely positive
cone (consisting of all matrices that admit a Gram representation by nonnegative vectors) and
its dual, the copositive cone (see [29]). Our construction is in fact inspired by this classical
counterpart. Discretization is also widely used in optimization to build good approximations
for polynomial optimization problems over the standard simplex or for evaluating tensor
norms (see e.g. [3], [17], the recent work [6] and references therein).

One of the difficulties in using the cone CS+ for studying the quantum parameter χq(G)
or general quantum correlations in Q stems from the fact that the additional affine conditions
posed on the matrix A ∈ CS+ imply that it must lie on the boundary of the cone CS+. This
is the case for instance for the conditions that A must belong to the affine space At in (1.2),
or the condition LG,t(A) = 0 in (1.3), or the conditions (1.5), (1.6) and (1.7). Since we
do not know whether the cone CS+ is closed, this is why we may get different parameters
depending whether we use the cone CS+ or its closure.

In order to be able to exploit the fact that the cones Cn
r asymptotically cover the full

interior of CSn
+, we will relax the affine constraints (using a small perturbation) to ensure

the existence of a feasible solution in the interior of the cone CS+. In this way we will be
able to get a hierarchy of parameters that can be computed through linear programming
and give the exact value of χ̃q(G). We remark that this result is existential, we can prove
the existence of a linear program permitting to compute the quantum parameter but we do
not know at which stage this happens. This result should be seen in the light of a recent
result of the same flavor proved in [23]. The authors of [23] consider yet another variant
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χqc(G) of the quantum parameter χq(G), satisfying χqc(G) ≤ χq(G), and they show that
χqc(G) can be computed with a positive semidefinite program (also not explicitly known).
The definition of χqc(G) is given below.

Link to other variants of the quantum chromatic number
In the papers [24, 23], Paulsen and coauthors have introduced many variants of the quantum
chromatic number motivated by the study of quantum correlations. We recall two of them,
the parameters χqa(G) and χqc(G), in order to pinpoint the link to our parameter χ̃q(G)
and to our approach.

Recall that the quantum chromatic number χq(G) is the minimum number of colors
that the players must use to always win the corresponding coloring game with a quantum
strategy. In other words, this is the minimum integer t for which there exists a probability
P = (P (i, j|u, v)) ∈ Q with input sets X = Y = V (G) and output sets A = B = [t], such
that P (i, j|u, u) = 0 for all i 6= j ∈ [t] and u ∈ V (G), and P (i, i|u, v) = 0 for all i ∈ [t] and
uv ∈ E(G). For convenience, in the following paragraphs we will omit the dependence of P
on t, which should be considered as implicit. Forcing the probability of these combinations of
inputs and output to be zero imposes that the players have a winning strategy. We combine
those constraints into a single one by defining the linear map LG,t : R(nt)2 → R by

LG,t(P ) =
∑

i 6=j∈[t],u∈V (G)

P (i, j|u, u) +
∑

i∈[t],uv∈E(G)

P (i, i|u, v).

Then, the players have a winning strategy if and only if the probability P satisfies LG,t(P ) = 0.
The following is the original definition of χq(G) in [8]:

χq(G) = min t ∈ N s.t. ∃P ∈ Q with LG,t(P ) = 0.

In [8] it is shown that in the coloring game the optimal quantum strategy is symmetric: the
two players perform the same action upon receiving the same input. This special additional
structure of the coloring game is the reason why χq(G) can be equivalently reformulated as
in (1.1).

The parameter χqa(G) defined in [24] asks the probability P to be in the closure of Q:

χqa(G) = min t ∈ N s.t. ∃P ∈ cl(Q) with LG,t(P ) = 0.

Hence, the following relationship holds: χqa(G) ≤ χq(G).
The authors of [24] (see also [23]) furthermore considered probability distributions arising

from the relativistic point of view. Roughly, instead of assuming that the measurement
operators act on different Hilbert spaces so that joint measurements have a tensor product
structure, in the relativistic model the measurement operators act on a common Hilbert space
and the operators of the two parties commute mutually. In this case, joint measurement
operators have a product structure. More formally, a correlation P = (P (a, b|x, y)) is obtained
from relativistic quantum field theory if it is of the form P (a, b|x, y) = ψ†Ea

xF
b
yψ, where ψ is

a unit vector in a (possibly infinite dimensional) Hilbert space H, Ea
x and F b

y are positive
operators on H satisfying

∑
a∈A E

a
x = I =

∑
b∈B F

b
y for all x ∈ X, y ∈ Y and Ea

xF
b
y = F b

yE
a
x

for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y . We denote by Qc the set of quantum bipartite correlations
arising from the relativistic point of view. The set Qc is closed (see e.g. [12, Proposition 3.4])
and the following inclusions hold:

Q ⊆ cl(Q) ⊆ Qc. (1.9)

TQC’15



132 Completely Positive Semidefinite Cone

Deciding whether equality Qc = cl(Q) holds is known to be equivalent to Connes’ embedding
conjecture (see [22, 12, 15]) and deciding whether Qc = Q is known as Tsirelson’s problem.

In [24] the parameter χqc(G) is defined as

χqc(G) = min t ∈ N s.t. ∃P ∈ Qc with LG,t(P ) = 0.

In [23] it is shown that χqc(G) can be computed by a positive semidefinite program (after
rounding). This result is existential, meaning that the program is not explicitly known. For
this the authors of [23] use the semidefinite programming hierarchy developed by Navascués,
Pironio and Acín [21] for noncommutative polynomial optimization. This technique can be
applied since the definition of χqc(G) is in terms of products of operators. Note that this
technique cannot be applied to the parameters χqa(G) and χq(G) whose definitions involve
tensor products of operators. It is not know whether the parameters χqa(G) and χq(G) can
be written as semidefinite programs. As pointed out in [23], in view of the inclusions in (1.9),
the following relationships hold between the parameters:

χqc(G) ≤ χqa(G) ≤ χq(G).

Using Theorem 1, we can reformulate the parameters χq(G) and χqa(G) as feasibility
problems over affine sections of the cones CS+ and cl(CS+), respectively. Namely, we have

χq(G) = min t s.t. ∃P ∈ π(CS2nt
+ ∩ Bt) with LG,t(P ) = 0, and

χqa(G) = min t s.t. ∃P ∈ cl(π(CS2nt
+ ∩ Bt)) with LG,t(P ) = 0.

