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Abstract
In this work, we provide a simple coalgebraic characterisation of regular ω-languages based on
languages of lassos, and prove a number of related mathematical results, framed into the theory of a
new kind of automata called Ω-automata. In earlier work we introduced Ω-automata as two-sorted
structures that naturally operate on lassos, pairs of words encoding ultimately periodic streams
(infinite words). Here we extend the scope of these Ω-automata by proposing them as a new kind of
acceptor for arbitrary streams. We prove that Ω-automata are expressively complete for the regular
ω-languages. We show that, due to their coalgebraic nature, Ω-automata share some attractive
properties with deterministic automata operating on finite words, properties that other types of
stream automata lack. In particular, we provide a simple, coalgebraic definition of bisimilarity
between Ω-automata that exactly captures language equivalence and allows for a simple minimization
procedure. We also prove a coalgebraic Myhill-Nerode style theorem for lasso languages, and use
this result, in combination with a closure property on stream languages called lasso determinacy, to
give a characterization of regular ω-languages.
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1 Introduction

The theory of finite automata, seen as devices for classifying (possibly) infinite structures [11],
combines a rich mathematical theory, dating back to the seminal work of Büchi, Rabin, and
others, with a wide range of applications, in areas related to the verification and synthesis of
systems that are not supposed to terminate. This applies in particular to automata operating
on streams (infinite words): stream automata (or ω-automata), see [15] for a comprehensive
reference. Stream automata can be classified in terms of their acceptance conditions (e.g.
parity, Muller, Büchi), and come in deterministic, nondeterministic and alternating variants.
With the exception of the weaker deterministic Büchi automata, these models all recognize
the same class of stream languages (or ω-languages), viz., the regular ones.

Our perspective on stream automata and regular ω-languages will be coalgebraic. Univer-
sal Coalgebra [17] is a mathematical, category-based theory of evolving state-based systems
such as streams, (infinite) trees, Kripke models, (probabilistic) transition systems, and
many others. This approach combines simplicity with generality and wide applicability:
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5:2 Ω-Automata

many features, including input, output, nondeterminism, probability, and interaction, can
easily be encoded in the coalgebra type, which is formally an endofunctor T on some base
category C (often Set, the category with sets as objects and functions as arrows). When it
comes to the coalgebraic perspective on automata theory, the standard deterministic finite
automata (DFAs) operating on finite words have been recognized as paradigmatic examples
of coalgebras [16]: Standard coalgebraic concepts such as final coalgebras and bisimulations,
feature very naturally in the theory of DFAs. For instance, language equivalence between
DFA states is captured exactly by the notion of bisimilarity, an observation yielding both a
coinductive procedure to decide language equivalence and an elegant method for minimizing
automata; states of the final coalgebra also represent equivalence classes of the celebrated
Myhill-Nerode theorem. These observations naturally raise the question whether automata
operating on streams admit an attractive coalgebraic presentation as well.

Exactly this problem was addressed in our earlier paper [9]. Based on the well-known
characterization of regular ω-languages by their ultimately periodic (UP) fragment, we
focused on finite representations of UP streams called lassos: a lasso is a pair (u, v) of a finite
word u and a finite nonempty word v, representing the UP stream uvω. This approach built
on the work of Calbrix, Nivat & Podelski [7], who introduced certain DFAs operating on
finite words of the form u$v, where $ is a special symbol separating the spoke u from the loop
v of a lasso. The contribution of [9] was threefold. First, we introduced two-sorted automata
operating on lassos directly, and we showed that these lasso automata share some nice
properties with standard DFAs. Second, we presented these lasso automata as coalgebras, for
a functor Ω on the category Set2 of two-sorted sets with two-sorted functions. And third, we
identified two properties, coherence and circularity, that characterize those Ω-coalgebras of
which the recognized lasso language correspond to the UP fragment of a regular ω-language.

Where our discussion in [9] stayed at a fairly abstract level, and we only considered
acceptance of lassos, the current paper shows how to make concrete use of Ω-coalgebras1
as automata operating on arbitrary streams. For this purpose, we introduce a new kind of
stream automaton by defining an Ω-automaton as a circular and coherent lasso automaton,
and endowing these structures with a suitable notion of acceptance for streams.

Contribution

The technical results that we prove on these Ω-automata include the following:
we prove that the property of being an Ω-automaton is decidable; that is, we show that
it is decidable whether a given lasso automaton is circular and coherent (Theorem 18);
we show that, with respect to expressive power, Ω-automata exactly capture the regular
ω-languages (Theorem 22 and Corollary 24);
we show that for Ω-automata, the natural (and coalgebraic) notion of bisimilarity exactly
captures language equivalence (Theorem 25), and
as a corollary we obtain a simple and natural minimization procedure for Ω-automata
(Theorem 28), which is an instance of the well-known coalgebraic partition refinement;
we prove a Myhill-Nerode theorem for lassos (Theorem 34), which is closely related to
the work of Maler & Staiger [14], but has a coalgebraic component involving the final
Ω-coalgebra;
as a corollary of this, we give a new characterization of regular ω-languages (Theorem 37).

1 In fact, the automata that we consider in this paper are a simplification of the ones defined in [9], see
Remark 3. All results proved in [9] also apply in this setting, with only trivial modifications to the
proofs.
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Combining these observations with the results obtained in [9], we find that Ω-automata
share many of the attractive properties of DFAs: bisimulation captures language equival-
ence and can be used for a minimization procedure, regular ω-languages correspond to
the finitely generated subcoalgebras of the final coalgebra, Boolean operations (including
complementation) on regular ω-languages can be implemented by straighforward operations
on Ω-coalgebras, etc. This is in sharp contrast to the setting of standard devices such as
Büchi or parity automata, where to the best of our knowledge no satisfactory notion of
bisimilarity between automata has been defined.

The main point of this article, then, lies not so much in the above list of individual
contributions, but in the picture we obtain by putting all technical results (from this paper
and from [9]) together. The emerging picture shows that stream automata and (regular)
ω-languages do fit in a coherent coalgebraic framework, and one that shares many of the
attractive properties of DFAs and regular languages of finite words.

Related work. In between the publication of [9] and this work, some relevant results on
coalgebraic interpretations of stream automata appeared in the literature. The research line
of [20, 19] follows the so-called Kleisli approach to trace semantics of coalgebras. Here a
system is a coalgebra in the Kleisli category associated with some monad T that encodes
the branching style exhibited by the system. In such a Kleisli category the homsets are
often equipped with a natural order relation, and the authors use this fact to characterize
the behaviour of parity-style automata as an arrow that is a solution of some hierarchical
equation system over this order. Proving the effectiveness of their definition, the authors are
able to capture not only regular ω-languages, but also various forms of so-called ω-regular
behavioural equivalences of a labelled graph, including infinite trace semantics, tree languages,
and systems with both non-deterministic and probabilistic branching. In [6] similar results
are developed for systems with so-called internal moves and the corresponding notion of
weak bisimilarity.

