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ABSTRACT
For linear regression models, we propose and study a multi-step kernel
density-based estimator that is adaptive to unknown error distribu-
tions. We establish asymptotic normality and almost sure convergence.
An efficient EM algorithm is provided to implement the proposed esti-
mator. We also compare its finite sample performance with five other
adaptive estimators in an extensive Monte Carlo study of eight error
distributions. Our method generally attains high mean-square-error
efficiency. An empirical example illustrates the gain in efficiency of the
new adaptive method when making statistical inference about the
slope parameters in three linear regressions.
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1. Introduction

In parametric linear regression analysis one often imposes the model assumptions that
the errors are independent and normally distributed. The normality assumption is con-
venient, as it is well known that the maximum likelihood estimator (MLE) of the
unknown parameter vector simplifies to the least squares estimator (LSE). Naturally, an
invalid assumption on the error distribution F comes at a cost; the MLE is in general
neither consistent nor asymptotically efficient under model misspecification. Moreover,
in practice, it can lead to inaccurate or invalid statistical inference; see Sec. 5. This has
motivated the search for alternative, (semi)parametric, estimators that retain asymptotic
efficiency when F is unknown.
One approach is adaptive estimation, which “adapts” to an unknown, or incorrectly

specified, distribution F by maximizing an estimated likelihood function based on an
initial estimate of the error distribution; see Bickel (1982), Linton and Xiao (2007),
Yuan and De Gooijer (2007), and the references therein. The adaptive idea has been
studied for (non)linear regression models using non- and semiparametric methods to
estimate F or its probability density function (pdf) f.
There are various alternative adaptive estimation methods for non- and semiparamet-

ric regression problems with errors of unknown distributional form. For instance, the
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empirical likelihood method of Owen (2001) has been used to obtain adaptive confi-
dence limits and likelihood ratio test statistics for regression parameters; see also Owen
(1988, 1990, 1991), Qin and Lawless (1994), Kitamura (1997), Kitamura (2007), among
many others. Another example is the multivariate adaptive regression splines (MARS)
(Friedman 1991) which is a global adaptive nonparametric method for fitting nonlinear
regression models. PolyMARS (Kooperberg, Bose, and Stone 1997) is an extension of
MARS that allows for multiple polychotomous regression. Time series MARS, or
TSMARS, can be used for nonlinear time series analysis and forecasting; see, e.g., De
Gooijer (2017). More recently, Wang and Yao (2012) proposed a minimum average
variance estimation method, a dimension reduction technique, which can be adaptive to
different error distributions. Also, Chen, Wang, and Yao (2015) developed an adaptive
estimation method for varying coefficient models.
Recently, Yao and Zhao (2013) proposed an adaptive kernel density-based estimator

for classical linear regression models, called KDRE. In particular, with an estimate of
the “true” parameter vector, f is modeled by a kernel density-based estimator of the
regression residuals. In the second step, parameter estimates are obtained by maximiz-
ing a local, kernel-based, log-likelihood function using the first-step estimated density
function as the true one. Through a simulation study, Yao and Zhao (2013) show that
the resulting KDRE is asymptotically equivalent to the oracle estimator in which the
true error pdf is known.
Now, it is well known that each LSE-based residual is the sum of two components:

one is the true error, the other is a linear function of the entire vector of errors. Since,
in finite samples, the second term will tend to be normally distributed (as long as the
errors have finite variance), the residuals for small samples will appear more normal
than would the unobserved values of the errors. This tendency is called supernormality;
see Bassett and Koenker (1982), Bloomfield (1974), and White and MacDonald (1980).
Hence, for the two-step KDRE method, it is likely that the finite-sample properties of
the proposed estimator strongly depend on the empirical distribution of the residuals,
more closely resembling normality than would be the case by using the pdf of the errors
itself, if this were in fact possible. This makes the KDRE method nonoptimal.
In this paper, we remedy this deficiency of the KDRE method by further iteration. That

is, we maximize over different kernel-based likelihood functions. These different likeli-
hood functions follow iteratively from parameter estimates that result from maximizing
the (previous) likelihood function. The algorithm iterates until the parameter estimates
(and, hence, the estimated likelihood function) reaches a fixed point. The new estimator is
called multi-step KDRE (M-KDRE). In finite samples, one may expect that M-KDRE
yields better estimation results; see Robinson (1988). Actually, from an extensive Monte
Carlo study where we compare the finite-sample performance of M-KDRE with estimates
based on five other, parametric and (semi)nonparametric adaptive estimators (AEs), we
find that iterating over the likelihood functions can indeed strongly increase finite-sample
performance. In fact, we find that M-KDRE outperforms all other considered AEs. In an
empirical example based on Andrabi, Das, and Khwaja (2017), we show that LSE estimates
may be misleading. M-KDRE outperforms the other considered estimators in terms of
out-of-sample prediction performance. Furthermore, M-KDRE provides strong evidence
that the treatment effect as described in Andrabi, Das, and Khwaja (2017) does not exist.
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Theoretically, we establish strong (almost sure) convergence to the true parameter
vector, under relative weak conditions. We also show that the M-KDRE method is
adaptive, i.e., asymptotically normal and efficient. Furthermore, its computation is made
convenient by proposing an EM type algorithm.
The rest of the paper is organized as follows. Section 2 introduces the new adaptive

M-KDRE method and contains our theoretical results. An efficient EM type algorithm
to implement the proposed estimator is also given in this section. In Section 3, we
describe and explain five alternative adaptive estimation methods. Section 4 contains
results of a simulation-based study of the finite sample properties of the M-KDRE
method and compares it with those of the adaptive estimation methods discussed in
Section 3. In Section 5, we present the empirical application of our method to the edu-
cational data set as used in Andrabi, Das, and Khwaja (2017). Section 6 gives a sum-
mary and some concluding remarks. Proofs are presented in Appendix A.

2. Multi-Step kernel Density-Based regression estimation

2.1. Model and method

Consider the general linear regression problem with observations

yi ¼ x0ib0 þ ei, ði ¼ 1, :::, nÞ (1)

where yi is a univariate response variable, xi ¼ ðxi, 1, :::, xi, pÞ0 is a p-dimensional (p< n)
vector of covariates, and b0 2 B � R

p is an unknown parameter vector including an
intercept. Here ðyi, xi, eiÞ are independent and identically distributed (i.i.d.) realizations
from a common random source ðy, x, eÞ: Moreover, the ei‘s are assumed to have some
common unknown pdf f ðeÞ, and E½eijxi, b0� ¼ 0 and E½jejjxi, b0� < 1 ði ¼ 1, :::, nÞ:
Model (1) is semiparametric with b and f ð�Þ its parametric and non-parametric part,
respectively.

Let b̂LSE be the LSE of b0 in (1), which is a natural estimator to start the M-KDRE

method. Also, let b̂
ðuÞ

denote an estimator of b0 at iteration step u ¼ 0, 1, :::: Then, with
the conditions introduced above, the proposed M-KDRE can be obtained as follows.