Recall that we introduced the variant χ̃q(G) by replacing the cone CS+ by its closure in the
definition (1.1) of χq(G). Analogously, we introduce the variant χ̃qa(G) by replacing CS+ by
its closure in the above definition of χqa(G). Namely,

χ̃qa(G) = min t s.t. ∃P ∈ π(cl(CS2nt
+ ) ∩ Bt) with LG,t(P ) = 0. (1.10)

Note that the set cl(CS+)∩Bt is bounded, thus compact, so that its projection π(cl(CS+)∩Bt)
is compact too. Hence the inclusion CS+ ∩ Bt ⊆ cl(CS+) ∩ Bt implies:

cl(π(CS+ ∩ Bt)) ⊆ π(cl(CS+) ∩ Bt)

and thus the following relationship: χ̃qa(G) ≤ χqa(G). In Section 3 we will show that χ̃qa

can be computed with a linear program.
Moreover, note that if a matrix A is feasible for the program (1.4) defining χ̃q(G), then the

matrix R = ( A A
A A ) is feasible for the program (1.10) defining χ̃qa(G). Hence, χ̃qa(G) ≤ χ̃q(G)

holds.

The relationship between the parameters χq(G), χqc(G), χqa(G) and χ̃qa(G), χ̃q(G) can
be summarized as follows:

χqc(G) ≤ χqa(G) ≤ χq(G)

≤ ≤

χ̃qa(G) ≤ χ̃q(G)

2 Polyhedral approximations of CS+ and its dual cone CS∗+
In this section we construct hierarchies of polyhedral cones converging asymptotically to the
completely positive cone and its dual. We start in Section 2.1 by recalling the definition
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of CS+ and of CS∗+ as well as some useful properties and introduce the new hierarchy in
Section 2.2. The construction of our polyhedral hierarchy is directly inspired from the
classical case where analogous hierarchies of polyhedral cones exist for approximating the
completely positive cone CPn and the copositive cone COPn; in Appendix A we recall this
construction.

2.1 The completely positive semidefinite cone and its dual
The completely positive semidefinite cone was introduced in [19] to study graph parameters
arising from quantum nonlocal games and quantum information theory. It has also been
considered implicitly in [13].

Recall that a matrix A ∈ Sn is positive semidefinite if and only if it admits a Gram
representation by vectors, i.e., if A = (〈xi, xj〉)n

i,j=1 for some x1, . . . , xn ∈ Rd and d ≥ 1. We
write A � 0 (resp., A � 0) when A is positive semidefinite (resp., positive definite) and Sn

+ is
the set of positive semidefinite matrices.

I Definition 2. The completely positive semidefinite cone CSn
+ is the set of symmetric

matrices A which admit a Gram representation by positive semidefinite matrices, i.e.,
A = (〈Xi, Xj〉)i,j for some X1, . . . , Xn ∈ Sd

+ and d ∈ N.

The completely positive cone CPn is the set of symmetric matrices that admit a Gram
representation by nonnegative vectors: A ∈ CPn if A = (〈xi, xj〉)i,j for some x1, . . . , xn ∈ Rd

+
and d ∈ N. Hence CPn can be considered as the classical analog of CSn

+. Clearly every
completely positive semidefinite matrix is positive semidefinite and nonnegative, and every
completely positive matrix is completely positive semidefinite. That is, we have the following
relationships between these cones:

CPn ⊆ CSn
+ ⊆ Sn

+ ∩ Rn×n
+ .

In [19] it is shown that all these inclusions are strict for n ≥ 5 (see also [13]). For n ≤ 4 it is
well known that CPn = Sn

+ ∩ Rn×n
+ . For this and other properties of CP we refer the reader

to the book [5]. Both CPn and Sn
+ are closed cones, while we do not know whether CSn

+ is
closed.

Moving on to the dual side, as noted in [19], the dual cone of CSn
+ has a simple characteriza-

tion in terms of trace nonnegative polynomials. Given a matrixM ∈ Sn, define the polynomial
pM =

∑n
i,j=1 Mijxixj in n noncommutative variables. ThenM belongs to the dual cone CSn∗

+
precisely when Tr(pM (X1, . . . , Xn)) ≥ 0 for all n-tuples X = (X1, . . . , Xn) ∈ ∪d≥1(Sd

+)n.
If we require nonnegativity only for all X ∈ Rn

+ (i.e., the case d = 1), which amounts to
requiring that the polynomial pM takes nonnegative values when evaluated at any point
in Rn

+, then the matrix M is said to be copositive; COPn denotes the cone of copositive
matrices. The cones CPn and COPn are dual to each other: COPn = CPn∗ and, by duality,
we have the inclusions:

Sn
+ + (Sn ∩ Rn×n

+ ) ⊆ CSn∗
+ ⊆ COP

n.

As will be explained in detail in Section 3, in order to be able to use our polyhedral
hierarchy, we will need to have matrices that are in the interior of CS+. Recall that a
matrix A ∈ CS+ lies in the interior of CS+ if and only if 〈A,M〉 > 0 for all nonzero matrices
M ∈ CS∗+. Hence, A lies in the boundary of CS+ if and only if there exists a nonzero matrix
M ∈ CS∗+ such that 〈A,M〉 = 0. For further reference we observe that matrices in CS+ with
a zero entry, or lying in the affine spaces At or Bt, lie in the boundary of CS+.

TQC’15



134 Completely Positive Semidefinite Cone

I Lemma 3. Consider a matrix A in the cone CS+ (of appropriate size). Then A lies in
the boundary of CS+ in any of the following cases: (i) A has a zero entry; (ii) A belongs to
the affine space At defined by (1.2), or (iii) A belongs to the affine space Bt defined by the
conditions (1.5), (1.6) and (1.7).

2.2 The new cones Cn
r and Dn

r

We now introduce the cones Cn
r , which will form a hierarchy of inner approximations for the

cone CSn
+, and the cones Dn

r , which will form a hierarchy of outer approximations for the
dual cone CSn∗

+ . These cones are in fact dual to each other, so it suffices to define the cones
Dn

r . The idea is simple and analogous to the idea used in the classical (scalar) case: instead
of requiring trace nonnegativity of the polynomial pM over the full set ∪d≥1(Sd

+)n, we only
ask trace nonnegativity over specific finite subsets. We start with defining the set

∆n = {X = (X1, . . . , Xn) ∈
⋃
d≥1

(Sd
+)n :

n∑
i=1

Tr(Xi) = 1}, (2.1)

which can be seen as the dimension-free matrix analog of the standard simplex ∆n in Rn.
As we now observe, a matrix M belongs to CSn∗

+ if and only if its associated polynomial pM

is trace nonnegative on all n-tuples of rational matrices in ∆n (see Appendix C for a proof).

I Lemma 4. M ∈ CSn∗
+ if and only if Tr(pM (X)) ≥ 0 for all X ∈∆n with rational entries.

This motivates introducing the following subset ∆(n, r) of the set ∆n, obtained by
considering only n-tuples of rational positive semidefinite matrices with denominator at most
r. This set can be seen as a matrix analog of the rational grid point subsets of the standard
simplex ∆n and it permits to define the new cones Dn

r .