Attractive about this perspective is the modularity of the coalgebraic approach, which
permits results to be generalised to various interpretations of the notion “(ω-regular) beha-
viour”, and its clear link to the research area of process calculi and the categorical modelling
of their behavioural equivalences; however, such abstract representations are not directly
exploitable for the verification of properties related to such equivalences. In contrast, our
approach is framed in the logical-algorithmic view of automata, and therefore aimed at simple,
finite representations, and algorithms such as minimization (see Section 4.4) or Boolean
operations (defined in [9], including complementation) that are also a typical ingredient of
model checkers. This does not mean that our presentation lacks generality; for instance,
changing the base category is an interesting possibility to explore (consider e.g. [8], defining a
class of nominal omega-regular languages, notably also characterised by a form of ultimately
periodic behaviour, see Theorem 7 therein).

To mention some closely related work in a different direction, a well-known algorithmic
application in language theory is automata learning [1]. It is noteworthy that, in fact, a
class of finite-state machines [2], similarly inspired by [14], has been used by Angluin and
Fisman for learning ω-regular languages [3], and exploited by an independent group in a tool
that obtained best-in-class results in terms of computational efficiency [12]. We believe that
the coalgebraic perspective brings in some unique improvements on its own; for instance,
minimization and Myhill-Nerode style theorems are a standard consequence of the theory;
furthermore, the theory of coalgebras opens up to the possibility of generalising the presented
constructions, and derive new ones (more on this in the Conclusions).

CALCO 2019
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2 Preliminaries

Assuming that the reader is familiar with the theory of automata operating on (in)finite
words [15], we fix some notation and terminology.

Given sets X,Y and Z, we define Y X as the function space of maps from X to Y , and
using currying we may identify the sets ZX×Y and (ZY )X .

Throughout this paper we fix a finite alphabet C consisting of symbols or colors. We
write C∗ (C+) for the set of finite (respectively, finite nonempty) words over C. The empty
word is denoted as ε, and the length of a word u as |u|. With ω denoting the set of natural
numbers, Cω is the collection of streams (infinite words) over C. The binary operation of
concatenation between finite and (in)finite words is denoted by juxtaposition. For u ∈ C+,
we let uω denote the stream that repeats u ω many times, and for (vi)i∈ω in C+ we write ~v
for the stream v0v1 · · · . A stream α is ultimately periodic if it is of the form uvω for some
u ∈ C∗ and v ∈ C+. A language is a set of finite words; an ω-language or stream language is
a set of streams. The ultimately periodic fragment UP(L) of a stream language L is the set
of its ultimately periodic members.

A transition function on a set X is a map of the form ρ : X × C → X (or, equivalently,
ρ : X → XC). Given such a map, we inductively define the functions ρ̂ : X × C∗ → X and
ρ◦ : X × C∗ → PX by putting ρ̂(x, ε) := x, ρ̂(x, cu) := ρ̂(ρ(x, c), u), resp. ρ◦(x, ε) := ∅,
ρ◦(x, cu) := {ρ(x, c)} ∪ ρ◦(ρ(x, c), u). In words, ρ̂(p, u) denotes the state reached by a
transition system after, starting at state p, it has processed the word u; and ρ◦(p, u) is the
set of states passed along the way, after leaving p. We often write x c−→ρ y for ρ(x, c) = y and
x

u=⇒ρy for ρ̂(x, u) = y, omitting the subscript if ρ is understood.
Our concept of an automaton will not include an initial state; rather, we define an

initialized or pointed automaton to be a pair (A, a) such that a is a state of the automaton
A. Given a transition map ρ : X × C → X, a state x ∈ X, and a stream α, we let Inf (x, α)
denote the set of states in X traversed infinitely often when following α starting from x.
A (deterministic) parity automaton is a triple P = (P, ρ,Π) such that P is a finite set of
states, ρ : P × C → P is a transition map, and Π : P → ω is a priority function. An
initialized parity automaton (P, p) accepts a stream α if max(Π[Inf (p, α)]) is even. The sets
of words/nonempty words/streams recognized by an initialized automaton (A, a) (of the
appropriate kind) are denoted as L(A, a)/L+(A, a)/Streams(A, a). We shall generally use the
symbol B for acceptance. A stream language is regular if it is recognized by some initialized
parity automaton.

3 Ω-coalgebras as lasso automata

3.1 Basics
As mentioned in the introduction, regular stream languages are determined by their ultimately
periodic fragments. This motivates our interest in finite representations of ultimately periodic
streams: lassos.

I Definition 1. A lasso is a pair (u, v) ∈ C∗ ×C+, representing the stream uvω. The words
u and v are respectively the spoke and loop of the lasso. We call two lassos (u0, v0) and
(u1, v1) bisimilar, notation: (u0, v0) ↔ (u1, v1), if they represent the same stream, i.e., if
u0v

ω
0 = u1v

ω
1 .

Continuing the program of Calbrix, Nivat & Podelski [7] in a coalgebraic direction, in [9]
we introduced Ω-coalgebras as automata operating on lassos.
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I Definition 2. An Ω-coalgebra is a structure A = (P,X, ρ, ξ, σ, F ) such that P and X are
sets of spoke and loop states, respectively; both ρ : P → PC and ξ : X → XC are transition
functions; σ : P → XC is the switch map; and F ⊆ X is a set of accepting states. A lasso
automaton is a finite Ω-coalgebra.

The loop automaton of A is the DFA A` := (P ] X,σ:ξ, F ), where σ:ξ : (P ] X) →
(P ]X)C is defined as σ on P and as ξ on X. For p ∈ P , we define Loop(p) as the set of
finite words accepted by (A`, p).