(i) Initial step: At u¼ 0, start with b̂
ð0Þ ¼ b̂LSE: Compute the residuals êð0Þi ¼

yi � x0ib̂
ð0Þ ði ¼ 1, :::, nÞ:

(ii) Compute the Rosenblatt-Parzen kernel-based estimator f̂
ðuÞ
n ð�Þ of f ð�Þ: That is

f̂
ðuÞ
n ðxÞ ¼ ðnhnÞ�1

Xn
i¼1

K

�
x � êðu�1Þ

i

hn

�
(2)

where hn > 0 is the bandwidth.
(iii) Let cðbÞ ¼ n�1Pn

i¼1ðyi � x0ibÞ: Then, using (2), compute

b̂
ðuÞ ¼ argmaxb2BQ̂uðbÞ s:t: cðbðuÞÞ ¼ 0 (3)

where Q̂uðbÞ is the local log-likelihood function
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Q̂uðbÞ ¼
Xn
i¼1

ln f̂
ðuÞ
n ðyi � x0ibÞ (4)

(iv) Repeat steps (ii)–(iii) until convergence at iteration step ðuþ 1Þ ðu ¼ 1, 2, :::Þ:

It is worth mentioning that Yao and Zhao (2013) only iterate over the empirical likeli-
hood function of the first initial, LSE, estimate while in the above case we allow for sto-

chastic fluctuations in f̂
ðuÞ
n ð�Þ: As we show, this generalization will increase mean-square

error parameter efficiency.

2.2. Asymptotic properties

In this section we give the asymptotic properties of the uth M-KDRE, denoted hereafter

by b̂
ðuÞ
: For convenience, when we emphasize the dependence on b, we use f ðyijbÞ to

denote f ðyi � x0ibÞ: Technical details, lemmas, and proofs are given in Appendix A.

Theorem 2.1. (Almost sure (a.s.) convergence) Under the assumptions of Lemma A.1 and

(i) f ðyijb̂Þ is non-parametrically identifiable,
(ii) b 2 B where B � R

p is compact,
(iii) f ðyijbÞ is continuous for each b 2 B,
(iv) E½supb2B j ln f ðyijbÞj� < 1,

then

b̂
ðuÞ !a:s: b0 (5)

The following notation is used throughout the next part of the paper. Let LnðyijbÞ ¼
ln f ðyijbÞ ¼ ln f ðyi � x0ibÞ: Then dbðbÞ ¼ @LnðyijbÞ=@b ¼ �f 0ðyijbÞf�1ðyijbÞxi, dbbðbÞ ¼
@L2nðyijbÞ=@b@b

0 ¼ ðf ðyijbÞf 00ðyijbÞ � f 02ðyijbÞ=f 2ðyijbÞÞxix0i, where f 0ðuÞ ¼ @f ðuÞ=@u,
f 00ðuÞ ¼ @f 0ðuÞ=@u, and f 02ðuÞ ¼ f 0ðuÞf 0ðuÞ: Given these notations, the Fisher informa-
tion matrix (FIM) for the unconstrained linear regression problem, evaluated at b0, can
be defined as

Ibb ¼ Eðdbðb0Þdbðb0Þ0Þ ¼ �Eðdbbðb0ÞÞ (6)

where the second equality holds under mild regularity conditions. If Ibb is nonsingular,
then I�1

bb is the unconstrained Cram�er-Rao bound (CRB) for the mean-square error

(MSE) covariance matrix of any unbiased estimator of b0:

Observe that incorporation of the one-dimensional linear constraint cðbðuÞÞ ¼ 0 in
step (iii) of the M-KDRE method leads to a p-dimensional parameter vector that has
only p� 1 independent components. As a consequence, the FIM is singular and the
CRB may not be an informative lower bound on the MSE matrix of the resulting esti-

mator. So the asymptotic distribution of b̂
ðuÞ

degenerates. For deterministic linear par-
ameter constraints, Stoica and Ng (1998) formulated a constrained CRB (CCRB) that
explicitly incorporates the active constraint information with the original FIM, singular
or nonsingular. Their general setting is for q (q< p) continuously differentiable
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constraints gðbÞ ¼ 0: Assuming b is regular in the active set of linear constraints, the

q� p gradient matrix G ¼ @gðbÞ=@b0
has full row rank q, with G independent of b:

Hence, there exists a matrix U 2 R
p�ðp�qÞ whose p-dimensional columns form an ortho-

normal null space of the range space of the row vectors in G, i.e., such that

GU ¼ 0 and U0U ¼ Ip�q (7)

where Ip�q denotes the identity matrix of size p – q. For nonlinear deterministic con-
straints, G and U are functions of b; see, e.g., Moore, Sadler, and Kozick (2008).
Recently, Ren et al. (2015) extended the deterministic CCRB of Stoica and Ng (1998) to a

hybrid parameter vector with both nonrandom and random parameter constraints. In the
case of the M-KDRE method the constraint is not deterministic, depending on the random

variables xi: Then the matrix U in (7) depends on the estimate b̂ of b0, say Uðb̂Þ: The result-
ing CCRB, as a special case of the hybrid CCRB of Ren et al. (2015), can be stated as follows.

Theorem 2.2. Let b̂ be an unbiased estimate of b0 satisfying the active functional con-

straints gðbÞ ¼ 0, and let U ¼ Uðb̂Þ be defined in (7). Then, under certain regularity con-
ditions, if U0IbbU is nonsingular,

Eððb̂ � b0Þðb̂ � b0Þ0Þ � UðU0IbbUÞ�1U0

where the equality is achieved if and only if b̂ � b0 ¼ UðU0IbbUÞ�1U0dbðbÞ, in the
mean- square sense.

Remark 1. Note that rather than requiring a nonsingular FIM Ibb, the alternative condi-
tion is that U0IbbU is nonsingular. Thus, the unconstrained FIMmay be singular, or, equiva-
lently, the unconstrained model unidentifiable, but the constrained model must be
identifiable, at least locally. Ren et al. (2015) show that the difference between the standard
CRB-based covariance matrix and the CCRB-based covariance matrix is a positive semi-def-
inite matrix. This result is expected since the presence of parameter constraints can be con-
sidered as additional information to improve the performance of the estimator under study.

Theorem 2.3. (Normality and efficiency) If model (1) holds, feigni¼1 are i.i.d. with
unknown density f(x) where f is a continuous function symmetric around zero with
bounded continuous derivatives that satisfy

(i)
Ð
xf ðxÞdx ¼ 0,

(ii) E @ ln f ðxÞ
@x

� �2
þ
���� @2 ln f ðxÞ

@x2

����þ
���� @3 ln f ðxÞ@x3

����
" #

< 1,

fxig1i¼1 satisfies,

(iii) 9 0 < M < 1 such that kxk < M,
Kð�Þ is a symmetric and four times continuously differentiable function
such that

(iv) 9 0 < q < 1 such that K(x) ¼ 0 8x : kxk � q
holds, and

(v) when n ! 1, nh4n ! 1 and nh8n ! 0,
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then b̂
ðuÞ ðu ¼ 1, 2, :::Þ is asymptotically normal and efficient. That is, as n ! 1,ffiffiffi

n
p ðb̂ðuÞ � b0Þ!d Nð0,UðU0IbbUÞ�1U0Þ (8)

Remark 2. All conditions are practical and easy to satisfy. Condition (ii) is used to

guarantee the adaptiveness of b̂
ðuÞ
:

2.3. EM algorithm

In this section, we propose an EM type algorithm by noticing that (4) has a mixture
log-likelihood form with an imposed constraint. Specifically, given an initial parameter

estimate b̂
ð0Þ

and the set of initial estimates fêð0Þi gni¼1, the ðkþ 1Þ th iteration of the EM
algorithm to maximize (4) (the uth likelihood function) is as follows.