I Definition 5. Given an integer r ∈ N, define the set

∆(n, r) = {X ∈∆n : each Xi has rational entries with denominator ≤ r}

and define the cone

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

Next we show that the cone Dn
r is a polyhedral cone. Indeed, as we observe below,

although the set ∆(n, r) is not finite, we may without loss of generality replace in the
definition of Dn

r the set ∆(n, r) by its subset ∆(n, r), obtained by restricting to r × r

matrices X1, . . . , Xn. The next lemma is proved in Appendix C.

I Lemma 6. Define the set

∆(n, r) = {X ∈ (Sr
+)n :

n∑
i=1

Tr(Xi) = 1, each Xi has rational entries with denominator ≤ r}.

Then, equality holds:

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

I Lemma 7. For any fixed r, the cardinality of the set ∆(n, r) is polynomial in terms of
n. More precisely, let γr denote the number of r × r positive semidefinite matrices whose
entries are rational with denominator at most r and whose trace is at most one. Then,
|∆(n, r)| ≤ (γr)r if n ≤ r, and |∆(n, r)| ≤

(
n
r

)
(γr)r if n > r.
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Notice that Tr(pM (X)) =
∑

i,j Mij〈Xi, Xj〉 for any X = (X1, . . . , Xn). Hence, the cone
Dn

r can be equivalently defined as the set of matrices M ∈ Sn satisfying the (finitely many)
linear inequalities:

∑n
i,j=1 Mij〈Xi, Xj〉 ≥ 0 for all (X1, . . . , Xn) ∈∆(n, r). This implies:

I Corollary 8. The cone Dn
r is a polyhedral cone.

As ∆(n, r) ⊆∆(n, r + 1), the sets Dn
r form a hierarchy of outer approximations for CSn∗

+ :

CSn∗
+ ⊆ Dn

r+1 ⊆ Dn
r ⊆ · · · ⊆ Dn

1 .

Hence, CSn∗
+ ⊆

⋂
r≥1Dn

r . In fact, as a direct application of Lemma 4, equality holds.

I Theorem 9. CSn∗
+ =

⋂
r≥1Dn

r .

We will also use the following property of the cones Dn
r .

I Lemma 10. Consider a sequence of matrices (Mr)r≥1 in Sn converging to a matrix
M ∈ Sn. If Mr ∈ Dn

r for all r, then M ∈ CSn∗
+ .

We now turn to the description of the dual cone Cn
r := Dn∗

r . As a direct application of
Lemma 6, we can conclude that Cn

r is the set of conic combinations of matrices which have a
Gram representation by matrices in ∆(n, r); that is,

Cn
r = cone{A ∈ Sn : A = (〈Xi, Xj〉)n

i,j=1 for some (X1, . . . , Xn) ∈∆(n, r)}. (2.2)

By construction, the cones Cn
r are polyhedral and they form a hierarchy of inner approxima-

tions of CSn
+: Cn

1 ⊆ · · · ⊆ Cn
r ⊆ Cn

r+1 ⊆ CS
n
+, with strict inclusion.

I Lemma 11. For any n ≥ 2 and r ≥ 1, we have strict inclusions: Cn
r ( Cn

r+1 ( CSn
+.

Proof. The only fact which needs a proof is that each inclusion is strict. It suffices to show
this for n = 2, since one can extend a matrix A in C2

r to a matrix in Cn
r by adding all zero

coordinates, and the same for CS+. For this we consider a rank 1 matrix A = vvT , where
v = (1 a)T and a is a nonnegative scalar. Then A ∈ CS2

+. If we choose a to be an irrational
number then A cannot belong to any cone C2

r and, if we choose a = 1/(r+ 1), then A belongs
to C2

r+1 but not to C2
r . J

We now show that the union of the cones Cn
r covers the interior of the cone CSn

+.

I Theorem 12. We have the inclusions:

int(CSn
+) ⊆

⋃
r≥1
Cn

r ⊆ CS
n
+.

Proof. We only need to show the first inclusion. For this, consider a matrix A in the interior
of the cone CSn

+ and assume that A does not belong to
⋃

r≥1 Cn
r . Then, for each r ≥ 1, there

exists a hyperplane separating A from the (closed convex) cone Cn
r . That is, there exists

a matrix Mr ∈ Dn
r such that 〈Mr, A〉 < 0 and ‖Mr‖ = 1. Since all matrices Mr lie in a

compact set, the sequence (Mr)r admits a converging subsequence (Mri
)i≥1 which converges

to a matrix M ∈ Sn. By Lemma 10, we know that the matrix M belongs to the cone CSn∗
+

and thus 〈A,M〉 ≥ 0. On the other hand, as 〈A,Mri
〉 < 0 for all i, by taking the limit as i

tends to infinity, we get that 〈A,M〉 ≤ 0. Hence we obtain 〈A,M〉 = 0, which contradicts
the assumption that A lies in the interior of CSn

+. J

It is easy to give an explicit description of the cones Cn
r for small r. For example, Cn

1 is
the set of n× n diagonal nonnegative matrices and Cn

2 is the convex hull of the matrices Eii

and Eii + Eij + Ejj (for i, j ∈ [n]), where Eij denote the elementary matrices in Sn.
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3 LP lower bounds to the quantum chromatic number

In this section we use the polyhedral hierarchy Cn
r (r ≥ 1) to show that the parameter χ̃q(G)

in (1.4) can be written as a linear program. We recall the definition of χ̃q(G):

χ̃q(G) = min t ∈ N s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0, (3.1)

where the affine space At is defined in (1.2) and the map LG,t in (1.3). A first natural
approach for building a linear relaxation of χ̃q(G) is to replace the cone cl(CSnt

+ ) in the
definition of χ̃q(G) by the subcone Cn

r , leading to the parameter

`r(G) = min t ∈ N s.t. ∃A ∈ Cnt
r , A ∈ At and LG,t(A) = 0.

As Cnt
r ⊆ CSnt

+ , we have χ̃q(G) ≤ χq(G) ≤ `r(G). Moreover the sequence (`r(G))r is
monotone nonincreasing and thus has a limit (it becomes stationary). However it is not clear
whether the limit is equal to χq(G). If one could claim that for t = χq(G) there is a feasible
matrix A for the program (3.1) which lies in the interior of CSnt

+ then, by Theorem 12, A
would belong to some cone Cnt

r which would imply equality χq(G) = `r(G). However, this
idea cannot work because, as observed in Lemma 3, any matrix feasible for (3.1) lies in the
boundary of CSnt

+ . To go around this difficulty, our strategy is to relax the affine constraints
in (3.1) so to allow feasible solutions in the interior of CSnt

+ .
More precisely, given an integer k ≥ 1, we consider the affine space At

k defined by the
inequalities: |

∑
i,j Aui,vj − 1 | ≤ 1

k for all u, v ∈ V (G). We define the parameter:

λk(G) = min t s.t. ∃A ∈ cl(CSnt
+ ), A ∈ At

k and LG,t(A) ≤ 1
k
. (3.2)

In a first step we show that λk(G) = χ̃q(G) for k large enough.