Think of A = (P,X, ρ, ξ, σ, F ) as a spoke part (P, ρ) and a loop part (X, ξ, F ) that are
connected by the switch function σ : P × C → X. Clearly this “loop part” is a DFA in its
own right, just like “the” loop automaton A`; observe that (X, ξ, F ) is a subautomaton of
the loop automaton A`, and that by construction, any initialized automaton (A`, p) with
p ∈ P will accept nonempty words only.
I Remark 3. In fact, Definition 2 is a simplification of the one given in [9], where the switching
function has type σ : P → X, and the loop part is a finite automaton designed to operate on
nonempty words.
I Remark 4. Although the main point of the paper is to show how stream automata nicely fit
a coalgebraic framework and our entire approach is coalgebraic in spirit, we decided to keep
the categorical machinery at a minimum. The coalgebraic definition is phrased as follows.
Our base category is Set2, the category of two-sorted sets with two-sorted functions. For
the definition of the endofunctor Ω : Set2 → Set2, it will be convenient to use the functors
EC := (−)C and DC := 2 × (−)C of, respectively, (C-)transition functions and (C-)DFAs.
Now, given an object (X0, X1) in Set2, we define

Ω(X0, X1) := (ECX0 × ECX1,DCX1).

For the action of Ω on arrows, consider a pair f = (f0, f1) of functions fi : Xi → Yi, then
Ωf is the pair of functions (ECf0 × ECf1,DCf1). With this definition, the Ω-coalgebras
of Definition 2 and 6 are coalgebras for the functor Ω indeed; to see this, observe that a
coalgebra for the functor Ω consists of two sets X0 and X1, and three maps h : X0 → XC

0 ,
h′ : X0 → XC

1 , and h′′ : X1 → 2×XC
1 . An Ω-coalgebra (P,X, ρ, ξ, σ, F ) is rendered in such

a form by letting X0 = P , X1 = X, h = ρ, h′ = ξ, and deriving h′′ from σ and F . As the
construction is similar to that of [9], we leave the details as an exercise for the reader.

I Definition 5. Where A = (P,X, ρ, ξ, σ, F ) is an Ω-coalgebra, and p ∈ P is a spoke state,
we say that a lasso (u, v) is accepted by A at p, notation: A, p B (u, v), if σ̂:ξ(ρ̂(p, u), v)) ∈ F ,
and we write Lassos(A, p) to denote the lasso language recognized by (A, p), that is, the set
of all lassos accepted by Lassos(A, p). Finally, a lasso language is called regular if it is the
language recognized by a pointed finite Ω-coalgebra, i.e., a lasso automaton.

Intuitively, an Ω-coalgebra operates on a lasso (u, v) by first processing the spoke u, then
switching to the loop automaton and processing the loop v. It accepts the lasso iff the
resulting state is accepting. That is, (A, p) accepts (u, v) iff v ∈ Loop(ρ̂(p, u)).

I Definition 6. Let A = (P,X, ρ, ξ, σ, F ) and A′ = (P ′, X ′, ρ′, ξ′, σ′, F ′) be two Ω-coalgebras.
An Ω-morphism from A to A′ is a pair h = (h0, h1) of maps h0 : P → P ′, h1 : X → X ′ such
that, for all p ∈ P, x ∈ X and c ∈ C we have
(M1) h0(ρ(p, c)) = ρ′(h0p, c),
(M2) h1(ξ(x, c)) = ξ′(h1x, c),
(M3) h1(σ(p, c)) = σ′(h0p, c), and

CALCO 2019



5:6 Ω-Automata

(M4) x ∈ F iff h1x ∈ F ′.
We usually write h for hi.

A spoke state p of A generates a subcoalgebra Ap of A that is based on the sets of spoke
and loop states that are reachable from p (in the obvious sense, using ρ, σ, and ξ).

As a manifestation of the coalgebraic nature of our structures, we discuss below how
the natural concept of equivalence induced by Ω-morphisms can be captured by a notion of
bisimilarity.

I Definition 7. A bisimulation between two Ω-coalgebras A and A′ is a pair Z = (Z0, Z1)
of relations Z0 ⊆ P × P ′, Z1 ⊆ X ×X ′ such that, for all (p, p′) ∈ Z0 and (x, x′) ∈ Z1, and
all c ∈ C we have
(B1) (ρ(p, c), ρ′(p′, c)) ∈ Z0,
(B2) (ξ(x, c), ξ′(x′, c)) ∈ Z1,
(B3) (σ(p, c), σ′(p′, c)) ∈ Z1, and
(B4) x ∈ F iff x′ ∈ F ′.

Two pointed coalgebras (A, p) and (A′, p′) are bisimilar, notation: A, p ↔ A′, p′, if there
is a bisimulation linking p and p′.

The following characterization of bisimilarity using morphisms holds for a wide range of
coalgebras; in coalgebraic terms, it says that for the functor Ω, the notions of bisimilarity
and behavioral equivalence coincide. The proposition follows from categorical properties of
the functor Ω, but also has a straightforward direct proof.

I Proposition 8. Let (A, p) and (A′, p′) be pointed Ω-coalgebras. Then (A, p) ↔ (A′, p′) iff
there is a Ω-coalgebra B and Ω-morphisms h : A→ B and h′ : A′ → B such that hp = h′p′.

The following proposition on bisimilarity will be needed later on; we omit the proof which
follows a routine coalgebra argument.

I Proposition 9. Let A and A′ be two Ω-coalgebras. Then
(1) the collection of bisimulations between A and A′ forms a complete lattice, of which the

join is given by union;
(2) the relation ↔ itself is the largest bisimulation between A and A′;
(3) if A = A′, the relation ↔ is an equivalence relation.

The key observation is that bisimilarity exactly captures lasso equivalence. This was first
shown in [9]; by looking at the explicit definition of bisimilarity given in Definition 7, the
proof is a simple extension to the two-sorted setting of the classical result that in classical
DFAs operating on finite words, bisimilarity coincides with language equivalence (see [16]).

I Fact 10. [9] Any pair of pointed Ω-coalgebras (A, p) and (A′, p′) satisfy

A, p ↔ A′, p′ iff Lassos(A, p) = Lassos(A′, p′). (1)

I Example 11. Fixing the alphabet C = {a, b}, we define the Ω-coalgebra A = (P,X, ρ, ξ, σ, F )
where P = {1, 2, 3}, X = {4, 5, 6}, ρ = {(1, a) 7→ 1, (1, b) 7→ 2, (2, a) 7→ 1, (2, b) 7→ 3, (3, a) 7→
2, (3, b) 7→ 3}, ξ = {(4, a) 7→ 4, (4, b) 7→ 6, (5, b) 7→ 5, (5, a) 7→ 6, (6, a) 7→ 6, (6, b) 7→ 6},
σ = {(p, a) 7→ 4, (p, b) 7→ 5} for each p ∈ P , and F = {4, 5}. By construction, for all p ∈ P ,
we have Lassos(A, p) = {(u, v) | u ∈ C? ∧ v ∈ ({a+} ∪ {b+})}. Consider the Ω-coalgebra
A′ = ({1}, X, ρ′, σ′, ξ, F ), where ρ′ and σ′ are the restriction of ρ and σ, respectively, to the
singleton {1}. By Fact 10, A, 1↔ A, 2↔ A, 3. The situation is witnessed by the Ω-morphism
h : A→ A′, which identifies all the states in P by mapping them to the state 1. Furthermore,
for all p ∈ P , we have A, p↔ A′, 1.