E-step: Calculate the classification probabilities,

pðuÞij, ðkþ1Þ ¼
exp � 1

2h2n
ðyi � x0ib̂

ðuÞ
ðkÞ � êðu�1Þ

j Þ2
n o

Pn
‘¼1 exp � 1

2h2n
ðyi � x0ib̂

ðuÞ
ðkÞ � êðu�1Þ

‘ Þ2
n o (9)

M-step: Update b̂
ðuÞ
ðkÞ with

b̂
ðuÞ
ðkþ1Þ ¼ b̂LSE �

Xn
i¼1

xix
0
i

 !�1Xn
i¼1

xi
Xn
j¼1

pðuÞij, ðkþ1Þê
ðu�1Þ
j

 !

þ 1
n

Xn
i¼1

xix
0
i

 !�1Xn
i¼1

xi
Xn
i¼1

Xn
j¼1

pðuÞij, ðkþ1Þê
ðu�1Þ
j

 ! (10)

where (10) follows from using a Gaussian kernel for density estimation. The choice of
the kernel is not critical. Any symmetric kernel can be used for our method. However,
the Gaussian second order kernel provides an explicit solution of the EM algorithm.

Theorem 2.4. Under the linearity constraint cðbÞ ¼ 0, each iteration of the above E- and
M-steps will monotonically increase the local log-likelihood (4), i.e.,

Q̂nðb̂ðuÞ
ðkþ1ÞÞÞ � Q̂nðb̂ðuÞ

ðkÞÞ, for all k.
Remark 3. For the EM type algorithm, we use a full-kernel method rather than a leave-
one-out method as in Yao and Zhao (2013). The approach has the following advantage.

If a certain residual êðu�1Þ
j is extremely large, pðuÞij, ðkþ1Þ will be close to zero for all i 6¼ j

and close to one for i¼ j. This implies that the effect of the residual is limited to the
observation for which the following iteration of b is likely to lead to a residual that is
similar in magnitude. Hence, the effect of a large residual on the maximization of (4) is
small. In the leave-one-out method, the effect of the residual may be considerably larger

as pðuÞij, ðkþ1Þ is likely to have a substantial value for several observations.

6216 J. G. DE GOOIJER AND H. REICHARDT



Remark 4. The EM type algorithm is considered converged when maxjb̂ðuÞ
ðkÞ � b̂

ðuÞ
ðkþ1Þj is

smaller than a threshold value, where max jAj denotes the largest (absolute) element in
A. In the uth step of the M-KDRE method, the EM algorithm is initialized by the esti-

mate at the ðu� 1Þ th step. That is, b̂
ðuÞ
ð0Þ ¼ b̂

ðu�1Þ
:

3. Some alternative adaptive estimation methods

3.1. SBS method

Stone (1975), Bickel (1982), and Schick (1993) (henceforth SBS) introduce a two-step

AE. Let ~b be a certain
ffiffiffi
n

p
-consistent estimator of b0: Then, an infeasible two-step esti-

mator can be defined as

b̂ ¼ ~b þ n�1I�1
bb ð~bÞdbð~bÞ

where Ibbð~bÞ is Fisher’s information matrix evaluated at ~b and dbð~bÞ is a correspond-

ing p� 1 score vector. The infeasibility of b̂ follows from the fact that f is unknown,

and hence Ibb and db are unknown. The approach of SBS is to replace dbð~bÞ by

d̂bð~bÞ ¼ �Pn
i¼1 f̂

0
nðyij~bÞf̂

�1

n ðyij~bÞxi where f̂ nðxÞ is defined in a similar way as in (2)

and f̂ 0nðxÞ is its derivative with respect to x. Similarly, I�1
bb ð~bÞ is replaced

with n2½Pn
i¼1 xix

0
i

Pðf̂ 0nðyij~bÞf̂
�1

n ðyij~bÞÞ2��1:

The conditions under which the two-step AE approach can be shown to be asymptot-
ically efficient have been researched extensively. Most importantly, the kernel estimator
of the score function must be (i) i.i.d., and (ii) independent of xi: These conditions are
restrictive and not easy to verify in practice; see, e.g., Yuan and De Gooijer (2007).
Bickel (1982) solved the i.i.d. problem by splitting the sample in two; one sub-sample to
estimate the score and another to solve for b: However, Manski (1984) finds that the
estimator works much better when the sample is not split, i.e., if the estimated score

and ~b are both computed using the entire sample. If (i) and (ii) are satisfied, a sufficient

condition for adaptiveness is that (iii) E½ðf 0ðyijbÞf�1ðyijbÞf̂ 0nðyij~bÞf̂
�1

n ðyij~bÞÞ2� ! 0,
as n ! 1:

Since f̂ n is present in the denominator of d̂b, unstable estimates may follow for near-

zero values of f̂ nð�Þ: Hence, Bickel (1982) suggests to trim the estimator of the kernel
score as follows

f̂
0
nðyij~bÞ
f̂ nðyij~bÞ

¼
f̂
0
nðyij~bÞ
f̂ nðyij~bÞ

, if jyi � x0ibj � t1, f̂ nðyij~bÞ > t2, and
f̂
0
nðyij~bÞ
f̂ nðyij~bÞ

< t3,

0, otherwise:

8><
>:

This trimming mechanism ensures that near-zero values do not have unreasonably
large influence on the estimate. If t1 ! 1, t2 ! 0, t3 ! 1, hn ! 0, t1=nh3n ! 0, and
hnt1 ! 0 as n ! 1 then condition (iii) is satisfied. Hence, adaptiveness is established
under the proper trimming parameters and conditions (i) and (ii).
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Naturally, the growth rates of the trimming parameters are of little use to a practi-
tioner, and as such the choice for the trimming parameter is a practical disadvantage.
Hsieh and Manski (1987) reduce the problem to selecting a one-dimensional parameter
t by suggesting the following relation between the trimming parameters: t1 ¼ t, t2 ¼
exp ð�t2=2Þ, t3 ¼ t: These authors vary t between 3, 4, and 8. For a sample size of 50,
t¼ 8 works best in almost all cases under study.

3.2. LGMM and LGMMS methods

Newey (1988) describes a two-step AE that avoids kernel estimation. His approach is
based on moment conditions that can be derived from certain assumptions on the error
distribution. Two situations are analyzed. First, the case where the error terms are i.i.d.
and independent of xi: This model implies the moment condition that any function of
the errors are uncorrelated with any function of the regressors. Second, the case where
the distribution of ei is symmetric (S) around zero conditional on xi: The assumption
that the errors are symmetrically distributed around zero yields the moment conditions
that any odd function of the errors are uncorrelated with any function of the regressors.
Hence, in both situations we can exploit moment restrictions. In particular, in the first
case, we refer to the linearized general method of moment estimator as LGMM. In the
second case, we use the short-hand notation LGMMS. For LGMM, natural moment

conditions arise from the fact that E½xiðeji � EðejiÞÞ� ¼ 0 for j ¼ 1, 2, :::: However, Newey

(1988) finds that these high-order “raw” moments, mjðeiÞ ¼ eji, are sensitive to a fat-
tailed error distribution.
Estimates that are more robust against fat tails can be obtained using the