I Lemma 13. For any graph G, there exists k0 ∈ N such that χ̃q(G) = λk(G) for all k ≥ k0.

Proof. Notice that λk(G) ≤ χ̃q(G) holds for every k ∈ N. Indeed, any matrix solution for
χ̃q(G) is also a solution for λk(G). Moreover, as the sequence (λk(G))k∈N is a monotone
nondecreasing sequence of natural numbers upper bounded by χ̃q(G), there exists a k0 such
that λk(G) = λk0(G) for all k ≥ k0. Let t = λk0(G). For all k ≥ k0 there exists a matrix
Ak ∈ cl(CSnt

+ ) with Ak ∈ At
k and LG,t(Ak) ≤ 1

k . Consider the sequence (Ak)k≥k0 , which is
bounded as all Ak lie in At

k0
. Therefore, the sequence has a converging subsequence to, say,

A where A ∈ cl(CSnt
+ ), A ∈ At and LG,t(A) = 0. Hence, A is a feasible solution for χ̃q(G)

and χ̃q(G) ≤ t = λk0(G) = λk(G) for all k ≥ k0. J

In a second step we show that the new parameter λk(G) can be computed by a linear
program. For this we replace in the definition of λk(G) the cone cl(CSnt

+ ) by the polyhedral
cone Cnt

r , leading to the following parameter:

λr
k(G) = min t s.t. ∃A ∈ Cnt

r , A ∈ At
k and LG,t(A) ≤ 1

k
. (3.3)

Notice that this parameter λr
k(G) can be computed through a linear program since Cnt

r is
polyhedral. We will show that for any graph G there exist integers k0 and r0 such that
χ̃q(G) = λr0

k0
(G). We emphasize that this is an existential result: we do not know for which

integers k0 and r0 such a convergence happens. One of the ingredients to prove the result is
to show the existence of a matrix in the interior of CS+ satisfying certain constraints. To
this end, we will use the matrix Z = I +J ∈ Snt where I and J are, respectively, the identity
and the all-ones matrices. (See Appendix C for the proof of the following lemma.)
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I Lemma 14. The matrix Z = I + J ∈ Snt lies in the interior of CS+. Moreover, we have
that

∑
i,j∈[t] Zui,uj = t2 + t for all u ∈ V (G),

∑
i,j∈[t] Zui,vj = t2 for all u 6= v ∈ V (G) and

LG,t(Z) = nt2 − nt+mt, where m is the number of edges of the graph G.

I Theorem 15. For any graph G there exist k0 and r0 ∈ N such that χ̃q(G) = λr
k(G) for

all k ≥ k0 and all r ≥ r0. Moreover λr0
k0

(G), and thus χ̃q(G), can be computed via a linear
program.

Proof. From Lemma 13 we know that there exists k0 ∈ N such that λk(G) = χ̃q(G) for all
k ≥ k0. In view of this, we just need to show that for this k0 there exists an integer r0 ∈ N
for which λr0

k0
(G) = λk0(G). Let t = λk0(G) = χ̃q(G).

By the definitions (3.2) and (3.3) and the inclusion relationship between the cones Cnt
r , we

have that the sequence of natural numbers (λr
k0

)r∈N is nonincreasing and it is lower bounded
by λk0(G). Hence, there exists a natural number r0 such that λr

k0
(G) = λr0

k0
(G) for all r ≥ r0.

We are left to prove that λr0
k0

(G) ≤ λk0(G) = t.

To this end, we show that there exists a matrix Yk0 ∈ int(CS+) with Yk0 ∈ At
k0

and
LG,t(Yk0) ≤ 1

k0
. This will suffice since then, by Theorem 12, Yk0 ∈ Cnt

r0
for some r0. Therefore,

Yk0 satisfies the conditions in program (3.3) and thus λr0
k0

(G) ≤ t = λk0(G). To show the
existence of such a matrix Yk0 , let A ∈ cl(CS+) be a feasible solution of the program (3.1)
defining χ̃q(G) = t and consider the matrix Z = I + J which belongs to int(CS+) (by
Lemma 14). Then, any convex combination Zε = (1 − ε)A + εZ (for 0 < ε < 1) lies in
the interior of CS+. If we can tune ε so that the new matrix Zε satisfies the conditions
in program (3.3), then we can choose Yk0 = Zε and we are done. We claim that selecting
ε := min{ 1

k0(t2+t−1) ,
1

k0(nt2−nt+mt)} will do the trick. Indeed, for this choice of ε we have
Zε ∈ int(CS+) and LG,t(Zε) = εLG,t(Z) ≤ 1

k0
(use Lemma 14). Moreover, Zε ∈ At

k0
since

for all u, v ∈ V (G) the following holds∣∣ ∑
i,j∈[t]

Yk0 (ui, vj)−1
∣∣ =
∣∣(1−ε)+ε

∑
i,j∈[t]

Zui,vj −1
∣∣ ≤
∣∣−ε+ε

∑
i,j∈[t]

Zui,uj

∣∣ =
∣∣ε(t2 + t−1)

∣∣ ≤ 1
k0
.

Summarizing, from Lemma 13 we know that there exists an integer k0 ∈ N such that
λk0(G) = χ̃q(G) and we just proved that for this k0 there exists an integer r0 ∈ N with the
property that λr0

k0
(G) = λk0(G) = χ̃q(G). J

The same result holds for the parameter χ̃qa(G) introduced in (1.10). For clarity we
repeat its definition in the following form:

χ̃qa(G) = min t ∈ N s.t. ∃A ∈ cl(CS2nt
+ ), A ∈ Bt with LG,t(π(A)) = 0.

Note the analogy with the definition (3.1) of χ̃q(G). The only difference is that we now work
with matrices A of size 2nt (instead of nt) lying in the affine space Bt (instead of At) and
satisfying LG,t(π(A)) = 0 (instead of LG,t(A) = 0). In analogy to the parameter λk(G) we
can define the parameter Λk(G) by doing these replacements and defining the relaxed affine
space Bt

k in the same way as At
k was defined from At. Then the analog of Lemma 13 holds:

there exists an integer k0 such that χ̃qa(G) = Λk(G) for all k ≥ k0. Next, replacing the cone
cl(CS2nt

+ ) by C2nt
r , we get the following parameter Λr

k(G) (the analog of λk
r (G)):

Λr
k(G) = min t ∈ N s.t. A ∈ C2nt

r , A ∈ Bt
k with LG,t(π(A)) ≤ 1

k
.