V. Ciancia and Y. Venema 5:7

3.2 From parity automata to lasso automata
Given a Büchi automaton B, Calbrix, Nivat & Podelski [7] constructed a DFA recognizing
the finite-word language {u$v | B B uvω}, where $ is a new symbol (i.e., not in C). Here we
give a similar construction for parity automata.

I Definition 12. Let P = (P, ρ,Π) be a parity automaton and let p be a state of P. The DFA
Xp := (X, ξ, Fp) is based on the state space X := (P ×N)P , where N := Ran(Π) is the range
of Π. To define its transition map ξ, consider an arbitrary state t ∈ X and think of t as the
pairing of t0 : P → P and t1 : P → N . Now define

ξ(t)(c) := λq.
(
ρ(t0q, c) , max(t1q,Π(ρ(t0q, c)))

)
For the set Fp of accepting states, define, for an arbitrary state t ∈ X, the sequence (pti)i∈ω
by putting pt0 := p, pti+1 := t0pti, and put

Fp := {t ∈ X | max(t1[Inf ((pti)i∈ω)]) is even },

where Inf ((pti)i∈ω) is the set of p ∈ P occurring as pti for infinitely many i. Finally, we define
spI ∈ X as the initial state spI := λq.(q, 0).

Intuitively, the initialized DFA (Xp, spI) consumes a word v by following it in parallel,
starting from each state of P. Moreover, in each of these parallel runs the automaton collects
the maximum priority of the traversed states. This explains the carrier and the transition
map of the automaton Xp. For its set of accepting states, first note that Fp is the only part
of Xp depending on p. The idea behind its definition is that for a word v ∈ C+, the state
t := ξ̂(spI , v) encodes essential information on the run (P, p) on the stream vω. In particular,
we have pti = ρ̂(p, vi), for all i. Analyzing the way in which the map t1 : P → N keeps
track of maximal priorities along finite runs, we may then show that max(t1[Inf ((pti)i∈ω)])
corresponds to the maximal priority that one encounters in the run of (P, p) on vω.

The key observation on this automaton is that (Xp, spI) recognizes the looping language
of (P, p), that is, for all v ∈ C+:

(Xp, spI) accepts v iff (P, p) accepts vω.

I Definition 13. Let P = (P, ρ,Π) be a parity automaton. Recalling that by definition, P
is finite, we define the lasso automaton AP := (P,X, ρ, ξ, σ, F ) by letting (X, ξ, F ) be the
coproduct (disjoint union) of the family {Xp | p ∈ P} of DFAs, and putting σ(p, c) := ξ(spI , c).

I Fact 14. [9] Let (P, p) be an initialized parity automaton. For any lasso (u, v) ∈ C∗×C+:

(AP, p) accepts (u, v) iff (P, p) accepts uvω. (2)

I Example 15. Using the alphabet C = {a, b}, consider the parity automaton P = (P, ρ,Π)
where P and ρ come from Example 11, and Π = {1 7→ 0, 3 7→ 0, 2 7→ 1}. It is easily
seen that, no matter what the initial state is, the language accepted by the automaton is
{α ⊆ Cω | ∃i ∈ ω.∃c ∈ C.∀j ≥ i.αi = c}, that is, those streams that have a tail consisting
of an infinite repetition of one symbol. The reader should note that there is no single-state
parity automaton accepting the same language, as a single-state automaton may either accept
Cω or the empty language. However, either by direct construction, or by Fact 14, for all
p ∈ P , it can be shown that AP, p↔ A′, 1, where A′ comes from Example 11, in turn.
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3.3 Coherence & Circularity
The language recognized by a lasso automaton (A, p) does not necessarily correspond to
the ultimately periodic fragment of a regular ω-language. A necessary condition for the
latter is that Lassos(A, p) is invariant under lasso bisimilarity: (u, v)↔ (u′, v′) implies that
(u, v) ∈ Lassos(A, p) iff (u′, v′) ∈ Lassos(A, p). In [9] we proved that this condition is also
sufficient, and we characterized it by the properties of coherence and circularity.

I Definition 16. A regular language L is circular if v ∈ L ⇔ vk ∈ L, for all k > 0 and
v ∈ C+. An initialized DFA (A, a) is circular if L(A, a) is circular. A lasso automaton A is
circular if each Loop(p) is circular, and coherent if cu ∈ Loop(p)⇔ uc ∈ Loop(ρ(p, c)), for
every spoke state p, u ∈ C∗ and c ∈ C.

I Fact 17. [9] For any lasso automaton A = (P,X, ρ, ξ, σ, F ) the following are equivalent:
(1) ∀p ∈ P . Lassos(A, p) = {(u, v) | uvω ∈ L} for some regular ω-language L;
(2) ∀p ∈ P . Lassos(A, p) is bisimulation invariant;
(3) A is circular and coherent.

Motivated by Fact 17, in the sequel we will largely confine our attention to circular and
coherent lasso automata. This explains the importance of the following result.

I Theorem 18. It is decidable whether a given lasso automaton is circular and coherent.

Finally, we note that by Fact 10, the class of circular and coherent lasso automata is
closed under taking surjective Ω-morphisms.

4 Ω-automata

In this section, we look at Ω-automata as acceptors of streams. As we shall see, this notion
of acceptance coincides with the one of parity automata (Theorem 22) and is invariant
under Ω-morphisms (Theorem 23). The main goal of this section is to show that, unlike the
standard types of stream automata, Ω-automata admit a natural notion of bisimilarity that
exactly captures language equivalence (Theorem 25). Finally, as a corollary of these results
we obtain a simple and natural minimization procedure for Ω-automata (Theorem 28).

4.1 Ω-coalgebras as stream automata
In the previous section we saw that a lasso language corresponds to the ultimately periodic
fragment of a regular ω-language if and only if it is the language recognized by an initialized,
circular and coherent lasso automaton. This suggests that circular and coherent Ω-coalgebras
might be used directly as stream automata, and inspires the following definition.

I Definition 19. An Ω-automaton is a circular and coherent lasso automaton.

Following ideas in Calbrix, Nivat & Podelski [7], we now define acceptance of streams.