“transformed” powers with mjðeiÞ ¼ ðei=ð1þ jeijÞÞj or the “weighted” powers with

mjðeiÞ ¼ exp ð�ei=2Þeji: Similarly, for LGMMS we may use E½xie2j�1
i � ¼ 0 ðj ¼ 1, 2, :::Þ:

As for LGMM, performance may be improved if we use the odd powers of the trans-
formed method instead. However, for technical reasons the weighted powers can not be
used for LGMMS; Newey (1988). In general, both for LGMM and LGMMS, we use the
moment condition E½xiðmjðeiÞ � ljÞ� ¼ 0 ðj ¼ 1, 2, :::Þ where lj ¼ E½mjðeiÞ�:
To define the LGMM(S) estimator, we introduce the following notation for some

fixed value J ¼ JðnÞ of j,
fi ¼ ðm1ðeiÞ � l1, :::,mJðeiÞ � lJÞ0, w ¼ E ðm1, eðeiÞ, :::,mJ, eðeiÞÞ0

� 	
Vff ¼ CovðfiÞ

(11)

where mj, eð�Þ ¼ @mjð�Þ=@e: Let êif gni¼1 denote the residuals corresponding to the initial

estimate b̂, then the quantities in (11) can be consistently estimated by their corre-
sponding sample statistics, i.e.,

f̂i ¼ ðm1ð̂eiÞ � l̂1, :::,mJðêiÞ � l̂JÞ0, ŵ ¼
�
n�1

X
i

m1, eð̂eiÞ, :::, n�1
X
i

mJ, eð̂eiÞ
�0

and
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V̂ff ¼n�1
X
i

f̂if̂
0
i

The LGMM(S) estimator is given by

b̂LGMMðSÞ ¼ b̂ þ ½ðŵ 0 	 X0XÞðV̂�
ff
1 	 ½X0X��1Þðŵ	X0XÞ��1

� ðŵ 0 	 X0XÞðV̂�
ff
1 	 ½X0X��1ÞðIJ 	 X0Þvecðf̂Þ,

(12)

where f̂ is the n� J matrix ðf̂01, :::, f̂
0
nÞ0, IJ is an J� J identity matrix, and X an n� p

matrix with its first column an n� 1 vector of ones. Under certain assumptions, Newey
(1988) proves asymptotic normality of the LGMM and LGMMS estimators. In particu-
lar, it should hold that J ! 1 and J ln J= ln n ! 0, as n ! 1: Only for LGMMS,
asymptotic efficiency is obtained, but not for LGMM. By means of simulation, Newey
(1988) finds for LGMM that J¼ 3 performs best for sample sizes between n¼ 50 and
n¼ 200. However, the MSE efficiency of the estimator as a function of J flattens out as
n increases. Also, the transformed method is in general preferred over the
weighted method.

3.3. KDRE method

The KDRE method of Yao and Zhao (2013) can be viewed as the unconstrained two-
step version of M-KDRE. That is, it follows from unconstrained maximization of the
kernel likelihood function that is estimated on the basis of the residuals corresponding
to an initial estimate. Under conditions (i)–(v) of Theorem 2.3 these authors prove that
the KDRE method is adaptive. For technical reasons, this property is proven for a
trimmed version. The untrimmed maximizer of the kernel-based likelihood is the solu-

tion to n�1Pn
i¼1 f̂

0
nðyijbÞ=f̂ nðyijbÞ

n o
x0i ¼ 0: The trimmed version is then defined as the

solution to

1
n

Xn
i¼1

f̂
0
nðyijbÞ
f̂ nðyijbÞ

x0iGb

�
f̂ nðyijbÞ

�
¼ 0:

Here,

GbðxÞ ¼
0, if x < b,Ð x
b gbðzÞdz if b � x � 2b,
1, if x > 2b,

8<
: (13)

where gbð�Þ is a four times continuously differentiable function with support on ½b, 2b�,
and b ! 0 if n ! 1: This trimming function is introduced by Linton and Xiao (2007)
and they suggest the use of the beta function. For the purpose of KDRE, the trimming
parameter is only used to simplify the proof and is not a part of the actual implementa-
tion of the method.
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3.4. YDG method

Yuan and De Gooijer (2007) (hereafter YDG) propose another estimator of b0 based on
estimating the error density by means of a kernel. The method is a one-step approach
and as such does not require an initial estimate. The proposed estimator is given by

b̂ ¼ arg max
b2B

Xn
i¼1

ln
1

ðn� 1Þhn
Xn
j 6¼i

K

�
rðyi � x0ibÞ � rðyj � x0jbÞ

hn

�
(14)

where rðzÞ ¼ 10� ez=ð1þ ezÞ: The nonlinear function rð�Þ is introduced to avoid can-
celation of the intercept coefficient in x0jb� x0ib: However, as Yao and Zhao (2013)

note, this comes with an efficiency loss; r(z) ¼ z is efficient in the sense that even
though the intercept is canceled out, the slope coefficients are adaptively estimated.
They suggest the use of the following estimator

b̂


YDG ¼ arg max

b2B

Xn
i¼1

ln
1

ðn� 1Þhn
Xn
j6¼i

K

� ðyi � x

0

i b

Þ � ðyj � x


0
j b


Þ
hn

�
(15)

where x
i ¼ ð1, x0iÞ
0
, and b̂YDG ¼ ðâYDG, b̂


0
YDGÞ

0
and âYDG ¼ n�1P

iðyi � x

0

i b̂


YDGÞ: The

intercept estimate âYDG, however, is not in general asymptotically efficient.

4. Simulation study

4.1. Setup

In order to assess the finite sample practical performance of all reviewed AEs, we conduct a

Monte Carlo study. We generate i.i.d. data ðxi, yiÞ

 �n

i¼1 from the regression model

yi ¼ x0ibþ ei, b ¼ ð1, � 1, 2, � 0:5, 3, 1, � 1, 2, � 0:5, 3Þ0 (16)

where b is a p� 1 parameter vector containing an intercept and the parameters corre-
sponding to p� 1 explanatory variables. Here p¼ 10, but we also consider the case p¼ 2
and p¼ 5 consisting of the first two and first five coefficients of b, respectively. The sample
size is set at n ¼ 50, 100, 500, and 1, 000: All simulation results are based on 500 replica-
tions. The explanatory variables in xi are independent realizations of an N(0, 1) distribu-
tion. The errors ei are i.i.d., and we consider the following eight error distributions:

(a) standard normal;
(b) variance-contaminated normal, the mixture 0:9Nð0, 1=9Þ þ 0:1Nð0, 9Þ;
(c) t-distribution with two degrees of freedom;
(d) bimodal symmetric mixture of two normals, 0:5Nð�3, 1Þ þ 0:5Nð3, 1Þ;
(e) Unif½� ffiffiffi

3
p

;
ffiffiffi
3

p �;
(f) Gamma(2,2);
(g) skewed mixture of normals, 0:3Nð�1:4, 1Þ þ 0:7Nð0:6, 0:16Þ; and
(h) log-normal, being the distribution of exp ðzÞ for z � Nð0, 1Þ:

The distributions are centered and scaled to have mean zero and unit variance, when
necessary and possible. The t(2)-distribution is left unscaled as its variance is infinite.
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If required, we use b̂LSE as an initial parameter estimate. In addition, we adopt the
standard normal kernel density Kð�Þ: For the SBS method, we set the trimming param-
eter at t¼ 8. Following Newey (1988), we compute the LGMM and LGMMS estimators
for the transformed moments with J¼ 3. Implementing the kernel density-based estima-
tors requires a method for choosing the bandwidth hn. There is a vast literature on this
topic, ranging from simple to involved methods. But none of the proposed methods has
overall performance. In an extensive simulation study of model (1) with n¼ 100 and
p¼ 2, Reichardt (2017) concludes that for M-KDRE hn, 1 ¼ 1:06r̂nn�1=5 is preferable for
symmetric error distributions in terms of root mean squared error (RMSE) of the esti-
mators. Here r̂n is the standard deviation of the data. For skewed distributions, he rec-
ommends hn, 2 ¼ 0:9An�1=5 where A ¼ minðr̂n,R=1:34Þ with R the inter-quartile range
of the data. The KDRE and YDG estimators perform best under hn, 1: The SBS estimator
generally shows the smallest RMSE for hn, 2: Hence, throughout the simulations, we use
the above bandwidths.