The analog of Theorem 15 holds, whose proof is along the same lines and thus omitted.

I Theorem 16. For any graph G, there exist k0 and r0 ∈ N such that χ̃qa(G) = Λr
k(G) for

all k ≥ k0 and r ≥ r0. Hence the parameter χ̃qa(G) can be computed by a linear program.
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I Remark 17. The above approach applies also to other quantum graph parameters like the
communication entanglement-assisted coloring number χ∗(G) [7] and analogous variants αq(G)
[25] and α∗(G) [10] of the classical independence number α(G). Hence these parameters can
be expressed by means of a linear program. This applies more generally to binary constraint
system games since, as pointed out by Ji [14], they can be represented as generalized graph
coloring problems to which our approach can be applied.

Similar results can also be obtained for the following class of optimization problems:

min〈C,A〉 s.t. A ∈ cl(CSn
+), A ∈ A with L(A) = 0,

where C ∈ Sn, L a linear functional nonnegative on CSn
+, and A ⊆ Sn an affine space such

that A ∩ CSn
+ is bounded. Then a double hierarchy can be defined in analogous manner,

yielding a sequence of two-parameters linear programs, which converge asymptotically to the
optimum value of the above optimization program.

4 The closure of CS+

In the Introduction we have mentioned that if the completely positive semidefinite cone
would be closed, then the set of quantum correlations would be closed as well (see also
[20]). Although we still do not know whether CS+ is closed, in this section we make a small
progress by giving a new description of the closure of CS+, using the tracial ultraproduct of
matrix algebras Rk×k. More precisely, the closure cl(CS+) consists of the symmetric matrices
having a Gram representation by positive semidefinite operators which belong to the above
mentioned tracial ultraproduct. This ultraproduct will be an algebra of bounded operators
on an infinite dimensional Hilbert space.

A connection between cl(CS+) and the Gram matrices of operators on infinite dimensional
Hilbert spaces has already been made by two of the authors in [19]. Namely, let SN denote
the vector space of all infinite symmetric matrices X = (Xij) indexed by N with finite
L2-norm

∑
i,j≥1 X

2
ij <∞, equipped with the inner product 〈X,Y 〉 =

∑
i,j≥1 XijYij . Using

this notation, we let CSn
∞+ denote the convex cone of matrices A ∈ Sn having a Gram

representation by positive semidefinite matrices in SN. Then it is shown in [19] that
CS+ ⊆ CS∞+ ⊆ cl(CS∞+) = cl(CS+) holds. In particular, the closure of CS+ a priori
contains matrices having a Gram representation by infinite dimensional matrices.

Tracial ultraproducts of matrix algebras, or more generally of finite von Neumann algebras,
are an adapted version of classical ultraproducts from model theory. Since the methods used
might be not familiar to the reader, we recap the construction of tracial ultraproducts. Then
we introduce the new cone CSU+ and show that it is equal to the closure of CS+. Finally,
we present a possibly larger cone CSvN+, containing CS+, which can be seen as an infinite
dimensional analog of the completely positive semidefinite cone. This cone turns out to be
closed. Furthermore, CSvN+ would be equal to cl(CS+) if the embedding problem of Connes
had an affirmative answer. More details about the algebras involved in the general case as
well as on the embedding problem of Connes are given in Appendix B.

4.1 Tracial ultraproducts
The construction of tracial ultraproducts is a standard technique in von Neumann algebras,
see, e.g., the appendix of [4]. Classically one considers complex Hilbert spaces but the
construction works similarly over real Hilbert spaces. Alternatively one can use the complex
construction and ‘realify’ the resulting algebra afterwards, see for instance [2, 18].
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Ultraproducts are constructions with respect to an ultrafilter. We will only consider
ultrafilters on N. Throughout P(N) is the collection of all subsets of N.

I Definition 18. An ultrafilter on the set N is a subset U ⊆ P(N) satisfying the condi-
tions:
(a) ∅ /∈ U ,
(b) if A ⊆ B ⊆ N and A ∈ U then B ∈ U ,
(c) if A,B ∈ U then A ∩B ∈ U ,
(d) for every A ∈ P(N) either A ∈ U or N \A ∈ U .

In particular, any two elements in U need to have non-empty intersection (from (1) and
(3)), which allows only two kinds of ultrafilters: Either every element of U contains a common
element n0 ∈ N or U contains the cofinite sets of N. We are only interested in the second
kind of ultrafilters, which are called free ultrafilters. For a given free ultrafilter U on N we
can define the ultralimit limU ak of a bounded sequence (ak)k∈N of real numbers as follows:

lim
U
ak = a if {k ∈ N : |ak − a| < ε} ∈ U for all ε > 0. (4.1)

Let us have a look at ultralimits in a less formal way. If we have a non-free ultrafilter,
i.e., U = {A ∈ P(N) : k0 ∈ A} for some k0 ∈ N, then limU ak = ak0 for any sequence
(ak)k∈N ⊆ R. The case of a free ultrafilter is more interesting. Then the ultralimit of a
bounded sequence (ak)k∈N will be one of its accumulation points. For example, the sequence
given by ak := (−1)k for all k ∈ N has two accumulation points, and both can be attained as
an ultralimit depending on the choice of the ultrafilter U . In fact, considering the set 2N
of even numbers, we get by conditions (3) and (4) that any ultrafilter contains either 2N
or its complement (the odd numbers 2N + 1) but not both. Hence there is an ultrafilter U
(containing 2N) with limU ak = 1 and an ultrafilter U ′ (containing 2N+1) with limU ′ ak = −1.

I Remark 19. Any bounded sequence of real numbers has an ultralimit and this is unique
for fixed U . In particular, if limk→∞ ak = a then limU ak = a for any free ultrafilter U on N.

We can use ultralimits to construct the tracial ultraproduct of a sequence (Rdk×dk )k∈N
of matrix algebras for dk ∈ N. To simplify notation we letMk = Rk×k denote the matrix
algebra of all k × k matrices and we consider the full sequence (Mk)k∈N, but the same
construction would work for the sequence (Mdk

)k∈N. Here we assume that each Mk is
endowed with the normalized trace trk = 1

k Tr (if the dimension k is clear we might simply
write tr) and the corresponding inner product, so that ‖I‖2 = tr(I) = 1 for the identity
matrix. For T ∈ Mk, ‖T‖ denotes its operator norm and ‖T‖2 its L2-norm, that satisfy
‖ST‖2 ≤ ‖S‖‖T‖2 for S, T ∈Mk. Define the C∗-algebra

`∞(N, (Mk)k) := {(Tk)k∈N ∈
∏
k∈N
Mk : sup

k∈N
‖Tk‖ <∞}.