I Definition 20. Let A = (P,X, ρ, ξ, σ, F ) be an Ω-automaton, and let q be a spoke state of
A. We say that a stream α is accepted by (A, q), notation: (A, q) B α, if there are a finite
word u, a sequence (vi)i∈ω of finite, non-empty words, a state p ∈ P and an accepting state
z ∈ F such that α = u~v, q u=⇒ρ p and p vi=⇒ρ p, p

vi=⇒σ:ξ z for each i ∈ ω. The set of streams
accepted by an initialized Ω-automaton (A, p) is denoted as Streams(A, p).
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I Remark 21. Where this notion of acceptance may seem somewhat odd at first sight, it can
be related to that of well-known stream automata. A successful run of (A, q) on a stream α

consists of
a run of the spoke part of A on a (finite) initial segment u of α (i.e., α = uβ for some
stream β), leading to a spoke state p, followed by
an infinite run of the product structure of (P, ρ) and A` on the remaining stream β, where
for some accepting state z ∈ F , the product automaton infinitely often makes a silent
step from (p, z) to (p, p):

(p, p) v0=⇒ρ×(σ:ξ) (p, z) ε
; (p, p) v1=⇒ρ×(σ:ξ) (p, z) ε

; (p, p) v1=⇒ρ×(σ:ξ) · · ·

Based on this observation, it is not difficult to show (but rather tedious to spell out in detail)
that Ω-automata can be seen as rather special Büchi automata, where the nondeterminism is
restricted to (1) a unique jump from an initial part of the automaton to a final part, and (2)
some very specific silent steps. From this perspective, that is, with Ω-automata taken as a
subclass of Büchi automata with silent steps, it is remarkable that the theory of Ω-automata
is so well-behaved when we consider bisimilarity etc. This good behavior may be explained
by the observation that seen as lasso automata, Ω-coalgebra are completely deterministic.

4.2 Adequacy
The following theorem states that, when it comes to recognizing stream languages, Ω-automata
are as least as expressive as more standard models like parity automata.

I Theorem 22 (Adequacy). Let (P, q) be an initialized deterministic parity automaton. Then
Streams(P, q) = Streams(AP, q).

4.3 Language equivalence as bisimilarity
I Theorem 23 (Invariance). Let h : A→ A′ be an Ω-morphism between two Ω-automata.

Streams(A, q) = Streams(A′, hq) (3)

for any spoke state q of A.

I Corollary 24. Let (A, q) be an Ω-automaton. Then Streams(A, q) is an ω-regular language
and Lassos(A, q) = {(u, v) | uvω ∈ Streams(A, q)}.

The next result shows that, unlike well-known types of stream automata such as Büchi,
Muller or parity automata, Ω-automata share a fundamental property with deterministic
automata operating on finite words.

I Theorem 25 (Language equivalence as bisimilarity). Let (A, q) and (A′, q′) be two initialized
Ω-automata. Then

A, q ↔ A′, q′ iff Streams(A, q) = Streams(A′, q′). (4)

I Example 26. Continuing from Example 15, observe that the Ω-coalgebras A and A′ are
actually circular and coherent, and therefore Ω-automata. The stream language that these
coalgebras accept, from any initial state, is the same as the one accepted by the parity
automaton P, from any initial state. However, in the realm of Ω-automata, by virtue of
the associated notion of bisimilarity, there is a canonical representative for the class of all
pointed Ω-automata accepting the stream language of P (from any state, as they all accept
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the same language). It should not be difficult to guess that the canonical representative is
(A′, 1), up-to isomorphism. A formal proof needs just to show that the three states in X
accept different languages (of finite words). In Section 4.4 we shall discuss computation of
such a representative by partition refinement.

4.4 Minimal Ω-automaton
The minimization problem for stream automata is much harder than that for deterministic
finite automata operating on finite words. In particular, regular ω-languages generally do not
have a unique minimal automaton [18], and to the best of our knowledge, nice minimization
procedures are only available for restricted classes of automata [18, 13].

This is different in the setting of Ω-automata. As a corollary of Theorem 25 we obtain
a simple and natural minimization procedure for Ω-automata, linking the final coalgebra
to the minimal automaton: Theorem 28. A partition refinement algorithm is a standard
consequence of the coalgebraic framework (see [9] for a more detailed explanation).

I Definition 27. Let A = (P,X, ρ, ξ, σ, F ) be an Ω-automaton, and recall from Proposition 8
that ↔ is an equivalence relation on P and on X. We denote the equivalence class of a state
a with a. Since ↔ is itself a bisimulation relation, the following is a correct definition of an
Ω-coalgebra structure on the ↔-cells:

ρ(p) := ρp,

ξ(x) := ξx,

σ(p)(c) := σ(p)(c), for all c,
F := {x | x ∈ F}.

We denote the resulting Ω-automaton by A/↔.

The following theorem shows that A/↔ is a minimal automaton recognizing the languages
of A.

I Theorem 28. Let (A, p) be an initialized Ω-automaton, with L := Streams(A, p). Then
(1) Streams(A/↔, p) = L;
(2) For any initialized Ω-automaton (A′, p′) such that Streams(A′, p′) = L, there is an

Ω-morphism h : A′p′ → A/↔ such that h(p′) = p.

In passing we note that the Theorems 22 and 28 yield a minimization procedure for
parity automata (and other standard stream automata) as well; this procedure transforms
any parity automaton, not into a minimal parity automaton, but into a canonically obtained
minimal Ω-automaton.

I Example 29. Continuing from Example 26, the Ω-coalgebra A′ is, up to isomorphism, the
minimal representative of the coalgebra A. Note that the three states {1, 2, 3} are quotiented
by the unique morphism h (from Example 11).

5 A final Ω-coalgebra and a Myhill-Nerode Theorem

5.1 Final Ω-coalgebra
In the theory of Universal Coalgebra, an important role is played by final coalgebras. Recall
that an object z is final in a category C if for every object there is a unique arrow to z.
Final coalgebras do not exist for every functor, but when they exist, they usually encode a
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natural notion of behavior related to the functor. For instance, in the theory of DFAs, a final
coalgebra is provided by the ‘language automaton’, in which the states are languages (of
finite words), the transition structure is given by the derivatives (Lc := {u ∈ C∗ | cu ∈ L}),
and a language/state is accepting iff it contains the empty word. This language coalgebra
has many nice properties and can be used to prove many fundamental properties of regular
languages [16]. In this section we will see that the category of Ω-coalgebras admits a final
coalgebra, and we will use this coalgebra to give a Myhill-Nerode theorem for regular lasso
languages, and a related characterization for regular ω-languages.