4.2. Results

Averaged over all replications, Table 1 provides summary information on the computed
RMSEs of the slope and intercept coefficients for all n and p, and across all error distri-
butions. Clearly, M-KDRE shows the best overall performance of all estimators for the
slope coefficient, with 64 lowest RMSE values out of a total of 84, i.e., 7 estimation
methods (M-KDRE, KDRE, YDG, SBS, LGMM, LGMMS, LSE), 3 values for p, and 4
values for n. On the other hand, the SBS estimator has only one lowest RMSE value for
n ¼ 1, 000 and p¼ 2. The other estimators have low RMSE values lying in between the
above two values, with the LSE results as a benchmark. Finally, from the last column of
Table 1, we see that M-KDRE performs equally well with YDG, LGGM and LGMMS in
estimating the intercept term, and M-KDRE markedly outperforms KDRE.
Reichardt (2017) reports RMSE values for each of the eight error distributions. For

the sake of space we omit details. However, for the slope coefficient the simulation
results can be summarized as follows.

Table 1. Number of times the RMSE attains its lowest value for seven regression estimators, for
each n and p and across all eight error distribution functions, for the slope coefficient and, in paren-
theses, for the intercept.

p
2 5 10

n 50 100 500 1,000 50 100 500 1,000 50 100 500 1,000 Total

M-KDRE 5ð3Þ 6ð3Þ 5ð3Þ 6ð2Þ 4ð1Þ 5ð2Þ 6ð2Þ 6ð4Þ 4ð3Þ 4ð3Þ 6ð3Þ 7ð3Þ 64ð32Þ
KDRE 0ð0Þ 0ð0Þ 3ð1Þ 3ð0Þ 0ð0Þ 0ð0Þ 2ð1Þ 3ð1Þ 0ð1Þ 0ð0Þ 1ð0Þ 4ð1Þ 16ð5Þ
YDG 1ð2Þ 0ð3Þ 2ð5Þ 2ð4Þ 3ð1Þ 1ð1Þ 3ð4Þ 3ð5Þ 1ð0Þ 3ð1Þ 2ð5Þ 3ð5Þ 24ð36Þ
SBS 0ð0Þ 0ð0Þ 0ð0Þ 1ð0Þ 0ð0Þ 0ð0Þ 0ð1Þ 0ð1Þ 0ð0Þ 0ð0Þ 0ð0Þ 0ð1Þ 1ð3Þ
LGMM 1ð1Þ 2ð4Þ 4ð3Þ 3ð3Þ 1ð5Þ 0ð4Þ 2ð1Þ 4ð4Þ 1ð1Þ 1ð2Þ 1ð3Þ 4ð3Þ 24ð34Þ
LGMMS 0ð4Þ 1ð4Þ 3ð4Þ 2ð3Þ 1ð3Þ 1ð3Þ 0ð4Þ 3ð4Þ 1ð3Þ 1ð3Þ 1ð3Þ 3ð4Þ 17ð42Þ
LSE 1ð1Þ 1ð3Þ 1ð3Þ 1ð3Þ 1ð1Þ 1ð1Þ 1ð2Þ 1ð3Þ 1ð1Þ 1ð1Þ 1ð2Þ 1ð3Þ 12ð24Þ

Total 8 10 18 18 10 8 14 20 8 10 12 22 158
(11) (17) (19) (15) (11) (11) (15) (22) (9) (10) (16) (20) (176)

Note: For the purpose of this table, the RMSE is measured up to three decimal figures such that more than one
estimator may have the lowest RMSE.
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� In terms of RMSE, the M-KDRE method performs very well for the log-normal
error distribution (h). That is, the RMSE of the second most efficient estimators
(KDRE and LGMM) is approximately 40% larger, even for n ¼ 1, 000: Under
error distributions (b) and (c), M-KDRE is also most efficient, but here the effi-
ciency is gained mostly for n¼ 50 and n¼ 100. Furthermore, M-KDRE has a
superior performance in small samples of the t(2) error distribution. It is also
close to best for error distributions (d)–(g).

� The YDG method performs well for error distributions (d)–(g), but fails quite
dramatically for error distributions with fat tails, i.e. (b), (c), and (h).

� Efficiency of the SBS estimator is in general low relative to alternatives, but per-
formance is especially weak under error distributions (c) and (d).

� Overall, LGMM is a reasonable estimator, but its efficiency is lost under error
distributions (e) and (f). This efficiency loss persists even for n ¼ 1, 000:

� LGMMS is by construction inefficient when the error distribution is skewed:
(f)–(h). More interestingly, the LGMMS-estimate of the slope coefficient is no
improvement over LGMM under symmetric error distributions. The inefficiency
of LGMMS with respect to LGMM is likely to be due to the fact that LGMMS
uses moment restrictions on odd powers of the disturbances only and, hence, for
a particular value of J, uses higher order moments that may lead to less effi-
cient estimation.

Table 2 shows summary results for the bias for both slope and intercept estimators
for all n and p, and across all error distributions. For the slope coefficient, M-KDRE
has the best performance in terms of the lowest bias values. Again, from Reichardt
(2017) we learn that the intercept bias of the different estimators is usually of similar
magnitude in the symmetric cases. Under the asymmetric error distributions, the bias of
the intercept is much larger for KDRE, SBS and LGMMS than for the other estimators.

5. Empirical application

Andrabi, Das, and Khwaja (2017) study the impact of providing information in the
form of school report cards on educational outcomes such as school fees, test scores,

Table 2. Number of times the bias of seven regression estimators attains it lowest value for each n
and p, and across all eight error distribution functions for the slope coefficient and, in parentheses,
for the intercept.