Every free ultrafilter U on N defines a two-sided ideal

IU := {(Tk)k∈N ∈ `∞(N, (Mk)k) : lim
U
‖Tk‖2 = 0},

which is well-defined since sequences in `∞(N, (Mk)k) are also bounded in the Hilbert-
Schmidt norm. The ideal IU is a maximal ideal and therefore it is closed with respect to the
operator norm. The quotient algebra

MU := `∞(N, (Mk)k)/IU
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is called the tracial ultraproduct of (Mk)k along U . Using the Cauchy-Schwarz inequality it
is easy to show that the map

τU : MU → R, (Tk)k∈N + IU 7→ lim
U

trk(Tk)

is well-defined and defines a tracial state (or trace) onMU , i.e., τU is a normalized positive
linear map satisfying τU (T ∗T ) = τU (TT ∗) for any T ∈ MU . In fact, MU is a finite von
Neumann algebra of type II1 (see Appendix B for definitions). In particular, MU is a
subalgebra of bounded operators on an infinite dimensional Hilbert space. As von Neumann
algebras are in particular C∗ algebras, positive semidefinite operators are exactly squares of
(symmetric) operators.

4.2 Ultraproduct description of cl(CS+)
We are now ready to define the new cone CSU+ which will turn out to be equal to the
closure of CS+. For this, we fix a free ultrafilter U on N and consider the tracial ultraproduct
MU = `∞(N, (Mk)k)/IU where again Mk denotes the full matrix algebra Rk×k for any
k ∈ N. Using this we define

CSU+ := {A ∈ S+ : A = (τU (XiXj)) for some positive semidefinite X1, . . . , Xn ∈MU}.

We note that the trace τU is normalized (i.e., τU (I) = 1) whereas we used the (not normalized)
trace Tr in the definition of CS+. However, both descriptions agree up to rescaling of the
Xi’s.

To show that the closure of CS+ is a subset of CSU+ we will consider a sequence of
matrices A(k) ∈ CSn

+ converging to some A ∈ Sn, i.e., limk→∞A
(k)
ij = Aij for all i, j ∈ [n].

A priori, for each k, there exist an integer dk and matrices X(k)
1 , . . . , X

(k)
n ∈ Sdk

+ such that
A(k) = (tr(X(k)

i X
(k)
j )). The next lemma says that without loss of generality we can assume

dk = k for all k ∈ N (see the Appendix C for a proof).

I Lemma 20. If (Xk)k, (Yk)k ∈
∏

k∈N S
dk
+ are such that the sequence (trdk

(XkYk))k∈N
converges to some a ∈ R, then there exist (X ′k)k, (Y ′k)k ∈

∏
k∈N Sk

+ with trk(X ′kY ′k) → a as
k →∞.

We proceed by showing that the closure of CS+ is equal to CSU+. This is done in two steps.

I Lemma 21. For any free ultrafilter U on N, we have cl(CS+) ⊆ CSU+.

Proof. Let A ∈ cl(CS+) be given. Then there is a sequence of matrices A(k) ∈ CS+
converging to A: limk→∞A

(k)
ij = Aij for all i, j ∈ [n]. For each k, there exist positive

semidefinite matrices X(k)
1 , . . . , X

(k)
n such that A(k) = (tr(X(k)

i X
(k)
j )). By Lemma 20 we

can assume that X(k)
1 , . . . , X

(k)
n ∈ Sk

+. As the matrices A(k) are bounded the matrices
X

(k)
i are bounded as well. Hence the sequence (X(k)

i )k belongs to `∞(N, (Mk)) and we
can consider its image Xi in the tracial ultrapower MU . By the theorem of Łos (see e.g.
[11, Prop. 4.3] and references therein) the operators Xi are positive semidefinite since all
X

(k)
i are positive semidefinite. It suffices now to show that A = (τU (XiXj)) since then

we can conclude that A ∈ CSU+. For this observe that, by the definition of τU , we have:
τU (XiXj) = limU tr(X(k)

i X
(k)
j ) = limU A(k)

ij . On the other hand, as the sequence (A(k)
ij )k

converges to Aij , in view of Remark 19, we have that limU A(k)
ij = Aij . This concludes the

proof. J
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I Theorem 22. For any free ultrafilter U on N, equality cl(CS+) = CSU+ holds.

Proof. In view of Lemma 21 we only have to show the inclusion CSU+ ⊆ cl(CS+). Let
A ∈ CSU+. By assumption, A = (τU (XiXj)) for some positive semidefinite operators
X1, . . . , Xn ∈ MU . As the operators Xi are positive semidefinite, there exist operators
Yi ∈ MU such that Xi = Y 2

i for i ∈ [n], where each element Yi is given by a sequence of
symmetric matrices (Y (k)

i )k ∈
∏

kMk. Further, by definition of τU , for any s ∈ N, the index
set Is = {k ∈ N : |τU (Y 2

i Y
2

j )− tr((Y (k)
i )2(Y (k)

j )2)| ≤ 1
s for all i, j ∈ [n]} belongs to U and is

therefore non-empty. Thus we find for any s ∈ N an index ks ∈ Is. Hence the operators
X

(s)
i := (Y (ks)

i )2 belong to Sks
+ and satisfy∣∣∣τU (XiXj)− tr(X(s)

i X
(s)
j )
∣∣∣ < 1

s
for all i, j ∈ [n] and all s ≥ 1. (4.2)

For each s, the matrix A(s) := (tr(X(s)
i X

(s)
j )) belongs to the cone CS+. Moreover it follows

from (4.2) that the sequence (A(s))s converges to the matrix A as s tends to ∞. This shows
that A belongs to the closure of CS+, which concludes the proof. J

We would like to conclude with another possible description of the closure of CS+ in the
case that Connes’ embedding conjecture turns out to be true.

As mentioned at the beginning of the section, the closure of CS+ contains the cone CS∞+,
i.e., it contains symmetric matrices which have a Gram representation by some class of
positive semidefinite infinite dimensional matrices. Also the given description of cl(CS+) as
CSU+ involves Gram representations by operators on an infinite dimensional Hilbert space.
In regard to the relativistic model of quantum correlations where one allows all (possibly
infinite dimensional) Hilbert spaces one might ask for the most general infinite dimensional
version of CS+. Since one is restricted to operators for which one can define an inner product
(or a trace), a decent candidate for the infinite dimensional analog of CS+ is

CSn
vN+ := {A ∈ Sn

+ : A = (τN (XiXj)) for a finite vN algebra N and psd X1, . . . , Xn ∈ N},

where we allow any finite von Neumann algebra N (with trace τN ). Obviously we have the
chain of inclusions CS+ ⊆ CSU+ ⊆ CSvN+.