I Definition 30. With defining

Z0 := P(C∗ × C+),
Z1 := PC∗,
ζ0(L, c) := {(u, v) ∈ C∗ × C+ | (cu, v) ∈ L},
ζ1(M, c) := {v ∈ C∗ | cv ∈M},
σ(L, c) := {v ∈ C∗ | (ε, cv) ∈ L},
F := {M ∈ PC∗ | ε ∈ F},

we obtain the Ω-coalgebra Z := (Z0, Z1, ζ0, ζ1, σ, F ).

Observe that the loop part of this Ω-coalgebra is given by the final coalgebra for DFAs
that we just mentioned; in particular, its carrier is based on the set of all languages of finite
words. The carrier of the spoke part is given by the set P(C∗ × C+) of all lasso languages.
The exact relation of this Ω-coalgebra with the set of all stream languages remains to be
investigated in more detail, but note that the relation of lasso determinacy (Definition 35)
will play an important role here.

A very useful property of the structure Z is that any lasso language L coincides with the
set of lassos that it accepts, seen as a state of Z.

I Theorem 31. Let L be a lasso language. Then for any lasso (u, v) we have

Z, L B (u, v) iff (u, v) ∈ L. (5)

As a corollary, the relation ↔ restricts to the identity relation on Z.

I Theorem 32. Z is final in the category of Ω-coalgebras and Ω-morphisms. That is, for
every Ω-coalgebra A there is a unique Ω-morphism h : A→ Z.

5.2 A Myhill-Nerode Theorem for lasso languages
Rutten provided a nice coalgebraic perspective on the Myhill-Nerode theorem for regular
languages of finite words, identifying the congruence classes of the Myhill-Nerode equivalence
relation with states in the final coalgebra [16]. A similar result holds for lasso languages.

I Definition 33. Let L be a lasso language. Define the equivalence relation ≡0 on C∗ such
that u0 ≡0 u1 iff for all lassos (u, v) it holds that (u0u, v) ∈ L ⇐⇒ (u1u, v) ∈ L. Define a
family of binary relations ≡[u] on C+, indexed by the set of ≡0-cells, such that v0 ≡[u] v1 iff
for all w ∈ C∗, u0, u1 ∈ [u] we have (u0, v0w) ∈ L ⇐⇒ (u1, v1w) ∈ L. Finally, let

(u0, v0) ≡L (u1, v1) iff u0 ≡0 u1 and v0 ≡[ui] v1

define a relation ≡L on lassos.
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It is obvious that ≡L is an equivalence relation, and here we have arrived at our coalgebraic
Myhill-Nerode theorem for lassos. It refers to the generated subcoalgebra of a state/language
L in the final coalgebra, see Definition 6. Recall that a lasso language is regular if it is the
set of all lassos that are accepted by a pointed lasso automaton.

I Theorem 34. The following are equivalent, for any lasso language L:
(1) L is regular;
(2) L generates a finite subcoalgebra in Z;
(3) the relation ≡L has finite index.

5.3 A characterization theorem for stream languages
Attempts at finding congruences that characterise ω-regularity date back to the earliest works
in the theory of ω-languages, such as Arnold [4], who isolates the syntactic congruence of a
regular ω-regular language L ⊆ Cω as the coarsest congruence on C∗ that recognizes L (in
some precisely defined manner). An interesting open question was to identify a congruence
which is of finite index if and only if a given stream language is regular. Maler and Staiger [14]
approached this problem via so-called families of right congruences (FORCs), and proved
that a stream language L is ω-regular if and only if there exists a finite FORC that recognises
it. Furthermore, the paper identified a necessary and sufficient characterisation of those
regular ω-languages that are accepted by a minimal state automaton, derived from Arnold’s
syntactic congruence.

While moving in a similar direction, we are able to simplify the matter somewhat. The
definition of our lasso relation ≡L is reminiscent to that of a FORC, as it is dependent
on equivalence classes of a right congruence on finite words.2 Using the relation ≡L, we
were able to provide an exact characterisation of regular ω-languages. Our characterization,
Theorem 37, involves a property, lasso determinacy, that is somewhat related to (but not
the same as) Arnold’s saturation property. One may also look at lasso determinacy as an
infinitary version of the pumping property of regular languages of finite words.

I Definition 35. A stream language L is lasso determined, or has the property LD, if for
every infinite sequence (vi)i∈ω of nonemtpy words there is an infinite set Y ⊆ ω such that

~v ∈ L ⇐⇒ (v0 · · · vj)(vj+1 · · · vk)ω ∈ L.

for all j, k ∈ Y with j < k.

It is not difficult to verify that all regular ω-languages are lasso determined. The following
property justifies the terminology.

I Proposition 36. Let L,L′ be two stream languages with the property LD. If Lassos(L) =
Lassos(L′) then L = L′.

I Theorem 37. The following are equivalent, for any stream language L:
(1) L is regular;
(2) L is lasso determined and Lassos(L) generates a finite subcoalgebra in Z;
(3) L is lasso determined and the relation ≡L has finite index.

2 However, ≡L does not exactly correspond to a FORC as it lacks the condition v0 ≡[ui] v1 =⇒ u0v0 ≡0
u1v1.
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6 Conclusions

The main point of this paper was to argue that (a slight variation of) the two-sorted lasso
automaton we introduced in [9] provides an interesting framework for recognizing regular
stream languages as well. For this purpose, we presented Ω-automata as the class of finite,
circular and coherent lasso automata, and we defined a notion of acceptance for streams.
Throughout the paper we used the fact that these structures are coalgebras for an endofunctor
Ω on the category Set2 of two-sorted sets and functions. The advantage of this coalgebraic
presentation of stream automata is that bisimilarity and minimization are easily obtained
using the general theory of Universal Coalgebra. Using another standard feature of the
coalgebraic framework, namely, final coalgebras, we proved a Myhill-Nerode theorem for
lasso automata that extends the basic framework of Rutten [16] to lassos. Then, involving a
property we called lasso determinacy, we obtained a characterization of regular ω-languages.
These results provide additional motivation for and in some sense complete the work of Maler
& Staiger [14] on two-sorted congruences.

Of the many interesting directions to take from here we mention a few. First, not only Ω-
automata but in particular the objects they operate on (lassos, streams) admit a very simple
and natural coalgebraic presentation. It would be interesting to explore and exploit this
connection further – in particular, we are interested in truly coalgebraic characterizations of
regular ω-languages. In a subsequent publication we hope to report on such a characterization,
which reveals the coalgebraic nature of the property of lasso determinacy and involves a
pumping property for lasso languages. Second, a very interesting and useful coalgebraic
concept is that of coinduction. This definition and proof principle has many applications in
the theory of DFAs. It would be worthwhile to find and study manifestations of coinduction
in the world of stream automata as well, also patterned after [20, 19, 6]. Third, given the
two-sorted nature of our framework, it seems natural to explore its connections with the
theory of Wilke algebras [21]. Finally, recent work on coalgebraic automata learning [5] could
shed further light on the link between our framework and the research line on learning of
omega-regular languages; a first step in this direction would be a mathematically precise
comparison between the automata model presented in [2] and our coalgebraic variant.