p
2 5 10

n 50 100 500 1,000 50 100 500 1,000 50 100 500 1,000 Total

M-KDRE 0ð4Þ 3ð2Þ 7ð5Þ 8ð6Þ 4ð1Þ 6ð6Þ 5ð6Þ 8ð3Þ 5ð1Þ 7ð3Þ 7ð5Þ 6ð5Þ 66ð47Þ
KDRE 0ð1Þ 1ð2Þ 7ð3Þ 7ð3Þ 3ð0Þ 4ð3Þ 6ð3Þ 8ð3Þ 0ð0Þ 4ð1Þ 6ð2Þ 7ð2Þ 53ð23Þ
YDG 3ð2Þ 3ð4Þ 4ð3Þ 7ð6Þ 0ð2Þ 2ð4Þ 5ð5Þ 5ð4Þ 2ð5Þ 2ð1Þ 6ð8Þ 5ð6Þ 44ð50Þ
SBS 3ð2Þ 1ð1Þ 5ð3Þ 4ð3Þ 3ð0Þ 1ð2Þ 7ð5Þ 7ð3Þ 3ð1Þ 2ð0Þ 6ð3Þ 4ð1Þ 46ð24Þ
LGMM 2ð4Þ 3ð2Þ 5ð4Þ 5ð6Þ 1ð1Þ 4ð2Þ 6ð5Þ 8ð3Þ 3ð1Þ 3ð2Þ 5ð6Þ 4ð4Þ 49ð40Þ
LGMMS 3ð3Þ 3ð3Þ 5ð4Þ 6ð5Þ 2ð4Þ 3ð1Þ 5ð4Þ 6ð4Þ 1ð2Þ 2ð4Þ 6ð1Þ 5ð4Þ 47ð39Þ
LSE 2ð5Þ 1ð2Þ 2ð5Þ 4ð6Þ 0ð3Þ 0ð5Þ 2ð4Þ 2ð3Þ 1ð1Þ 1ð3Þ 2ð5Þ 1ð2Þ 18ð45Þ

Total 13 15 35 41 13 20 36 44 15 21 38 32 323
(21) (16) (27) (35) (11) (23) (32) (23) (11) (14) (30) (25) (268)
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and enrollment in markets with multiple public and private providers. The report cards
given to both households and schools in n randomly sampled villages across three
districts, in the Punjab province of Pakistan, include information on the performance of
the child, the average score of different schools in the village, and the average village
score in mathematics, English, and Urdu. The following three linear regression models
are of interest:

Yi, j ¼ aj þ bjRCi þ cjY


i, j þ djXi, j þ ei, ði ¼ 1, :::, n; j ¼ 1, 2, 3Þ (17)

where Yi, 1,Yi, 2, and Yi, 3 are average fees, test scores, and enrollment rate in the post-
intervention year of village i, respectively. Y


i, j denotes the baseline measurement of the

same variables. RCi is the treatment dummy assignment to village i, which makes bj the
variable of interest, an estimate of the impact of the report card assignment. Xi, j is a
vector of village-level baseline controls. All models in the paper are estimated
using LSE.
Table 3, column 1, shows the LSEs of bj ðj ¼ 1, 2, 3Þ and their corresponding stand-

ard errors (in parentheses) as shown in, respectively, Table 3(1) panel C, Table 3(4)
panel C, and Table 4(1) panel C of Andrabi, Das, and Khwaja (2017). The Shapiro-
Wilk test for normal data indicates that the LSE residuals are far from normally distrib-
uted, with p-values 0.000 ðj ¼ 1, n ¼ 104Þ, 0.002 ðj ¼ 2, n ¼ 112Þ, and 0.000 ðj ¼ 3, n ¼
112Þ: Indeed, in all cases, diagnostic statistics show that the residuals have fatter tails
than one would expect based on normality. Based on the LSE results, Andrabi, Das, and
Khwaja (2017) report the following main findings. First, private schools decreased their
annualized fees ðYi, 1Þ by an average of 187 rupees, about 17% of their baseline fees, in
response to the report card intervention. Second, test scores ðYi, 2Þ increased by 0.11
standard deviation. Third, primary enrollment ðYi, 3Þ increased by 3.2 percent points or
4.5% in treatment villages.
Table 3, columns 2–7, shows estimates of the six AEs for models j ¼ 1, 2, and 3. We

see that these estimators pull the estimated treatment effect toward zero for all models.
The results for model 1 are especially striking. The M-KDRE of b is more than 40 times
smaller than the LSE, in absolute value. Also, for model 1, the AEs differ substantially.
In that respect, it is interesting to investigate the prediction performance of the respect-
ive methods.
Table 4 shows the ratio of the median absolute prediction error (MAPE) of an esti-

mator relative to the LSE. The training set is a random sample of the data of size
d0:8ne: We see that M-RKDRE has the lowest MAPE for model 1. In addition, observe
that the prediction performance is generally better for AEs with a low estimate of b1

Table 3. Effect of report cards on school fees, test scores, and enrollment as given by parameter
estimates of bj ðj ¼ 1, 2, 3Þ using seven estimation methods. For columns 2–7, standard errors (in
parentheses) are based on 500 bootstrap replicates.

LSE M-KDRE KDRE YDG SBS LGMM LGMMS

b̂1 �187.0 �4.418 �85.55 �154.4 �47.74 �172.3 �182.9
(65.91) (38.76) (63.42) (59.90) (73.34) (64.54) (67.65)

b̂2 0.114 0.084 0.092 0.094 0.088 0.088 0.099
(0.046) (0.050) (0.048) (0.060) (0.054) (0.045) (0.050)

b̂3 0.032 0.028 0.030 0.018 0.030 0.029 0.027
(0.014) (0.014) (0.012) (0.019) (0.013) (0.012) (0.012)
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such as KDRE and SBS. This suggests that the effect of the report cards on school fees,
if it exists at all, is much lower than reported. For models 2 and 3, there is less differ-
ence between the estimates of the AEs. Also, the estimates are adjusted less strongly
with respect to LSE.
Table 5 reports two bootstrapped 95% confidence intervals for bj ðj ¼ 1, 2, 3Þ as

estimated by M-KDRE. The confidence interval termed “Normal” is based on an asymp-
totic normality assumption, and the column called “Percentile” is based on the 95%
inter quartile range obtained from the empirical distribution of 500 bootstrap replicates.
Both intervals show that the estimated treatment effect for model 1 is not significantly
different from zero.
In summary, the above results demonstrate the practical relevance of the AEs in gen-

eral and that of the proposed M-KDRE method in particular. None of the other AEs
adjusted the treatment effect on school fees as far toward zero as M-KDRE, while pre-
diction performance suggests that this method should be preferred over other methods
for this particular linear regression model and sample size. Thus, there is no support
for the first finding of Andrabi, Das, and Khwaja (2017) at any reasonable significance
level. Further, Table 3 shows that the AEs find that the effect of report cards on test
scores is not significantly different from zero at the 5% nominal level. Lastly, the effect
of report cards on the enrollment rate seems, even though marginally significant for M-
KDRE, also questionable.

6. Summary and concluding remarks

In this paper, we proposed an adaptive multi-step kernel density-based regression esti-
mator for linear regression models. We have established the theoretical properties of
our estimation method, including asymptotic normality and almost sure convergence.
In an extensive simulation study, we have shown that the finite sample performance of
M-KDRE is second to none of five alternative AEs. For several error distributions, it is
up to twice as efficient in terms of RMSE than the second best estimator. Further, for
any other error distribution, it is either the most efficient or very close to the most effi-
cient estimator. All other AEs show a loss of efficiency for certain specific error distri-
butions. Our empirical application provides a good illustration of many of these issues.
In particular, using the M-KDRE method and its corresponding bootstrap standard

Table 4. Median absolute prediction error (MAPE) of six AEs relative to LSE.
Model (j) M-KDRE KDRE YDG SBS LGMM LGMMS

1 0.720 0.858 0.906 0.769 0.992 1.001
2 1.002 1.016 0.998 1.005 0.997 1.020
3 0.972 0.975 1.029 0.963 0.965 0.971

Table 5. Bootstrapped 95% confidence intervals of the effect
of report cards for the M-KDRE method.
Model (j) Normal Percentile