Moreover, using the general theory of tracial ultraproducts of von Neumann algebras
(instead of just matrix algebras), one can show with a similar line of reasoning as in Lemma
21 that CSvN+ is closed. Indeed, take a sequence of matrices A(k) ∈ CSn

vN+ converging to
some A ∈ Sn. Then limk→∞A

(k)
ij = Aij for all i, j ∈ [n] and for each k, there exist a finite

von Neumann algebra Nk with trace τk and bounded positive operators X(k)
1 , . . . , X

(k)
n ∈ Nk

such that A(k) = (τk(X(k)
i X

(k)
j )). Fixing a free ultrafilter U one can conclude that the

images Xi of the sequences (X(k)
i )k in the tracial ultraproduct NU = `∞(N, (Nk)k)/IU of

the corresponding finite von Neumann algebras provide a Gram representation for A in the
von Neumann algebra NU . Hence the following statement holds.

I Theorem 23. CSvN+ is a closed cone.

Summarizing we have the inclusions:

cl(CSn
+) = CSn

U+ ⊆ CS
n
vN+ ⊆ Sn

+ ∩ Rn×n
+ .

In this context, we would like to mention that [13] shows the strict inclusion CSn
vN+ (

Sn
+ ∩ Rn×n

+ for any n ≥ 5. Finally, if Connes’ embedding conjecture is true, one can show,
using Proposition 25 from Appendix B, that cl(CS+) = CSvN+.
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A Polyhedral approximations of CPn and COPn

As mentioned above, the copositive cone COPn consists of all matrices M ∈ Sn for which the
polynomial pM =

∑n
i,j=1 Mijxixj is nonnegative over Rn

+. Alternatively, a matrix M ∈ Sn

is copositive if and only if the polynomial pM is nonnegative over the standard simplex

∆n = {x ∈ Rn
+ :

n∑
i=1

xi = 1}.

The idea for constructing outer approximations of the copositive cone is simple and relies
on requiring nonnegativity of the polynomial pM over all rational points in the standard
simplex with given denominator r and letting r grow. This idea is made explicit in [29]
and goes back to earlier work on how to design tractable approximations for quadratic
optimization problems over the standard simplex [3, 16] and more general polynomial
optimization problems [17]. More precisely, for an integer r ≥ 1, define the sets

∆(n, r) = {x ∈ ∆n : rx ∈ Zn}, ∆̃(n, r) =
r⋃

s=1
∆(n, s)

where we restrict to rational points in ∆n with given denominators. The sets ∆̃(n, r) are
nested within the standard simplex: ∆̃(n, r) ⊆ ∆̃(n, r + 1) ⊆ ∆n. Now, following Yildirim
[29], define the cone:

On
r = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ ∆̃(n, r)},

and its dual cone On∗
r , which is the conic hull of all matrices of the form vvT for some

v ∈ ∆̃(n, r). By construction, the cones On
r form a hierarchy of outer approximations for

COPn and their dual cones form a hierarchy of inner approximations for CPn:

COPn ⊆ On
r+1 ⊆ On

r and On∗
r ⊆ On∗

r+1 ⊆ CP
n.

Yildirim [29] shows the following convergence results.

I Theorem 24 ([29]). We have: COPn =
⋂

r≥1On
r . Moreover, int(CPn) ⊆

⋃
r≥1On∗

r ⊆ CP
n

and CPn is equal to the closure of the set
⋃

r≥1On∗
r .
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B Von Neumann algebras and Connes’ embedding problem

We give a short overview of what is needed for our purpose; for details we refer to the
book [27].

A von Neumann algebra N is a unital ∗-subalgebra of the ∗-algebra B(H) of bounded
operators on a Hilbert space H that is closed in the weak operator topology. The weak
operator topology is the weakest topology on B(H) such that the functional B(H)→ C which
maps T 7→ 〈Tx, y〉 is continuous for any x, y ∈ H. In other words, a sequence (Ti)i ∈ B(H)
converges to T ∈ B(H) if for all x, y ∈ H the sequence (〈Tix, y〉)i converges to 〈Tx, y〉.

A factor is a von Neumann algebra with trivial center. Every von Neumann algebra on a
separable Hilbert space is isomorphic to a direct integral of factors, which is the appropriate
analog of matrix block decomposition.

A factor F is finite if it possesses a normal, faithful, tracial state τ : F → C. In particular,
we can always assume that τ(I) = 1. This tracial state τ is unique and gives rise to the
Hilbert-Schmidt norm on F given by ‖T‖2

2 := τ(T ∗T ) for T ∈ F . A von Neumannn algebra
is finite if it decomposes into finite factors. Every finite von Neumann algebra comes with a
trace, which might not be unique.

Von Neumann algebras can be classified into two types depending on the behavior of
their projections (i.e., the elements P ∈ N satisfying P = P ∗ = P 2). If for a given finite
factor F with trace τ the range of τ over all projections P ∈ F is discrete, then F is of type
I. A von Neumann algebra is of type I if it consists only of type I factors. Any finite type I
von Neumann algebra is isomorphic to a matrix algebra over C. The only other possibility
for a finite factor is that τ maps projections (surjectively) onto [0, 1]. Those are II1 factors,
and a von Neumann algebra is of type II1 if it is finite and contains at least one II1 factor.

Connes’ embedding problem asks to which extent II1 factors are close to matrix algebras.
Murray and von Neumann showed that there is a unique II1 factor R which contains an
ascending sequence of finite-dimensional von Neumann subalgebras, i.e. matrix algebras, with
dense union. This factor R is called the hyperfinite II1 factor. There are several constructions
of R, e.g., as infinite tensor product

⊗
n∈NM2(C) of the von Neumann algebras M2(C),

which is the weak closure of the algebraic tensor product
⊗

n∈NM2(C). In fact, any infinite
countable sequence of matrix algebras will do.

Connes conjectured that all separable II1 factors embed (in a trace-preserving way) into an
ultrapower RU of the hyperfinite II1 factor R, where the ultrapower RU is just a short-hand
notation for the ultraproduct `∞(N, (R)k)/IU . Since R contains ascending sequences of
matrix algebras with dense union, any matrix algebraMk embeds into R. One can extend
these embeddings ofMk into R to an embedding of the tracial ultraproductMU into RU
(using a more general construction of ultralimits), hence the finite von Neumann algebra MU
satisfies Connes’ embedding conjecture.

This conjecture is equivalent to a huge variety of other important conjectures in, e.g.,
operator theory, noncommutative real algebraic geometry and quantum information theory.
In particular, as we already mentioned in the introduction, it is equivalent to deciding whether
cl(Q) = Qc holds.