Using Category Theory for modelling abstract notions entails the possibility to generalise
results by changing the base category that is used. In this respect, our paper can be used as
a starting point for further development of nominal omega-regular languages [8]. Finally, it
would be interesting to study our work from the categorical perspective of [20, 19, 6]. As a
starting point one could try to rephrase our acceptance definition for streams (Definition 20)
in the approach of [19].
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A Proofs

Proof of Theorem 18. Let A be lasso automaton. Decidability of coherence is straightfor-
ward, since it can be checked in terms of the equivalence of various pairs of initialized DFAs
that can easily be constructed from the loop automaton of A.

For circularity, it suffices to consider initialized DFAs. A routine argument shows that a
language is circular iff Pow(L) = L = Root(L), where the power and root of L are defined
by Pow(L) := {uk | u ∈ L, k ≥ 1} and Root(L) := {u | uk ∈ L for some k ≥ 1}. The
decidability of the equation, L = Pow(L), was established by Fazekas [10].

The problem, whether L(A, a) = Root(L(A, aI)) for a given initialized DFA (A, aI),
can be solved by first defining an initialized DFA (A′, i) that accepts Root(L) and then
checking language equivalence with L. So consider a DFA (A, δ, F ) and a state aI ∈ A.
Let A′ := (AA, θ, G) be the DFA where θ is given pointwise: θ(f, c) := λa.δ(fa, c). For the
definition of G, define, for an arbitrary g ∈ AA, the set Ag := {gnaI | n ≥ 1} – since A is
finite, this set can be computed in at most |A| steps. Put G := {g ∈ AA | Ag ∩ F 6= ∅}.

Let u an arbitrary finite word, and define gu := θ̂(i, u). By construction we obtain for
all a ∈ A that gua = δ̂(a, u), so that Agu

= {δ̂(aI , un) | n ≥ 1}. Now consider the following
chain of equivalences:

A′, i B u iff gu = θ̂(i, u) ∈ G (definition of acceptance)
iff Agu

∩ F 6= ∅ (definition G)

iff δ̂(aI , uk) ∈ F, some k ≥ 1 (Agu
= {δ̂(aI , un) | n ≥ 1})

iff uk ∈ L = L(A, aI), some k ≥ 1 (definition of acceptance)
iff u ∈ Root(L) (definition Root)

From this it follows that L(A′, i) = Root(L(A, aI)), as required. J

Proof of Theorem 22. Let P = (P, ρ,Π) be a parity automaton, let AP = (P,X, ρ, ξ, σ, F )
be its associated lasso automaton, and let N denote the range of Π. Fix a state q ∈ P .

For the inclusion Streams(P, q) ⊆ Streams(AP, q), assume that P, q B α for some stream
α. Without loss of generality we may assume that α can be split as α = u~v, such that, with
p := ρ̂(q, u), we have p vi=⇒ρ p and Inf (q, α) = ρ◦(p, vi), for each i ∈ ω. Define vij := vi · · · vj−1
for i, j ∈ ω with i < j. It follows by construction of AP that

σ̂:ξ(p, vij) ∈ F for each i, j with i < j. (6)

Note that the equivalence relation on ω< = {(i, j) ∈ ω2 | i < j} given by (i, j) ∼ (k, l) if
σ̂:ξ(p, vij) = σ̂:ξ(p, vkl), has finite index. It then follows by Ramsey’s Theorem that there is
an infinite subset Y ⊆ ω, and a unique z ∈ F such that σ̂:ξ(p, vij) = z, for each pair i, j ∈ Y
with i < j.

Enumerate Y = {k0, k1, . . .} with k0 < k1 < · · · , and define u′ := v0k0 , for each i ∈ ω,
wi := vkiki+1 . It is obvious from these definitions that

α = uu′ ~w. (7)

In addition, we claim that

q
uu′==⇒ρ p (8)

and that

p
wi=⇒ρ p and p wi=⇒σ:ξ z, for all i ∈ ω. (9)
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For the proof of (8) and (9), observe that p
vj=⇒ρ p for each j, so that we find p u′=⇒ρ p and

p
wi=⇒ρ p for each i on the basis of u′ and each wi being finite concatenations of vj ’s. From

this we immediately obtain the first statement in (9), but also (8) because q u=⇒ρ p
u′=⇒ρ p.

The remaining, second, statement in (9) follows directly from the assumption on z and the
definition of the wj .

Finally, it follows directly from (7), (8) and (9) that α is accepted by (AP , q).
For the inclusion Streams(AP, q) ⊆ Streams(P, q), assume that (AP, q) accepts some given

stream α. Then by definition we can split this stream as α = u~v, and find states p ∈ P and
t ∈ F such that q u=⇒ρ p and p vi=⇒ρ p, p

vi=⇒σ:ξ t for each i ∈ ω. Fix some i ∈ ω. By definition of
AP it follows from p

vi=⇒σ:ξ t that spI
vi=⇒ξ t in Xp, where Xp, spI and ξ are as in Definition 12. But

since it is straightforward to verify from p
vi=⇒ρ p that ρ◦(p, vi) consists of all states traversed

on the cycle p vi=⇒ρ p, it follows that t ∈ (P × N)P satisfies t(p) = (p,max(Π[ρ◦(p, vi)])).
Since t is accepting it follows that max(Π[ρ◦(p, vi)]) is even. Since this holds for each i ∈ ω,
it easily follows that (P, q) accepts α. J

Proof of Theorem 23. Fix A = (P,X, ρ, ξ, σ, F ) and A = (P ′, X ′, ρ′, ξ′, σ′, F ′), and let
h : A→ A′ be an Ω-morphism. The proof of the inclusion Streams(A, q) ⊆ Streams(A′, q′) is
routine and left to the reader.

For the opposite inclusion, assume that (A′, hq) accepts some stream α. Let u, (vi)i∈ω,
p′ ∈ P ′ and z′ ∈ F ′ bear witness to this fact, in the sense that α = u~v, hq u=⇒ρ′ p

′ and
p′

vi=⇒ρ′ p′, p′
vi=⇒σ′:ξ′ z′ for each i ∈ ω.