1 [�80.38, 71.55] [�88.11, 59.25]
2 [�0.015, 0.183] [�0.011, 0.187]
3 [0.001, 0.055] [0.002, 0.055]

6224 J. G. DE GOOIJER AND H. REICHARDT



errors, we found fairly compelling evidence that the treatment effects that Andrabi, Das,
and Khwaja (2017) find are not significantly different from zero.
The results raise several questions for further research. For instance, one may wish to

estimate nonlinear regressions via the M-KDRE method. In that case the EM algorithm, at
least in its present form, needs to be adjusted. Another issue concerns the fact that the

multi-step method makes use of b̂LSE in the initial step. This choice was primarily based on
computational convenience. Perhaps, efficiency may be further enhanced by a more pru-
dent choice of the initial estimator. It may also be of interest to assess the robustness of M-
KDRE to a violation of the independence assumption. In particular, adaptive estimation is
not in general possible when the vector of covariates and the error process are not mutually
independent. We leave these questions for future research.
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Appendix A: Proofs of results

Lemma A.1. (Zhang 1990, Theorem 5) If model (1) holds, eif gni¼1 are i.i.d. with unknown dens-
ity f(x) where f ð�Þ is a uniformly continuous function that satisfies (i)

Ð
xf ðxÞdx ¼ 0, (ii)

0 <
Ð
x2f ðxÞdx < 1, the set of covariates xif g1i¼1 satisfies (iii) 9 0 < M < 1 such that kxik < M

8i ¼ 1, :::, n, (iv) Sn ! Q ¼ Eðxx0 Þ where Sn ¼ n�1Pn
i¼1 xix

0
i, and the following assumptions on

the kernel function Kð�Þ hold: (v) K(x) is uniformly bounded and 9 0 < q < 1 such that K(x) ¼
0 8x : kxk � q (vi) K(x) is Riemann integrable on ½�q, q� (vii) when n ! 1, 0 < hn ! 0 andffiffiffi
n

p
hn= ln n ! 1, then

sup
x2R

kf̂ n, LSEðxÞ � f ðxÞk !a:s: 0 (A.1)

where f̂ n, LSE is the kernel density-based estimator of the LSE residuals êi, LSE ¼ yi �
x0ib̂LSE ði ¼ 1, :::, nÞ:
Lemma A.2. Suppose that the assumptions of Lemma A.1 hold. Then, if any estimator b
 satisfies
Prðlimn!1 maxjb
 � b0j � maxjS�1

n j k lnmaxjS�1
n j kÞ ¼ 1 where maxjAj ¼ maxi, jjaijj with aij the

elements of a matrix A,

sup
x2R

kf̂ 
nðxÞ � f ðxÞk !a:s: 0 (A.2)

where f̂


n is the kernel density-based estimator of the residuals êi ¼ yi � x0ib


 ði ¼ 1, :::, nÞ:

Proof. This result follows immediately from Theorem 5 and Lemma 4 in Zhang (1990) in con-
junction with Theorem 4 and (29) in Chai, Li, and Tian (1991). w

Lemma A.3. If there is a function Q0ðbÞ such that (i) Q0ðbÞ is uniquely maximized at b0, (ii) B
is compact, (iii) Q0ðbÞ is continuous, (iv) supb2B kQ̂nðbÞ � Q0ðbÞk !a:s: 0, then for u ¼ 1, 2, :::,

b̂
ðuÞ !a:s: b0, where b̂ maximizes the objective function Q̂nðbÞ subject to b 2 B. The weak conver-

gence result, i.e., b̂ !p b0 can be obtained by replacing condition (iv)

by supb2B kQ̂nðbÞ � Q0ðbÞk !p 0:

Proof: The proof is similar to the proof of Theorem 2.1 of Newey and McFadden (1994). w

Lemma A.4. If fn : B ! R is a continuous function, B is compact, and fn !a:s: f , then

lim
n!1

ð
B
fndu ¼

ð
B
fdu (A.3)

Proof. Since B is compact and fn is continuous, the image fnðBÞ is a compact subset of R and
hence, closed and bounded. Then, the result follows from the bounded convergence theorem; see,
e.g., Wade (1974). w

Proof of Theorem 2.1. Following (Newey and McFadden 1994, Thm. 2.5), we verify the condi-
tions in Lemma A.3. Note that conditions (i)–(iii) are on the density f ð�Þ of e, and on the param-
eter space B: These conditions hold under the usual regularity conditions of MLE. Condition (iv)
of Lemma A.3 implies that we have to prove that
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sup
b2B

���� 1n
Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � E ln f ðyijbÞ

� 	����!a:s: 0:

Since f̂
ð1Þ
n ¼ f̂ n, LSE, we have by Lemma A.1

sup
x2R

kf̂ ð1Þn ðxÞ � f ðxÞk !a:s: 0:

Now note that

sup
b2B

kf̂ ð1Þn ðyijbÞ � f ðyijbÞk � sup
b2Rp

kf̂ ð1Þn ðyijbÞ � f ðyijbÞk � sup
x2R

kf̂ ð1Þn ðxÞ � f ðxÞk

implying that

sup
b2B

kf̂ ð1Þn ðyijbÞ � f ðyijbÞk !a:s: 0: (A.4)

Condition (iii) implies that infb2B f ðyijbÞ > 0: Thus, 9e > 0 such that infb2B f ðyijbÞ > e: Also, by
(A.4) for any e > 0,

Prð lim
n!1 sup

b2B
kf̂ ð1Þn ðyijbÞ � f ðyijbÞk < eÞ ¼ 1 ) Prð lim

n!1 inf
b2B

f̂
ð1Þ
n ðyijbÞ > 0Þ ¼ 1:

This, together with condition (ii), ensures that for n large enough both ln f ðyijbÞ and ln f̂
ð1Þ
n ðyijbÞ

are uniformly continuous with probability one such that by the uniform continuous mapping
theorem

sup
b2B

k ln f̂ ð1Þn ðyijbÞ � ln f ðyijbÞk !a:s: 0:

Note that by conditions (ii) and (iii), ln f̂
ð1Þ
n ðyijbÞ is bounded and we may invoke the uniform

law of large numbers such that,

sup
b2B

���� 1n
Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � E ln f̂

ð1Þ
n ðyijbÞ

h i����!a:s: 0: (A.5)

Also, by Lemma A.4,

lim
n!1 E ln f̂

ð1Þ
n ðyijbÞ

h i
¼ E ln f ðyijbÞ

� 	
(A.6)

Now define the following variables

A 

���� 1n
Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � E ln f ðyijbÞ

� 	����, A1 

���� 1n
Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � E ln f̂

ð1Þ
n ðyijbÞ

h i����,
A2 


����E ln f̂
ð1Þ
n ðyijbÞ

h i
� E ln f ðyijbÞ
� 	����:

Then, by the triangle inequality, we have A � A1 þ A2, and by (A.5) and (A.6), supb2B A1 !a:s: 0
and limn!1 supb2B A2 ¼ 0: From condition (iv) of Lemma A.3 it follows that

sup
b2B

���� 1n
Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � E ln f ðyijbÞ

� 	����!a:s: 0: (A.7)
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Thus, by Lemma A.3,

b̂
ð1Þ !a:s: b0 (A.8)

For the sake of completeness, we prove also that the constraint cðbÞ ¼ 0 does not affect this
result. Let C � B be the subset for which cðbÞ ¼ 0: That is, C ¼ b 2 B : cðbÞ ¼ 0