For the alternative description of cl(CS+) in the case that Connes’ embedding conjecture
is a true statement, we will use the following result on finite von Neumann algebras which
embed into RU . The claim is that tracial moments of an embeddable finite factor can be
approximated up to arbitrary precision by matricial tracial moments. This is stated more
formally in the next proposition, for a proof see e.g. [9].
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I Proposition 25. Let (F , τ) be a II1 factor which embeds into RU for some free ultrafilter U .
Then F has matricial microstates, i.e., for any n ∈ N and given self-adjoint T1, . . . , Tn ∈ F
the following holds: for every s ∈ N and ε > 0 there exists d ∈ N and B1, . . . , Bn ∈ Sd such
that

|τ(Ti1 · · ·Tit)− tr(Bi1 . . . Bit))| < ε for all i1, . . . , it ∈ [n], t ≤ s.

C Additional proofs

The proofs of Lemma 3, 7 and 10 are easy and thus omitted.

Proof of Lemma 4
Instead of Lemma 4 we prove the following more elaborate version.

I Lemma 26. For M ∈ Sn, the following assertions are equivalent:
(i) M ∈ CSn∗

+ , i.e., Tr(pM (X)) ≥ 0 for all X ∈ ∪d≥1(Sd
+)n.

(ii) Tr(pM (X)) ≥ 0 for all X ∈∆n.
(iii) Tr(pM (X)) ≥ 0 for all X = (X1, . . . , Xn) ∈∆n with X1 � 0, . . . , Xn � 0.
(iv) Tr(pM (X)) ≥ 0 for all X = (X1, . . . , Xn) ∈ ∆n with X1 � 0, . . . , Xn � 0 and with

rational entries.
(v) Tr(pM (X)) ≥ 0 for all X ∈∆n with rational entries.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv), (i) =⇒ (v) and (v) =⇒ (iv) are
clear. We will show that (iv) =⇒ (iii) =⇒ (ii) =⇒ (i).

The implication (ii) =⇒ (i) follows by scaling: Let X ∈ (Sd
+)n with λ =

∑n
i=1 Tr(Xi) > 0

(else, X is identically zero and Tr(pM (X)) = 0). Then, X/λ ∈∆n and thus Tr(pM (X/λ)) ≥ 0,
which implies Tr(pM (X)) ≥ 0.

The remaining implications follow using continuity arguments. Namely, for (iv) =⇒ (iii),
use the fact that the set of rational positive definite matrices is dense within the set of positive
definite matrices and, for (iii) =⇒ (ii), use the fact that the set of positive definite matrices
is dense within the set of positive semidefinite matrices (combined with rescaling). J

Proof of Lemma 6
We show that

Dn
r = {M ∈ Sn : Tr(pM (X)) ≥ 0 ∀X ∈∆(n, r)}.

Proof. The inclusion “⊇" is clear since ∆(n, r) ⊆∆(n, r).
To show the reverse inclusion, take a matrix M such that Tr(pM (X)) ≥ 0 for all

X ∈ ∆(n, r). Consider a n-tuple X = (X1, . . . , Xn) ∈ ∆(n, r). The matrices X1, . . . , Xn

are rational with denominator at most r,
∑n

i=1 Tr(Xi) = 1 and X1, . . . , Xn ∈ Sd
+ with d > r

(else there is nothing to prove). For each i ∈ [n], set Ii = {k ∈ [d] : Xi(k, k) 6= 0} and
notice that Tr(Xi) ≥ |Ii|/r (since each diagonal entry Xi(k, k) indexed by k ∈ Ii is at
least 1/r). Hence we have 1 =

∑n
i=1 Tr(Xi) ≥

∑n
i=1 |Ii|/r, implying

∑n
i=1 |Ii| ≤ r. Then

we can find a set I containing I1 ∪ . . . ∪ In with cardinality |I| = r. As each matrix Xi

has only zero entries outside of its principal submatrix Xi[I] indexed by I, it follows that
Tr(pM (X1, . . . , Xn)) = Tr(pM (X1[I], . . . , Xn[I])) ≥ 0, where the last inequality follows from
the fact that (X1[I], . . . , Xn[I]) belongs to the set ∆(n, r). J
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Proof of Lemma 14
We will only show that the matrix Z = I + J ∈ Snt lies in the interior of CS+, the other
claims are direct verification.

Proof. Assume that there exists a matrix M ∈ CSnt∗
+ such that 〈M, I + J〉 = 0; we show

that M = 0. Indeed, as both I and J lie in CSnt
+ we get that Tr(M) = 0 and 〈J,M〉 = 0.

Observe that since M is copositive its diagonal entries are nonnegative and thus equal to 0,
which in turn implies that all its entries must be nonnegative. Combining with 〈J,M〉 = 0,
we deduce that M is identically zero. J

Proof of Lemma 20
Lemma 20 says that if we have (Xk)k, (Yk)k ∈

∏
k∈N S

dk
+ such that (trdk

(XkYk))k∈N converges
to some a ∈ R, then there exist (X ′k)k, (Y ′k)k ∈

∏
k∈N Sk

+ with trk(X ′kY ′k)→ a as k →∞.

Proof. By possibly reordering the indices we can assume that the sequence (dk)k∈N is
monotonically nondecreasing. First, we modify the sequence (Xk)k in such a way that
dk ≤ k holds for all k ∈ N. For this, if there is some k ∈ N with dk > k we repeat
the preceding element Xk−1 exactly dk − k times before the element Xk. For instance, if
X1 ∈ R+ and X2 ∈ S3

+ (i.e., d1 = 1 and d2 = 3), we replace the sequence (X1, X2, X3, . . . )
by (X1, X1, X2, X3, . . . ). Then the position of Xk is shifted by dk − k to k + dk − k = dk.
If k = 1 we simply add d1 − 1 zero matrices before X1. We do the same with the sequence
(Yk)k. Then the new sequence of inner products is obtained from the original sequence
(trdk

(XkYk))k∈N by replacing each trdk
(XkYk) by dk − k + 1 copies of it if dk > k, and thus

still converges to the limit a.
Thus we can now assume that dk ≤ k for all k ∈ N. We set X ′k :=

√
k

dk
(Xk⊕0k−dk

) ∈ Sk
+

and Y ′k :=
√

k
dk

(Yk ⊕ 0k−dk
) ∈ Sk

+ for every k ∈ N. Then we have

trk(X ′kY ′k) = 1
k

Tr(X ′kY ′k) = 1
k

k

dk
Tr(XkYk) = trdk

(XkYk)

for every k ∈ N. Hence the final sequence (trk(X ′kY ′k))k∈N still converges to a. J
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