Define p0 := ρ̂(q, u) and pi+1 := ρ̂(pi, vi) for i > 0. Observe that hpi = p′ for all i ∈ ω.
Since P is finite, so is the set Q := {pi | i ∈ ω}, and hence, some element p of Q is traversed
infinitely often in the path p0

v0=⇒ρ p1
v1=⇒ρ p2 · · · . In other words, there is an infinite subset

K = {k0, k1, . . .} ⊆ ω with k0 < k1 < . . . such that p0
v0···vk0−1======⇒ρ p and p

vki
···vki+1−1

========⇒ρ p

for all i ∈ ω. Define u′ := v0 · · · vk0−1 and wi := vki
· · · vki+1−1, then we have α = uu′ ~w,

q
uu′==⇒ρ p and p wi=⇒ρ p, for each i ∈ ω.
Define, for i < j ∈ ω, the word wij := wi · · ·wj−1 and the state zij := σ̂:ξ(p, wij).

By Ramsey’s Theorem there must be an infinite set N ⊆ ω and a single element z ∈ X
such that zij = z for all i, j ∈ N . Note that hzij = z′ for all i, j ∈ N , since h is an
Ω-morphism. Write N = {n0, n1, . . .} with n0 < n1 < · · · , and define u′′ := w0 · · ·wn0−1 and
si := wni · · ·wni+1−1, then clearly we have

α = uu′u′′~s. (10)

Second, we claim that

q
uu′u′′====⇒ρ p. (11)

To see this, note that u′′ is a finite concatenation of wi’s. Since p
wi=⇒ρ p for each i, it follows

that p u′′==⇒ρ p, and hence we obtain (11) from q
uu′==⇒ρ p

u′′==⇒ρ p. In addition, we have

p
si=⇒ρ p and p si=⇒σ:ξ z, for all i ∈ ω. (12)

Here the first statement follows from each si being a finite concatenation of wj ’s, and the
second is by assumption on z.

Finally, the fact that A, q B α is immediate from (10), (11) and (12). J

Proof of Corollary 24. It follows from Fact 17 that there is an initialized parity auto-
maton (P, p) such that Lassos(A, q) = Lassos(P, p), and from Fact 14 that Lassos(P, p) =
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Lassos(AP, p). From this it is immediate that Lassos(A, q) = Lassos(AP, p), and so Fact 10
yields that A, q ↔ AP, p. Then we may derive by Proposition 8 and Theorem 23 that
Streams(A, q) = Streams(AP, p), and so by Theorem 22 we find that Streams(A, q) =
Streams(P, p). This immediately gives that Streams(A, q) is regular, and gathering our
findings we obtain that Lassos(Streams(A, q)) = Lassos(Streams(P, p)) = Lassos(P, p) =
Lassos(A, q). J

Proof of Theorem 25. The direction from left to right is immediate by Proposition 8 and
Theorem 23. The opposite direction follows from Corollary 24 and Fact 10. J

Proof of Theorem 28. The first part of the theorem is immediate by the fact that the
quotient map from A to A/↔ is an Ω-morphism. For part 2, assume that Streams(A′, p′) = L.
Then by Theorem 25 we have that A, p↔ A′, p′, so that a routine argument shows that every
state in A′p′ is bisimilar to some state in A. This yields a natural map h from A′p′ to A/↔
such that h(p′) = p. We leave it for the reader to verify that this map is an Ω-morphism. J

Proof of Theorem 32. With A = (P,X, ρ, ξ, σ, F ), define the maps h0 : P → P(C∗ × C+)
and h1 : X → PC∗ by putting

h0(p) := Lassos(A, p),
h1(x) := L((X, ξ, F ), x).

It is a routine exercise to verify that this is an Ω-morphism. For uniqueness, let h′ : A→ Z
be an Ω-morphism. Then for every spoke state p of A we find that hp = Lassos(A, p) =
Lassos(Z, h′p) = h′p. J

Proof of Theorem 34. We confine ourselves to a sketch. The equivalence of (1) and (2) is a
direct consequence of the Theorems 31 and 32, so it suffices to show that (2) ⇔ (3).

For this purpose, fix a lasso language L. We first show that, for any pair of words u0, u1:

u0 ≡ u1 iff ζ̂0(L, u0) = ζ̂0(L, u1). (13)

Second, for all words u and pairs of nonempty words v0, v1, with Lu := ζ̂0(L, u)(= {(u′v) |
(uu′, v) ∈ L}) we can prove:

v0 ≡[u] v1 iff σ̂:ζ1(Lu, v0) = σ̂:ζ1(Lu, v1) (14)

By the previous two steps we may conclude that (u0, v0) ≡ (u1, v1) if and only if, starting
from L in the spoke part of Z, consuming either u0 or u1 takes us to the same state L′, and
from L′, consuming either v0 or v1, takes us to the same state L′′ in the loop part of Z. Now
let YL be the set of spoke states reachable from L, and for M ∈ YL, let Y ′M be the set of
loop states reachable from M . It then follows by the above observation that the equivalence
classes of ≡L are in one-to-one correspondence with the set

⊎
M∈YL

M . This suffices to prove
that ≡L has finite index iff L generates a finite subcoalgebra in Z. J

Proof of Proposition 36. Fix a stream α = ~v. By lasso determinacy of L there is an infinite
set Y ⊆ ω as in the definition. Write Y = {n0, n1, . . .} with n0 < n1 < · · · . Define
w0 := v0 · · · vn0 and wi+1 := vni+1 · · · vni+1 . Then α = ~w and for all j, k ∈ ω with j < k we
have

α ∈ L ⇐⇒ (w0 · · ·wj)(wj+1 · · ·wk)ω ∈ L (15)
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Now by the LD property of L′ there is an infinite set Y ′ ∈ ω as in the definition. Take any
two elements j, k ∈ Y ′ with j < k. Then we have

α ∈ L′ ⇐⇒ (w0 · · ·wj)(wj+1 · · ·wk)ω ∈ L′ (16)

It is then immediate by (15), (16) and the assumption Lassos(L) = Lassos(L′) that

α ∈ L ⇐⇒ α ∈ L′.

Since α was arbitrary, this shows that L = L′. J

Proof of Theorem 37. The equivalence of (2) and (3) is immediate by Theorem 34, and the
implication from (1) to (2/3) follows from the same result, together with the observation
that regular ω-languages are lasso-determined.

For the remaining implication (2/3 ⇒ 1), assume (2), and let L′ be the stream language
accepted by the pointed Ω-coalgebra (Z,Lassos(L)). It follows that Lassos(L) = Lassos(L′),
and since L′, being regular, is lasso-determined, Proposition 36 implies L = L′, which
immediately yields the regularity of L. J
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