 �
: First,

note that C is the level set of the continuous function cðbÞ such that C is closed. Also, C is

bounded since C � B and B is bounded. Hence, C is compact such that b̂
ð1Þ ¼

arg supb2C
Pn

i¼1 ln f̂
ð1Þ
n ðyijbÞ: Denote ~b ¼ arg supb2B

Pn
i¼1 ln f̂

ð1Þ
n ðyijbÞ as the global maximizer of

the objective function over B: (Newey and McFadden 1994, p. 2122) show that for (A.8) to hold,
it suffices to prove that

1
n

Xn
i¼1

ln f̂
ð1Þ
n yijb̂ð1Þ
� �

� 1
n

Xn
i¼1

ln f̂
ð1Þ
n ðyij~bÞ !a:s: 0: (A.9)

For that purpose, define

B 

���� sup

b2C

1
n

Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � sup

b2B

1
n

Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ

����,
B1 


���� sup
b2C

1
n

Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ � sup

b2C
E ln f ðyijbÞ
� 	����,

B2 

���� sup

b2C
E ln f ðyijbÞ
� 	� sup

b2B
E ln f ðyijbÞ
� 	����,B3 


���� sup
b2B

E ln f ðyijbÞ
� 	� sup

b2B

1
n

Xn
i¼1

ln f̂
ð1Þ
n ðyijbÞ

����:
Again by the triangle inequality, B � B1 þ B2 þ B3: From (A.7), it is easy to show that B1 !a:s: 0
and B3 !a:s: 0: To show that B2 !a:s: 0, first observe that by conditions (i) and (ii) of Lemma A.1
and the strong law of large numbers,

Pr lim
n!1

1
n

Xn
i¼1

ðyi � x0ib0Þ
" #

¼ 0

 !
¼ 1: (A.10)

This implies

Prð lim
n!1 b0 2 CÞ ¼ 1 ) Pr

�
lim
n!1



arg sup

b2B
E½ln f ðyijbÞ�

�
2 C
�

¼ 1

) Prð lim
n!1B2 ¼ 0Þ ¼ 1,

and the last result implies, by definition of almost sure convergence, that B2 !a:s: 0: Hence, B !a:s: 0
and the constraint does not affect the result.

Lastly, to show that the algorithm asymptotically converges to b0, remark that (A.8) implies by

Lemma A.2 that supx2R kf̂ ð2Þn ðxÞ � f ðxÞk !a:s: 0 where f̂ ð2Þn ðxÞ is the kernel density-based estimator of the

residuals corresponding to b̂
ð1Þ
: Thus, by identical reasoning, we obtain b̂

ðuÞ !a:s: b0 for u ¼ 1, 2, :::: w

Remark 5. Conditions (i)–(iv) of Theorem 2.1 are the regularity conditions that are necessary for
the convergence of MLE under the true density. Thus, the only additional conditions imposed are
those in Lemma A.1 of which condition (i) of zero mean goes without loss of generality in the con-
text of linear regression as we can always adjust the intercept parameter in b if the center of f ð�Þ is
not zero. Condition (ii) of Lemma A.1 may be restrictive in some cases as it rules out, for instance,
the t(v)-distribution with 1 < v � 2: However, in Section 4.2 we observed that M-KDRE performs
well for t(2). In fact, its performance is best of all considered estimators under that error distribution.
Hence, the practical use of M-KDRE does not seem to be restricted to distributions with finite
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variance. Conditions (iii) and (iv) of Lemma A.1 are easy to verify in practice, and conditions
(v)–(vii) are technical requirements on the kernel and bandwidth. Note that (v) is not satisfied by the
Gaussian kernel since that kernel does not have bounded support. In practice, however, the Gaussian
kernel entails a significant computational advantage.

Proof of Theorem 2.3 (sketch): For the case of q (q< p) with linear random or deterministic
equality constraints, the proof of consistency and asymptotic distribution of b̂ can be based on
results in Crowder (1984) and Osborne (2000). In particular, given these results it follows that

b̂
ð1Þ

is asymptotically normal and efficient. The only condition on the initial estimator b̂
ð0Þ

is that

ðb̂ð0Þ � b̂0Þ ¼ Opðn�1=2Þ: For b̂ð1Þ
this follows from the proof of (Yao and Zhao 2013, Thm. 2.1).

Hence, all subsequent estimates b̂
ðuÞ ðu ¼ 2, 3, :::Þ also satisfy (8). w

Proof of Theorem 2.4. Under the Gaussian kernel, the linear constraint cðbÞ ¼ 0, and a full-
kernel method, the M-step in (10) becomes

b̂
ðuÞ
ðkþ1Þ ¼ argminb

Xn
i¼1

Xn
j¼1

ðpðuÞij, ðkþ1Þðyi � x0ib� êðu�1Þ
j Þ2Þ s:t:

Xn
i¼1

ðyi � x0ibÞ ¼ 0 (A.11)

This can be solved by Lagrangian optimization. Define the Lagrangian L as

Lðb, kÞ ¼
Xn
i¼1

Xn
j¼1

ðpðuÞij, ðkþ1Þðyi � x0ib� êðu�1Þ
j Þ2Þ � k

Xn
i¼1

ðyi � x0ibÞ (A.12)

with first-order conditions

@L
@b

¼ �2
Xn
i¼1

Xn
j¼1

ðpðuÞij, ðkþ1Þxiðyi � x0ib� êðu�1Þ
j ÞÞ � k

Xn
i¼1

xi ¼ 0 (A.13)

@L
@k

¼
Xn
i¼1

ðyi � x0ibÞ ¼ 0: (A.14)

By setting xi, 1 
 1 ði ¼ 1, :::, nÞ, the first element of the first-order condition in (A.13) implies

k ¼� 2
n

Xn
i¼1

Xn
j¼1

�
pðuÞij, ðkþ1Þðyi � x0ib� êðu�1Þ

j Þ
�

¼� 2
n

Xn
i¼1

ðyi � x0ibÞ
Xn
j¼1

pðuÞij, ðkþ1Þ þ
2
n

Xn
i¼1

Xn
j¼1

pðmÞ
ij, ðkþ1Þê

ðu�1Þ
j

¼ 2
n

Xn
i¼1

Xn
j¼1

pðuÞij, ðkþ1Þê
ðu�1Þ
j ,

(A.15)

where the last equality follows from (A.14). Then, by plugging k in (A.13), rearranging terms and

using
Pn

j¼1 p
ðuÞ
ij, ðkþ1Þ ¼ 1, we obtain

b̂
ðuÞ
ðkþ1Þ ¼

 Xn
i¼1

xix
0
i

!�1Xn
i¼1

xiyi �
 Xn

i¼1

xix
0
i

!�1Xn
i¼1

 
xi
Xn
j¼1

pðuÞij, ðkþ1Þê
ðu�1Þ
j

!

þ 1
n

 Xn
i¼1

xix
0
i

!�1Xn
i¼1

xi

 Xn
i¼1

Xn
j¼1

pðuÞij, ðkþ1Þê
ðu�1Þ
j

!
:

(A.16)

Recognize that the first term is equal to b̂LSE: Then, the fact that (9) and (10) are the E- and
M-step, respectively, of an EM type algorithm follows trivially from the proof of Theorem 2.2 in
Yao and Zhao (2013). w
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